WO2022166616A1 - 软件定义混联动力总成及车辆 - Google Patents

软件定义混联动力总成及车辆 Download PDF

Info

Publication number
WO2022166616A1
WO2022166616A1 PCT/CN2022/073181 CN2022073181W WO2022166616A1 WO 2022166616 A1 WO2022166616 A1 WO 2022166616A1 CN 2022073181 W CN2022073181 W CN 2022073181W WO 2022166616 A1 WO2022166616 A1 WO 2022166616A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
engine
vehicle
heavy
hybrid
Prior art date
Application number
PCT/CN2022/073181
Other languages
English (en)
French (fr)
Inventor
格桑旺杰
查为
Original Assignee
乾碳国际公司
格桑旺杰
查为
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乾碳国际公司, 格桑旺杰, 查为 filed Critical 乾碳国际公司
Priority to EP22748895.4A priority Critical patent/EP4331885A1/en
Publication of WO2022166616A1 publication Critical patent/WO2022166616A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present application relates to hybrid powertrains and vehicles.
  • Trunk line logistics heavy trucks (over 600 kilometers on average working day; more than 80% of the mileage are closed expressways; the total weight exceeds 15 tons) is the backbone of the road logistics industry, as well as the fuel consumption (CO2) and pollutant emissions in the transportation field (NOx, etc.) large households are one of the key points of the government's perennial energy conservation and emission reduction supervision and rectification.
  • GSG-II Greenhouse Gas Phase II Regulation
  • Emission regulations are the main driving force behind the development of vehicle powertrain technology in countries around the world.
  • the powertrain of the China National-6 heavy-duty truck will be at the same technical platform level as the powertrain of the current North American and European heavy-duty trucks.
  • China's national-1 to national-6 regulations have been formulated and promulgated in the past two decades with reference to the EU's EU-I to EU-VI regulations, it is expected that China will follow the EU and soon launch a focus on the carbon emission intensity and fuel consumption of heavy trucks. new regulations.
  • the United States has always been at the forefront of the world in the formulation of heavy-duty truck emission and fuel consumption regulations and technology research and development.
  • the "Super Truck” project (SuperTruck I, 2011-2016), led by the U.S. Department of Energy (DOE) and funded with a total of 100 million US dollars, has four technical teams led by the top four heavy truck OEMs in the United States.
  • the four super heavy-duty truck prototypes built exceeded the targets of 50% improvement in fuel economy (gallons per ton-mile) for heavy-duty trucks and 50% in diesel engine thermal efficiency (BTE) in 2009. From 2017 to 2022, the U.S. Department of Energy once again subsidized five technical teams with a total of $80 million in research and development expenses to implement the "SuperTruck II" project.
  • the super truck project in the United States includes all the energy-saving and emission-reduction technical solutions for heavy-duty trucks that the North American heavy-duty truck industry believes may be mass-produced and commercialized before 2027.
  • the mid-to-long-term challenge of the U.S. heavy-duty truck industry is how to meet the mandatory requirements of GHG-II heavy-duty truck fuel consumption in 2027 on the premise of effectively controlling the increase in the price of new heavy-duty trucks.
  • the actual fuel consumption (liters/100 kilometers) of a gasoline-electric hybrid vehicle is highly correlated with the operating conditions (Duty Cycle) of the vehicle.
  • the average vehicle speed is low (less than 40 km/h), and active acceleration, deceleration or braking is frequent;
  • the average vehicle speed is high (greater than 60 km/h), active acceleration , slow down or brake infrequently.
  • the hybrid vehicle mainly recovers energy through the regenerative braking of the drive motor to achieve the beneficial effect of energy saving and emission reduction.
  • hybrid vehicles For a long time, the global auto industry and academia have the following "consensus" on the fuel-saving potential of hybrid vehicles (light or heavy-duty vehicles): under urban working conditions, hybrid vehicles save more fuel than traditional fuel vehicles, and the comprehensive fuel consumption can be Reduced by more than 30%; but under highway conditions (average speed is higher than 60 km/h; seldom active acceleration or braking deceleration), the engine can work stably in its high-efficiency area for a long time, and regenerative braking has less chance to recover energy , the fuel-saving effect of hybrid vehicles is less than that of traditional fuel vehicles, and the comprehensive fuel consumption reduction cannot exceed 10%; especially for series hybrid vehicles, because the engine power generation and pure electric drive need to undergo multiple energy conversions, under highway conditions The fuel saving effect is not as good as that of a parallel hybrid vehicle, and it may even cost more fuel than a traditional gasoline vehicle.
  • Diesel engines account for more than 95% of the mass-produced commercial heavy-duty truck engines in the world; heavy-duty truck diesel engines can stably work in their high-efficiency combustion areas under high-speed conditions.
  • the technical challenges to further reduce the oil consumption and emissions of traditional diesel are increasing, and the cost is increasing; in the past 25 years, the average fuel consumption (liters/100 kilometers) of the heavy truck industry in the United States, Europe, and China The drop is less than 1.5%; for heavy truck manufacturers in Europe, America or China, it is a huge technical and commercial challenge to significantly reduce the actual comprehensive fuel consumption (liter/100 kilometers) of heavy trucks in trunk logistics with the high cost performance recognized by the market.
  • any fuel-saving technology has the dual benefit of reducing vehicle exhaust pollutant emissions and greenhouse gas (or carbon) emissions.
  • vehicle energy saving will be conducive to reducing emissions (pollutants and CO2), but reducing exhaust pollutant emissions is not necessarily conducive to fuel saving; in fact, the vast majority of reducing exhaust pollutant emissions represented by NOx
  • the technical solutions that have been mass-produced or can be mass-produced all come at the cost of increased fuel consumption (ie CO2 emissions).
  • the core indicators (Core Metrics) of energy saving are fuel consumption (FC, liters/100 km) or carbon emissions (CO2, g/km), the emission reduction
  • the core metric is NOx emissions (g/kWh or g/hph).
  • the NOx emission value is twice as high, and both exceed the standard; for example, when the vehicle speed is lower than 25mph (ie, mph, urban conditions), the actual average NOx emission of American heavy trucks is 1.1g/bhp-hr (grams/horsepower- hour) while the EPA-2010 NOx regulatory limit is 0.2g/bhp-hr; the actual average NOx emission of European heavy trucks is 0.5g/bhp-hr (grams/horsepower-hour) and the Euro-VI NOx regulatory limit is 0.34 g/bhp-hr; when the vehicle speed is higher than 50mph (highway conditions), the actual average NOx emissions of American heavy trucks and European heavy trucks are stable and reach the standard.
  • the U.S. federal government (EPA) and the California government (CARB) are aware of the deficiencies in the NTE test specifications in the current EPA-2010 regulations, and are actively preparing to revise the relevant emission regulations and test specifications, such as adding low-load and idle cycles for engine emission certification and Comprehensive scoring and weighting, modifying NTE test specifications, etc., plug the loophole of the "legal" RDE operating NOx emission exceeding the standard.
  • the U.S. federal government is currently taking the Cleaner Truck Initiative legislative process, which is expected to be completed in 2021, requiring that the NOx exhaust emissions of all new large commercial vehicles sold in the United States be reduced to 0.02g/bhp-hr from 2030.
  • the EU is also preparing EU-VII legislation. It is expected that from 2030, the NOx exhaust emissions of all new large commercial vehicles sold in the EU will be reduced by about 90% compared with the EU-VI value.
  • China is also expected to follow the EU in implementing China 7 emissions regulations around 2030. In other words, the NOx and CO2 emissions of all new heavy-duty diesel vehicles sold in the three major markets of the US, EU, and China in 2030 must be significantly higher than the NOx and CO2 values of current (2020) models.
  • the global heavy truck industry needs to be able to break the zero-sum tradeoff (Zero-sum Tradeoff) between CO2 and NOx, and realize the positive-sum tradeoff (Positive-sum Tradeoff).
  • the technical solution is to meet the 2027 US federal GHG-II carbon emission regulations and California ultra-low NOx emission regulations, or to meet the 2030 EU carbon emission regulations and future Euro-VII pollutant emission regulations.
  • heavy trucks are production tools, they have a service life of more than 20 years in Europe and the United States, and a longest service life of 15 years in China. Any new technology for energy saving and emission reduction of heavy trucks will take more than ten years to become the mainstream of all heavy trucks in the market.
  • the total CO2 and NOx emissions are rapidly and significantly reduced, which requires the rapid commercialization of new heavy-duty trucks that adopt the latest energy-saving and emission-reduction technologies, and effective technical and commercial means to accelerate the use of used heavy-duty trucks. Upgrading.
  • the current laws and regulations of the US heavy truck market allow the conversion of second-hand diesel heavy trucks into gasoline-electric hybrid heavy trucks, and the merchants self-discipline certification without the need for government re-certification, and then directly put the retrofitted hybrid heavy truck (Retrofitted Hybrid Heavy Truck) into the market for operation.
  • the current laws and regulations of the European Union and China's heavy truck market do not allow the conversion of used diesel heavy trucks into gasoline-electric hybrid heavy trucks.
  • Each new model (including frame and powertrain) must be submitted by a qualified OEM for government certification before it can be put on the market. Commercial use in the market.
  • vehicle RDE running fuel consumption refers to the fuel consumption of the vehicle when the vehicle is running under the actual driving environment, which is equal to the actual fuel consumption (liter) of the vehicle divided by the accumulated mileage, and the dimension is liters/100 kilometers ;
  • Vehicle RDE operating emission data refers to the pollutant emissions measured by the portable emission tester (PEMS) when the vehicle is running in the actual driving environment, including nitrogen oxides NOx and particulate matter PM, which is equal to the actual vehicle's emissions.
  • PEMS portable emission tester
  • the cumulative emission weight of pollutants (grams) divided by the cumulative mileage of the total engine output work, the dimension is grams/kilowatt hour (g/kWh) or grams/horsepower hour (g/bhp-hr), it is not allowed to exclude any engine inefficiency area Emission data at the operating point;
  • vehicle NTE emission data (referred to as “NTE emissions”) or MAW emission data (referred to as “MAW emissions”) refers to the RDE emission data set, according to the NTE technical specifications in the US EPA-2010 regulations or European-
  • the MAW technical specification in the VI regulation allows the emission data calculated by legally excluding the emission data of the non-efficient operating points of the engine according to the specification;
  • the engine certification emission data (referred to as "certified emission”) refers to the emission data according to the US EPA-2010 regulations Or Euro-VI regulations, the emission data measured by the engine on the laboratory bench according to the certified emission measurement specifications of the corresponding regulations;
  • the nominal emission of heavy trucks refers to the certified emission data of the engine or the NTE emission
  • the certified emission limit of the engine ⁇ the NTE emission limit of the whole vehicle or the MAW emission limit ⁇ the RDE emission limit of the whole vehicle; the RDE emission test of the whole vehicle and the laboratory of the engine
  • the cycle conditions and external environment of the former vehicle are not fixed and difficult to repeat, and a new variable such as the driver's driving style has been added to ensure that the emission limit of heavy truck RDE operation can meet the standard stably for a long time. It is extremely challenging both technically and commercially; and vehicle RDE emissions are the touchstone for government and social vehicle emissions regulation and governance, and nominal emissions should be as consistent as RDE emissions as much as possible.
  • the emissions can be up to standard, and there is no driving force to continuously reduce the RDE emissions of vehicles; while the government environmental protection departments and the public are concerned about as much as possible. Reduce the difference between nominal emissions and RDE operating emissions and consistently reduce RDE operating emissions. Heavy trucks are a production tool. For fleets or drivers, there is always a market driving force in vehicle energy saving. The lower the fuel consumption of RDE operation, the better, which can reduce costs and increase efficiency for vehicle owners; besides, drivers or fleets only consider the fuel consumption of RDE operation, not the fuel consumption. They care too much about the nominal fuel consumption of the main engine plant or engine plant; but in terms of vehicle emission reduction, they are completely driven by the government’s mandatory emission regulations. The fleet requires the nominal emission of heavy trucks to meet the standard. The lower the RDE operating emission, the better, especially When emission reductions come at the cost of a slight increase in fuel consumption.
  • the present invention provides a software-defined hybrid powertrain (Software Defined Mixed Hybrid Powertrain-SDPt) and an intelligent network-connected electric (ACE) heavy truck equipped with the powertrain, aiming to solve the problem that it is difficult to find new diesel heavy trucks in the prior art At the same time meet the 2027 U.S.
  • Software Defined Mixed Hybrid Powertrain-SDPt Software Defined Mixed Hybrid Powertrain-SDPt
  • ACE network-connected electric
  • GSG-II federal CO2 emission regulations
  • California diesel heavy-duty vehicles including heavy trucks, buses, engineering vehicles, etc.
  • RDE fuel consumption L/L/ 100KM
  • EPA-2010 cost-effective and mass-produced
  • the intelligent network-connected electric (ACE: Automated Connected Electrified) heavy truck of the present invention is compared with the traditional diesel engine heavy truck.
  • the RDE fuel consumption (liter/100 kilometers) can be reduced by a Up to more than 25%, it can also improve the active safety of vehicle driving, and ensure that the RDE emissions can meet the long-term and stable standards within the useful life (Useful Life) range of 700,000 kilometers (ie, 435,000 miles).
  • Diesel heavy trucks are converted into ACE heavy trucks.
  • car owners can only rely on dynamic software definition and over-the-air download upgrades (OTA) without increasing hardware costs.
  • OTA over-the-air download upgrades
  • the software-defined powertrain (SDPt) technical solution in this disclosure refers to a collection of various technical measures of the present invention, with a dual-motor hybrid (Mixed Hybrid) powertrain system architecture as the hardware basis, and then with the engine Pulse modulation control (PMC-Pulse Modulation Control) is implemented separately for the transient power of the battery pack;
  • ACE heavy trucks refer to hybrid heavy trucks equipped with SDPt;
  • traditional heavy trucks (or vehicles) refer to only equipped with internal combustion engines (diesel engines, natural gas engines, etc.) but not Hyundai heavy-duty trucks (or vehicles) containing any hybrid devices;
  • Hyundai heavy-duty trucks mainly refer to heavy-duty trucks that meet the current emission regulations (EPA-2010, Euro-VI, China VI) in the United States, Europe and China;
  • hybrid vehicles refer to deep gasoline and electric vehicles Full Hybrid, where the peak power of electric drive or regenerative braking exceeds 30% of the total maximum drive power of the vehicle.
  • NZE non-zero emission
  • EPA-2010, Euro-VI, National VI current emission regulations
  • EPA-2010, Euro-VI, National VI the state regulations require that the NOx emission value of heavy truck diesel engines be reduced from the current EPA-2010 certified emission limit of 0.2g/bhp-hr to 0.02g/bhp-hr from 2027- hr; It is expected that the U.S.
  • the so-called “software and hardware decoupling" of the software-defined hybrid powertrain (SDPt) in the present invention can refer to both the technical features of the SDPt and its technical functions, including at least the following points:
  • the operating point can correspond to multiple different operating points of the engine, and multiple different operating points of the SDPt can correspond to the same operating point of the engine;
  • the dynamic control of the time-space function of transient road load power or the time-space function of rolling time average road load of ACE heavy truck is basically independent of the dynamic control of the time-varying function of transient power or time-varying function of rolling time average power of the engine and does not affect each other. ;
  • the transient or steady-state dynamic performance indicators of SDPt are basically irrelevant to the corresponding dynamic performance indicators of the engine, motor, and battery pack, that is, the combination of hardware performance and functional redundancy exceeds match;
  • the decoupling of software and hardware is an essential technical feature and the cornerstone of the underlying technology for a software-defined powertrain system; the engine of a traditional heavy truck can only run in the complex surface conditions of the first quadrant under the normal driving mode, and the working conditions of the vehicle and the engine are different. Two-way unique mapping of working conditions, strong coupling between engine software and hardware, technically impossible to achieve software-defined powertrain; the prior art gasoline-electric hybrid heavy truck simulates the transient power function of the engine, motor and battery pack separately Control, although the engine operating conditions can be dynamically adjusted within a limited range, the operating trajectory of the engine in the normal driving mode is still a complex surface operating condition in the first quadrant, which only increases the time proportion of the engine operating in the high-efficiency combustion area.
  • AEC mass-produced commercial analog electronically controlled
  • DPC digital pulse control
  • the high-state line condition in the high-efficiency area and the low-state line condition in the fourth quadrant zero fuel consumption, zero-emission and non-combustion high-efficiency area) can be selected for time-division multiplexing operation, and the ACE heavy truck is completely covered by the simple line condition of the DPC engine.
  • the software and hardware decoupling of the hybrid powertrain system is realized for the first time, and finally the software-defined powertrain is realized.
  • the actual (RDE) cycle conditions of heavy trucks may be ever-changing; in order to optimize the RDE fuel consumption of traditional internal combustion engine heavy trucks, the hardware parameters of the powertrain need to be tailored according to the mainstream cycle conditions of vehicle operation; however, from optimizing the RDE fuel consumption Considering the point of view, the technical requirements for hardware parameters in highway conditions and urban conditions are often contradictory, and it is difficult to balance the two. For example, technical measures such as engine down-sizing or down-speeding and gearbox overdrive are mainstream mature technologies for energy saving and emission reduction in modern traditional heavy truck highway conditions, but the above technical measures are not suitable for Traditional heavy trucks that often operate in urban conditions have negative effects in terms of power performance, system life, and actual fuel-saving effects.
  • the software-defined hybrid powertrain technical solution of the present invention can effectively get rid of the limitation of the powertrain hardware configuration on the power performance, RDE fuel consumption or emission of the ACE heavy truck, and only uses a set of mass-produced and commercial mainstream engines and motors.
  • the general-purpose hybrid powertrain hardware composed of power battery packs can fully cover any cycle conditions of ACE heavy trucks, and the hardware should remain unchanged; through the vehicle power management strategy (PMS) software algorithm Dynamically define the characteristics of SDPt to achieve thousands of vehicles and thousands of faces. According to the dynamic cycle conditions of each ACE heavy truck and each freight event, according to the AI algorithm of energy saving and emission reduction, the three technologies of vehicle power, RDE fuel consumption or emission are simultaneously optimized. index.
  • the software-defined hybrid powertrain technology of ACE heavy trucks can be combined with other energy-saving technologies of heavy trucks, such as vehicle wind resistance reduction technology, low wheel resistance tire technology, or vehicle lightweight technology, etc., to enhance the effect of energy saving and emission reduction; it should be emphasized that , Compared with traditional diesel heavy trucks, ACE heavy trucks adopt the other energy-saving technologies mentioned above, and can also produce a synergistic effect of one plus one greater than two; Combined, the actual fuel consumption of traditional heavy trucks can be reduced by 15%, and the same technical combination can significantly reduce the actual fuel consumption of ACE heavy trucks by more than 15%.
  • hybrid heavy trucks mainline logistics hybrid heavy trucks
  • RDE mainline logistics hybrid heavy trucks
  • the maximum fuel saving rate cannot exceed 12%; especially when series hybrid vehicles operate under high-speed conditions, the overall fuel consumption may even increase slightly;
  • the purchase cost of hybrid heavy trucks increases significantly; if the actual fuel saving rate cannot exceed 20%, the cost performance of hybrid heavy trucks is not high enough.
  • ROI return on investment
  • ACE heavy truck In order for the trunk line logistics ACE heavy truck to compete with traditional diesel heavy trucks sustainably and win without government subsidies, and to achieve large-scale commercial use as soon as possible, its high cost performance must be greatly improved.
  • the average selling price of a trunk line heavy truck in the United States or China (US retail price of 150,000 US dollars/unit or China retail price of 400,000 yuan/unit) is five to eight times the average vehicle price of ordinary passenger vehicles in the country's market. But its annual fuel cost is nearly 30 times that of a family passenger car.
  • the retail price of gasoline or diesel in the US and China is significantly lower than in Europe, where the ratio of passenger car to heavy truck prices and annual fuel costs is similar in China and the US.
  • One is to increase the fuel-saving rate compared with traditional diesel vehicles, and the other is to reduce the difference between the one-time purchase cost of traditional diesel vehicles and the sum of accumulated vehicle operation and maintenance costs.
  • the fuel cost saved can be directly converted into the profit of the fleet.
  • P v is the vehicle power or on-road power, and all power terms are in kilowatts (kW).
  • the wheel resistance power P r refers to the power required to overcome the rolling friction resistance of the tire when the vehicle is running, which is a non-negative number and can be expressed by the following formula (1-2):
  • the wind resistance power P d refers to the power required to overcome the air resistance (when there is no wind) when the vehicle is running. It is a non-negative number and can be expressed by the following formula (1-3):
  • the vertical slope power P g refers to the driving power required to overcome the gravity and increase the potential energy when the vehicle travels uphill.
