WO2022167743A1 - Pneumatique presentant un nouveau chemin conducteur - Google Patents

Pneumatique presentant un nouveau chemin conducteur Download PDF

Info

Publication number
WO2022167743A1
WO2022167743A1 PCT/FR2022/050152 FR2022050152W WO2022167743A1 WO 2022167743 A1 WO2022167743 A1 WO 2022167743A1 FR 2022050152 W FR2022050152 W FR 2022050152W WO 2022167743 A1 WO2022167743 A1 WO 2022167743A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcement
electrically conductive
tire
radially
working
Prior art date
Application number
PCT/FR2022/050152
Other languages
English (en)
Inventor
Claude ORLOWSKI
Stéphane QUENARD
Original Assignee
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin filed Critical Compagnie Generale Des Etablissements Michelin
Priority to EP22708578.4A priority Critical patent/EP4288297A1/fr
Priority to US18/276,337 priority patent/US20240123773A1/en
Priority to CN202280013501.6A priority patent/CN116802064A/zh
Publication of WO2022167743A1 publication Critical patent/WO2022167743A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/08Electric-charge-dissipating arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/08Electric-charge-dissipating arrangements
    • B60C19/082Electric-charge-dissipating arrangements comprising a conductive tread insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2009Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords comprising plies of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre

