WO2022167747A1 - Moteur électrique comportant un déflecteur de fluide de refroidissement - Google Patents

Moteur électrique comportant un déflecteur de fluide de refroidissement Download PDF

Info

Publication number
WO2022167747A1
WO2022167747A1 PCT/FR2022/050160 FR2022050160W WO2022167747A1 WO 2022167747 A1 WO2022167747 A1 WO 2022167747A1 FR 2022050160 W FR2022050160 W FR 2022050160W WO 2022167747 A1 WO2022167747 A1 WO 2022167747A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
wall
deflector
rotor
hole
Prior art date
Application number
PCT/FR2022/050160
Other languages
English (en)
Inventor
Cédric LEDIEU
Julien BRODNIK
Original Assignee
Novares France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novares France filed Critical Novares France
Priority to EP22705079.6A priority Critical patent/EP4289049A1/fr
Priority to CN202280012656.8A priority patent/CN116830432A/zh
Priority to US18/273,806 priority patent/US20240079934A1/en
Publication of WO2022167747A1 publication Critical patent/WO2022167747A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor

Definitions

  • the invention relates to an electric motor.
  • current electric motors comprise a rotor secured to a shaft and a stator which surrounds the rotor.
  • the rotor and the stator are mounted in a casing which includes bearings for the rotational mounting of the shaft.
  • the rotor may comprise a body formed by a stack of laminations or pole wheels (claw pole) held by means of a suitable fastening system.
  • the rotor body has internal cavities housing permanent magnets.
  • the stator may comprise a body consisting of a stack of laminations forming a crown, the inner face of which is provided with teeth delimiting two by two a plurality of notches open towards the inside of the stator body and intended to receive phase windings .
  • phase windings pass through the notches of the stator body and form buns projecting on either side of the stator body.
  • the phase windings can for example consist of a plurality of U-shaped conductor segments, the free ends of two adjacent segments being connected together by welding.
  • the casing generally comprises a front wall and a rear wall each forming a bearing which centrally carries a bearing for the rotational mounting of the shaft of the rotor.
  • the operation of the motor generates significant heat which results in particular from the current flowing through the phase windings of the stator. This heat, if it is not properly evacuated, can cause a significant rise in temperature of various components of the engine and the reduction of their lifespan, or even their degradation.
  • the present invention aims to remedy the drawbacks mentioned above.
  • an electric motor comprising:
  • a substantially cylindrical rotor mounted on the shaft integrally in rotation, the rotor having a front side face and a rear side face orthogonal to the axis (X);
  • stator comprising an annular body which surrounds the rotor coaxially with the shaft, and which has a front side face and a rear side face orthogonal to the axis, the stator comprising a winding forming buns projecting axially from either side and sides of the stator body;
  • a substantially cylindrical casing receiving the rotor and the stator, the casing comprising a peripheral wall, a front wall and a rear wall orthogonal to the axis (X), an internal space, respectively front and rear, being provided between the front wall of the casing and the front side face of the stator, respectively between the rear wall of the casing and the rear side face of the stator, the chignons being housed in the internal spaces;
  • the shaft being engaged in an orifice in the front wall and an orifice in the rear wall of the housing, with the interposition of a bearing, respectively a front bearing and a rear bearing, the shaft comprising at least one internal circulation channel d a cooling fluid and at least one hole in fluid communication with the internal channel and opening into at least one of the front, respectively rear, internal spaces of the casing.
  • the motor comprises a deflector which is fixed relative to the shaft, and which comprises at least one deflecting wall configured to deflect in the direction of the corresponding front bearing, respectively rear, the flow of fluid from cooling flowing into the internal space from the shaft hole, so that the cooling fluid can be thrown onto the baffle wall and spray the bearing, thereby ensuring the cooling of the bearing.
  • the deflector includes a flange arranged around the shaft, the deflecting wall or walls being located between the shaft and the flange, preferably secured to the inner face of the flange.
  • the invention thus offers a solution for cooling the bearing or bearings which is effective, in particular because the cooling fluid is directed at the bearing itself. Furthermore, the solution according to the invention is simple to implement. Indeed, on the one hand, the deflector is a means whose structure can be relatively simple, and can be integrated into an existing engine structure without requiring substantial modifications. On the other hand, the invention takes advantage of already existing elements, in particular the cooling fluid circuit. It follows that the service life of the bearings can be considerably improved without incurring a significant additional cost.
  • the collar can form a support for the deflecting wall(s).
  • the collar can also promote the channeling of the cooling fluid and limit its dispersion inside the casing.
  • the cooling fluid is preferably a liquid, and may typically be an oil.
  • the deflector wall can have an operational face which is curved or substantially planar and inclined with respect to the axis (X), and which is oriented towards the hole and towards the bearing.
  • operational face is meant the face of the deflecting wall which provides the expected result, that is to say which produces the deflection.
  • the hole in the shaft can open out into the internal space substantially opposite the operational face.
  • the hole in the shaft is substantially radial
  • the deflecting wall has an operational face which is inclined with respect to the axis (X), said operational face being oriented towards the hole and towards the bearing.
  • the angle between the operational face and the axis (X) can be close to 45°.
  • the deflecting wall is for example in the form of a rib situated in a plane passing through the axis (X), one edge of the rib being oriented towards the hole and towards the bearing and forming the operational face.
  • rib is meant a planar element of small thickness, the operational face corresponding to the thin edge of the rib, that is to say its edge. The thickness of the rib can be close to the diameter of the shaft hole.
  • the deflecting wall may have a first face substantially orthogonal to the axis (X) and a second face substantially parallel to the axis (X).
  • the rib may thus have the shape of a right-angled triangle.
  • the two faces opposite the operational face can be joined by a fillet or a chamfer.
  • the edge opposite the operational face can constitute a connecting edge to a support structure of the rib.
  • the collar and the rib or ribs are distinct elements, which have distinct functions.
  • the function of the rib by means of the deflecting wall, is to deflect the flow of cooling fluid, while the flange has a function of channeling the fluid and/or of support, as previously indicated. This does not exclude a portion of the flow from reaching the flange and being deflected by it, but this portion is negligible compared to the total flow of fluid emerging into the corresponding internal space.
  • the flange and the rib or ribs are separate elements, this does not exclude these two elements from being integral with one another and belonging to the same part.
  • the shaft has N holes in fluid communication with the internal channel and opening out into an internal space of the casing, with N>1 (preferably N>2); moreover, the deflector comprises a deflecting wall facing each or some of the holes.
  • the holes are substantially radial, have the same median plane orthogonal to (X) and are angularly regularly spaced.
  • a given deflecting wall can be dedicated to a given hole.
  • a given deflecting wall can be dedicated to a given hole.
  • the same deflecting wall common to several holes.
  • two coaxial holes opening out into an internal space of the casing at two points of the shaft which are diametrically opposed, as well as a deflecting wall facing each hole.
  • the collar may typically be cylindrical. This does not impose a circular section.
  • the section of the collar (orthogonally to the axis) can be oval or oblong; it may comprise curved parts and straight parts.
  • the collar is continuous, preferably substantially cylindrical and coaxial with the shaft.
  • continuous is meant that the collar is circumferentially continuous.
  • the deflector preferably comprises a deflecting wall facing each of the holes. The collar thus makes it possible to contain the cooling fluid as much as possible.
  • the collar is discontinuous and comprises collar portions spaced circumferentially from each other so as to form an opening between two adjacent collar portions.
  • the deflecting wall or walls are then arranged between the shaft and a portion of the flange (in other words, there is no deflecting wall facing an opening).