  • the longitudinal slope power P g can be expressed by the following formula (1-4):
  • the acceleration power Pa refers to the extra power required to reach a predetermined acceleration value when the vehicle is running on a flat road.
  • deceleration braking that is, friction braking, which converts the kinetic energy of the vehicle into thermal energy for consumption, or non-friction regenerative braking, which converts part of the vehicle kinetic energy into electrical energy, and charges the battery pack to recover energy .
  • the acceleration power P a can be expressed by the following formula (1-5):
  • each highway is only a spatial function; unless the road is built, the spatial function of the longitudinal slope does not change with time; since the longitudinal speed of the vehicle is a space-time function, according to equation (1-4), the longitudinal slope power is a space-time function, and When the vehicle is basically running at a constant speed, only the longitudinal wave power is a function term with a rapidly changing amplitude of 100 kilowatts in the dynamic equation (1-1), and the other three terms can be approximated as constants.
  • GNSS on-board satellite navigation
  • g or G are equivalent, and can represent both grams of weight and acceleration of gravity, which can be clearly judged by ordinary technicians according to the context, and no ambiguity will arise.
  • the vehicle In highway driving conditions, the vehicle rarely brakes actively to slow down or accelerate.
  • the acceleration power is approximately zero, and the wheel resistance power is basically unchanged on the road section with a small longitudinal slope (that is, a longitudinal slope within a few degrees of plus or minus).
  • the wind resistance power can also be approximated as a constant, only the longitudinal slope power is a time variable, and its variation range is proportional to the sine value of the longitudinal slope angle of the expressway section, the vehicle speed, and the total vehicle mass.
  • the longitudinal slope of a highway is usually referred to as "longitudinal slope".
  • the main highways in China have been congested for a long time, and the average speed of heavy trucks in the highway logistics industry is about 60 kilometers per hour; The value is 36 tons, the maximum legal speed limit is as high as 125 km/h, and the average driving speed of heavy trucks in the road logistics industry is about 95 km/h.
  • Most U.S. transportation companies usually limit the top speed of heavy trucks to 105 km/h for fuel economy and safety reasons.
  • a heavy truck with a fully loaded gross mass of 40 tons and a vehicle speed of 60 km/h will require up to 228 kilowatts of power on the longitudinal slope of the expressway when it goes uphill at a constant speed of 2.0 degrees.
  • the wheel resistance of the vehicle is The sum of power and wind resistance power is only 71 kilowatts; if the power total success rate margin is insufficient at this time, the heavy truck must reduce gear and slow down before continuing uphill.
  • the vertical slope power of the vehicle is 11.4 kW (only 5.0% of the vertical slope power of the heavy truck), and the wheel resistance power is the same as that of the heavy truck.
  • the sum of the wind resistance power is only 3.6 kilowatts; for a passenger car with a peak power engine of 100 kilowatts, such a small slope is not a concern, such as walking on flat ground.
  • the road load power of the heavy truck (mainly due to the change of the longitudinal slope power) will exceed 100.
  • a huge change in kilowatts If there is an uphill, there must be a downhill. When going downhill, the 100-kilowatt grade vertical slope power of the heavy truck is negative.
  • the regenerative braking of the drive motor can be used to maintain a constant vehicle speed (equivalent to the negative acceleration power during active braking). Part of the mechanical energy of the vehicle is converted into electrical energy to charge the battery pack and recover energy when the vehicle is on a slope.
  • ACE heavy-duty trucks rarely brake actively under high-speed conditions, due to the subtle changes of 1.0-degree vertical slope along the highway, it can bring about 100 kilowatt-level vertical slope power changes.
  • ACE heavy trucks that drive at a constant speed still have some There are many "passive braking" opportunities for recovering kilowatt-hour-level electric energy through downhill regenerative braking.
  • the braking power is 67
  • the required braking power is as high as 1333 kilowatts
  • the total mass of the urban electric bus is about 20 tons
  • the average speed is 30 km/h, which is required for the urban bus to achieve a deceleration of 0.2G.
  • the braking power is about 333 kW.
  • the current peak power limit of the energy that can be recovered by regenerative braking for gasoline-electric hybrid vehicles is below 500 kW;
  • the part of the braking power higher than 500 kW cannot be converted into electric energy by the motor regenerative braking to charge the battery pack to recover the energy.
  • Only the mechanical braking system of the vehicle can convert this part of the vehicle kinetic energy into thermal energy and completely waste it; In other words, the world's largest commercialized DC fast charging pile is 375 kilowatts.
  • hybrid vehicles Under the mixed driving conditions of cities or suburbs with frequent acceleration/deceleration, hybrid vehicles (light vehicles or large passenger cars) can use regenerative braking to recover energy through many opportunities of 100-kilowatt active braking, which is more efficient than traditional engine vehicles. Significant fuel saving, the actual fuel saving rate is 30% to 60%.
  • ACE heavy trucks in mainline logistics rarely brake actively under high-speed conditions, there are still many opportunities for passive braking (downhill) at the level of 100 kilowatts, and regenerative braking can be used to recover energy; however, high-speed conditions of heavy trucks are urgent.
  • braking it mainly relies on the mechanical braking system to output more than one megawatt of braking power, and most of the kinetic energy of heavy trucks cannot be effectively recovered through regenerative braking.
  • the average vehicle speed is higher than 60 km/h
  • the traditional engine can work stably in its high-efficiency area
  • the fuel-electric hybrid vehicle has less fuel-saving effect than the traditional engine vehicle ( less than 10%), especially for series hybrid vehicles, due to the additional energy loss of multiple energy conversions, the overall fuel consumption may even rise instead of falling; (Total weight less than 3.5 tons) and single-motor parallel mixed large-scale commercial vehicles, for example, a medium-sized motor with a peak power of less than 200 kW is mechanically connected in parallel with an engine with a peak power of more than 250 kW.
  • ACE heavy trucks that adopt a 100kW rated power dual-motor extended-program serial-mix or hybrid (serial-mix-parallel) system architecture in trunk logistics application scenarios.
  • ACE heavy trucks under high-speed working conditions rarely actively accelerate or brake, due to the subtle changes of 1.0-degree vertical slope along the highway, many use the 100-kilowatt-level vertical slope power when going downhill to drive motor regeneration.
  • the passive braking opportunity that recovers kilowatt-hour-level electric energy, the small amount of water will make a lot of money.
  • every 1.0-degree slight change in the longitudinal slope function along the way can lead to a hundred kilowatt-level change in the longitudinal slope power.
  • the impact on the road load power is equivalent to Frequent active acceleration or braking of passenger cars or buses on urban level roads.
  • the United States has nearly 130,000 miles of closed highways. According to a 2016 research report by the National Renewable Energy Laboratory (NREL), 20% of the total mileage of U.S. highways has a longitudinal gradient of less than 0.2%, which can be considered as flat roads for ACE heavy trucks; The longitudinal slope of 75% of the road sections is between 0.2% and 3.0%, which is no longer a flat road for the ACE heavy truck; only 5% of the total mileage of the road section has a longitudinal slope of more than 3.0%, which is a high-speed ACE heavy truck. It's a big up and down slope.
  • NREL National Renewable Energy Laboratory
  • the dual-motor hybrid ACE heavy truck of the present disclosure includes a heavy truck engine (diesel or natural gas) with a peak power greater than 250 kilowatts and two large motors with a peak power greater than 200 kilowatts.
  • One of the motors (MG1) is mainly used as a generator, and the other motor (MG2) is mainly used as a drive motor.
  • the drive motor is one of the decisive factors for the power performance of a hybrid heavy truck, and its peak power should be greater than 250 kilowatts; the larger the drive motor, the better the vehicle power, and the better the energy recovery effect of regenerative braking.
  • a three-motor hybrid system with a standard main drive motor (MG2) and an optional auxiliary drive motor (MG3) can also be considered.
  • Predictive cruise control is mainly suitable for long slopes with a longitudinal slope angle greater than 2.0 degrees and a slope length of more than several kilometers; secondly, the traditional internal combustion engine heavy truck has no regenerative braking function, and cannot recover energy when going down a long slope; the actual comprehensive fuel consumption reduction is less than 3.0%.
  • P g this item is proportional to the sine value of the longitudinal slope angle; for every small up and down slope along the road (the longitudinal slope changes by 1.0%), the variation range of the longitudinal slope power is as high as more than 100 kilowatts, which provides many passages for the ACE heavy truck. Hundred kilowatts of regenerative braking power to recover kilowatt-hours of electrical energy, a small amount of water will accumulate. If the vehicle is pre-installed with an on-board 3D electronic map with expressway longitudinal meter-level spacing density, road positioning meter-level accuracy (longitude and latitude), and longitudinal slope measurement accuracy of 0.1 degrees, plus vehicle-road collaborative networking or meter-level high-precision satellite navigation (GNSS).
  • GNSS meter-level high-precision satellite navigation
  • the vehicle controller can accurately predict in real time (sub-second refresh) Calculation; kilowatt-level accuracy) the time-varying function of the on-road power within the range of 100 kilometers in front of the vehicle, especially the time-varying function of the kW-level granularity of the longitudinal slope power P g (t) and the road power P v (t);
  • the refresh frequency of VCU power prediction can be as high as 10.0 hertz (Hz) or more, that is to say, the VCU can dynamically calculate and refresh the prediction of the on-road power function in its electronic horizon every 2 to 3 meters of the vehicle.
  • the change is slow, the relative error between the predicted power function and the actual power function is less than 5%, and the shorter the time or the closer the distance, the smaller the prediction error;
  • ACE heavy trucks driving in urban or suburban conditions actively accelerate and brake frequently , the vehicle speed changes in a wide range and changes rapidly.
  • the road load power of the 100-kilometer-level electronic horizon is predicted in real time, and the relative error of prediction will deteriorate to more than 10%;
  • the on-road power in the 100-kilometer-level electronic horizon can be predicted, and the prediction accuracy is at the kilowatt level, which is equivalent to within 5% of the average on-road power, and the predicted refresh rate is higher than 5Hz.
  • various ADAS electronic navigation maps that have been commercialized in batches in various countries around the world or high-precision maps (HD Maps) that support L3+ autonomous driving commercial use can be used as the 3D maps of the present invention to provide electronic horizons for vehicles.
  • the so-called electronic horizon refers to various road information covered by the 3D electronic map within a specific range in front of the vehicle, especially the three-dimensional information such as longitude, latitude, and longitudinal slope along the highway.
  • Traditional diesel heavy trucks implement Predictive Cruise Control (PCC), which is limited by the fact that it is not suitable for frequent and rapid changes in engine operating conditions or frequent shifting of gearboxes, and has no function of regenerative braking to recover energy.
  • PCC Predictive Cruise Control
  • Electronic horizon information; and the ACE heavy truck of the present invention can effectively use electronic horizon road information in the range from 10 kilometers to 1000 kilometers; see below for details.
  • the VCU of the ACE heavy truck can be based on the vehicle dynamics equation (1-1), vehicle configuration parameters and dynamic condition data, electronic horizon prior 3D road information , and real-time road condition information, calculate the time-varying function distribution of vehicle on-road power within the range of the electronic horizon in real time (sub-second level), and predict future (hour-level or 100-kilometer-level) vehicle on-road power time-varying function with kilowatt-level granularity , so that the ACE heavy truck can take precautions and make full use of the power-type battery pack's 10-kilowatt-hour energy storage function and 100-kilowatt-level electric power peak-shaving and valley-filling function.
  • the hybrid powertrain of the ACE heavy truck perform dynamic predictive energy management control to optimize vehicle energy conservation and emission reduction.
  • the ACE heavy-duty truck software-defined hybrid powertrain system of the present invention can transform the worldwide problem of minimizing the fuel consumption of ACE heavy-duty trucks in trunk logistics into an equivalent narrow artificial intelligence (Narrow AI) problem of computer playing Go (such as AlphaGo). .
  • Narrow AI narrow artificial intelligence
  • DNN deep neural network
  • the chip performs inference operations based on the above-mentioned deep neural network (DNN) model, and regulates the path, amplitude, and direction of the engine mechanical power flow or battery pack power flow of the ACE heavy truck in real time, ensuring vehicle power and active safety.
  • the optimization of vehicle energy saving and emission reduction can be achieved; in terms of minimizing actual fuel consumption, AI can completely outperform human drivers, and the actual fuel saving effect is basically decoupled from the driver's level and the configuration parameters of the ACE heavy-duty truck engine.
  • the conventional internal combustion engine heavy truck in the prior art adopts Predictive Cruise Control (PCC) because of no regenerative braking function to recover energy, and the actual fuel saving rate is less than 3%, and the effect is limited;
  • PCC Predictive Cruise Control
  • the ACE heavy truck it has the function of regenerative braking to recover energy with a combined peak power of 500 kW and a 10 kWh power battery pack, plus the vehicle-cloud collaborative artificial intelligence (AI) with super computing power and self-learning evolution function. , it can achieve a beneficial effect of 30% fuel saving than traditional internal combustion engine heavy trucks; details will be described later.
  • the present invention proposes an ACE heavy-duty truck configured with a software-defined hybrid powertrain, and commands the electric power shunt ePSD through the vehicle controller VCU, so that the engine-generator set, the battery pack, and the drive motor can be operated within a ten-millisecond-level system response time.
  • the flow path, amplitude, or direction of 100-kilowatt-level electric power is precisely and continuously allocated between the three electric power sources; through the pulse modulation control (PM), especially the pulse width modulation control, respectively, of the transient output power of the engine or battery pack (PWM) or Pulse Amplitude Modulation Control (PAM), make the engine work in its high-efficiency area stably (99% of the time) for a long time, and compress the non-high-efficiency area (especially low load) to 1%, and according to Dynamic prediction of vehicle on-road power within the electronic horizon, allowing the battery pack to work stably or smoothly switch between one of three operating modes: maintain charge (CS), depletion (CD), and increase charge (CI); Through the high-rate charging and discharging of the battery pack of 100 kilowatts, the time-varying function of the road load transient power is clipped and filled, and the transient changes of the road load power function of hundreds of kilowatts in the second-level time dominated by the longitudinal slope power
  • ACE heavy trucks can reduce the overall fuel consumption by as much as 30% and the actual NOx emissions by as much as 75% compared to traditional diesel heavy trucks.
  • the ACE heavy truck of the present invention adopts a hybrid system architecture of dual motors and single clutches. Details will be followed.
  • the ACE heavy truck can instruct the clutch to open or close through the vehicle controller (VCU) to realize the serial-mixing mode and the parallel-mixing mode respectively.
  • VCU vehicle controller
  • the average vehicle speed is low (less than 45 km/h) and active acceleration and deceleration are frequent.
  • the serial hybrid mode which can completely decouple the engine working conditions from the vehicle road load conditions, and the engine can work stably in Its high efficiency, the drive motor also has many opportunities to recover energy through regenerative braking.
  • series hybrid vehicles Compared with traditional fuel vehicles, series hybrid vehicles have a significant fuel saving effect (more than 30%); and under high-speed conditions, the average speed of the vehicle is higher than High speed (greater than 50 km/h) and there is little active acceleration and deceleration. Even if the engine is directly mechanically coupled with the driving wheels of the vehicle, it can be adjusted dynamically through the gearbox to work stably in its high-efficiency area. model. From the perspective of fuel economy and power performance, under high-speed conditions, the parallel-hybrid mode with engine direct drive is better than the series-hybrid mode.
  • the power-split hybrid system represented by Toyota Prius has both series-hybrid and parallel-hybrid functions, which can take into account the optimization of vehicle power and fuel economy.
  • the present disclosure provides a dual-motor hybrid powertrain architecture capable of time-division switchable serial hybrid or parallel hybrid mode, including: a generator (MG1) directly driven by an engine for converting the chemical energy of the vehicle fuel into electrical energy (series hybrid) hybrid mode) or direct-drive vehicles (parallel hybrid mode); electric power splitter (ePSD), which is configured as a power electronics network with three ports, where the first port of the ePSD (i.e.
  • port I is connected to the generator set ( That is, the AC output terminal of the engine plus generator) is electrically connected in both directions; the second port (ie, port II) of the ePSD is electrically connected in both directions with at least one drive motor (MG2); the third port (ie, port III) of the ePSD is electrically connected with at least one drive motor (MG2).
  • the power battery pack is connected with bidirectional direct current, and is also connected with one-way direct current with a braking resistor; automatic transmission, the output shaft of which is mechanically connected with the drive axle of the vehicle in both directions; three-dimensional information such as longitude, latitude, and longitudinal slope; at least one main drive motor (MG2) with a standard hybrid P2 position is bidirectionally connected to the second port of the ePSD, and its output shaft is bidirectionally mechanically connected to the input shaft of the automatic transmission , the main drive motor (MG2) can be operated to: convert electrical energy into mechanical energy for driving the vehicle (electric drive mode), or convert the mechanical energy of the vehicle into electrical energy (regenerative braking mode), and pass the ePSD second port
  • the internal inverter that is, the motor controller
  • the mechanical connection method is It can be a single shaft with the same speed (coaxial connection), or it can be a parallel double shaft plus gear reduction coupling (parallel shaft connection); the output shaft of the engine is also mechanically connected to the main drive motor (MG2) in both directions through a heavy-duty clutch.
  • the mechanical connection can be single-axis coaxial, or parallel double-axis plus gear deceleration coupling; at the same time, the main drive motor (MG2) is also mechanically connected to the input shaft of the automatic transmission in both directions, and the output shaft of the transmission is connected to the vehicle.
  • the two-way mechanical coupling of the transaxle; and the vehicle also includes: a vehicle controller (VCU), through the vehicle's data bus (eg CAN bus), and based on 3D in the vehicle satellite navigation system (GNSS) and/or map unit (MU) map data to dynamically control at least one of the engine, generator, clutch, ePSD, drive motor, automatic transmission, and battery pack in an independent manner.
  • VCU vehicle controller
  • GNSS vehicle satellite navigation system
  • MU map unit
  • the ACE heavy-duty truck hybrid system architecture of the present disclosure includes a Mixed Hybrid powertrain system with at least two 100kW-class high-torque low-speed motors and at least one heavy-duty clutch.
  • the electrical power splitter ePSD
  • the electrical power splitter works together to dynamically control the 100-kilowatt-class mechanical or electrical power between the engine, generator, battery pack, drive motor, and gearbox in the vehicle powertrain system.
  • the flow path, amplitude, and direction of the Power Flow Loop switch the serial-mixing mode or the parallel-mixing mode of the vehicle by opening/closing the clutch; the hybrid architecture effectively integrates the two system architectures.
  • the generator (MG1) is arranged in the hybrid P1 position (after the engine flywheel, before the clutch), the main drive motor (MG2) is in the hybrid P2 position (after the clutch, before the gearbox), the optional auxiliary drive motor (GM3) It can be configured in P3 (behind the gearbox, before the propeller shaft) or hybrid P4 (behind the propeller shaft, beside the wheels).
  • the above-mentioned dual-motor hybrid architecture can realize a fully digital software-defined powertrain with ePSD as the core; the hybrid powertrain can control the engine or battery pack by performing pulse modulation on the time-varying function of the transient power of the engine or battery pack, which can not only realize the engine engineering
  • the decoupling of the ePSD’s three-port power electronic network hardware and the vehicle’s working conditions, and the decoupling of the powertrain hardware and software, the function and performance of the ePSD three-port power electronic network should be reserved to increase the plasticity of the product in the later stage.
  • ACE heavy trucks have software remote update iteration (OTA) in their entire operation life cycle to realize the continuous upgrade and evolution of products.
  • OTA software remote update iteration
  • each ACE heavy-duty truck powertrain can be customized and continuously revised, that is, to ensure that each ACE heavy-duty truck meets the requirements of emission regulations.
  • OTA software remote update
  • the actual performance of each ACE heavy-duty truck powertrain can be customized and continuously revised, that is, to ensure that each ACE heavy-duty truck meets the requirements of emission regulations.
  • the ePSD can be configured as a three-port power electronic network (PEN – Power Electronic Network), which contains at least three unique power electronic function modules with a rated power of 100 kilowatts: Internally connected to the first port is a bidirectional AC-DC converter Module (inverter; also known as motor controller MCU), the second port is internally connected to at least one bidirectional AC-DC conversion module (inverter; also known as motor controller MCU), and the third port is internally connected to at least one bidirectional AC-DC conversion module (inverter; also known as motor controller MCU).
  • a bidirectional buck-boost DC-DC conversion module chopper
  • VCS Voltage Control Switch
  • This disclosure focuses on the main peripheral input/output electrical characteristics of the ACE heavy-duty truck ePSD and the core functions and characteristics of the three power electronics (PE) functional modules (ie inverter, chopper, and voltage-controlled switch) included;
  • PE power electronics
  • the above-mentioned three kinds of PE modules and the set of circuit topologies that are electrically and mechanically connected to each other belong to the scope of the present invention.
