WO2022166694A1 - 一种针对时间敏感网络设备的测试系统及测试方法 - Google Patents

一种针对时间敏感网络设备的测试系统及测试方法 Download PDF

Info

Publication number
WO2022166694A1
WO2022166694A1 PCT/CN2022/073908 CN2022073908W WO2022166694A1 WO 2022166694 A1 WO2022166694 A1 WO 2022166694A1 CN 2022073908 W CN2022073908 W CN 2022073908W WO 2022166694 A1 WO2022166694 A1 WO 2022166694A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
network
time
network device
network equipment
Prior art date
Application number
PCT/CN2022/073908
Other languages
English (en)
French (fr)
Inventor
陈彩莲
许齐敏
卢宣兆
关新平
朱善迎
张景龙
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2022166694A1 publication Critical patent/WO2022166694A1/zh
Priority to US18/229,396 priority Critical patent/US20230379236A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters

Definitions

  • the present application relates to the technical field of network equipment testing, and in particular, to a testing system and testing method for time-sensitive network equipment.
  • the industrial network is the foundation of the industrial Internet system architecture. It mainly includes two parts: the industrial control network and the industrial information network.
  • the industrial network system can optimize production, simplify processes, and increase efficiency, which is crucial for the rapid growth of the national economy and the promotion of digitalization, networking and intelligent development of industrial manufacturing. important.
  • the communication compatibility between them is poor, and the physical interfaces are not unified.
  • the development of industrial network interconnection has been greatly restricted.
  • TSN Time Sensitive Networking
  • TSN technology because of its standard Ethernet architecture, has accurate traffic scheduling capabilities, can ensure high-quality transmission of multiple service traffic on the same network, and has both technical and cost advantages. It has become one of the important evolution directions of the new generation of industrial network bearer technology in many fields such as audio and video transmission, industry, mobile bearer, and in-vehicle network.
  • the process from the proposal to the gradual development of TSN technology the most critical thing is the research and development and testing of TSN switches.
  • the current achievements are mainly concentrated in foreign manufacturers.
  • NXP has developed a five-port AVB/TSN automotive Ethernet switch SJA1105TEL
  • Hirshmann has updated the software of its two Hirshmann switches, RSPE35 and RSPE37.
  • Intel has proposed TSN switches based on SoC FPGA technology.
  • TSN test bed and test technology no team has proposed and published relevant technical results.
  • the design of TSN test bed can provide users with a convenient test environment, which is convenient for users to know the relevant performance parameters of the tested equipment at a lower time and economic cost, and can guide factories and enterprises to make reasonable selection, inspection and maintenance of equipment, and increase economic benefits. .
  • the TSN test bed can better guide the formulation of the standard.
  • the standard definition is relatively broad at this stage, the implementation methods of each manufacturer are different, the consistency problem is large, and the test relies on manual configuration, and the test efficiency is not high.
  • These problems are the difficulties in the development of TSN test bed and test technology. How to design a TSN network equipment test device, test bed and test method so that it can detect the connectivity of TSN network equipment, TSN standard support and network performance indicators, etc., and finally return the test results is a key problem to be solved urgently.
  • the patent application number is 201811233569.7, and the name is gateway test bed. It designs a gateway test bed, which interacts with each network element by executing pre-loaded preset test cases, simulating the behavior of the gateway under test in the corresponding practical application scenarios. business communication process, so as to complete the automated business test of the gateway under test.
  • the patent application number is 201920404568.8 and the name is gateway test equipment, which relates to a gateway test equipment.
  • the composition and assembly method of each component of the gateway test equipment in The patent application number is 201310081724.9, the name is IoT gateway test bed and method, which relates to an IoT gateway test bed, which simulates multiple sensor nodes to generate various business models through a business generator, which not only ensures the authenticity of the test It also reduces the cost of deploying large-scale test sensor networks.
  • the patent number is 201210512919.X, the name is a test bed method for industrial control equipment, and a test bed method for industrial control equipment is provided.
  • the above patents focus on the improvement and innovation of the test method of the gateway test bed, or the improvement and optimization of the structure of the gateway test bed, but the gateways aimed at can only adapt to traditional Ethernet and other networks, because they do not support TSN.
  • the protocol conversion standard is not applicable to TSN network.
  • most network equipment test beds do not have the ability to automatically generate simulation data, and cannot use previous test experience to guide test tasks.
  • Most of the existing network equipment test beds only support the test of network equipment, and cannot provide the optimal gateway configuration scheme for TSN scheduling performance according to the characteristics of industrial field data, and most of them cannot support the test of industry-related protocols, such as EtherCAT over TSN, Powerlink over TSN, etc.
  • the traditional test method is very risky to implement directly on the production system, which will inevitably destroy the confidentiality, integrity and availability of the system under test. Therefore, it is necessary to design a gateway test device, a test bed and a test method oriented to the TSN network, so as to realize the actual field or simulation test of the networking of multiple TSN network devices.
  • the technical problem to be solved by this application is that the existing network equipment test system is not applicable to TSN network equipment, and does not have the ability to automatically generate simulation data, and cannot use past test experience to guide test tasks, According to the characteristics of industrial field data, the optimal configuration scheme of the gateway for TSN scheduling performance cannot be given, and the interoperability test for cross-industrial protocols is not supported.
  • the present application provides a test method for time-sensitive network equipment, comprising the following steps:
  • Step 1 The user sends a test request and a test target to the information processing device;
  • Step 2 the information processing device sends test information to the conversion unit, and the test information includes a protocol command, a test duration, and a test command;
  • Step 3 the conversion unit receives the test information, sends the protocol command to the signaling generation unit, sends the test duration to the timing unit, and sends the test command to the test unit;
  • Step 4 the signaling generation unit receives the protocol command, sends a timing start signal to the timing unit, and judges whether to send a test instruction signaling to the network device under test according to the test scenario;
  • Step 5 the network device under test receives corresponding data and sends feedback information to the test unit;
  • Step 6 the timing unit receives the timing start signal and starts timing, and if the timing duration reaches the test duration, sends a timing end signal to the test unit, otherwise continues timing;
  • Step 7 The test unit receives the timing end signal and determines whether the network device under test works normally
  • Step 8 the test unit receives the test command, tests the feedback information from the network device under test according to the test command, the test content includes at least one test target, and stores the test result in the storage unit;