Definitions

  • the present invention relates to a tire.
  • the tire also comprises a carcass reinforcement anchored in each bead and extending in each sidewall and in the crown.
  • the crown comprises a tread intended to come into contact with the ground when the tire is rolling, as well as a crown reinforcement arranged radially between the tread and the carcass reinforcement which extends radially inside the top frame.
  • the crown reinforcement and the tread are arranged in contact with one another.
  • the crown reinforcement comprises a working reinforcement comprising a radially innermost layer and a radially outermost layer arranged radially outside the radially innermost layer.
  • the crown reinforcement also includes a hooping reinforcement arranged radially outside the working reinforcement and comprising a hooping layer.
  • the tire described in EP1526005 also comprises an electrically conductive element arranged so as to ensure electrical conductivity between a mounting support when the tire is mounted on the mounting support and the crown radially through at least one of the sidewalls through the electrically conductive element.
  • a mounting bracket includes an electrically conductive metal rim.
  • the electrically conductive element of the tire of EP1526005 is arranged so as to ensure electrical conductivity from a mass of an electrically conductive material intended to be in contact with the mounting support when the tire is mounted on the mounting support up to 'to the radially innermost working layer through at least one of the sidewalls via the electrically conductive element.
  • the crown of the tire of EP1526005 is arranged so as to ensure electrical conductivity from the electrically conductive element to the running surface via the two working layers, the hoop layer, an underlayer and a tread surface layer.
  • the reduction of the hysteresis of the tread and of the crown reinforcement is in particular obtained by using crown layers, in particular working layers, comprising wire reinforcement elements embedded in materials with low hysteresis at base of fillers comprising, as majority filler, silica.
  • Such weakly hysteretic materials if they make it possible to significantly reduce the hysteresis, are generally electrically insulating with respect to electrically conductive materials based on fillers comprising, as majority filler, carbon black.
  • JP2010159017 Other tires allowing the electrical charge to be evacuated by avoiding the working reinforcement and not via the hooping layer, but through the hooping reinforcement.
  • Such tires are described in JP2010159017.
  • the tire of JP2010159017 comprises an additional conductive element arranged so as to ensure electrical conductivity between the electrically conductive element and the hooping reinforcement.
  • the additional conductive element takes the form of a strip wound around one of the axial ends of the radially innermost working layer, which makes it possible to provide a conductive path that does not pass through the intermediary of the working layers. Nevertheless, such a solution is relatively complex due to the need to arrange the additional conductive element around one of the axial ends of the radially innermost working layer.
  • the object of the invention is to allow the use of electrically insulating materials in at least the working reinforcement while allowing satisfactory evacuation of the electric charge from the vehicle to the road surface via the pneumatic and this, in a simple way.
  • the subject of the invention is a tire intended to be mounted on a mounting support and comprising a crown, two beads, two sidewalls each connecting each bead to the crown and a carcass reinforcement anchored in each bead, the crown comprising a tread comprising a tread surface intended to come into contact with a road surface and a crown reinforcement, the carcass reinforcement extending in each sidewall and in the crown radially internally to the crown, the crown reinforcement being arranged radially between the tread and the carcass reinforcement and comprising: - a working reinforcement comprising at least one radially outermost working layer of the working reinforcement,
  • the tire comprising an electrically conductive element arranged so as to ensure electrical conductivity between a mounting support when the tire is mounted on the mounting support and the crown via the conductive element, the crown being arranged to provide electrical conductivity from the electrically conductive element to the rolling surface radially through or via the hooping reinforcement and via the tread, at least a so-called interposed portion of the electrically conductive element being radially arranged between the radially outermost working layer of the working reinforcement and the hooping reinforcement, the electrically conductive element extending radially inside the equatorial circumferential plane of the tire, the electrically conductive element is radially nt continuous between:
  • any point of the electrically conductive element located radially between the radially outermost working layer of the working reinforcement and the shrink-fit reinforcement.
  • the electrically conductive path passes radially through the hooping reinforcement or else through the hooping reinforcement.
  • a conductive path avoiding the hooping reinforcement requires the use of a tread comprising at least one mass of a material arranged in contact with the electrically conductive element so as to ensure electrical conductivity between the electrically conductive element and the running surface without passing through or through the shrink-fit reinforcement, which limits or even prohibits the use of materials with low hysteresis in the tread.
  • radially continuous it is meant that there are no junctions, for example by abutment or by superposition, between several distinct portions of the conductive element. This avoids the incorporation of several distinct portions whose junction interfaces would have to be checked so as to ensure the continuity of the electrically conductive path between the points described above.
  • the tire according to the invention has an electrical resistance of less than or equal to 10 10 ohms and preferably less than or equal to 10 8 ohms, the electrical resistance being measured according to standard ISO 16392:2017.
  • a layer or several layers of a matrix preferably elastomeric, in which are embedded one or more reinforcing elements, preferably one or more elements wired reinforcement intended to reinforce the matrix of the or each layer.
  • an element is arranged so as to ensure electrical conductivity from a first member to a second member when it forms a conductive path extending from the first member to the second member.
  • the element is arranged in contact with the first member and the second member.
  • an element is arranged so as to ensure electrical conductivity between a first member and a second member when it forms a conductive path extending between the first member and the second member without necessarily extending from the first organ to the second organ.
  • the element can form all or part of the conductive path extending from the first member to the second member.
  • an element arranged to prevent electrical conductivity through this element means that the conductive path does not pass through the element. Conversely, an element arranged in such a way as to ensure electrical conductivity through this element means that the conductive path passes through this element.
  • an element arranged to prevent electrical conductivity or an insulating material of such an element is such that the element does not form part of the conductive path between the mounting bracket and the running surface when the tire is mounted on the mounting bracket.
  • an element arranged so as to ensure the electrical conductivity or electrically conductive material of such an element is such that it forms part of the conductive path between the mounting bracket and the running surface when the tire is mounted on the mounting bracket.
  • majority filler in a material it is meant that this filler is the majority among the fillers in the material, that is to say that it is the one which represents the greatest quantity by mass among fillers.
  • material based on means a material comprising the mixture and/or the in situ reaction product of the various constituents used, some of these constituents being able to react and/or being intended to react with one another, less partially, during the different manufacturing phases of the material; the material composition can thus be in the totally or partially crosslinked state or in the non-crosslinked state.
  • the tires of the invention are preferably intended for passenger vehicles as defined within the meaning of the standard of the European Tire and Rim Technical Organization or "ETRTO", 2020.
  • Such a tire has a section in a plane of meridian cut characterized by a section height H and a nominal section width or section thickness S within the meaning of the standard of the European Tire and Rim Technical Organization or "ETRTO", 2020 such that, very advantageously and for most tires, the H/S ratio, expressed as a percentage, is at most equal to 90, preferably at most equal to 80 and more preferably at most equal to 70 and is at least equal to 30, preferably at least equal to 40, and the section width S is, very advantageously and for most tires, at least equal to 115 mm, preferably at least equal to 155 mm and more preferably at least equal to 175 mm and at most equal to 385 mm, preferably at least plus equal to 315 mm , more preferably at most equal to 285 mm and even more preferably at most equal to 255 mm.
  • axial direction is meant the direction substantially parallel to the main axis of the tire or of the main manufacturing support, that is to say the axis of rotation of the tire or of the main manufacturing support.
  • circumferential direction is meant the direction which is substantially perpendicular both to the axial direction and to a radius of the tire or of the main manufacturing support (in other words, tangent to a circle whose center is on the axis of rotation of the tire or of the main manufacturing support).
  • radial direction means the direction along a radius of the tire or of the main manufacturing support, that is to say any direction intersecting the axis of rotation of the tire or of the main manufacturing support and substantially perpendicular to this axis.
  • the median plane of the tire (denoted M) means the plane perpendicular to the axis of rotation of the tire which is located halfway between the axial distance of the two beads and passes through the axial center of the crown reinforcement.
  • equatorial circumferential plane of the tire (denoted E), is meant the theoretical cylindrical surface passing through the equator of the tire, perpendicular to the median plane and to the radial direction.
  • the equator of the tire is, in a meridian section plane (plane perpendicular to the circumferential direction and parallel to the radial and axial directions) the axis parallel to the axis of rotation of the tire and located equidistant between the radially most outside of the tread intended to be in contact with the ground and the radially innermost point of the tire intended to be in contact with a support, for example a rim, the distance between these two points being equal to H.
  • meridian plane we mean a plane parallel to and containing the axis of rotation of the tire and perpendicular to the circumferential direction.
  • each bead we mean the portion of the tire intended to allow the attachment of the tire to a mounting support, for example a wheel comprising a rim.
  • a mounting support for example a wheel comprising a rim.
  • each bead is in particular intended to be in contact with a hook of the rim allowing it to be attached.
  • main direction in which a wired reinforcement element extends we understand the direction in which the wired reinforcement element extends along its greatest length.
  • the main direction in which a wired reinforcing element extends can be straight or curved, the reinforcing element being able to describe along its main direction a straight or wavy trajectory.
  • Any interval of values denoted by the expression “between a and b” represents the range of values going from more than a to less than b (i.e. limits a and b excluded) while any interval of values designated by the expression “from a to b” means the range of values going from a to b (that is to say including the strict limits a and b).
  • the angle considered is the angle, in absolute value, the smaller of the two angles defined between the reference straight line, here the circumferential direction of the tire, and the main direction in which the Considered wired reinforcement stretches.
  • orientation of an angle we mean the direction, clockwise or anti-clockwise, in which it is necessary to turn from the reference line, here the circumferential direction of the support or of the tire, defining the angle to reach the main direction along which the considered wire reinforcement element extends.
  • the considered angles formed by the main directions in which the wired working and carcass reinforcing elements extend are by convention angles of opposite orientations and the angle formed by the main direction in which extends each working wire reinforcement element is, in absolute value, the smaller of the two angles defined between the reference straight line, here the circumferential direction of the support or of the tire and the main direction in which the wire reinforcement element of work extends.
  • the angle formed by the main direction along which each wired working reinforcement element extends defines an orientation which is opposite to that formed by the angle of the main direction along which each wired working reinforcement element extends. carcass.
  • the crown comprises the tread and the crown reinforcement.
  • tread is meant a strip of polymeric material, preferably elastomeric, delimited: radially outward, by the tread surface and radially inward, by the crown reinforcement. axially by two planes perpendicular to the axial direction and passing through the axial ends of the running surface.
  • the rolling surface is determined on a tire mounted on a nominal rim and inflated to the nominal pressure within the meaning of the standard of the European Tire and Rim Technical Organization or “ETRTO”, 2020.
  • ERRTO European Tire and Rim Technical Organization
  • the axial ends and axial width of the tread surface are simply determined.
  • the running surface is continuous with the outer surfaces of the sidewalls of the tire
  • the axial ends of the running surface are, in a meridian section plane, coincident with the point for which the angle between the tangent to the running surface and a straight line parallel to the axial direction passing through this point is equal to 30°.
  • the radially outermost point is retained.
  • the strip of polymeric material consists of a layer consisting of a material, preferably polymeric and more preferably elastomeric, or else comprising several layers, each layer preferably consisting of a polymeric material, and more preferably elastomeric.
  • the crown reinforcement comprises a single hooping reinforcement and a single working reinforcement.
  • the crown reinforcement is, with the exception of the hooping reinforcement and the working reinforcement, devoid of any reinforcement reinforced by wire reinforcement elements.
  • the wire reinforcement elements of such reinforcements excluded from the crown reinforcement of the tire include metal wire reinforcement elements and textile wire reinforcement elements.
  • the crown reinforcement consists of the hooping reinforcement and the working reinforcement.
  • the crown is, with the exception of the crown reinforcement, devoid of any reinforcement reinforced by wire reinforcement elements.
  • the wire reinforcement elements of such reinforcements excluded from the crown of the tire comprise metal wire reinforcement elements and textile wire reinforcement elements.
  • the crown is formed by the tread and the crown reinforcement.
  • the carcass reinforcement is arranged directly radially in contact with the crown reinforcement and the crown reinforcement is arranged directly radially in contact with the tread.
  • the invention can advantageously be used in an embodiment in which the working armature is arranged so as to prevent electrical conductivity through the working armature.
  • the or each working layer comprises working wire reinforcement elements embedded in an electrically insulating material.
  • Such working wire reinforcement elements are preferably metallic. Nevertheless, it is possible to envisage polymeric or mineral wire reinforcement elements, that is to say comprising one or more polymeric or mineral monofilaments.
  • Each polymeric monofilament is preferably chosen from aliphatic polyamide, aromatic polyamide and polyester monofilaments.
  • Each mineral monofilament is preferably chosen from carbon or glass monofilaments.
  • the wired working reinforcement elements extend axially from one axial edge to the other axial edge of the working layer. work substantially parallel to each other.
  • the working reinforcement comprises a single working layer.
  • the radially outermost working layer is therefore the only working layer.
  • the presence of a single working layer makes it possible in particular to lighten the tire, and therefore to reduce the energy dissipated by crown hysteresis and therefore reduce the rolling resistance of the tyre.
  • the working reinforcement is, with the exception of the working layer, devoid of any layer reinforced by wire reinforcing elements.
  • the wire reinforcement elements of such reinforced layers excluded from the working reinforcement of the tire comprise metal wire reinforcement elements and textile wire reinforcement elements.
  • the working reinforcement consists of the single working layer.
  • the working reinforcement comprises a radially innermost layer and a radially outermost layer arranged radially outside the radially innermost layer.
  • each wired working reinforcement element extends in a main direction forming, with the circumferential direction of the tire, an angle, in absolute value, strictly greater than 10°, preferably ranging from 15 ° to 50°.
  • the hooping reinforcement is arranged so as to ensure electrical conductivity from the interposed portion of the electrically conductive element to the tread by means of the hooping reinforcement.
  • the hooping reinforcement is in contact with the electrically conductive element and in contact with the tread so as to form the conductive path electrically connecting the electrically conductive element and the tread.
  • the hooping reinforcement comprises one or more hooping wire reinforcing elements embedded in an electrically conductive material.
  • such hooping wire reinforcing elements are polymeric or mineral wire reinforcing elements as described above with reference to working reinforcing wire elements.
  • the tread comprises one or more masses of one or more electrically conductive materials, the or each mass of the electrically conductive material(s) being arranged so as to ensure the conductivity electric from the hooping reinforcement to the running surface via the or each mass.
  • the tread is in contact with the hooping reinforcement so as to form the conductive path electrically connecting the hooping reinforcement and the running surface.
  • the tread comprises one or more masses of one or more materials electrically insulating and at least one mass of at least one electrically conductive material arranged so as to provide electrical conductivity from the hooping reinforcement to the running surface via the mass of electrically conductive material radially therethrough of the mass(es) of the electrically insulating material(s).
  • the mass of the electrically conductive material is in contact with the hooping armature and in contact with the running surface so as to form the conductive path electrically connecting the hooping armature and the running surface.
  • the volume of the mass or masses of electrically insulating materials is greater than or equal to 50%, preferably greater than or equal to 75% and more preferably greater than or equal to 95% of the tread volume.
  • the hooping reinforcement is arranged so as to prevent electrical conductivity from the interposed portion of the electrically conductive element to the tread through the hooping reinforcement.
  • the hooping reinforcement comprises one or more hooping wire reinforcement elements embedded in an electrically insulating elastomeric material.
  • the crown comprises an additional mass of an electrically conductive material arranged so as to ensure electrical conductivity from the interposed portion of the electrically conductive element to the band of rolling radially through the hooping reinforcement via the additional mass of the electrically conductive material.
  • the additional mass is in contact with the electrically conductive element and in contact with the tread so as to form the conductive path electrically connecting the electrically conductive element and the tread .
  • the additional mass is arranged radially between the tread and the intercalated portion of the conductive electrical element and axially arranged between first and second axial portions of the hooping reinforcement.
  • the additional mass can be positioned axially between the first and second axial portions, the axial widths of which will be determined according to the desired performance of the hooping reinforcement.
  • the hooping reinforcement being delimited axially by two axial edges of the hooping reinforcement, the hooping reinforcement comprises a single band wound circumferentially helically so as to extend continuously axially from one of the axial edges of the hooping reinforcement to the other of the edges of the hooping reinforcement.
  • the band is continuous between the first and second axial portions of the hooping reinforcement which are interconnected by a portion of the band.
  • the manufacturing process is relatively simple as it includes a step of continuously winding the strip to form the hooping reinforcement.
  • the hooping reinforcement being delimited axially by two axial edges of the hooping reinforcement, the first and second axial portions are axially separated from each other so that:
  • the first axial portion comprises a first strip wound circumferentially helically so as to extend continuously axially from one of the axial edges of the hooping reinforcement to an axially inner edge of the first axial portion, and
  • the second axial portion comprises a second band wound circumferentially helically so as to extend continuously axially from an axially inner edge of the second axial portion to the other of the axial edges of the hooping reinforcement.
  • the additional mass can easily be positioned in a portion located axially between the first and the second portions.
  • the tread comprises one or more masses of one or more electrically conductive materials, the or each mass of electrically conductive material being arranged so as to ensure the electrical conductivity from the additional mass of electrically conductive material to the running surface via the or each mass.
  • the tread is in contact with the additional mass so as to form the conductive path electrically connecting the additional mass and the running surface to one another.
  • the tread comprises one or more masses of one or more electrically insulating materials and at least one mass of at least one electrically conductive material arranged so as to provide electrical conductivity from the additional mass of electrically conductive material to the running surface via the mass of electrically conductive material radially through the mass or masses of the electrically insulating material(s).
  • the mass of the electrically conductive material is in contact with the additional mass and in contact with the running surface so as to form the conductive path electrically connecting the additional mass and the running surface to one another.
  • the electrically conductive element comprises a layer made of an electrically conductive material.
  • the layer may extend circumferentially over a length corresponding to an angle less than or equal to 360°. More preferably, the layer will extend circumferentially over a length corresponding to an angle less than or equal to 90° so as to limit the mass of the electrically conductive element.
  • the electrically conductive material of the layer is an elastomeric material.
  • the electrically conductive material of the layer is an electrically conductive ink.
  • the electrically conductive element comprises an electrically conductive wire element, for example a monofilament or an assembly of monofilaments.
  • the tire will comprise several separate conductive elements distributed regularly or irregularly over the circumference of the tire, regardless of the variant of the electrically conductive element described above.
  • the hooping reinforcement is, optionally, axially delimited by two axial edges of the hooping reinforcement and comprises at least one circumferentially wound wired hooping reinforcement element helically so as to extend axially between the axial edges of the hooping reinforcement.
  • the or each hooping wire reinforcement element extends, optionally, in a main direction forming, with the circumferential direction of the tire, an angle, in absolute value, less than or equal to 10°, preferably less than or equal to 7° and more preferably less than or equal to 5°.
  • the electrically conductive element comprises first and second axial ends and extends axially from a first of the beads into the second of the beads passing radially between the working layer radially the outermost and the hooping reinforcement so that each first and second axial end is in contact:
  • each first and second mass of electrically conductive material being in contact with the mounting support when the tire is mounted on the mounting support, or
  • the electrically conductive element physically connects the first and second beads to each other.
  • each first and second axial end is in contact with each first and second mass of electrically conductive material
  • the conductive path passes through each first and second mass of electrically conductive material then through the electrically conductive element.
  • each first and second axial end is in contact with the mounting support when the tire is mounted on the mounting support, the need for beads comprising masses of electrically conductive material is avoided. It will thus be possible to use beads comprising materials intended to be in contact with the mounting support which are electrically insulating and, for example, have low hysteresis.
  • the electrically conductive element comprises first and second axial ends and extends axially from a first of the beads to radially between the radially outermost working layer and the shrink-fit reinforcement so that:
  • the first axial end is in contact with a mass of an electrically conductive material of one of the first and second beads, this electrically conductive material being in contact with the mounting support when the tire is mounted on the mounting support, and the second axial end is arranged radially between the radially outermost working layer and the hooping reinforcement, or - the first axial end is in contact with the mounting support when the tire is mounted on the mounting support and the second axial end is arranged radially between the radially outermost working layer and the hooping reinforcement.
  • the electrically conductive element of this second configuration does not physically connect the first and second beads to each other, which makes it possible to reduce the quantity of electrically conductive element to be used. It is possible to envisage a variant in which only one of the first and second beads is physically connected to the crown reinforcement by means of the electrically conductive element and a variant in which each first and second bead is mechanically connected to the reinforcement top via two separate conductive elements.
  • the carcass reinforcement comprises a single carcass layer.
  • the carcass reinforcement is, with the exception of the single carcass layer, devoid of any layer reinforced by wire reinforcement elements.
  • the wire reinforcement elements of such reinforced layers excluded from the carcass reinforcement of the tire include metal wire reinforcement elements and textile wire reinforcement elements.
  • the carcass reinforcement consists of the single carcass layer.
  • the carcass reinforcement comprises two carcass layers.
  • the main directions of the carcass wire reinforcement elements of the two carcass layers are preferably substantially parallel to each other.
  • the carcass reinforcement comprises at least one carcass layer, the or each carcass layer being delimited axially by two axial edges of the or each carcass layer and comprises carcass wire reinforcement elements extending axially from one axial edge to the other axial edge of the or each layer of carcass.
  • each carcass wire reinforcement element extends along a main direction of each carcass wire reinforcement element forming, with the circumferential direction of the tire, an angle substantially constant between each axial edge of the or each carcass layer and ranging, in absolute value, from 80° to 90°.
  • each carcass wire reinforcement element extends in a main direction of each carcass wire reinforcement element forming , with the circumferential direction of the tire:
  • This particular embodiment is advantageous because it makes it possible, during the tire manufacturing process, to easily incorporate the electrically conductive element when the assembly being formed still has a substantially cylindrical shape around the axis principal of the principal support of manufacture.
  • - one arranges, around a main support having a substantially cylindrical shape around a main axis, at least one carcass assembly intended to form the carcass reinforcement,
  • one arranges, radially outside the carcass assembly, at least one working assembly intended to form the working reinforcement, the carcass assembly and the working assembly forming an assembly of substantially cylindrical shape around of the main axis of the main support,
  • the assembly of substantially cylindrical shape is deformed around the main axis of the main support so as to obtain an assembly of substantially toroidal shape around the main axis of the main support,
  • At least one hooping assembly intended to form the hooping reinforcement is arranged radially outside the assembly of substantially toroidal shape around the main axis of the main support,
  • the electrically conductive element is arranged radially outside the working assembly so that, subsequent to the step of arranging the hooping assembly, at least one so-called intercalated portion of the electrically conductive element is arranged radially between the working assembly and the hooping assembly.
  • the working layer(s), the carcass layer(s), the materials in which the wire reinforcement elements are embedded are preferably elastomeric.
  • elastomeric we mean a material exhibiting, in the crosslinked state, an elastomeric behavior.
  • Such a material is advantageously obtained by crosslinking a composition comprising at least one elastomer and at least one other component.
  • the composition comprising at least one elastomer and at least one other component comprises an elastomer, a crosslinking system and a filler.
  • compositions used for these layers are conventional compositions for calendering reinforcements, typically based on natural rubber or another diene elastomer, a reinforcing filler, a vulcanization system and the usual additives.
  • the adhesion between the wire reinforcing elements and the matrix in which they are embedded is ensured for example by a usual adhesive composition, for example an adhesive of the RFL type or equivalent adhesive.