  • the physical packaging layout of ePSD is that the above three PE functional modules are packaged and arranged in a metal box, or the three PE functional modules can be separately connected to the generator (MG1), the main drive motor (MG2), and the battery. Packages etc. are scattered in multiple metal box packing arrangements.
  • the hybrid powertrain of the above-mentioned ACE heavy truck realizes two unique system architectures or working modes of serial hybrid (clutch disconnected) or parallel hybrid (clutch closed) by controlling the switch state of the clutch; Subdivided into a variety of different operating sub-modes.
  • the vehicle controller (VCU) commands the wire-controlled electromechanical clutch electronically (rather than purely mechanically) to precisely and smoothly switch the serial-mixing or parallel-mixing modes, which are described in detail below.
  • the parallel mode can be preferred; under urban conditions (the average vehicle speed is less than 40 km/h, active acceleration or braking is frequent), Cross-mix mode may be preferred.
  • P MG1 >0, it is the electric drive power of the generator ( MG1 ) (using the engine's non-combustible idle speed operation or the engine's non-combustion braking as the load to convert electrical energy into mechanical energy); Drive a generator to generate electricity and convert mechanical energy into electrical energy);
  • P MG2 >0 the electric drive power of the main drive motor (MG2) (converting electrical energy into mechanical energy); P MG2 ⁇ 0, the regenerative braking power (converting mechanical energy into electrical energy), charging the battery pack and recovering the vehicle’s mechanical energy;
  • P BAT >0 the total discharge power of all battery packs (converting chemical energy into electrical energy);
  • P BAT ⁇ 0 the total charging power of all battery packs (converting electrical energy into chemical energy);
  • P ICE the effective output driving power (converting chemical energy into mechanical energy) for engine combustion work (ie, active operating conditions);
  • the effective power of the mechanical load the mutual conversion between various mechanical energies);
  • P ICE-p is the peak power of the engine (that is, the maximum continuous power)
  • P MG1-m , P MG2-m , and P BAT-m are the rated power of the generator, drive motor, and battery pack (that is, the maximum continuous power), respectively.
  • the motor or battery can withstand short-time overload, and the pulse peak power (10 seconds) of the motor can be more than 50% higher than the rated power; the pulse peak power (10 seconds) of the power battery pack can be higher than its rated power by more than 100%.
  • the system peak power of the powertrain (that is, the maximum continuous driving power of the vehicle) is completely determined by the PMG2-m with the main drive motor as standard.
  • MG3 auxiliary drive motor
  • MG3 can be placed in the hybrid P3 position (between the transmission output shaft and the first drive axle or the second drive).
  • Axle input shaft of course, a third motor is added, which will increase the complexity and total cost of the system while improving the power and redundancy of the vehicle.
  • P MG2 is the dependent variable, which is proportional to the on-road power P v of the vehicle; the on-road power is the independent variable, which reflects the current driving intention of the driver and the dynamic traffic environment of the vehicle (Ego Vehicle), and ⁇ dt is the rotation System efficiency (positive number less than 1.0).
  • P MG1 is another dependent variable, which is proportional to the independent variable of the net engine output power P ICE , and the working conditions of the engine are completely decoupled from the working conditions of the vehicle, and are independently determined by the control strategy of the engine; ⁇ g is the efficiency of the generator set (positive number less than 1.0).
  • the working conditions of the engine are completely decoupled from the working conditions of the vehicle, and the engine (ICE) and generator (MG1) can be independently and dynamically set to run at the high-efficiency operating points of their respective universal characteristic curves (specific speed and torque point) to ensure the highest combustion thermal efficiency of the engine at this time (ie, the minimum specific fuel consumption BSFC, g/kWh), while also optimizing exhaust emissions.
  • the battery pack power function P BAT is equal to the algebraic sum of the two motor power functions P MG1 and P MG2 and is also a dependent variable.
  • the three major power electronic function modules inside ePSD and related subsystems such as engine, generator, drive motor, automatic transmission, battery pack, etc., are under the unified command of the vehicle controller (VCU), according to the power management strategy (PMS) of the vehicle. ), dynamically adjust the independent variable P ICE and the dependent variable P BAT , cut peaks and fill valleys on the road load transient power function, satisfy the vehicle dynamics equation (1-1) in real time, and ensure the vehicle dynamics and freight timeliness. under the premise of achieving the best fuel-saving effect.
  • VCU vehicle controller
  • PMS power management strategy
  • ) is the achievable maximum value of the absolute value
  • the rated voltage V bus0 of the ePSD internal DC bus preferably ranges from 600V to 800V.
  • the third port of the ePSD can be connected to at least one power battery pack by bidirectional direct current, and the rated voltage of each battery pack is V bat ⁇ V bus0 .
  • the third port can also be connected to a 100-kilowatt class with a radiator by one-way direct current.
  • Braking resistance R bk when the battery pack of the ACE heavy truck is basically full on the way down a long slope (the SoC reaches the URL), the drive motor also needs to continue regenerative braking to generate power to maintain the effective power load during the non-friction retarding function of the vehicle.
  • the above equation (2-2) assumes that the voltage control switch module (VCS) inside the ePSD is disconnected, and the braking resistor does not work; if the module is closed, the braking resistor acts as an electrical load and is connected in parallel with the battery pack.
  • the equation ( 2-2) The left side should also increase the braking resistance power term P BR , which is a positive number; at the same time, the series hybrid power balance equation (2-4) should also be adjusted accordingly, which can be easily completed by ordinary technicians in the industry; it should be emphasized that, Whether the series hybrid power equation (2-4) contains the PBR term has no substantial response to the technical discussion of the present invention.
  • Port III of the ePSD can electrically connect at least two battery packs with different rated voltages, or battery packs composed of cells with different electrochemical compositions in both directions through the built-in chopper.
  • the advantages are complementary, which can not only improve the overall performance of the battery pack, but also increase the battery pack system’s performance. Redundancy can also reduce the overall cost of the battery pack, bringing multiple benefits to optimizing the cost-effectiveness of the ACE heavy-duty truck.
  • the battery pack of the ACE heavy truck is a "Peak Power Source" with ultra-long cycle life, wide ambient temperature range, and continuous high-rate partial charge-discharge (HRPSoC) operation.
  • the transient electric power of the kilowatt-level fast peak-shaving and valley-filling is superimposed with the transient electric power provided by the generator set, and synergistically supplies power to the drive motor, which is driven purely by the drive motor and satisfies the vehicle dynamics equation (1-1) in real time.
  • the capacity of the power battery pack is generally within 90 kWh, which will be described in detail later.
  • a heavy-duty diesel engine with a large fuel tank of 100 upgrades has average explosive power but full endurance, and can drive more than 1,000 kilometers continuously; while the power battery pack is more like a high-horsepower engine with a small five-liter fuel tank, with strong explosive power but seriously insufficient endurance , only pure electric drive can drive for 10 kilometers continuously; the engine and battery pack are combined, and the two sides complement each other's strengths, and the total explosive power and endurance of the hybrid powertrain are outstanding; from the perspective of vehicle power balance and energy management, the motor does not produce energy by itself , and does not store energy. It is a high-efficiency energy converter with no memory and no hysteresis effect. It converts electrical energy and mechanical energy to each other in real time.
  • the power-type battery pack capacity of ACE heavy trucks is generally only a few tens of kilowatt-hours; please note that due to the different rated voltages of various battery packs, the dimension of the battery pack capacity in the present invention is kilowatt-hour (kWh), not kWh. Ampere-hour (Ah) commonly used in the battery industry.
  • the ACE heavy truck encounters special road conditions such as continuous high mountains or long slopes (longitudinal slopes greater than 2.0 degrees) for more than 10 kilometers, it is likely that the battery pack will be basically exhausted before the vehicle reaches the top (that is, the SoC reaches LRL).
  • the gradeability of the serial hybrid vehicle to climb a mountain will completely depend on the maximum continuous power P MG1-m of the generator set.
  • the series hybrid heavy truck In order to maintain the same dynamic performance as the traditional engine heavy truck under the extreme road conditions of the high mountains, the series hybrid heavy truck must be equipped with a generator (MG1), drive motor (MG2) and corresponding motor control with the same rated power as the peak engine power. device.
  • the peak power (referring to the maximum continuous power of the engine) of the mainstream heavy-duty truck engines (displacement 10L to 16L) in the world exceeds 275 kW, and the peak power of the top-equipped 16L engine even exceeds 450 kW.
  • the cost of a 300 kW rated power large vehicle motor is significantly higher than the combined cost of two 150 kW rated power medium motors (with motor controller); and the number of qualified suppliers of the former It is ten times smaller than the latter, and it is more difficult to reduce costs in the long-term and ensure the quality and supply.
  • the comprehensive cost of the extended-program series hybrid system with high-power motor and high configuration will be high for a long time and difficult to reduce, and the cost performance of the whole vehicle is not high.
  • the parallel-mixing mode can be preferred, while the serial-mixing mode is the second best choice.
  • the clutch is closed and locked, the engine is directly coupled to the drive wheels, both the mechanical power flow loop and the electrical power flow loop are closed, and the engine, generator (MG1), and drive motor (MG2) can be all three
  • the vehicle dynamics equation (1-1) can be satisfied in real time by working individually or in concert.
  • the DC ports of the three internal functional modules of the ePSD are electrically connected to the DC bus confluence point X in both directions.
  • the product of the DC voltage at the confluence point and the current of each circuit branch is the time-varying function of the electric power of the corresponding energy conversion device.
  • the following two power balance equations are satisfied:
  • the above equation (3-2) assumes that the voltage control switch (VCS) module inside the ePSD is disconnected, and the braking resistor does not work; but if the module is closed, the braking resistor acts as an additional electrical load and is connected in parallel with the battery pack. At this time, the equation (3-2)
  • the braking resistor power term P BR should also be added on the left side, which is a positive number. Unless the ACE heavy truck goes down a long slope, it is necessary to turn on the braking resistor when the battery pack is basically full (the SoC reaches the URL) to realize the non-friction retarding function. In most of the running time of the ACE heavy truck, the retarding function and the braking resistor are not required.
  • the circuit is disconnected from the ePSD bus X.
  • the ACE heavy truck parallel-mix mode has a high probability of lower actual fuel consumption than the serial-mix mode; of course, it is also possible to make full use of the electronic horizon 3D road prior data, combined with the configuration of the ACE heavy truck Parameter and dynamic working condition data, predictably and intelligently dynamically switch serial-mixing or parallel-mixing mode (i.e. intelligent mode switching technology; iMS), make full use of the respective characteristics and advantages of the two modes, and further realize the RDE fuel consumption of the entire transportation event Minimization; like playing Go, do not compete for the local gains and losses of each particle, but look at the overall situation and seek a comprehensive victory in the final game, which will be described in detail later.
  • iMS intelligent mode switching technology
  • the vehicle on-road power function P V (t) is a slowly changing simulation function in the second-level granularity time; when the vehicle is running normally on the non-congested expressway, the absolute value of the vehicle acceleration is basically less than 0.05 G (G is the gravitational acceleration), according to the vehicle dynamic equation (1-1), the time-varying function distribution of on-road power within the 100-kilometer-level electronic horizon can be dynamically predicted with a refresh rate higher than 2 Hz and a kilowatt-level granularity; In other words, when the ACE heavy truck is driving normally on the highway, the on-road power function of the vehicle in the next ten minutes or hours can be dynamically and accurately predicted.
  • Hybrid vehicle control In the prior art, the transient power of the hybrid vehicle engine and the transient power of the motor or battery pack are simulated and controlled respectively through different power management strategies (PMS) and implementation schemes, and the series hybrid power equation ( 2-4) or the parallel hybrid power equation (3-3), to achieve the beneficial effect of optimizing energy conservation and emission reduction in the actual operating environment (RDE) of the optimized vehicle.
  • PMS power management strategies
  • RDE parallel hybrid power equation
  • the core difference between the hybrid vehicle engine control and the traditional internal combustion engine vehicle engine control is that the former (hybrid vehicle) engine operating conditions and vehicle operating conditions are multipoint-to-multipoint bidirectional mapping, while the latter (traditional vehicle) engine operating conditions It is a single-point-to-single-point bidirectional mapping with vehicle operating conditions.
  • the degree of freedom or dimension of control for optimizing engine energy saving and emission reduction of hybrid vehicles is significantly higher than that of traditional internal combustion engine vehicles; however, in the prior art, the transient power time-varying functions of the engine, motor, and battery pack of hybrid vehicles are simulated and controlled respectively.
  • the various subsystems in the hybrid vehicle powertrain system interact with each other and cross-coupling, especially the engine operating conditions cannot be completely decoupled from the vehicle operating conditions (equivalent to powertrain operating conditions), resulting in Powertrain hardware and software are still cross-related, and it is impossible to realize the decoupling of powertrain software and hardware in the engineering sense; and the decoupling of system software and hardware is the prerequisite and cornerstone for realizing the software-defined system.
  • it is difficult to realize the software-hardware decoupling of the powertrain in the engineering sense and it is impossible to realize the software-defined powertrain for the existing hybrid vehicle technology, especially the hybrid vehicle that includes parallel-hybrid operation.
  • the ACE heavy truck has two independent power sources, the engine mechanical power source and the battery pack electric power source; from the perspective of vehicle energy or power management strategy, the generator (MG1) and drive motor (MG2) can be regarded as efficient and non-destructive.
  • the source energy conversion device converts mechanical energy and electrical energy bidirectionally with an efficiency of about 90%.
  • the core of the present invention is, according to the vehicle dynamics equation (1-1) and the series hybrid power equation (2-4) or the parallel hybrid power equation (3-3), the time-varying function of the transient mechanical power of the engine of the ACE heavy truck Pulse modulation (PM) control is performed separately for the time-varying function of transient power and battery pack, especially the novel and unique bipolar rectangular or non-rectangular pulse width modulation (PWM) or pulse amplitude modulation (PAM) digital control;
  • PWM pulse width modulation
  • PAM pulse amplitude modulation
  • the complex surface working conditions in the active mode (AOM-Active Operating Mode; that is, the combustion work operation) are highly simplified to a number of designated point or line conditions in the high-efficiency area, and the operating time accounts for 99%, which almost completely avoids the engine in the high-efficiency area.
  • the new engine passive mode (POM-Passive Operating Mode; that is, the engine is towed without combustion, at this time, the engine has zero fuel consumption and zero emissions;) under certain specified point or line conditions; the engine can be Dynamic two-way switching between active mode and passive mode in steady state operation or between the two; under the premise of ensuring vehicle dynamics and active driving safety, the vehicle's actual fuel consumption and pollutant emissions are minimized at the same time. Details to follow.
  • the active mode (AOM) of the engine is operated in the first quadrant (ie, non-negative speed or torque) surface conditions, including the high-efficiency area (such as 105% minimum ratio) The area inside the fuel consumption curve BSFC) and the non-efficient area; while the passive mode (POM) of the engine is operating in the fourth quadrant (ie, non-negative speed and negative torque), it is obvious that all four-quadrant surface conditions have a negative impact on the engine. In other words, they are all "dual-zero operating conditions" with zero fuel consumption and zero emissions, which are equivalent to extreme high-efficiency operating conditions.
  • the vehicle dynamic equation (1-1), the series-hybrid power equation (2-4), and the parallel-hybrid power equation (3-3) describe the ACE heavy truck configured with the hybrid powertrain of the present invention in any Under cycle conditions and system architecture (series hybrid or parallel hybrid), including vehicle on-road mechanical power function P V (t), engine mechanical power function P ICE (t), battery pack electrical power function P BAT (t)
  • the transient power balance between various power items of the vehicle is equal to the linearity of the transient power of the vehicle engine and the transient power of the battery pack Superposition; but the transient power and operating conditions of the engine and battery pack must satisfy all the restrictive boundary conditions of the series-mixed or parallel-mixed power equations (2-4) or (3-3).
  • each power function generally refers to a transient power function.
  • MAW-Moving Average Window Moving Average Window
  • the transient power function of the engine and battery pack implements pulse modulation control, which can determine the three important dynamic indicators of transient (sub-second) vehicle dynamics, real-time engine fuel consumption and pollutant emissions during vehicle operation. At the same time, they are optimized separately; and the average power control determines that regardless of the actual cycle conditions of the ACE heavy truck, the engine and battery pack can be stably controlled to operate within the high-efficiency working area of the two for a long time, and almost completely eliminate the engine or battery pack.
  • Non-high-efficiency operating point; and the battery pack can be dynamically switched between the three modes of charge retention (CS), charge increase (CI), charge consumption (CD), or three modes.
  • the real-time control of the time-varying function including the average state of charge, in the sense of macroscopic quasi-steady state (minute level), simultaneously optimizes vehicle energy saving and emission reduction; Beneficial effect of simultaneously optimizing fuel consumption and emissions of ACE heavy-duty trucks throughout the entire cargo event.
  • the algebraic sum of the transient power function of the battery pack and the transient power functions of the dual motors MG1 and MG2 is completely mathematically equivalent;
  • the power function of the motor is physically different from the power function of the battery pack; the former has electromechanical duality, on the one hand, it represents the mechanical power, which is determined by the product of the speed and torque of the motor shaft, and on the other hand, it also represents the electrical power. It is determined by the complex product of the AC voltage and current of the motor; the latter only represents the electrical power and is determined by the product of the DC voltage and current of the battery pack.
  • the motor power function does not appear explicitly in the mathematical sense, it only appears implicitly in the boundary conditions of the above equations; However, in a physical sense, the dual motors MG1 and MG2 are just the physical bridges that connect the on-road mechanical power function, the engine mechanical power function and the battery pack electrical power function of the ACE heavy truck with low loss and high efficiency.
  • the engine speed is controlled by the vehicle operating conditions (especially the vehicle speed and the gear position of the gearbox); the on-road power P V is the automatic
  • the variable which can be independently controlled, reflects the driver's control intention for the vehicle (such as longitudinal speed or acceleration) and the dynamic traffic situation in which the vehicle (Ego Vehicle) is located. Its value is the product of the speed of the vehicle's driving wheels and the total driving torque.
  • Proportional when the vehicle is running normally (that is, when the driving wheel does not slip), the speed of the engine is proportional to the speed of the driving wheel, which is a dependent variable and cannot be set independently; and the torque of the engine is within the effective peak torque range at this speed It is an independent variable and can be independently and dynamically set according to the vehicle energy management control strategy; in other words, in the parallel-mix mode, the transient power function of the engine is still an independent variable and can be independently controlled; but at this time, the engine speed is affected by It is controlled by the speed of the vehicle and the gear position of the gearbox, and cannot be controlled independently, only the torque is independently controllable.
  • the serial hybrid mode can be preferred; Under the working conditions, the average speed of the vehicle is greater than 50 km/h, and the active acceleration and braking are not frequent), and the combined mode can be preferred.
  • the high-efficiency area of heavy-duty truck diesel engines (that is, the working condition area within the fuel consumption curve of 105% of the minimum specific fuel consumption BSFC value of the engine) is generally 1100 ⁇ 1600 revolutions per minute (rpm) Range, torque 50% ⁇ 90% maximum torque range (that is, torque load rate 50% ⁇ 90%), power load rate exceeds 40%; outside the high-efficiency area, the specific fuel consumption value of the engine (BSFC; g/kWh) will increase significantly (an increase of more than 6%); especially when the diesel engine operates in a low-load operating area (torque load rate or power load rate is less than 30%), the specific fuel consumption (BSFC) will increase significantly (an increase of more than 10%)
  • the exhaust gas temperature is usually lower than 250 degrees Celsius, resulting in a decrease in the catalyst conversion efficiency of the aftertreatment system and a significant increase in vehicle RDE pollutant emissions (NOx and PM).
  • the ACE heavy truck has two generators and drive motors with a rated power of 100 kilowatts that can work together with the engine. At this time, the power performance of the ACE heavy truck is significantly better than that of all traditional diesel heavy trucks or extended-range series hybrids. Heavy trucks (peak power are less than 450 kW) can achieve total peak driving power (that is, maximum road load power) or regenerative braking power exceeding 500 kW, with outstanding acceleration overtaking or climbing ability and emergency braking or retarding ability.
  • the vehicle controller can close the clutch in advance when the vehicle reaches the foot of the mountain according to the on-board 3D map and vehicle positioning, switch to the parallel hybrid mode, and the engine is powered by the engine. Directly drive the vehicle, eliminating the need for multiple energy conversions from the engine to the drive wheels, improving drive efficiency. If the battery pack is exhausted before the ACE heavy truck reaches the top (SoC ⁇ LRL), both the generator and the drive motor can be configured to idle without load. At this time, the power of the vehicle when it continues to climb the mountain depends entirely on the peak power of the engine (usually greater than 300 kW).