  • Step 9 After the test unit completes the test, it sends the test result to the information processing device, and the information processing device generates a test report according to the test result and returns it to the user.
  • test request is a pulse signal
  • test process is started and the test target is read when the test request is at a high level.
  • test objectives include interoperability test, TSN standard support test, network performance index test, and cross-industry protocol interoperability test.
  • the interoperability test is to test the connectivity of the logical interface and the physical interface of the network device under test.
  • the TSN standard support test is to test whether the network device under test supports at least one of IEEE 802.1AS, IEEE 802.1Qbv, and IEEE 802.1Qbu.
  • the network performance index test includes cycle period, time delay, jitter, synchronization error, network load and communication capability.
  • cross-industrial protocol interoperability test is to test whether the network device under test is compatible with data from different industrial protocols.
  • test information reflects the test target of the user; the protocol command directs the signaling generating unit to send the specific test instruction instruction to the network device under test according to the test request.
  • test duration guides the timing unit to count the end time, and helps the test unit to preliminarily judge whether the network device under test can operate normally.
  • test command instructs the test unit to call corresponding storage information from the storage unit to serve the test process, and the test command carries a test flag, so that the test device controls the test process according to the test flag.
  • test scenario in the step 4 is a simulation test
  • the automatic generation unit will select test data information from past test experience to generate simulation data and send it to the signaling generation unit, and the signaling generation unit
  • the protocol command and the simulation data send the test instruction signaling to the network device under test;
  • the simulation data includes the number of data streams, the frame length, and the period.
  • test indication signaling is not sent.
  • test scenario in step 5 is a simulation test, and the network device under test receives the test instruction signaling, performs internal processing of the test instruction signaling in the network device, and sends feedback information to the test unit. .
  • test scenario in step 5 is a field test, and the network device under test receives actual data from an industrial site, performs internal processing of the data in the network device, and sends feedback information to the test unit.
  • step 7 if no feedback information from the network device under test is received within the test duration in step 7, the network device under test works abnormally, and a test result is generated.
  • step 7 the feedback information of the network device under test is received within the test duration, and the network device under test is working normally, and the storage information is requested from the storage unit to prepare for the subsequent test.
  • test environment in step 9 is a simulation test
  • the signaling generating unit generates the test instruction signaling with reference to industrial field data.
  • test environment in step 9 is an on-site test
  • the test result includes an optimal configuration scheme of the TSN network device for on-site data, which is convenient for the user to configure the network device under test.
  • the generation process of the optimal configuration scheme includes: after the test unit completes the test, a set of TSN configuration scheme is generated to the network of the device under test, and the network device under test is configured according to the configuration scheme, and according to this
  • the configuration result processes industrial field data or simulation data to obtain a processing result, returns the processing result to re-test, and generates a new TSN configuration scheme. After many feedbacks and iterations, the optimal configuration scheme is reached.
  • the application also provides a test system for time-sensitive network equipment, including information processing equipment and a test device;
  • the information processing equipment is responsible for receiving the test request and the test target from the client, delivering the test information to the testing device, receiving the test result and returning it to the client;
  • the test device is responsible for testing the access to the network device under test and returning the test result
  • the test device includes a conversion unit, a signaling generation unit, an automatic generation unit, a timing unit, a storage unit, and a test unit;
  • Described conversion unit is responsible for receiving described test information, and sends protocol command to described signaling generation unit, sends test duration to described timing unit, sends test order to described test unit;
  • the signaling generating unit is responsible for receiving the protocol command, sending a test instruction signaling to the network device under test, and sending a timing start signal to the timing unit;
  • the automatic generation unit is responsible for invoking the previous test experience in the storage unit, and generates simulation data and sends it to the signaling generation unit;
  • the timing unit is responsible for receiving the timing start signal, timing according to the test duration, and sending a timing end signal to the test unit when the timing ends, notifying the test unit to start the test;
  • the storage unit is responsible for storing TSN-related test guidance content, which is convenient for the test unit to call on demand;
  • the test unit is responsible for receiving the test command from the conversion unit, receiving the timing end signal from the timing unit, receiving the feedback information from the network device under test, and according to the called storage unit Test the feedback information in the TSN-related test guidance content in .
  • test historical data which is convenient to use historical data to guide the test in the new test process, simplify the test process, improve the test speed, and improve the test accuracy
  • the optimal configuration scheme of the TSN gateway can be given.
  • FIG. 2 is a schematic structural diagram of a preferred embodiment of the present application.
  • FIG. 3 is a schematic diagram of the composition of a storage unit according to a preferred embodiment of the present application.
  • FIG. 4 is a schematic diagram of the field test process architecture of a preferred embodiment of the present application.
  • FIG. 5 is a schematic diagram of a simulation test process architecture of a preferred embodiment of the present application.
  • FIG. 6 is a schematic diagram of the physical composition of a preferred embodiment of the present application.
  • Fig. 7 is the test flow chart of a preferred embodiment of the present application.
  • FIG. 8 is a schematic diagram of a test target of a preferred embodiment of the present application.
  • one end of the network device testing device is connected to the user end, and the other end is connected to N network devices under test.
  • the network equipment testing device includes an information processing device and a testing device; the testing device includes a conversion unit, a signaling generation unit, an automatic generation unit, a timing unit, a storage Unit and testing unit; the network equipment testing device is connected with the tested network equipment through the tested gateway connection interface.
  • the information processing equipment is responsible for receiving the test request and test target from the client, delivering the test information to the test device, receiving the test result and returning it to the client;
  • the test device is responsible for testing the device connected to the network under test and returning the test result.