  • figure 1 is a view in section in a meridian section plane of a tire according to a first embodiment of the invention
  • FIG. 2 is a schematic cut-away view of the tire of FIG. 1 illustrating the arrangement of the wire reinforcement elements in the crown
  • FIG. 3 is a schematic view of the carcass wire reinforcement elements arranged in the sidewall of the tire of FIG. 1
  • FIGS. Figures 17 and 18 illustrate steps of a method according to a second embodiment and are similar to Figures 13 and 14, and Figures 19 to 22 are views similar to that of Figure 1 of tires res respectively according to third, fourth, fifth and sixth embodiments.
  • a mark X, Y, Z has been shown corresponding to the usual circumferential (X), axial (Y) and radial (Z) directions respectively of a tire.
  • a mark x, y, z corresponding to the usual circumferential (x), axial (y) and radial (z) directions, respectively, of a main deformable manufacturing support between a substantially cylindrical shape and a toroidal shape around the y axis.
  • FIG. 1 a tire, according to the invention and designated by the general reference 10.
  • the tire 10 is substantially of revolution around an axis substantially parallel to the axial direction Y.
  • the tire 10 is here intended for a passenger vehicle and has dimensions 245/45R18.
  • the tire 10 is intended to be mounted on a mounting support, for example a rim.
  • the tire 10 comprises a crown 12 comprising a tread 20 comprising a running surface 13 intended to come into contact with a road surface and a crown reinforcement 14 extending in the crown 12 in the circumferential direction X
  • the crown reinforcement 14 and the tread 20 are arranged in contact with one another.
  • the tire 10 also comprises a sealing layer 15 to an inflation gas intended to delimit an internal cavity closed with a mounting support of the tire 10 once the tire 10 is mounted on the mounting support, for example an electrically conductive metal rim. .
  • the tread 20 comprises one or more masses of one or more electrically insulating materials.
  • the tread 20 comprises a first mass 201 of a first electrically insulating material forming a tread layer and a second mass 202 of a second electrically insulating material forming a support layer for the tread layer.
  • the support layer 202 also called underlayer, is arranged radially inside the running layer 201.
  • Each first and second electrically insulating material is an electrically insulating elastomeric material, for example based on compositions as described in US20180066128, FR3059598 or even US6289958.
  • the crown reinforcement 14 comprises a single working reinforcement 16 comprising at least one working layer 18 radially the outermost of the working reinforcement 16 and a single hooping reinforcement 17 comprising a single hooping layer 19.
  • the working reinforcement 16 comprises a single working layer 18 and is, in this case, made up of the single working layer 18.
  • the hooping reinforcement 17 consists of the hooping layer 19.
  • the crown reinforcement 14 is surmounted radially by the tread 20.
  • the hooping reinforcement 17, here the hooping layer 19, is arranged radially outside the working reinforcement 16 and is therefore radially interposed between the working reinforcement 16 and the tread 20.
  • the hooping reinforcement 17 has an axial width that is smaller than the axial width of the working layer 18.
  • the hooping reinforcement 17 is axially the less wide of the working layer 18 and of the reinforcement shrink fit 17.
  • the tire 10 comprises two sidewalls 22 extending the crown 12 radially inwards.
  • the tire 10 further comprises two beads 24 radially inside the sidewalls 22.
  • Each sidewall 22 respectively connects each bead 24 to the crown 12.
  • Each bead 24 comprises at least one circumferential reinforcing element 26, in this case a bead wire 28 radially surmounted by a mass 30 of stuffing.
  • the tire 10 comprises a carcass reinforcement 32 anchored in each bead 24.
  • the carcass reinforcement 32 extends in each sidewall 22 and in the crown 12 radially inside the crown reinforcement 14.
  • the crown 14 is arranged radially between tread 20 and carcass reinforcement 32.
  • the carcass reinforcement 32 comprises a carcass layer 34.
  • the carcass reinforcement 32 comprises a single carcass layer 34, and in this case consists of the single carcass layer 34.
  • the carcass reinforcement 32 is arranged directly radially in contact with the crown reinforcement 14.
  • the crown reinforcement 14 is arranged directly radially in contact with the tread 20.
  • the hooping reinforcement 17 and the working layer 18 are arranged directly radially in contact with each other.
  • the hooping reinforcement 17, here the hooping layer 19, is delimited axially by two axial edges 17A, 17B of the hooping reinforcement 17.
  • the hooping reinforcement 17 comprises several wire reinforcement elements hooping 170 circumferentially helically wound so as to extend axially between the axial edge 17A and the other axial edge 17B of the hooping layer 17 along a main direction D1 of each hooping wire reinforcement element 170.
  • the main direction D1 forms, with the circumferential direction X of the tire 10, an angle AF, in absolute value, less than or equal to 10°, preferably less than or equal to 7° and more preferably less than or equal to 5°.
  • AF -5°.
  • the hooping reinforcement 17 comprises first and second axial portions 171, 172 axially separate from each other so that the first axial portion 171 comprises a first strip 173 wound circumferentially helically so as to extend continuously axially from the axial edge 17A of the hooping reinforcement 17 as far as an axially inner edge 171A of the first axial portion 171, and so that the second axial portion 172 comprises a second strip 174 wound circumferentially helically so as to extend continuously axially from an axially interior 172B of the second axial portion 172 as far as the axial edge 17B of the hooping reinforcement 17.
  • the working layer 18 is delimited axially by two axial edges 18A, 18B of the working layer 18.
  • the working layer 18 comprises working wire reinforcement elements 180 extending axially from the axial edge 18A to the other axial edge 18B of the working layer 18 substantially parallel to each other.
  • Each wired working reinforcement element 180 extends along a main direction D2 of each wired working reinforcement element 180.
  • the direction D2 forms, with the circumferential direction X of the tire 10, an angle AT, in absolute value, strictly greater at 10°, preferably ranging from 15° to 50°.
  • AT -35°.
  • the carcass layer 34 is delimited axially by two axial edges 34A, 34B of the carcass layer 34.
  • the carcass layer 34 comprises carcass wire reinforcement elements 340 extending axially from the axial edge 34A to the another axial edge 34B of the carcass layer 34.
  • the carcass layer 34 comprises an axially central portion 34S extending axially radially plumb with the working layer 18 and two axially lateral portions 34F extending axially between the portion axially central 34S and each axial edge 34A, 34B.
  • Each axially lateral portion 34F is wound around each circumferential reinforcement element 26.
  • Each axially lateral portion 34F comprises an inner axially lateral portion 38 arranged axially between the axially central portion 34S and each circumferential reinforcement element 26 as well as an axially lateral portion exterior 40 arranged axially between each circumferential reinforcing element 26 and each axial edge 34A, 34B of the carcass layer 34.
  • the filler mass 30 is interposed between the inner and outer axially lateral portions 38, 40.
  • Each carcass wire reinforcement element 340 extends along a main direction D3 of each carcass wire reinforcement element 340 forming, with the circumferential direction X of the tire 10, an angle ACS, in absolute value, strictly less than 80° in the axially central portion 34S of the carcass layer 34.
  • the main direction D3 of each carcass wire reinforcement element 340 forms, with the circumferential direction X of the tire 10, an angle ACS, in absolute value, ranging from 50° to 75°.
  • ACS +65°.
  • the axially central portion 34S of the carcass layer 34 has a axial width equal to at least 40%, preferably at least 50% of the axial width L of the working layer 18 and equal to at most 90%, preferably at most 80% of the axial width L of the working layer 18 and in this case equal to 60% of the working layer 18.
  • the median plane M of the tire 10 intersects this portion 34S. More preferably, this portion 34S is centered axially on the median plane M of the tire 10.
  • each carcass wire reinforcement element 340 forms, with the circumferential direction X of the tire 10, an angle ACF, in absolute value, ranging from 80° to 90°. °, preferably from 85° to 90° and more preferably is substantially equal to 90° in each axially lateral portion 34F of the carcass layer 34 extending radially in each sidewall 22.
  • ACF in absolute value
  • Each portion 34F of the carcass layer 34 extending radially in each sidewall 22 has a radial height equal to at least 50% of the radial height H of the tire 10 and equal to at most 100% of the radial height H of the tire 10 and in this case equal to 95% of the radial height H of the tire 10.
  • the equatorial circumferential plane E of the tire 10 intersects each portion 34F of the carcass layer 34 located in each sidewall 22.
  • each hooping wire reinforcement 170 the main direction D2 of each working wire reinforcement element 180 and the main direction D3 of each carcass wire reinforcement element 340 form, with the circumferential direction X of the tire 10, in a portion PS' of the tire 10 comprised axially between the axial edges 17A, 17B of the hooping reinforcement 17, angles two by two different in absolute value.
  • each portion PS, PS' of the tire 10 has an axial width equal to at least 40%, preferably at least 50% of the axial width L of the working layer 18 and equal to at most 90%, preferably at most 80% of the axial width L of the working layer 18 and in this case equal to 60% of the axial width L of the working layer 18
  • the median plane M of the tire 10 intersects each portion PS, PS' of the tire 10. More preferably, each portion PS, PS' of the tire 10 is centered axially on the median plane M of the tire 10.
  • Each working wire reinforcement element 180 is an assembly of two steel monofilaments each having a diameter equal to 0.30 mm, the two steel monofilaments being wound one with the other at a pitch of 14 mm.
  • Each carcass wire reinforcement element 340 conventionally comprises two multifilament strands, each multifilament strand consisting of a yarn of polyester monofilaments, here of PET, these two multifilament strands being individually overtwisted at 240 turns per meter in one direction. then twisted together at 240 turns per meter in the opposite direction. These two multifilament strands are wound in a helix around each other. Each of these multifilament strands has a titer equal to 220 tex.
  • Each hooping wire reinforcement element 170 is for example such as those described in WO2016/166056 A1.
  • the tire 10 comprises an electrically conductive element 80 arranged so as to ensure electrical conductivity between the mounting support when the tire 10 is mounted on the mounting support and the crown 12 by the intermediate of the conductive element 80.
  • the electrically conductive element 80 comprises first and second axial ends 80A, 80B (only the end 80A is illustrated in FIG.
  • each first and second axial end 80A, 80B is in contact with the first and second masses 82 of electrically conductive materials respectively of each first and second bead 24, each first and second mass 82 of an electrically conductive material r being in contact with the mounting support when the tire 10 is mounted on the mounting support.
  • the electrically conductive element 80 comprises a layer 84 consisting of an electrically conductive material, in this case consisting of an elastomeric material based on a composition as described for example in US2005/0103412.
  • the electrically conductive element 80 here the layer 84, extends radially inside the equatorial circumferential plane E and is radially continuous between any point of the electrically conductive element 80 located radially inside the plane equatorial circumferential E, and any point of the electrically conductive element 80 located radially between the working layer 18 and the hooping reinforcement 17.
  • the electrically conductive element 80 has the shape of a strip of width equal to 20 mm.
  • the crown 12 is, for its part, arranged so as to ensure electrical conductivity from the electrically conductive element 80 to the rolling surface 13 radially through or via the hooping reinforcement 17 and through tread 20.
  • the electrically conductive element 80 comprises at least one so-called interposed portion 801 which is radially arranged between the working layer 18 and the hooping reinforcement 17.
  • the hooping reinforcement 17 is arranged so as to prevent electrical conductivity from the intercalated portion of the electrically conductive element 80 to the tread 20 via the hooping reinforcement 19.
  • the hooping wire reinforcing elements 170 are embedded in an electrically insulating elastomeric material, in this case an elastomeric material based on a composition as described in US20180066128, FR3059598 or even US6289958.
  • the working reinforcement 16 is arranged so as to prevent electrical conductivity via the working reinforcement 16.
  • the wire reinforcement elements 180 of the working layer 18 are embedded in an electrically insulating material, in this case a material based on a composition as described in US20180066128, FR3059598 or even US6289958.
  • the crown 12 comprises an additional mass 86 of an electrically conductive material arranged so as to provide electrical conductivity from the interposed portion 801 of the electrically conductive element 80 to the tread 20 radially at the through the hooping reinforcement 17 via the additional mass 86 of electrically conductive material.
  • the additional mass 86 is arranged radially between the tread 20 and the interposed portion 801 of the conductive electrical element 80 and axially arranged between the first and second axial portions 171 and 172 of the hooping reinforcement 17.
  • the tread 20 comprises at least one mass 88 of at least one electrically conductive material.
  • the masses 201, 202 and 88 are arranged so as to provide electrical conductivity from the additional mass 82 of the electrically conductive material to the running surface 13 via the mass 88 of the electrically conductive material radially through the masses. 201, 202 of electrically insulating materials. It will be noted that for reasons of simplification, the masses 86 and 88 are made of the same electrically conductive material.
  • the tire 10 is obtained by a process which will be described with reference to FIGS. 4 to 16.
  • a working assembly 50 and a carcass assembly 52 are manufactured by arranging the wire reinforcement elements 180 and 340 of each assembly 50 and 52 parallel to each other and by embedding them, for example by calendering, in a non-crosslinked composition comprising at least one elastomer, the composition being intended to form an elastomeric matrix once crosslinked.
  • a so-called straight ply is obtained, in which the wire reinforcing elements are parallel to each other and are parallel to the main direction of the ply.
  • portions of the straight working ply are cut at a cutting angle and these portions are butted together so as to obtain a so-called angled working ply, in which the working wire reinforcement elements are parallel to each other and form an angle with the main direction of the working ply equal to the cutting angle.
  • portions of the straight carcass ply are cut perpendicular to the main direction of the straight carcass ply and these portions are butted together so as to obtain a so-called angled carcass ply.
  • the carcass wire reinforcement elements are parallel to each other and form an angle ranging from 80° to 90° with the main direction of the carcass ply equal to the cut angle.
  • a single working ply 49 and a single carcass ply 51 are obtained, the axial width of each of which, that is to say the dimension in a direction perpendicular to the longitudinal edges of each ply, is equal to the axial width respectively of each working assembly 50 and carcass 52 which will be formed subsequently.
  • a sealing ply 70 is arranged around a main support 60 having a substantially cylindrical shape around its main axis A of so as to form a sealing assembly 72 intended to form the sealing layer 15.
  • the sealing ply 70 is arranged by rolling up the sealing ply 70.
  • each sidewall reinforcement assembly 73 and the assembly carcass 52 by winding respectively each sidewall reinforcement ply and the carcass ply 51 around the main support 60.
  • two filler assemblies 74 are then arranged to form each filler mass 30.
  • the two circumferential reinforcing elements 26 are arranged around the carcass assembly 52.
  • each axial edge 52A, 52B of the carcass assembly 52 is turned axially inwards so as to cover each element radially. circumferential reinforcement 26 by each axial edge 52A, 52B of the carcass assembly 52 and that the carcass assembly 52 is wrapped axially around each circumferential reinforcement element 26.
  • FIG. 7 a diagram illustrating the arrangement of the carcass wire reinforcement elements 340 at the end of the step of axial reversal of the axial edges 52A, 52B of the carcass assembly 52 around the circumferential reinforcement elements 26.
  • the carcass assembly 52 is delimited axially by the two axial edges 52A, 52B and comprises the carcass wire reinforcement elements 340 extending substantially parallel to each other axially from the axial edge 52A to the other axial edge 52B of the carcass assembly 52.
  • Each carcass wire reinforcement element 340 extends, in the carcass assembly 51, along a main direction K3 of each carcass wire reinforcement element 340 in the set of carcass 52.
  • the main direction K3 forms, with the circumferential direction x of the main support 60, an initial angle A3 of each carcass wire reinforcement element 340 ranging, in absolute value, from 80° to 90°, preferably ranging from 85° to 90° and here substantially equal to 90°.
  • Other angles A3 can be envisaged, such as for example the angles corresponding to the angles A3 described in the documents WO2016166056, WO2016166057, EP3489035.
  • FIG. 9 a diagram similar to that of Figure 7 and illustrating the arrangement of wire reinforcement elements 340 carcass and wire reinforcement elements 180 work at the end of the step of formation of the working assembly 50.
  • the working assembly 50 is delimited axially by two axial edges 50A, 50B of the working assembly 50 and comprises the working wire reinforcement elements 180 extending substantially parallel to each other other axially from the axial edge 50A to the other axial edge 50B of the working set 50.
  • Each wired working reinforcement element 180 extends, in the working set 50, in a main direction K2 of each working element working wire reinforcement 180 in working set 50.
  • the direction main K2 forms, with the circumferential direction x of the main support 60, an initial angle A2 of each working wire reinforcement element 180, in absolute value, ranging from 25° to 50°.
  • A2 -39°.
  • the carcass assembly 52 and the working assembly 50 then form an assembly 58 of substantially cylindrical shape around the main axis A of the main support 60.
  • each support assembly 75 and each intermediate stuffing assembly 76 arranged radially outside the working assembly 50, each support assembly 75 and each intermediate stuffing assembly 76, the electrically conductive element 80.
  • the electrically conductive element 80 is arranged by winding a layer of electrically conductive material over less than one turn, preferably by winding over less than a tenth of a turn.
  • the electrically conductive element 80 extends axially from one intermediate stuffing assembly 76 to the other intermediate stuffing assembly 76 located on the other side of the median plane of the main support 60.
  • an intermediate assembly 92 is formed on an intermediate support 91 of substantially toroidal shape around a main axis B of the intermediate support 91, an intermediate assembly 92 of which we will describe the manufacturing steps with reference to FIGS. 12 to 14.
  • the intermediate assembly 92 comprises a hooping assembly 93 intended to form the hooping armature 17, the additional mass 86 of electrically conductive material as well as a bearing assembly 94 intended to form the tread 20.
  • the hooping assembly 93 is arranged so as, once the tire 10 has been manufactured, to ensure electrical conductivity from the interposed portion 801 of the electrically conductive element 80 to the strip bearing 20 radially through the hooping armature 17.
  • the hooping assembly 93 is arranged so as to form first and second axial portions respectively referenced 931, 932 of the hooping assembly 93 axially separated on at least one axial portion 933 of the hooping assembly 93.
  • Each first and second axial portion 931 and 932 of the hooping assembly 93 is respectively intended to form each first and second axial portion 171 and 172 of the armature shrinking 17.
  • We form each first and second axial portion 931, 932 of the hooping assembly 93 by winding respectively the first and second strips 173, 174 separated from each other.
  • the additional mass 86 of electrically conductive material is arranged axially between the first and second axial portions 931, 932 of the hooping assembly 93 so that, once the tire 10 has been manufactured, ensure electrical conductivity from the interposed portion 801 of the electrically conductive element 80 to the tread 20 radially through the hooping reinforcement 17 via the additional mass 86 of electrically conductive material.
  • the intermediate assembly 92 is formed by arranging a bearing assembly 94 intended to form the tread 20 radially outside the hooping assembly 93 and the additional mass 86.
  • Bearing assembly 94 includes masses 201 and 202 of electrically insulating materials as well as mass 88 of electrically conductive material.
  • the assembly 58 of substantially cylindrical shape previously manufactured is deformed so as to obtain 59 of substantially toroidal shape around the main axis A of the main support 60.
  • the assembly 58 of substantially cylindrical shape is deformed around the main axis A of the support 60 so as to obtain the assembly 59 of substantially toroidal shape around the main axis A of the main support 60 so that, at the end of the deformation step, the main direction K3 of each carcass wire reinforcement element 340 forms, with the circumferential direction x of the main support 60, a final angle B3S of each element carcass wire reinforcement 340, in absolute value, strictly less than 80°, in an axially central portion 52S of the carcass assembly 52 extending axially radially plumb with the working assembly 50.
  • B3S +65°.
  • the portion 52S of the carcass assembly 52 is intended to form the axially central portion 34S of the carcass layer 34.
  • the assembly 58 of substantially cylindrical shape is deformed around the main axis A of the main support 60 so as to obtain the assembly 59 of substantially toroidal shape around the main axis A of the main support 60 also so that, at the end of the deformation step, the main direction K3 of each carcass wire reinforcement element 340 forms, with the circumferential direction x of the support 60, a final angle B3F of each carcass wire reinforcement element 340 in two servings 52F of the carcass assembly 52 each extending axially between the axially central portion 52S and each axial edge 52A, 52B of the carcass assembly 52.
  • Each axially lateral portion 52F of the carcass assembly 52 is intended in forming each axially lateral portion 34F of the carcass layer 34.
  • B3F +90°.
  • the assembly 58 of substantially cylindrical shape is deformed around the main axis A of the main support 60 so as to obtain the assembly 59 of substantially toroidal shape around the main axis A of the support 60 also so that , at the end of the deformation step, the main direction K2 of each working wire reinforcement element 340 forms, with the circumferential direction x of the support 60, a final angle B2 of each working wire reinforcement element 340, in absolute value, strictly greater than 10°.
  • B2 -35°.
  • the final angles B3S, B3F and B2 are substantially equal to the angles ACS, ACF and AT of the tire 10.
  • the hooping assembly 93 is arranged radially outside the assembly 59 of substantially toroidal shape around the main axis A of the support. main 60.
  • the intermediate assembly 92 is attached radially to the outside of the assembly 59 of substantially toroidal shape around the main axis A of the main support 60 so that the additional mass 86 is arranged radially outside and in contact with the interposed portion 801 of the conductive element 80.
  • the additional mass 86 is arranged radially on the outside and in contact with the interposed portion 801 of the electrically conductive element 80 after the step of deforming the assembly 58.
  • the bearing assembly 94 is arranged so as to, once the tire 10 has been manufactured, ensure electrical conductivity from the interposed portion 801 of the electrically conductive element 80 to the tread surface 13 radially across or via the hooping reinforcement 17 and via the tread 20, here through the hooping reinforcement via the mass 86 and via the bearing 20 via mass 88.
  • the green blank thus formed is molded and crosslinked so as to obtain the tire 10, for example by vulcanization in a mold.
  • FIGS. 17 and 18 A tire according to a second embodiment will now be described with reference to FIGS. 17 and 18. Elements similar to those described in the first embodiment are designated by identical references.
  • the hooping reinforcement 17 of the tire 10 comprises a single band 173 wound circumferentially helically so as to extend continuously axially from the axial edge 17A to at the edge 17B of the hooping reinforcement.
  • each first and second axial portion 931, 932 of the hooping assembly 93 is formed by continuous winding of the single strip 173 and so that the first and second axial portions 931, 932 are axially separated on the axial portion 933 in order to ensure electrical conductivity through the hooping reinforcement 17 once the tire 10 has been manufactured.
  • the bearing assembly 94 carries the additional mass 86 radially internally as shown in FIG. 18 and the intermediate assembly 92 is formed by arranging the assembly of bearing 94 intended to form the tread 20 as well as the additional mass 86 radially outside the hooping assembly 93.
  • a tire according to a third embodiment will now be described with reference to FIG. 19. Elements similar to those described in the previous embodiments are designated by identical references.
  • the masses 201, 202 of the tread 20 are masses of electrically conductive materials. Each mass 201, 202 of electrically conductive material is arranged so as to provide electrical conductivity from the additional mass 80 of electrically conductive material to the running surface 13 via the or each mass 201, 202. Also, the tread 20 does not include mass 88 of electrically conductive material, the latter being unnecessary to ensure electrical conductivity through the tread 20.
  • a tire according to a fourth embodiment will now be described with reference to FIG. 20. Elements similar to those described in the preceding embodiments are designated by identical references.
  • the hooping reinforcement 17 of the tire 10 according to the third embodiment is arranged so as to ensure electrical conductivity from the interposed portion 801 of the electrically conductive element 80 to to the tread 20 via the hooping reinforcement 17.
  • the hooping wire reinforcing elements 170 are embedded in an electrically conductive material.
  • Such an electrically conductive material is for example identical to the material of the masses 86, 88 of the tire of the first embodiment.
  • the tread comprises the masses 201, 202 of electrically insulating materials and the mass 88 of electrically conductive material arranged so as to ensure electrical conductivity from the hooping reinforcement 17 to 'to the running surface 13 via the mass 88 of electrically conductive material radially through the masses 201, 202 of electrically insulating materials.
  • the process for manufacturing the tire 10 according to the third embodiment is such that the hooping assembly 93 is arranged radially outside and in contact with the electrically conductive element 80 so as to, once the tire 10 manufactured, ensure electrical conductivity from the interposed portion 801 of the electrically conductive element 80 to the tread 20 via the hooping reinforcement 17.
  • a tire according to a fifth embodiment will now be described with reference to FIG. 21. Elements similar to those described in the previous embodiments are designated by identical references.
  • each mass 201, 202 is arranged so as to ensure electrical conductivity from the hooping reinforcement 17 to the rolling surface 13 via each mass 201 ,
  • each mass 201, 202 is made of an electrically conductive material identical to that of the third embodiment.
  • the tire 10 according to the sixth embodiment is such that the working reinforcement 16 comprises a radially innermost working layer 18 and a radially outermost working layer 21 arranged radially outside the layer radially innermost layer 18.
  • the radially outermost layer 21 is delimited axially by two axial edges 21A, 21B.
  • the radially outermost working layer 21 comprises working wire reinforcement elements 210 extending axially from the axial 21 A to the other axial edge 21 B of the working layer 21 substantially parallel to each other.
  • Each wired working reinforcement element 210 extends along a main direction D2' of each wired working reinforcement element 210.
  • the direction D2' forms, with the circumferential direction X of the tire 10, an angle AT', in absolute value , strictly greater than 10°, preferably ranging from 15° to 50°.
  • AT' is+26°.
  • each carcass wire reinforcement element 340 extends along a main direction D3 of each carcass wire reinforcement element 340 forming, with the circumferential direction X of the tire 10 , a substantially constant angle AC, in absolute value, ranging from 80° to 90° between each axial edge 34A, 34B.
  • AC is, in absolute value, substantially equal to 90°.
  • the interposed portion is arranged between the radially outermost working layer of the working reinforcement and the hooping reinforcement.
  • the invention can also be implemented without the carcass layer comprising an axially lateral portion wound around each circumferential reinforcing element 26. Indeed, other methods of anchoring the carcass layer 34 are possible, for example as described in US5702548.
  • each first and second axial end 80A, 80B is in contact with the mounting support when the tire 10 is mounted on the mounting support.
  • the electrically conductive element 80 extends axially from a first of the beads 24 to radially between the radially outermost working layer 18 and the hooping reinforcement 17 so that the first axial end 80A is in contact with the mass 82 of electrically conductive material and the second axial end 80B is arranged radially between the radially outermost working layer 18 and the hooping reinforcement 17.
  • the first axial end 80A being in contact with the mounting support when the tire 10 is mounted on the mounting support and the second axial end 80B is radially arranged between the radially outermost working layer 18 and the shrinking reinforcement 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