  • the peak power parameter configuration conditions are: P ICE-p >P MG2-m >P MG1-m , P ICE-p >300kW, P MG2-m ⁇ 250kW, P MG1- m ⁇ 200kW. If the rated power of the motor is less than 200 kW, the cost of the motor and inverter can be significantly reduced.
  • the ACE heavy truck can make the battery pack run in the charge maintenance (CS) mode for a long time, through intelligent power switching control (iPS) for the transient output power of the engine , combined with the prior 3D road information of the electronic horizon, to keep the battery pack state of charge (SoC) in the best working area (eg 30% to 70%), at this time, the engine and dual motors (MG1, MG2) can jointly generate Power-driven vehicles, and the maximum total driving power of the hybrid powertrain can be as high as more than 500 kilowatts in minutes. For high-profile extended-program serial hybrid cards.
  • the accumulated useful work done by the ACE heavy truck to complete the entire cargo event is directly or indirectly derived from the integration of the engine transient power function over time, that is, the accumulated effective mechanical energy (also known as effective drive work, Effective Propulsion Work).
  • One of the keys to the fuel-saving strategy of ACE heavy-duty trucks is to maximize the long-term stable operation of the engine in the high-efficiency region of its universal characteristic curve, and minimize the engine running outside its high-efficiency region, especially in the low-load operating region for a long time. or running at idle speed.
  • Engine start-stop technology (SS-Stop Start) and engine cylinder deactivation technology (CDA-Cylinder Deactivation) are existing technologies for energy conservation and emission reduction that are well known to people in the global automotive industry, and have been widely used in the passenger car industry; It is also common knowledge in the industry to have their own shortcomings and limitations of use of technologies.
  • Heavy-duty trucks in mainline logistics operate most of the time (85%+) in highway conditions, rarely encounter traffic lights, the frequency of vehicle start-stop is very low, and the frequency of active acceleration or braking is also low; heavy-duty truck engines are switched between start-stop When the engine is stopped, the vehicle vibration and noise (NVH) problem caused is more prominent than that of passenger cars with internal combustion engines; when the engine stops, various mechanical auxiliary subsystems (such as cooling fans, water pumps, oil pumps, air pumps, power steering pumps, air conditioners) on heavy trucks Compressors, etc.) cannot directly obtain mechanical energy from the engine to maintain normal operation, which will cause many negative effects; frequent engine start and stop will shorten the life of the engine, starter motor, clutch, battery and other subsystems; mainline logistics heavy truck engine start-stop technology The actual fuel-saving effect is very small (the fuel-saving rate is less than 2%); therefore, the engine start-stop technology (SS) in the existing technology is not suitable for the main line logistics heavy truck, so the energy saving and emission reduction of passenger cars (total weight
  • VVA variable valve actuation device
  • the combustion power load rate is helpful for energy saving and emission reduction; it should be emphasized that the primary purpose of the diesel engine CDA is to increase the engine exhaust gas temperature under low vehicle load conditions, so that various catalysts in the aftertreatment system (ATS) operate in their high-efficiency area (Celsius). 250 degrees to 500 degrees) to reduce vehicle pollutant emissions; the secondary purpose is to save fuel by adjusting the actual operating point of the active cylinder.
  • Engine deactivation technology significantly increases the structural complexity and cost of the engine, reduces its reliability and life, and deteriorates the vehicle's vibration and noise characteristics (NVH). not tall.
  • SS mass commercial heavy truck engine start-stop technology
  • CDA cylinder deactivation technology
  • the mechanical drive power loop and the electric drive power loop of the ACE heavy truck hybrid powertrain can work independently or work together to satisfy the vehicle dynamics equation (1-1) and the series hybrid power equation ( 2-4), or the parallel hybrid power equation (3-3). Even if the engine runs in passive mode (stopped or towed without combustion), the ACE heavy truck can keep the vehicle running at high speed with full load for at least five minutes only by the battery pack alone to supply power to the drive motor; from the perspective of vehicle power or energy management strategy, ACE The driving process of the heavy truck is essentially a high inertia time-varying electromechanical system with a minute-level response time. According to the impulse equivalent principle, a pulse modulation (PM) digital control strategy can be adopted for the transient output power of the engine, such as pulse width.
  • PM pulse modulation
  • Modulation control PWM or pulse amplitude modulation control (PAM) can ensure that the engine runs stably in its combustion high-efficiency region or in the non-combustion passive region with zero fuel consumption and zero emissions.
  • the state power pulse sequence function is used for dynamic compensation, peak clipping and valley filling. After the two are linearly superimposed, the simulated slowly changing road load power function is reproduced, and the vehicle dynamics equation (1-1) and the series hybrid power equation (2-4) are satisfied in real time. , or the parallel hybrid power equation (3-3); paving the way for making full use of various digital signal processing technologies, digital control technologies, big data (BD) technologies, and machine learning (ML) technologies to simultaneously optimize energy conservation and emission reduction of ACE heavy trucks .
  • BD digital data
  • ML machine learning
  • the transient power of the battery pack or motor is more than an order of magnitude higher than that of the vehicle on-road transient power or the transient power of the engine.
  • the transient power function of the battery pack can be completely based on the series hybrid power equation (2-4A) or the parallel hybrid power equation. Equation (3-3A) to quickly and accurately (ten millisecond-level delay or kilowatt-level granularity) follow the difference between the road load transient power function and the engine transient power function, and satisfy the vehicle dynamics equation (1) in real time. -1); and ACE heavy trucks are significantly better than traditional diesel heavy trucks in vehicle dynamic performance, braking performance, noise and vibration (NVH) characteristics, RDE fuel consumption or emissions.
  • NSH noise and vibration
  • the present disclosure upgrades the control strategy of the output power of the ACE heavy truck engine from the analog amplitude modulation (AM) electronic control of the prior art to the digital electronic control technology based on pulse width modulation (PWM) or pulse amplitude modulation (PAM).
  • AM analog amplitude modulation
  • PWM pulse width modulation
  • PAM pulse amplitude modulation
  • Emerging artificial intelligence, big data, and cloud computing (ABC) technologies provide cost-effective technical foundations, devices, and methods to optimize the energy-saving and emission-reduction of heavy-duty trucks in trunk-line logistics.
  • One of the core inventions of the present disclosure will be described in detail below. The two can not only overcome the original shortcomings of the engine start-stop technology (SS) or cylinder deactivation technology (CDA) in the prior art, but also retain their respective original advantages.
  • SS engine start-stop technology
  • CDA cylinder deactivation technology
  • the maximum power point in the "best operating condition area” defined by the contour line of the minimum specific fuel consumption in the engine universal characteristic curve (Fuel Map) can be selected as the “best operating point” ; This operating point is generally near the highest speed (ie base speed) corresponding to the peak torque of the engine, the torque load rate is between 80% and 90% (the ratio of actual torque to peak torque), and the engine is at the maximum speed.
  • the output power value at the optimum operating point (defined as “optimal output power”) is generally between 60% and 80% of its peak power value; the specific fuel consumption (BSFC; g/kWh) of the engine at this operating point is the smallest ( That is, the thermal efficiency BTE is the highest), and the temperature of the exhaust gas at the exhaust port of the engine is also higher than 250 degrees Celsius, which is conducive to the efficient operation of the vehicle exhaust after-treatment system (ATS), minimizes pollutant emissions and prolongs the after-treatment system in the actual operating environment. (RDE) useful life.
  • the optimum output power of the engine should be less than the rated power of the generator (MG1); the peak power of the engine is obviously greater than the optimum output power, and should also be greater than the rated power of the generator (MG1), but the specific fuel consumption at the peak power operating point of the engine (BSFC) is usually greater than the minimum value.
  • the engine can be stably operated at a passive operating point with zero fuel consumption and zero emission: "Non-Combustion Idle Point" (NCIP-Non-Combustion Idle Point), the speed value of this point can be set at 400 rpm to Between 700 rpm, to ensure that various auxiliary subsystems on the ACE heavy truck that must directly obtain mechanical energy from the engine can work normally; at this time, the engine cuts off the fuel injection (Fuel Cutoff) of all its cylinders and enters the passive mode ( POM) operation, the torque becomes negative, and the average absolute value is basically less than 300 Nm.
  • the generator (MG1) needs to drive the engine to rotate in the drive mode.
  • non-combustion idle power is a negative number, and its absolute value is basically less than 10% of the peak power of the engine; when the engine is in passive mode, its role is equivalent to a one-in-multiple-out gearbox (ie, a mechanical power splitter), which outputs the generator in drive mode.
  • the ten kilowatt-class mechanical power of the vehicle is reversely transferred to each auxiliary subsystem of the vehicle that needs to obtain a continuous supply of mechanical energy from the engine, enabling these auxiliary subsystems to operate normally.
  • the engine consumes zero fuel and zero emissions, but the generator consumes power in drive mode.
  • the optimal output power of the engine in iSS mode is also called “high-state rated power”; the non-combustion idle power is also called “low-state rated power”.
  • VVA variable valve actuation
  • the two strokes of intake and exhaust will be generated separately.
  • Pumping loss Pulping Loss
  • the two strokes of compression and power benefit from the contraction and extension of the compressed air spring in the cylinder, and there is basically no pumping loss; the engine's own mechanical loss (including friction loss and pumping loss) is highly positive with its speed. to the association.
  • the engine at the non-combustion idle point is used as a mechanical load, and the average value of the non-combustion idle power time is basically less than 20 kilowatts.
  • a generator with a rated power of 100 kilowatts can easily reverse the engine operation, and the power consumption is limited in minutes, generally in the 100 watt hours.
  • VVA variable valve actuation
  • all intake/exhaust valves of all cylinders can be controlled to remain normally closed when the engine is operating in passive mode, which can significantly reduce pumping losses, thereby further reducing burnout. Idle power, reduce power consumption.
  • Idle power reduce power consumption.
  • the engine is running in passive mode, if all the intake/exhaust valves of all cylinders of the engine are kept normally closed at the same time, it is defined as the "binary cylinder deactivation" function (bCDA-binary Cylinder Deactivation).
  • VVA valve actuation
  • CDA engine cylinder deactivation technology
  • the binary cylinder deactivation technology is another important benefit of avoiding a large amount of clean and low-temperature exhaust gas generated when the engine is running in passive mode, blowing down various catalysts in the aftertreatment system, and cooling down
  • the internal temperature of each catalyst subsystem in the post-processing system of the pulse-controlled engine is stably maintained above the light-off temperature for a long time, which can maintain the RDE of the vehicle.
  • Emissions consistently meet California's 2027 ultra-low emission regulatory limits (90% lower than EPA-2010).
  • ACE heavy-duty trucks only use intelligent start-stop technology (iSS) but do not use binary cylinder deactivation technology, which can also meet the requirements of current diesel heavy-duty truck NOx emission regulations (EPA-2010, Euro-VI, and China-6), but In order to meet the regulatory requirements of the ultra-low NOx emission limit of 0.02g/bph-hr for diesel heavy trucks in California in 2027, the binary cylinder deactivation technology must be adopted, and the active intelligent exhaust gas temperature control technology (iETM) of the aftertreatment system must be added. described.
  • iES active intelligent exhaust gas temperature control technology
  • the so-called intelligent start-stop technology refers to the vehicle controller (VCU), according to the system configuration parameters of the ACE heavy truck in the serial hybrid mode, the vehicle dynamic driving data, the electronic horizon road three-dimensional information, and the machine that focuses on optimizing energy saving and emission reduction.
  • AI Artificial Learning
  • PWM pulse width modulation control
  • ePSD electric power shunt
  • PWM or PAM time-varying function of the battery pack transient power
  • the period of the PWM pulse sequence is sub-minute, and the duty cycle k s is defined as the ratio of the running time of the optimal operating point to the pulse period (High State; also known as the main dynamic, AS-Active State) in the pulse period ( %), which can be continuously adjusted between 0 and 1; while the low state (Low State; also known as passive state, PS-Passive State), the proportion of the running time of the no-combustion idle point is equal to 1-k s ; it can be accounted for by dynamic adjustment.
  • the air ratio k s to achieve the average power of the engine (see equation MAW) is continuously adjustable between "no combustion idle power" and "optimum output power".
  • the preferred implementation of dynamic switching control of engine operating conditions is as follows: when switching from a low state (no-combustion idle speed point) to a high state (optimal operating point), the generator (MG1) first drives the non-combustion engine, and its speed is changed from After the idle speed point is raised to the optimal operating point, the engine starts to inject fuel and burn to do work; gradually increase the torque (second-level transition time) on the vertical line of the fixed speed of its universal characteristic curve (Fuel Map) to reach the optimal operating condition Stable operation after the point; when reverse switching from high state to low state, the engine first reduces the fuel injection rapidly (sub-second level) at the optimal operating point until the fuel injection is completely cut off, and quickly enters the non-combustion state by relying on the inertia of the engine flywheel.
  • the transient power function of the engine is converted from the analog time-varying function of the prior art into an asymmetric bipolar PWM pulse sequence function;
  • the analog control of the working condition is converted into a novel and unique digital control of the specified two-point working condition or double-line working condition.
  • the series-hybrid ACE heavy truck is driven by pure electric power, and the ten-kilowatt-hour power battery pack can independently support the full-load operation of the drive motor (MG2) in a short time (minutes) (that is, rated power in minutes or peak power in seconds); at the same time
  • the response speed of the battery pack transient charging and discharging power is one order of magnitude higher than that of the engine transient power.
  • the transient power value is continuously adjustable from the negative peak power to the positive peak power of the battery pack, which is fully competent according to the series hybrid power equation.
  • the engine in the non-combustion low state is the mechanical load of the generator in the drive mode; while in the power generation mode, the generator is the mechanical load of the engine in the high combustion state.
  • the output power of the generator (MG1) is called “optimal power generation", which is a positive number, which is usually higher than 85% of the rated power of the generator and the upper limit is the rated power of the generator.
  • the power consumption of the generator (MG1) is called “non-fuel consumption electric power", which is a negative number, and the average absolute value at that time is less than 15% of the rated power of the 100-kilowatt generator;
  • the average electric power function of the generator set (referring to the engine plus the generator) can be realized between the fuel-free electric power and the optimal generating power. Continuously adjustable.
  • the Intelligent Start-Stop Technology simplifies the actual combustion power operation area of the ACE heavy-duty truck engine in the series hybrid mode from complex surface conditions to a single optimal operating point (fixed speed and torque; specific fuel consumption).
  • Minimum through the asymmetric bipolar rectangular pulse width modulation (PWM) control of the constant output mechanical power generated by the engine operation at the optimum operating point, to dynamically and continuously adjust the minute-level average output mechanical power of the engine and the corresponding power generation
  • PWM pulse width modulation
  • the average power generation of the unit is basically zero, significantly greater than zero, and significantly less than zero, so that the battery pack can be maintained in charge (CS), load
  • the most concise and effective PWM control strategy is as follows. Once the non-combustible idle point and the optimal operating point of the engine are selected, they are fixed, and the duty cycle of the bipolar equal-amplitude pulse sequence (PWM) of the transient power of the engine is dynamically adjusted. k s to realize that the minute-level average power of the generator set can be continuously adjusted between the fuel-free power and the optimal power.
  • PWM bipolar equal-amplitude pulse sequence
  • the intelligent start-stop (iSS) function can also be extended to other technical solutions that dynamically switch between the adjustable non-combustion idle speed point of the engine and multiple high-efficiency operating points (ie, different optimal operating power), but these can be
  • the iSS technical solution for adjusting multiple operating points is more complex and the comprehensive cost performance is not better than the iSS technical solution for the fixed dual operating points mentioned above. Since the speed and accuracy of the speed and torque regulation of the drive motor is an order of magnitude faster than that of the gearbox, in the serial hybrid iSS mode, if the vehicle needs to shift gears, the drive motor (MG2) can easily complete transient torque interruption and rapid speed synchronization , so that the transmission shifts smoothly, and the entire transmission shift operation has nothing to do with the engine operating conditions.
  • Turbochargers are commonly used in modern heavy-duty diesel engines; intelligent start-stop technology (iSS) is suitable for basic engines without variable valve actuation (VVA) and equipped with low-cost fixed-section turbochargers (FGT); also suitable for For advanced engines with variable valve actuation (VVA) function and/or variable geometry turbocharger (VGT).
  • iSS intelligent start-stop technology
  • FGT low-cost fixed-section turbochargers
  • VVA variable valve actuation
  • VVT variable geometry turbocharger
  • the minimum specific fuel consumption of the two engines is (BSFC) value or optimal output power value is basically the same; with the help of ACE heavy truck series hybrid intelligent start-stop technology (iSS), ACE heavy trucks with basic engines are compared with vehicles with advanced engines, under various operating conditions and application scenarios. , can achieve the same power performance and energy saving and emission reduction effect; in other words, compared with traditional diesel heavy trucks, ACE heavy trucks greatly reduce the technical advancement and comprehensive performance requirements of the engine, so that the engine is no longer the power of ACE heavy trucks.
  • BSFC high-efficiency area
  • dynamic characteristics such as turbocharger delay Turbo Lag, etc.
  • iSS ACE heavy truck series hybrid intelligent start-stop technology
  • RDE fuel consumption or emission bottleneck ACE heavy-duty trucks can easily adapt to any modern heavy-duty truck engines that are mass-produced and commercialized.
  • the vehicle can still be optimized at the same time. power and fuel economy.
  • the optimum output power of most engines is between 55% and 85% of their peak power; at full load (load rate > 90%) or light load (load rate ⁇ 30%), the specific fuel consumption of the engine (g / kWh) are significantly higher than the minimum.
  • the contour line of specific fuel consumption (g/kWh) is a plurality of irregular annular curves that do not intersect with each other, and the area contained within the contour line of the global minimum value of specific fuel consumption is called the best working condition.
  • Condition area commonly known as the "Sweet Spot" of the engine, where each point is the optimal operating point (specific speed and torque), the specific fuel consumption value is the same; the specific fuel consumption is equal to 105% of the minimum value of the contour line.
  • the encompassed area may be referred to as the high-efficiency operating area (referred to as "high-efficiency area”); obviously the area of the high-efficiency area is significantly larger than the sweet spot and completely contains the sweet spot.
  • the speed corresponding to the sweet spot of most heavy truck engines is in the range of 95% to 125% of its base speed (referring to the speed at the peak torque point), and the corresponding torque is between 65% and 90% of its peak torque. .
  • the base model of modern heavy truck engines diesel or natural gas
  • the advanced model has a larger high-efficiency area; the minimum specific fuel consumption value of both diesel engines in the sweet spot can reach 186 grams /kWh.
  • the general trend in the research and development of heavy truck engines in Europe and the United States in the past ten years is to reduce the displacement (Down-Size) or reduce the rotational speed (Down-Speed), the base speed of the engine (that is, the peak torque point). Speed) drops from 1200 rpm to below 1100 rpm year by year, even approaching 1000 rpm; the displacement of mainstream engines is gradually gathering towards 12L.
  • the ACE heavy truck can completely decouple the vehicle operating conditions and the engine operating conditions under the serial hybrid iSS control mode.
  • iPS Intelligent Power Switching
  • the ACE heavy truck When the ACE heavy truck is running in parallel-mix mode, due to the direct mechanical connection (ie mechanical coupling) between the engine and the driving wheel, its rotational speed is completely determined by the transmission gear and vehicle speed and changes with time, which is a dependent variable (cannot be controlled independently), However, its torque is still an independent variable and can be adjusted independently and dynamically; at this time, the intelligent start-stop (iSS) control technology cannot be used for the engine, and the intelligent power switching (iPS) control technology must be used.
  • the ACE heavy truck When the ACE heavy truck is driving normally on the expressway (the average driving speed is higher than 50 km/h, and there is no emergency braking), it can preferably run in parallel mode.
  • the average on-road power is basically greater than 35% of the peak engine power. %, most of the time is medium and high load conditions; the transient speed of the vehicle changes slowly with time in a narrow speed band, and the speed change rate generally fluctuates within the range of plus or minus 15% of the average vehicle speed, so the speed of the engine of the vehicle varies
  • the absolute value of the rate of change is also less than 15%; the absolute value of the active acceleration of the vehicle is basically less than 5.0% of the gravitational acceleration G (ie 0.5 m/s squared), and the transient output torque of the engine is still independently adjustable in a wide range.
  • the automatic shift control strategy of the ACE heavy-duty truck transmission can always make the engine run stably in a narrow range (high-efficiency area) near the base speed (that is, the rotational speed at the peak torque point) under high-speed conditions, for example, at 1100 rpm to 1600 rpm.
  • the rotational speed of the generator (GM1) and the drive motor (GM2) is also proportional to the rotational speed of the engine, and the transient torques of the two motors are still independently adjustable in a wide range.