  • at least one deflecting wall is located opposite a hole in the shaft, and at least one opening is located opposite a hole in the shaft.
  • each deflecting wall to face a hole in the shaft, and for each opening to face a hole in the shaft.
  • the deflector may comprise an annular portion mounted on and coaxially with the shaft, in the internal space of the casing, the deflecting wall(s) being integral with the face of the annular portion opposite the rotor.
  • the annular portion thus forms a support for the deflecting wall(s), which protrude from this annular wall.
  • the deflector includes a flange, the latter may project from the annular portion opposite the rotor; in addition, the flange may have the same axis as the annular portion.
  • the collar may project from the peripheral edge of the annular portion.
  • the deflector is made in one piece with a flange which has the shape of a disk having a diameter substantially identical to the diameter of the rotor, the flange being mounted adjusted coaxially to the shaft, in the internal space of the housing and contiguous to the corresponding side face of the rotor, the deflecting wall(s) projecting from the flange opposite the rotor.
  • the annular portion of the deflector may form the central part of the flange, and may for example have an outside diameter less than 70% of the diameter of the rotor.
  • the annular part of the deflector is extended radially outwards by an annular element which has an outer diameter substantially identical to the diameter of the rotor and with which it forms a flange. This flange can form a balancing flange.
  • the annular portion has an outer diameter less than 70% of the diameter of the rotor and the deflector forms an independent part - that is to say not integral with other parts of the engine before assembly.
  • the deflector may in particular form a separate part from any flange.
  • the deflector can be fixed directly to the side face of the rotor, or to a balancing flange itself fixed to the side face of the rotor.
  • the shaft comprises at least one front hole in fluid communication with the internal channel and opening out into the internal space front of the casing, and a rear hole in fluid communication with the internal channel and opening into the rear internal space of the casing, and the motor comprises:
  • a front deflector configured to deviate the flow of cooling fluid emerging into the front internal space, from the front hole or holes, in the direction of the front bearing;
  • a rear deflector configured to deviate the flow of cooling fluid emerging into the rear internal space, from the rear hole(s), in the direction of the rear bearing.
  • Figure 1 is a longitudinal sectional view of an electric motor according to the invention, comprising a shaft, a rotor and a stator housed in a casing, a transmission device, a tank, a pump, an exchanger;
  • FIG. 2 is a detail view of FIG. 1, showing a deflector diverting a cooling fluid towards a bearing of the electric motor;
  • FIG. 3 is a perspective view from the front, showing an assembly comprising the rotor, the shaft, the front bearing and a deflector, according to one embodiment of the invention
  • Figure 4 is a detail view of Figure 3, the front bearing not being shown;
  • Figure 5 is a partial perspective view cut longitudinally of the assembly of Figure 4.
  • Figure 6 is a perspective view of the front deflector of Figures 3 and 4;
  • Figure 7 is a view similar to Figure 3, in perspective from the rear;
  • Figure 8 is a perspective view of the rear deflector of Figure 7;
  • FIG. 9 is a perspective view from the front, showing an assembly comprising the rotor, the shaft and a deflector, according to another embodiment of the invention.
  • Figure 10 is a perspective view of the front deflector of Figure 9;
  • FIG. 11 is a perspective view from the front, showing an assembly comprising the rotor, the shaft and a deflector, according to yet another embodiment of the invention.
  • Figure 12 is a perspective view of the front deflector of Figure 11;
  • Figure 13 is a perspective view of the rear deflector of the assembly of Figure 11;
  • Figure 14 is a truncated longitudinal sectional view of the assembly of Figure 11;
  • FIG. 15 is a perspective view from the front, showing an assembly comprising the rotor, the shaft and a deflector according to yet another embodiment of the invention.
  • Figure 16 is a truncated longitudinal sectional view of the assembly of Figure 15;
  • Figure 17 is a perspective view of the front deflector of Figure 15.
  • axial and radial and their derivatives are defined with respect to the axis of rotation rotor (X).
  • X axis of rotation rotor
  • an axial - or longitudinal - orientation relates to an orientation parallel to the axis of rotation of the rotor
  • a radial orientation relates to an orientation perpendicular to the axis of rotation of the rotor.
  • forward and “aft” refer to separate positions along the axis of rotation of the rotor.
  • the "front" end of the rotor shaft corresponds to the end of the shaft on which can be fixed a pulley, a pinion, a spline intended to transmit the rotational movement of the rotor to any other similar motion transmission device.
  • the term “inner” designates an element located closer to the axis of the rotor than an element designated by "outer”.
  • FIG. 1 represents an electric motor 1 according to the invention.
  • the motor 1 comprises a shaft 2 rotatably mounted around an axis X.
  • the shaft 2 is coupled to a device 3 for transmitting movements, in particular a reduction gear.
  • the motor 1 further comprises a rotor 10 which comprises a substantially cylindrical body mounted on the shaft 2 coaxially and integral in rotation, for example by a force fitting of the shaft 2 in a central opening of the body.
  • the body of the rotor 10 can typically be formed by a stack of laminations 14 made of a ferromagnetic material, in particular steel.
  • the rotor 10 further comprises a plurality of permanent magnets 15 housed in at least some cavities 16 formed inside the stack of laminations 14. As seen in Figures 11 and 15, the cavities 16 may have a prismatic shape with a triangular base, having a point directed towards the X axis, and being angularly regularly spaced around the X axis.
  • a plurality of fixing holes 11 axially through are made in the stack of sheets 14, to allow the passage of fixing screws (not shown) in the sheets of the stack of sheets.
  • the rotor 10 has a front side face 12 and a rear side face 13 orthogonal to the axis X.
  • the motor 1 also comprises a stator 20 comprising an annular body which surrounds the rotor 10 coaxially with the shaft 2.
  • the stator 20 has a front side face 22 and a rear side face 23 which are orthogonal to the axis X and which are located substantially in the same plane as the front 12 and rear 13 side faces of the rotor 10, respectively.
  • the stator 20 comprises a winding forming buns 21 which project axially on either side of the body of the stator 20.
  • the rotor 10, the stator 20 and part of the shaft 2 are received in a casing 30 that is substantially cylindrical.
  • the casing 30 comprises a peripheral wall 31, a front wall 32 and a rear wall 33 orthogonal to the axis X.
  • the peripheral wall 31 and the front wall 32 are made in one piece, while the rear wall 33 is a separate part which is fixed on the peripheral wall 31, for example by means of screws 34.
  • the casing can be made of metal.
  • a front internal space 35 is formed between the front wall 32 of the casing 30 and the front side face 22 of the stator 20; a rear internal space 36 is provided between the rear wall 33 of the casing 30 and the rear side face 23 of the stator 20.
  • the buns 21 are housed in the corresponding internal spaces 35, 36.
  • the shaft 2 is engaged in an orifice of the front wall 32 and an orifice of the rear wall 33 of the casing 30, with the interposition of a bearing, respectively a front bearing 37 and a rear bearing 38. It can for example be act as a ball bearing.
  • the shaft 2 comprises at least one internal channel 4 for the circulation of a cooling fluid and at least one hole 5 in fluid communication with the internal channel 4 and opening into an internal space 35, 36 of the casing 30.
  • the channel internal 4 can be axial and open at the front end of the shaft 2, while the hole or holes 5 can be radial.
  • the shaft 2 comprises at least one front hole 5 in fluid communication with the internal channel 4 and opening into the front internal space 35 of the casing 30, and at least one rear hole 5 in fluid communication with the internal channel 4 and opening into the rear internal space 36 of the casing 30.
  • the internal channel 4 may extend into the shaft 2 from the front end of the shaft 2, continuously between the front hole(s) and the rear hole(s), and be closed at its rear end, as shown in Figure 1.
  • the internal channel 4 could comprise a blind front portion opening into the front face of the shaft 2 and a blind rear portion opening into the rear face of the shaft 2, these two portions of the internal channel 4 being separated by a solid part of the shaft 2.
  • the internal channel 4 could emerge from the shaft 2, and a plug at the end of the shaft 2 could be attached in order to make the internal channel 4 blind.