L'invention concerne pneumatique comprenant une armature de travail (16) comprenant au moins une couche de travail et une armature de frettage (17) agencée radialement à l'extérieur de l'armature de travail (16). Le pneumatique (10) comprend un élément électriquement conducteur (80) agencé de façon à assurer la conductivité électrique entre un support de montage du pneumatique (10) et le sommet (12) par l'intermédiaire de l'élément conducteur (80), le sommet (12) étant agencé de façon à assurer la conductivité électrique depuis l'élément électriquement conducteur (80) jusqu'à la surface de roulement (13) radialement au travers ou par l'intermédiaire de l'armature de frettage (17) et par l'intermédiaire de la bande de roulement (20). Au moins une portion (801), dite intercalée, de l'élément électriquement conducteur (80) est radialement agencée entre la couche de travail (18) et l'armature de frettage (17).

Description

PNEUMATIQUE PRESENTANT UN NOUVEAU CHEMIN CONDUCTEUR
[001] La présente invention est relative à un pneumatique.
[002] On connaît de l’état de la technique, notamment de EP1526005 un pneumatique comprenant un sommet, deux flancs, deux bourrelets, chaque flanc reliant chaque bourrelet au sommet.
[003] Le pneumatique comprend également une armature de carcasse ancrée dans chaque bourrelet et s’étendant dans chaque flanc et dans le sommet.
[004] Le sommet comprend une bande de roulement destinée à venir en contact avec un sol lors du roulage du pneumatique ainsi qu’une armature de sommet agencée radialement entre la bande de roulement et l’armature de carcasse qui s’étend radialement intérieurement à l’armature de sommet. L’armature de sommet et la bande de roulement sont agencée au contact l’une de l’autre.
[005] L’armature de sommet comprend une armature de travail comprenant une couche radialement la plus intérieure et une couche radialement la plus extérieure agencée radialement à l’extérieure de la couche radialement la plus intérieure. L’armature de sommet comprend également une armature de frettage agencée radialement à l’extérieur de l’armature de travail et comprenant une couche de frettage.
[006] Le pneumatique décrit dans EP1526005 comprend également un élément électriquement conducteur agencé de façon à assurer la conductivité électrique entre un support de montage lorsque le pneumatique est monté sur le support de montage et le sommet radialement au travers d’au moins un des flancs par l’intermédiaire de l’élément électriquement conducteur. Un tel support de montage comprend une jante métallique électriquement conductrice. Plus précisément, l’élément électriquement conducteur du pneumatique de EP1526005 est agencé de façon à assurer la conductivité électrique depuis une masse d’un matériau électriquement conducteur destinée à être au contact du support de montage lorsque le pneumatique est monté sur le support de montage jusqu’à la couche de travail radialement la plus intérieure au travers d’au moins un des flancs par l’intermédiaire de l’élément électriquement conducteur.
[007] Par ailleurs, le sommet du pneumatique de EP1526005 est agencé de façon à assurer la conductivité électrique depuis l’élément électriquement conducteur jusqu’à la surface de roulement par l’intermédiaire des deux couches de travail, de la couche de frettage, d’une sous-couche et d’une couche de roulement de la bande de roulement.
[008] Toutefois, les manufacturiers de pneumatiques cherchent constamment à réduire la résistance au roulement des pneumatiques aux fins environnementales. Une des nombreuses solutions permettant de réduire cette résistance au roulement consiste à réduire l’hystérèse du sommet du pneumatique. Une réduction significative peut être obtenue en réduisant l’hystérèse de la bande de roulement et de l’armature de sommet.
[009] La réduction de l’hystérèse de la bande de roulement et de l’armature de sommet est notamment obtenue en utilisant des couches de sommet, notamment des couches de travail, comprenant des éléments de renfort filaires noyés dans des matériaux faiblement hystérétiques à base de charges comprenant, en tant que charge majoritaire, de la silice. De tels matériaux faiblement hystérétiques, s’ils permettent de réduire significativement l’hystérèse, sont généralement électriquement isolants par rapport à des matériaux électriquement conducteurs à base de charges comprenant, en tant que charge majoritaire, du noir de carbone.
[010] Ainsi, la réduction de résistance au roulement du pneumatique par l’utilisation d’une armature de sommet, notamment d’une armature de travail, électriquement isolante ne permet pas d’assurer une évacuation satisfaisante de la charge électrique depuis le véhicule jusqu’au sol de roulage par l’intermédiaire du pneumatique.
[011] D’autres pneumatiques permettant d’évacuer la charge électrique en évitant l’armature de travail et non pas par l’intermédiaire de la couche de frettage, mais au travers de l’armature de frettage. De tels pneumatiques sont décrits dans JP2010159017. Le pneumatique de JP2010159017 comprend un élément conducteur additionnel agencée de façon à assurer la conductivité électrique entre l’élément électriquement conducteur et l’armature de frettage. L’élément conducteur additionnel prend la forme d’une bande enroulée autour d’une des extrémités axiales de la couche de travail radialement la plus intérieure ce qui permet de ménager un chemin conducteur ne passant pas par l’intermédiaire des couches de travail. Néanmoins, une telle solution est relativement complexe de par la nécessité d’agencer l’élément conducteur additionnel autour d’une des extrémités axiales de la couche de travail radialement la plus intérieure.
[012] L’ invention a pour but de permettre l’utilisation de matériaux électriquement isolants dans au moins l’armature de travail tout en permettant une évacuation satisfaisante de la charge électrique depuis le véhicule jusqu’au sol de roulage par l’intermédiaire du pneumatique et ce, de façon simple.
[013] A cet effet, l’invention a pour objet un pneumatique destiné à être monté sur un support de montage et comprenant un sommet, deux bourrelets, deux flancs reliant chacun chaque bourrelet au sommet et une armature de carcasse ancrée dans chaque bourrelet, le sommet comprenant une bande de roulement comprenant une surface de roulement destinée à venir au contact avec un sol de roulage et une armature de sommet, l’armature de carcasse s’étendant dans chaque flanc et dans le sommet radialement intérieurement à l’armature de sommet, l’armature de sommet étant agencée radialement entre la bande de roulement et l’armature de carcasse et comprenant : - une armature de travail comprenant au moins une couche de travail radialement la plus extérieure de l’armature de travail,
- une armature de frettage agencée radialement à l’extérieur de l’armature de travail, le pneumatique comprenant un élément électriquement conducteur agencé de façon à assurer la conductivité électrique entre un support de montage lorsque le pneumatique est monté sur le support de montage et le sommet par l’intermédiaire de l’élément conducteur, le sommet étant agencé de façon à assurer la conductivité électrique depuis l’élément électriquement conducteur jusqu’à la surface de roulement radialement au travers ou par l’intermédiaire de l’armature de frettage et par l’intermédiaire de la bande de roulement, au moins une portion, dite intercalée, de l’élément électriquement conducteur étant radialement agencée entre la couche de travail radialement la plus extérieure de l’armature de travail et l’armature de frettage, l’élément électriquement conducteur s’étendant radialement à l’intérieur du plan circonférentiel équatorial du pneumatique, l’élément électriquement conducteur est radialement continu entre :
- tout point de l’élément électriquement conducteur situé radialement à l’intérieur du plan circonférentiel équatorial du pneumatique, et
- tout point de l’élément électriquement conducteur situé radialement entre la couche de travail radialement la plus extérieure de l’armature de travail et l’armature de frettage.
[014] Grâce au positionnement radial de la portion intercalée entre la couche radialement la plus extérieure de l’armature de travail et l’armature de frettage, on peut, si on le souhaite, utiliser des matériaux électriquement isolants dans l’armature de travail qui n’a plus à assurer, par son intermédiaire, une partie du chemin électriquement conducteur entre l’élément électriquement conducteur et la surface de roulement.
[015] De plus, l’absence d’élément conducteur additionnel enroulé autour d’une des extrémités axiales de la couche de travail radialement la plus intérieure rend le pneumatique beaucoup plus simple à fabriquer.
[016] En outre, conformément à l’invention, le chemin électriquement conducteur passe radialement au travers de l’armature de frettage ou bien par l’intermédiaire de l’armature de frettage. Ainsi, il n’est pas nécessaire de prévoir un chemin électriquement conducteur évitant l’armature de sommet, et notamment évitant l’armature de frettage, comme cela est décrit par exemple dans EP1621365 ou US20050103412. En effet, un chemin conducteur évitant l’armature de frettage nécessite l’utilisation d’une bande de roulement comprenant au moins une masse d’un matériau agencée au contact de l’élément électriquement conducteur de façon à assurer la conductivité électrique entre l’élément électriquement conducteur et la surface de roulement sans passer au travers ou par l’intermédiaire de l’armature de frettage, ce qui limite voire interdit l’utilisation de matériaux faiblement hystérétiques dans la bande de roulement.
[017] Par radialement continu, on entend qu’il n’existe pas de jonctions, par exemple par aboutement ou par superposition, entre plusieurs portions distinctes de l’élément conducteur. On évite ainsi l’incorporation de plusieurs portions distinctes dont il faudrait contrôler les interfaces de jonction de façon à assurer la continuité du chemin électriquement conducteur entre les points décrits ci-dessus.
[018] Le pneumatique selon l’invention présente une résistance électrique inférieure ou égale à 1O10 ohms et de préférence inférieure ou égale à 108 ohms, la résistance électrique étant mesurée selon la norme ISO 16392 :2017.
[019] Par armature, on comprendra, de façon classique pour l’homme du métier, une couche ou plusieurs couches d’une matrice, de préférence élastomérique, dans laquelle sont noyés un ou plusieurs éléments de renfort, de préférence un ou plusieurs éléments de renfort filaires destinés à renforcer la matrice de la ou de chaque couche.
[020] Dans la présente demande, un élément est agencé de façon à assurer la conductivité électrique depuis un premier organe jusqu’à un deuxième organe lorsqu’il forme un chemin conducteur s’étendant depuis le premier organe jusqu’au deuxième organe. Ainsi, l’élément est agencé au contact du premier organe et du deuxième organe.
[021] Dans la présente demande, un élément est agencé de façon à assurer la conductivité électrique entre un premier organe et un deuxième organe lorsqu’il forme un chemin conducteur s’étendant entre le premier organe et le deuxième organe sans nécessairement s’étendre depuis le premier organe jusqu’au deuxième organe. Ainsi, l’élément peut former tout ou partie du chemin conducteur s’étendant depuis le premier organe jusqu’au deuxième organe.
[022] Dans la présente demande, un élément agencé de façon à empêcher la conductivité électrique par l’intermédiaire de cet élément signifie que le chemin conducteur ne passe pas par l’élément. A l’inverse, un élément agencé de façon à assurer la conductivité électrique par l’intermédiaire de cet élément signifie que le chemin conducteur passe par cet élément.
[023] Lorsque la conductivité électrique est assurée par l’intermédiaire d’un élément radialement au travers d’un organe, cela signifie que le chemin conducteur se fait par l’intermédiaire de l’élément qui traverse physiquement l’organe.
[024] Dans le contexte de l’invention, un élément agencé de façon à empêcher la conductivité électrique ou un matériau isolant d’un tel élément est tel que l’élément ne forme pas une partie du chemin conducteur entre le support de montage et la surface de roulement lorsque le pneumatique est monté sur le support de montage.
[025] Dans le contexte de l’invention, un élément agencé de façon à assurer la conductivité électrique ou un matériau électriquement conducteur d’un tel élément est tel qu’il forme une partie du chemin conducteur entre le support de montage et la surface de roulement lorsque le pneumatique est monté sur le support de montage.
[026] Par charge majoritaire dans un matériau, on entend que cette charge est majoritaire parmi les charges dans le matériau, c’est-à-dire que c’est celui qui représente la plus grande quantité en masse parmi charges. Par l'expression « matériau à base de », il faut entendre un matériau comportant le mélange et/ou le produit de réaction in situ des différents constituants utilisés, certains de ces constituants pouvant réagir et/ou étant destinés à réagir entre eux, au moins partiellement, lors des différentes phases de fabrication du matériau; le matériau composition pouvant ainsi être à l’état totalement ou partiellement réticulé ou à l’état non-réticulé.
[027] Les pneumatiques de l'invention sont destinés préférentiellement à des véhicules de tourisme tels que définis au sens de la norme de la European Tyre and Rim Technical Organisation ou « ETRTO », 2020. Un tel pneumatique présente une section dans un plan de coupe méridien caractérisée par une hauteur de section H et une largeur de section nominale ou grosseur boudin S au sens de la norme de la European Tyre and Rim Technical Organisation ou « ETRTO », 2020 telles que, très avantageusement et pour la plupart de pneumatiques, le rapport H/S, exprimé en pourcentage, est au plus égal à 90, de préférence au plus égal à 80 et plus préférentiellement au plus égal à 70 et est au moins égal à 30, de préférence au moins égal à 40, et la largeur de section S est, très avantageusement et pour la plupart de pneumatiques, au moins égale à 115 mm, de préférence au moins égale à 155 mm et plus préférentiellement au moins égale à 175 mm et au plus égal à 385 mm, de préférence au plus égal à 315 mm, plus préférentiellement au plus égal à 285 mm et encore plus préférentiellement au plus égal à 255 mm. En outre, le diamètre au crochet D, définissant le diamètre de la jante de montage du pneumatique, est, très avantageusement et pour la plupart de pneumatiques, au moins égal à 12 pouces, de préférence au moins égal à 16 pouces et au plus égal à 24 pouces, de préférence au plus égal à 20 pouces.
[028] Par direction axiale, on entend la direction sensiblement parallèle à l’axe principal du pneumatique ou du support principal de fabrication, c’est-à-dire l’axe de rotation du pneumatique ou du support principal de fabrication.
[029] Par direction circonférentielle, on entend la direction qui est sensiblement perpendiculaire à la fois à la direction axiale et à un rayon du pneumatique ou du support principal de fabrication (en d’autres termes, tangente à un cercle dont le centre est sur l’axe de rotation du pneumatique ou du support principal de fabrication).
[030] Par direction radiale, on entend la direction selon un rayon du pneumatique ou du support principal de fabrication, c’est-à-dire une direction quelconque coupant l’axe de rotation du pneumatique ou du support principal de fabrication et sensiblement perpendiculaire à cet axe.
[031] Par plan médian du pneumatique (noté M), on entend le plan perpendiculaire à l’axe de rotation du pneumatique qui est situé à mi-distance axiale des deux bourrelets et passe par le milieu axial de l’armature de sommet.
[032] Par plan circonférentiel équatorial du pneumatique (noté E), on entend la surface cylindrique théorique passant par l’équateur du pneumatique, perpendiculaire au plan médian et à la direction radiale. L’équateur du pneumatique est, dans un plan de coupe méridienne (plan perpendiculaire à la direction circonférentielle et parallèle aux directions radiale et axiales) l’axe parallèle à l’axe de rotation du pneumatique et située à équidistance entre le point radialement le plus externe de la bande de roulement destiné à être au contact avec le sol et le point radialement le plus interne du pneumatique destiné à être en contact avec un support, par exemple une jante, la distance entre ces deux points étant égale à H.
[033] Par plan méridien, on entend un plan parallèle à et contenant l’axe de rotation du pneumatique et perpendiculaire à la direction circonférentielle.
[034] Par bourrelet, on entend la portion du pneumatique destiné à permettre l’accrochage du pneumatique sur un support de montage, par exemple une roue comprenant une jante. Ainsi, chaque bourrelet est notamment destiné à être au contact d’un crochet de la jante permettant son accrochage.
[035] Par direction principale selon laquelle un élément de renfort filaire s’étend, on comprend la direction selon laquelle l’élément de renfort filaire s’étend selon sa plus grande longueur. La direction principale selon laquelle un élément de renfort filaire s’étend peut être rectiligne ou courbe, l’élément de renfort pouvant décrire le long de sa direction principale une trajectoire rectiligne ou bien ondulée.
[036] Tout intervalle de valeurs désigné par l'expression "entre a et b" représente le domaine de valeurs allant de plus de a à moins de b (c’est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l'expression "de a à b" signifie le domaine de valeurs allant de a jusqu'à b (c’est-à-dire incluant les bornes strictes a et b).
[037] Dans le pneumatique, l’angle considéré est l’angle, en valeur absolue, le plus petit des deux angles définis entre la droite de référence, ici la direction circonférentielle du pneumatique, et la direction principale selon laquelle l’élément de renfort filaire considéré s’étend.
[038] Dans le pneumatique et lors du procédé, par orientation d’un angle, on entend le sens, horaire ou anti-horaire, dans lequel il faut tourner depuis la droite de référence, ici la direction circonférentielle du support ou du pneumatique, définissant l’angle pour atteindre la direction principale selon laquelle l’élément de renfort filaire considéré s’étend. [039] Lors du procédé, les angles considérés formés par les directions principales selon lesquelles s’étendent les éléments de renfort filaires de travail et de carcasse sont par convention des angles d’orientations opposées et l’angle formé par la direction principale selon laquelle s’étend chaque élément de renfort filaire de travail est, en valeur absolue, le plus petit des deux angles définis entre la droite de référence, ici la direction circonférentielle du support ou du pneumatique et la direction principale selon laquelle l’élément de renfort filaire de travail s’étend. Ainsi, l’angle formé par la direction principale selon laquelle s’étend chaque élément de renfort filaire de travail définit une orientation qui est opposée à celle formée par l’angle de la direction principale selon laquelle s’étend chaque élément de renfort filaire de carcasse.
[040] Dans le pneumatique selon l’invention, le sommet comprend la bande de roulement et l’armature de sommet. On entend par bande de roulement une bande de matériau polymérique, de préférence élastomérique, délimitée : radialement vers l’extérieur, par la surface de roulement et radialement vers l’intérieur, par l’armature de sommet. axialement par deux plans perpendiculaires à la direction axiale et passant par les extrémités axiales de la surface de roulement.
[041] De façon classique, on détermine la surface de roulement sur un pneumatique monté sur une jante nominale et gonflé à la pression nominale au sens de la norme de la European Tyre and Rim Technical Organisation ou « ETRTO », 2020. Dans le cas d’une frontière évidente entre la surface de roulement et le reste du pneumatique, les extrémités axiales et largeur axiale de la surface de roulement sont simplement déterminées. Dans le cas où la surface de roulement est continue avec les surfaces externes des flancs du pneumatique, les extrémités axiales de la surface de roulement sont, dans un plan de coupe méridienne, confondues avec le point pour lequel l’angle entre la tangente à la surface de roulement et une droite parallèle à la direction axiale passant par ce point est égal à 30°. Lorsqu’il existe sur un plan de coupe méridienne, plusieurs points pour lesquels ledit angle est égal en valeur absolue à 30°, on retient le point radialement le plus à l’extérieur.
[042] La bande de matériau polymérique est constituée d’une couche constituée d’un matériau, de préférence polymérique et plus préférentiellement élastomérique ou bien comprenant plusieurs couches, chaque couche étant préférentiellement constituée d’un matériau polymérique, et plus préférentiellement élastomérique.
[043] Dans un mode de réalisation avantageux, l’armature de sommet comprend une unique armature de frettage et une unique armature de travail. Ainsi, l’armature de sommet est, à l’exception de l’armature de frettage et de l’armature de travail, dépourvue de toute armature renforcée par des éléments de renfort filaires. Les éléments de renfort filaires de telles armatures exclues de l’armature de sommet du pneumatique comprennent les éléments de renfort filaires métalliques et les éléments de renfort filaires textiles. De façon très préférentielle, l’armature de sommet est constituée de l’armature de frettage et de l’armature de travail.
[044] Dans un mode de réalisation très préférentiel, le sommet est, à l’exception, de l’armature de sommet, dépourvue de toute armature renforcée par des éléments de renfort filaires. Les éléments de renfort filaires de telles armatures exclues du sommet du pneumatique comprennent les éléments de renfort filaires métalliques et les éléments de renfort filaires textiles. De façon très préférentielle, le sommet est constitué par la bande de roulement et l’armature de sommet.