  • Bipolar non-rectangular pulse width modulation control PWM
  • bipolar non-equivalent amplitude ie non-rectangular
  • PWM pulse width modulation control
  • bipolar non-equivalent amplitude ie non-rectangular
  • Pulse Amplitude Modulation Control which satisfies the vehicle dynamics equation (1-1) and the parallel-hybrid power balance equation (3-3A) in real time, and can dynamically control the duty cycle of the engine transient power PWM pulse sequence Continuously adjust the engine average power function so that the difference between the vehicle road load average power and the engine average power (Equation 3-3A) is basically equal to zero (the absolute value is less than 30 kW), significantly greater than or less than zero, so that the battery pack can be kept charged (CS), charge consumption (CD), and charge increase (CI) one of the three working modes to work stably or to switch between them smoothly; ensure that the battery pack runs in the high-efficiency area (BLL) most of the time (90%+).
  • SoC ⁇ BUL completely preventing the battery pack from running outside the upper and lower red lines (SoC ⁇ LRL or SoC>URL).
  • VCU Vehicle controller
  • PWM pulse width modulation control
  • CAN bus vehicle data bus
  • T of the pulse sequence is sub-minute
  • the bipolar non-rectangular Equal amplitude PWM pulse sequence can be divided into high state working condition or low state working condition in the same period, and low state working condition can be set as the linear working condition when the engine is driven without combustion (power is negative, and fluctuates in a small range)
  • the torque range of this low-state working line is determined by the set of all subsystems on the vehicle that must continuously obtain mechanical energy from the engine to work normally.
  • the speed range is determined by the speed time of the ACE heavy truck. It is a positive number (1000 ⁇ 1800RPM), which is determined by the function and the gear position of the gearbox; the high-state working line can be set to be within the range of engine speed fluctuations within the pulse period, and within the high specific fuel consumption (BSFC) region (that is, the minimum specific fuel consumption of the engine is 105 RPM).
  • BSFC high specific fuel consumption
  • the transient output power time function of the engine can be converted into a bipolar equal-amplitude (ie rectangular) PWM pulse sequence, and the fuel-free power and the optimal power generation can be directly set is constant and has nothing to do with vehicle dynamic conditions; but in parallel-hybrid intelligent power switching (iPS) control mode, the engine's transient output power time function can only be converted into a bipolar non-rectangular PWM pulse sequence, high-state pulses and low-state pulses.
  • the specific shape of the state pulse part is highly related to the dynamic working conditions of the vehicle, and the top amplitude curve of the PWM pulse will slowly fluctuate in a small range over time.
  • the equal-amplitude power value with the same time integration area (that is, equal impulse) in one cycle T as the full high-state pulse sequence (that is, the duty cycle is 1.0) is defined as "high-state equivalent power", which is greater than The positive number of 70% of the peak power of the engine;
  • the equal-amplitude power value with the same time integration area (that is, equal impulse) in one cycle of the full low-state pulse sequence (that is, the duty cycle is 0) is defined as "low-state equivalent power", It is a negative number whose absolute value is less than 10% of the peak power of the engine; in iPS mode, the average power function of the engine is arbitrarily adjustable between negative low-state equivalent power and positive high-state equivalent power, which is a slowly varying simulation time-varying function.
  • the above PWM control scheme through the dynamic control of the fuel injection quantity of the engine (fuel cut or fuel injection), makes the engine between the high-state operating condition line in its combustion high-efficiency area and the low-state operating condition line with zero fuel consumption and zero emission, Switch back and forth smoothly along the vertical direction (ie constant speed, variable torque), dynamically adjust the engine average power function (see equation MAW), so that the difference between the average vehicle power on the road and the average engine power is basically zero (such as absolute value).
  • the independent variable of the time-varying function is a time-varying function of the dependent variable with a slow and small change in the second level (the rate of change per second is less than 5%); and the torque of the three is a hundred milliseconds.
  • the peak torque (about 2800 Nm) of the 16L diesel engine of the trunk line logistics heavy truck therefore, the ACE heavy truck can stably work in the highest gear (direct drive or overdrive) of the gearbox for a long time under high-speed conditions, and there are few Downshift due to insufficient peak torque when accelerating overtaking or going uphill; in order to protect the mechanical life of the transmission and transmission system, it is necessary to dynamically limit the maximum torque of the transmission input shaft in parallel hybrid mode.
  • the ACE heavy truck needs to be shifted in parallel mode operation, especially the downshift (ie high gear to low gear), since the adjustment speed of the torque or speed of the dual motors (MG1 and MG2) is nearly ten times faster than that of the engine,
  • shifting gears the fuel injection of the engine can be cut off first, so that the engine enters the non-combustible low-state operating line, and then the dual motors (MG1 and MG2) work together in the driving mode, which not only drives the non-combustion engine but also drives the vehicle; this When the clutch is not disconnected, the torque interruption between the flywheel of the engine and the input shaft of the gearbox and the speed synchronization can be completed within seconds, and then a new gear is engaged.
  • the working condition line is running, and the whole set of shifting actions is automatically completed in seconds.
  • the ACE heavy truck changes gears in the parallel-hybrid iPS control mode, there will be no obvious interruption of vehicle driving torque, which basically eliminates the obvious frustration of the traditional internal combustion engine heavy truck transmission (especially when shifting down), and it is also obvious. Improved vibration and noise characteristics (NVH) during vehicle operation.
  • NSH vibration and noise characteristics
  • the dual motors (MG1 and MG2) cooperate to drive the vehicle and drag the engine under low conditions to realize the transmission input.
  • the shaft transient drive torque is interrupted and the speed is synchronized to complete the shifting operation; it not only reduces the wear of the clutch, prolongs its life, but also improves the dynamic performance and NVH performance of the whole vehicle during shifting.
  • CHS-Clutchless Gearshift are fundamentally different from the conventional clutch shifting methods of internal combustion engine vehicles or hybrid vehicles in the prior art, and have outstanding advantages, which will be described in detail later.
  • the mechanical power of the engine is mainly used to directly drive the vehicle, while the generator and the drive motor can work in the same mode, which is equivalent to a combined motor with higher peak torque and power, which can obtain electrical energy from the battery pack.
  • the generator and the drive motor can work in the same mode, which is equivalent to a combined motor with higher peak torque and power, which can obtain electrical energy from the battery pack.
  • the battery pack can also recharge the battery pack at a high rate through regenerative braking to recover energy.
  • the actual shifting frequency of the gearbox mainly depends on the driving style of the driver, the actual road gradient function, the vehicle configuration parameters, the vehicle driving conditions, and the peak power or torque of the vehicle drive.
  • the total driving torque (greater than 3500 Nm) or power (greater than 450 kW) of the vehicle is significantly larger than that of the top-level 16L diesel engine heavy truck currently on the market, so the shifting frequency of the ACE heavy truck in parallel operation is significantly lower than that of all
  • the traditional internal combustion engine heavy truck can not only improve the power and NVH performance of the vehicle, but also prolong the life of the automatic shifting mechanism of the gearbox; in some special road conditions, the generator and drive motor can also work in the opposite mode, that is, one is the power generation mode.
  • the intelligent power switching (iPS) function can also be realized by other technical measures besides pulse width modulation control (PWM), such as non-rectangular pulse amplitude modulation (PAM) control of the transient output power of the engine;
  • PWM pulse width modulation control
  • PAM non-rectangular pulse amplitude modulation
  • the ACE heavy truck serial hybrid iSS or parallel hybrid iPS technology of the present invention can convert any modern analog electronically controlled (AEC) heavy truck engine that is mass-produced and commercialized in the world into a novel engine under the premise of keeping the engine hardware and calibration software unchanged.
  • AEC electronically controlled
  • the digital pulse control (DPC) engine referred to as the pulse control engine; the operating conditions of the pulse control engine are divided into two categories; the first type is the active mode (AOM-Active Operation Mode), at this time the engine burns to do positive work (torque and rotational speed are positive values; corresponding to the first quadrant of the universal characteristic curve), all operating conditions are simplified from the traditional complex surface conditions to a number of designated high state (High State) operating points or operating lines in the combustion high-efficiency area , the time ratio is higher than 99%, almost completely avoiding any other operating points in the non-efficient area, especially for low-speed, low-load or idling conditions that are extremely challenging to optimize engine energy saving and emission reduction at the same time, the non-efficient operating point time The proportion is less than 1%; the second type is the passive mode (POM-Passive Operation Mode), at this time the engine is dragged to do negative work without combustion (the torque is negative and the speed is positive; corresponding to the fourth quadrant), all operating conditions Simplify several designated Low State
  • the pulse-controlled engine converts its transient power time-varying function from an analog function to a bipolar pulse sequence function (PWM or PAM) through the above-mentioned serial hybrid iSS or parallel hybrid iPS technical measures, and converts it into a bipolar pulse train function (PWM or PAM).
  • PWM or PAM bipolar pulse sequence function
  • the working conditions of the pulse-controlled engine are greatly simplified from the complex surface working conditions to at least two specified line working conditions and are completely decoupled from the working conditions of the ACE heavy truck.
  • the actual operating conditions of the pulse-controlled engine are in the active mode (combustion work in the high-efficiency area) and passive mode (without One of them can run stably or smoothly switch between the two; the pulse-controlled engine realizes the decoupling of engine operating conditions and vehicle operating conditions and the decoupling of hybrid powertrain software and hardware, which is Software-defined powertrain lays a solid technical foundation.
  • the pulse-controlled engine can be regarded as a binary state machine with only specific high states and low states, which is conducive to the generalization, abstraction, and decoupling of hardware and software (SW & HW Decoupling) of the engine hardware, thereby greatly simplifying
  • SW & HW Decoupling hardware and software
  • VCU vehicle controller
  • iPS parallel-hybrid intelligent power switching control
  • the average power of the engine is basically equal to the average power of the road load
  • the Charged Consumption (CD) mode the average engine power is significantly smaller than the average power of the road load
  • the Charge Increase (CI) mode the average engine power is significantly greater than the average power of the road load
  • JIT time
  • the battery pack is charged and discharged in time (JIT) to ensure that the battery pack works in the high-efficiency region (BLL ⁇ SoC ⁇ BUL) to the maximum extent, and the high-efficiency operating time of the battery pack accounts for 90% %, completely avoid the battery pack from entering the limit red line condition of empty (SoC ⁇ LRL) or full (SoC>URL)
  • the engine, generator (MG1), and drive motor (MG2) are driven together to meet the needs of the vehicle in real time Dynamic equation (1-1) and parallel hybrid power equation (3-3) to achieve the beneficial effect of simultaneously minimizing the actual fuel consumption and pollutant emissions of ACE heavy trucks.
  • the total driving torque of the engine, generator, and drive motor can be linearly superimposed at the gearbox input shaft, and the total peak torque can easily exceed 4,000 Nm, and it has been mass-produced globally.
  • the peak torque of the top-level 16-liter heavy-duty truck engine of the main line logistics heavy truck is less than 2,800 Nm.
  • the maximum input torque of the existing mass-produced commercial heavy-duty truck gearboxes in the world is basically less than 3,000 Nm.
  • the maximum torque at the input shaft of the existing heavy-duty truck gearbox Mainly limited by the original design mechanical strength and life of the gearbox, drive shaft, or drive axle, if the heavy truck gearbox with a peak input torque greater than 3,500 Nm is redesigned and mass-produced, the unit cost of R&D and production will be high in the near future.
  • the ACE heavy truck equipped with the hybrid powertrain of the present invention can also explosively output a total drive power (the sum of mechanical power and electrical power) of more than 450 kilowatts in a short period of minutes.
  • the peak torque exceeds 3,500 Nm, and its power performance is significantly higher than that of the top-end 16-liter traditional engine heavy trucks that have been mass-produced in the global market.
  • the maximum input torque of the input end of the mass-produced commercial trunk logistics heavy truck gearbox is basically less than 3000 Nm; in order to adapt to the ACE heavy truck, the existing heavy truck gearbox or other transmission subsystems need to be redesigned in terms of mechanical strength and service life; Peak torque at the transmission input should be boosted to over 3000 Nm, and its total number of gears could be halved from 10 to 16 to 5 to 8.
  • Hybrid vehicle power strategy in the prior art generally includes the following seven vehicle operation sub-modes (also known as control sub-modes); Switching between sub-modes is infrequent, and the average switching interval is generally at the level of minutes or ten minutes.
  • Hybrid drive mode The engine, generator, drive motor, and battery pack drive the vehicle together.
  • the average power of the engine is basically the same as the average power of the road load; and the battery pack is charged and discharged at a high rate to cut peaks and fill the valleys of the road load transient power, and satisfy the vehicle dynamics equation in real time; the battery pack works in the charge retention (CS )model.
  • Engine driving and charging mode In addition to fully meeting the road load power requirements, the engine provides the remaining power to charge the battery pack through the generator, and the battery pack works in the charge maintenance (CS) or charge increase (CI) mode. At this time, the average power of the engine is significantly higher than the average power of the road load.
  • CS charge maintenance
  • CI charge increase
  • Regenerative braking mode At this time, the road load power is negative (downhill or braking), the engine does not do positive work without combustion, the drive motor generates electricity through regenerative braking, charges the battery pack to recover the mechanical energy of the vehicle, and decelerates the vehicle . At this time, the battery pack works in the charge maintenance (CS) or charge increase (CI) mode; the average power of the engine is not positive, but it is significantly higher than the average power of the road load.
  • CS charge maintenance
  • CI charge increase
  • Hybrid charging mode At this time, the road load power is negative (downhill or braking), the engine charges the battery pack through the generator, and the regenerative braking of the drive motor also charges the battery pack. At this time, the battery pack works when the charge increases. (CI) mode; the average engine power is significantly higher than the average power on the road.
  • the power management strategy (PMS) and operation sub-mode of the ACE heavy truck in the present invention are fundamentally different from the hybrid vehicle PMS and operation sub-mode in the above-mentioned prior art set;
  • the remaining six control sub-modes except the parking charging sub-mode in the existing control technology of the hybrid vehicle are various analog control technical measures for the 100-kilowatt-level mechanical power flow or electric power flow of the hybrid vehicle.
  • the power pulse width modulation (PWM) sequence of each pulse period (sub-minute level) is organically integrated and applied and digitized; through the pulse modulation (PM) control of the engine transient power function of the ACE heavy truck, especially the serial hybrid iSS control or Parallel hybrid iPS control converts the complex multi-dimensional nonlinear analog control problem of mechanical power flow or electrical power flow during hybrid vehicle operation into an equivalent simple dimensionally reduced quasi-linear pulse modulation (PM) digital control problem, which is very suitable for A brand-new digital information technology solution to solve the worldwide problem of energy saving and emission reduction of internal combustion engine heavy trucks, making ACE heavy trucks in the whole vehicle power, the actual operating environment (RDE) pollutant emissions, and actual fuel consumption (liters / 100 kilometers).
  • PM pulse modulation
  • the three key indicators are significantly improved; the comprehensive fuel saving rate (that is, the ratio of fuel consumption or CO2 reduction) can reach 30%, and the RDE pollutant emissions (such as NOx) can be reduced by more than 75% (with modern diesel heavy trucks) As the benchmark), and the vehicle power is better than the top configuration 16-liter diesel heavy truck.
  • the necessary technical features of the technical solutions such as the engine start-stop technology (SS), the engine cylinder deactivation technology (CDA), and the above-mentioned seven control sub-modes of the gasoline-electric hybrid vehicle in the prior art collection, including whether the engine is rotating or not. (SS), whether some but not all cylinders of the engine (such as two or three cylinders in a six-cylinder engine are deactivated), whether combustion work (CDA), and switching between different hybrid control sub-modes, etc.
  • SS engine start-stop technology
  • CDA engine cylinder deactivation technology
  • seven control sub-modes of the gasoline-electric hybrid vehicle in the prior art collection including whether the engine is rotating or not. (SS), whether some but not all cylinders of the engine (such as two or three cylinders in a six-cylinder engine are deactivated), whether combustion work (CDA), and switching between different hybrid control sub-modes, etc.
  • the ACE heavy truck hybrid powertrain pulse modulation (PM) control technical solution of the present invention includes series-hybrid intelligent start-stop technology (iSS), parallel-hybrid intelligent power switching technology (iPS), and intelligent Mode switching technology (iMS), etc., the necessary technical features include the engine is always rotating, all but not some of its cylinders, or high-state operating point or line operation (AOM) in the combustion efficiency region, or zero emissions and zero fuel consumption.
  • iSS series-hybrid intelligent start-stop technology
  • iPS parallel-hybrid intelligent power switching technology
  • iMS intelligent Mode switching technology
  • Low-state operating point or line operation bidirectional dynamic and smooth switching between high-state operating conditions and low-state operating conditions; obviously the classification method of different working sub-modes of the pulse-controlled hybrid powertrain (AOM or POM)
  • AOM pulse-controlled hybrid powertrain
  • POM pulse-controlled hybrid powertrain
  • the specific control method for the mechanical power flow or electric power flow of the powertrain in each sub-mode and the generated transient power pulse sequence function of the engine or battery pack are fundamentally different from the prior art collection; Dynamic switching between (AOM) and low-state operating conditions (POM) or dynamic switching between different battery pack modes (select one of CS, CI, CD) and vehicle on-road transient power function distribution (that is, vehicle transient working conditions) is basically irrelevant, and is highly related to the distribution of the average power function on the road in the electronic horizon.
  • serial hybrid iSS or parallel iPS control technology of the present invention not only retains the main advantages of the existing engine start-stop technology (SS) and cylinder deactivation technology (CDA) (such as fuel saving, exhaust gas temperature control, etc.), but also effectively overcomes the The main disadvantages of the two (such as the interruption of the function of air conditioning and refrigeration; the deterioration of the NVH characteristics of the vibration and noise of the whole vehicle; the increase of the system complexity and cost, and the reduction of the reliability and life of the engine and other subsystems, etc.), without adding any hardware, To achieve the optimization of energy saving and emission reduction of ACE heavy trucks with higher cost performance.
  • SS engine start-stop technology
  • CDA cylinder deactivation technology
  • the series-mixed iSS control or the parallel-mixed iPS control is applicable to the whole vehicle operating conditions of the ACE heavy truck from standstill to the maximum legal speed; but when the average speed of the ACE heavy truck is lower than 30 mph and actively accelerating Or when braking is frequent (i.e. congested highway conditions or urban conditions), the serial hybrid iSS control has obvious advantages over the parallel hybrid iPS control in terms of vehicle dynamics and energy saving and emission reduction effects, and should be the first choice; When driving normally on the highway (the average speed is higher than 40 mph, and the active acceleration or braking is not frequent), the iPS control method should be preferred and mixed.
  • the vehicle can still slide slowly without driving for a period of time due to its huge inertia.
  • Distance mile level or minute level
  • the VCU instructs the engine to increase the speed to synchronize the engine and the transmission speed, and then closes
  • the clutch-by-wire, the gearbox is re-geared, and the engine returns to the normal driving mode or braking mode in seconds.
  • the heavy truck engine is at low speed and low load at idle speed, and the specific fuel consumption (BSFC) is high, but there is still fuel consumption and emissions, but at this time due to the low engine load (power load rate is less than 15%), the total fuel consumption is not high.
  • BSFC specific fuel consumption
  • the emission intensity of pollutants will increase; heavy trucks slide down a gentle slope in neutral gear (including coasting with the clutch disconnected), although it can save fuel, but at this time, the vehicle loses the engine braking function, which obviously increases the burden on the mechanical braking system, and also loses the rapid acceleration of the vehicle. It is obviously disadvantageous to the active safety of the vehicle; when a driver drives a heavy-duty truck with manual gear downhill, considering the active safety of driving, most teams explicitly prohibit sliding in neutral gear to save fuel.
  • the mode switching interval of the neutral coasting control technology is at the minute level, and it is difficult to switch back and forth with high frequency at the second level interval; only some sections of the actual road for heavy trucks in the trunk line are suitable for the neutral sliding mode. (For example, the total distance is less than 30%), the actual fuel saving effect is not significant (less than 1%), and the contradiction between fuel saving and braking safety should be balanced at any time; at the same time, the neutral sliding mode will greatly increase the gearbox.
  • the cumulative number of gear shifts or the cumulative number of clutch switches has a negative impact on the transmission shift mechanism and clutch life, and may also negatively affect the vibration and noise performance (NVH) of the vehicle.
  • the ACE heavy truck In the series-mixed iSS or parallel-mixed iPS control mode, the ACE heavy truck includes the low-state operating conditions of zero fuel consumption and zero emission of the engine in a distributed manner in each PWM pulse sequence period of the engine transient power function.
  • the “Intelligent Mode Switching” control technology (iMS) is used to further save fuel.