  • the shaft comprises, at the front as well as at the rear, four holes 5 in fluid communication with the internal channel 4 and opening out into space internal front 35, respectively rear 36, of the casing 30.
  • These four holes 5 are preferably substantially radial, have the same median plane orthogonal to the axis X and are angularly spaced from each other by 90°.
  • These holes 5 can each be of different diameter, in order to project the oil radially according to a desired jet flow rate.
  • These holes 5 can also be stepped in order to balance the desired jet flow.
  • a circulation of cooling fluid can thus be established in the engine 1, as represented by the arrows in FIG. 1.
  • the cooling fluid contained in a tank 6 can pass through a pump 7 then an exchanger 8 - for example water - to allow it to cool, before being brought into the internal channel 4 of the shaft 2.
  • the cooling fluid then circulates via the holes 5 to emerge in the internal space(s) 35, 36 in order to cool the bearings of the engine 30.
  • the cooling fluid falls by gravity and is evacuated to the tank 6 through openings 39 made in the housing 30, for example in the peripheral wall 31 of the latter.
  • the motor 1 comprises a deflector 40 which is fixed relative to the shaft 2 and which comprises at least one deflecting wall 41 configured to deflect in the direction of the bearing 37, 38 corresponding to the flow of cooling fluid emerging into the internal space 35, 36 from hole 5 of shaft 2.
  • the cooling fluid can thus be projected onto the deflecting wall 41 and spray the bearing 37, 38, thus ensuring particularly efficient cooling of the bearing.
  • the cooling fluid can be chosen to also have lubricating properties, which makes it possible to avoid providing, in addition, a separate system for lubricating the bearing(s) 37, 38.
  • the deflector 40 can be fixed on the rotor 10 or force-fitted on the shaft 2.
  • the motor 1 comprises: - A front deflector 40 configured to deflect the flow of cooling fluid opening into the front internal space 35, from the front hole(s) 5, in the direction of the front bearing 37;
  • a rear deflector 40 configured to deflect the flow of cooling fluid opening into the rear internal space 36, from the rear hole(s) 5, in the direction of the rear bearing 38.
  • the following describes the front deflector 40 more precisely, it being specified that the rear deflector may have a similar structure.
  • the deflecting wall 41 has an operational face 42 which is substantially flat and inclined with respect to the axis X and which is oriented towards the hole 5 and towards the bearing 37. With a hole 5 substantially radial, the operational face 42 can be inclined with respect to the axis X by an angle close to 45°. The flow of cooling fluid can thus be deflected by approximately 90°, between a substantially radial incident direction and a substantially axial deflected direction.
  • the operational face 42 could not be flat but curved.
  • the deflecting wall 41 may be in the form of a rib located in a plane passing through the axis X.
  • the rib 41 may have the shape of a right triangle having:
  • first face 43 substantially orthogonal to the X axis and a second face 44 substantially parallel to the X axis.
  • the deflector 40 may further comprise an annular portion 45 provided with a central orifice 46.
  • the deflecting walls 41 are integral with the annular portion 45; typically, the first face 43 can be integral with a face of the annular portion 45.
  • the annular portion 45 is mounted on and coaxially with the shaft 2, in the internal space 35 of the casing 30, so that the face of the annular portion 45 from which the deflecting walls 41 protrude is turned towards the bearing 37, and that the opposite face of the annular portion 45 is turned towards, or even adjacent to, the front face 12 of the rotor 10.
  • the deflector 40 can also include a collar 47 which protrudes from the annular portion 45, preferably orthogonally from the edge. outer peripheral of the annular portion 45, and in the same direction as the deflecting walls 41.
  • the deflecting walls 41 can be secured to the inner face of the collar 47; typically, the second face 44 can be integral with the inner face of the flange 47. In the mounted position, the flange 47 is therefore arranged around the shaft 2, and preferably coaxially therewith, the deflecting walls 41 are located between the shaft 2 and the collar 47.
  • the collar 47 can be cylindrical, not necessarily circular in section.
  • the outer diameter of the annular portion 45 may for example be less than 70% of the diameter of the rotor.
  • the deflector 40 - namely the deflecting walls 41, the annular portion and the flange 47 - can be made in one piece, of plastic material, in particular by injection.
  • the flange 47 is continuous, preferably has a circular shape, and is arranged coaxially to the shaft 2.
  • the deflector 40 comprises a deflecting wall 41 facing each of the holes 5, as seen in particular in Figure 4. There is therefore a deflecting wall 41 dedicated to each of the holes 5, that is to say four deflecting walls 41 arranged at 90° to each other. Such an embodiment makes it possible to cool the bearing 37.
  • the deflector 40 is made in one piece with a flange which has the shape of a disc having a diameter substantially identical to the diameter of the rotor 10.
  • the annular portion 45 of the deflector 40 is extended radially outwards by an annular element which has an outer diameter substantially identical to the diameter of the rotor and with which it forms a flange.
  • the annular portion 45 therefore forms the central part of the flange. It can typically be a balancing flange.
  • the flange is mounted on and coaxially with the shaft 2, orthogonal to the axis X, in the internal space 35 of the casing 10 and contiguous to the corresponding side face of the rotor 10.
  • the motor 1 can comprise a front flange 17 mounted against the front lateral face 12 of the rotor 10, and a rear flange 18 mounted against the rear lateral face 13 of the rotor 10, the flanges 17, 18 being held tight on the stack of sheets, adjusted around the shaft by screws passing inside the holes 11 made in the stack of sheets 14, and nuts.
  • the deflector 40 is, as described above, made in one piece with a flange which has a disc shape having a diameter substantially identical to the diameter of the rotor 10.
  • the flange 47 is discontinuous.
  • the collar 47 thus comprises collar portions 48 spaced circumferentially from each other so as to form an opening 49 between two adjacent collar portions 48 .
  • the flange 47 can be cylindrical, but of non-circular section.
  • the deflector 40 comprises two flange portions 48 each comprising a curved part, the concavity of which is directed towards the X axis, these two curved parts being diametrically opposed.
  • Each curved part can also be extended at each of its axial edges by substantially planar parts, so that the two collar portions 48 form U shapes open towards the X axis and towards each other, leaving between them two openings 49 diametrically opposed.
  • the openings 49 are each arranged opposite a hole 5b, while the flange portions 48 - and more particularly the curved parts thereof - are each arranged opposite a hole 5a.
  • a deflecting wall 41 is arranged opposite each hole 5a facing a flange portion 48.
  • the cooling fluid exiting through one of the holes 5a is deflected by the corresponding deflecting wall 41, to be directed towards the bearing 37.
  • the cooling fluid exiting through one of the holes 5b does not is not deflected and passes through the opening 49, so that it can reach the buns 21 of the stator.
  • Such a discontinuous flange structure 47 thus makes it possible to achieve both cooling of the bearings and of the buns of the stator.
  • the deflector 40 forms an independent part, which in particular is not integrated into a flange.
  • the annular portion 45 does not extend and is not extended radially beyond the flange 47, as seen in particular in Figures 12, 13 and 17.
  • Figures 11, 14, 15 and 16 show that the deflector 40 forms a separate piece.
  • the deflector comprises a continuous collar 47, of circular shape, as well as four deflecting walls at 90° from each other, each arranged opposite a hole 5 of the shaft 2
  • the deflector 40 is mounted directly against the front side face 12 of the rotor 10
  • the deflector 40 is mounted on a front flange 17 - from which it is initially separate - the front flange 17 being itself mounted against the front side face 12 of the rotor 10.
  • the deflector comprises a discontinuous flange 47, comprising flange portions 48 provided with deflecting walls 41 facing holes 5a of shaft 2, for cooling bearing 37, and openings 49 facing holes 5a of shaft 2, without the interposition of a deflecting wall 41, for cooling buns 21 of the stator.
  • the collar 47 may have a geometry identical to that described in connection with Figures 9 and 10.
  • the deflector 40 is mounted directly against the front side face 12 of the rotor 10, while in Figure 16, the deflector 40 is mounted on a front flange 17 - from which it is initially separate - the front flange 17 being itself mounted against the front side face 12 of the rotor 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