  • the conversion unit is responsible for receiving test information from the information processing equipment, sending protocol commands to the signaling generating unit, sending test durations to the timing unit, and sending test commands to the testing unit.
  • the signaling generating unit is responsible for receiving the protocol command from the converting unit, and sending the timing start signal to the timing unit.
  • test scenario is an on-site test
  • no test instruction signaling is sent, and the network device under test receives the actual data from the industrial site, processes the data inside the network device, and sends the feedback information to the test unit.
  • the automatic generation unit will select the test data information from the previous test experience, including the number of data streams, frame length, and period, and send it to the signaling generation unit.
  • the signaling generation unit automatically generates The test data information sent by the unit sends test instruction signaling to the network device under test, the network device under test receives the test instruction instruction, processes the test instruction signaling inside the network device, and sends feedback information to the testing unit. Since the industrial field data cannot be directly obtained, the test instruction signaling is sent to the network device under test for testing.
  • the test instruction signaling is a data stream generated by referring to the test data information to simulate the actual industrial field. Length, time-sensitive attributes, etc. are determined by the test data information and reflect the user's test goals.
  • the timing unit is responsible for receiving the timing start signal from the signaling generating unit, timing according to the test duration, and sending a timing end signal to the test unit when the timing ends, notifying the test unit to start the test.
  • the storage unit is responsible for storing TSN-related test guidance content, which is convenient for the test unit to call on demand. As shown in Figure 3, it is a schematic diagram of the composition of the storage unit.
  • the test unit is responsible for receiving the test command from the conversion unit, receiving the timing end signal from the timing unit, receiving the feedback information from the network device under test, and testing the feedback information according to the TSN-related test guidance content in the called storage unit.
  • FIG. 4 it is a schematic diagram of the field test process architecture of a preferred embodiment of the present application.
  • FIG. 5 it is a schematic diagram of a simulation test process architecture of a preferred embodiment of the present application.
  • FIG. 6 it is a schematic diagram of the physical composition of a network device measurement device according to a preferred embodiment of the present application, including ARM+FPGA, power supply, DDR2, network port and clock module; the power supply is ARM+FPGA power supply, and DDR2 is connected to ARM+
  • the data access terminal of FPGA the input terminal of ARM+FPGA is the output terminal of the conversion unit, the output terminal of the network port is the output terminal of the signaling generating unit, and the clock module is connected to the clock signal terminals of the two network ports at the same time.
  • the user needs to test the connectivity of TSN network equipment, the supportability of IEEE 802.1Qbv in the TSN standard, and the two network performance indicators of data delay and jitter, and it is stipulated that the original data stream conforms to the Profibus protocol, as shown in Figure 7,
  • the test process is as follows:
  • Step 1 Connect the network device under test with the gateway connection interface under test in this embodiment through a high-level data link control (HDLC) link;
  • HDLC high-level data link control
  • Step 2 The user sends a test request and a test target to the information processing device through the human-computer interaction interface.
  • the test target includes the connectivity of the TSN network device, the supportability of IEEE 802.1Qbv in the TSN standard, and the data delay, Jitter two network performance indicators;
  • Step 3 the information processing device receives the test request and the test target from the user, parses the test target, and sends the test information reflecting the test target to the conversion unit, and the test information includes the protocol command, the test duration, and the test command;
  • Step 4 the conversion unit receives the test information, sends a protocol command to the signaling generating unit, sends a test duration to the timing unit, and tests the command to the testing unit; the protocol command requires the signaling generating unit to generate a data stream that conforms to the Profibus protocol, and the test command requires
  • the test unit calls the test guidance content related to the connectivity of TSN network equipment, the support of IEEE802.1Qbv, and the two network performance indicators of data delay and jitter from the storage unit for subsequent tests.
  • the test duration t specifies the timing of the timing unit duration;
  • Step 5 The signaling generation unit receives the protocol command and sends a timing start signal to the timing unit. If the test scenario is a simulation test, the automatic generation unit will select the appropriate test data information from the previous test experience, including the number of data streams, frames Long and periodic, sent to the signaling generation unit, the signaling generation unit sends the test instruction signaling to the network device under test according to the protocol command, and the test instruction signaling conforms to the Profibus protocol standard; if the test scenario is on-site testing, the test instruction is not sent. signaling;
  • Step 6 the network device under test receives the test instruction signaling from the signaling generation unit, and sends feedback information to the test unit according to the test instruction signaling, and the feedback information is the protocol conversion of the above-mentioned data stream compliant with the Profibus protocol through the TSN network device and The TSN data stream after the scheduling of the gated list; the timing unit receives the timing start signal and starts timing, and when the timing duration reaches the test duration t sent by the conversion unit, it notifies the test unit that the test duration has been reached;
  • Step 7 the test unit receives the timing end signal from the timing unit, and judges whether the feedback information from the network device under test is received before the end of the test duration. If the feedback information from the network device under test is received within the test duration, it will apply to the storage unit to call the stored information to prepare for the subsequent test;
  • Step 8 The test unit performs an interoperability test on the TSN network equipment, and temporarily stores the test results in the storage unit; the test unit performs the TSN standard support test on the TSN network equipment, specifically the support test of IEEE 802.1Qbv, and temporarily stores the test results. Store to the storage unit; the test unit tests the network performance indicators of the TSN network equipment, specifically tests the two network performance parameters of delay and jitter, and temporarily stores the test results in the storage unit;
  • Step 9 After the test unit completes the test, the TSN optimal configuration scheme is returned to the network device under test, and the processing result from the network device under test is received, the configuration scheme is updated, and the feedback iteration is repeated for many times until the optimal configuration scheme is obtained;
  • Step 10 The test unit reads the test results temporarily stored in the storage unit, and sends the test results to the information processing device.
  • the information processing device generates a test report and displays it on the human-computer interaction interface for the user to read and use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)

