WO2022166929A1 - 计算机可读存储介质、电子设备及手术机器人系统 - Google Patents

计算机可读存储介质、电子设备及手术机器人系统 Download PDF

Info

Publication number
WO2022166929A1
WO2022166929A1 PCT/CN2022/075224 CN2022075224W WO2022166929A1 WO 2022166929 A1 WO2022166929 A1 WO 2022166929A1 CN 2022075224 W CN2022075224 W CN 2022075224W WO 2022166929 A1 WO2022166929 A1 WO 2022166929A1
Authority
WO
WIPO (PCT)
Prior art keywords
surgical
surgical instrument
view
arm
point
Prior art date
Application number
PCT/CN2022/075224
Other languages
English (en)
French (fr)
Inventor
王家寅
何超
李自汉
郑阿勇
王超
江磊
唐文博
张毅成
Original Assignee
上海微创医疗机器人(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110152671.XA external-priority patent/CN114848152A/zh
Priority claimed from CN202110152672.4A external-priority patent/CN114848153A/zh
Application filed by 上海微创医疗机器人(集团)股份有限公司 filed Critical 上海微创医疗机器人(集团)股份有限公司
Publication of WO2022166929A1 publication Critical patent/WO2022166929A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/32Surgical robots operating autonomously

Definitions

  • the present invention relates to the technical field of medical devices, in particular to a computer-readable storage medium, an electronic device and a surgical robot system.
  • a medical imaging system in the prior art achieves the purpose of prompting the doctor about the current position of the surgical instrument by adding prompt information such as directionality on the nurse's display screen.
  • prompt information such as directionality on the nurse's display screen.
  • it only roughly locates the position of the surgical instrument, and cannot guarantee the safety of the surgical operation.
  • the purpose of the present invention is to provide a computer-readable storage medium, an electronic device and a surgical robot system, which can improve the safety and controllability of surgical operations.
  • the present invention provides a computer-readable storage medium on which a program is stored, and when the program is executed, the following steps are performed:
  • the program also implements safety measures to keep the image acquisition device and/or the surgical instrument in a safe place before or during the motion protocol for the image arm and/or the tool arm. state.
  • the program executes the steps of performing the safety measure: judging the end of the image acquisition device and/or the surgery Whether the end of the instrument is located in the corresponding poke, if not, the end of the endoscope and/or the end of the surgical instrument is driven to move into the corresponding poke.
  • the program further executes the following steps: driving the distal end of the image acquisition device and/or the distal end of the surgical instrument to move and Extend from the corresponding tabs to bring the surgical instrument back into the surgical field of view.
  • the program executes the following steps to implement the safety measure during the execution of the motion scheme by the imaging arm and/or the tool arm: judging the movement of the imaging arm and/or the tool arm. Whether the characteristic value is within the safety threshold, if not, drive the endoscope and/or the surgical instrument to move a predetermined distance in a direction toward the outside of the body; wherein, the characteristic value includes the image arm and/or the At least one of joint moment, joint position, or joint movement speed of the tool arm.
  • the program executes the following steps to implement the safety measure: judging the image arm and/or the tool arm Whether the eigenvalue of is within the safety threshold, if not, stop the image arm and/or the tool arm from executing the motion plan; wherein, the eigenvalue includes the image arm and/or the tool arm at least one of joint moment, joint position, or joint movement speed.
  • the program performs the following steps to plan the motion scheme: planning a target position of the surgical instrument within the surgical field of view; planning the motion scheme according to the current position of the surgical instrument and the target position .
  • the target position refers to the ability to restore the surgical instrument to the surgical field of view. and corresponds to its position before leaving the surgical field of view.
  • the program performs the following steps to obtain the target position: obtaining the coordinates of the center point of the surgical field of view, and taking the center point of the surgical field of view as the target position.
  • the program performs the following steps to obtain the target position: obtaining the coordinates of the center point of the surgical field of view; is the target position, wherein the radius of the spherical surface is the length of the end effector of the surgical instrument.
  • the program performs the following steps to obtain the target position of the surgical instrument outside the surgical field of view: obtaining the coordinates of the center point of the surgical field of view, and the surgical instrument located within the surgical field of view the coordinates of the end point T of the The target position of the surgical instrument outside the surgical field of view.
  • the program performs the steps of obtaining the target position of the surgical instrument outside the surgical field of view: obtaining the coordinates of the center point of the surgical field of view, and the end of the surgical instrument within the surgical field of view Coordinates of point T; calculate the coordinates of the midpoint Z of the connecting line TC between the center point and the end point T of the surgical instrument located in the surgical field of view; obtain the surgical instrument located in the surgical field of view
  • the end point T of the sphere is the spherical surface at the center of the sphere, and the radius of the spherical surface is the length of the end effector of the surgical instrument located in the surgical field of view; determine the midpoint Z to the surgical instrument located in the surgical field of view.
  • the distance from the end point T of t is greater than the radius of the sphere, if so, take the midpoint Z as the target position; if not, select the point A on the connecting line TC as the target position, so The point A is located between the midpoint Z and the center point, and the distance from the point A to the end point T of the surgical instrument within the surgical field of view is m times the radius of the sphere, m is greater than 1.
  • the program performs the following steps to obtain the coordinates of the center point of the surgical field of view: according to the coordinates of the end point N and the reference point M of the image acquisition device, and the depth of field H of the image acquisition device, obtain: The coordinates of the center point; wherein, the reference point M is a point whose position is fixed during the operation and is located on the axis of the image acquisition device.
  • the program executes the following steps to plan the motion scheme: obtaining a first motion trajectory equation according to a first motion trajectory of the surgical instrument that is artificially planned; the starting point of the first motion trajectory is the The current position of the surgical instrument, the end point of the first motion trajectory is the target position; the preset motion trajectory equation that matches the first motion trajectory is selected as the second motion trajectory equation; A motion trajectory equation and the second motion trajectory equation are combined and optimized to obtain a third motion trajectory equation; the relative positional relationship between the surgical instrument and the surgical field of view is obtained; The relative positional relationship determines the motion scheme; the motion scheme is defined by the first motion trajectory equation, or by the second motion trajectory equation, or by the third motion trajectory equation.
  • the program performs the following steps to plan the motion scheme: acquiring the position of the end point E1 of the image acquisition device, and the coordinates of the fixed point R1 of the imaging arm; acquiring the tool arm the coordinates of the end point T 1 of the The fixed point R 1 is the rotation center rotated by an angle of ⁇ 1 in the first direction.
  • the program further performs the following steps: acquiring the coordinates of the fixed point R 2 of the tool arm; the motion scheme further includes: the image arm rotates around the fixed point R 1 of the image arm The center is rotated by an angle of ⁇ 2 in the second direction, and the tool arm is rotated by an angle of ⁇ 2 in the second direction with the fixed point R2 on the tool arm as the center of rotation, so as to keep the surgical instrument in the desired position. within the surgical field of view.
  • At least one of the surgical instruments is located within the surgical field of view, and at least one of the surgical instruments is located outside the surgical field of view;
  • the tool arm used to mount the surgical instrument located within the surgical field of view is a first tool arm,
  • the tool arm used to mount the surgical instruments outside the surgical field of view is the second tool arm;
  • the program performs the following steps to plan the motion scheme: acquiring the position of the end point E1 of the image acquisition device, and the position of the fixed point R1 of the imaging arm; acquiring the position of the first tool arm. moving point R 3 , and the position of the end point T 1 of the surgical instrument outside the surgical field; calculating the angle ⁇ 1 formed by the straight line E 1 T 1 and the straight line T 1 R 1 ;
  • the motion scheme includes that the image arm rotates by an angle of ⁇ 1 along the first direction with the fixed point R 1 of the image arm as the rotation center, and the first tool arm takes the fixed point on the first tool arm.
  • R 3 is the rotation center rotated by an angle of ⁇ 1 along the first direction, so that when the surgical instrument mounted on the second tool arm returns to the surgical field of view, the surgical instrument mounted on the first tool arm The surgical instrument remains within the surgical field of view.
  • the present invention also provides an electronic device, comprising a processor and the computer-readable storage medium described in any preceding item, where the processor is configured to execute a program stored on the computer-readable storage medium .
  • the present invention also provides a surgical robot system, comprising: an image arm for mounting an image acquisition device, the image acquisition device being used for providing a surgical field of view; a tool arm for mounting surgical instruments, the surgical instrument for performing a surgical operation within the surgical field; and a control unit configured to execute a program stored on a computer-readable storage medium as described in any preceding item.
  • an input device is further included, and the control unit plans the exercise scheme according to an instruction input by the input device.
  • the surgical robot system includes the electronic device as described above, and the control unit includes the processor.
  • the computer-readable storage medium, electronic device and surgical robot system of the present invention have the following advantages:
  • a program is stored on the aforementioned computer-readable storage medium.
  • the program executes the following steps: determine whether the surgical instrument is within the surgical field of view according to the surgical field of view information provided by the image acquisition device; When the instrument is outside the surgical field of view, plan a motion plan, and make the image arm connected with the image acquisition device and/or the tool arm connected with the surgical instrument execute the motion plan, so that the surgical instrument returns to the within the operative field; wherein, before or during the execution of the motion protocol by the imaging arm and/or the tool arm, the procedure also implements safety measures to enable the image acquisition device and/or the tool arm Surgical instruments are in safe condition.
  • the computer-readable storage medium When the computer-readable storage medium is applied to the surgical robot system and the surgical robot system is used to perform surgical operations, once the surgical instrument is located outside the surgical field of view, a corresponding program can be executed to ensure that the surgical instrument does not harm the human body. In the case of tissue, it can be returned to the surgical field of view to improve the controllability and safety of surgical operations.
  • the program plans a motion plan and controls the tool arm to execute the motion plan to make the surgical instrument return to the surgical field of view, it can provide a variety of target position planning methods for the surgical instrument, so as to It is suitable for different surgical scenarios and improves the versatility of the surgical robot system.
  • the motion scheme can also involve the motion of the image arm, and control the motion of the image arm to make the surgical instrument return to the surgical field of view, and use the motion of the image arm and/or the tool arm to form different adjustment strategies to ensure surgery. Redundant options in the process ensure that surgical instruments are returned to the surgical field of view.
  • FIG. 1 is a schematic structural diagram of a surgical robot system according to an embodiment of the present invention.
  • FIG. 2 is a control flow chart of a surgical robot system provided by the present invention according to an embodiment
  • FIG. 3 is a schematic diagram of the state of the surgical instrument when the tool arm of the surgical robot system according to an embodiment of the present invention executes the motion plan;
  • FIG. 4 is a schematic diagram of the state of the surgical instrument when the tool arm of the surgical robot system according to another embodiment of the present invention executes a motion plan
  • FIG. 5 is a block diagram of the control principle when the tool arm of the surgical robot system according to an embodiment of the present invention executes the motion scheme
  • 6a is a schematic diagram of a surgical instrument of a surgical robot system provided by the present invention in a surgical field of view according to an embodiment, and there is one surgical instrument in the illustration;
  • 6b is a schematic diagram of a surgical instrument of a surgical robot system provided by the present invention in a surgical field of view according to an embodiment, and there are two surgical instruments in the figure;
  • 6c is a schematic diagram of a surgical instrument of a surgical robot system provided by the present invention in a surgical field of view according to an embodiment, and there are three surgical instruments in the diagram;
  • FIG. 7 is a schematic diagram of a surgical robot system according to an embodiment of the present invention during operation, there are two surgical instruments in the figure, one of which is within the surgical field of view, and the other surgical instrument is outside the surgical field of view;
  • FIG. 8a is a schematic diagram of a target position of a surgical instrument planned by a control unit in a surgical robot system according to an embodiment of the present invention, the dotted line in the figure shows the situation when the second surgical instrument is outside the surgical field of view, and the solid line shows For the situation in which the second surgical instrument returns to the surgical field of view;
  • FIG. 8b is a schematic diagram of a control unit planning a target position of a surgical instrument in a surgical robot system according to another embodiment of the present invention.
  • 8c is a schematic diagram of a target position of a surgical instrument planned by a control unit in a surgical robot system according to another embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of the control unit planning the motion scheme of the tool arm in the surgical robot system according to an embodiment of the present invention.
  • 10a is a schematic diagram of the surgical instrument in the surgical robot system provided by the present invention located outside the surgical field of view according to an embodiment, in the illustration, there is human tissue between the current position of the surgical instrument and the target position;
  • 10b is a schematic diagram of the path of the surgical instrument of the surgical system robot system provided by the present invention from outside the surgical field to the surgical field of view, in which there is human tissue between the current position and the target position of the surgical instrument;
  • 11a is a diagram showing the relationship between the position of the surgical instrument and time when the control unit of the surgical robot system according to an embodiment of the present invention uses the T-shaped trajectory planning method to plan the motion scheme of the tool arm;
  • 11b is a diagram showing the relationship between the speed of the surgical instrument and time when the control unit of the surgical robot system according to an embodiment of the present invention uses the T-shaped trajectory planning method to plan the motion scheme of the tool arm;
  • 11c is a diagram showing the relationship between the acceleration of the surgical instrument and time when the control unit of the surgical robot system according to an embodiment of the present invention uses the T-shaped trajectory planning method to plan the motion scheme of the tool arm;
  • 12a is a schematic diagram of a control unit of a surgical robot system planning a motion scheme of an image arm according to an embodiment of the present invention
  • 12b is a schematic diagram of the control unit of the surgical robot system according to an embodiment of the present invention controlling the movement of the endoscope, in which the second surgical instrument is located within the surgical field of view;