Le moteur (1) électrique comprend : - un arbre (2) monté rotatif autour d'un axe (X); - un rotor (10) et un stator (20) reçus dans un carter (30). L'arbre (2) est engagé dans un orifice de la paroi avant (32) et un orifice de la paroi arrière (33) du carter (30), avec interposition d'un roulement avant (37), respectivement arrière (38). Il comporte un canal interne (4) de circulation d'un fluide de refroidissement et au moins un trou (5) en communication avec le canal interne et débouchant dans un espace interne avant (35) ou arrière (36) du carter (30). Un déflecteur (40) fixe par rapport à l'arbre comporte une paroi déflectrice (41) qui dévie en direction du roulement correspondant le flux de fluide de refroidissement débouchant dans l'espace interne depuis le trou.

Description

DESCRIPTION
Titre : Moteur électrique comportant un déflecteur de fluide de refroidissement
L'invention concerne un moteur électrique.
De manière générale, les moteurs électriques actuels comportent un rotor solidaire d'un arbre et un stator qui entoure le rotor. Le rotor et le stator sont montés dans un carter qui comporte des roulements pour le montage en rotation de l'arbre. Le rotor peut comporter un corps formé par un empilage de tôles ou roues polaires (claw pole) maintenues au moyen d'un système de fixation adapté. Le corps du rotor comporte des cavités internes logeant des aimants permanents. Le stator peut comporter un corps constitué par un empilage de tôles formant une couronne, dont la face intérieure est pourvue de dents délimitant deux à deux une pluralité d'encoches ouvertes vers l'intérieur du corps de stator et destinées à recevoir des enroulements de phase. Ces enroulements de phase traversent les encoches du corps de stator et forment des chignons faisant saillie de part et d'autre du corps de stator. Les enroulements de phase peuvent par exemple être constitués d'une pluralité de segments de conducteur en forme de U, les extrémités libres de deux segments adjacents étant reliées entre elles par soudage.
Le carter comporte généralement une paroi avant et une paroi arrière formant chacune un palier qui porte centralement un roulement pour le montage en rotation de l'arbre du rotor.
Le fonctionnement du moteur génère une chaleur importante qui résulte notamment du courant circulant à travers les enroulements de phase du stator. Cette chaleur, si elle n'est pas bien évacuée, peut occasionner une montée en température significative de différents composants du moteur et la diminution de leur durée de vie, voire leur dégradation.
Les solutions qui existent actuellement pour refroidir le moteur nécessitent souvent de nombreuses modifications structurelles, et sont donc complexes et coûteuses à mettre en œuvre. En outre, il est rarement prévu des solutions de refroidissement du rotor, ce qui implique une montée en température des roulements. De plus, ces roulements peuvent subir d'autres contraintes ; tout particulièrement, le roulement avant reçoit également la chaleur du mécanisme de réduction situé en amont de la paroi avant du carter et contribue à la reprise d'efforts. Il est donc impératif, pour éviter que la montée en température de ces roulements n'ait un impact important sur leur durée de vie, de prévoir une solution permettant d'assurer leur refroidissement de façon efficace et avantageusement relativement simple à mettre en œuvre.
La présente invention vise à remédier aux inconvénients mentionnés ci- dessus.
A cet effet, l'invention concerne un moteur électrique comprenant :
- un arbre monté rotatif autour d'un axe (X) ;
- un rotor sensiblement cylindrique monté sur l'arbre de façon solidaire en rotation, le rotor présentant une face latérale avant et une face latérale arrière orthogonales à l'axe (X) ;
- un stator comportant un corps annulaire qui entoure le rotor de manière coaxiale à l'arbre, et qui présente une face latérale avant et une face latérale arrière orthogonales à l'axe, le stator comportant un bobinage formant des chignons faisant saillie axialement de part et d'autre du corps du stator ;
- un carter sensiblement cylindrique recevant le rotor et le stator, le carter comportant une paroi périphérique, une paroi avant et une paroi arrière orthogonales à l'axe (X), un espace interne, respectivement avant et arrière, étant ménagé entre la paroi avant du carter et la face latérale avant du stator, respectivement entre la paroi arrière du carter et la face latérale arrière du stator, les chignons étant logés dans les espaces internes ; l'arbre étant engagé dans un orifice de la paroi avant et un orifice de la paroi arrière du carter, avec interposition d'un roulement, respectivement un roulement avant et un roulement arrière, l'arbre comportant au moins un canal interne de circulation d'un fluide de refroidissement et au moins un trou en communication fluidique avec le canal interne et débouchant dans au moins l'un des espaces internes avant, respectivement arrière, du carter.
Selon une définition générale de l'invention, le moteur comprend un déflecteur qui est fixe par rapport à l'arbre, et qui comporte au moins une paroi déflectrice configurée pour dévier en direction du roulement correspondant avant, respectivement arrière, le flux de fluide de refroidissement débouchant dans l'espace interne depuis le trou de l'arbre, de sorte que le fluide de refroidissement peut être projeté sur la paroi déflectrice et asperger le roulement, assurant ainsi le refroidissement du roulement. De plus, le déflecteur comporte une collerette disposée autour de l'arbre, la ou les parois déflectrices étant situées entre l'arbre et la collerette, de préférence solidaires de la face intérieure de la collerette.
L'invention offre ainsi une solution de refroidissement du ou des roulements qui est efficace, notamment du fait que le fluide de refroidissement est dirigé vers le roulement lui-même. En outre, la solution selon l'invention est simple à mettre en œuvre. En effet, d'une part, le déflecteur est un moyen dont la structure peut être relativement simple, et peut s'intégrer dans une structure existante de moteur sans nécessiter de modifications substantielles. D'autre part, l'invention tire parti d'éléments déjà existants, en particulier le circuit de fluide de refroidissement. Il s'ensuit que la durée de vie des roulements peut être considérablement améliorée sans engendrer de surcoût important.
La collerette peut former un support pour la ou les parois déflectrices. La collerette peut également favoriser la canalisation du fluide de refroidissement et limiter sa dispersion à l'intérieur du carter.
Le fluide de refroidissement est de préférence un liquide, et peut typiquement être une huile.
La paroi déflectrice peut posséder une face opérationnelle qui est courbée ou sensiblement plane et inclinée par rapport à l'axe (X), et qui est orientée vers le trou et vers le roulement. Par « face opérationnelle », on entend la face de la paroi déflectrice qui fournit le résultat attendu, c'est-à-dire qui produit la déflection. En d'autres termes, le trou de l'arbre peut déboucher dans l'espace interne sensiblement en regard de la face opérationnelle.
Selon une réalisation possible, le trou de l'arbre est sensiblement radial, et la paroi déflectrice possède une face opérationnelle qui est inclinée par rapport à l'axe (X), ladite face opérationnelle étant orientée vers le trou et vers le roulement. L'angle entre la face opérationnelle et l'axe (X) peut être voisin de 45°.
La paroi déflectrice se présente par exemple sous la forme d'une nervure située dans un plan passant par l'axe (X), un bord de la nervure étant orienté vers le trou et vers le roulement et formant la face opérationnelle. Par « nervure » on entend un élément plan de faible épaisseur, la face opérationnelle correspondant au bord mince de la nervure, c'est-à-dire sa tranche. L'épaisseur de la nervure peut être voisine du diamètre du trou de l'arbre.
A l'opposé de la face opérationnelle, la paroi déflectrice peut présenter une première face sensiblement orthogonale à l'axe (X) et une deuxième face sensiblement parallèle à l'axe (X).