Abstract

一种针对时间敏感网络设备的测试方法,包括如下步骤:发送测试请求和测试目标,将测试目标转换为测试信息;判断测试场景,其中测试场景为仿真测试时,向被测网络设备发送测试指示信令,测试场景为现场测试时,不发送测试指示信令;在测试时长内判断是否收到被测网络设备的反馈信息,如收到,则对反馈信息测试,输出测试结果。一种针对时间敏感网络设备的测试系统,包括网络设备测试装置、用户端和多个被测网络设备,网络设备测试装置的一端连接用户端,另一端连接多个被测网络设备;网络设备测试装置包括电源、处理单元、存储单元、网口和时钟模块。

Description

一种针对时间敏感网络设备的测试系统及测试方法 技术领域
本申请涉及网络设备测试技术领域,尤其涉及一种针对时间敏感网络设备的测试系统及测试方法。
背景技术
工业网络作为一个实现工业系统智能互联的核心,是工业互联网体系架构的基础,主要包括工业控制网络和工业信息网络两个部分。通过工业网络系统中信息与物理过程的协同,工业网络系统能够优化生产、简化流程、增大效益,这对于国民经济的迅速增长,以及促进工业制造的数字化、网络化和智能化的发展至关重要。但由于传统工业网络中面向工业控制领域的现场总线通信协议标准及物理接口种类繁多,彼此之间的通信兼容性差,物理接口不统一,工业网络互联互通的发展受到了很大程度上的制约。
此外,标准以太网的本质是一种非确定性网络,而工业领域的控制应用中一般要求网络传输的确定性,一组数据包必须完整、实时、确定性的到达目的地,因此标准以太网不能满足对确定性要求较高的工业应用。IEEE TSN工作组近些年提出的时间敏感网络(TSN)标准能够解决上述问题,为了达到尽可能低的时延,IEEE 802.1TSN工作组定义了802.1AS与802.1Qbv等多种协议,确保了数据包传输的确定性和实时性。同时,TSN规范化mac层,避免了碎片化的工业以太网协议的MAC层不统一不兼容的问题。
综上所述,TSN技术作为新一代以太网技术,因其符合标准的以太网架构,具有精准的流量调度能力,可以保证多种业务流量的共网高质量传输,兼具技术及成本优势,得以在音视频传输、工业、移动承载、车载网络等多个领域成为新一代工业网络承载技术的重要演进方向之一。在TSN技术从提出到逐步发展的过程中,最关键的便是TSN交换机的研发与测试。在TSN交换机的研发方面,目前的成果主要集中在国外厂商,例如恩智浦公司研发出五端口AVB/TSN汽车以太网交换机SJA1105TEL,赫斯曼公司对旗下Hirshmann两款交换机RSPE35和RSPE37进行了软件更新,使其实现TSN的功能,英特尔公司提出基于SoC FPGA技术的TSN交换机等。而在TSN测试床及测试技术方面,目前尚未有团队提出并发表相关技术成果。设计TSN测试床能够给用户提供便捷的测试环境,便于用户以较低的时间和经济成本获知被测设备的相关性能参数,可以指导工厂企业对设备进行合理选型和检测维修,增大经济效益。同时,由于现阶段TSN标准仍在逐步指定完善阶段,TSN测试床能够更好地指导标准的 制定。然而,测试床的设计存在一些挑战,例如现阶段标准定义的比较宽泛,各厂家实现方式不同,一致性问题较大,并且测试中依赖手工配置,测试效率不高。这些问题都是TSN测试床及测试技术发展过程中的难点所在。如何设计TSN网络设备测试装置、测试床和测试方法,使其能够检测TSN网络设备连通性、TSN标准支持性以及网络性能指标等,并最终返回测试结果是一个亟待解决的关键问题。
经过对现有文献检索发现,目前在网络设备测试方面的专利基本没有涉及TSN网络设备。专利申请号为201811233569.7,名称为网关测试床,其设计了一种网关测试床,通过执行预先载入的预设测试用例与各网元进行指令交互,模拟被测网关在相应实际应用场景中的业务通信过程,从而完成对被测网关的自动化业务测试。专利申请号为201920404568.8,名称为网关测试设备,其涉及一种网关测试设备,详细说明了包括治具、网线接插装置、第一点击装置、第二点击装置、光传感器、信息处理系统等在内的网关测试设备各个组成部分的构成及组装方式。专利申请号为201310081724.9,名称为物联网网关测试床和方法,其涉及一种物联网网关测试床,通过一个业务发生器模拟实现多个传感节点产生各种业务模型,既保证了测试的真实性和准确性,又降低了部署大规模测试传感网络的成本。专利号为201210512919.X,名称为一种用于工控设备的测试床方法,提供了一种用于工控设备的测试床方法。上述的专利着眼于网关测试床在测试方法上的改进和创新,或是对网关测试床的结构进行改善和优化,但所针对的网关均只能适应传统的以太网等网络,由于不支持TSN的协议转换标准,不适用于TSN网络。同时大多网络设备测试床不具备自动生成仿真数据的能力,不能利用以往的测试经验指导测试任务。现有的大多数网络设备测试床仅支持对网络设备的测试,不能根据工业现场数据的特点,给出针对TSN调度性能的网关最优配置方案,且大多不能支持工业相关协议的测试,例如EtherCAT over TSN,Powerlink over TSN等。传统的测试方法直接在生产系统上实施风险性很高,不可避免地会对待测系统的保密性、完整性和可用性造成破坏。因此,需要设计面向TSN网络的网关测试装置、测试床和测试方法,以实现对多台TSN网络设备的组网进行实际现场或仿真测试。
因此,本领域的技术人员致力于开发一种针对时间敏感网络设备的测试系统及测试方法,适用于TSN网络设备的测试,可以利用以往的测试经验指导新的测试任务,并且根据现场数据的特点,给出TSN网关的最优配置方案,同时具备可选的工业协议模块,支持跨协议的互通性测试。
发明内容
有鉴于现有技术的上述缺陷,本申请所要解决的技术问题是现有网络设备测试系统对TSN网络设备不适用,且不具备自动生成仿真数据的能力,不能利用以往的测试经验指导测试任务,不能根据工业现场数据的特点,给出针对TSN调度性能的网关最 优配置方案,不支持针对跨工业协议的互通性测试。
为实现上述目的,本申请提供了一种针对时间敏感网络设备的测试方法,包括以下步骤:
步骤1、用户向信息处理设备发送测试请求与测试目标;
步骤2、所述信息处理设备向转换单元发送测试信息,所述测试信息包括协议命令、测试时长、测试命令;
步骤3、所述转换单元接收所述测试信息,并向信令产生单元发送所述协议命令,向定时单元发送所述测试时长,向测试单元发送所述测试命令;