  • 12c is a schematic diagram of the control unit of the surgical robot system according to an embodiment of the present invention controlling the movement of the endoscope and the second surgical instrument.
  • 10-doctor console 11-display device; 20-image display device; 30-surgical operation device; 31-image arm, 32-tool arm, 33-endoscope, 32a-first tool arm, 32b-second Tool arm, 33'-surgical field, 34-surgical instrument, 34a-first surgical instrument, 34b-second surgical instrument, 35-stamp card; 40-operating table; 50-tool placement device; 61-track identification module, 62-selection module, 63-storage module, 64-position calculation unit, 65-trajectory calculation unit.
  • each embodiment of the following description has one or more technical features, but this does not mean that the person using the present invention must implement all the technical features in any embodiment at the same time, or can only implement different embodiments separately.
  • One or all of the technical features of the .
  • those skilled in the art can selectively implement some or all of the technical features in any embodiment according to the disclosure of the present invention and depending on design specifications or implementation requirements, or The combination of some or all of the technical features in the multiple embodiments is selectively implemented, thereby increasing the flexibility of the implementation of the present invention.
  • the core idea of the present invention is to provide a computer-readable storage medium on which a program is stored.
  • the program When the program is executed, the following steps are performed: determining whether the surgical instrument is in the surgical field of view according to the surgical field-of-view information provided by the image acquisition device. when the surgical instrument is located outside the surgical field of view, plan a motion plan, and make the image arm connected with the image acquisition device and/or the tool arm connected with the surgical instrument execute the motion plan, so that The surgical instrument is returned into the surgical field; wherein the procedure also performs safety measures to enable the image acquisition before or during the execution of the motion protocol by the imaging arm and/or the tool arm The device and/or the surgical instrument are in a safe state.
  • the computer-readable storage medium is applied to a surgical robot system, and in the process of performing a surgical operation by the surgical robot system, once the surgical instrument is located outside the surgical field of view, the surgical robot system can execute a corresponding program , to bring the surgical instrument back into the surgical field of view.
  • the surgical robot system when the surgical instrument leaves the surgical field of view, the corresponding operation is performed to make the surgical instrument return to the surgical field of view, so as to prevent the doctor from performing surgical operations in the blind area of the field of vision, and improve the operation efficiency. safety and controllability.
  • the embodiments of the present invention also provide an electronic device including the computer-readable storage medium, and a surgical robot system, where the surgical robot system includes a control unit, and the control unit executes the execution of the computer-readable storage medium. stored program.
  • the surgical robot system provided by the embodiments of the present invention may be, for example, a master-slave robot system to be operated, or may be other surgical robot systems.
  • the surgical robot system can perform various types of minimally invasive surgical operations.
  • the following description will always take the surgical robot system as the master-slave robot system, and the surgical robot system performs laparoscopic surgery as an example for description, but those skilled in the art should know that it should not constitute an embodiment of the present invention. limit.
  • the surgical robot system provided by the embodiment of the present invention may be, for example, a remote-operated master-slave robot system, or other surgical robot systems.
  • the surgical robot system can perform various types of minimally invasive surgical operations.
  • the surgical robot system is used as a master-slave robot system, and the surgical robot system performs laparoscopic surgery as an example for description, but those skilled in the art should know that it should not constitute a structure for the present invention. limit.
  • the surgical robot system includes a control end and an execution end, the control end includes a doctor console 10 , and the execution end includes an image display device 20 , a surgical operation device 30 , an operating table 40 and a tool placement device 50 .
  • the surgical robot system mainly performs micro-invasive surgical treatment on the patient on the operating table 40 .
  • the surgical operation device 30 includes at least one image arm 31 and at least one tool arm 32 , and an image acquisition device is mounted on the image arm 31 .
  • the image acquisition device is, for example, an endoscope 33 or an ultrasound probe and other devices that can enter the patient's body and acquire images in the patient's body. introduce.
  • the tool arm 31 is used to mount the surgical instrument 34, and the endoscope 33 and the surgical instrument 34 enter the patient's body through the wound on the patient's body, and specifically pass through the poke card (not shown in FIG. 1 ). shown) and into the patient.
  • the endoscope 33 can obtain information on human tissue, surgical instruments 34 in the human body, and surgical environment information, that is, the endoscope 33 provides a surgical field, and the surgical instrument 34 performs operations in the surgical field surgical operation.
  • the doctor console 10 includes a main operator (also known as a main hand), the control unit, the main operator, the image arm 31 , the tool arm 32 and the surgical instrument 34 Communication connection, and the master operator forms a master-slave control relationship with the tool arm 32 and the surgical instrument 34 . That is, the control unit is configured to control the tool arm 32 to move according to the movement of the main operator during the operation, and to control the surgical instrument 34 to execute the movement instructions related to the main operator. Further, the doctor console 10 further includes a display device 11 , and the display device 11 is used to display the condition inside the patient and the movement condition of the surgical instrument 34 .
  • the control unit is configured to receive an operation instruction according to the received restoration, and disconnect the master-slave control of the master operator from the tool arm 32 and the surgical instrument 34 relationship, after which a recovery operation may be performed to bring the surgical instrument 34 back into the surgical field of view.
  • the triggering manner of the instruction is not limited in this embodiment.
  • the doctor may transmit the instruction to the control unit by triggering an input device in the surgical robot system, such as a switch, and the switch may be a display
  • the virtual keys on the interactive interface of the device 11 may also be voice-activated switches or electrical hardware switches.
  • the electrical hardware switches may be arranged on the support beam or the main control arm of the doctor console 10, or the command It can be triggered by the foot switch of the existing surgical robot system or different control modes of the main hand pinch control, etc.
  • the control unit When performing the restoration operation, the control unit is configured to: plan a motion plan; control the image arm 31 and/or the tool arm 32 to execute the motion plan, so that the image arm 31 and the tool arm 32 execute the motion plan. /or after the tool arm 32 executes the motion program, and when the end of the endoscope 33 and/or the end of the surgical instrument 34 are located outside the respective pokes, the surgical instrument 34 is returned to the within the surgical field of view.
  • control unit is also configured to perform safety measures before or during the execution of the motion program by the imaging arm 31 and/or the tool arm 32, so that the endoscope 33 and/or the Said surgical instrument 34 is in a safe state.
  • safe state means that the endoscope 33 and/or the surgical instrument 34 do not cause harm to non-target human tissue during the operation.
  • Fig. 2 shows the control flow chart of the surgical robot system. Please refer to Fig. 2.
  • the control flow of the surgical robot system is as follows:
  • Step S1 The doctor judges whether the surgical instrument is within the surgical field of view, and if so, continues the surgical operation, and if not, executes Step S2.
  • Step S2 The doctor judges whether it is necessary to adjust the relative positions of the surgical instrument and the endoscope to make the surgical instrument return to the surgical field of view; if not, continue to perform the surgical operation, and if so, perform the operation Step S3.
  • Step S3 The doctor triggers the instruction to make the control unit disconnect the master-slave control relationship between the master operator, the tool arm and the surgical instrument.
  • Step S4 The control unit plans a motion scheme.
  • Step S5 the control unit controls the imaging arm and/or the tool arm to execute the motion scheme.
  • Step S6 The control unit executes the safety measures, so that the image arm and/or the tool arm does not threaten the safety of human tissue during the execution of the motion scheme.
  • Step S7 The doctor judges whether the surgical instrument returns to the surgical field of view, and if so, restores the master-slave control relationship between the master operator, the tool arm and the surgical instrument, and continues the surgical operation; if not, Then return to step S4.
  • the step S6 is performed before the step S5, or the step S6 is performed synchronously with the step S5. And, in the step S7, when the end of the surgical instrument 34 and the end of the endoscope 33 are located outside the respective poke cards, the doctor determines whether the surgical instrument returns to the surgical field of view.
  • control unit performing the safety measures is to prevent the endoscope and/or the surgery from being damaged by the image arm and/or the tool arm during the execution of the motion plan.
  • the device causes unnecessary harm to human tissue.
  • the control unit directly plans the motion scheme after receiving the instruction, and controls the imaging arm and/or the tool arm to perform all operations.
  • the motion plan and the safety measures are used to return the surgical instrument 34 to the surgical field of view. That is, the non-master-slave-controlled surgical robot system does not need to perform the step S3.
  • the step S6 is performed before the step S5, and the safety measures include driving the endoscope 33 and/or the surgical instrument 34 to move until the inner The end of the speculum 33 and the end of the surgical instrument 34 are located in the corresponding pokes 35 .
  • the surgical instrument 34 executes the motion scheme alone, in the step S6, the distal end of the surgical instrument 34 is moved into the stamp 35 of the surgical instrument 34 (as shown in FIG. 3 ).
  • the endoscope 33 executes the motion scheme alone, in the step S6 , the distal end of the endoscope 33 is moved to the stamp of the endoscope 33 .
  • the end of the surgical instrument 34 is moved to the stamp of the surgical instrument 34, and all The distal end of the endoscope 33 is moved into the stamp of the endoscope 33 .
  • the end of the endoscope 33 and/or the end of the surgical instrument 34 is always located in the poke card, which No contact with human tissue, thus avoiding damage to human tissue.
  • the distal end of the endoscope 33 and/or the distal end of the surgical instrument 34 it is also necessary to control the distal end of the endoscope 33 and/or the distal end of the surgical instrument 34 to move from the corresponding The stamp sticks out to the inside of the human body, so as to determine whether the surgical instrument 34 returns to the surgical field of view 33 ′.
  • the operation of driving the end of the endoscope 33 and/or the end of the surgical instrument 34 to move to extend from the corresponding stamp can be driven by the control unit to be performed automatically, or by medical staff Performed manually, preferably by the control unit.
  • the The control unit controls the endoscope 33 and/or the surgical instrument 34 to move L 0 toward the outside of the body, and after the image arm 31 and/or the tool arm 32 executes the motion plan, the inside The endoscope 33 and/or the surgical instrument 34 are moved L 0 in the direction toward the body, so that the end of the endoscope 33 or the end of the surgical instrument 34 is protruded from the poke into the body, so as to It is determined whether the surgical instrument 34 has returned to the surgical field of view.
  • the end of the poke card mentioned here refers to the end of the poke card that is located in the human body.
  • the proximal end of the stamping card mentioned later refers to the end of the stamping card that is located outside the human body.
  • the step S6 is performed synchronously with the step S5, and the safety measures include: judging whether the characteristic value of the image arm 31 and/or the tool arm 32 is within a safety threshold, If not, drive the endoscope 33 and/or the surgical instrument 34 to move a predetermined distance toward the outside of the human body.
  • the "direction out of the body” refers to the direction along the distal end of the stamp towards the proximal end of the stamp. In this way, when the imaging arm 31 and/or the tool arm 32 executes the motion program, the end of the endoscope 33 and/or the end of the surgical instrument may be outside the corresponding poke 35, But there is no force between it and human tissue, and even a certain distance from human tissue (as shown in Figure 4).
  • the “feature value” is the joint moment, joint position or joint movement speed of the image arm 31 and/or the tool arm 32 .
  • the safety measures are described herein by taking the control unit controlling the tool arm to execute the motion plan, the characteristic value being the joint torque of the tool arm, and the safety threshold being the torque threshold as an example. specific implementation process.
  • Step a The control unit monitors the joint moment ⁇ 1 of the tool arm in real time.
  • the joint moments may be acquired by sensors arranged at the joints of the tool arm.
  • Step b The control unit judges whether ⁇ 1 is greater than the torque threshold ⁇ 0 stored in the control unit, and if not, returns to step a; if so, executes step c.
  • Step c the control unit controls the endoscope and/or the surgical instrument to move D 0 toward the outside of the body.
  • the steps a to c are repeatedly performed until the tool arm completes the execution of the motion plan.
  • control unit further controls the surgical instrument to move p ⁇ D 0 in a direction toward the body, where p is the number of times step c is performed.
  • direction toward the body refers to the direction along the proximal end of the stamp toward the distal end of the stamp.
  • the control unit monitors the deviation between the actual position of the joint and the predetermined position in real time, and if the deviation is not within the safety threshold, controls the endoscope And/or the surgical instrument is moved a predetermined distance in a direction towards the outside of the body. If the characteristic value is the movement speed of the joint, the control unit monitors the deviation between the actual speed of the joint and the predetermined speed in real time.
  • the safety measure includes: the control unit determines whether the characteristic value of the image arm and/or the tool arm is within a safety threshold, and if not, the control unit controls The imaging arm and/or the tool arm suspend execution of the motion protocol. Afterwards, the medical staff manually adjusts the endoscope and/or the surgical instrument, so that the endoscope and/or the surgical instrument move a predetermined distance in a direction toward the outside of the body, and then execute the motion plan.
  • control unit may plan different motion schemes, and control at least one of the tool arm and the image arm to execute the motion schemes.
  • the method for planning the motion scheme by the control unit will be described in detail herein.
  • the surgical robot system needs at least one endoscope 33 and at least one surgical instrument 34 to complete a surgical operation.
  • Fig. 6a shows a schematic diagram of the surgical robot system including one endoscope 33 and one surgical instrument 34
  • Fig. 6b shows the surgical robot system including one endoscope 33 and two A schematic diagram of the surgical instrument 34
  • FIG. 6 c shows a schematic diagram of the surgical robot including one of the endoscopes 33 and three of the surgical instruments 34
  • the surgical robot system may further include more surgical instruments 34 and more than two endoscopes 33 .
  • the above-mentioned endoscope 33 is any image acquisition device for acquiring image information of tissue in the human body.
  • this article takes the surgical robot system including one endoscope 33 and two surgical instruments 34 as an example to describe in more detail how the control unit plans the motion scheme in the present invention.
  • the two surgical instruments 34 are respectively referred to as a first surgical instrument 34a and a second surgical instrument 34b, and correspondingly, the tools used to mount the first surgical instrument 34a
  • the arm is referred to as a first tool arm 32a
  • the tool arm for carrying the second surgical instrument 34b is referred to as a second tool arm 32b.