[045] Dans un mode de réalisation très préférentiel, l’armature de carcasse est agencée directement radialement au contact de l’armature de sommet et l’armature de sommet est agencée directement radialement au contact de la bande de roulement.
[046] L’ invention peut avantageusement être utilisée dans un mode de réalisation dans lequel l’armature de travail est agencée de façon à empêcher la conductivité électrique par l’intermédiaire de l’armature de travail.
[047] Ainsi, comme expliqué ci-dessus, on peut avantageusement utiliser une armature de travail comprenant des matériaux faiblement hystérétiques à base d’une ou de plusieurs charges comprenant en tant que charge majoritaire, de la silice.
[048] Dans une configuration préférentielle de l’armature de travail, la ou chaque couche de travail comprend des éléments de renfort filaires de travail noyés dans un matériau électriquement isolant.
[049] De tels éléments de renfort filaires de travail sont de préférence métalliques. Néanmoins, on pourra envisager des éléments de renfort filaires polymériques ou minéraux, c’est-à-dire comprenant un ou plusieurs monofilaments polymériques ou minéraux. Chaque monofilament polymérique est préférentiellement choisi parmi les monofilaments de polyamide aliphatique, de polyamide aromatique et de polyester. Chaque monofilament minéral est préférentiellement choisi parmi les monofilaments de carbone ou de verre.
[050] Avantageusement, la ou chaque couche de travail étant délimitée axialement par deux bords axiaux de la couche de travail, les éléments de renfort filaires de travail s’étendent axialement d’un bord axial à l’autre bord axial de la couche de travail les uns sensiblement parallèlement aux autres.
[051] Dans une variante particulièrement avantageuse, l’armature de travail comprend une unique couche de travail. Dans cette variante, la couche de travail radialement la plus extérieure est donc l’unique couche de travail. La présence d’une unique couche de travail permet notamment d’alléger le pneumatique, donc de réduire l’énergie dissipée par hystérèse du sommet et donc de réduire la résistance au roulement du pneumatique. Ainsi, l’armature de travail est, à l’exception de la couche de travail, dépourvue de toute couche renforcée par des éléments de renfort filaires. Les éléments de renfort filaires de telles couches renforcées exclues de l’armature de travail du pneumatique comprennent les éléments de renfort filaires métalliques et les éléments de renfort filaires textiles. De façon très préférentielle, l’armature de travail est constituée par l’unique couche de travail.
[052] Dans une autre variante, l’armature de travail comprend une couche radialement la plus intérieure et une couche radialement la plus extérieure agencée radialement à l’extérieure de la couche radialement la plus intérieure. Dans cette variante, la direction principale selon laquelle s’étend chaque élément de renfort filaire de travail de la couche de travail radialement la plus intérieure et la direction principale selon laquelle s’étend chaque élément de renfort filaire de travail de la couche de travail radialement la plus extérieure forment, avec la direction circonférentielle du pneumatique, des angles d’orientations opposées.
[053] Quelle que soit la variante, chaque élément de renfort filaire de travail s’étend selon une direction principale formant, avec la direction circonférentielle du pneumatique, un angle, en valeur absolue, strictement supérieur à 10°, de préférence allant de 15° à 50°.
[054] Dans un premier mode de réalisation de l’invention, l’armature de frettage est agencée de façon à assurer la conductivité électrique depuis la portion intercalée de l’élément électriquement conducteur jusqu’à la bande de roulement par l’intermédiaire de l’armature de frettage.
[055] Conformément à ce premier mode de réalisation, l’armature de frettage est au contact de l’élément électriquement conducteur et au contact de la bande de roulement de façon à former le chemin conducteur reliant électriquement entre eux l’élément électriquement conducteur et la bande de roulement.
[056] Dans une configuration préférentielle du premier mode de réalisation de l’armature de frettage, l’armature de frettage comprend un ou plusieurs éléments de renfort filaires de frettage noyés dans un matériau électriquement conducteur.
[057] Préférentiellement, de tels éléments de renfort filaires de frettage sont des éléments de renfort filaires polymériques ou minéraux tels que décrits ci-dessus en référence aux éléments filaires de renfort de travail.
[058] Dans une première variante du premier mode de réalisation, la bande de roulement comprend une ou plusieurs masses d’un ou de plusieurs matériaux électriquement conducteurs, la ou chaque masse du ou des matériaux électriquement conducteurs étant agencée de façon à assurer la conductivité électrique depuis l’armature de frettage jusqu’à la surface de roulement par l’intermédiaire de la ou chaque masse. [059] Conformément à cette première variante, la bande de roulement est au contact de l’armature de frettage de façon à former le chemin conducteur reliant électriquement entre eux l’armature de frettage et la surface de roulement.
[060] Dans une deuxième variante du premier mode de réalisation permettant l’utilisation d’une bande de roulement comprenant des matériaux électriquement isolants et, par exemple faiblement hystérétiques, la bande de roulement comprend une ou plusieurs masses d’un ou de plusieurs matériaux électriquement isolants et au moins une masse d’au moins un matériau électriquement conducteur agencées de façon à assurer la conductivité électrique depuis l’armature de frettage jusqu’à la surface de roulement par l’intermédiaire de la masse du matériau électriquement conducteur radialement au travers de la ou des masses du ou des matériau(x) électriquement isolant(s).
[061] Conformément à cette deuxième variante, la masse du matériau électriquement conducteur est au contact de l’armature de frettage et au contact de la surface de roulement de façon à former le chemin conducteur reliant électriquement entre eux l’armature de frettage et la surface de roulement.
[062] De façon à réduire autant que possible l’hystérèse de la bande de roulement, le volume de la ou des masses de matériaux électriquement isolants est supérieur ou égal à 50%, de préférence supérieur ou égal à 75% et plus préférentiellement supérieur ou égal à 95% du volume de la bande de roulement.
[063] Dans un deuxième mode de réalisation de l’invention, l’armature de frettage est agencée de façon à empêcher la conductivité électrique depuis la portion intercalée de l’élément électriquement conducteur jusqu’à la bande de roulement par l’intermédiaire de l’armature de frettage.
[064] Dans une configuration préférentielle du deuxième mode de réalisation de l’armature de frettage, l’armature de frettage comprend un ou plusieurs éléments de renfort filaires de frettage noyés dans un matériau élastomérique électriquement isolant.
[065] De façon très préférentielle dans le deuxième mode de réalisation, le sommet comprend une masse additionnelle d’un matériau électriquement conducteur agencée de façon à assurer la conductivité électrique depuis la portion intercalée de l’élément électriquement conducteur jusqu’à la bande de roulement radialement au travers de l’armature de frettage par l’intermédiaire de la masse additionnelle du matériau électriquement conducteur.
[066] Conformément à cette première variante, la masse additionnelle est au contact de l’élément électriquement conducteur et au contact de la bande de roulement de façon à former le chemin conducteur reliant électriquement entre eux l’élément électriquement conducteur et la bande de roulement. On pourra bien entendu utiliser plusieurs masses additionnelles d’un ou de plusieurs matériaux électriquement conducteurs formant chacune une partie du chemin électriquement conducteur passant radialement au travers de l’armature de frettage.
[067] De préférence, la masse additionnelle est radialement agencée entre la bande de roulement et la portion intercalée de l’élément électrique conducteur et axialement agencée entre des première et deuxième portions axiales de l’armature de frettage. Ainsi, on peut positionner axialement la masse additionnelle entre les première et deuxième portions axiales dont on déterminera les largeurs axiales en fonction des performances souhaitées de l’armature de frettage.
[068] Dans une première variante, l’armature de frettage étant délimitée axialement par deux bords axiaux de l’armature de frettage, l’armature de frettage comprend une unique bande enroulée circonférentiellement hélicoïdalement de façon à s’étendre continûment axialement depuis un des bords axiaux de l’armature de frettage jusqu’à l’autre des bords de l’armature de frettage.
[069] Ainsi, dans cette première variante, la bande est continue entre les premières et deuxièmes portions axiales de l’armature de frettage qui sont reliées entre elles par une portion de la bande. Le procédé de fabrication est relativement simple car il comprend une étape d’enroulage continu de la bande pour former l’armature de frettage.
[070] Dans une deuxième variante, l’armature de frettage étant délimitée axialement par deux bords axiaux de l’armature de frettage, les première et deuxième portions axiales sont disjointes axialement l’une de l’autre de sorte que:
- la première portion axiale comprend une première bande enroulée circonférentiellement hélicoïdalement de façon à s’étendre continûment axialement depuis un des bords axiaux de l’armature de frettage jusqu’à un bord axialement intérieur de la première portion axiale, et
- la deuxième portion axiale comprend une deuxième bande enroulée circonférentiellement hélicoïdalement de façon à s’étendre continûment axialement depuis un bord axialement intérieur de la deuxième portion axiale jusqu’à l’autre des bords axiaux de l’armature de frettage.
[071] Que ce soit dans la première ou la deuxième variante, on peut positionner facilement la masse additionnelle dans une portion située axialement entre les première et les deuxième portions.
[072] Dans une première variante du deuxième mode de réalisation, la bande de roulement comprend une ou plusieurs masses d’un ou de plusieurs matériaux électriquement conducteur(s), la ou chaque masse de matériau électriquement conducteur étant agencée de façon à assurer la conductivité électrique depuis la masse additionnelle de matériau électriquement conducteur jusqu’à la surface de roulement par l’intermédiaire de la ou chaque masse. Conformément à cette deuxième variante, la bande de roulement est au contact de la masse additionnelle de façon à former le chemin conducteur reliant électriquement entre eux la masse additionnelle et la surface de roulement.
[073] Dans une deuxième variante du deuxième mode de réalisation permettant l’utilisation d’une bande de roulement comprenant des matériaux électriquement isolants et, par exemple, faiblement hystérétiques, la bande de roulement comprend une ou plusieurs masses d’un ou de plusieurs matériaux électriquement isolants et au moins une masse d’au moins un matériau électriquement conducteur agencées de façon à assurer la conductivité électrique depuis la masse additionnelle du matériau électriquement conducteur jusqu’à la surface de roulement par l’intermédiaire de la masse du matériau électriquement conducteur radialement au travers de la ou des masses du ou des matériau(x) électriquement isolant(s). Conformément à cette deuxième variante, la masse du matériau électriquement conducteur est au contact de la masse additionnelle et au contact de la surface de roulement de façon à former le chemin conducteur reliant électriquement entre eux la masse additionnelle et la surface de roulement.
[074] De préférence, l’élément électriquement conducteur comprend une couche constituée d’un matériau électriquement conducteur. La couche pourra s’étendre circonférentiellement sur une longueur correspondant à un angle inférieur ou égal à 360°. Plus préférentiellement, la couche s’étendra circonférentiellement sur une longueur correspondant à un angle inférieur ou égal à 90° de façon à limiter la masse de l’élément électriquement conducteur. Dans une variante, le matériau électriquement conducteur de la couche est un matériau élastomérique. Dans une autre variante, le matériau électriquement conducteur de la couche est une encre électriquement conductrice. Dans encore une autre variante, l’élément électriquement conducteur comprend un élément filaire électriquement conducteur, par exemple un monofilament ou un assemblage de monofilaments.
[075] Dans certains modes de réalisation, le pneumatique comprendra plusieurs éléments conducteurs distincts répartis de façon régulière ou irrégulière sur la circonférence du pneumatique et ce, quelle que soit la variante de l’élément électriquement conducteur décrite ci-dessus.
[076] Quel que soit le mode de réalisation et la variante, l’armature de frettage est, de façon optionnelle, délimitée axialement par deux bords axiaux de l’armature de frettage et comprend au moins un élément de renfort filaire de frettage enroulé circonférentiellement hélicoïdalement de façon à s’étendre axialement entre les bords axiaux de l’armature de frettage.
[077] Que ce soit dans le premier ou le deuxième mode de réalisation, le ou chaque élément de renfort filaire de frettage s’étend, de façon optionnelle, selon une direction principale formant, avec la direction circonférentielle du pneumatique, un angle, en valeur absolue, inférieur ou égal à 10°, de préférence inférieur ou égal à 7° et plus préférentiellement inférieur ou égal à 5°.
[078] Dans une première configuration de l’élément électriquement conducteur, l’élément électriquement conducteur comprend des première et deuxième extrémités axiales et s’étend axialement depuis un premier des bourrelets jusque dans le deuxième des bourrelets en passant radialement entre la couche de travail radialement la plus extérieure et l’armature de frettage de sorte que chaque première et deuxième extrémité axiale est au contact:
- de première et deuxième masses de matériaux électriquement conducteurs respectivement de chaque premier et deuxième bourrelet, chaque première et deuxième masse de matériau électriquement conducteur étant au contact du support de montage lorsque le pneumatique est monté sur le support de montage, ou
- du support de montage lorsque le pneumatique est monté sur le support de montage.
[079] Dans cette première configuration, l’élément électriquement conducteur relie physiquement les premier et deuxième bourrelets entre eux.
[080] Dans le cas où chaque première et deuxième extrémité axiale est au contact de chaque première et deuxième masse de matériau électriquement conducteur, le chemin conducteur passe par chaque première et deuxième masse de matériau électriquement conducteur puis par l’élément électriquement conducteur.
[081] Dans le cas où chaque première et deuxième extrémité axiale est au contact du support de montage lorsque le pneumatique est monté sur le support de montage, on évite la nécessité de bourrelets comprenant des masses de matériau électriquement conducteurs. On pourra ainsi utiliser des bourrelets comprenant des matériaux destinés à être au contact du support de montage qui sont électriquement isolants et, par exemple faiblement hystérétiques.
[082] Dans une deuxième configuration de l’élément électriquement conducteur, l’élément électriquement conducteur comprend des première et deuxième extrémités axiales et s’étend axialement depuis un premier des bourrelets jusque radialement entre la couche de travail radialement la plus extérieure et l’armature de frettage de sorte que :
- la première extrémité axiale est au contact d’une masse d’un matériau électriquement conducteur d’un des premier et deuxième bourrelets, ce matériau électriquement conducteur étant au contact du support de montage lorsque le pneumatique est monté sur le support de montage, et la deuxième extrémité axiale est radialement agencée entre la couche de travail radialement la plus extérieure et l’armature de frettage, ou - la première extrémité axiale est au contact du support de montage lorsque le pneumatique est monté sur le support de montage et la deuxième extrémité axiale est radialement agencée entre la couche de travail radialement la plus extérieure et l’armature de frettage.
[083] Contrairement à la première configuration, l’élément électriquement conducteur de cette deuxième configuration ne relie pas physiquement les premier et deuxième bourrelets entre eux, ce qui permet de réduire la quantité d’élément électriquement conducteur à utiliser. On pourra envisager une variante dans laquelle un seul des premier et deuxième bourrelets est relié physiquement à l’armature de sommet par l’intermédiaire de l’élément électriquement conducteur et une variante dans laquelle chaque premier et deuxième bourrelet est relié mécaniquement à l’armature de sommet par l’intermédiaire de deux éléments conducteurs distincts.
[084] De façon analogue à la première configuration, dans le cas où la première extrémité axiale est au contact de la masse de matériau électriquement conducteur, le chemin conducteur passe par la masse de matériau électriquement conducteur puis par l’élément électriquement conducteur.
[085] De façon analogue à la première configuration, dans le cas où la première extrémité axiale est au contact du support de montage lorsque le pneumatique est monté sur le support de montage, on évite la nécessité d’un bourrelet comprenant une masse de matériau électriquement conducteur. On pourra ainsi utiliser des bourrelets comprenant des matériaux destinés à être au contact du support de montage qui sont électriquement isolants et, par exemple faiblement hystérétiques.
[086] Dans une variante de l’armature de carcasse, l’armature de carcasse comprend une unique couche de carcasse. Dans cette variante, l’armature de carcasse est, à l’exception de l’unique couche de carcasse, dépourvue de toute couche renforcée par des éléments de renfort filaires. Les éléments de renfort filaires de telles couches renforcées exclues de l’armature de carcasse du pneumatique comprennent les éléments de renfort filaires métalliques et les éléments de renfort filaires textiles. De façon très préférentielle, l’armature de carcasse est constituée par l’unique couche de carcasse.
[087] Dans une autre variante, l’armature de carcasse comprend deux couches de carcasse. Dans cette variante, de préférence, les directions principales des éléments de renfort filaires de carcasse des deux couches de carcasse sont sensiblement parallèles les unes aux autres.
[088] Avantageusement, l’armature de carcasse comprend au moins une couche de carcasse, la ou chaque couche de carcasse étant délimitée axialement par deux bords axiaux de la ou chaque couche de carcasse et comprend des éléments de renfort filaires de carcasse s’étendant axialement d’un bord axial à l’autre bord axial de la ou chaque couche de carcasse.
[089] Dans un mode de réalisation utilisant une ou plusieurs couches de carcasse radiales, chaque élément de renfort filaire de carcasse s’étend selon une direction principale de chaque élément de renfort filaire de carcasse formant, avec la direction circonférentielle du pneumatique un angle sensiblement constant entre chaque bord axial de la ou chaque couche de carcasse et allant, en valeur absolue, de 80° à 90°.
[090] Dans un mode de réalisation particulier d’un pneumatique dans lequel l’armature de travail comprend une unique couche de travail, chaque élément de renfort filaire de carcasse s’étend selon une direction principale de chaque élément de renfort filaire de carcasse formant, avec la direction circonférentielle du pneumatique:
- un angle, en valeur absolue, strictement inférieur à 80° dans une portion axialement centrale de la couche de carcasse s’étendant axialement à l’aplomb radial de la couche de travail,
- un angle, en valeur absolue, allant de 80° à 90° dans deux portions axialement latérales de la couche de carcasse s’étendant radialement axialement entre la portion axialement centrale et chaque bord axial de la couche de carcasse.
[091] Ce mode de réalisation particulier est avantageux car il permet, lors du procédé de fabrication du pneumatique, d’incorporer facilement l’élément électriquement conducteur lorsque l’assemblage en cours de formation présente encore une forme sensiblement cylindrique autour de l’axe principal du support principal de fabrication.
[092] Durant un tel procédé :
- on agence, autour d’un support principal présentant une forme sensiblement cylindrique autour d’un axe principal, au moins un ensemble de carcasse destiné à former l’armature de carcasse,
- on agence, radialement à l’extérieur de l’ensemble de carcasse, au moins un ensemble de travail destiné à former l’armature de travail, l’ensemble de carcasse et l’ensemble de travail formant un assemblage de forme sensiblement cylindrique autour de l’axe principal du support principal,
- on déforme l’assemblage de forme sensiblement cylindrique autour de l’axe principal du support principal de façon à obtenir un assemblage de forme sensiblement torique autour de l’axe principal du support principal,
- postérieurement à l’étape de déformation, on agence, radialement à l’extérieur de l’assemblage de forme sensiblement torique autour de l’axe principal du support principal, au moins un ensemble de frettage destiné à former l’armature de frettage,
- préalablement à l’étape de déformation de l’assemblage, on agence, radialement à l’extérieur de l’ensemble de travail, l’élément électriquement conducteur de sorte que, postérieurement à l’étape d’agencement de l’ensemble de frettage, au moins une portion, dite intercalée, de l’élément électriquement conducteur est radialement agencée entre l’ensemble de travail et l’ensemble de frettage.