La nervure peut ainsi avoir une forme de triangle rectangle. Les deux faces opposées à la face opérationnelle peuvent être reliées par un congé ou un chanfrein. Le bord opposé à la face opérationnelle peut constituer un bord de liaison à une structure de support de la nervure. De préférence, la collerette et la ou les nervures sont des éléments distincts, qui ont des fonctions distinctes. Ainsi, la nervure a pour fonction, au moyen de la paroi déflectrice, de dévier le flux de fluide de refroidissement, tandis que la collerette a une fonction de canalisation du fluide et/ou de support, comme précédemment indiqué. Ceci n'exclut pas qu'une portion du flux puisse atteindre la collerette et être dévié par elle, mais cette portion est négligeable par rapport au flux total de fluide débouchant dans l'espace interne correspondant. Par ailleurs, si la collerette et la ou les nervures sont des éléments distincts, cela n'exclut pas que ces deux éléments puissent être solidaires l'un de l'autre et appartenir à une même pièce.
Selon une réalisation possible, l'arbre comporte N trous en communication fluidique avec le canal interne et débouchant dans un espace interne du carter, avec N > 1 (de préférence N > 2) ; de plus, le déflecteur comprend une paroi déflectrice en regard de chacun ou de certains des trous. De préférence, les trous sont sensiblement radiaux, possèdent un même plan médian orthogonal à (X) et sont angulairement régulièrement espacés.
Ainsi, une paroi déflectrice donnée peut être dédiée à un trou donné. On pourrait imaginer en variante une même paroi déflectrice commune à plusieurs trous.
Par exemple, on peut avoir deux trous coaxiaux et débouchant dans un espace interne du carter en deux points de l'arbre qui sont diamétralement opposés, ainsi qu'une paroi déflectrice en regard de chaque trou. Selon un autre exemple, on peut avoir quatre trous à 90° les uns des autres, une paroi déflectrice disposée en regard de deux trous coaxiaux, et aucune paroi déflectrice en regard des deux autres trous coaxiaux.
La collerette peut typiquement être cylindrique. Ceci n'impose pas une section circulaire. Ainsi, la section de la collerette (orthogonalement à l'axe) peut être ovale ou oblongue ; elle peut comporter des parties courbes et des parties rectilignes.
Selon un mode de réalisation, la collerette est continue, de préférence sensiblement cylindrique et coaxiale à l'arbre. Par « continue », on entend que la collerette est circonférentiellement continue. Avec cette configuration, lorsqu'il y a plusieurs trous, de préférence, le déflecteur comprend une paroi déflectrice en regard de chacun des trous. La collerette permet ainsi de contenir autant que possible le fluide de refroidissement.
Selon un autre mode de réalisation, la collerette est discontinue et comporte des portions de collerette espacées circonférentiellement les unes des autres de sorte à ménager une ouverture entre deux portions de collerette voisines. La ou les parois déflectrices sont alors agencées entre l'arbre et une portion de collerette (en d'autres termes, il n'y a pas de paroi déflectrice en regard d'une ouverture). En outre, au moins une paroi déflectrice est située en regard d'un trou de l'arbre, et au moins une ouverture est située en regard d'un trou de l'arbre. Avec cette configuration, le fluide de refroidissement provenant du ou des trous en regard d'une ouverture de la collerette peut atteindre les chignons du stator en vue de leur refroidissement.
Typiquement, on peut prévoir que chaque paroi déflectrice soit en regard d'un trou de l'arbre, et que chaque ouverture soit en regard d'un trou de l'arbre.
Le déflecteur peut comporter une portion annulaire montée sur et coaxialement à l'arbre, dans l'espace interne du carter, la ou les parois déflectrices étant solidaires de la face de la portion annulaire opposée au rotor. La portion annulaire forme ainsi un support pour la ou les parois déflectrices, qui font saillie de cette paroi annulaire. Si le déflecteur comporte une collerette, celle-ci peut faire saillie de la portion annulaire à l'opposé du rotor ; en outre, la collerette peut présenter le même axe que la portion annulaire. La collerette peut faire saillie depuis le bord périphérique de la portion annulaire.
Selon un mode de réalisation, le déflecteur est réalisé d'une seule pièce avec un flasque qui possède une forme de disque présentant un diamètre sensiblement identique au diamètre du rotor, le flasque étant monté ajusté coaxialement à l'arbre, dans l'espace interne du carter et de façon contiguë à la face latérale correspondante du rotor, la ou les parois déflectrices faisant saillie du flasque à l'opposé du rotor.
La portion annulaire du déflecteur peut former la partie centrale du flasque, et peut présenter par exemple un diamètre extérieur inférieur à 70 % du diamètre du rotor. En d'autres termes, la partie annulaire du déflecteur est prolongée radialement vers l'extérieur par un élément annulaire qui présente un diamètre extérieur sensiblement identique au diamètre du rotor et avec lequel elle forme un flasque. Ce flasque peut former un flasque d'équilibrage.
Selon un autre mode de réalisation, la portion annulaire présente un diamètre extérieur inférieur à 70 % du diamètre du rotor et le déflecteur forme une pièce indépendante - c'est-à-dire non solidaire d'autres pièces du moteur avant l'assemblage. Le déflecteur peut en particulier former une pièce distincte de tout flasque. Le déflecteur peut se fixer directement sur la face latérale du rotor, ou sur un flasque d'équilibrage lui-même fixé sur la face latérale du rotor.
Selon une réalisation possible, on peut prévoir deux déflecteurs. Plus précisément, selon cette réalisation, l'arbre comporte au moins un trou avant en communication fluidique avec le canal interne et débouchant dans l'espace interne avant du carter, et un trou arrière en communication fluidique avec le canal interne et débouchant dans l'espace interne arrière du carter, et le moteur comprend :
- un déflecteur avant configuré pour dévier le flux de fluide de refroidissement débouchant dans l'espace interne avant, depuis le ou les trous avant, en direction du roulement avant ;
- et un déflecteur arrière configuré pour dévier le flux de fluide de refroidissement débouchant dans l'espace interne arrière, depuis le ou les trous arrière, en direction du roulement arrière.
On décrit à présent, à titre d'exemples non limitatifs, plusieurs modes de réalisation possibles de l'invention, en référence aux figures annexées :
La figure 1 est une vue en coupe longitudinale d'un moteur électrique selon l'invention, comprenant un arbre, un rotor et un stator logés dans un carter, un dispositif de transmission, un réservoir, une pompe, un échangeur ;
La figure 2 est une vue de détail de la figure 1, montrant un déflecteur déviant un fluide de refroidissement vers un roulement du moteur électrique ;
La figure 3 est une vue en perspective depuis l'avant, montrant un ensemble comportant le rotor, l'arbre, le roulement avant et un déflecteur, selon un mode de réalisation de l'invention ;
La figure 4 est une vue de détail de la figure 3, le roulement avant n'étant pas représenté ;
La figure 5 est une vue partielle en perspective coupée longitudinalement de l'ensemble de la figure 4 ;
La figure 6 est une vue en perspective du déflecteur avant des figures 3 et 4 ;
La figure 7 est une vue similaire à la figure 3, en perspective depuis l'arrière ;
La figure 8 est une vue en perspective du déflecteur arrière de la figure 7 ;
La figure 9 est une vue en perspective depuis l'avant, montrant un ensemble comportant le rotor, l'arbre et un déflecteur, selon un autre mode de réalisation de l'invention ;
La figure 10 est une vue en perspective du déflecteur avant de la figure 9 ;
La figure 11 est une vue en perspective depuis l'avant, montrant un ensemble comportant le rotor, l'arbre et un déflecteur, selon encore un autre mode de réalisation de l'invention ;
La figure 12 est une vue en perspective du déflecteur avant de la figure 11 ; La figure 13 est une vue en perspective du déflecteur arrière de l'ensemble de la figure 11 ;
La figure 14 est une vue en coupe longitudinale tronquée de l'ensemble de la figure 11 ;
La figure 15 est une vue en perspective depuis l'avant, montrant un ensemble comportant le rotor, l'arbre et un déflecteur selon encore un autre mode de réalisation de l'invention ;
La figure 16 est une vue en coupe longitudinale tronquée de l'ensemble de la figure 15 ;