  • Those skilled in the art can modify the following description to adapt it to situations where the surgical robotic system includes more than two endoscopes and more than three surgical instruments.
  • the doctor can perform normal surgical operations. However, when at least one of the surgical instruments 34, such as the second surgical instrument 34b, is located outside the surgical field of view 33' (as shown in FIG. 7), it is not conducive to the surgical operation. If the doctor confirms that the relative position of the second surgical instrument 34b and the endoscope 33 needs to be adjusted, trigger the instruction to make the control unit disconnect the main operator and the tool arm 32 and the master-slave control relationship between the surgical instrument 34, and adjust the relative positional relationship between the surgical instrument 34 and the endoscope 33, so that the second surgical instrument 34b returns to the surgical field of view 33' middle.
  • control unit controls the movement of the second tool arm 32b to bring the second surgical instrument 34b back into the surgical field of view.
  • the control unit is configured to plan the target position of the second surgical instrument 34b within the surgical field of view 33' first, and then plan the motion plan.
  • the target location can be planned in different ways.
  • the target position of the second surgical instrument 34b means that the second surgical instrument 34b can be restored to the surgical field of view 33' and corresponds to its position before leaving the surgical field of view 33' . That is to say, in this case, with the coordinate system where the surgical field of view 33' is located as a reference, the position of the second surgical instrument 34b in the surgical field of view 33' at the last moment is taken as the target position .
  • the "last time” mentioned here refers to a designated time before the second surgical instrument 34b leaves the surgical field of view 33'.
  • the control unit is configured to record the position of the second surgical instrument 34b before the endoscope 33 adjusts the posture as the target position.
  • the position of the second surgical instrument 34b can be obtained by a robotic kinematics method (DH method).
  • DH method robotic kinematics method
  • the control unit is configured to: record the position of the second surgical instrument 34b in real time; determine the second surgical instrument When the instrument 34b leaves the surgical field of view 33', the position of the second surgical instrument 34b at the previous moment is taken as the target position. For example, the control unit records the position of the second surgical instrument 34b every predetermined time. The control unit determines that the second surgical instrument 34b leaves the surgical field of view 33', and takes the position of the second surgical instrument 34b at the i-th moment as the target position.
  • the control unit can obtain the position of the second surgical instrument 34b according to the robot kinematics method, and can also obtain the position of the second surgical instrument 34b by monitoring the identifier provided on the second surgical instrument 34b.
  • the identifier may be a visualization element, or any other directional mark that can indicate the second surgical instrument 34b.
  • control unit is configured to acquire the position of the center point C of the surgical field, and use the center point C as the target position .
  • control unit is specifically configured as:
  • a reference coordinate system In a reference coordinate system, first obtain the position N (x 1 , y 1 , z 1 ) of the end point N of the endoscope 33 according to the robot kinematics method, and obtain the position M (x 2 of a reference point M) , y 2 , z 2 ).
  • the reference point M is a point whose position remains unchanged during the operation, and the reference point M is on the axis of the endoscope 33 .
  • the reference point M is the point at which the endoscope 33 is located at the wound of the patient's abdomen (commonly known as the belly point), or the reference point M is a point on the stamp card.
  • the reference coordinate system is an artificially established coordinate system, such as a geodetic coordinate system.
  • the direction vector in the axial direction of the endoscope 33 is calculated as
  • the target position may not only be the center point C, but also other positions in a sphere with the center point C as the center of the sphere and on the spherical surface. point.
  • the control unit is further configured to: acquire a spherical surface with the center point C as the center of the sphere, and take any point in the sphere and on the spherical surface as the target position.
  • the radius of the sphere can be the length of the end effector of the second surgical instrument 34b, or the radius of the sphere can be determined by a doctor according to the size of human tissue, which can be reasonably set by those skilled in the art .
  • the coordinates D(x 4 , y 4 , z 4 ) of the target position the coordinates of the center point C and the radius of the sphere satisfy the following relationship:
  • r 3 (x 3 -x 4 ) 2 +(y 3 -y 4 ) 2 +(z 3 -z 4 ) 2
  • the target position is jointly determined by the first surgical instrument 34a and the center point C of the surgical field of view 33'.
  • the control unit is configured to:
  • the average algorithm is used to calculate the position of the midpoint Z of the line connecting the center point C and the end point T of the first surgical instrument 34a.
  • the control unit is further configured to:
  • the control unit has a variety of target position planning methods, so that the doctor can select the most suitable method according to the actual situation of the operation to determine the target position of the second surgical instrument 34b, which improves the adaptability and versatility of the surgical robot system. sex.
  • control unit plans the motion scheme.
  • the control unit may include a trajectory identification module 61 , a selection module 62 , a storage module 63 , a position calculation unit 64 and a trajectory calculation unit 65 , the storage module 63
  • a preset motion trajectory equation is stored in .
  • the display device 11 of the surgical robot system also has a touch-screen handwriting function, and the display device 11 is also used to display the movement trajectory of the second tool arm 32b (even if the second surgical instrument is manually planned by the medical staff). The movement trajectory of the second tool arm when moving from the current position to the target position) as the first movement trajectory.
  • the medical staff can manually draw the first movement track of the second surgical instrument 34b on the display device 11 according to the situation in the patient's body displayed by the display device.
  • the trajectory identification module 61 identifies the first motion trajectory and generates a first motion equation.
  • the selection module 62 selects a preset motion trajectory equation matching the first motion trajectory equation in the storage module 63 as the second motion trajectory equation.
  • a preset trajectory equation matching the first motion trajectory equation refers to a preset trajectory equation that is closest to the first motion trajectory equation.
  • the trajectory calculation unit 65 combines and re-optimizes the first motion trajectory equation and the second motion trajectory equation to obtain a third motion trajectory equation.
  • the position calculation unit 64 is configured to calculate the relative positional relationship between the second surgical instrument 34b and the surgical field of view 33'.
  • the trajectory calculation unit 65 is configured to determine the motion plan according to the relative positional relationship between the second surgical instrument 34b and the surgical field of view 33'.
  • the motion scheme may be defined by the first motion trajectory equation, or the second motion trajectory equation, or the third motion trajectory equation.
  • the motion scheme may be defined by the first motion trajectory equation or the second motion trajectory equation or the third motion trajectory equation, which means that the second operation defined by the corresponding motion trajectory equation is defined by the robot inverse kinematics algorithm
  • the motion of the instrument 34b is resolved into the motion of the joints of the second tool arm 32b, from which a master motion scheme can be obtained.
  • the preliminary planning of the motion scheme is performed by using the first motion trajectory planned manually (that is, the motion scheme defined by the first motion trajectory equation and the motion scheme defined by the second motion trajectory equation are approximate motion plan, not necessarily the final motion plan), and then use the trajectory calculation unit to obtain the optimal motion plan to ensure that the second surgical instrument 34b can move smoothly and smoothly when executing the motion plan.
  • control unit includes a first control unit and a second control unit, wherein the first control unit can be arranged on the image display device 20 or the doctor console 10, and includes the trajectory recognition module 61 , the selection module 62 and the storage module 63 .
  • the second control unit may include the microneedle calculation unit 64 and the trajectory calculation unit 65 , and the second control unit may be provided on the doctor console 10 or on the surgical operation device 30 superior.
  • the first control unit and the second control unit may also be integrated into one. That is, this embodiment does not specifically limit how the control unit is configured.
  • control unit can directly use the position calculation unit to calculate the positional relationship between the second surgical instrument 34b and the surgical field of view 33', and then the trajectory calculation unit can calculate the positional relationship between the second surgical instrument 34b and the surgical field 33' according to the The positional relationship of the surgical field of view 33' plans the motion scheme of the second tool arm 32b.
  • the control unit is further configured to identify and locate the human tissue according to the image, and plan a reasonable motion plan to ensure safe and smooth movement of the image arm and/or the tool arm.
  • the control unit is further configured to: plan a safety area S1 and a A moving area S 2 , wherein the safe area S 1 is surrounded by the outside of the human tissue, and the boundary of the moving area S 2 is outside the safe area S 1 .
  • the control unit determines the motion plan, and when the second tool arm executes the motion plan, any point on the motion trajectory formed by the second surgical instrument 34b is within the moving area S2. on the boundary, or outside the moving area S2 (as shown in Figure 10b). In this way, the second surgical instrument 34b will not cause any damage to human tissue.
  • the safe area S 1 is a spherical area with the center of human tissue as the center of the sphere
  • the moving area S 2 is a spherical area concentric with the safe area S 1
  • the movement trajectory of the second surgical instrument 34b includes a plurality of straight trajectories connected in sequence, and each of the straight trajectories is a tangent to the moving area S2.
  • the current position of the second surgical instrument 34b is a 1 , which is outside the surgical field of view 33'
  • the target position of the second surgical instrument 34b is d
  • a 1 There is human tissue between and d.
  • the control unit plans a safe area S 1 with a radius r 1 to surround human tissue, and the control unit also plans a moving area S 2 with a radius r 2 , r 2 >r 1 , the movement Area S 2 can pass through a 1 .
  • control unit sets point a 4 on the outline of the moving area S 2 , and sets the point a 2 and the point a 3 outside the moving area S 2 , and the connecting line between the point a 1 and the point a 2 ,
  • the line connecting point a 2 and point a 3 and the line connecting point a 3 and point a 4 are all tangent to the moving area S 2 , such that point a 1 , point a 2 , point a 3 , point a 4 and point a 4
  • the connecting lines between d can constitute the movement trajectory of the second surgical instrument 34b.
  • control unit may adopt a conventional polynomial trajectory design, such as an n-degree polynomial spline difference method (n ⁇ 5), an S-shaped trajectory design, or a T-shaped trajectory design. to determine the exercise program.
  • a conventional polynomial trajectory design such as an n-degree polynomial spline difference method (n ⁇ 5), an S-shaped trajectory design, or a T-shaped trajectory design.
  • the motion scheme of the second tool arm 32b includes a uniform acceleration motion stage, a uniform speed motion stage and a uniform deceleration motion stage.
  • a uniform acceleration motion stage a uniform speed motion stage
  • a uniform deceleration motion stage a uniform deceleration motion stage.
  • FIGS. 11 a , 11 b and 11 c for the relationship diagrams of the position, speed, and acceleration of the second surgical instrument 34 b over time.
  • the position of the second surgical instrument 34b can be calculated by the following formula:
  • the speed of the second surgical instrument 34b can be calculated by the following formula:
  • the acceleration of the second surgical instrument 34b is:
  • the position of the second surgical instrument 34b can be calculated by the following formula:
  • the speed of the second surgical instrument 34b is:
  • the acceleration of the second surgical instrument 34b is:
  • the position of the second surgical instrument 34b can be calculated by the following formula:
  • the speed of the second surgical instrument 34b is calculated by the following formula:
  • the acceleration of the second surgical instrument 34b is:
  • q 0 is the position of the second surgical instrument 34b at the beginning, is the position of the second hand speed device 34b at time t c , is the position of the second surgical instrument 34b at time tj .
  • tc is the time when the second surgical instrument 34b reaches the maximum speed
  • tj is the time when the second surgical instrument 34b starts to decelerate
  • tf is the time when the speed of the second surgical instrument 34b is zero.
  • control unit may also control the movement of the image arm 31 and/or the tool arm 32 to make the second surgical instrument 34b return to the surgical field of view.
  • control unit is configured to:
  • the position of the end point E 1 of the image arm 31 and the position of a fixed point R 1 on the image arm 31 are obtained according to the robot kinematics method.
  • the fixed point R 1 is located on the axis of the endoscope 33 without
  • the moving point R1 may be a point on the stamp card of the endoscope 33 corresponding to the wound of the patient's abdomen (commonly referred to as a belly point), or a point on the image arm 31 corresponding to the belly point.
  • the position of the end point T1 of the second tool arm 32b and the position of a fixed point R2 on the second tool arm 32b are acquired according to the robot kinematics method.
  • Those skilled in the art are familiar with how the fixed point R 2 on the second tool arm 32b, that is, the fixed point R 2 on the second tool arm 32b is clear to those skilled in the art.
  • the motion scheme determined by the control unit may include: the endoscope 33 rotates by an angle of ⁇ 1 along the first direction with the fixed point R 1 on the imaging arm 31 as the rotation center.
  • the motion scheme further includes: the first surgical instrument A surgical instrument is rotated by an angle ⁇ 1 along the first direction with the fixed point R 3 of the first tool arm of the first surgical instrument (both shown in FIG. 12 a and FIG. 12 b ) as the rotation center.
  • both the first surgical instrument and the second surgical instrument 34b can be located within the surgical field of view 33'.
  • the first surgical instrument may not be rotated.
  • the motion scheme determined by the control unit includes: the endoscope 33 firstly rotates the endoscope 33 by an angle ⁇ 1 along the first direction with the fixed point R1 on the imaging arm 31 as the rotation center; then, as shown in FIG. 12c As shown, the endoscope 33 is rotated by an angle of ⁇ 2 along the second direction with the fixed point R1 on the imaging arm 31 as the rotation center, and the second surgical instrument 34b is rotated with the second surgical instrument 34b
  • the fixed point R2 on the tool arm 32 is the rotation center rotated by an angle of ⁇ 2 along the second direction, so as to keep the second surgical instrument 34b within the surgical field of view 33'.
  • the second direction is the same as the first surgical instrument 34'.
  • the directions are opposite, taking the orientation shown in Fig. 12a to Fig. 12c as an example, the first direction is clockwise, as indicated by the arrow in Fig. 12a, and the second direction is counterclockwise, as shown by the arrow in Fig. 12c identified.
  • both the first surgical instrument 34a and the second surgical instrument 34b are within the surgical field of view 33'. If the surgical field of view 33 ′ needs to be completely returned to the original position, ⁇ 2 is equal to ⁇ 1 .
  • ⁇ 2 may not be equal to ⁇ 1 .
  • the second direction may also be in the same direction as the first direction.
  • an embodiment of the present invention also provides a computer-readable storage medium on which a program is stored, and when the program is executed, the program executes the corresponding operations performed by the above control unit.
  • the present invention also provides an electronic device, including a processor and the computer-readable storage medium, where the processor is configured to execute a program stored on the computer-readable storage medium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