步骤4、所述信令产生单元接收所述协议命令,向所述定时单元发送计时启动信号,并根据测试场景判断是否向所述被测网络设备发送测试指示信令;
步骤5、根据所述测试场景,所述被测网络设备接收对应数据,并向所述测试单元发送反馈信息;
步骤6、所述定时单元接收所述计时启动信号并开始计时,若计时时长达到所述测试时长,则向所述测试单元发送计时结束信号,否则继续计时;
步骤7、所述测试单元接收到所述计时结束信号,判断所述被测网络设备工作是否正常;
步骤8、所述测试单元接收所述测试命令,根据所述测试命令测试来自所述被测网络设备的反馈信息,测试内容包括至少一个测试目标,将测试结果存储至存储单元;
步骤9、所述测试单元完成测试后,将测试结果发送至所述信息处理设备,所述信息处理设备根据测试结果生成测试报告,并将其返回给用户。
进一步地,所述测试请求为脉冲信号,在高电平时开始测试流程并读取所述测试目标。
进一步地,所述测试目标包括互通性测试、TSN标准支持测试、网络性能指标测试、跨工业协议互通性测试。
进一步地,所述互通性测试为测试所述被测网络设备的逻辑接口与物理接口的连通性。
进一步地,所述TSN标准支持测试为测试所述被测网络设备是否支持IEEE 802.1AS、IEEE 802.1Qbv、IEEE 802.1Qbu中的至少一个。
进一步地,所述网络性能指标测试包括循环周期、时延、抖动、同步误差、网络负载与通信能力。
进一步地,所述跨工业协议互通性测试为测试所述被测网络设备是否兼容来自不同工业协议的数据。
进一步地,所述测试信息体现用户的所述测试目标;所述协议命令指导所述信令产生单元根据所述测试请求向所述被测网络设备发送特定的所述测试指示指令。
进一步地,所述测试时长指导所述定时单元计时结束时间,并帮助所述测试单元 初步判断所述被测网络设备是否能正常运行。
进一步地,所述测试命令指导所述测试单元从所述存储单元调用相应的存储信息来服务测试过程,所述测试命令携带测试标记,使所述测试装置根据测试标记控制测试过程。
进一步地,所述步骤4中测试场景为仿真测试,所述自动生成单元会从以往的测试经验中选择测试数据信息生成仿真数据发送给所述信令产生单元,所述信令产生单元根据所述协议命令和所述仿真数据向所述被测网络设备发送所述测试指示信令;所述仿真数据包括数据流数量、帧长、周期。
进一步地,所述步骤4中测试场景为现场测试,则不发送所述测试指示信令。
进一步地,所述步骤5测试场景为仿真测试,所述被测网络设备接收所述测试指示信令,对所述测试指示信令进行网络设备内部处理,并将反馈信息发送至所述测试单元。
进一步地,所述步骤5测试场景为现场测试,所述被测网络设备接收来自工业现场的实际数据,对数据进行网络设备内部处理,并将反馈信息发送至所述测试单元。
进一步地,所述步骤7中在测试时长内未收到所述被测网络设备的反馈信息,则所述被测网络设备工作异常,并生成测试结果。
进一步地,所述步骤7中在测试时长内收到所述被测网络设备的反馈信息,则所述被测网络设备工作正常,从所述存储单元申请调用存储信息,为后续测试做准备。
进一步地,所述步骤9测试环境为仿真测试,所述信令产生单元参考工业现场数据生成所述测试指示信令。
进一步地,所述步骤9测试环境为现场测试,所述测试结果包含针对现场数据的TSN网络设备最优配置方案,便于用户对所述被测网络设备进行配置。
进一步地,所述最优配置方案的生成过程包括:所述测试单元完成测试后生成一套TSN配置方案至所述被测设备网络,所述被测网络设备按照配置方案进行配置,并依据此配置结果对工业现场数据或仿真数据进行处理,得到处理结果,将处理结果返回重新测试,生成新的TSN配置方案,经过多次反馈和迭代,直至达到所述最优配置方案。
本申请还提供了一种针对时间敏感网络设备的测试系统,包括信息处理设备与测试装置;
所述信息处理设备负责接收来自用户端的测试请求与测试目标,下发测试信息到所述测试装置,接收测试结果并返回至用户端;
所述测试装置负责对接入被测网络设备进行测试并返回测试结果;
所述测试装置包括转换单元、信令产生单元、自动生成单元、定时单元、存储单元、测试单元;
所述转换单元负责接收所述测试信息,并向所述信令产生单元发送协议命令,向 所述定时单元发送测试时长,向所述测试单元发送测试命令;
所述信令产生单元负责接收所述协议命令,并向所述被测网络设备发送测试指示信令,向所述定时单元发送计时启动信号;
所述自动生成单元负责调用所述存储单元中以往的测试经验,生成仿真数据发送给所述信令产生单元;
所述定时单元负责接收所述计时启动信号,根据所述测试时长进行计时,并在计时结束时向所述测试单元发送计时结束信号,通知所述测试单元开始测试;
所述存储单元负责存储TSN相关测试指导内容,便于测试单元按需调用;
所述测试单元负责接收来自所述转换单元的所述测试命令,接收来自所述定时单元的所述计时结束信号,接收来自所述被测网络设备的反馈信息,并根据调用的所述存储单元中的TSN相关测试指导内容,对反馈信息进行测试。
本申请与现有技术相比较,具有如下显而易见的实质性特点和显著优点:
1、能够对TSN网络设备进行多种功能的测试,推动了TSN网络设备的研发与调试进程;
2、能够收集测试历史数据,便于在新的测试过程中利用历史数据对测试进行指导,简化测试流程,提升测试速度,提高测试准确性;
3、能够根据现场数据的特点,给出TSN网关的最优配置方案;
4、具备可选的工业协议模块,支持针对不同工业协议的互通性测试。
以下将结合附图对本申请的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本申请的目的、特征和效果。
附图说明
图1是本申请的一个较佳实施例的物理连接图;
图2是本申请的一个较佳实施例的结构示意图;
图3是本申请的一个较佳实施例的存储单元组成示意图;
图4是本申请的一个较佳实施例的现场测试过程架构示意图;
图5是本申请的一个较佳实施例的仿真测试过程架构示意图;
图6是本申请的一个较佳实施例的物理组成示意图;
图7是本申请的一个较佳实施例的测试流程图;
图8是本申请的一个较佳实施例的测试目标示意图。
具体实施方式