La figure 17 est une vue en perspective du déflecteur avant de la figure 15. Dans l'ensemble de la description et dans les revendications, les termes « axial » et « radial » et leurs dérivés sont définis par rapport à l'axe de rotation du rotor (X). Ainsi, une orientation axiale - ou longitudinale - se rapporte à une orientation parallèle à l'axe de rotation du rotor et une orientation radiale se rapporte à une orientation perpendiculaire à l'axe de rotation du rotor. Par ailleurs, par convention, les termes « avant » et « arrière » font référence à des positions séparées le long de l'axe de rotation du rotor. En particulier, l'extrémité « avant » de l'arbre du rotor correspond à l'extrémité de l'arbre sur laquelle peut être fixé(e) une poulie, un pignon, une cannelure destiné(e) à transmettre le mouvement de rotation du rotor à tout autre dispositif similaire de transmission de mouvements. En outre, le terme « intérieur » désigne un élément situé plus près de l'axe du rotor qu'un élément désigné par « extérieur ».
La figure 1 représente un moteur électrique 1 selon l'invention.
Le moteur 1 comprend un arbre 2 monté rotatif autour d'un axe X. En fonctionnement, à l'avant, l'arbre 2 est couplé à un dispositif 3 de transmission de mouvements, en particulier un réducteur.
Le moteur 1 comprend en outre un rotor 10 qui comporte un corps sensiblement cylindrique monté sur l'arbre 2 de façon coaxiale et solidaire en rotation, par exemple par un emmanchement en force de l'arbre 2 dans une ouverture centrale du corps. Le corps du rotor 10 peut typiquement être formé par un paquet de tôles 14 réalisé dans un matériau ferromagnétique, notamment en acier. Le rotor 10 comprend en outre une pluralité d'aimants permanents 15 logés dans au moins certaines cavités 16 formées à l'intérieur du paquet de tôles 14. Comme on le voit sur les figures 11 et 15, les cavités 16 peuvent présenter une forme prismatique à base triangulaire, possédant une pointe dirigée vers l'axe X, et être angulairement régulièrement espacées autour de l'axe X. Une pluralité de trous de fixation 11 axialement traversants sont réalisés dans le paquet de tôles 14, pour permettre le passage de vis de fixation (non représentées) dans les tôles du paquet de tôles. Le rotor 10 présente une face latérale avant 12 et une face latérale arrière 13 orthogonales à l'axe X.
Le moteur 1 comprend également un stator 20 comportant un corps annulaire qui entoure le rotor 10 de manière coaxiale à l'arbre 2. Le stator 20 présente une face latérale avant 22 et une face latérale arrière 23 qui sont orthogonales à l'axe X et qui sont situées sensiblement dans un même plan que les faces latérales avant 12 et arrière 13 du rotor 10, respectivement. Le stator 20 comporte un bobinage formant des chignons 21 qui font saillie axialement de part et d'autre du corps du stator 20.
Le rotor 10, le stator 20 et une partie de l'arbre 2 sont reçus dans un carter 30 sensiblement cylindrique. Le carter 30 comporte une paroi périphérique 31, une paroi avant 32 et une paroi arrière 33 orthogonales à l'axe X. Selon une réalisation possible, la paroi périphérique 31 et la paroi avant 32 sont réalisées d'une seule pièce, tandis que la paroi arrière 33 est une pièce distincte venant se fixer sur la paroi périphérique 31, par exemple au moyen de vis 34. Le carter peut être réalisé en métal.
Un espace interne avant 35 est ménagé entre la paroi avant 32 du carter 30 et la face latérale avant 22 du stator 20 ; un espace interne arrière 36 est ménagé entre la paroi arrière 33 du carter 30 et la face latérale arrière 23 du stator 20. Les chignons 21 sont logés dans les espaces internes 35, 36 correspondants.
L'arbre 2 est engagé dans un orifice de la paroi avant 32 et un orifice de la paroi arrière 33 du carter 30, avec interposition d'un roulement, respectivement un roulement avant 37 et un roulement arrière 38. Il peut par exemple s'agir de roulement à billes.
L'arbre 2 comporte au moins un canal interne 4 de circulation d'un fluide de refroidissement et au moins un trou 5 en communication fluidique avec le canal interne 4 et débouchant dans un espace interne 35, 36 du carter 30. Typiquement, le canal interne 4 peut être axial et ouvert à l'extrémité avant de l'arbre 2, tandis que le ou les trous 5 peuvent être radiaux.
De préférence, l'arbre 2 comporte au moins un trou 5 avant en communication fluidique avec le canal interne 4 et débouchant dans l'espace interne avant 35 du carter 30, et au moins un trou 5 arrière en communication fluidique avec le canal interne 4 et débouchant dans l'espace interne arrière 36 du carter 30.
Le canal interne 4 peut s'étendre dans l'arbre 2 depuis l'extrémité avant de l'arbre 2, de façon continue entre le ou les trous avant et le ou les trous arrière, et être fermé à son extrémité arrière, comme illustré sur la figure 1. Dans une variante non représentée, le canal interne 4 pourrait comporter une portion avant borgne débouchant dans la face avant de l'arbre 2 et une portion arrière borgne débouchant dans la face arrière de l'arbre 2, ces deux portions du canal interne 4 étant séparées par une partie pleine de l'arbre 2. Dans une variante non représentée, le canal interne 4 pourrait être débouchant de l'arbre 2, et un bouchon au bout de l'arbre 2 pourrait être rapporté afin de rendre le canal interne 4 borgne.
Dans la réalisation représentée, en figure 5, qui ne doit pas être considérée comme limitative, l'arbre comporte, à l'avant comme à l'arrière, quatre trous 5 en communication fluidique avec le canal interne 4 et débouchant dans l'espace interne avant 35, respectivement arrière 36, du carter 30. Ces quatre trous 5 sont de préférence sensiblement radiaux, possèdent un même plan médian orthogonal à l'axe X et sont angulairement espacés les uns des autres de 90°. Ces trous 5 peuvent chacun être de diamètre différent, afin de projeter radialement l'huile selon un débit de jet désiré. Ces trous 5 peuvent également être étagés afin d'équilibrer le débit de jet désiré.
Il peut ainsi être établi une circulation de fluide de refroidissement dans le moteur 1, comme représenté par les flèches de la figure 1. Le fluide de refroidissement contenu dans un réservoir 6 peut passer par une pompe 7 puis un échangeur 8 - par exemple à eau - pour permettre son refroidissement, avant d'être amené dans le canal interne 4 de l'arbre 2. Le fluide de refroidissement circule alors via les trous 5 pour déboucher dans le ou les espaces internes 35, 36 en vue de refroidir les roulements du moteur 30. Puis le fluide de refroidissement retombe par gravité et est évacué vers le réservoir 6 par des ouvertures 39 ménagées dans le carter 30, par exemple dans la paroi périphérique 31 de ce dernier.
De plus, le moteur 1 comprend un déflecteur 40 qui est fixe par rapport à l'arbre 2 et qui comporte au moins une paroi déflectrice 41 configurée pour dévier en direction du roulement 37, 38 correspondant le flux de fluide de refroidissement débouchant dans l'espace interne 35, 36 depuis le trou 5 de l'arbre 2.
Le fluide de refroidissement peut ainsi être projeté sur la paroi déflectrice 41 et asperger le roulement 37, 38, assurant ainsi un refroidissement particulièrement efficace du roulement. En outre, le fluide de refroidissement peut être choisi pour avoir également des propriétés de lubrification, ce qui permet d'éviter de prévoir, en plus, un système distinct pour lubrifier le ou les roulements 37, 38.
Selon les réalisations, le déflecteur 40 peut être fixé sur le rotor 10 ou monté en force sur l'arbre 2.
Dans les modes de réalisation représentés, le moteur 1 comprend : - un déflecteur 40 avant configuré pour dévier le flux de fluide de refroidissement débouchant dans l'espace interne avant 35, depuis le ou les trous 5 avant, en direction du roulement avant 37 ;
- et un déflecteur 40 arrière configuré pour dévier le flux de fluide de refroidissement débouchant dans l'espace interne arrière 36, depuis le ou les trous 5 arrière, en direction du roulement arrière 38.
Toutefois, seul un déflecteur avant, ou seul un déflecteur arrière, pourrait être prévu.
Pour simplifier, on décrit par la suite plus précisément le déflecteur 40 avant, étant précisé que le déflecteur arrière peut présenter une structure similaire.
Comme on le voit sur la figure 2, la paroi déflectrice 41 possède une face opérationnelle 42 qui est sensiblement plane et inclinée par rapport à l'axe X et qui est orientée vers le trou 5 et vers le roulement 37. Avec un trou 5 sensiblement radial, la face opérationnelle 42 peut être inclinée par rapport à l'axe X d'un angle voisin de 45°. Le flux de fluide de refroidissement peut ainsi être dévié d'environ 90°, entre une direction incidente sensiblement radiale et une direction déviée sensiblement axiale.