本发明涉及一种计算机可读存储介质、电子设备及手术机器人系统,计算机可读存储介质上存储有程序,当所述程序被执行时,执行如下步骤:根据图像获取装置所提供的手术视野信息判断手术器械是否在手术视野内;当所述手术器械位于所述手术视野外时,规划运动方案,并使连接有所述图像获取装置的图像臂和/或连接有所述手术器械的工具臂执行所述运动方案,使得所述手术器械回到所述手术视野内;其中,在所述图像臂和/或所述工具臂执行所述运动方案之前或之中,所述程序还执行安全措施,以使所述图像获取装置和/或所述手术器械处于安全状态。本发明可使手术器械自动恢复至手术视野内,提高手术安全性和可控性。

Description

计算机可读存储介质、电子设备及手术机器人系统 技术领域
本发明涉及医疗器械技术领域,具体涉及一种计算机可读存储介质、电子设备及手术机器人系统。
背景技术
采用机器人手术系统来进行微创伤外科手术,一方面患者的创伤小,伤口感染风险低,术后恢复快,另一方面可降低医生的操作难度和手术疲劳程度。然而,在机器人手术过程中,因内窥镜移动或手术器械移动,极易出现手术器械不在手术视野内的情况,这对于医生而言就是一个不可见的手术盲区。当手术器械不在手术视野内时,医生不能直接地控制手术器械或视野,此时若直接进行手术操作,非常容易对人体组织造成伤害。
现有技术中出现了一些可提高手术安全性的装置,例如现有技术中的一种医疗成像系统通过在护士显示屏上增加方向性等提示信息,达到提示医生手术器械的当前位置的目的,但其仅粗略地定位了手术器械的方位,不能保证手术操作的安全。
因此,设计一种可自动使手术器械回到手术视野中的手术机器人系统及其控制方法,以提高手术机器人系统使用过程的安全性和可控性,是一个亟待解决的问题。
发明内容
本发明的目的在于提供一种计算机可读存储介质、电子设备及手术机器人系统,该手术机器人系统可提高手术操作的安全性和可控性。
为实现上述目的,本发明提供了一种计算机可读存储介质,其上存储有程序,当所述程序被执行时,执行如下步骤:
根据图像获取装置所提供的手术视野信息判断手术器械是否在手术视野内;当所述手术器械位于所述手术视野外时,规划运动方案,并使连接有所述图像获取装置的图像臂和/或连接有所述手术器械的工具臂执行所述运动方案,使得所述手术器械回到所述手术视野内。
可选地,在所述图像臂和/或所述工具臂执行所述运动方案之前或之中,所述程序还执行安全措施,以使所述图像获取装置和/或所述手术器械处于安全状态。
可选地,在所述图像臂和/或所述工具臂执行所述运动方案之前,所述程序执行如下步骤以执行所述安全措施:判断所述图像获取装置的末端和/或所述手术器械的末端是否位于相应的戳卡内,若否,则驱使所述内窥镜的末端和/或所述手术器械的末端移动至相应的戳卡内。
可选地,在所述图像臂和/或所述工具臂执行所述运动方案之后,所述程序还执行如下步骤:驱使所述图像获取装置的末端和/或所述手术器械的末端 移动并从相应的所述戳卡中伸出,以使所述手术器械回到所述手术视野内。
可选地,在所述图像臂和/或所述工具臂执行所述运动方案的过程中所述程序执行如下步骤以执行所述安全措施:判断所述图像臂和/或所述工具臂的特征值是否在安全阈值内,若否,则驱使所述内窥镜和/或所述手术器械沿朝向体外的方向移动预定距离;其中,所述特征值包括所述图像臂和/或所述工具臂的关节力矩、关节位置或关节移动速度中的至少一者。
可选地,在所述图像臂和/或所述工具臂执行所述运动方案的过程中,所述程序执行如下步骤以执行所述安全措施:判断所述图像臂和/或所述工具臂的特征值是否在安全阈值内,若否,则使所述图像臂和/或所述工具臂停止执行所述运动方案;其中,所述特征值包括所述图像臂和/或所述工具臂的关节力矩、关节位置或关节移动速度中的至少一者。
可选地,所述程序执行如下步骤以规划所述运动方案:规划所述手术器械在所述手术视野内的目标位置;根据所述手术器械的当前位置和所述目标位置规划所述运动方案。
可选地,当所述图像获取装置和/或所述手术器械移动导致所述手术器械不在所述手术视野内时,所述目标位置是指能够使所述手术器械恢复至所述手术视野内并对应于其在离开所述手术视野前的位置。
可选地,所述程序执行如下步骤以获取所述目标位置:获取所述手术视野的中心点的坐标,并以所述手术视野的中心点为作为所述目标位置。
可选地,所述程序执行如下步骤以获取所述目标位置:获取所述手术视野的中心点的坐标;获取以所述中心点为球心的球面,并以球内及球面上的任意一点为所述目标位置,其中球面的半径为所述手术器械的末端执行器的长度。
可选地,所述程序执行如下步骤以得到位于所述手术视野外的所述手术器械的目标位置:获取所述手术视野的中心点的坐标,以及位于所述手术视野内的所述手术器械的末端点T的坐标;计算所述中心点与位于所述手术视野内的所述手术器械的末端点T的连线TC的中点Z的坐标,并以所述中点Z作为位于所述手术视野外的手术器械的目标位置。
可选地,所述程序执行如下步骤以获取位于所述手术视野外的所述手术器械的目标位置:获取所述手术视野的中心点的坐标,以及位于所述手术视野内的手术器械的末端点T的坐标;计算所述中心点与位于所述手术视野内的所述手术器械的末端点T的连线TC的中点Z的坐标;获取以位于所述手术视野内的所述手术器械的末端点T为球心的球面,所述球面的半径为位于所述手术视野内的手术器械的末端执行器的长度;判断所述中点Z到位于所述手术视野内的所述手术器械的末端点T的距离是否大于所述球面的半径,若是,则以所述中点Z为所述目标位置;若否,则选择所述连线TC上的点A为所述目标位置,所述点A位于所述中点Z与所述中心点之间,且所述点A到位于所述手术视野内的所述手术器械的末端点T的距离为所述球面的半径 的m倍,m大于1。
可选地,所述程序执行如下步骤以获取所述手术视野的中心点的坐标:根据所述图像获取装置的末端点N和参考点M的坐标,以及所述图像获取装置的景深H,得到所述中心点的坐标;其中,所述参考点M是手术过程中位置固定,并位于所述图像获取装置的轴线上的点。
可选地,所述程序执行如下步骤以得到所述中心点的坐标:获取所述末端点N的坐标N(x 1,y 1,z 1),以及所述参考点M的坐标M(x 2,y 2,z 2);计算所述图像获取装置的轴线方向上的方向向量为
Figure PCTCN2022075224-appb-000001
计算所述手术视野的中心点的坐标C(x 3,y 3,z 3)为:C(x 3,y 3,z 3)=N(x 1,y 1,z 1)+H×E NM
可选地,所述程序执行如下步骤以规划所述运动方案:根据一人为规划的所述手术器械的第一运动轨迹得到第一运动轨迹方程;所述第一运动轨迹的起始点为所述手术器械的当前位置,所述第一运动轨迹的终止点为所述目标位置;选取与所述第一运动轨迹相匹配的预设运动轨迹方程,以作为第二运动轨迹方程;对所述第一运动轨迹方程和所述第二运动轨迹方程进行组合优化,以得到第三运动轨迹方程;获取所述手术器械与所述手术视野的相对位置关系;根据所述手术器械与所述手术视野的相对位置关系确定所述运动方案;所述运动方案由所述第一运动轨迹方程限定,或由所述第二运动轨迹方程限定,或由所述第三运动轨迹方程限定。
可选地,所述程序执行如下步骤以规划所述运动方案:获取所述图像获取装置的末端点E 1的位置,以及所述图像臂的不动点R 1的坐标;获取所述工具臂的末端点T 1的坐标;计算直线E 1T 1与直线T 1R 1所形成的夹角θ 1;确定所述运动方案,所述运动方案包括:所述图像臂以所述图像臂的不动点R 1为转动中心沿第一方向旋转θ 1角度。
可选地,所述程序还执行如下步骤:获取所述工具臂的不动点R 2的坐标;所述运动方案还包括:所述图像臂以所述图像臂的不动点R 1为转动中心沿第二方向旋转θ 2角度,以及所述工具臂以所述工具臂上的不动点R 2为转动中心沿所述第二方向旋转θ 2角度,以使所述手术器械保持在所述手术视野内。
可选地,至少一个所述手术器械位于所述手术视野内,至少一个手术器械位于所述手术视野外;用于挂载位于所述手术视野内的手术器械的工具臂为第一工具臂,用于挂载位于所述手术视野外的手术器械的工具臂为第二工具臂;
所述程序执行如下步骤以规划所述运动方案:获取所述图像获取装置的末端点E 1的位置,以及所述图像臂的不动点R 1的位置;获取所述第一工具臂的不动点R 3,以及位于所述手术视野外的手术器械的末端点T 1的位置;计算直线E 1T 1与直线T 1R 1所形成的夹角θ 1;确定所述运动方案,所述运动方案包括所述图像臂以所述图像臂的不动点R 1为转动中心沿第一方向旋转θ 1角度,以及所述第一工具臂以所述第一工具臂上的不动点R 3为转动中心沿第一方向 旋转θ 1角度,以使所述第二工具臂上挂载的所述手术器械回到所述手术视野内的同时,所述第一工具臂上挂载的所述手术器械保持在所述手术视野内。
为实现上述目的,本发明还提供了一种电子设备,包括处理器和如前任一项所述的计算机可读存储介质,所述处理器用于执行所述计算机可读存储介质上所存储的程序。
为实现上述目的,本发明还提供了一种手术机器人系统,包括:图像臂,用于挂载图像采集装置,所述图像采集装置用于提供手术视野;工具臂,用于挂载手术器械,所述手术器械用于在所述手术视野内执行手术操作;以及,控制单元,所述控制单元被配置用于执行如前任一项所述的计算机可读存储介质上所存储的程序。
可选地,还包括输入装置,所述控制单元根据所述输入装置所输入的指令来规划所述运动方案。
可选地,所述手术机器人系统包括如上所述的电子设备,所述控制单元包括所述处理器。
与现有技术相比,本发明的计算机可读存储介质、电子设备及手术机器人系统具有如下优点:
第一、前述的计算机可读存储介质上存储有程序,当所述程序被执行时,执行如下步骤:根据图像获取装置所提供的手术视野信息判断手术器械是否在手术视野内;当所述手术器械位于所述手术视野外时,规划运动方案,并使连接有所述图像获取装置的图像臂和/或连接有所述手术器械的工具臂执行所述运动方案,使得所述手术器械回到所述手术视野内;其中,在所述图像臂和/或所述工具臂执行所述运动方案之前或之中,所述程序还执行安全措施,以使所述图像获取装置和/或所述手术器械处于安全状态。将所述计算机可读存储介质应用于手术机器人系统并利用所述手术机器人系统执行手术操作时,一旦出现手术器械位于手术视野外的情况时,可执行相应程序,以确保手术器械在不伤害人体组织的情况下回到手术视野内,提高手术操作的可控性和安全性。
第二、所述程序在规划运动方案,并控制所述工具臂执行所述运动方案以使所述手术器械回到所述手术视野内时,可提供多种手术器械的目标位置规划方法,以适用于不同的手术场景,提高手术机器人系统的通用性。
第三、所述运动方案还可涉及图像臂的运动案,并控制图像臂运动以使手术器械回到手术视野内,利用图像臂和/或工具臂运动,组合形成不同的调整策略,保证手术过程中的冗余选择,确保手术器械回到手术视野。
附图说明
附图用于更好地理解本发明,不构成对本发明的不当限定。其中:
图1是本发明根据一实施例所提供的手术机器人系统的结构示意图;
图2是本发明根据一实施例所提供的手术机器人系统的控制流程图;
图3是本发明根据一实施例所提供的手术机器人系统的工具臂执行运动方案时,手术器械的状态示意图;
图4是本发明根据另一实施例所提供的手术机器人系统的工具臂执行运动方案时,手术器械的状态示意图;
图5是本发明根据一实施例所提供的手术机器人系统的工具臂执行运动方案时的控制原理框图;
图6a是本发明根据一实施例所提供的手术机器人系统的手术器械在手术视野内的示意图,图示中有一个手术器械;
图6b是本发明根据一实施例所提供的手术机器人系统的手术器械在手术视野内的示意图,图示中有两个手术器械;
图6c是本发明根据一实施例所提供的手术机器人系统的手术器械在手术视野内的示意图,图示中有三个手术器械;
图7是本发明根据一实施例所提供的手术机器人系统在进行手术时的示意图,图示中有两个手术器械,其中一个手术器械在手术视野内,另一个手术器械在手术视野外;
图8a是本发明根据一实施例所提供的手术机器人系统中控制单元规划的手术器械的目标位置的示意图,图示中虚线所示为第二手术器械在手术视野外的情形,实线所示为第二手术器械回到手术视野内的情形;
图8b是本发明根据另一实施例所提供的手术机器人系统中控制单元规划手术器械的目标位置的示意图;
图8c是本发明根据又一实施例所提供的手术机器人系统中控制单元规划的手术器械的目标位置的示意图;
图9是本发明根据一实施例所提供的手术机器人系统中控制单元规划工具臂的运动方案时的原理框图;
图10a是本发明根据一实施例所提供的手术机器人系统中的手术器械位于手术视野外的示意图,图示中,手术器械的当前位置与目标位置之间具有人体组织;
图10b是本发明根据一实施例所提供的手术系统机器人系统的手术器械从手术视野外回到手术视野中时的路径示意图,图示中手术器械的当前位置与目标位置之间具有人体组织;
图11a是本发明根据一实施例所提供的手术机器人系统的控制单元采用T型轨迹规划法规划工具臂的运动方案时,手术器械的位置与时间的关系图;
图11b是本发明根据一实施例所提供的手术机器人系统的控制单元采用T型轨迹规划法规划工具臂的运动方案时,手术器械的速度与时间的关系图;
图11c是本发明根据一实施例所提供的手术机器人系统的控制单元采用T型轨迹规划法规划工具臂的运动方案时,手术器械的加速度与时间的关系图;
图12a是本发明根据一实施例所提供的手术机器人系统的控制单元规划图像臂的运动方案的示意图;
图12b是本发明根据一实施例所提供的手术机器人系统的控制单元控制内窥镜运动的示意图,图示中第二手术器械位于手术视野内;
图12c是本发明根据一实施例所提供的手术机器人系统的控制单元控制内窥及第二手术器械运动的示意图。
[附图标记说明如下]:
10-医生控制台;11-显示装置;20-图像显示装置;30-手术操作装置;31-图像臂,32-工具臂,33-内窥镜,32a-第一工具臂,32b-第二工具臂,33’-手术视野,34-手术器械,34a-第一手术器械,34b-第二手术器械,35-戳卡;40-手术台;50-工具放置装置;61-轨迹识别模块,62-选择模块,63-存储模块,64-位置计算单元,65-轨迹计算单元。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
另外,以下说明内容的各个实施例分别具有一或多个技术特征,然此并不意味着使用本发明者必需同时实施任一实施例中的所有技术特征,或仅能分开实施不同实施例中的一部或全部技术特征。换句话说,在实施为可能的前提下,本领域技术人员可依据本发明的公开内容,并视设计规范或实作需求,选择性地实施任一实施例中部分或全部的技术特征,或者选择性地实施多个实施例中部分或全部的技术特征的组合,借此增加本发明实施时的弹性。