[093] Que ce soit pour l’armature de frettage, la ou les couches de travail, la ou les couches de carcasse, les matériaux dans lesquels sont noyés les éléments de renfort filaires sont de préférence élastomérique. Par élastomérique, on entend un matériau présentant, à l’état réticulé, un comportement élastomérique. Un tel matériau est avantageusement obtenu par réticulation d’une composition comprenant au moins un élastomère et au moins un autre composant. De préférence, la composition comprenant au moins un élastomère et au moins un autre composant comprend un élastomère, un système de réticulation et une charge. Les compositions utilisées pour ces couches sont des compositions conventionnelles pour calandrage de renforts, typiquement à base de caoutchouc naturel ou autre élastomère diénique, d’une charge renforçante, d'un système de vulcanisation et des additifs usuels. L'adhésion entre les éléments de renfort filaires et la matrice dans laquelle ils sont noyés est assurée par exemple par une composition adhésive usuelle, par exemple une colle du type RFL ou colle équivalente.
[094] DESCRIPTION DES EXEMPLES
[095] L'invention ainsi que ses avantages seront aisément compris à la lumière de la description détaillée et des exemples de réalisation non limitatifs qui suivent, ainsi que des figures 1 à 22 relatives à ces exemples dans lesquels : la figure 1 est une vue en coupe dans un plan de coupe méridien d’un pneumatique selon un premier mode de réalisation de l’invention, la figure 2 est une vue schématique en arraché du pneumatique de la figure 1 illustrant l’agencement des éléments de renfort filaires dans le sommet, la figure 3 est une vue schématique des éléments de renfort filaires de carcasse agencés dans le flanc du pneumatique de la figure 1 , les figures 4 à 16 illustrent les différentes étapes d’un procédé permettant de fabriquer le pneumatique de la figure 1 , les figures 17 et 18 illustrent des étapes d’un procédé selon un deuxième mode de réalisation et sont analogues aux figures 13 et 14, et les figures 19 à 22 sont des vues analogues à celle de la figure 1 de pneumatiques respectivement selon des troisième, quatrième, cinquième et sixième modes de réalisation.
[096] Dans les figures relatives au pneumatique, on a représenté un repère X, Y, Z correspondant aux directions habituelles respectivement circonférentielle (X), axiale (Y) et radiale (Z) d’un pneumatique. Dans les figures relatives au procédé, on a représenté un repère x, y, z correspondant aux directions habituelles respectivement circonférentielle (x), axiale (y) et radiale (z) d’un support principal de fabrication déformable entre une forme sensiblement cylindrique et une forme torique autour de l’axe y.
[097] On a représenté sur la figure 1 un pneumatique, conforme à l’invention et désigné par la référence générale 10. Le pneumatique 10 est sensiblement de révolution autour d’un axe sensiblement parallèle à la direction axiale Y. Le pneumatique 10 est ici destiné à un véhicule de tourisme et présente des dimensions 245/45R18. Le pneumatique 10 est destiné à être monté sur un support de montage, par exemple une jante.
[098] Le pneumatique 10 comprend un sommet 12 comprenant une bande de roulement 20 comprenant une surface de roulement 13 destinée à venir en contact avec un sol de roulage et une armature de sommet 14 s’étendant dans le sommet 12 selon la direction circonférentielle X. L’armature de sommet 14 et la bande de roulement 20 sont agencée au contact l’une de l’autre. Le pneumatique 10 comprend également une couche d’étanchéité 15 à un gaz de gonflage destinée à délimiter une cavité interne fermée avec un support de montage du pneumatique 10 une fois le pneumatique 10 monté sur le support de montage, par exemple une jante métallique électriquement conductrice.
[099] La bande de roulement 20 comprend une ou plusieurs masses d’un ou de plusieurs matériaux électriquement isolants. En l’espèce, la bande de roulement 20 comprend une première masse 201 d’un premier matériau électriquement isolant formant une couche de roulage et une deuxième masse 202 d’un deuxième matériau électriquement isolant formant une couche de support de la couche de roulage. La couche de support 202, également appelée sous-couche, est agencée radialement à l’intérieur de la couche de roulage 201. Chaque premier et deuxième matériau électriquement isolant est un matériau élastomérique électriquement isolant, par exemple à base de compositions telles que décrites dans US20180066128, FR3059598 ou encore US6289958.
[0100] L’armature de sommet 14 comprend une unique armature de travail 16 comprenant au moins une couche de travail 18 radialement la plus extérieure de l’armature de travail 16 et une unique armature de frettage 17 comprenant une unique couche de frettage 19. Ici, l’armature de travail 16 comprend une unique couche de travail 18 et est, en l’espèce, constituée de l’unique couche de travail 18. Dans la description qui suit, on parlera, par soucis de simplification de la couche de travail 18 sans rappeler à chaque fois que cette couche est unique. L’armature de frettage 17 est constituée de la couche de frettage 19.
[0101] L’armature de sommet 14 est surmontée radialement de la bande de roulement 20. Ici, l’armature de frettage 17, ici la couche de frettage 19, est agencée radialement à l’extérieur de l’armature de travail 16 et est donc radialement intercalée entre l’armature de travail 16 et la bande de roulement 20. Dans le mode de réalisation illustré sur les figures 1 et 2, l’armature de frettage 17 présente une largeur axiale plus petite que la largeur axiale de la couche de travail 18. Ainsi, l’armature de frettage 17 est axialement la moins large de la couche de travail 18 et de l’armature de frettage 17.
[0102] Le pneumatique 10 comprend deux flancs 22 prolongeant le sommet 12 radialement vers l'intérieur. Le pneumatique 10 comporte en outre deux bourrelets 24 radialement intérieurs aux flancs 22. Chaque flanc 22 relie respectivement chaque bourrelet 24 au sommet 12.
[0103] Chaque bourrelet 24 comprend au moins un élément de renfort circonférentiel 26, en l'occurrence une tringle 28 surmontée radialement d'une masse 30 de bourrage.
[0104] Le pneumatique 10 comprend une armature 32 de carcasse ancrée dans chaque bourrelet 24. L’armature de carcasse 32 s’étend dans chaque flanc 22 et dans le sommet 12 radialement intérieurement à l’armature de sommet 14. L’armature de sommet 14 est agencée radialement entre la bande de roulement 20 et l’armature de carcasse 32.
[0105] L’armature de carcasse 32 comprend une couche de carcasse 34. Ici, l’armature de carcasse 32 comprend une unique couche de carcasse 34, et en l’espèce est constituée de l’unique couche de carcasse 34. Dans ce mode de réalisation, on parlera, par soucis de simplification de la couche de carcasse 34 sans rappeler à chaque fois que cette couche est unique.
[0106] L’armature de carcasse 32 est agencée directement radialement au contact de l’armature de sommet 14. L’armature de sommet 14 est agencée directement radialement au contact de la bande de roulement 20. L’armature de frettage 17 et la couche de travail 18 sont agencées directement radialement au contact l’une de l’autre.
[0107] On va maintenant décrire les couches de frettage 19, la couche de travail 18 et la couche de carcasse 34 en référence aux figures 1 à 3.
[0108] L’armature de frettage 17, ici la couche de frettage 19, est délimitée axialement par deux bords axiaux 17A, 17B de l’armature de frettage 17. L’armature de frettage 17 comprend plusieurs éléments de renfort filaires de frettage 170 enroulés circonférentiellement hélicoïdalement de façon à s’étendre axialement entre le bord axial 17A et l’autre bord axial 17B de la couche de frettage 17 selon une direction principale D1 de chaque élément de renfort filaire de frettage 170. La direction principale D1 forme, avec la direction circonférentielle X du pneumatique 10, un angle AF, en valeur absolue, inférieur ou égal à 10°, de préférence inférieur ou égal à 7° et plus préférentiellement inférieur ou égal à 5°. Ici, AF=-5°. L’armature de frettage 17 comprend des première et deuxième portions axiales 171 , 172 disjointes axialement l’une de l’autre de sorte que la première portion axiale 171 comprend une première bande 173 enroulée circonférentiellement hélicoïdalement de façon à s’étendre continûment axialement depuis le bord axial 17A de l’armature de frettage 17 jusqu’à un bord axialement intérieur 171A de la première portion axiale 171 , et de sorte que la deuxième portion axiale 172 comprend une deuxième bande 174 enroulée circonférentiellement hélicoïdalement de façon à s’étendre continûment axialement depuis un bord axialement intérieur 172B de la deuxième portion axiale 172 jusqu’au bord axial 17B de l’armature de frettage 17.
[0109] La couche de travail 18 est délimitée axialement par deux bords axiaux 18A, 18B de la couche de travail 18. La couche de travail 18 comprend des éléments de renfort filaires de travail 180 s’étendant axialement du bord axial 18A à l’autre bord axial 18B de la couche de travail 18 les uns sensiblement parallèlement aux autres. Chaque élément de renfort filaire de travail 180 s’étend selon une direction principale D2 de chaque élément de renfort filaire de travail 180. La direction D2 forme, avec la direction circonférentielle X du pneumatique 10, un angle AT, en valeur absolue, strictement supérieur à 10°, de préférence allant de 15° à 50°. lci, AT=-35°.
[0110] La couche de carcasse 34 est délimitée axialement par deux bords axiaux 34A, 34B de la couche de carcasse 34. La couche de carcasse 34 comprend des éléments de renfort filaires de carcasse 340 s’étendant axialement du bord axial 34A à l’autre bord axial 34B de la couche de carcasse 34. La couche de carcasse 34 comprend une portion axialement centrale 34S s’étendant axialement à l’aplomb radial de la couche de travail 18 et deux portions axialement latérales 34F s’étendant axialement entre la portion axialement centrale 34S et chaque bord axial 34A, 34B. Chaque portion axialement latérale 34F est enroulée autour de chaque élément de renforcement circonférentiel 26. Chaque portion axialement latérale 34F comprend une portion axialement latérale intérieure 38 agencée axialement entre la portion axialement centrale 34S et chaque élément de renfort circonférentiel 26 ainsi qu’une portion axialement latérale extérieure 40 agencée axialement entre chaque élément de renfort circonférentiel 26 et chaque bord axial 34A, 34B de la couche de carcasse 34. La masse 30 de bourrage est intercalée entre les portions 38, 40 axialement latérales intérieure et extérieure.
[0111] Chaque élément de renfort filaire de carcasse 340 s’étend selon une direction principale D3 de chaque élément de renfort filaire de carcasse 340 formant, avec la direction circonférentielle X du pneumatique 10, un angle ACS, en valeur absolue, strictement inférieur à 80° dans la portion axialement centrale 34S de la couche de carcasse 34. Avantageusement, dans cette portion axialement centrale 34S de la couche de carcasse 34, la direction principale D3 de chaque élément de renfort filaire de carcasse 340 forme, avec la direction circonférentielle X du pneumatique 10, un angle ACS, en valeur absolue, allant de 50° à 75°. Ici, ACS=+65°.
[0112] La portion axialement centrale 34S de la couche de carcasse 34 présente une largeur axiale égale à au moins 40%, de préférence au moins 50% de la largeur axiale L de la couche de travail 18 et égale à au plus 90%, de préférence au plus 80% de la largeur axiale L de la couche de travail 18 et en l’espèce égale à 60% de la couche de travail 18. Le plan médian M du pneumatique 10 coupe cette portion 34S. Plus préférentiellement, cette portion 34S est centrée axialement sur le plan médian M du pneumatique 10.
[0113] Comme illustré sur les figures 1 et 3, la direction principale D3 de chaque élément de renfort filaire de carcasse 340 forme, avec la direction circonférentielle X du pneumatique 10, un angle ACF, en valeur absolue, allant de 80° à 90°, de préférence de 85° à 90° et plus préférentiellement est sensiblement égal à 90° dans chaque portion axialement latérale 34F de la couche de carcasse 34 s’étendant radialement dans chaque flanc 22. Ici, ACF=+90°.
[0114] Chaque portion 34F de la couche de carcasse 34 s’étendant radialement dans chaque flanc 22 présente une hauteur radiale égale à au moins 50% de la hauteur radiale H du pneumatique 10 et égale à au plus 100% de la hauteur radiale H du pneumatique 10 et en l’espèce égale à 95% de la hauteur radiale H du pneumatique 10. Le plan circonférentiel équatorial E du pneumatique 10 coupe chaque portion 34F de la couche de carcasse 34 située dans chaque flanc 22.
[0115] Comme illustré sur la figure 2, la direction principale D2 de chaque élément de renfort filaire de travail 180 et la direction principale D3 de chaque élément de renfort filaire de carcasse 340 forment, avec la direction circonférentielle X du pneumatique 10, dans une portion PS du pneumatique 10 comprise axialement entre les bords axiaux 18A, 18B de la couche de travail 18, des angles AT et ACS d’orientations opposées. En effet, ici, AT=-35° et ACS=+65°. En outre, la direction principale D1 de chaque de renfort filaire de frettage 170, la direction principale D2 de chaque élément de renfort filaire de travail 180 et la direction principale D3 de chaque élément de renfort filaire de carcasse 340 forment, avec la direction circonférentielle X du pneumatique 10, dans une portion PS’ du pneumatique 10 comprise axialement entre les bords axiaux 17A, 17B de l’armature de frettage 17, des angles deux à deux différents en valeur absolue.
[0116] D’une façon générale et en particulier dans le mode de réalisation décrit, chaque portion PS, PS’ du pneumatique 10 présente une largeur axiale égale à au moins 40%, de préférence au moins 50% de la largeur axiale L de la couche de travail 18 et égale à au plus 90%, de préférence au plus 80% de la largeur axiale L de la couche de travail 18 et en l’espèce égale à 60% de la largeur axiale L de la couche de travail 18. Le plan médian M du pneumatique 10 coupe chaque portion PS, PS’ du pneumatique 10. Plus préférentiellement, chaque portion PS, PS’ du pneumatique 10 est centrée axialement sur le plan médian M du pneumatique 10.
[0117] Chaque élément de renfort filaire de travail 180 est un assemblage de deux monofilaments en acier présentant chacun un diamètre égal à 0,30 mm, les deux monofilaments en acier étant enroulés l’un avec l’autre au pas de 14 mm.
[0118] Chaque élément de renfort filaire de carcasse 340 comprend classiquement deux brins multifilamentaires, chaque brin multifilamentaire étant constitué d’un filé de monofilaments de polyesters, ici de PET, ces deux brins multifilamentaires étant surtordus individuellement à 240 tours par mètre dans un sens puis retordus ensemble à 240 tours par mètre dans le sens opposé. Ces deux brins multifilamentaires sont enroulés en hélice l’un autour de l’autre. Chacun de ces brins multifilamentaires présente un titre égal à 220 tex.
[0119] Chaque élément de renfort filaire de frettage 170 est par exemple tel que ceux décrits dans WO2016/166056 A1.
[0120] En référence à la figure 1 , le pneumatique 10 comprend un élément 80 électriquement conducteur agencé de façon à assurer la conductivité électrique entre le support de montage lorsque le pneumatique 10 est monté sur le support de montage et le sommet 12 par l’intermédiaire de l’élément conducteur 80. Ici, l’élément électriquement conducteur 80 comprend des première et deuxième extrémités axiales 80A, 80B (seule l’extrémité 80A est illustrée sur la figure 1 ) et s’étend axialement depuis un premier des bourrelets 24 jusque dans le deuxième des bourrelets 24 en passant radialement entre la couche de travail radialement la plus extérieure, ici la couche de travail 18 et l’armature de frettage 17 de sorte que chaque première et deuxième extrémité axiale 80A, 80B est au contact de première et deuxième masses 82 de matériaux électriquement conducteurs respectivement de chaque premier et deuxième bourrelet 24, chaque première et deuxième masse 82 d’un matériau électriquement conducteur étant au contact du support de montage lorsque le pneumatique 10 est monté sur le support de montage.
[0121] Ici, l’élément électriquement conducteur 80 comprend une couche 84 constituée d’un matériau électriquement conducteur, en l’espèce constituée d’un matériau élastomérique à base d’une composition telle que décrite par exemple dans US2005/0103412.
[0122] L’élément électriquement conducteur 80, ici la couche 84, s’étend radialement à l’intérieur du plan circonférentiel équatorial E et est radialement continu entre tout point de l’élément électriquement conducteur 80 situé radialement à l’intérieur du plan circonférentiel équatorial E, et tout point de l’élément électriquement conducteur 80 situé radialement entre la couche de travail 18 et l’armature de frettage 17. L’élément électriquement conducteur 80 présente la forme d’une bandelette de largeur égale à 20 mm.
[0123] Le sommet 12 est, quant à lui, agencé de façon à assurer la conductivité électrique depuis l’élément électriquement conducteur 80 jusqu’à la surface de roulement 13 radialement au travers ou par l’intermédiaire de l’armature de frettage 17 et par l’intermédiaire de la bande de roulement 20. [0124] A cet effet, l’élément électriquement conducteur 80 comprend au moins une portion 801 dite intercalée qui est radialement agencée entre la couche de travail 18 et l’armature de frettage 17.
[0125] L’armature de frettage 17 est agencée de façon à empêcher la conductivité électrique depuis la portion intercalée de l’élément électriquement conducteur 80 jusqu’à la bande de roulement 20 par l’intermédiaire de l’armature de frettage 19. En l’espèce, les éléments de renfort filaires de frettage 170 sont noyés dans un matériau élastomérique électriquement isolant, en l’espèce un matériau élastomérique à base d’une composition telle que décrite dans US20180066128, FR3059598 ou encore US6289958.
[0126] L’armature de travail 16 est agencée de façon à empêcher la conductivité électrique par l’intermédiaire de l’armature de travail 16. En l’espèce, les éléments de renfort filaires 180 de la couche de travail 18 sont noyés dans un matériau électriquement isolant, en l’espèce un matériau à base d’une composition telle que décrite dans US20180066128, FR3059598 ou encore US6289958.
[0127] En outre, le sommet 12 comprend une masse additionnelle 86 d’un matériau électriquement conducteur agencée de façon à assurer la conductivité électrique depuis la portion intercalée 801 de l’élément électriquement conducteur 80 jusqu’à la bande de roulement 20 radialement au travers de l’armature de frettage 17 par l’intermédiaire de la masse additionnelle 86 du matériau électriquement conducteur. La masse additionnelle 86 est radialement agencée entre la bande de roulement 20 et la portion intercalée 801 de l’élément électrique conducteur 80 et axialement agencée entre les première et deuxième portions axiales 171 et 172 de l’armature de frettage 17.
[0128] En plus des première et deuxième masses 201 et 202, la bande de roulement 20 comprend au moins une masse 88 d’au moins un matériau électriquement conducteur. Les masses 201 , 202 et 88 sont agencées de façon à assurer la conductivité électrique depuis la masse additionnelle 82 du matériau électriquement conducteur jusqu’à la surface de roulement 13 par l’intermédiaire de la masse 88 du matériau électriquement conducteur radialement au travers des masses 201 , 202 de matériaux électriquement isolants. On notera que pour des raisons de simplification, les masses 86 et 88 sont réalisées dans le même matériau électriquement conducteur.
[0129] Le pneumatique 10 est obtenu par un procédé que l’on va décrire en référence aux figures 4 à 16.
[0130] Tout d’abord, on fabrique un ensemble de travail 50 et un ensemble de carcasse 52 en agençant parallèlement les uns aux autres les éléments de renfort filaires 180 et 340 de chaque ensemble 50 et 52 et en les noyant, par exemple par calandrage, dans une composition non réticulée comprenant au moins un élastomère, la composition étant destinée à former une matrice élastomérique une fois réticulée. On obtient une nappe dite droite, dans laquelle les éléments de renfort filaires sont parallèles les uns aux autres et sont parallèles à la direction principale de la nappe.
[0131] Puis, pour la nappe de travail, on découpe des portions de la nappe de travail droite selon un angle de découpe et on aboute ces portions les unes aux autres de façon à obtenir une nappe de travail dite à angle, dans laquelle les éléments de renfort filaires de travail sont parallèles les uns aux autres et forment un angle avec la direction principale de la nappe de travail égal à l’angle de découpe.
[0132] Pour la nappe de carcasse, on découpe des portions de la nappe de carcasse droite perpendiculairement avec la direction principale de la nappe droite de carcasse et on aboute ces portions les unes aux autres de façon à obtenir une nappe de carcasse dite à angle, dans laquelle les éléments de renfort filaires de carcasse sont parallèles les uns aux autres et forment un angle allant de 80° à 90° avec la direction principale de la nappe de carcasse égal à l’angle de découpe.
[0133] Dans le mode de réalisation décrit, on obtient d’une part une unique nappe de travail 49 et une unique nappe de carcasse 51 dont la largeur axiale de chacune, c’est-à-dire la dimension selon une direction perpendiculaire aux bords longitudinaux de chaque nappe, est égale à la largeur axiale respectivement de chaque ensemble de travail 50 et de carcasse 52 qui seront formés ultérieurement.
[0134] En référence à la figure 4, dans une première étape d’assemblage d’une ébauche crue, on agence une nappe d’étanchéité 70 autour d’un support principal 60 présentant une forme sensiblement cylindrique autour de son axe principal A de façon à former un ensemble d’étanchéité 72 destiné à former la couche d’étanchéité 15. Ici, on agence la nappe d’étanchéité 70 par enroulement de la nappe d’étanchéité 70.