En variante, la face opérationnelle 42 pourrait ne pas être plane mais courbée.
Comme on le voit notamment sur la figure 4, la paroi déflectrice 41 peut se présenter sous la forme d'une nervure située dans un plan passant par l'axe X. La nervure 41 peut posséder une forme de triangle rectangle présentant :
- un bord orienté vers le trou 5 et vers le roulement 37 et formant la face opérationnelle 42
- et, à l'opposé de la face opérationnelle 42, une première face 43 sensiblement orthogonale à l'axe X et une deuxième face 44 sensiblement parallèle à l'axe X.
Le déflecteur 40 peut en outre comporter une portion annulaire 45 pourvue d'un orifice central 46. Les parois déflectrices 41 sont solidaires de la portion annulaire 45 ; typiquement, la première face 43 peut être solidaire d'une face de la portion annulaire 45. La portion annulaire 45 est montée sur et coaxialement à l'arbre 2, dans l'espace interne 35 du carter 30, de sorte que la face de la portion annulaire 45 de laquelle font saillie les parois déflectrices 41 soit tournée vers le roulement 37, et que la face opposée de la portion annulaire 45 soit tournée vers, voire adjacente à, la face avant 12 du rotor 10.
Le déflecteur 40 peut également comporter une collerette 47 qui fait saillie de la portion annulaire 45, de préférence orthogonalement depuis le bord périphérique extérieur de la portion annulaire 45, et dans le même sens que les parois déflectrices 41. Les parois déflectrices 41 peuvent être solidaires de la face intérieure de la collerette 47 ; typiquement, la deuxième face 44 peut être solidaire de la face intérieure de la collerette 47. En position montée, la collerette 47 est donc disposée autour de l'arbre 2, et de préférence coaxialement à celui-ci, les parois déflectrices 41 sont situées entre l'arbre 2 et la collerette 47. La collerette 47 peut être cylindrique, de section non nécessairement circulaire.
Selon une réalisation possible, le diamètre extérieur de la portion annulaire 45, c'est-à-dire dans certains cas le diamètre extérieur de la collerette 47, peut être par exemple inférieur à 70 % du diamètre du rotor.
Le déflecteur 40 - à savoir les parois déflectrices 41, la portion annulaire et la collerette 47 - peuvent être réalisés d'une seule pièce, en matière plastique, notamment par injection.
Selon un mode de réalisation représenté sur les figures 3 à 8, la collerette 47 est continue, possède de préférence une forme circulaire, et est agencée coaxialement à l'arbre 2. Le déflecteur 40 comprend une paroi déflectrice 41 en regard de chacun des trous 5, comme on le voit notamment sur la figure 4. On a donc une paroi déflectrice 41 dédiée à chacun des trous 5, c'est-à-dire quatre parois déflectrices 41 disposées à 90° les unes des autres. Une telle réalisation permet de refroidir le roulement 37.
En outre, le déflecteur 40 est réalisé d'une seule pièce avec un flasque qui possède une forme de disque présentant un diamètre sensiblement identique au diamètre du rotor 10. Ainsi, au-delà de la collerette 47, la portion annulaire 45 du déflecteur 40 est prolongée radialement vers l'extérieur par un élément annulaire qui présente un diamètre extérieur sensiblement identique au diamètre du rotor et avec lequel elle forme un flasque. La portion annulaire 45 forme donc la partie centrale du flasque. Il peut typiquement s'agir d'un flasque d'équilibrage.
De façon concrète, le flasque est monté sur et coaxialement à l'arbre 2, orthogonalement à l'axe X, dans l'espace interne 35 du carter 10 et de façon contiguë à la face latérale correspondante du rotor 10. Le moteur 1 peut comporter un flasque avant 17 monté contre la face latérale avant 12 du rotor 10, et un flasque arrière 18 monté contre la face latérale arrière 13 du rotor 10, les flasques 17, 18 étant maintenus serrés sur le paquet de tôles, ajustés autour de l'arbre par des vis passant à l'intérieur des trous 11 réalisés dans le paquet de tôles 14, et des écrous.
Selon un autre mode de réalisation représenté sur les figures 9 et 10, le déflecteur 40 est, comme décrit ci-dessus, réalisé d'une seule pièce avec un flasque qui possède une forme de disque présentant un diamètre sensiblement identique au diamètre du rotor 10.
En revanche, la collerette 47 est discontinue. La collerette 47 comporte ainsi des portions de collerette 48 espacées circonférentiellement les unes des autres de sorte à ménager une ouverture 49 entre deux portions de collerette 48 voisines.
Il est à noter que la collerette 47 peut être cylindrique, mais de section non circulaire. Ainsi, par exemple, le déflecteur 40 comprend deux portions de collerette 48 comportant chacune une partie courbe, dont la concavité est dirigée vers l'axe X, ces deux parties courbes étant diamétralement opposées. Chaque partie courbe peut en outre être prolongée à chacun de ses bords axiaux par des parties sensiblement planes, de sorte que les deux portions de collerette 48 forment des U ouverts vers l'axe X et l'un vers l'autre, en ménageant entre eux deux ouvertures 49 diamétralement opposées.
Comme on le voit sur la figure 9, les ouvertures 49 sont agencées chacune en regard d'un trou 5b, tandis que les portions de collerette 48 - et plus particulièrement les parties courbes de celles-ci - sont agencées chacune en regard d'un trou 5a. En outre, une paroi déflectrice 41 est agencée en regard de chaque trou 5a faisant face à une portion de collerette 48.
Avec cette configuration, le fluide de refroidissement sortant par l'un des trous 5a est dévié par la paroi déflectrice 41 correspondante, pour être dirigé vers le roulement 37. De plus, le fluide de refroidissement sortant par l'un des trous 5b n'est pas dévié et passe par l'ouverture 49, de sorte qu'il peut atteindre les chignons 21 du stator. Une telle structure discontinue de collerette 47 permet ainsi de réaliser à la fois un refroidissement des roulements et des chignons du stator.
Il est à noter que, bien que seuls la face avant 12 du rotor 10 et le déflecteur 40 avant soient visibles sur les figures 9 et 10, la même structure peut être présente en face arrière 13 du rotor 10.
Selon un autre mode de réalisation représenté sur les figures 11 à 17, le déflecteur 40 forme une pièce indépendante, qui en particulier n'est pas intégrée à un flasque. Ainsi, la portion annulaire 45 ne s'étend pas et n'est pas prolongée radialement au-delà de la collerette 47, comme on le voit notamment sur les figures 12, 13 et 17. Les figures 11, 14, 15 et 16 montrent que le déflecteur 40 forme une pièce à part.
Dans la variante illustrée sur les figures 11 à 14, le déflecteur comporte une collerette 47 continue, de forme circulaire, ainsi que quatre parois déflectrices à 90° les unes des autres, agencées chacune en regard d'un trou 5 de l'arbre 2. Sur la figure 11, le déflecteur 40 est monté directement contre la face latérale avant 12 du rotor 10, tandis que sur la figure 14, le déflecteur 40 est monté sur un flasque avant 17 - dont il est initialement distinct - le flasque avant 17 étant lui-même monté contre la face latérale avant 12 du rotor 10.
Dans la variante illustrée sur les figures 15 à 17, le déflecteur comporte une collerette 47 discontinue, comportant des portions de collerette 48 munies de parois déflectrices 41 en regard de trous 5a de l'arbre 2, pour le refroidissement du roulement 37, et des ouvertures 49 en regard de trous 5a de l'arbre 2, sans interposition d'une paroi déflectrice 41, pour le refroidissement des chignons 21 du stator. La collerette 47 peut présenter une géométrie identique à celle décrite en lien avec les figures 9 et 10.
Sur la figure 15, le déflecteur 40 est monté directement contre la face latérale avant 12 du rotor 10, tandis que sur la figure 16, le déflecteur 40 est monté sur un flasque avant 17 - dont il est initialement distinct - le flasque avant 17 étant lui- même monté contre la face latérale avant 12 du rotor 10.
Il est à noter que, bien que seuls la face avant 12 du rotor 10 et le déflecteur 40 avant soient visibles sur les figures 11, 14, 15 et 16, la même structure peut être présente en face arrière 13 du rotor 10.
Il va de soi que l'invention n'est pas limitée aux modes de réalisation décrits ci-dessus à titre d'exemples mais qu'elle comprend tous les équivalents techniques et les variantes des moyens décrits ainsi que leurs combinaisons.