如在本说明书中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,除非内容另外明确指出外。如在本说明书中所使用的,术语“或”通常是以包括“和/或”的含义而进行使用的,除非内容另外明确指出外,以及术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本发明的核心思想在于提供一种计算机可读存储介质,其上存储有程序,当所述程序被执行时,执行如下步骤:根据图像获取装置所提供的手术视野信息判断手术器械是否在手术视野内;当所述手术器械位于所述手术视野外时, 规划运动方案,并使连接有所述图像获取装置的图像臂和/或连接有所述手术器械的工具臂执行所述运动方案,使得所述手术器械回到所述手术视野内;其中,在所述图像臂和/或所述工具臂执行所述运动方案之前或之中,所述程序还执行安全措施,以使所述图像获取装置和/或所述手术器械处于安全状态。将所述计算机可读存储介质应用于手术机器人系统,并在所述手术机器人系统执行手术操作的过程中,一旦出现手术器械位于手术视野外的情况时,所述手术机器人系统便可执行相应程序,以使所述手术器械回到所述手术视野内。换句话说,在该手术机器人系统中,当所述手术器械离开手术视野时,通过执行相应操作,以使手术器械回到所述手术视野内,避免医生在视野盲区进行手术操作,提高手术的安全性和可控性。
进一步地,本发明实施例还提供了包括所述计算机可读存储介质的电子设备,以及一手术机器人系统,所述手术机器人系统包括控制单元,所述控制单元执行所述计算机可读存储介质上所存储的程序。
为使本发明的目的、优点和特征更加清楚,以下结合附图对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。附图中相同或相似的附图标记代表相同或相似的部件。
本发明实施例所提供的手术机器人系统例如可以是要操作的主从机器人系统,也可以是其他的手术机器人系统。该手术机器人系统可进行各类微创伤手术操作。为方便表述,以下的描述中一律以所述手术机器人系统为主从机器人系统,且所述手术机器人系统进行腹腔镜手术为例进行说明,但本领域技术人员应知晓,其不应当对本发明构成限制。
本发明实施例所提供的手术机器人系统例如可以是遥操作的主从机器人系统,也可以是其他的手术机器人系统。该手术机器人系统可进行各类微创伤手术操作。以下的描述中,为方便理解,以所述手术机器人系统为主从机器人系统,且所述手术机器人系统进行腹腔镜手术为例进行说明,但本领域技术人员应知晓,其不应当对本发明构成限制。
请参考图1,所述手术机器人系统包括控制端和执行端,所述控制端包括医生控制台10,所述执行端包括图像显示装置20、手术操作装置30、手术台40和工具放置装置50。所述手术机器人系统主要是对所述手术台40上的患者进行微创伤手术治疗。
请继续参考图1,所述手术操作装置30上包括至少一个图像臂31和至少一个工具臂32,所述图像臂31上挂载有图像获取装置。所述图像获取装置例如是内窥镜33或超声探测器等其他可以进入患者体内并获取患者体内的图像的装置,为方便描述,后文中以所述图像获取装置为内窥镜33为例进行介绍。所述工具臂31用于挂载手术器械34,所述内窥镜33和所述手术器械34通过患者身体上的创口进入患者体内,具体是穿过设置创口处的戳卡(图1中未示出)并进入患者体内。之后,所述内窥镜33可获取人体组织信息、人体内 的手术器械34信息及手术环境信息,即所述内窥镜33提供手术视野,而所述手术器械34在所述手术视野中执行手术操作。
本实施例中,所述医生控制台10包括主操作手(又称主手),所述控制单元与所述主操作手、所述图像臂31、所述工具臂32及所述手术器械34通信连接,且所述主操作手与所述工具臂32和所述手术器械34构成主从控制关系。即,所述控制单元被配置为控制所述工具臂32在手术过程中根据主操作手的运动而运动,且控制所述手术器械34执行所述主操作手相关的运动指令。进一步地,所述医生控制台10还包括显示装置11,所述显示装置11用于显示患者体内的情况以及所述手术器械34的运动情况。进一步地,当手术器械不在手术视野内时,所述控制单元被配置为根据接收的恢复接收操作指令,断开所述主操作手与所述工具臂32及所述手术器械34的主从控制关系,之后可执行恢复操作以使所述手术器械34回到所述手术视野内。本实施例中对所述指令的触发方式不做限定,可选地,医生可通过触发手术机器人系统中的输入装置,例如开关来向所述控制单元传输所述指令,所述开关可以是显示装置11的交互界面上的虚拟按键,也可以是声控开关,还可以是电气硬件开关,所述电气硬件开关可设置在所述医生控制台10的支撑横梁或主控制臂上,或者所述指令可以由现有的手术机器人系统的脚踏开关或主手捏合控制的不同控制模式触发等。
在执行所述恢复操作时,所述控制单元被配置用于:规划一运动方案;控制所述图像臂31和/或所述工具臂32执行所述运动方案,以使所述图像臂31和/或所述工具臂32在执行所述运动方案之后,以及所述内窥镜33的末端和/或所述手术器械34的末端位于各自的戳卡外部时,所述手术器械34回到所述手术视野内。可理解,本文中所述述及的“所述内窥镜33的末端和/或所述手术器械34的末端位于各自的戳卡外部”是指所述内窥镜33和/或所述手术器械34在患者体内并位于戳卡外部的情形。
不仅如此,所述控制单元还被配置为在所述图像臂31和/或所述工具臂32执行所述运动方案之前或之中执行安全措施,以使所述内窥镜33和/或所述手术器械34处于一安全状态。这里所述的“安全状态”是指,所述内窥镜33和/或所述手术器械34在手术过程中不对非目标人体组织造成伤害。
图2示出了所述手术机器人系统的控制流程图,请参考图2,所述手术机器人系统的控制流程如下:
步骤S1:医生判断所述手术器械是否在所述手术视野内,若是,则继续进行手术操作,若否,则执行步骤S2。
步骤S2:医生判断是否需要对所述手术器械和所述内窥镜的相对位置进行调整,以使所述手术器械回到所述手术视野;若否,则继续执行手术操作,若是,则执行步骤S3。
步骤S3:医生触发所述指令以使所述控制单元断开所述主操作手与所述工具臂及所述手术器械的主从控制关系。
步骤S4:所述控制单元规划运动方案。
步骤S5:所述控制单元控制所述图像臂和/或工具臂执行所述运动方案。
步骤S6:所述控制单元执行所述安全措施,以使所述图像臂和/或所述工具臂在执行所述运动方案的过程中不对人体组织的安全产生威胁。
步骤S7:医生判断所述手术器械是否回到所述手术视野内,若是,则恢复主操作手与所述工具臂及所述手术器械的主从控制关系,并继续进行手术操作;若否,则返回执行步骤S4。
其中,所述步骤S6在所述步骤S5之前执行,或所述步骤S6与所述步骤S5同步执行。以及,所述步骤S7中,在所述手术器械34的末端和所述内窥镜33的末端分别位于各自的戳卡外部情况下,医生判断所述手术器械是否回到所述手术视野。
本实施例中,所述控制单元执行所述安全措施的目的在于避免所述图像臂和/或所述工具臂在执行所述运动方案的过程中,所述内窥镜和/或所述手术器械对人体组织造成不必要伤害。
本领域技术人员可理解,对于非主从控制的手术机器人系统而言,所述控制单元在接受所述指令后直接规划所述运动方案,控制所述图像臂和/或所述工具臂执行所述运动方案及所述安全措施,以使所述手术器械34回到所述手术视野。也即,所述非主从控制的手术机器人系统无需执行所述步骤S3。
可选地,在一些实施例中,所述步骤S6在所述步骤S5之前执行,此时所述安全措施包括驱动所述内窥镜33和/或所述手术器械34移动,直至所述内窥镜33的末端和所述手术器械34的末端位于相应的所述戳卡35中。具体来说,若所述手术器械34单独执行所述运动方案,在所述步骤S6中,将所述手术器械34的末端移动至手术器械34的戳卡35中(如图3所示)。或者,若所述内窥镜33单独执行所述运动方案,在所述步骤S6中,将所述内窥镜33的末端移动至内窥镜33的戳卡中。或者,若所述手术器械34和所述内窥镜33共同执行所述运动方案,在所述步骤S6中,将所述手术器械34的末端移动至手术器械34的戳卡中,以及将所述内窥镜33的末端移动至所述内窥镜33的戳卡中。这样一来,所述图像臂31和/或所述工具臂32在执行所述运动方案时,所述内窥镜33的末端和/或所述手术器械34的末端始终位于戳卡内,其不会接触人体组织,从而避免对人体组织造成伤害。在所述图像臂31和/或所述工具臂32执行所述运动方案之后,还需要控制所述内窥镜33的末端和/或所述手术器械34的末端移动,以从相应的所述戳卡中伸出至人体内部,以便于判断所述手术器械34是否回到所述手术视野33’。本领域技术人员可知晓,这里驱动所述内窥镜33的末端和/或所述手术器械34末端移动以从相应戳卡中伸出的操作,可由控制单元驱动以自动执行,也可由医护人员人工执行,优选由所述控制单元执行。以及,在执行安全措施之前,若所述内窥镜33的末端和/或所述手术器械34的末端到相应戳卡的末端的距离为L 0,则在执行所述安全措施时,所述控制单元控制所述内窥镜33和/或所述手术器 械34朝向体外的方向移动L 0,并在所述图像臂31和/或所述工具臂32执行所述运动方案之后,所述内窥镜33和/或所述手术器械34沿朝向体内的方向移动L 0,使所述内窥镜33的末端或所述手术器械34的末端从所述戳卡内伸出至人体内,以判断所述手术器械34是否回到所述手术视野。此处所述的戳卡的末端是指戳卡位于人体内的一端。相应的,后文中述及的戳卡的近端是指戳卡位于人体外的一端。
在另一些实施例中,所述步骤S6与所述步骤S5同步执行,此时所述安全措施包括:判断所述图像臂31和/或所述工具臂32的特征值是否在安全阈值内,若否,则驱动所述内窥镜33和/或所述手术器械34朝向人体外的方向移动预定距离。所述“朝向人体外的方向”是指沿戳卡的末端指向戳卡的近端的方向。这样一来,所述图像臂31和/或所述工具臂32在执行所述运动方案时,所述内窥镜33的末端和/或所述手术器械末端可能在相应戳卡35的外部,但与人体组织之间没有作用力,甚至与人体组织之间间隔一定距离(如图4所示)。这里,所述“特征值”是所述图像臂31和/或工具臂32的关节力矩、关节位置或关节移动速度。
请参考图5,本文以所述控制单元控制所述工具臂执行所述运动方案、且所述特征值为所述工具臂的关节力矩、所述安全阈值为力矩阈值为例说明所述安全措施的具体执行过程。
步骤a:所述控制单元实时监控所述工具臂的关节力矩τ 1。所述关节力矩可由设置在所述工具臂的关节处的传感器获取。
步骤b:所述控制单元判断τ 1是否大于所述控制单元内预存的力矩阈值τ 0,若否,则返回步骤a;若是,则执行步骤c。
步骤c:所述控制单元控制所述内窥镜和/或所述手术器械朝向体外的方向移动D 0
重复执行所述步骤a至所述步骤c,直至所述工具臂将所述运动方案执行完毕。
所述工具臂执行所述运动方案之后,所述控制单元还控制所述手术器械沿朝向体内的方向移动p×D 0,p是步骤c的执行次数。此处所述的“朝向体内的方向”是指沿所述戳卡的近端指向戳卡的末端的方向。
本领域技术人员可理解,若所述特征值是关节位置时,所述控制单元实时监测所述关节的实际位置与预定位置的偏差,若该偏差不在安全阈值内,则控制所述内窥镜和/或手术器械沿朝向体外的方向移动预定距离。若所述特征值是关节移动速度时,所述控制单元实时监测关节的实际速度与预定速度的偏差。
或者,在替代性的实施例中,所述安全措施包括:所述控制单元判断所述图像臂和/或所述工具臂的特征值是否在安全阈值内,若否,则所述控制单元控制所述图像臂和/或所述工具臂暂停执行所述运动方案。之后由医护人员人工调整所述内窥镜和/或所述手术器械,使得所述内窥镜和/或所述手术器械 沿朝向体外的方向移动预定距离后,再执行所述运动方案。
本实施例中,所述控制单元可规划不同的运动方案,并控制所述工具臂和所述图像臂中的至少一个执行所述运动方案。下面,本文将详细介绍所述控制单元规划所述运动方案的方法。
如图6a至图6b所示,所述手术机器人系统完成手术操作至少需要一个所述内窥镜33和至少一个所述手术器械34。图6a示出了所述手术机器人系统包括一个所述内窥镜33和一个所述手术器械34的示意图,图6b示出了所述手术机器人系统包括一个所述内窥镜33和两个所述手术器械34的示意图,图6c示出了所述手术机器人包括一个所述内窥镜33和三个所述手术器械34的示意图。当然,在其他实施例中,所述手术机器人系统还可以包括更多个所述手术器械34以及两个以上的所述内窥镜33。以上所述内窥镜33为用于获取人体内组织图像信息的任何图像获取装置。
为便于理解,本文以所述手术机器人系统包括一个所述内窥镜33和两个所述手术器械34为例对本发明中所述控制单元规划所述运动方案的方式作更为详尽的说明。为便于表述,如图7所示,两个所述手术器械34分别被称之为第一手术器械34a和第二手术器械34b,相应地,用于挂载所述第一手术器械34a的工具臂被称之为第一工具臂32a,用于挂载所述第二手术器械34b的工具臂被称之为第二工具臂32b。本领域技术人员可对以下描述进行修改,以使其适应于所述手术机器人系统包括两个以上的内窥镜及三个以上的手术器械的情形。
请再次参考图6b,在手术过程中,两个所述手术器械34均位于所述内窥镜33所提供的手术视野33’内时,医生可进行正常的手术操作。但当至少一个所述手术器械34例如所述第二手术器械34b位于所述手术视野33’以外(如图7所示)时,不利于手术操作。若医生确认需要对所述第二手术器械34b与所述内窥镜33的相对位置继续调整时,触发所述指令,以使所述控制单元断开所述主操作手与所述工具臂32及所述手术器械34之间的主从控制关系,并调整所述手术器械34与所述内窥镜33的相对位置关系,以使所述第二手术器械34b回到所述手术视野33’中。
在一个实施例中,所述控制单元通过控制所述第二工具臂32b移动,以使所述第二手术器械34b回到所述手术视野内。此时,所述控制单元被配置为先规划所述第二手术器械34b在所述手术视野33’内的目标位置,再规划所述运动方案。
针对不同的手术环境,所述目标位置可采用不同的方法进行规划。例如,如图8a所示,在一种实现方式中,当因所述内窥镜33和/或所述第二手术器械34b移动导致所述第二手术器械34b不在所述手术视野内33’内时,所述第二手术器械34b的所述目标位置是指能够使所述第二手术器械34b恢复至所述手术视野33’内并对应于其在离开所述手术视野33’前的位置。也就是说,在此种情况下,以所述手术视野33’所在的坐标系为参考,将所述第二手术器 械34b上一时刻在所述手术视野33’内的位置作为所述目标位置。此处所述的“上一时刻”是指所述第二手术器械34b在离开所述手术视野33’之前的指定时刻。
具体而言,因所述内窥镜33调整位姿造成所述手术视野33’移位导致所述第二手术器械34b离开所述手术视野33’时,所述上一时刻即所述内窥镜33调整位姿前的时刻。此时,所述控制单元被配置为:记录所述第二手术器械34b在所述内窥镜33调整位姿前的位置以作为所述目标位置。所述第二手术器械34b的位置可通过机器人运动学方法(DH法)获得。本领域技术人员可理解,在该方式中,当所述内窥镜33调整位姿时,所述手术视野33’的坐标系随所述内窥镜33同步运动,以将所述内窥镜33的运动转换为所述第二手术器械34b相对于所述手术视野33’的坐标系的运动。