以下参考说明书附图介绍本申请的多个优选实施例,使其技术内容更加清楚和便于理解。本申请可以通过许多不同形式的实施例来得以体现,本申请的保护范围并非仅限于文中提到的实施例。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。附图所示的每一组件的尺寸和厚度是任意示出的,本申请并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
如图1所示,是本申请的一个较佳实施例的物理连接图,网络设备测试装置的一端连接用户端,另一端连接N个被测网络设备。
如图2所示,是本申请的一个较佳实施例的结构示意图,网络设备测试装置包括信息处理设备与测试装置;测试装置包括转换单元、信令产生单元、自动生成单元、定时单元、存储单元、测试单元;网络设备测试装置通过被测网关连接接口与被测网络设备连接。
其中,信息处理设备负责接收来自用户端的测试请求与测试目标,下发测试信息到测试装置,接收测试结果并返回至用户端;测试装置负责对接入被测网络设备进行测试并返回测试结果。
转换单元负责接收来自信息处理设备的测试信息,并向信令产生单元发送协议命令,向定时单元发送测试时长,向测试单元发送测试命令。
信令产生单元负责接收来自转换单元的协议命令,向定时单元发送计时启动信号。
若测试场景为现场测试,则不发送测试指示信令,被测网络设备接收来自工业现场的实际数据,对数据进行网络设备内部处理,并将反馈信息发送至测试单元。
若测试场景为仿真测试,则自动生成单元会从以往的测试经验中选择测试数据信息,包括数据流数量、帧长、周期,发送给信令产生单元,信令产生单元根据协议命令和自动生成单元发送的测试数据信息向被测网络设备发送测试指示信令,被测网络设备测试接收测试指示指令,对测试指示信令进行网络设备内部处理,并将反馈信息发送至测试单元。由于不能直接获取工业现场数据,因此向被测网络设备发送测试指示信令来进行测试,测试指示信令是参照测试数据信息所生成的模拟实际工业现场的数据流,该数据流的周期、帧长、时间敏感属性等由测试数据信息来决定,且反映了用户的测试目标。
定时单元负责接收来自信令产生单元的计时启动信号,根据测试时长进行计时,并在计时结束时向测试单元发送计时结束信号,通知测试单元开始测试。
存储单元负责存储TSN相关测试指导内容,便于测试单元按需调用,如图3所示,是存储单元组成示意图。
测试单元负责接收来自转换单元的测试命令,接收定时单元的计时结束信号,接收来自被测网络设备的反馈信息,并根据调用的存储单元中的TSN相关测试指导内容,对反馈信息进行测试。
如图4所示,是本申请的一个较佳实施例的现场测试过程架构示意图。
如图5所示,是本申请的一个较佳实施例的仿真测试过程架构示意图。
如图6所示,是本申请的一个较佳实施例的网络设备测量装置物理组成示意图,包括ARM+FPGA、电源、DDR2、网口和时钟模块;电源为ARM+FPGA供电,DDR2连接ARM+FPGA的存取数据端,ARM+FPGA的输入端为转换单元的输出端,网口的输出端作为信令产生单元的输出端,时钟模块同时连接两个网口的时钟信号端。
本实施例中,用户需要测试TSN网络设备的连通性、TSN标准中IEEE 802.1Qbv的支持性以及数据时延、抖动两项网络性能指标,规定原始数据流遵从Profibus协议,如图7所示,测试流程如下:
步骤1、将被测网络设备与本实施例的被测网关连接接口通过高级数据链路控制(HDLC)链路相连;
步骤2、用户通过人机交互界面向信息处理设备发送测试请求与测试目标,如图8所示,测试目标包括TSN网络设备的连通性、TSN标准中IEEE 802.1Qbv的支持性以及数据时延、抖动两项网络性能指标;
步骤3、信息处理设备收到来自用户的测试请求与测试目标,对测试目标进行解析,向转换单元发送体现测试目标的测试信息,测试信息包括协议命令、测试时长、测试命令;
步骤4、转换单元接收测试信息,并向信令产生单元发送协议命令,向定时单元发送测试时长,向测试单元测试命令;协议命令要求信令产生单元产生符合Profibus协议的数据流,测试命令要求测试单元从存储单元调用与TSN网络设备连通性、IEEE802.1Qbv的支持性以及数据时延、抖动两项网络性能指标相关的测试指导内容,用于后续测试,测试时长t规定了定时单元的计时时长;
步骤5、信令产生单元接收协议命令,向定时单元发送计时启动信号,若测试场景为仿真测试,则自动生成单元会从以往的测试经验中选择合适的测试数据信息,包括数据流数量、帧长、周期,发送给信令产生单元,信令产生单元根据协议命令向被测网络设备发送测试指示信令,测试指示信令符合Profibus协议标准;若测试场景为现场测试,则不发送测试指示信令;
步骤6、被测网络设备接收来自信令产生单元的测试指示信令,根据测试指示信令,向测试单元发送反馈信息,反馈信息为上述遵从Profibus协议的数据流经过TSN网络设备的协议转换以及门控列表的调度安排后的TSN数据流;定时单元接收计时启动信号并开始计时,当计时时长达到转换单元发送的测试时长t时,通知测试单元已达测试时长;
步骤7、测试时长t抵达时,测试单元接收到定时单元的计时结束信号,并判断是否在测试时长结束前接收到来自被测网络设备的反馈信息,若在测试时长内未收到来自被测网络设备的反馈信息,则判断网络设备存在问题,并生成测试结果,若在测试时长内收到来自被测网络设备的反馈信息,则向存储单元申请调用存储信息,为后续测试做准备;
步骤8、测试单元对TSN网络设备进行互通性测试,将测试结果暂存至存储单元;测试单元对TSN网络设备进行TSN标准支持性测试,具体为IEEE 802.1Qbv的支持性测试,将测试结果暂存至存储单元;测试单元对TSN网络设备进行网络性能指标测试,具体测试时延和抖动两项网络性能参数,将测试结果暂存至存储单元;
步骤9、测试单元完成测试后,将TSN最优配置方案返回给被测网络设备,并接收来自被测网络设备的处理结果,更新配置方案,多次反馈迭代,直至得到最优配置方案;
步骤10、测试单元读取存储单元暂存的测试结果,并将测试结果发送至信息处理设备,信息处理设备生成测试报告,显示在人机交互界面上供用户读取和使用。
以上详细描述了本申请的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本申请的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本申请的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (20)