Claims

REVENDICATIONS
1. Moteur (1) électrique comprenant :
- un arbre (2) monté rotatif autour d'un axe (X) ;
- un rotor (10) sensiblement cylindrique monté sur l'arbre (2) de façon solidaire en rotation, le rotor (10) présentant une face latérale avant (12) et une face latérale arrière (13) orthogonales à l'axe (X) ;
- un stator (20) comportant un corps annulaire qui entoure le rotor (10) de manière coaxiale à l'arbre (2), et qui présente une face latérale avant (22) et une face latérale arrière (23) orthogonales à l'axe (X), le stator (20) comportant un bobinage formant des chignons (21) faisant saillie axialement de part et d'autre du corps du stator (20) ;
- un carter (30) sensiblement cylindrique recevant le rotor (10) et le stator (20), le carter (30) comportant une paroi périphérique (31), une paroi avant (32) et une paroi arrière (33) orthogonales à l'axe (X), un espace interne (35, 36), respectivement avant et arrière, étant ménagé entre la paroi avant (31) du carter (30) et la face latérale avant (22) du stator (20), respectivement entre la paroi arrière (33) du carter (30) et la face latérale arrière (23) du stator (20), les chignons (21) étant logés dans les espaces internes (35, 36) ; l'arbre (2) étant engagé dans un orifice de la paroi avant (32) et un orifice de la paroi arrière (33) du carter (30), avec interposition de roulements, respectivement un roulement avant (37) et un roulement arrière (38), l'arbre (2) comportant au moins un canal interne (4) de circulation d'un fluide de refroidissement et au moins un trou (5) en communication fluidique avec le canal interne (4) et débouchant dans au moins l'un des espaces internes avant (35), respectivement arrière (36) du carter (30) ; caractérisé en ce que le moteur (1) comprend un déflecteur (40) qui est fixe par rapport à l'arbre (2), et qui comporte au moins une paroi déflectrice (41) configurée pour dévier en direction du roulement correspondant avant (37), respectivement arrière (38) le flux de fluide de refroidissement débouchant dans l'espace interne (35, 36) depuis le trou (5) de l'arbre (2), de sorte que le fluide de refroidissement peut être projeté sur la paroi déflectrice et asperger le roulement, assurant ainsi le refroidissement du roulement, et en ce que le déflecteur (40) comporte une collerette (47) disposée autour de l'arbre (2), la ou les parois déflectrices (41) étant situées entre l'arbre (2) et la collerette (47), de préférence solidaires de la face intérieure de la collerette (47).
2. Moteur électrique selon la revendication 1, caractérisé en ce que la paroi déflectrice (41) possède une face opérationnelle (42) qui est courbée ou sensiblement plane et inclinée par rapport à l'axe (X), et qui est orientée vers le trou (5) de l'arbre (2) et vers le roulement (37, 38).
3. Moteur électrique selon la revendication 1 ou 2, caractérisé en ce que le trou (5) est sensiblement radial, et en ce que la paroi déflectrice (41) possède une face opérationnelle (42) qui est inclinée par rapport à l'axe (X), ladite face opérationnelle (42) étant orientée vers le trou (5) et vers le roulement (37, 38).
4. Moteur électrique selon l'une des revendications 1 à 3, caractérisé en ce que la paroi déflectrice (41) se présente sous la forme d'une nervure située dans un plan passant par l'axe (X), un bord de la nervure étant orienté vers le trou (5) et vers le roulement (37, 38) et formant la face opérationnelle (42).
5. Moteur électrique selon la revendication 4, caractérisé en ce que, à l'opposé de la face opérationnelle (42), la paroi déflectrice (41) présente une première face (43) sensiblement orthogonale à l'axe (X) et une deuxième face (44) sensiblement parallèle à l'axe (X).
6. Moteur électrique selon l'une des revendications 1 à 5, caractérisé en ce que l'arbre (2) comporte N trous (5) en communication fluidique avec le canal interne (4) et débouchant dans un espace interne (35, 36) du carter (30), avec N > 1, où, de préférence, les trous (5) sont sensiblement radiaux, possèdent un même plan médian orthogonal à (X) et sont angulairement régulièrement espacés, et en ce que le déflecteur (40) comprend une paroi déflectrice (41) en regard de chacun ou de certains des trous (5).
7. Moteur électrique selon l'une des revendications 1 à 6, caractérisé en ce que la collerette (47) est continue, de préférence sensiblement cylindrique et coaxiale à l'arbre (2).
8. Moteur électrique selon la revendication 6, caractérisé en ce que la collerette (47) est discontinue et comporte des portions de collerette (48) espacées circonférentiellement les unes des autres de sorte à ménager une ouverture (49) entre deux portions de collerette (48) voisines, la ou les parois déflectrices (41) étant 16 uniquement agencées entre l'arbre (2) et une portion de collerette (48), dans lequel au moins une paroi déflectrice (41) est située en regard d'un trou (5, 5a) de l'arbre (2), et au moins une ouverture (49) est située en regard d'un trou (5, 5b) de l'arbre (2).
9. Moteur électrique selon l'une des revendications 1 à 8, caractérisé en ce que le déflecteur (40) comporte une portion annulaire (45) montée sur et coaxialement à l'arbre (2), dans l'espace interne (35, 36) du carter (30), la ou les parois déflectrices (41) étant solidaires de la face de la portion annulaire (45) opposée au rotor (10).
10. Moteur électrique selon l'une des revendications 1 à 9, caractérisé en ce que le déflecteur (40) est réalisé d'une seule pièce avec un flasque (17, 18) qui possède une forme de disque présentant un diamètre sensiblement identique au diamètre du rotor (10), le flasque (17, 18) étant monté ajusté coaxialement à l'arbre (2), dans l'espace interne (35, 36) du carter (30) et de façon contiguë à la face latérale (12, 13) correspondante du rotor (10), la ou les parois déflectrices (41) faisant saillie du flasque (17, 18) à l'opposé du rotor (10).
11. Moteur électrique selon l'une des revendications 1 à 10, caractérisé en ce que l'arbre (2) comporte au moins un trou (5) avant en communication fluidique avec le canal interne (4) et débouchant dans l'espace interne avant (35) du carter (30), et un trou (5) arrière en communication fluidique avec le canal interne (4) et débouchant dans l'espace interne arrière (36) du carter (30), et en ce que le moteur (1) comprend :
- un déflecteur (40) avant configuré pour dévier le flux de fluide de refroidissement débouchant dans l'espace interne avant (35), depuis le ou les trous (5) avant, en direction du roulement avant (37) ;
- et un déflecteur (40) arrière configuré pour dévier le flux de fluide de refroidissement débouchant dans l'espace interne arrière (36), depuis le ou les trous (5) arrière, en direction du roulement arrière (38).
PCT/FR2022/050160 2021-02-04 2022-01-28 Moteur électrique comportant un déflecteur de fluide de refroidissement WO2022167747A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22705079.6A EP4289049A1 (fr) 2021-02-04 2022-01-28 Moteur électrique comportant un déflecteur de fluide de refroidissement
CN202280012656.8A CN116830432A (zh) 2021-02-04 2022-01-28 包括冷却流体偏转器的电动马达
US18/273,806 US20240079934A1 (en) 2021-02-04 2022-01-28 Electric motor comprising a cooling fluid deflector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2101069A FR3119498B1 (fr) 2021-02-04 2021-02-04 Moteur électrique comportant un déflecteur de fluide de refroidissement
FRFR2101069 2021-02-04

Publications (1)

Publication Number Publication Date
WO2022167747A1 true WO2022167747A1 (fr) 2022-08-11

Family

ID=75439011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/050160 WO2022167747A1 (fr) 2021-02-04 2022-01-28 Moteur électrique comportant un déflecteur de fluide de refroidissement

Country Status (5)

Country Link
US (1) US20240079934A1 (fr)
EP (1) EP4289049A1 (fr)
CN (1) CN116830432A (fr)
FR (1) FR3119498B1 (fr)
WO (1) WO2022167747A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090184592A1 (en) * 2008-01-17 2009-07-23 Shinya Sano Rotating electric machine
US20180152078A1 (en) * 2016-11-25 2018-05-31 Mitsubishi Electric Corporation Rotating electric machine
US20180205294A1 (en) * 2015-07-28 2018-07-19 Nissan Motor Co., Ltd. Cooling structure for dynamo-electric machine
US20190115800A1 (en) * 2016-05-23 2019-04-18 Mitsubishi Electric Corporation Rotating electrical machine
WO2020125114A1 (fr) * 2018-12-18 2020-06-25 南京磁谷科技有限公司 Structure pour introduire de l'air de refroidissement dans un rotor à l'extérieur pour refroidir un palier magnétique radial

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090184592A1 (en) * 2008-01-17 2009-07-23 Shinya Sano Rotating electric machine
US20180205294A1 (en) * 2015-07-28 2018-07-19 Nissan Motor Co., Ltd. Cooling structure for dynamo-electric machine
US20190115800A1 (en) * 2016-05-23 2019-04-18 Mitsubishi Electric Corporation Rotating electrical machine
US20180152078A1 (en) * 2016-11-25 2018-05-31 Mitsubishi Electric Corporation Rotating electric machine
WO2020125114A1 (fr) * 2018-12-18 2020-06-25 南京磁谷科技有限公司 Structure pour introduire de l'air de refroidissement dans un rotor à l'extérieur pour refroidir un palier magnétique radial

Also Published As

Publication number Publication date
FR3119498B1 (fr) 2023-08-11
FR3119498A1 (fr) 2022-08-05
EP4289049A1 (fr) 2023-12-13
US20240079934A1 (en) 2024-03-07
CN116830432A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
EP2828533B1 (fr) Dispositif de ventilation
FR3083826A1 (fr) Unité de soupape, telle qu’une unité de clapet d’échappement pour véhicules automobiles
WO2013139981A1 (fr) Systeme de ventilation
FR2905731A1 (fr) Structure de fixation de roulements
WO2022167747A1 (fr) Moteur électrique comportant un déflecteur de fluide de refroidissement
EP1611357B1 (fr) Dispositif de ventilation
FR3003300A1 (fr) Systeme de transfert d'huile sur arbre tournant
EP3320601B1 (fr) Machine électrique tournante munie d'un centreur
FR3045740B1 (fr) Helice pour un groupe moto-ventilateur d'un systeme de refroidissement d'un moteur de vehicule
EP3539200A1 (fr) Machine electrique tournante integrant un carter de reducteur de vitesse
EP3320604B1 (fr) Machine électrique tournante munie d'un moyen de réglage de la position angulaire de l'arbre
EP3795838A1 (fr) Ventilateur de rotor amélioré
WO2016189230A1 (fr) Machine electrique tournante a circuit de refroidissement optimise
EP3320602B1 (fr) Machine electrique tournante munie d'un reservoir de lubrifiant pour la lubrification d'un roulement et le refroidissement de la machine
FR3077372A1 (fr) Buse pour systeme de ventilation
WO2016189229A1 (fr) Machine éléctrique tournante munie d'un circuit de refroidissement
EP3740685B1 (fr) Ventilateur pour un groupe de refroidissement d'aeronef
WO2024069092A1 (fr) Groupe motoréducteur pour engin roulant et engin roulant équipé d'un tel groupe motoréducteur
EP3320603A1 (fr) Machine électrique tournante a refroidissement optimise
WO2024079225A1 (fr) Flasque pour une machine électrique tournante
WO2021180489A1 (fr) Flasque plastique muni de murets de renfort pour une machine electrique tournante
FR3038791A1 (fr) Machine electrique tournante munie d'un organe d'indexation en rotation
FR3091736A1 (fr) Structure de lubrification d'un dispositif d'entraînement de véhicule hybride
FR3077371A1 (fr) Dispositif de ventilation et module de refroidissement comportant un tel dispositif de ventilation
FR3038792A1 (fr) Machine electrique tournante a roulement modifie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22705079

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280012656.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022705079

Country of ref document: EP

Effective date: 20230904