或者,因所述第二手术器械34b自身的移动导致其离开所述手术视野33’时,所述控制单元被配置为:实时记录所述第二手术器械34b的位置;确定所述第二手术器械34b离开所述手术视野33’的时刻,并以上一时刻所述第二手术器械34b的位置作为所述目标位置。例如,所述控制单元每隔预定时间记录一次所述第二手术器械34b的位置,在第i时刻所述第二手术器械34b在所述手术视野33’内,而在第i+1时刻,所述控制单元确定所述第二手术器械34b离开所述手术视野33’,则以第i时刻所述第二手术器械34b的位置为所述目标位置。所述控制单元可根据机器人运动学方法获得所述第二手术器械34b的位置,也可以通过监测设置在所述第二手术器械34b上的标识符来获取所述第二手术器械34b的位置。所述标识符可以是显影元件,也可以是其他任何可指示所述第二手术器械34b的指向性标记。
又如,如图8b所示,在另一种实现方式中,所述控制单元被配置用于获取所述手术视野的中心点C的位置,并以所述中心点C做为所述目标位置。所述控制单元在获取所述中心点C的位置时被具体配置为:
在一个基准坐标系中,先根据机器人运动学方法获得所述内窥镜33的末端点N的位置N(x 1,y 1,z 1),以及获取一个参考点M的位置M(x 2,y 2,z 2)。所述参考点M是在手术过程中位置始终不变的点,且所述参考点M在所述内窥镜33的轴线上。通常,在腹腔镜手术中,所述参考点M是内窥镜33位于患者腹部创口(俗称肚皮点)处的点,或者所述参考点M是戳卡上的一点。所述基准坐标系是人为建立的坐标系,例如大地坐标系。
再根据方向向量计算方法,计算所述内窥镜33轴线方向上的方向向量为
Figure PCTCN2022075224-appb-000002
最后计算所述手术视野的中心点C的坐标C(x 3,y 3,z 3)为:C(x 3,y 3,z 3)=N(x 1,y 1,z 1)+H×E NM,H是所述内窥镜的景深。本领域技术人 员可理解,在内窥镜手术中,只有在内窥镜景深合理范围内,视野才会清晰。
进一步地,请继续参考图8b,在该实现方式中,所述目标位置不仅仅可以是所述中心点C,还可以是以所述中心点C为球心的一个球内及球面上的其他点。这样,所述控制单元还进一步被配置为:获取一以所述中心点C为球心的球面,并以所述球内及球面上的任意一点为所述目标位置。所述球的半径可以是所述第二手术器械34b的末端执行器的长度,或者所述球面的半径由医生根据人体组织的大小来确定,这对于本领域技术人员而言是可以合理设置的。如此一来,当所述目标位置在所述球面上时,所述目标位置的坐标D(x 4,y 4,z 4)与所述中心点C的坐标及球的半径满足如下关系:
r 3=(x 3-x 4) 2+(y 3-y 4) 2+(z 3-z 4) 2
再如,在又一种实现方式中,如图8c所示,利用所述第一手术器械34a和所述手术视野33’的中心点C共同确定所述目标位置。详细而言,所述控制单元被配置为:
首先,在一个基准坐标系中采用前述的方法获取所述手术视野的中心点C的位置C(x 3,y 3,z 3),以及利用机器人运动学方法获取所述第一手术器械34a的末端点T(x 5,y 5,z 5)的位置T(x 5,y 5,z 5);
接着,采用平均算法计算所述中心点C与所述第一手术器械34a的末端点T的连线的中点Z的位置。
该实现方式中,若不考虑所述第一手术器械34a和所述第二手术器械34b之间可能发生的干涉问题,可以直接以所述中点Z作为所述目标位置。若考虑第二手术器械34b回到手术视野33’时与所述第一手术器械34a可能产生干涉,如图8c所示,所述控制单元还进一步被配置为:
获取一以所述第一手术器械34a的末端点T为球心的球面,所述球面的半径r为所述第一手术器械34a的末端执行器的长度。
判断所述中点Z到所述第一手术器械34a的末端点T的距离是否大于所述球面的半径r,若是,则以所述中点Z为所述目标位置;若否,则选择连线TC上的点A(图中未标记)为所述目标位置,所述点A位于所述中点Z与所述中心点C之间,且所述点A到所述第一手术器械的末端点T的距离为所述球的半径r的m倍,m大于1。这样,所述点A的坐标A(x 6,y 6,z 6)可通过以下公式计算:
Figure PCTCN2022075224-appb-000003
其中,
Figure PCTCN2022075224-appb-000004
是TC连线的方向向量。
所述控制单元具有多种目标位置的规划方法,使得医生可根据手术的实 际情况选择最为合适的方法来确定所述第二手术器械34b的目标位置,提高所述手术机器人系统的适应性和通用性。
接着,所述控制单元规划所述运动方案。
在一种可选的实现方式中,如图9所示,所述控制单元可包括轨迹识别模块61、选择模块62、存储模块63、位置计算单元64和轨迹计算单元65,所述存储模块63中存储有预设运动轨迹方程。所述手术机器人系统的所述显示装置11还具有触屏手写功能,所述显示装置11还用于显示医护人员人为规划的所述第二工具臂32b的运动轨迹(即使所述第二手术器械从当前位置移动到所述目标位置时所述第二工具臂的运动轨迹),以作为第一运动轨迹。也就是说,医护人员可根据所述显示装置显示的患者体内的情况,人为第在所述显示装置11上绘制所述第二手术器械34b的第一运动轨迹。与此同时,所述轨迹识别模块61识别所述第一运动轨迹,并生成第一运动方程。接着,所述选择模块62在所述存储模块63中选择一与所述第一运动轨迹方程相匹配的预设运动轨迹方程,以作为第二运动轨迹方程。应知晓,这里所述的“一与所述第一运动轨迹方程相匹配的预设轨迹方程”是指,一与所述第一运动轨迹方程最为接近的预设轨迹方程。以及,所述轨迹计算单元65对所述第一运动轨迹方程和所述第二运动轨迹方程进行结合并重新优化,以得到第三运动轨迹方程。接着,所述位置计算单元64用于计算所述第二手术器械34b与所述手术视野33’的相对位置关系。最后,所述轨迹计算单元65用于根据所述第二手术器械34b和所述手术视野33’的相对位置关系确定所述运动方案。根据实际情况,所述运动方案可以由所述第一运动轨迹方程限定,或由所述第二运动轨迹方程限定,或由所述第三运动轨迹方程限定。此处,所述运动方案可由第一运动轨迹方程或所述第二运动轨迹方程或所述第三运动轨迹方程限定是指,通过机器人逆运动学算法将相应运动轨迹方程所限定的第二手术器械34b的运动解算为第二工具臂32b的关节的运动,由此可得到硕士运动方案。本实施例中,通过人为规划的第一运动轨迹进行运动方案的初步规划(即,所述第一运动轨迹方程所限定的运动方案和所述第二运动轨迹方程所限定的运动方案是大致的运动方案,并不一定是最终的运动方案),然后再利用轨迹计算单元获得最优的运动方案,保证所述第二手术器械34b在执行所述运动方案时可平稳、顺滑地运动。
可选地,所述控制单元包括第一控制单元和第二控制单元,其中所述第一控制单元可设置在所述图像显示装置20或所述医生控制台10上,并包括所述轨迹识别模块61、所述选择模块62和所述存储模块63。所述第二控制单元可包括所述微针计算单元64和所述轨迹计算单元65,且所述第二控制单元可设置在所述医生控制台10上,或设置在所述手术操作装置30上。在其他实现方式中,所述第一控制单元和所述第二控制单元也可集成为一体。即,本实施例对所述控制单元具体如何设置不作特别限定。
此外,本领域技术人员可知晓,在替代性的实现方式中,获取所述第一 运动轨迹方程及所述第二运动轨迹方程的过程并不是必须的。换句话说,所述控制单元可直接利用所述位置计算单元计算所述第二手术器械34b与所述手术视野33’的位置关系,然后所述轨迹计算单元根据所述第二手术器械34b与所述手术视野33’的位置关系规划所述第二工具臂32b的运动方案。
进一步地,如图10a所示,在所述第二手术器械34b与所述手术视野33’之间存在人体组织时,为避免所述第二工具臂在运动过程中,所述第二手术器械34b对人体组织造成伤害,控制单元还被配置为根据图像识别定位出的人体组织,规划合理的运动方案,确保所述图像臂和/或所述工具臂移动安全、顺畅。
具体来说,在所述位置计算单元获取所述第二手术器械34b与所述手术视野33’之间的位置关系之后,所述控制单元还被配置用于:规划一安全区域S 1和一移动区域S 2,其中,所述安全区域S 1包围在所述人体组织的外部,所述移动区域S 2的边界在所述安全区域S 1的外部。之后所述控制单元再确定所述运动方案,且所述第二工具臂执行所述运动方案时,所述第二手术器械34b所形成的运动轨迹上的任意一点在所述移动区域S 2的边界上,或在所述移动区域S 2的外部(如图10b所示)。这样所述第二手术器械34b不会对人体组织造成任何损伤。
请继续参考图10b,本实施例中,优选所述安全区域S 1是以人体组织的中心为球心的球形区域,所述移动区域S 2是与所述安全区域S 1同心的球形区域。所述第二手术器械34b的运动轨迹包括多条依次连接的直线轨迹,且每条所述直线轨迹均是所述移动区域S 2的切线。具体地,如图10b所示,所述第二手术器械34b的当前位置为a 1,其在所述手术视野33’的外部,所述第二手术器械34b的目标位置为d,且a 1与d之间存在人体组织。所述控制单元规划了一半径为r 1的安全区域S 1,以包围人体组织,同时所述控制单元还规划了一半径为r 2的移动区域S 2,r 2>r 1,所述移动区域S 2可以经过a 1。然后控制单元在所述移动区域S 2的轮廓上设置点a 4,以及在所述移动区域S 2的外部设置了点a 2和点a 3,且点a 1和点a 2的连线、点a 2和点a 3的连线,点a 3和点a 4的连线均与所述移动区域S 2相切,这样点a 1、点a 2、点a 3、点a 4及点d之间的连线便可构成所述第二手术器械34b的运动轨迹。
本实施例中,所述控制单元(具体为所述轨迹计算单元)可采用常规的多项式轨迹设计例如n次多项式样条差值法(n≥5)、S型轨迹设计或T型轨迹设计中的任一种来确定所述运动方案。下面以所述控制单元采用T型轨迹设计方法确定所述第二工具臂32b的运动方案为例进行说明。
利用T型轨迹设计方法设计的运动方案中,所述第二工具臂32b的运动方案包括:匀加速运动阶段、匀速运动阶段及匀减速运动阶段。在执行所述运动方案的过程中,所述第二手术器械34b的位置、速度、加速度随时间的变化关系图请参考图11a、图11b及图11c。以及,在执行所述运动方案时,当所述第二手术器械34b处于匀加速运动阶段,所述第二手术器械34b的位 置可通过以下公式计算:
Figure PCTCN2022075224-appb-000005
所述第二手术器械34b的速度可通过以下公式计算:
Figure PCTCN2022075224-appb-000006
所述第二手术器械34b的加速度有:
Figure PCTCN2022075224-appb-000007
当所述第二手术器械34b处于匀速运动阶段时,所述第二手术器械34b的位置可通过如下公式计算:
Figure PCTCN2022075224-appb-000008
所述第二手术器械34b的速度为:
Figure PCTCN2022075224-appb-000009
所述第二手术器械34b的加速度为:
Figure PCTCN2022075224-appb-000010
当所述第二手术器械34b处于匀减速运动阶段时,所述第二手术器械34b的位置可通过如下公式计算:
Figure PCTCN2022075224-appb-000011
所述第二手术器械34b的速度通过如下公式计算:
Figure PCTCN2022075224-appb-000012
所述第二手术器械34b的加速度为:
Figure PCTCN2022075224-appb-000013
式中,q 0是所述第二手术器械34b在开始时的位置,
Figure PCTCN2022075224-appb-000014
是所述第二手速器械34b在t c时刻的位置,
Figure PCTCN2022075224-appb-000015
是所述第二手术器械34b在t j时刻的位置。t c是所述第二手术器械34b达到最大速度的时刻,t j是所述第二手术器械34b开始减速的时刻,t f是所述第二手术器械34b的速度为零的时刻。
在另一个实施例中,所述控制单元还可以通过控制所述图像臂31和/或工具臂32运动,以使所述第二手术器械34b回到所述手术视野。请参考图12a,当所述第二手术器械34b位于所述手术视野33’以外时,所述控制单元被配置用于:
根据机器人运动学方法获取图像臂31的末端点E 1的位置,以及图像臂31上一个不动点R 1的位置,所述不动点R 1位于所述内窥镜33的轴线上,不动点R 1可以是内窥镜33的戳卡上对应于患者腹部创口处的点(俗称肚皮点),或图像臂31上对应于肚皮点处的一点。
根据机器人运动学方法获取所述第二工具臂32b的末端点T 1的位置,以及该第二工具臂32b上的一个不动点R 2的位置。本领域技术人员熟知如何该 第二工具臂32b上的不动点R 2,即对于本领域技术人员而言,所述第二工具臂32b上的不动点R 2是清楚的。
计算直线E 1T 1与直线T 1R 1所形成的夹角θ 1为:
Figure PCTCN2022075224-appb-000016
这样,如图12b所示,所述控制单元确定的运动方案可包括:所述内窥镜33以所述图像臂31上的不动点R 1为转动中心沿第一方向转动θ 1角度。
由于所述机器人手术系统还包括第一手术器械(图12a和图12b中未示出),为确保使所述第一手术器械不离开所述手术视野,所述运动方案还包括:所述第一手术器械以所述第一手术器械的第一工具臂的不动点R 3(图12a和图12b中均为示出)为转动中心沿所述第一方向转动θ 1角度。这样所述第一手术器械和所述第二手术器械34b均可位于所述手术视野33’内。当然,若仅内窥镜33沿第一方向旋转θ 1角度后,所述第一手术器械仍在所述手术视野33’内,则所述第一手术器械也可不旋转。
或者,所述控制单元所确定的运动方案包括:所述内窥镜33先以所述图像臂31上的不动点R 1为转动中心沿第一方向转动θ 1角度;之后,如图12c所示,所述内窥镜33以所述图像臂31上的不动点R 1为转动中心沿第二方向旋转θ 2角度,以及所述第二手术器械34b以所述第二手术器械34b的所述工具臂32上的不动点R 2为转动中心沿第二方向旋转θ 2角度,以使所述第二手术器械34b保持在所述手术视野33’内。在存在所述第一手术器械34a的情况下,为确保所述第一手术器械34a和所述第二手术器械34b均在所述手术视野33’内,所述第二方向与所述第一方向相反,以图12a至图12c所示的方位为例,所述第一方向为顺时针方向,具体如图12a中箭头所标识,所述第二方向为逆时针方向,如图12c中箭头所标识。这样操作以后,所述第一手术器械34a和所述第二手术器械34b均在手术视野33’内。若需要手术视野33’完全回到原来的位置,则有θ 2等于θ 1,若所述手术视野33’可不完全回到原来的位置,θ 2可不等于θ 1。但需要说明的是,若不存在所述第一手术器械34a,所述第二方向也可以与所述第一方向同向。
进一步地,本发明实施例还提供了一种计算机可读存储介质,其上存储有程序,当所述程序被执行时,所述程序执行如上控制单元所执行的相应操作。
进一步地,本发明还提供了一种电子设备,包括处理器和所述计算机可读存储介质,所述处理器用于执行所述计算机可读存储介质上所存储的程序。
虽然本发明披露如上,但并不局限于此。本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (25)