[0135] Puis, en référence à la figure 5, radialement à l’extérieur de l’ensemble d’étanchéité 72, on agence, autour du support principal 60, et dans cet ordre, deux nappes de renfort de flanc de façon à former deux ensembles de renfort de flanc 73 et la nappe de carcasse 51 de façon à former l’ensemble de carcasse 52 destiné à former la couche de carcasse 34. En l’espèce, on agence chaque ensemble de renfort de flanc 73 et l’ensemble de carcasse 52 par enroulement respectivement de chaque nappe de renfort de flanc et de la nappe de carcasse 51 autour du support principal 60. Radialement à l’extérieur de l’ensemble de carcasse 52, on agence ensuite deux ensembles de bourrage 74 destiné à former chaque masse de bourrage 30. Puis, on agence les deux éléments de renfort circonférentiels 26 autour de l’ensemble de carcasse 52.
[0136] En référence à la figure 6, on retourne axialement vers l’intérieur chaque bord axial 52A, 52B de l’ensemble de carcasse 52 de façon à recouvrir radialement chaque élément de renfort circonférentiel 26 par chaque bord axial 52A, 52B de l’ensemble de carcasse 52 et à ce que l’ensemble de carcasse 52 soit enroulé axialement autour de chaque élément de renfort circonférentiel 26.
[0137] On a représenté sur la figure 7 un schéma illustrant l’agencement des éléments de renfort filaires 340 de carcasse à l’issue de l’étape de retournement axial des bords axiaux 52A, 52B de l’ensemble de carcasse 52 autour des éléments de renfort circonférentiel 26. L’ensemble de carcasse 52 est délimité axialement par les deux bords axiaux 52A, 52B et comprend les éléments de renfort filaires de carcasse 340 s’étendant sensiblement parallèlement les uns aux autres axialement du bord axial 52A à l’autre bord axial 52B de l’ensemble de carcasse 52. Chaque élément de renfort filaire de carcasse 340 s’étend, dans l’ensemble de carcasse 51 , selon une direction principale K3 de chaque élément de renfort filaire de carcasse 340 dans l’ensemble de carcasse 52. La direction principale K3 forme, avec la direction circonférentielle x du support principal 60, un angle initial A3 de chaque élément de renfort filaire de carcasse 340 allant, en valeur absolue, de 80° à 90°, de préférence allant de 85° à 90° et ici sensiblement égal à 90°. D’autres angles A3 sont envisageables, comme par exemples les angles correspondants aux angles A3 décrits dans les documents WO2016166056, WO2016166057, EP3489035.
[0138] Puis, en référence à la figure 8, on agence, radialement à l’extérieur de l’ensemble de carcasse 52, deux ensembles 75 de support de chaque extrémité 18A, 18B de la couche de travail 18. On agence également, radialement à l’extérieur de l’ensemble de carcasse 52, deux ensembles 76 de bourrage intermédiaire. Puis, on agence, radialement à l’extérieur de l’ensemble de carcasse 52 et de chaque ensemble de support 75, l’ensemble de travail 50 destiné à former la couche de travail 18. En l’espèce, on agence l’ensemble de travail par enroulement de la nappe de travail 49, radialement à l’extérieur de l’ensemble de carcasse 52 et de chaque ensemble de support 75, de façon à former l’ensemble de travail 50. On agence l’ensemble de travail 50 de travail de façon à, une fois le pneumatique 10 fabriqué, empêcher la conductivité électrique par l’intermédiaire de l’armature de travail 16.
[0139] On a représenté sur la figure 9 un schéma analogue à celui de la figure 7 et illustrant l’agencement des éléments de renfort filaires 340 de carcasse et des éléments de renfort filaires 180 de travail à l’issue de l’étape de formation de l’ensemble de travail 50. L’ensemble de travail 50 est délimité axialement par deux bords axiaux 50A, 50B de l’ensemble de travail 50 et comprend les éléments de renfort filaires de travail 180 s’étendant sensiblement parallèlement les uns aux autres axialement du bord axial 50A à l’autre bord axial 50B de l’ensemble de travail 50. Chaque élément de renfort filaire de travail 180 s’étend, dans l’ensemble de travail 50, selon une direction principale K2 de chaque élément de renfort filaire de travail 180 dans l’ensemble de travail 50. La direction principale K2 forme, avec la direction circonférentielle x du support principal 60, un angle initial A2 de chaque élément de renfort filaire de travail 180, en valeur absolue, allant de 25° à 50°. lci, A2=-39°.
[0140] L’ensemble de carcasse 52 et l’ensemble de travail 50 forment alors un assemblage 58 de forme sensiblement cylindrique autour de l’axe principal A du support principal 60.
[0141] En référence à la figure 10, on agence radialement à l’extérieur de l’ensemble de travail 50, de chaque ensemble de support 75 et de chaque ensemble de bourrage intermédiaire 76, l’élément électriquement conducteur 80. En l’espèce, on agence l’élément électriquement conducteur 80 par enroulement d’une couche du matériau électriquement conducteur sur moins d’un tour, de préférence par enroulement sur moins d’un dixième de tour. L’élément électriquement conducteur 80 s’étend axialement d’un ensemble de bourrage intermédiaire 76 à l’autre ensemble de bourrage intermédiaire 76 situé de l’autre côté du plan médian du support principal 60.
[0142] En référence à la figure 11 , on agence radialement à l’extérieur de l’élément électriquement conducteur 80 et de chaque ensemble de bourrage intermédiaire 76 et radialement à l’intérieur de l’ensemble d’étanchéité 72, deux ensembles externes de bourrelet 78 destinés à former chacun une partie externe de chaque bourrelet 24. On agence radialement à l’extérieur de chaque ensemble extérieur de bourrelet 78 et de l’élément électriquement conducteur 80, deux ensembles de flanc 79 chacun destinés à former une partie de chaque flanc 22.
[0143] Indépendamment de la fabrication de l’assemblage illustré aux figures 4 à 11 , on forme, sur un support intermédiaire 91 de forme sensiblement torique autour d’un axe principal B du support intermédiaire 91 , un ensemble intermédiaire 92 dont on va décrire les étapes de fabrication en référence aux figures 12 à 14. L’ensemble intermédiaire 92 comprend un ensemble de frettage 93 destiné à former l’armature de frettage 17, la masse additionnelle 86 de matériau électriquement conducteur ainsi qu’un ensemble de roulement 94 destiné à former la bande de roulement 20.
[0144] En référence à la figure 12, on agence l’ensemble de frettage 93 de façon à, une fois le pneumatique 10 fabriqué, assurer la conductivité électrique depuis la portion intercalée 801 de l’élément électriquement conducteur 80 jusqu’à la bande de roulement 20 radialement au travers de l’armature de frettage 17. En l’espèce, on agence l’ensemble de frettage 93 de façon à former des première et deuxième portions axiales respectivement référencées 931 , 932 de l’ensemble de frettage 93 axialement disjointes sur au moins une portion axiale 933 de l’ensemble de frettage 93. Chaque première et deuxième portion axiale 931 et 932 de l’ensemble de frettage 93 est respectivement destinée à former chaque première et deuxième portion axiale 171 et 172 de l’armature de frettage 17. On forme chaque première et deuxième portion axiale 931 , 932 de l’ensemble de frettage 93 par enroulement respectivement des première et deuxième bandes 173, 174 disjointes entre elles.
[0145] Puis en référence à la figure 13, on agence la masse additionnelle 86 de matériau électriquement conducteur axialement entre les première et deuxième portions axiales 931 , 932 de l’ensemble de frettage 93 de façon à, une fois le pneumatique 10 fabriqué, assurer la conductivité électrique depuis la portion intercalée 801 de l’élément électriquement conducteur 80 jusqu’à la bande de roulement 20 radialement au travers de l’armature de frettage 17 par l’intermédiaire de la masse additionnelle 86 du matériau électriquement conducteur.
[0146] Puis en référence à la figure 14, on forme l’ensemble intermédiaire 92 en agençant un ensemble de roulement 94 destiné à former la bande de roulement 20 radialement à l’extérieur de l’ensemble de frettage 93 et de la masse additionnelle 86. L’ensemble de roulement 94 comprend les masses 201 et 202 de matériaux électriquement isolants ainsi que la masse 88 de matériau électriquement conducteur.
[0147] Indépendamment de la fabrication de l’ensemble intermédiaire 92 et en référence à la figure 15, durant une étape de déformation de l’assemblage 58, on déforme l’assemblage 58 de forme sensiblement cylindrique précédemment fabriqué de façon à obtenir un assemblage 59 de forme sensiblement torique autour de l’axe principal A du support principal 60.
[0148] En référence à la figure 16, on déforme l’assemblage 58 de forme sensiblement cylindrique autour de l’axe principal A du support 60 de façon à obtenir l’assemblage 59 de forme sensiblement torique autour de l’axe principal A du support principal 60 de sorte que, à l’issue de l’étape de déformation, la direction principale K3 de chaque élément de renfort filaire de carcasse 340 forme, avec la direction circonférentielle x du support principal 60, un angle final B3S de chaque élément de renfort filaire de carcasse 340, en valeur absolue, strictement inférieur à 80°, dans une portion axialement centrale 52S de l’ensemble de carcasse 52 s’étendant axialement à l’aplomb radial de l’ensemble de travail 50. Ici, B3S=+65°. La portion 52S de l’ensemble de carcasse 52 est destinée à former la portion axialement centrale 34S de la couche de carcasse 34.
[0149] On déforme l’assemblage 58 de forme sensiblement cylindrique autour de l’axe principal A du support principal 60 de façon à obtenir l’assemblage 59 de forme sensiblement torique autour de l’axe principal A du support principal 60 également de sorte que, à l’issue de l’étape de déformation, la direction principale K3 de chaque élément de renfort filaire de carcasse 340 forme, avec la direction circonférentielle x du support 60, un angle final B3F de chaque élément de renfort filaire de carcasse 340 dans deux portions axialement latérales 52F de l’ensemble de carcasse 52 s’étendant chacune axialement entre la portion axialement centrale 52S et chaque bord axiale 52A, 52B de l’ensemble de carcasse 52. Chaque portion axialement latérale 52F de l’ensemble de carcasse 52 est destinée à former chaque portion axialement latérale 34F de la couche de carcasse 34. Ici B3F=+90°.
[0150] On déforme l’assemblage 58 de forme sensiblement cylindrique autour de l’axe principal A du support principal 60 de façon à obtenir l’assemblage 59 de forme sensiblement torique autour de l’axe principal A du support 60 également de sorte que, à l’issue de l’étape de déformation, la direction principale K2 de chaque élément de renfort filaire de travail 340 forme, avec la direction circonférentielle x du support 60, un angle final B2 de chaque élément de renfort filaire de travail 340, en valeur absolue, strictement supérieur à 10°. Ici, B2=-35°.
[0151] Les angles finaux B3S, B3F et B2 sont sensiblement égaux aux angles ACS, ACF et AT du pneumatique 10.
[0152] Plus généralement, les relations entre les angles formés par les éléments de renfort filaire de carcasse et de travail lors du procédé et une fois le pneumatique fabriqué sont notamment décrites dans FR2797213 et dans FR1413102.
[0153] Puis, durant une étape d’agencement de l’ensemble de frettage 93, on agence l’ensemble de frettage 93 radialement à l’extérieur de l’assemblage 59 de forme sensiblement torique autour de l’axe principal A du support principal 60. Pour ce faire, on rapporte l’ensemble intermédiaire 92 radialement à l’extérieur de l’assemblage 59 de forme sensiblement torique autour de l’axe principal A du support principal 60 de façon à ce que la masse additionnelle 86 soit agencée radialement à l’extérieur et au contact de la portion intercalée 801 de l’élément conducteur 80.
[0154] Ainsi, d’une part, on agence la masse additionnelle 86 radialement à l’extérieur et au contact de la portion intercalée 801 de l’élément électriquement conducteur 80 postérieurement à l’étape de déformation de l’assemblage 58. D’autre part, on agence l’ensemble de roulement 94 de façon à, une fois le pneumatique 10 fabriqué, assurer la conductivité électrique depuis la portion intercalée 801 de l’élément électriquement conducteur 80 jusqu’à la surface de roulement 13 radialement au travers ou par l’intermédiaire de l’armature de frettage 17 et par l’intermédiaire de la bande de roulement 20, ici au travers de l’armature de frettage par l’intermédiaire de la masse 86 et par l’intermédiaire de la bande de roulement 20 par l’intermédiaire de de la masse 88.
[0155] Lors de l’étape d’agencement de l’élément électriquement conducteur 80 radialement à l’extérieur de l’ensemble de travail 50 illustré à la figure 10, on a pris soin d’agencer l’élément électriquement conducteur 80 de sorte que, postérieurement à l’étape d’agencement de l’ensemble intermédiaire 92 et donc postérieurement à l’étape d’agencement de l’ensemble de frettage 93 précédente, la portion intercalée 801 de l’élément électriquement conducteur 80 est radialement agencée entre l’ensemble de travail 50 et l’ensemble de frettage 93.
[0156] Lors du procédé de fabrication décrit ci-dessus, on a également pris soin d’agencer l’élément électriquement conducteur 80 et le sommet 12 de façon à, une fois le pneumatique 10 fabriqué, assurer la conductivité électrique entre le support de montage lorsque le pneumatique 10 est monté sur le support de montage et le sommet 12 par l’intermédiaire de l’élément électriquement conducteur 80.
[0157] Enfin, on moule et on réticule l’ébauche crue ainsi formée de façon à obtenir le pneumatique 10, par exemple par vulcanisation dans un moule.
[0158] On va maintenant décrire un pneumatique selon un deuxième mode de réalisation en référence aux figures 17 et 18. Les éléments analogues à ceux décrits dans le premier mode de réalisation sont désignés par des références identiques.
[0159] A la différence du premier mode de réalisation, l’armature de frettage 17 du pneumatique 10 selon le deuxième mode de réalisation comprend une unique bande 173 enroulée circonférentiellement hélicoïdalement de façon à s’étendre continûment axialement depuis le bord axial 17A jusqu’au bord 17B de l’armature de frettage. Au cours du procédé de fabrication et comme illustré sur la figure 17, on forme chaque première et deuxième portion axiale 931 , 932 de l’ensemble de frettage 93 par enroulement continu de l’unique bande 173 et de façon à ce que les première et deuxième portions axiales 931 , 932 soient axialement disjointes sur la portion axiale 933 afin d’assurer la conductivité électrique au travers de l’armature de frettage 17 une fois le pneumatique 10 fabriqué.
[0160] A la différence du procédé selon le premier mode de réalisation, l’ensemble de roulement 94 porte radialement intérieurement la masse additionnelle 86 comme cela est illustré sur la figure 18 et on forme l’ensemble intermédiaire 92 en agençant l’ensemble de roulement 94 destiné à former la bande de roulement 20 ainsi que la masse additionnelle 86 radialement à l’extérieur de l’ensemble de frettage 93.
[0161] On va maintenant décrire un pneumatique selon un troisième mode de réalisation en référence à la figure 19. Les éléments analogues à ceux décrits dans les modes de réalisation précédents sont désignés par des références identiques.
[0162] A la différence des modes de réalisation précédents, les masses 201 , 202 de la bande de roulement 20 sont des masses de matériaux électriquement conducteurs. Chaque masse 201 , 202 de matériau électriquement conducteur est agencée de façon à assurer la conductivité électrique depuis la masse additionnelle 80 de matériau électriquement conducteur jusqu’à la surface de roulement 13 par l’intermédiaire de la ou chaque masse 201 , 202. Aussi, la bande de roulement 20 ne comprend pas de masse 88 du matériau électriquement conducteur, celle-ci étant inutile pour assurer la conductivité électrique au travers de la bande de roulement 20.
[0163] On va maintenant décrire un pneumatique selon un quatrième mode de réalisation en référence à la figure 20. Les éléments analogues à ceux décrits dans les modes de réalisation précédents sont désignés par des références identiques.
[0164] A la différence du premier mode de réalisation, l’armature de frettage 17 du pneumatique 10 selon le troisième mode de réalisation est agencée de façon à assurer la conductivité électrique depuis la portion intercalée 801 de l’élément électriquement conducteur 80 jusqu’à la bande de roulement 20 par l’intermédiaire de l’armature de frettage 17. En l’espèce, les éléments de renfort filaires de frettage 170 sont noyés dans un matériau électriquement conducteur. Un tel matériau électriquement conducteur est par exemple identique au matériau des masses 86, 88 du pneumatique du premier mode de réalisation.
[0165] De façon analogue au premier mode de réalisation, la bande de roulement comprend les masses 201 , 202 de matériaux électriquement isolants et la masse 88 de matériau électriquement conducteur agencées de façon à assurer la conductivité électrique depuis l’armature de frettage 17 jusqu’à la surface de roulement 13 par l’intermédiaire de la masse 88 du matériau électriquement conducteur radialement au travers des masses 201 , 202 de matériaux électriquement isolants.
[0166] Le procédé de fabrication du pneumatique 10 selon le troisième mode de réalisation est tel qu’on agence l’ensemble de frettage 93 radialement à l’extérieur et au contact de l’élément électriquement conducteur 80 de façon à, une fois le pneumatique 10 fabriqué, assurer la conductivité électrique depuis la portion intercalée 801 de l’élément électriquement conducteur 80 jusqu’à la bande de roulement 20 par l’intermédiaire de l’armature de frettage 17.
[0167] On va maintenant décrire un pneumatique selon un cinquième mode de réalisation en référence à la figure 21. Les éléments analogues à ceux décrits dans les modes de réalisation précédents sont désignés par des références identiques.
[0168] A la différence du pneumatique selon le quatrième mode de réalisation, chaque masse 201 , 202 est agencée de façon à assurer la conductivité électrique depuis l’armature de frettage 17 jusqu’à la surface de roulement 13 par l’intermédiaire de chaque masse 201 ,
202. En l’espèce, chaque masse 201 , 202 est réalisée dans un matériau électriquement conducteur identique à celui du troisième mode de réalisation.
[0169] On va maintenant décrire un pneumatique selon un sixième mode de réalisation en référence à la figure 22. Les éléments analogues à ceux décrits dans les modes de réalisation précédents sont désignés par des références identiques. [0170] Le pneumatique 10 selon le sixième mode de réalisation est tel que l’armature de travail 16 comprend une couche de travail radialement la plus intérieure 18 et une couche de travail radialement la plus extérieure 21 agencée radialement à l’extérieure de la couche radialement la plus intérieure 18. La couche radialement la plus extérieure 21 est délimitée axialement par deux bords axiaux 21 A, 21 B. La couche de travail radialement la plus extérieure 21 comprend des éléments de renfort filaires de travail 210 s’étendant axialement du bord axial 21 A à l’autre bord axial 21 B de la couche de travail 21 les uns sensiblement parallèlement aux autres. Chaque élément de renfort filaire de travail 210 s’étend selon une direction principale D2’ de chaque élément de renfort filaire de travail 210. La direction D2’ forme, avec la direction circonférentielle X du pneumatique 10, un angle AT’, en valeur absolue, strictement supérieur à 10°, de préférence allant de 15° à 50°. Ici, AT’=+26°. A la différence du premier mode de réalisation, l’angle AT des éléments de renfort filaire de travail 180 est tel que AT=-26°.
[0171] En outre, à la différence du premier mode de réalisation, chaque élément de renfort filaire de carcasse 340 s’étend selon une direction principale D3 de chaque élément de renfort filaire de carcasse 340 formant, avec la direction circonférentielle X du pneumatique 10, un angle AC sensiblement constant, en valeur absolue, allant de 80° à 90° entre chaque bord axial 34A, 34B. Ici, AC est, en valeur absolue, sensiblement égal à 90°.
[0172] L’ invention ne se limite pas aux modes de réalisation décrits précédemment.
[0173] En effet, on pourra tout à fait envisager un pneumatique analogue à ceux décrits ci- dessus et dont l’armature de carcasse comprend deux couches de carcasse. Dans ce cas et conformément à l’invention, la portion intercalée est agencée entre la couche de travail radialement la plus extérieure de l’armature de travail et l’armature de frettage.
[0174] On pourra également mettre en oeuvre l’invention sans que la couche de carcasse ne comprenne de portion axialement latérale enroulée autour de chaque élément de renfort circonférentiel 26. En effet, d’autres modes d’ancrage de la couche de carcasse 34 sont possibles, par exemple comme décrit dans US5702548.
[0175] On pourra également envisager un mode de réalisation analogue au premier mode de réalisation dans lequel chaque première et deuxième extrémité axiale 80A, 80B est au contact du support de montage lorsque le pneumatique 10 est monté sur le support de montage.
[0176] On pourra aussi envisager un mode de réalisation dans lequel, à la différence du premier mode de réalisation, l’élément électriquement conducteur 80 s’étend axialement depuis un premier des bourrelets 24 jusque radialement entre la couche de travail radialement la plus extérieure 18 et l’armature de frettage 17 de sorte que la première extrémité axiale 80A est au contact de la masse 82 de matériau électriquement conducteur et la deuxième extrémité axiale 80B est radialement agencée entre la couche de travail radialement la plus extérieure 18 et l’armature de frettage 17. En variante, on pourra envisager que la première extrémité axiale 80A soit au contact du support de montage lorsque le pneumatique 10 est monté sur le support de montage et la deuxième extrémité axiale 80B est radialement agencée entre la couche de travail radialement la plus extérieure 18 et l’armature de frettage 17.