  • ACE heavy trucks can real-time (sub- Second-level delay) is calculated and predicted with kilowatt-level granularity in the future hour-level or 100-kilometer-level road section ahead, on-road transient power function and on-road average power function distribution; the absolute value of the on-road average power function is less than the set value
  • the mile-level road section with a threshold value (such as 50 kW) can preferably be switched to the series hybrid iSS control mode for operation; while the absolute value of the average power on the road is greater than the set threshold value (such as 50 kW)
  • the parallel-mix iPS control mode operates; obviously, the speed and equivalent energy consumption of the low-state operating conditions of the PWM cycle in the serial-mix iSS mode are significantly lower than the speed and the equivalent energy consumption of the low-state operating conditions corresponding to the PWM cycle in the parallel-mix iPS mode.
  • the former has lower energy consumption per unit distance (i.e. power consumption or fuel consumption), which is more conducive to fuel saving; it should be emphasized that no matter in the serial hybrid iSS mode or the parallel hybrid iPS mode, the vehicle gearbox always runs in gear, Never skid in neutral gear, and can take into account energy saving, emission reduction and braking effectiveness.
  • the peak torque of the drive motor (MG2) is comparable to the peak torque of the engine, but the motor’s operating conditions (i.e. torque or speed) are adjusted an order of magnitude faster than the engine.
  • the drive motor can provide hundreds of kilowatts of positive driving power or negative regenerative braking power to the vehicle through the gearbox within a ten-millisecond response time, which not only optimizes engine fuel consumption and emissions, but also completely avoids neutral sliding, ensuring effective braking, and at the same time It can also reduce the number of shifts of the automatic transmission, and improve the vehicle vibration and noise performance (NVH).
  • MG2 vehicle vibration and noise performance
  • the clutch of a traditional internal combustion engine heavy truck is similar to tires and brake pads, both of which are consumables; the core function of the clutch is to perform time domain switch control on the torque transfer (Torque Transfer) between the engine and the input shaft of the gearbox.
  • Torque Transfer torque transfer
  • the service life is significantly shorter than the service life of the engine or gearbox, and is highly related to the driving style of heavy truck drivers.
  • the clutch and brake system are always the focus of the daily operation and maintenance of traditional heavy trucks; replacing or repairing the clutch is expensive and affects the vehicle's attendance.
  • the speed of the input shaft of the gearbox is synchronized, and after the clutch is fully closed, the engine can efficiently transmit torque, resume high-load rate operation, and drive the vehicle; the entire heavy-duty truck gearbox shifting operation is generally completed within a few seconds; because it is difficult for the engine to quickly and accurately regulate the speed.
  • Different degrees of slippage of the friction plates are inevitable each time the clutch is closed.
  • the gearbox frequently shifts gears and the speed difference or rotation speed between the driving end and the driven end of the clutch during the second-level transition period (ie, before fully closing) is inevitable.
  • the ACE heavy truck of the present invention can command the dual-motor hybrid powertrain to realize the function of vehicle clutchless gear shift (CGS-Clutchless Gear Shift);
  • the synchronous switch action of the clutch is not required.
  • the clutch is always in a fully closed state (parallel mixing) or a completely disconnected state (series mixing); the specific technical measures are as follows: when the ACE When the heavy truck is running in the series hybrid iSS mode, the clutch is always disconnected, the engine and the transmission are completely decoupled, and the electric power splitter (ePSD) directs the drive motor through vector control technology, which can easily achieve the transient drive torque at the input of the transmission Interrupt and shift synchronization, so that the transmission smoothly completes the shifting operation; when the ACE heavy truck runs in the parallel iPS mode in a steady state, the clutch is always closed (the clutch does not switch when the transmission is shifting), and the engine and dual motors (MG1 and MG2) and the speed of the gearbox are synchronized
  • the duty cycle of the PWM pulse sequence of the transient power function of the engine can be dynamically adjusted, and the working condition of the engine is switched and maintained at the PWM low state Under the condition (second level), the generator drives the engine to run in the drive mode.
  • the engine is equivalent to a small and medium mechanical load with a power consumption of less than 50 kilowatts; the 100 kilowatt generator (MG1) and the drive motor (MG2) are the same as Speed (coaxial connection) or fixed speed ratio (parallel shaft connection), torque can be superimposed linearly, the total peak torque of the two motors can be higher than 3000 Nm, and the total driving power can be up to 500 kW.
  • the electric power shunt passes through Vector control technology, commanding the coordination of dual motors (MG1 and MG2), can easily not only drive the non-combustion engine to run, but also realize the transient drive torque interruption and speed change synchronization at the input end of the gearbox, so that the gearbox can smoothly complete the clutch-free operation.
  • CCS clutchless shifting
  • CS/CD/CI battery pack operating mode
  • Intelligent mode switching control technology refers to the controlled two-way dynamic switching between the serial hybrid iSS mode and the parallel hybrid iPS mode of the ACE heavy card.
  • parallel mixing that is, the clutch is switched from disconnecting to closing
  • the generator (MG1) drives the passive mode
  • the clutch is closed again, and then the engine can re-enter the high state; due to the speed and speed of the generator and drive motor
  • the torque can be dynamically and precisely controlled, which can ensure that the generator (MG1) and the drive motor (MG2) can achieve rapid synchronization (Synchronize) under various working conditions of the whole vehicle, and the relative error of the speed synchronization at both ends of the clutch can be strictly controlled within 0.5%
  • the relative error of the speed synchronization at both ends can be strictly controlled within 0.5%
  • the clutch of ACE heavy truck needs to work stably in one of two steady states, normally open or normally closed, while most traditional clutches only have one steady state of normally closed, and other aspects are basically the same as those of traditional heavy truck clutches.
  • the ACE heavy-duty truck only needs to open or close the clutch once when switching between the serial-mixing mode and the parallel-mixing mode; and in the second-level transition state of the bidirectional switching between the serial-mixing and parallel-mixing of the ACE heavy truck, the drive motor It is always mechanically connected with the transmission input shaft, and continuously provides 100 kilowatts of transient driving power or regenerative braking power to the ACE heavy truck, which is better than the existing technology (such as neutral sliding technology, etc.) Effectiveness and other aspects have obvious advantages; if the transmission needs to shift (in series hybrid iSS mode or parallel hybrid iPS mode) when the vehicle is running in steady state, clutchless shifting (CGS) control can be preferred, and no clutch is required.
  • CCS clutchless shifting
  • An internal-combustion-engine heavy-duty truck travels an average of 500 miles per day, and needs to complete hundreds of gear shift operations; the power performance of the ACE heavy-duty truck (referring to the total peak power or peak torque of the vehicle) is significantly better than that of all main-line logistics internal-combustion-engine heavy trucks.
  • the ACE heavy truck adopts the clutchless shifting technology (CGS) and the intelligent mode switching technology (iMS), compared with the modern diesel heavy truck clutch (ie the existing technology), It can reduce the cumulative number of switching operations of the clutch by more than 75%, increase the effective life of the clutch (that is, the replacement mileage) by more than 300%, significantly reduce the cost of vehicle operation and maintenance, and improve the attendance rate.
  • the ACE heavy truck of the present invention is in the transition period of clutch switch operation, the pulse-controlled engine always runs in passive mode (POM), and all operations are performed by the computer (VCU)
  • POM passive mode
  • VCU computer
  • a complete dynamic microscopic (molecular-level) mathematical model or digital model is established based on the power stroke of each in-cylinder combustion at the level of 100 milliseconds to achieve high fidelity of engine dynamic characteristics, specific fuel consumption, and emissions.
  • Computer real-time simulation (hundred milliseconds); it is also impossible to collect real-time data in a single four-stroke cycle of the engine (intake/compression/combustion/exhaust), which can fully describe the optimization problem of energy saving and emission reduction under all engine conditions
  • Running big data; the fuel injection electronic control technology of traditional AEC internal combustion engine is essentially a single four-stroke cycle of the engine (two turns of the crankshaft, 720 degrees of rotation) as the smallest basic unit, and the simulation time-varying function of the transient power of the engine is simulated.
  • the hardware and calibration software (that is, the lowest level firmware) are completely fixed once they have passed the mandatory emission regulation certification, and are not allowed to be changed without authorization during the mass production and service life cycle; traditional engines can only be changed It is impossible to adjust the external characteristics of the engine in agile and customized manner for various application scenarios of the vehicle to optimize the energy saving and emission reduction of the vehicle at the same time, so as to achieve thousands of vehicles.
  • the ACE heavy-duty truck of the present invention can implement serial hybrid iSS or parallel hybrid iPS control to convert the transient power function of the DPC engine and battery pack from the software-hardware strong coupling and complex and changeable second-level gradient simulation function in the prior art ( Universal characteristic curve surface condition) into a simple digital function of pulse sequence with decoupling of software and hardware (several fixed point conditions and line conditions; including at most one time between high and low states in each PWM pulse cycle to-and-fro switching; covering any vehicle type or vehicle cycle), such as bipolar rectangular (serial mix) or bipolar non-rectangular (parallel mix) pulse width modulation (PWM) pulse time series and non-rectangular pulse amplitude modulation (PAM) Pulse time series, the optimization problem of vehicle dynamics (mainly based on transient power control), the optimization problem of vehicle energy management (ie RDE fuel consumption) (mainly based on average power control), and the long-term stability of pollutant emissions in the actual driving environment of the vehicle (RDE)
  • the ACE heavy truck can connect any mass-produced and commercial modern analog electronically controlled (AEC) engine (meeting EPA-2010, Euro-VI, China-6), through serial-mix intelligent start-stop control (iSS) or parallel
  • AEC electronically controlled
  • iSS serial-mix intelligent start-stop control
  • iPS hybrid intelligent power switching
  • DPC digital pulse control
  • the "pulse modulation" control technology can have two different meanings.
  • the first meaning takes the pulse sequence function as the digital carrier (Digital Carrier), and the specific parameters of the carrier (such as the pulse width PW of the pulse sequence, the pulse amplitude PA, the pulse position PP) changes with the analog modulation signal with a lower frequency relative to the pulse sequence repetition frequency, that is, the low-frequency analog signal is used to modulate and control the digital carrier signal;
  • the second meaning is that the pulse sequence function is used as the digital modulation signal, and the analog time-varying function (such as High-frequency oscillating carrier) for modulation control, that is, to modulate and control analog signals with digital pulse signals.
  • PWM Pulse Width Modulation
  • PAM Pulse Amplitude Modulation
  • the output response function of the inertial system whose modulation signal is the input excitation is basically the same, which is equivalent in the engineering sense; while the pulse-controlled engine technology (serial hybrid iSS or parallel hybrid iPS) of the ACE heavy truck of the present invention is based on the second meaning It uses PWM or PAM pulse modulation signal to directly perform synchronous digital pulse modulation control on the transient analog power functions of the engine and the battery pack, respectively, to generate two bi
  • the transient slowly varying analog power function of the engine or battery pack is fundamentally different from the transient digital pulse power function (PAM or PWM) in a mathematical or physical sense; the analog power time-varying function and the pulse power time-varying function represent the engine Or two completely different operating point distributions of battery packs.
  • PAM transient digital pulse power function
  • PMC pulse modulation control
  • AOM positive speed, positive torque
  • POM novel universal characteristic curve fourth quadrant
  • POM low-state point condition or a low-state line condition with zero fuel consumption and zero emission
  • Yu design with (the underlying hardware and calibration software) unchanged and (vehicle running) changing; plus the dynamic customization of control software and over-the-air iteration (OTA), to achieve software-defined hybrid powertrain, cost-effective Realize the beneficial effects of thousands of vehicles and thousands of faces that can be agile mass customization; it can simultaneously optimize the multi-dimensional important indicators such as RDE power, fuel consumption, and pollutant emissions of ACE heavy trucks.
  • OTA over-the-air iteration
  • any modern heavy-duty truck AEC engine (displacement 9 to 16 liters; whether it is a basic or advanced diesel engine or natural gas engine) that has been mass-produced and commercialized in the three major heavy-duty truck markets in Europe, America, and China can pass this engine.
  • the invented serial hybrid iSS or parallel hybrid iPS technical measures are converted into digital pulse control (DPC) engines; the actual working condition distribution of DPC engines is greatly simplified from the complex surface working conditions in the whole domain to the pre-set first quadrant high-efficiency area At least one point working condition or line working condition within the range effectively shields the transient or steady state dynamic performance (torque or power) of heavy truck engines of various displacements or technical grades in the universal characteristic curve full-area working condition.
  • ACE heavy-duty trucks rely on the rated power of 100kW-class dual motors and a 10-kWh-class power battery pack, which complements the advantages of two independent and redundant electromechanical power systems with 100kW-class heavy-duty engines, improving vehicle power and active safety.
  • ACE heavy trucks can also effectively solve the long-term pain point of the highway logistics industry, which is the high dispersion of actual fuel consumption of vehicles due to different powertrain configurations and different driving levels of traditional engine heavy trucks.
  • ML machine learning
  • the change speed of the transient power function of the 100kW-class battery pack (or motor) is an order of magnitude faster than that of the 100kW-class internal combustion engine or the transient power function of the vehicle road load; controlled by the electric power shunt (ePSD) ), the battery pack can accurately track the dynamic change of the difference between the road load transient power function and the engine transient power function in real time (ten millisecond-level delay, kilowatt-level accuracy), and meet the series hybrid power equation in real time (2-4A ) or the parallel hybrid power equation (3-3A), corresponding to the bipolar rectangular or non-rectangular PWM pulse sequence function of the engine transient power to synchronously generate the bipolar non-rectangular pulse width modulation of the battery pack transient charge and discharge power ( PWM) or pulse amplitude modulation (PAM) time series function; the equivalent amplitude value of the battery pack pulse sequence is continuously adjustable between the battery pack charging peak power (negative value) and the discharge peak power (positive value); the battery pack PWM The period is the
  • the function is pulsed (PAM or PWM) controlled; then the two are superimposed according to the series hybrid power equation (2-4) or the parallel hybrid power equation (3-3) to generate a time-varying simulation of the original road load transient power.
  • Function referred to as "original road-load power”
  • impulse-equivalent digital road-load transient power pulse sequence function referred to as "digital road-load power”
  • the impulses of the two are the same (that is, the amount of work, equal to the time integral of the power function pair)
  • heavy truck driving is a high inertia dynamic electromechanical system, according to " Impulse Equivalent Principle", both the digital on-road power and the original on-road power can satisfy the vehicle dynamics equation (1-1) in real time, which will produce basically the same vehicle driving effect;
  • the actual NOx emission value of RDE under load (torque or power load rate is less than 30%) and idle speed (Urban Duty Cycle) is basically higher than the legal limit by more than 100%.
  • the negative impact on local air quality and human health is obvious, and it belongs to "legal" excessive emission; how to ensure that the actual NOx emission can reach the standard stably for a long time in various actual driving environments (RDE) of heavy-duty diesel vehicles is an urgent issue in the current global diesel heavy-duty truck industry.
  • Diesel heavy trucks in the prior art have strong coupling between powertrain software and hardware, and two-way one-to-one mapping between engine operating conditions and vehicle operating conditions.
  • the minimum fuel consumption and pollutant emission values of modern diesel heavy trucks are determined by the design and manufacturing process. Cured, no aftermarket adjustment or improvement (except mandatory aftermarket recall); unless the government modifies the current emission regulations, especially the diesel heavy truck RDE pollutant emission (NOx and PM, etc.) test specifications (such as the NTE specification in the United States or the MAW specification in Europe) , forcing OEMs and engine factories to redesign and produce new diesel engines and heavy trucks at a cost and time consuming, otherwise all modern diesel heavy trucks in the United States/Europe/China will emit RDE pollutants ( The technical problem and the social problem of environmental pollution cannot be effectively solved.
  • Diesel engines usually contradict the reduction of pollutant emissions represented by NOx and the fuel consumption and greenhouse gas emissions (GHG) represented by CO2. Most technologies to reduce vehicle exhaust pollutant emissions are not conducive to reducing fuel consumption at the same time.
  • Technical measures such as increasing the ratio of exhaust gas recirculation (EGR), increasing the idle speed of the diesel engine, and adding a mini-burner to the aftertreatment system (ATS) will help diesel heavy trucks to reduce NOx emissions when running at low speed and low load.
  • Heavy truck diesel engine deactivation (CDA) technology catalyst electric heating (EHC) technology, urea heating injection (Heated Dosing) technology, hybrid technology (Hybrid) and other technical measures may be included in low-speed, low-load or idling conditions.
  • CDA catalyst electric heating
  • EHC catalyst electric heating
  • Heated Dosing urea heating injection
  • Hybrid hybrid technology
  • CO2 and NOx emissions of diesel heavy trucks can be simultaneously reduced under various challenging conditions, but the above technical measures have not been mass-produced and commercialized in global diesel heavy trucks.
  • the ACE heavy truck equipped with the software-defined hybrid powertrain of the present invention can effectively take a variety of novel technical measures to dynamically optimize the RDE emission of the vehicle according to different real-time cycle conditions of the vehicle, and at the same time realize the actual CO2 and NOx of the vehicle. Emission values are minimized.
  • the effective technical means of reducing RDE pollutant emissions for diesel heavy trucks are mainly divided into two categories.
  • the first category is to reduce the pollutants in the exhaust gas at the exhaust pipe outlet of the engine (Engine-out Emission), such as exhaust gas recirculation (EGR) technology;
  • EGR exhaust gas recirculation
  • ATS vehicle after-treatment system
  • the series-hybrid intelligent start-stop technology (iSS) and the parallel-hybrid intelligent power switching technology (iPS) of the present invention can always control the engine (diesel engine or natural gas engine) in any cycle condition (Duty Cycle) of the ACE heavy truck.
  • AOM active mode
  • several fixed point operating conditions or line operating conditions in the combustion efficient area can almost completely avoid engine active idle or low load conditions; plus several fixed zero fuel consumption in novel passive mode (POM) Emission operating point or operating line;
  • the dynamic adjustment of the average engine power is realized by controlling the duty cycle (Duty Cycle) of the pulse width modulation (PWM) of the transient power function of the engine in real time; The operating conditions are completely decoupled.
  • the specific fuel consumption (BSFC) and the thermal efficiency (BTE) are very low.
  • the temperature of the exhaust gas (exhaust exhaust gas) at the exhaust pipe outlet of the engine is significantly higher than the light-off temperature. (above 250 degrees Celsius), when the engine is running in low operating conditions (POM), it has zero fuel consumption and zero emissions, but has a power consumption of 10 kilowatts; the pulse-controlled engine can simultaneously minimize the actual CO2 and NOx emissions of the entire vehicle. No matter what the actual working conditions of ACE heavy trucks are, the pulse period in iSS and iPS technology is at the minute level.
  • the treatment system only adopts passive mechanical thermal insulation measures, and does not adopt active temperature control measures. It can also ensure that various catalysts in the aftertreatment system can work efficiently (for example, the SCR catalytic conversion efficiency is greater than 90%), ensuring that the ACE heavy truck RDE emission energy. Long-term and stable compliance (EPA-2010, Euro-VI, National-6, etc.).
  • the ACE heavy truck in the present invention can be configured with multiple motors, at least two standard motors with rated power of 100 kilowatts, and the speed and torque are independently and arbitrarily adjustable.
  • the main operation mode is the power generation mode, referred to as "generator”; the other motor (MG2) in the hybrid P2 position mainly operates in the drive mode, called “main drive motor” or “drive motor” for short;
  • the engine can also run in the drive mode (drag non-combustion engine), and the drive motor can also run in the generator mode (regenerative braking); an auxiliary drive with a rated power of 100 kilowatts in the hybrid P3 position can also be selected.
  • the system architecture of the ACE heavy truck of the present invention is a dual-motor hybrid architecture, in which the generator at the hybrid P1 position and the flywheel of the engine are mechanically connected in both directions (equal speed coaxial or constant speed ratio parallel axis) to form a generator set (Gen Set) ;
  • the drive motor at the hybrid P2 position is mechanically connected in both directions with the gearbox input shaft (constant speed coaxial or constant speed ratio parallel shaft), and is also bidirectionally connected to the flywheel of the engine and the mechanical shaft of the generator through a wire-controlled heavy truck clutch.
  • Mechanical connection
  • the extended-range series hybrid heavy truck can be regarded as a special case of the above hybrid ACE heavy truck when the clutch is normally open or the clutch is canceled
  • the parallel hybrid vehicle can be regarded as another kind of the above hybrid ACE heavy truck when the clutch is normally closed.
  • a special case is that at this time, two mechanically coupled generators and drive motors with a fixed speed ratio can be combined into one, which is equivalent to a larger motor with a rated power of the sum of the two.
  • the cost-effectiveness of the mixed ACE heavy truck (Mixed Hybrid) disclosed in the present disclosure is significantly higher than that of the extended-program serial-hybrid heavy-duty truck or the parallel-hybrid heavy-duty truck of the same configuration.