  1. 一种计算机可读存储介质,其上存储有程序,其特征在于,当所述程序被执行时,执行如下步骤:
    根据图像获取装置所提供的手术视野信息判断手术器械是否在手术视野内;
    当所述手术器械位于所述手术视野外时,规划运动方案,并使连接有所述图像获取装置的图像臂和/或连接有所述手术器械的工具臂执行所述运动方案,使得所述手术器械回到所述手术视野内。
  2. 根据权利要求1所述的计算机可读存储介质,其特征在于,在所述图像臂和/或所述工具臂执行所述运动方案之前或之中,所述程序还执行安全措施,以使所述图像获取装置和/或所述手术器械处于安全状态。
  3. 根据权利要求2所述的计算机可读存储介质,其特征在于,在所述图像臂和/或所述工具臂执行所述运动方案之前,所述程序执行如下步骤以执行所述安全措施:
    判断所述图像获取装置的末端和/或所述手术器械的末端是否位于相应的戳卡内,若否,则驱使所述内窥镜的末端和/或所述手术器械的末端移动至相应的戳卡内。
  4. 根据权利要求3所述的计算机可读存储介质,其特征在于,在所述图像臂和/或所述工具臂执行所述运动方案之后,所述程序还执行如下步骤:
    驱使所述图像获取装置的末端和/或所述手术器械的末端移动并从相应的所述戳卡中伸出,以使所述手术器械回到所述手术视野内。
  5. 根据权利要求2所述的计算机可读存储介质,其特征在于,在所述图像臂和/或所述工具臂执行所述运动方案的过程中,所述程序执行如下步骤以执行所述安全措施:
    判断所述图像臂和/或所述工具臂的特征值是否在安全阈值内,若否,则驱使所述内窥镜和/或所述手术器械沿朝向体外的方向移动预定距离;
    其中,所述特征值包括所述图像臂和/或所述工具臂的关节力矩、关节位置或关节移动速度中的至少一者。
  6. 根据权利要求2所述的计算机可读存储介质,其特征在于,在所述图像臂和/或所述工具臂执行所述运动方案的过程中,所述程序执行如下步骤以执行所述安全措施:
    判断所述图像臂和/或所述工具臂的特征值是否在安全阈值内,若否,则使所述图像臂和/或所述工具臂停止执行所述运动方案;
    其中,所述特征值包括所述图像臂和/或所述工具臂的关节力矩、关节位置或关节移动速度中的至少一者。
  7. 根据权利要求1所述的计算机可读存储介质,其特征在于,所述程序执行如下步骤以规划所述运动方案:
    规划所述手术器械在所述手术视野内的目标位置;
    根据所述手术器械的当前位置和所述目标位置规划所述运动方案。
  8. 根据权利要求7所述的计算机可读存储介质,其特征在于,当所述图像获取装置和/或所述手术器械移动导致所述手术器械不在所述手术视野内时,所述目标位置是指能够使所述手术器械恢复至所述手术视野内并对应于其在离开所述手术视野前的位置。
  9. 根据权利要求7所述的计算机可读存储介质,其特征在于,所述程序执行如下步骤以获取所述目标位置:获取所述手术视野的中心点C的坐标,并以所述手术视野的中心点C为作为所述目标位置。
  10. 根据权利要求7所述的计算机可读存储介质,其特征在于,所述程序执行如下步骤以获取所述目标位置:
    获取所述手术视野的中心点C的坐标;
    获取以所述中心点C为球心的球面,并以球内及球面上的任意一点为所述目标位置,其中球面的半径为所述手术器械的末端执行器的长度。
  11. 根据权利要求7所述的计算机可读存储介质,其特征在于,所述程序执行如下步骤以得到位于所述手术视野外的所述手术器械的目标位置:
    获取所述手术视野的中心点C的坐标,以及位于所述手术视野内的所述手术器械的末端点T的坐标;
    计算所述中心点C与位于所述手术视野内的所述手术器械的末端点T的连线TC的中点Z的坐标,并以所述中点Z作为位于所述手术视野外的手术器械的目标位置。
  12. 根据权利要求7所述的计算机可读存储介质,其特征在于,所述程序执行如下步骤以获取位于所述手术视野外的所述手术器械的目标位置:
    获取所述手术视野的中心点C的坐标,以及位于所述手术视野内的手术器械的末端点T的坐标;
    计算所述中心点C与位于所述手术视野内的所述手术器械的末端点T的连线TC的中点Z的坐标;
    获取以位于所述手术视野内的所述手术器械的末端点T为球心的球面,所述球面的半径为位于所述手术视野内的手术器械的末端执行器的长度;
    判断所述中点Z到位于所述手术视野内的所述手术器械的末端点T的距离是否大于所述球面的半径,若是,则以所述中点Z为所述目标位置;若否,则选择所述连线TC上的点A为所述目标位置,所述点A位于所述中点Z与所述中心点C之间,且所述点A到位于所述手术视野内的所述手术器械的末端点T的距离为所述球面的半径的m倍,m大于1。
  13. 根据权利要求9-12中任一项所述的计算机可读存储介质,其特征在于,所述程序执行如下步骤以获取所述手术视野的中心点C的坐标:
    根据所述图像获取装置的末端点N和参考点M的坐标,以及所述图像获取装置的景深H,得到所述中心点C的坐标;其中,所述参考点M是手术过 程中位置固定,并位于所述图像获取装置的轴线上的点。
  14. 根据权利要求13所述的计算机可读存储介质,其特征在于,所述程序执行如下步骤以得到所述中心点C的坐标:
    获取所述末端点N的坐标N(x 1,y 1,z 1),以及所述参考点M的坐标M(x 2,y 2,z 2);
    计算所述图像获取装置的轴线方向上的方向向量为
    Figure PCTCN2022075224-appb-100001
    计算所述手术视野的中心点C的坐标C(x 3,y 3,z 3)为:C(x 3,y 3,z 3)=N(x 1,y 1,z 1)+H×E NM
  15. 根据权利要求7所述的计算机可读存储介质,其特征在于,所述程序执行如下步骤以规划所述运动方案:
    根据一人为规划的所述手术器械的第一运动轨迹得到第一运动轨迹方程;所述第一运动轨迹的起始点为所述手术器械的当前位置,所述第一运动轨迹的终止点为所述目标位置;
    选取与所述第一运动轨迹相匹配的预设运动轨迹方程,以作为第二运动轨迹方程;
    对所述第一运动轨迹方程和所述第二运动轨迹方程进行组合优化,以得到第三运动轨迹方程;
    获取所述手术器械与所述手术视野的相对位置关系;
    根据所述手术器械与所述手术视野的相对位置关系确定所述运动方案;所述运动方案由所述第一运动轨迹方程限定,或由所述第二运动轨迹方程限定,或由所述第三运动轨迹方程限定。
  16. 根据权利要求15所述的计算机可读存储介质,其特征在于,当所述手术器械的当前位置与所述目标位置之间具有目标组织时,在得到所述相对位置关系之后,以及确定所述运动方案之前,所述程序还执行如下步骤以规划安全区域:
    规划一安全区域,所述安全区域包围所述目标组织;
    规划一移动区域,所述移动区域的边界在所述安全区域的外部,以使所述工具臂执行所述运动方案时,所述手术器械形成的运动轨迹上的任意一点在所述移动区域的边界上,或在所述移动区域的外部。
  17. 根据权利要求7所述的计算机可读存储介质,其特征在于,当所述手术器械的当前位置与所述目标位置之间具有目标组织时,在规划所述运动方案之前,所述程序执行如下步骤:
    获取所述手术器械与所述手术视野的相对位置关系;
    规划一安全区域,所述安全区域包围所述目标组织;
    规划一移动区域,所述移动区域的边界在所述安全区域的外部;
    当所述工具臂执行所述运动方案时,所述手术器械形成的运动轨迹上的任意一点在所述移动区域的边界上,或在所述移动区域的外部。
  18. 根据权利要求16或17计算机可读存储介质,其特征在于,所述移动区域为球形区域,所述手术器械所形成的运动轨迹包括多条依次连接的直线轨迹,每一条所述直线轨迹均与所述移动区域相切。
  19. 根据权利要求1所述的计算机可读存储介质,其特征在于,所述程序执行如下步骤以规划所述运动方案:
    获取所述图像获取装置的末端点E 1的位置,以及所述图像臂的不动点R 1的坐标;
    获取所述工具臂的末端点T 1的坐标;
    计算直线E 1T 1与直线T 1R 1所形成的夹角θ 1
    确定所述运动方案,所述运动方案包括:所述图像臂以所述图像臂的不动点R 1为转动中心沿第一方向旋转θ 1角度。
  20. 根据权利要求19所述的计算机可读存储介质,其特征在于,所述程序还执行如下步骤:
    获取所述工具臂的不动点R 2的坐标;
    所述运动方案还包括:所述图像臂以所述图像臂的不动点R 1为转动中心沿第二方向旋转θ 2角度,以及所述工具臂以所述工具臂上的不动点R 2为转动中心沿所述第二方向旋转θ 2角度,以使所述手术器械保持在所述手术视野内。
  21. 根据权利要求1所述的计算机可读存储介质,其特征在于,至少一个所述手术器械位于所述手术视野内,至少一个手术器械位于所述手术视野外;用于挂载位于所述手术视野内的手术器械的工具臂为第一工具臂,用于挂载位于所述手术视野外的手术器械的工具臂为第二工具臂;
    所述程序执行如下步骤以规划所述运动方案:
    获取所述图像获取装置的末端点E 1的位置,以及所述图像臂的不动点R 1的位置;
    获取所述第一工具臂的不动点R 3,以及位于所述手术视野外的手术器械的末端点T 1的位置;
    计算直线E 1T 1与直线T 1R 1所形成的夹角θ 1
    确定所述运动方案,所述运动方案包括所述图像臂以所述图像臂的不动点R 1为转动中心沿第一方向旋转θ 1角度,以及所述第一工具臂以所述第一工具臂上的不动点R 3为转动中心沿第一方向旋转θ 1角度,以使所述第二工具臂上挂载的所述手术器械回到所述手术视野内的同时,所述第一工具臂上挂载的所述手术器械保持在所述手术视野内。
  22. 一种电子设备,其特征在于,包括处理器和如权利要求1-21中任一项所述的计算机可读存储介质,所述处理器用于执行所述计算机可读存储介质上所存储的程序。
  23. 一种手术机器人系统,其特征在于,包括:
    图像臂,用于挂载图像采集装置,所述图像采集装置用于提供手术视野;
    工具臂,用于挂载手术器械,所述手术器械用于在所述手术视野内执行 手术操作;以及,
    控制单元,所述控制单元被配置用于执行如权利要求1-21中任一项所述的计算机可读存储介质上所存储的程序。
  24. 根据权利要求23所述的手术机器人系统,其特征在于,还包括输入装置,所述控制单元根据所述输入装置所输入的指令来规划所述运动方案。
  25. 根据权利要求23所述的手术机器人系统,其特征在于,所述手术机器人系统包括如权利要求22所述的电子设备,所述控制单元包括所述处理器。
PCT/CN2022/075224 2021-02-03 2022-01-30 计算机可读存储介质、电子设备及手术机器人系统 WO2022166929A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110152672.4 2021-02-03
CN202110152671.X 2021-02-03
CN202110152671.XA CN114848152A (zh) 2021-02-03 2021-02-03 计算机可读存储介质、电子设备及手术机器人系统
CN202110152672.4A CN114848153A (zh) 2021-02-03 2021-02-03 计算机可读存储介质、电子设备及手术机器人系统