Claims

32 REVENDICATIONS
1 . Pneumatique (10) destiné à être monté sur un support de montage et comprenant un sommet (12), deux bourrelets (24), deux flancs (22) reliant chacun chaque bourrelet (24) au sommet (12) et une armature de carcasse (32) ancrée dans chaque bourrelet (24), le sommet (12) comprenant une bande de roulement (20) comprenant une surface de roulement (13) destinée à venir au contact avec un sol de roulage et une armature de sommet (14), l’armature de carcasse (32) s’étendant dans chaque flanc (22) et dans le sommet (12) radialement intérieurement à l’armature de sommet (14), l’armature de sommet (14) étant agencée radialement entre la bande de roulement (20) et l’armature de carcasse (32) et comprenant :
- une armature de travail (16) comprenant au moins une couche de travail (18) radialement la plus extérieure de l’armature de travail (16),
- une armature de frettage (17) agencée radialement à l’extérieur de l’armature de travail (16), le pneumatique (10) comprenant un élément électriquement conducteur (80) agencé de façon à assurer la conductivité électrique entre un support de montage lorsque le pneumatique (10) est monté sur le support de montage et le sommet (12) par l’intermédiaire de l’élément conducteur (80), le sommet (12) étant agencé de façon à assurer la conductivité électrique depuis l’élément électriquement conducteur (80) jusqu’à la surface de roulement (13) radialement au travers ou par l’intermédiaire de l’armature de frettage (17) et par l’intermédiaire de la bande de roulement (20), caractérisé en ce que au moins une portion (801 ), dite intercalée, de l’élément électriquement conducteur (80) est radialement agencée entre la couche de travail (18) radialement la plus extérieure de l’armature de travail (16) et l’armature de frettage (17) et en ce que, l’élément électriquement conducteur (80) s’étendant radialement à l’intérieur du plan circonférentiel équatorial (E) du pneumatique (10), l’élément électriquement conducteur (80) est radialement continu entre :
- tout point de l’élément électriquement conducteur (80) situé radialement à l’intérieur du plan circonférentiel équatorial (E) du pneumatique (10), et
- tout point de l’élément électriquement conducteur (80) situé radialement entre la couche de travail (18) radialement la plus extérieure de l’armature de travail (16) et l’armature de frettage (17).
2. Pneumatique (10) selon la revendication précédente, dans lequel l’armature de travail (16) est agencée de façon à empêcher la conductivité électrique par l’intermédiaire de l’armature de travail (16). 33
3. Pneumatique (10) selon la revendication précédente, dans lequel la ou chaque couche de travail (18) comprend des éléments de renfort filaires de travail (180) noyés dans un matériau électriquement isolant.
4. Pneumatique (10) selon l’une quelconque des revendications 1 à 3, dans lequel l’armature de frettage (17) est agencée de façon à assurer la conductivité électrique depuis la portion intercalée (801 ) de l’élément électriquement conducteur (80) jusqu’à la bande de roulement (20) par l’intermédiaire de l’armature de frettage (17).
5. Pneumatique (10) selon la revendication précédente, dans lequel l’armature de frettage (17) comprend un ou plusieurs éléments de renfort filaires de frettage (170) noyés dans un matériau électriquement conducteur.
6. Pneumatique (10) selon la revendication 4 ou 5, dans lequel la bande de roulement (20) comprend une ou plusieurs masses d’un ou de plusieurs matériaux électriquement conducteurs, la ou chaque masse du ou des matériaux conducteurs étant agencée de façon à assurer la conductivité électrique depuis l’armature de frettage (17) jusqu’à la surface de roulement (13) par l’intermédiaire de la ou chaque masse.
7. Pneumatique (10) selon la revendication 4 ou 5, dans lequel la bande de roulement (20) comprend une ou plusieurs masses d’un ou de plusieurs matériaux électriquement isolants et au moins une masse (88) d’au moins un matériau électriquement conducteur agencées de façon à assurer la conductivité électrique depuis l’armature de frettage (17) jusqu’à la surface de roulement (13) par l’intermédiaire de la masse du matériau électriquement conducteur radialement au travers de la ou des masses du ou des matériau(x) électriquement isolant(s).
8. Pneumatique (10) selon l’une quelconque des revendications 1 à 3, dans lequel l’armature de frettage (17) est agencée de façon à empêcher la conductivité électrique depuis la portion intercalée (801) de l’élément électriquement conducteur (80) jusqu’à la bande de roulement (20) par l’intermédiaire de l’armature de frettage (17).
9. Pneumatique (10) selon la revendication précédente, dans lequel l’armature de frettage (17) comprend un ou plusieurs éléments de renfort filaires de frettage (170) noyés dans un matériau élastomérique électriquement isolant.
10. Pneumatique (10) selon la revendication 8 ou 9, dans lequel le sommet (12) comprend une masse additionnelle (86) d’un matériau électriquement conducteur agencée de façon à assurer la conductivité électrique depuis la portion intercalée (801 ) de l’élément électriquement conducteur (80) jusqu’à la bande de roulement (20) radialement au travers de l’armature de frettage (17) par l’intermédiaire de la masse additionnelle (86) du matériau électriquement conducteur.
11. Pneumatique (10) selon la revendication précédente, dans lequel la masse additionnelle (86) est radialement agencée entre la bande de roulement (20) et la portion intercalée (801 ) de l’élément électrique conducteur (80) et axialement agencée entre des première et deuxième portions axiales (171 , 172) de l’armature de frettage (17).
12. Pneumatique (10) selon la revendication 10 ou 11 , dans lequel la bande de roulement (20) comprend une ou plusieurs masses d’un ou de plusieurs matériaux électriquement conducteur(s), la ou chaque masse de matériau électriquement conducteur étant agencée de façon à assurer la conductivité électrique depuis la masse additionnelle (86) de matériau électriquement conducteur jusqu’à la surface de roulement (13) par l’intermédiaire de la ou chaque masse.
13. Pneumatique (10) selon la revendication 10 ou 11 , dans lequel la bande de roulement (20) comprend une ou plusieurs masses d’un ou de plusieurs matériaux électriquement isolants et au moins une masse (88) d’au moins un matériau électriquement conducteur agencées de façon à assurer la conductivité électrique depuis la masse additionnelle (86) du matériau électriquement conducteur jusqu’à la surface de roulement (13) par l’intermédiaire de la masse (88) du matériau électriquement conducteur radialement au travers de la ou des masses du ou des matériau(x) électriquement isolant(s).
14. Pneumatique (10) selon l’une quelconque des revendications précédentes, dans lequel l’élément électriquement conducteur (80) comprend une couche (84) constituée d’un matériau électriquement conducteur.
PCT/FR2022/050152 2021-02-08 2022-01-27 Pneumatique presentant un nouveau chemin conducteur WO2022167743A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22708578.4A EP4288297A1 (fr) 2021-02-08 2022-01-27 Pneumatique presentant un nouveau chemin conducteur
US18/276,337 US20240123773A1 (en) 2021-02-08 2022-01-27 Tire having a novel conductive pathway
CN202280013501.6A CN116802064A (zh) 2021-02-08 2022-01-27 具有新型的传导通路的轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2101165 2021-02-08
FR2101165A FR3119566A1 (fr) 2021-02-08 2021-02-08 Pneumatique presentant un nouveau chemin conducteur

Publications (1)

Publication Number Publication Date
WO2022167743A1 true WO2022167743A1 (fr) 2022-08-11

Family

ID=75746811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/050152 WO2022167743A1 (fr) 2021-02-08 2022-01-27 Pneumatique presentant un nouveau chemin conducteur

Country Status (5)

Country Link
US (1) US20240123773A1 (fr)
EP (1) EP4288297A1 (fr)
CN (1) CN116802064A (fr)
FR (1) FR3119566A1 (fr)
WO (1) WO2022167743A1 (fr)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1413102A (fr) 1964-05-14 1965-10-08 Michelin & Cie Perfectionnements aux enveloppes de pneumatiques
US5702548A (en) 1995-06-29 1997-12-30 Sedepro Tire having circumferential cables for anchoring the carcass
FR2797213A1 (fr) 1999-08-02 2001-02-09 Michelin Soc Tech Procede de fabrication d'un pneumatique avec preconformation d'une nappe de carcasse radiale pour rendre obliques les cables de la partie centrale
US6289958B1 (en) 1998-10-19 2001-09-18 The Goodyear Tire & Rubber Company Tire with tread containing electrically conductive stitched thread
EP1526005A2 (fr) 2003-10-23 2005-04-27 The Goodyear Tire & Rubber Company Bandage pneumatique comprenant un câblé électriquement conducteur entre un talon et la bande de roulement
US20050103412A1 (en) 2003-11-18 2005-05-19 Zanzig David J. Tire with rubber sidewall containing internal electrically conductive rubber strip
EP1621365A1 (fr) 2004-07-27 2006-02-01 The Goodyear Tire & Rubber Company Pneumatique avec un câblé éléctriquement conducteur s'étendant depuis la partie extérieure de la surface de montage sur la jante jusqu'à la partie intérieure de la bande de roulement
JP2010159017A (ja) 2009-01-09 2010-07-22 Sumitomo Rubber Ind Ltd 空気入りタイヤ
WO2016166056A1 (fr) 2015-04-17 2016-10-20 Compagnie Generale Des Etablissements Michelin Armature de renforcement de pneumatique
WO2016166057A1 (fr) 2015-04-17 2016-10-20 Compagnie Generale Des Etablissements Michelin Armature de renforcement de pneumatique
EP3196053A1 (fr) * 2014-08-14 2017-07-26 Sumitomo Rubber Industries, Ltd. Pneumatique
US20180066128A1 (en) 2016-09-06 2018-03-08 The Goodyear Tire & Rubber Company Rubber composition for promoting electrical conductivity, and tire with component
FR3059598A1 (fr) 2016-12-05 2018-06-08 Compagnie Generale Des Etablissements Michelin Pneumatique comportant une armature de sommet allegee
JP6354429B2 (ja) * 2014-07-31 2018-07-11 横浜ゴム株式会社 空気入りタイヤ
DE102017211752A1 (de) * 2017-07-10 2019-01-10 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
EP3489035A1 (fr) 2017-11-27 2019-05-29 Compagnie Generale Des Etablissements Michelin Armature de renforcement de pneumatique

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1413102A (fr) 1964-05-14 1965-10-08 Michelin & Cie Perfectionnements aux enveloppes de pneumatiques
US5702548A (en) 1995-06-29 1997-12-30 Sedepro Tire having circumferential cables for anchoring the carcass
US6289958B1 (en) 1998-10-19 2001-09-18 The Goodyear Tire & Rubber Company Tire with tread containing electrically conductive stitched thread
FR2797213A1 (fr) 1999-08-02 2001-02-09 Michelin Soc Tech Procede de fabrication d'un pneumatique avec preconformation d'une nappe de carcasse radiale pour rendre obliques les cables de la partie centrale
EP1526005A2 (fr) 2003-10-23 2005-04-27 The Goodyear Tire & Rubber Company Bandage pneumatique comprenant un câblé électriquement conducteur entre un talon et la bande de roulement
US20050103412A1 (en) 2003-11-18 2005-05-19 Zanzig David J. Tire with rubber sidewall containing internal electrically conductive rubber strip
EP1621365A1 (fr) 2004-07-27 2006-02-01 The Goodyear Tire & Rubber Company Pneumatique avec un câblé éléctriquement conducteur s'étendant depuis la partie extérieure de la surface de montage sur la jante jusqu'à la partie intérieure de la bande de roulement
JP2010159017A (ja) 2009-01-09 2010-07-22 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP6354429B2 (ja) * 2014-07-31 2018-07-11 横浜ゴム株式会社 空気入りタイヤ
EP3196053A1 (fr) * 2014-08-14 2017-07-26 Sumitomo Rubber Industries, Ltd. Pneumatique
WO2016166056A1 (fr) 2015-04-17 2016-10-20 Compagnie Generale Des Etablissements Michelin Armature de renforcement de pneumatique
WO2016166057A1 (fr) 2015-04-17 2016-10-20 Compagnie Generale Des Etablissements Michelin Armature de renforcement de pneumatique
US20180066128A1 (en) 2016-09-06 2018-03-08 The Goodyear Tire & Rubber Company Rubber composition for promoting electrical conductivity, and tire with component
FR3059598A1 (fr) 2016-12-05 2018-06-08 Compagnie Generale Des Etablissements Michelin Pneumatique comportant une armature de sommet allegee
DE102017211752A1 (de) * 2017-07-10 2019-01-10 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
EP3489035A1 (fr) 2017-11-27 2019-05-29 Compagnie Generale Des Etablissements Michelin Armature de renforcement de pneumatique

Also Published As

Publication number Publication date
FR3119566A1 (fr) 2022-08-12
US20240123773A1 (en) 2024-04-18
CN116802064A (zh) 2023-09-22
EP4288297A1 (fr) 2023-12-13

Similar Documents

Publication Publication Date Title
EP4076996B1 (fr) Pneumatique comprenant un bourrelet perfectionné
EP1254034B1 (fr) Bourrelet pour pneumatique a mobilite etendue
EP4045336B1 (fr) Pneumatique a emission de bruit reduit et son procede de fabrication
EP4045337B1 (fr) Pneumatique a faible resistance au roulement et son procede de fabrication
WO2022167743A1 (fr) Pneumatique presentant un nouveau chemin conducteur
EP4045299B1 (fr) Pneumatique presentant une uniformite amelioree et son procede de fabrication
EP1789266B1 (fr) Pneumatique a mobilite etendue avec zone d'ancrage surabaissee
EP4288296A1 (fr) Procede de fabrication d'un pneumatique presentant un chemin conducteur
EP1554133B1 (fr) Pneumatique a mobilite etendue avec bourrelet a repartition d'effort symetrique
WO2006024561A1 (fr) Pneumatique a mobilite etendue avec zone d'ancrage a moment d'inertie eleve
WO2002000451A1 (fr) Pneumatique avec demi-carcasses doubles
EP1989062B1 (fr) Pneumatique pour vehicules
EP4096938A1 (fr) Pneumatique pour motocylcette
EP4178811A1 (fr) Procede de fabrication simplifie d'un pneumatique a une seule couche de travail
EP1663672B1 (fr) Pneumatique a mobilite etendue avec bourrelets agences de facon asymetrique
EP4377101A1 (fr) Pneumatique pour motocylcette a haute vitesse limite
WO2024074781A1 (fr) Procede de fabrication de pneumatiques de plusieurs dimensions
WO2004041557A1 (fr) Pneumatique a mobilite etendue avec zone d’ancrage decouplee
WO2003093032A1 (fr) Pneumatique avec bourrelet dont la zone d'ancrage est microdeformable
WO2003093034A2 (fr) Pneumatique avec bourrelet muni dune structure filaire repartie en deux zones
WO2005047027A1 (fr) Pneumatique a mobilite etendue a double renfort et bourrelets asymetrique
WO2003093033A1 (fr) Pneumatique avec bourrelet muni d'une zone favorisant le montage/demontage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22708578

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280013501.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18276337

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022708578

Country of ref document: EP

Effective date: 20230908