  1. 一种针对时间敏感网络设备的测试方法,其中,包括以下步骤:
    接收用户发送的测试请求与测试目标;
    将所述测试目标转换为测试信息,所述测试信息包括协议命令、测试时长、测试命令;
    判断测试场景,所述测试场景包括现场测试和仿真测试;其中,所述测试场景为所述仿真测试时,向被测网络设备发送测试指示信令;所述测试场景为所述现场测试时,不向所述被测网络设备发送所述测试指示信令;所述测试指示信令是指参照测试数据信息所生成的模拟工业现场的数据流;
    根据所述测试时长开始计时,若计时时长达到所述测试时长,产生结束信号,否则继续计时;
    在所述计时时长达到所述测试时长时,判断是否接收到所述被测网络设备的反馈信息;其中,如果没有接收到所述反馈信息,则认定所述被测网络设备存在问题,生成并存储第一测试结果;如果接收到所述反馈信息,对所述反馈信息进行测试,生成并存储第二测试结果;根据所述测试结果生成测试报告,并将其返回给用户。
  2. 如权利要求1所述的针对时间敏感网络设备的测试方法,其中,所述测试请求为脉冲信号,在高电平时开始测试流程并读取所述测试目标。
  3. 如权利要求1所述的针对时间敏感网络设备的测试方法,其中,所述测试目标包括互通性测试、TSN标准支持测试、网络性能指标测试、跨工业协议互通性测试。
  4. 如权利要求3所述的针对时间敏感网络设备的测试方法,其中,所述互通性测试为测试所述被测网络设备的逻辑接口与物理接口的连通性。
  5. 如权利要求3所述的针对时间敏感网络设备的测试方法,其中,所述TSN标准支持测试为测试所述被测网络设备是否支持IEEE 802.1AS、IEEE 802.1Qbv、IEEE 802.1Qbu中的至少一个。
  6. 如权利要求3所述的针对时间敏感网络设备的测试方法,其中,所述网络性能指标测试包括循环周期、时延、抖动、同步误差、网络负载与通信能力。
  7. 如权利要求3所述的针对时间敏感网络设备的测试方法,其中,所述跨工业协 议互通性测试为测试所述被测网络设备是否兼容来自不同工业协议的数据。
  8. 如权利要求3所述的针对时间敏感网络设备的测试方法,其中,所述测试信息体现所述测试目标。
  9. 如权利要求1所述的针对时间敏感网络设备的测试方法,其中,根据所述协议命令产生符合Profibus协议的数据流。
  10. 如权利要求1所述的针对时间敏感网络设备的测试方法,其中,根据所述测试命令调用所述测试数据信息并生成仿真数据,所述测试数据信息从以往的测试经验中选择得到。
  11. 如权利要求10所述的针对时间敏感网络设备的测试方法,其中,所述测试命令携带测试标记,根据所述测试标记控制测试过程。
  12. 如权利要求10所述的针对时间敏感网络设备的测试方法,其中,所述仿真数据包括数据流数量、帧长、周期。
  13. 如权利要求1所述的针对时间敏感网络设备的测试方法,其中,所述测试场景为所述仿真测试时,所述被测网络设备接收所述测试指示信令,对所述测试指示信令处理后发送所述反馈信息。
  14. 如权利要求1所述的针对时间敏感网络设备的测试方法,其中,所述测试场景为所述现场测试时,所述被测网络设备接收来自工业现场的实际数据,对数据进行网络设备内部处理,并发送所述反馈信息。
  15. 如权利要求1所述的针对时间敏感网络设备的测试方法,其中,接收到所述被测网络的所述反馈信息时,调用存储信息,为后续测试做准备。
  16. 如权利要求1所述的针对时间敏感网络设备的测试方法,其中,参考工业现场数据生成所述测试指示信令。
  17. 如权利要求1所述的针对时间敏感网络设备的测试方法,其中,所述测试环境为所述现场测试时,所述测试结果包含针对现场数据的TSN网络设备配置方案,便于用户对所述被测网络设备进行配置。
  18. 如权利要求17所述的针对时间敏感网络设备的测试方法,其中,所述配置方案的生成过程包括:完成测试后生成一套TSN配置方案至所述被测设备网络,所述被测网络设备按照配置方案进行配置,并依据此配置结果对工业现场数据或仿真数据进行处理,得到处理结果,将处理结果返回重新测试,生成新的TSN配置方案,经过多次反馈和迭代,直至达到所述配置方案。
  19. 一种针对时间敏感网络设备的测试系统,包括网络设备测试装置、用户端和多个被测网络设备,其中所述网络设备测试装置的一端连接所述用户端,所述网络设备测试装置的另一端连接所述多个被测网络设备,所述被测网络设备组成网络拓扑结构;
    其中,所述网络设备测试装置包括电源、处理单元、存储单元、网口和时钟模块,所述电源为所述网络设备测试装置提供电力;所述处理单元分别与所述用户端、所述存储单元、所述网口连接,所述网口与所述时钟模块连接,所述网络口与所述被测网络设备连接;
    所述网络设备测试装置被配置为执行如权利要求1所述的测试方法。
  20. 如权利要求1所述针对时间敏感网络设备的测试系统,其中,所述处理单元包括ARM和FPGA,所述存储单元包括DDR2。
PCT/CN2022/073908 2021-02-03 2022-01-26 一种针对时间敏感网络设备的测试系统及测试方法 WO2022166694A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/229,396 US20230379236A1 (en) 2021-02-03 2023-08-02 Test system and test method for time-sensitive networking device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110151950.4A CN112804124B (zh) 2021-02-03 2021-02-03 一种针对时间敏感网络设备的测试床及测试方法
CN202110151950.4 2021-02-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/229,396 Continuation-In-Part US20230379236A1 (en) 2021-02-03 2023-08-02 Test system and test method for time-sensitive networking device