  • the ACE heavy truck also includes: Satellite Navigation System (GNSS), which can be a dual-antenna carrier phase real-time dynamic differential (RTK) receiver, which can measure the longitude, latitude, altitude, longitudinal slope, and linear speed and other parameters; or it can be a high-precision single-antenna satellite navigator, which can measure the longitude, latitude, and linear speed of the road during vehicle driving in real time with absolute positioning accuracy better than ten meters (relative accuracy better than 3 %); combined with an inertial navigation unit (IMU) with a dynamic (second-level) inclination sensor, it can measure the longitudinal slope of the road in real time, with an absolute measurement accuracy of 0.15%.
  • GNSS Satellite Navigation System
  • RTK real-time dynamic differential
  • the vehicle controller VCU of the ACE heavy truck can be configured to: based on the real-time measurement of the satellite navigator (GNSS), the longitude, latitude, longitudinal slope, vehicle speed, and vehicle acceleration of the vehicle during driving, combined with a priori in the vehicle's electronic horizon 3D road information (longitude, latitude, longitudinal slope, etc.), to the ACE heavy truck's generator set (engine + generator), clutch, drive motor, automatic transmission, ePSD, and battery pack (collectively referred to as "hybrid powertrain” ) for intelligent cruise control (iCC); iCC technology includes predictive control technology (Predictive Control) and adaptive cruise control technology (ACC), which will be described in detail later.
  • GNSS satellite navigator
  • ACC adaptive cruise control technology
  • the power battery pack is one of the most expensive subsystems in the ACE heavy-duty truck, and it is often one of the short boards in performance and life of various important subsystems of the whole vehicle.
  • ACE heavy trucks In order to realize large-scale commercial use of ACE heavy trucks as soon as possible, it is necessary to solve the three major problems of cost, performance and life of power battery packs at the same time.
  • the technical requirements of ACE heavy trucks for cells and battery packs are significantly different from those of hybrid passenger vehicles.
  • the requirements for the total weight or volume of the battery pack are more relaxed, and there are basically no restrictions; but the battery pack is resistant to high and low temperature and vibration. , especially in terms of cycle life under high-rate partial charge-discharge (HRPSoC) conditions, the requirements are higher.
  • HRPSoC partial charge-discharge
  • ACE heavy trucks need to use power-type battery packs with ultra-long cycle life, low temperature resistance, safety, reliability, and cost-effectiveness; their cells need to be able to be charged and discharged at high rates in the high-efficiency area (such as SoC 30% to 70%).
  • the high-efficiency area such as SoC 30% to 70%.
  • the battery To withstand continuous charge and discharge at a rate of 5C to 10C and peak charge and discharge at a rate of 10C to 25C (10-second or 15-second pulse), the battery must work in the most challenging high-rate partial charge and discharge (HRPSoC) conditions for a long time.
  • HRPSoC high-rate partial charge and discharge
  • the charging rate is often higher than the discharging rate, which further challenges the current shortcomings of the lithium-ion battery that the charging rate is significantly smaller than the discharging rate; the battery pack must be able to work normally within the wide temperature range of -30°C ⁇ +55°C outside the vehicle; etc.
  • the effective deep charge-discharge (DoD 100%) cycle life exceeds 12,000 times. After the vehicle is turned off at -30°C and parked for 24 hours outdoors in the cold winter, after the engine is cold started, the engine should be parked in place and the engine should be idling to warm up within three minutes, and within ten minutes of starting the vehicle, the battery pack should be able to basically work; at this time, the battery pack is charged and discharged The performance is allowed to be temporarily reduced.
  • Mainstream lithium-ion power cells such as lithium iron phosphate (LFP) and ternary lithium (NCM or NCA, etc.) are generally afraid of cold.
  • LFP lithium iron phosphate
  • NCM ternary lithium
  • the cell temperature is lower than zero degrees Celsius, its high-rate discharge (above 2C) capability will drop significantly and temporarily, and when the cell temperature rises above 10 degrees Celsius, the cell discharge performance will return to normal; the low-temperature high-rate discharge of the battery pack will not be permanent
  • charging at a high rate at a low temperature inside the cell especially when it is less than 0 degrees Celsius
  • the damage mechanism is mainly that the metal lithium dendrites generated by the negative electrode lithium plating may pierce the separator, causing a short circuit in the cell and causing a safety hazard of thermal runaway.
  • the battery management system will monitor the temperature of the cell in real time, and it is strictly forbidden to charge the cell at a high rate when the cell is low temperature.
  • mainstream automotive power cells such as LFP, NCM, or NCA are difficult to be used for ACE heavy truck battery packs alone.
  • lithium titanate cells LTO; positive ternary lithium/negative electrode lithium titanate
  • LTO positive ternary lithium/negative electrode lithium titanate
  • LTO batteries Compared with the above-mentioned mainstream lithium-ion batteries, LTO batteries have many obvious advantages, such as ultra-long life, high safety, low temperature resistance, and high-rate partial charge-discharge (HRPSoC) performance. 80wh/KG) and high cost ($/kWh is about four times that of LFP/NMC cells) two obvious disadvantages. Because the ACE heavy truck has basically no rigid layout restrictions on the volume and weight of the power-type battery pack with a total capacity of only tens of kilowatt-hours, the shortcomings of LTO's low specific energy and large volume are not a concern, but its high cost will hinder it.
  • HRPSoC partial charge-discharge
  • the present invention simultaneously optimizes the performance of the ACE heavy-duty truck battery pack by connecting at least two 10-kWh-level power-type battery packs composed of different electrochemical cells in parallel.
  • the battery pack of the ACE heavy-duty card can work in three different modes: 1) In the charge-hold mode (CS), both the transient state of charge function (SoC) of the battery pack and the minute-level time-averaged SoC function are always Keep in its high-efficiency area (between the best upper limit BUL and the best lower limit BLL) continuously fluctuate up and down; 2) In the charge consumption mode (CD), the transient SoC function of the battery pack always remains on the upper red line (URL ) to the lower red line (LRL) continuously fluctuates, and its average SoC function (minute-level rolling time average) continues to decrease with time between the upper red line (URL) and the lower red line (LRL); 3) When the charge increases In mode (CI), the transient SoC function of the battery pack always keeps fluctuating continuously between the upper red line (URL) and the lower red line (LRL), while its average SoC function is between the upper red line (URL) and the lower red line (LRL) continued to rise over time.
  • CS charge-hold mode
  • SoC state of
  • the optimal working area of the battery pack (also known as the high-efficiency area) is that the state of charge function (SoC) fluctuates between the optimal lower limit (BLL) and the optimal upper limit (BUL).
  • the performance of the discharge (HRPSoC) is the best, and the actual equivalent cycle life (that is, the ratio of the total throughput power to the effective capacity of the battery pack) is the longest in the whole life cycle; and when the battery pack SoC is at the lower red line (LRL) to the best lower limit ( When the high-rate partial charge-discharge operation is between BLL) or between the optimal upper limit (BUL) and the upper red line (URL), the charge-discharge performance is not optimal, but it will not cause permanent damage to the cell and will not reduce the equivalent cycle life.
  • the battery pack SoC function is URL>BUL>BLL>LRL, and the limits of the above four SoCs for each battery pack are specified by the cell manufacturer; battery packs operating outside the red line should be completely avoided (ie SoC ⁇ LRL or SoC> URL).
  • the charging and discharging power control strategy of the battery pack, the mechanical power control strategy of the ACE heavy truck engine and the total driving power of the vehicle that is, the sum of the effective mechanical power and the effective electric power of closed-loop driving
  • the control strategy is closely related;
  • the core of the ACE heavy-duty truck power management strategy (PMS) of the present invention is to split and convert the complex multi-dimensional nonlinear simulation control problem of "optimization of vehicle energy saving and emission reduction" into two relatively simple dimensionality reduction Quasi-linear digital control (Digital Control) problem, one is the digital control problem of sub-second "transient power management", and the other is the digital control problem of minute-level "average power management”;
  • control through serial hybrid iSS control or parallel hybrid iPS control, the transient electrical power simulation function of the battery pack and the transient mechanical power simulation function of the engine are respectively converted into two synchronized complementary (Synchronized & Complimentary
  • function value or engine average power function value can also be calculated in real time (second-level delay) with kilowatt-level granularity according to the vehicle dynamics equation (1-1), combined with vehicle satellite positioning (GNSS) and road 3D electronic map.
  • CS charge retention
  • CD charge consumption
  • CI charge increase
  • One of stable operation or smooth switching between modes, to maximize the long-term stable operation of the power battery pack in the high-efficiency area, to maximize the battery pack regeneration charge turnover rate and the engine charge turnover rate to minimize, to achieve simultaneous optimization ACE heavy truck has multiple beneficial effects such as power, safety, energy saving and emission reduction.
  • the power management strategy (PMS) of the ACE heavy truck focuses on the premise of ensuring the power and active safety of the whole vehicle, so as to achieve the minimization of vehicle RDE fuel consumption and emissions (that is, to minimize CO2 and NOx at the same time);
  • the cumulative charge throughput of the battery pack should be increased as much as possible to complete the complete charge-discharge cycle (Round Trip), and the electric energy should be used to drive the vehicle;
  • the proportion of regenerative charge in the total charge should be maximized, and at the same time Try to reduce the proportion of the engine charge in the total charge; obviously the total charge is equal to the sum of the regeneration charge and the engine charge, and the dimensions of the three are all kilowatt-hours.
  • the ratio of the total charge throughput to the effective capacity of the battery pack is defined as the "total charge turnover rate", and the ratio of the accumulated regenerative charge to the effective capacity of the battery pack is defined as the "regenerative charge turnover rate”.
  • ACE heavy truck intelligent cruise control (iCC, namely L1 level automatic driving function) refers to the realization of vehicle RDE fuel consumption and emission minimization (i.e. CO2 and NOx at the same time) through software-defined hybrid powertrain.
  • iCC is essentially an agile batch customization (i.e., thousands of vehicles and thousands of faces) vehicle dynamic power control strategy of ACE heavy trucks, and one of the cores of its fuel consumption minimization It is to seek the maximum value of the regenerative charge turnover rate and the minimum value of the engine charge turnover rate at the same time under the premise of increasing the total charge turnover rate of the battery pack in each cargo event as much as possible.
  • the VCU can be configured to: based on the precise timing of the GNSS receiver, calibrate the built-in clocks of each subsystem microprocessor in real time, including the built-in clock of the VCU, to automatically mark the system time series with unidirectionality and uniqueness
  • the dynamic operation data of the entire ACE heavy truck and the various subsystems associated with the lateral or longitudinal control of the vehicle are measured and stored with a sampling frequency higher than 5 Hz (that is, at least five times per second).
  • Configuration parameters and/or dynamic operating data from at least two subsystems including the GNSS receiver, mapper, engine, generator, electrical power splitter (ePSD), clutch, drive motor, automatic transmission, and battery pack, After synchronization, splicing into data sets; and aligning, aligning, or arranging multiple data sets in the second dimension according to the system time series to form structured big data about the operation of ACE heavy trucks (ie, fuel-saving data sets) , which is used to describe its dynamic operating status, with a special focus on vehicle energy saving and emission reduction and automatic driving safety; optionally, in order to protect the privacy and business secrets of drivers and fleets, the fuel-saving data set is desensitized and encrypted, and then in a secure way Through the mobile Internet or wired Internet, real-time (sub-second delay) or timely (hour-level delay) upload to cloud computing platform storage for subsequent big data analysis and processing.
  • ePSD electrical power splitter
  • the VCU can also be configured as: a priori road longitudinal slope distribution function based on the 3D map within the electronic horizon, vehicle GNSS positioning, digital model of the universal characteristic curve of the engine, digital model of the universal characteristics of the generator, and charging and discharging characteristics of the battery pack. at least one of a digital model, a digital model of the transmission characteristics, and a digital model of the drive motor universal characteristics for corresponding at least one of the engine, generator, battery pack, ePSD, transmission, and drive motor for real-time control.
  • the VCU can also be configured to: command a collection of on-board sensors and microprocessors to collect and locally store structured big data (ie, fuel-saving data sets) of the operation of ACE heavy-duty trucks in real time while the vehicle is running;
  • structured big data ie, fuel-saving data sets
  • the oil data set is sent and stored to the remote cloud computing platform in real time (sub-second delay) or in time (hour-level delay) via the wireless mobile Internet for subsequent analysis and processing in the cloud.
  • the deep learning algorithm, the computing power of the cloud platform, and the fuel-saving data sets of many ACE heavy-duty truck clusters are integrated to train the cloud AI brain (ie AI training chip) of the ACE heavy-duty truck, and establish a deep neural network for fuel-saving algorithms ( DNN) model, and download or wireless remote push (OTA) the default fuel-saving algorithm for specific freight events to the designated ACE heavy truck, and then the vehicle-side AI brain (ie AI inference chip) performs local real-time inference operations to optimize vehicle fuel consumption and emissions.
  • DNN deep neural network for fuel-saving algorithms
  • OTA wireless remote push
  • the cloud AI brain quickly calculates the default optimal fuel-saving power control scheme for the vehicle traveling on the route, and downloads it to the vehicle. , and then the AI brain on the vehicle side performs local inference operations according to the specific vehicle conditions and road conditions, and corrects the power control strategy in real time to achieve the optimal (i.e., minimized) fuel consumption (liters/100 kilometers) and emissions of the vehicle.
  • the aftertreatment system (ATS) of China's national-6 heavy-duty truck diesel engine and modern European and American heavy-duty truck diesel engine (US EPA-2010, Euro-VI) adopts basically the same technical route, consisting of diesel oxidation catalyst (DOC), diesel particulate filter (DPF) ), the selective catalytic reducer (SCR) for eliminating nitrogen oxides (NOx), and the urea leakage catalyst (ASC) four subsystems are sequentially connected in series from front to back, which is called an integrated aftertreatment system (IATS); unless special It should be noted that the post-processing system (ATS) in the present invention refers to the above-mentioned integrated post-processing system (IATS).
  • DOC diesel oxidation catalyst
  • DPF diesel particulate filter
  • SCR selective catalytic reducer
  • ASC urea leakage catalyst
  • the high-efficiency temperature range of various ATS catalysts for emission reduction and conversion is generally between 250°C (degrees Celsius) and 550°C; under medium and high load conditions (torque or power load rate is greater than 40%), the exhaust gas temperature of diesel engines is generally between 250°C and 550°C. Between 500°C, the ATS system operates in the high-efficiency area at this time, which is conducive to emission reduction; while when the engine is cold-started, idling or running at low load, the exhaust gas temperature is significantly lower than 250°C, and the surface temperature of various catalysts in the aftertreatment system
  • the threshold value of the high-efficiency zone cannot be quickly reached, that is, the so-called light-off temperature (Light-off Tempreture; about 250°C).
  • the catalyst conversion efficiency is not high (for example, less than 50%), and pollutants (particulate matter, NOx, etc.) are emitted. higher.
  • pollutants partate matter, NOx, etc.
  • the regulation and restriction of pollutant emissions under the RDE is a technical problem that all modern diesel heavy trucks, including China-6 new heavy trucks, must effectively solve.
  • the hybrid ACE heavy truck of the present invention can stably set the engine in its combustion high-efficiency area for a long time by implementing the series-hybrid intelligent start-stop control (iSS) and the parallel-hybrid intelligent power switching control (iPS) during its entire operating life cycle.
  • iSS series-hybrid intelligent start-stop control
  • iPS parallel-hybrid intelligent power switching control
  • the optimal operating point which can reduce the active regeneration frequency by more than 75% compared with the single-motor hybrid heavy-duty truck or the traditional diesel heavy-duty truck; while optimizing the fuel consumption of the vehicle, it ensures that the catalyst surface temperature in the exhaust after-treatment system is stable for a long time.
  • the ACE heavy truck equipped with the hybrid powertrain (pulse control engine, dual motors, single clutch) of the present disclosure can reduce the comprehensive fuel consumption (liter/100 kilometers) of the heavy truck with a traditional engine by 30% %, and the power performance, active safety, RDE pollutant emission compliance and other aspects are better.
  • dual-motor hybrid heavy-duty trucks compared with dual-motor extended-range series hybrid heavy-duty trucks or single-motor pure parallel hybrid heavy-duty trucks, dual-motor hybrid heavy-duty trucks have more advantages in terms of fuel economy, power, active safety, and cost competitiveness.
  • the ACE heavy truck of the present invention can be based on the prior road 3D data (longitude, latitude, longitudinal slope), vehicle configuration parameters and dynamic operation data (total mass, rolling friction coefficient, wind resistance coefficient, vehicle speed, vehicle acceleration, real-time positioning in the electronic horizon) etc.), and vehicle dynamics equations (1-1) to dynamically predict the spatiotemporal function of on-road power within the electronic horizon (hourly or hundred-mile scale) at refresh rates higher than 2.0 Hz and kilowatt-scale granularity, and then According to the machine learning (ML) algorithm focusing on energy saving and emission reduction, the vehicle power control strategy is automatically generated and executed in real time (sub-second level) at the vehicle end, and the hybrid ACE heavy truck is instructed to dynamically implement serial hybrid intelligent start-stop control (iSS) or parallel hybrid A series of technical measures such as Intelligent Power Switching Control (iPS), Intelligent Mode Switching Control (iMS), Clutchless Shifting (CGS), Intelligent Cruise Control (iCC), etc.
  • iPS Intelligent Power Switching Control
  • OTA energy saving and emission reduction optimization machine learning algorithm
  • ML machine learning algorithm
  • the engine and battery pack can work stably in their respective high-efficiency areas for a long time. Satisfy the vehicle dynamics equation (1-1), the series hybrid power equation (2-4) or the parallel hybrid power equation (3-3) in real time, and realize the simultaneous optimization of the actual energy saving and emission reduction of ACE heavy trucks, especially the minimization of RDE fuel consumption ;
  • the collection of the above-mentioned various technical measures is defined as the "intelligent cruise control" (iCC: intelligent Cruise Control) technical solution or function of the ACE heavy truck.
  • the ACE heavy truck can achieve an average reduction in actual fuel consumption by more than 25% through the iCC technical solution, and the fuel consumption dispersion (ie variance) It is an order of magnitude smaller than the human driver, and is basically decoupled from the level of the human driver of the ACE heavy truck and the performance of the engine.
  • iCC can realize the L1-level automatic driving function defined by the longitudinal SAE of ACE heavy trucks; in this disclosure, iCC can represent both the specific technical solution and the L1-level automatic driving function that can be realized by the technical solution; iCC technology includes It has two functions in the prior art: Predictive Cruise Control (PCC-Predictive Cruise Control) focusing on fuel saving and ACC-Adaptive Cruise Control (ACC-Adaptive Cruise Control) focusing on active safety and driving convenience.
  • PCC-Predictive Cruise Control Predictive Cruise Control
  • ACC-Adaptive Cruise Control focusing on active safety and driving convenience.
  • Significant technical improvements have been made in the specific technical measures and final technical effects of the ACC function, which are further described in the Examples section.
  • All the core subsystems or components of the ACE heavy truck disclosed in the present disclosure are based on products and technologies that have been industrialized.
  • it can ensure vehicle power, active safety, Under the premise of long-term compliance with RDE emission standards and attendance rate, the beneficial effect of comprehensive fuel saving rate of 30% can be achieved.
  • ACE heavy trucks can save vehicle fuel costs, operation and maintenance fees, and improve the labor productivity of heavy truck drivers, so that fleets or individual owners can recover the cost difference within two years or 400,000 kilometers (referring to ACE heavy trucks and traditional diesel. The difference in overall cost (TOC) between heavy trucks).
  • the mass-produced new ACE heavy-duty trucks (or original ACE heavy-duty trucks) can reach the carbon emission target value of the recently promulgated EU CO2 regulation in 2025 and the carbon emission target value of the U.S. Greenhouse Gas Emission Phase II Regulation (GHG-II) in 2027 in advance;
  • GSG-II Greenhouse Gas Emission Phase II Regulation
  • the average service life of a heavy truck exceeds 20 years or 1.5 million miles, and each heavy truck may be equipped with two to three sets of powertrains (engine + gearbox; After about 600,000 miles, the second or third set of powertrains are mostly used powertrains (Remanufactured) that have been overhauled by the original factory-approved company.
  • the average annual sales of new heavy-duty trucks in North America is about 250,000 units, and the annual number of modified heavy-duty trucks (that is, second-hand heavy-duty truck powertrain replacement) exceeds 250,000 units.
  • the software-defined hybrid powertrain technology of the present invention can not only be adapted to new original ACE heavy trucks, but also can be used for batch modification and upgrading of second-hand traditional diesel heavy trucks that currently have nearly 2 million vehicles in the US market.