Publications (1)

Publication Number Publication Date
WO2022166929A1 true WO2022166929A1 (zh) 2022-08-11

Family

ID=82740857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075224 WO2022166929A1 (zh) 2021-02-03 2022-01-30 计算机可读存储介质、电子设备及手术机器人系统

Country Status (1)

Country Link
WO (1) WO2022166929A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117598787A (zh) * 2024-01-08 2024-02-27 上海卓昕医疗科技有限公司 基于医学影像的医疗器械导航方法、装置、设备和介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104470456A (zh) * 2012-07-10 2015-03-25 现代重工业株式会社 手术机器人系统以及手术机器人控制方法
US20170189127A1 (en) * 2016-01-06 2017-07-06 Ethicon Endo-Surgery, Llc Methods, Systems, And Devices For Controlling Movement Of A Robotic Surgical System
CN107049492A (zh) * 2017-05-26 2017-08-18 微创(上海)医疗机器人有限公司 手术机器人系统及手术器械位置的显示方法
CN108882971A (zh) * 2016-03-29 2018-11-23 索尼公司 医疗支撑臂控制设备、医疗支撑臂设备控制方法、及医疗系统
CN109330685A (zh) * 2018-10-31 2019-02-15 南京航空航天大学 一种多孔腹腔手术机器人腹腔镜自动导航方法
CN111182847A (zh) * 2017-09-05 2020-05-19 柯惠Lp公司 机器人手术系统和方法及用于其控制的计算机可读介质
WO2020223569A1 (en) * 2019-05-01 2020-11-05 Intuitive Surgical Operations, Inc. System and method for integrated motion with an imaging device
CN112641513A (zh) * 2020-12-15 2021-04-13 深圳市精锋医疗科技有限公司 手术机器人及其控制方法、控制装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104470456A (zh) * 2012-07-10 2015-03-25 现代重工业株式会社 手术机器人系统以及手术机器人控制方法
US20170189127A1 (en) * 2016-01-06 2017-07-06 Ethicon Endo-Surgery, Llc Methods, Systems, And Devices For Controlling Movement Of A Robotic Surgical System
CN108882971A (zh) * 2016-03-29 2018-11-23 索尼公司 医疗支撑臂控制设备、医疗支撑臂设备控制方法、及医疗系统
CN107049492A (zh) * 2017-05-26 2017-08-18 微创(上海)医疗机器人有限公司 手术机器人系统及手术器械位置的显示方法
CN111182847A (zh) * 2017-09-05 2020-05-19 柯惠Lp公司 机器人手术系统和方法及用于其控制的计算机可读介质
CN109330685A (zh) * 2018-10-31 2019-02-15 南京航空航天大学 一种多孔腹腔手术机器人腹腔镜自动导航方法
WO2020223569A1 (en) * 2019-05-01 2020-11-05 Intuitive Surgical Operations, Inc. System and method for integrated motion with an imaging device
CN112641513A (zh) * 2020-12-15 2021-04-13 深圳市精锋医疗科技有限公司 手术机器人及其控制方法、控制装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117598787A (zh) * 2024-01-08 2024-02-27 上海卓昕医疗科技有限公司 基于医学影像的医疗器械导航方法、装置、设备和介质

Similar Documents

Publication Publication Date Title
US11931123B2 (en) Robotic port placement guide and method of use
US8657781B2 (en) Automated alignment
KR102218244B1 (ko) 영상 포착 장치 및 조작 가능 장치 가동 아암들의 제어된 이동 중의 충돌 회피
US9956042B2 (en) Systems and methods for robot-assisted transurethral exploration and intervention
US11998293B2 (en) Systems and methods for entering and exiting a teleoperational state
CN110709024A (zh) 用于直观运动的主/工具配准和控制的系统和方法
JP7469120B2 (ja) ロボット手術支援システム、ロボット手術支援システムの作動方法、及びプログラム
WO2019092261A1 (en) Robotic tool control
US20200100649A1 (en) Medical system and operation method of medical system
WO2022002155A1 (zh) 主从运动的控制方法、机器人系统、设备及存储介质
US11571267B2 (en) Remote center of motion control for a surgical robot
JP2023107782A (ja) 関節動作可能な遠位部分を持つツールを制御するためのシステム及び方法
WO2019080317A1 (zh) 手术导航定位机器人及其控制方法
US12004829B2 (en) Inverse kinematics of a surgical robot for teleoperation with hardware constraints
WO2022166929A1 (zh) 计算机可读存储介质、电子设备及手术机器人系统
CN114848152A (zh) 计算机可读存储介质、电子设备及手术机器人系统
CN115005979A (zh) 计算机可读存储介质、电子设备及手术机器人系统
US20220323157A1 (en) System and method related to registration for a medical procedure
CN114848153A (zh) 计算机可读存储介质、电子设备及手术机器人系统
US20230009907A1 (en) Projection operator for inverse kinematics of a surgical robot for low degree of freedom tools
WO2024006729A1 (en) Assisted port placement for minimally invasive or robotic assisted surgery
EP4243721A1 (en) Systems and methods for remote mentoring
CN115998427A (zh) 手术机器人系统、安全控制方法、从端装置及可读介质
WO2022147074A1 (en) Systems and methods for tracking objects crossing body wall for operations associated with a computer-assisted system
CN115363772A (zh) 手术机器人的调整方法、可读存储介质及手术机器人系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749208

Country of ref document: EP

Kind code of ref document: A1