Publications (1)

Publication Number Publication Date
WO2022166694A1 true WO2022166694A1 (zh) 2022-08-11

Family

ID=75814068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073908 WO2022166694A1 (zh) 2021-02-03 2022-01-26 一种针对时间敏感网络设备的测试系统及测试方法

Country Status (3)

Country Link
US (1) US20230379236A1 (zh)
CN (1) CN112804124B (zh)
WO (1) WO2022166694A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116055353A (zh) * 2023-01-28 2023-05-02 中国信息通信研究院 通信网元技术接口性能的测试装置、测试方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112804124B (zh) * 2021-02-03 2022-10-25 上海交通大学 一种针对时间敏感网络设备的测试床及测试方法
CN115277519A (zh) * 2022-07-30 2022-11-01 重庆长安汽车股份有限公司 流量整形测试方法、系统、设备及介质
CN115834430A (zh) * 2022-11-16 2023-03-21 国网江苏省电力有限公司信息通信分公司 时间敏感网络测试方法及测试床、存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1889600A (zh) * 2005-12-10 2007-01-03 华为技术有限公司 一种接入网关测试装置、测试系统及测试方法
US20180309655A1 (en) * 2017-04-25 2018-10-25 Ixia Methods, systems, and computer readable media for testing time sensitive network (tsn) elements
CN108737003A (zh) * 2017-04-25 2018-11-02 是德科技新加坡(控股)私人有限公司 用于测试时间敏感网络(tsn)元件的方法、系统和计算机可读介质
CN110166312A (zh) * 2018-02-16 2019-08-23 丛林网络公司 使用随机测试床自动创建网络装置模型
CN112804124A (zh) * 2021-02-03 2021-05-14 上海交通大学 一种针对时间敏感网络设备的测试床及测试方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369423C (zh) * 2005-07-14 2008-02-13 牛伟 网络仿真测试系统及方法
CN104053164B (zh) * 2013-03-14 2017-08-18 深圳先进技术研究院 物联网网关测试系统和方法
CN103982413B (zh) * 2014-04-25 2016-03-09 苏州市计量测试研究所 泵类能效在线检测评估方法及系统
CN108322356A (zh) * 2017-01-18 2018-07-24 重庆邮电大学 一种基于mqtt的工业网络网关兼容测试方法
CN109218139B (zh) * 2018-10-23 2020-06-05 京信通信系统(中国)有限公司 网关测试系统
CN109361562B (zh) * 2018-10-31 2020-10-30 广东电网有限责任公司信息中心 一种基于关联网络设备接入的自动化测试方法
CN111416752B (zh) * 2020-02-19 2022-05-17 重庆邮电大学 一种面向时间敏感网络数据帧调度的测试方法
CN111585836B (zh) * 2020-04-26 2023-06-13 工业互联网创新中心(上海)有限公司 时间敏感网络的自动测试方法和装置
CN112311623B (zh) * 2020-10-22 2022-10-25 中车大连电力牵引研发中心有限公司 应用于列车的时间敏感网络测试平台及测试方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1889600A (zh) * 2005-12-10 2007-01-03 华为技术有限公司 一种接入网关测试装置、测试系统及测试方法
US20180309655A1 (en) * 2017-04-25 2018-10-25 Ixia Methods, systems, and computer readable media for testing time sensitive network (tsn) elements
CN108737003A (zh) * 2017-04-25 2018-11-02 是德科技新加坡(控股)私人有限公司 用于测试时间敏感网络(tsn)元件的方法、系统和计算机可读介质
CN110166312A (zh) * 2018-02-16 2019-08-23 丛林网络公司 使用随机测试床自动创建网络装置模型
CN112804124A (zh) * 2021-02-03 2021-05-14 上海交通大学 一种针对时间敏感网络设备的测试床及测试方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116055353A (zh) * 2023-01-28 2023-05-02 中国信息通信研究院 通信网元技术接口性能的测试装置、测试方法及系统
CN116055353B (zh) * 2023-01-28 2023-06-30 中国信息通信研究院 通信网元技术接口性能的测试装置、测试方法及系统

Also Published As

Publication number Publication date
CN112804124B (zh) 2022-10-25
US20230379236A1 (en) 2023-11-23
CN112804124A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2022166694A1 (zh) 一种针对时间敏感网络设备的测试系统及测试方法
Chung et al. NS by Example
CN103117900B (zh) 一种可配置式工业以太网数据解析系统及解析方法
CN113347065A (zh) 一种时间敏感网络中的流量调度测试装置及方法
CN109889551A (zh) 一种智能硬件接入的物联网云平台的方法
Garousi et al. Traffic-aware stress testing of distributed systems based on UML models
CN110177013A (zh) 一种基于FPGA的EtherCAT主从站设计与实现方法
CN110380923B (zh) 就地化元件保护环网测试装置
CN113612654B (zh) 一种基于数据库的车载网关功能测试方法
CN109495293B (zh) 一种交换机控制面的测试方法、系统、设备及存储介质
Dolejs et al. On the Ethernet use for real-time publish-subscribe based applications
CN114422010A (zh) 一种基于网络虚拟化的卫星通信仿真平台的协议测试方法
Kölsch et al. Hardware-in-the-loop simulation for Internet of Things scenarios
CN103078767A (zh) 一种单端口全线速测试wan网络吞吐量的方法及装置
CN107483284A (zh) 网络设备的测试方法及装置
Găitan et al. Modbus protocol performance analysis in a variable configuration of the physical fieldbus architecture
CN115967644A (zh) 一种面向时间敏感网络的交换机安全性测试方法
CN115277519A (zh) 流量整形测试方法、系统、设备及介质
CN203522776U (zh) 一种可配置式工业以太网数据解析系统
CN107769968B (zh) Afdx网络中snmp代理的调试与测试系统
CN114285778A (zh) 一种电力调度数据网组网安全测试系统及测试方法
Pan et al. Design and Performance Analysis of Protocol Conversion between 5G and Modbus TCP
WO2023216901A1 (zh) 配置切片策略的方法、装置、网络设备及存储介质
CN112019491A (zh) 一种报文处理方法及系统
CN116743617B (zh) 用于网络测试的方法、计算设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22748973

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.01.24)