  • the average service life of American heavy trucks can exceed twenty years. According to a 2020 media announcement by the Clean Diesel Forum, as of the end of 2018, only 43% of diesel engines in all diesel heavy trucks in use in the United States meet the current U.S. emission regulations EPA-2010 (ie, a market penetration rate of 43%). %), the remaining diesel heavy trucks are still old-fashioned diesel engines that do not meet EPA-2010 and have higher pollutant emissions; The above) will use modern diesel engines that meet the current pollutant emission standard EPA-2010. In the heavy truck market, the market penetration rate of a new technology is growing slowly, and the statistics are calculated in ten years.
  • the fuel consumption and emissions of about 2 million used trucks in the United States are significantly higher than the new original heavy trucks; US laws and regulations allow the hybrid modification of used traditional heavy trucks, and then do not need to go through The time-consuming and expensive government re-certification, the modified hybrid heavy truck can be directly operated on the road; the software-defined hybrid powertrain of the present invention can be used to convert a large number of second-hand diesel heavy trucks in the United States into ACE heavy trucks (Retrofit ACE Truck), which can be The cost-effective, fast and obvious reduction in the overall fuel consumption and emissions of the heavy trucks in use in the millions of vehicles in the United States has technical and commercial feasibility, huge economic and social value, and can be immediately launched for commercial use.
  • Hybrid powertrain technical solutions are popularized and applied to other on-road or off-road hybrid light vehicles (total weight less than 4.5 tons) or hybrid large Medium commercial vehicles (gross weight greater than 5 tons).
  • a first aspect of the present invention discloses a hybrid heavy-duty truck, the hybrid heavy-duty truck includes: a drive motor mechanically connected to a drive shaft of the hybrid heavy-duty truck; a generator set and at least one power battery pack, each of which can be independently power is provided to the drive motor locally, wherein the generator set includes an engine and a generator that are mechanically connected in both directions; and a vehicle controller configured to: control the engine to operate only in a specified combustion state or another specified unburned state, and capable of switching between said two states, thereby regulating the power provided by said engine in a first modulation mode, wherein, in said combustion state, the engine has a rotational speed within a specified first positive range, and a torque within a specified positive range; and in the unburned state, the engine has a specified second positive
  • the rotational speed in the range of values, and the torque in a specified negative range, and the absolute value of the torque in the negative range is lower than the torque value in the positive range, and, the The vehicle controller is further configured
  • the hybrid heavy truck further includes: a controllable clutch, disposed between the generator set and the drive motor, and operable to: when the clutch is coupled, make the clutch There is a direct mechanical connection between the genset and the drive motor; and when the clutch is disengaged, the direct mechanical connection between the genset and the drive motor is lost.
  • a controllable clutch disposed between the generator set and the drive motor, and operable to: when the clutch is coupled, make the clutch There is a direct mechanical connection between the genset and the drive motor; and when the clutch is disengaged, the direct mechanical connection between the genset and the drive motor is lost.
  • the adjusting the power provided by the engine in the first modulation mode includes: in each control cycle, determining the difference between the time when the engine works in the combustion state and the the duty cycle between the control cycles.
  • the adjusting the power provided by the engine in the first modulation mode further comprises: in each control cycle, according to the charge of the battery required at a certain point in the future state to further adjust the determined duty cycle to obtain an updated duty cycle.
  • the adjusting the power provided by the engine in the first modulation mode further comprises: in each control cycle, controlling the power amplitude of the engine operating in the combustion state and and/or power magnitude for operation in said unburned state.
  • the controlling the power amplitude of the engine operating in the combustion state comprises: when the clutch is coupled, the power amplitude provided by the engine is selected from the group consisting of: the first rotation speed of the engine. A power amplitude corresponding to a working point on a predefined specific fuel consumption curve in a region defined by a positive value range and the positive value range of torque; and when the clutch is disengaged, the first A positive value range is set as a fixed value, and the magnitude of the power provided by the engine is selected from: one of the regions defined by the fixed value of the rotational speed and the positive value range of the torque The power amplitude corresponding to the operating point on the straight line segment.
  • the hybrid heavy truck further includes: an electric power splitter having a first port, a second port and a third port, wherein the first port is bidirectionally connected to the generator set; the The second port is bidirectionally electrically connected to the input end of the drive motor; and the third port is bidirectionally electrically connected to the at least one power battery pack, and the electric power shunt is controlled by the vehicle controller, where Between the generator set, the battery pack, and the drive motor, the flow path, amplitude, and direction of electric power are controlled.
  • the vehicle controller is further configured to: determine an average value of the on-road power and the average value of the power provided by the internal combustion engine over a plurality of control cycles; and based on the determined The difference between the average value of the road load power and the average value of the power provided by the internal combustion engine is used to determine the working mode of the power battery pack in the plurality of control cycles, so that the battery pack can enter the following One of the three modes described: - when the difference between the mean value of the on-road power and the mean value of the power delivered by the internal combustion engine is substantially 0, a charge retention mode is entered, in which the state of charge is maintained at between a predefined first upper limit and a first lower limit; - when the difference between the mean value of the on-road power and the mean value of the power provided by the internal combustion engine is substantially greater than 0, the charge consumption mode is entered, wherein the average value of the state of charge decreases monotonically between a predefined second upper limit and a second lower limit; and - when the difference between
  • the hybrid heavy truck further includes: a power control unit, a catalytic electric heater, and an after-treatment system, wherein the after-treatment system is arranged downstream of the catalytic electric heater along the exhaust gas emission direction, wherein , the power control unit controls the catalytic electric heater to heat the aftertreatment system when the internal combustion engine is in the unburned state and when the internal combustion engine transitions from the unburned state to the combustion state.
  • the vehicle controller is further configured to bring the intake and exhaust valves of all cylinders of the internal combustion engine into a closed state when the internal combustion engine is in the unburned state , to reduce the effect of the intake air on the temperature of the downstream catalytic system.
  • a second aspect of the present invention discloses a hybrid heavy-duty truck, the hybrid heavy-duty truck includes: a drive motor mechanically connected to a drive shaft of the hybrid heavy-duty truck; an engine and at least one power battery pack, each of which can be independently providing power to the drive motor; and a vehicle controller configured to: control the engine to operate only in a specified combustion state or another specified unburned state, and in both The power provided by the engine is regulated in a first modulation mode by switching between states, wherein, in the combustion state, the engine has a rotational speed within a specified first positive range , and torque within a specified range of positive values; and in the unburned state, the engine has a rotational speed within a specified second range of positive values, and a speed within a specified range of negative values torque, and the absolute value of the torque in the negative range is lower than the torque value in the positive range, and the vehicle controller is further configured to: in the second modulation mode, for all The power provided by the power battery pack is adjusted, and the second modulation
  • a third aspect of the present invention discloses a method for retrofitting a traditional fuel heavy truck, including: providing an existing traditional fuel heavy truck that already contains an engine; providing a drive motor, which is combined with the The drive shaft of the conventional fuel-fired heavy truck is mechanically connected; a generator is provided, which is mechanically connected to the engine in both directions; at least one power battery pack is provided, wherein the generator and the power battery pack are arranged to be able to separately and independently connect to the engine.
  • the vehicle controller configured to: control the engine to operate only in a specified combustion state or another specified unburned state, and in both The power provided by the engine is adjusted in a first modulation mode by switching between states, wherein, in the combustion state, the engine has a rotational speed within a specified first positive range, and a torque within a specified positive range; and in the unburned state, the engine has a rotational speed within a specified second positive range, and a rotational speed within a specified negative range torque, and the absolute value of the torque in the negative value range is lower than the torque value in the positive value range, and the vehicle controller is further configured to: in the second modulation mode, to the said The power provided by the power battery pack is adjusted, and the second modulation mode is determined according to the required on-road power and the first modulation mode.
  • a fourth aspect of the present invention discloses an apparatus for controlling a vehicle, comprising: a processing unit; and a memory coupled to the processing unit and containing computer program code, the computer program code when executed by the processing unit , causing the device to perform the following actions: control the engine of the vehicle so that it can only operate in a specified combustion state or another specified unburned state, and can perform operations between the two states switching so as to regulate the power provided by the engine in a first modulation mode, wherein, in the combustion state, the engine has a rotational speed within a specified first positive range, and within a specified a torque in a positive range; and in the unburned state, the engine has a speed in a specified second positive range, and a torque in a specified negative range, and the The absolute values of the torques in the negative value range are all lower than the torque values in the positive value range, and the device is further configured to: in the second modulation mode, provide the power supply to the power battery pack of the vehicle The second modulation mode is determined based on the
  • a fifth aspect of the present invention discloses a method for controlling a vehicle, comprising: controlling an engine of the vehicle to operate only in a specified combustion state or another specified unburned state, and in Switching between the two states adjusts the power provided by the engine in a first modulation mode, wherein, in the combustion state, the engine has a specified first range of positive values speed within a specified range of positive values, and torque within a specified range of positive values; and in the unburned state, the engine has a speed within a specified second range of positive values, and a specified negative value torque in the range, and the absolute value of the torque in the negative range is lower than the torque value in the positive range, and, in the second modulation mode, the power battery pack of the vehicle The supplied power is adjusted, and the second modulation mode is determined based on the required on-board power and the first modulation mode.
  • a sixth aspect of the present invention discloses a computer program product stored on a non-volatile computer readable medium and comprising machine-executable instructions which, when executed, cause the machine to perform in accordance with the present invention The steps of the method of the fifth aspect.
  • FIG. 1 shows a system block diagram of an ACE heavy truck configuring a software-defined hybrid powertrain according to an embodiment of the present disclosure
  • FIG. 2 shows a system block diagram of an electrical power splitter (ePSD) of an ACE heavy-duty truck according to an embodiment of the present disclosure
  • FIG. 3 shows a functional schematic diagram of a software-defined hybrid powertrain configured by an ACE heavy-duty truck according to an embodiment of the present disclosure
  • Fig. 4 shows the universal characteristic curve (Engine Fuel Map) of the engine of the ACE heavy truck according to an embodiment of the present disclosure
  • FIG. 5 shows a block diagram of a vehicle-cloud system in which the ACE heavy truck communicates with the cloud computing platform through the mobile Internet according to an embodiment of the present disclosure
  • FIG. 6 shows the transient power PWM pulse sequence function of the pulse-controlled engine of the ACE heavy truck according to an embodiment of the present disclosure
  • FIG. 7 shows a block diagram of an engine exhaust aftertreatment system of an ACE heavy truck according to an embodiment of the present disclosure.
  • the term “including” and variations thereof are to be read as open-ended terms meaning “including, but not limited to.”
  • the term “based on” is to be read as “based at least in part on”.
  • the terms “one embodiment” and “one embodiment” are to be read as “at least one embodiment.”
  • the term “another embodiment” is to be read as “at least one other embodiment.”
  • the terms “first”, “second”, etc. may refer to different or the same objects. Other explicit and implicit definitions may also be included below.
  • “one-way” or “two-way” coupling refers to whether the direction of electrical or mechanical power flow or energy flow from its power source to the load is reversible, and whether the roles of the two can be reversed.
  • a one-way connection the roles of the power source and the load are fixed, and the power flow from the source to the load is single and irreversible; in a two-way connection, the roles of the power source and the load can be dynamically switched, the power flow direction is reversible, and the two-way flow can be time-divisional.
  • all the electromechanical parts, modules or devices in the present invention are of vehicle grade.
  • Vehicle engines include vehicle-standard internal combustion engines or turbines; at present, nearly 95% of the world's heavy trucks use diesel engines, and a few use natural gas engines. Torque and torque are synonymous.
  • vehicle may generally refer to a road or non-road motor vehicle with at least 4 wheels and a gross vehicle weight (GVW, the vehicle's own weight plus the maximum legal load) of at least 1.5 tons
  • a heavy truck may generally refer to at least 6 wheels and a gross weight of at least 1.5 tons.
  • On-road or off-road motor vehicles i.e. large commercial vehicles of at least 10 tons.
  • FIG. 1 shows a block diagram of a hybrid (Mixed Hybrid) powertrain system of an ACE heavy truck 010 according to an embodiment of the present invention.
  • the system can either be configured as a 6x2 with dual motors, a generator (MG1) 110 at the hybrid P1 position and a main drive motor (MG2) 140 at the hybrid P2 position, an active transaxle 160 and a passive transaxle 180 Powertrain system, or a 6x4 powertrain system with two active transaxles 160 and 180; it can also be configured with three motors, that is, the generator (MG1) 110 in the hybrid P1 position, the main drive motor in the P2 position ( MG2) 140, auxiliary drive motor (MG3) 170 at P3 position, two active drive axles 160 (main drive axle) and 180 (auxiliary drive axle) 6x4 powertrain system.
  • the heavy truck may be a hybrid heavy truck mainly used for trunk logistics with a gross vehicle weight greater than 15 tons.
  • the ACE heavy truck hybrid powertrain may include: an engine 101, an engine control unit (ECU) 102, a mechanical torque coupler (mTC1) 103, a generator (MG1) 110, and an electrical power splitter (ePSD) 123, clutch 111, mechanical torque coupler (mTC2) 104, at least one main battery pack 130a, braking resistor 131, automatic transmission (T) 150, transmission control unit (TCU) 151, at least one main drive motor (MG2) 140, a vehicle controller (VCU) 201, a main transaxle 160, a subtransaxle 180, and the like.
  • the main battery pack 130a and the main drive motor 140 are mandatory parts (standard), while the auxiliary battery pack 130b and the auxiliary drive motor 170 are optional parts (optional).
  • the flywheel end of the engine 101 is mechanically coupled to the mechanical shaft of the generator (MG1) 110 and the A end of the clutch 111 and is controlled by the engine controller ( ECU) 102; the flywheel end of the engine 101, the mechanical shaft of the generator 110, and the A end (also known as the “driven end”) of the wire-controlled clutch 111 are mechanically connected in both directions through the three-port mechanical torque coupler 103, and the mechanical torque
  • the coupler (mTC1) 103 can be implemented with the most concise coaxial structure (referred to as coaxial connection), or a more complex and flexible multi-parallel shaft plus gear coupling (ie reducer, flywheel and clutch A-end) At the same speed, the generator speed is higher) structure (referred to as parallel shaft connection).
  • Coaxial connection may be preferred, and the mechanical connection is the simplest and most efficient, but at this time, the 100-kilowatt generator 110 needs to use a high-torque (peak torque greater than 1000 Nm) and low speed (the maximum speed is less than 3000 rpm) and the cost is high. Large-scale motor for automobiles; it is also preferable to use parallel shaft connection. At this time, the flywheel output end of the engine 101 is directly connected to one end of the clutch 111 coaxially (two-way mechanical connection at the same speed), and a more cost-effective medium torque (max.
  • the mTC1 103 is mechanically coupled bidirectionally with the flywheel output end of the above-mentioned engine 101 and the driven end (ie the A end) of the clutch 111; but if the mTC1 adopts a reducer structure, the complexity, cost, and reliability risk of the parallel shaft coupling method will be increased.
  • mPSD mechanical power splitter
  • ePSD Electrical Power Splitter
  • the electric power shunt (ePSD) 123 is a three-port 100-kilowatt power electronic network (Power Electronics Network--PEN), and its port I (also referred to as the "first port") is internally inverted at a 100-kilowatt level
  • the three-phase AC terminal of the motor controller (MCU1) 121 of which the inverter (Inverter) is the core module is bidirectionally electrically connected to the three-phase AC terminal of the external generator 110; the external battery pack 130a or 130b is connected to the port III of the ePSD 123 (also The low-voltage ends of 132a or 132b are connected with two-way direct current, respectively; the external 100 kilowatts
  • the first-stage braking resistor 131 is unidirectionally connected to one end (ie, the external connection end) of the 100-kilowatt class voltage-controlled switch (VCS) 133 inside the port III.
  • VCS 100-kilowatt class voltage-controlled switch
  • the AC terminals of 122a or (MCU3) 122b are electrically connected in both directions respectively;
  • the DC terminals of the three motor controllers 121, 122a and 122b are electrically connected in both directions to the DC bus confluence point X (125) inside the ePSD;
  • the other end (ie the inline end) of (VCS) 133 is unidirectionally connected to the bus point X;
  • the output shaft of the automatic transmission 150 is mechanically coupled in both directions with the main transaxle 160 of the vehicle, and is controlled by a transmission controller (TCU) 151 .
  • the mechanical shaft of the standard main drive motor (MG2) 140 configured in the hybrid P2 position is bidirectionally mechanically connected to the B end (also known as the active end) of the clutch 111 and the input shaft of the gearbox 150 through the mechanical torque coupler (mTC2) 104.
  • the B end of the clutch 111 and the input shaft of the gearbox 150 may preferably be mechanically coupled coaxially at the same rotational speed, or may be bidirectionally coupled by parallel shaft gears or chains.
  • the mechanical shaft of the drive motor (MG2) 140 can be connected to the input shaft of the gearbox 150 and the input shaft of the gearbox 150 through a 100kW heavy-duty single-speed reducer with a fixed gear ratio (preferable speed ratio range: 3-9).
  • the B end of the clutch 111 is mechanically coupled in both directions.
  • the mechanical shaft of the optional auxiliary drive motor (MG3) 170 configured at the hybrid P3 position is mechanically connected in both directions with the input shaft of the second drive axle 180 through a 100kW heavy-duty single-speed reducer (preferable speed ratio range: 3-9).
  • the reducer is not explicitly marked in FIG.
  • the optional auxiliary drive motor (MG3) 170 includes a suitable single-speed reducer.
  • the standard main drive motor (MG2) 140 or the optional auxiliary drive motor (MG3) 170 can be operated to: convert electrical energy into mechanical energy for driving the ACE heavy truck (electric drive), or convert the mechanical energy of the ACE heavy truck into electrical energy ( regenerative braking), and then charge the battery pack 130a or 130b through the motor controller 122a or 122b and the chopper 132a or 132b inside the ePSD 123 to effectively recover energy. If the key consideration is to reduce the cost and complexity of the system, the auxiliary drive motor (MG3) 170 and the corresponding motor controller (MCU3) 122b may not be selected.
  • the vehicle controller (VCU) 201 of the ACE heavy truck can pass the vehicle data bus (shown by the dotted line in Figure 1, no label; for example, the CAN bus or the wireless communication virtual data line, etc.) and based on the on-board satellite
  • ML machine learning
  • the VCU 201 may be a vehicle-grade high-performance embedded single-core or multi-core microprocessor. Similar to the early personal computer adding a graphics processor to increase the image processing performance of the whole machine, the VCU 201 can also add an AI inference chip (AIU, also known as AI processor; not marked in Figure 1) on the vehicle side, which improves the performance of the ACE heavy truck 010 on the vehicle side. Artificial intelligence (AI) inference computing capability when executing energy-saving and emission-reduction machine learning algorithms; at the same time, AIU can also be upgraded to a hardware computing platform that supports SAE L4 autonomous driving software stack.
  • AI Artificial intelligence
  • VCU 201 or AIU can also be heterogeneous microelectronic hardware logic components, including: general-purpose microprocessor (CPU), field-programmable gate array (FPGA), graphics processing unit (GPU), special-purpose Integrated Circuit (ASIC), Digital Processor (DSP), System on Chip (SoC), Complex Programmable Logic Device (CPLD), etc.
  • CPU general-purpose microprocessor
  • FPGA field-programmable gate array
  • GPU graphics processing unit
  • ASIC special-purpose Integrated Circuit
  • DSP Digital Processor
  • SoC System on Chip
  • CPLD Complex Programmable Logic Device
  • the engine 101 of the ACE heavy truck is a mainstream six-cylinder diesel engine or natural gas engine in the heavy truck market with a displacement of 9 liters to 13 liters and a peak power range of 250 kW to 350 kW; a larger displacement (13 liters to 16 liters) can also be used. ) heavy-duty truck engine, its peak power range is 350 kW to 520 kW, and it has more power margin.
  • the vehicle When climbing mountains on expressways (more than ten kilometers continuously, the longitudinal slope is greater than 2.0 degrees), the vehicle has better climbing power , but the actual fuel-saving effect is basically no improvement compared with the preferred engine, and the volume, weight, and cost of the engine have increased significantly, and the cost performance is second-best; an engine with a smaller displacement (less than 9 liters) can also be used, and its peak power is generally less than 260 kW, although the fuel saving effect is good, the volume, weight and cost are low, but the power margin of the engine is insufficient.
  • the engine 101 can also be selected as a vehicle gas turbine that meets the above-mentioned power requirements.
  • Gasoline engines are significantly lower than diesel engines in terms of combustion thermal efficiency, low speed and high torque, and service life (B10 life kilometers), and are not suitable for heavy trucks in mainline logistics.
  • the ACE heavy-duty truck powertrain system when the clutch 111 is disengaged, the ACE heavy-duty truck powertrain system is in a series hybrid mode; There is no mechanical connection between them, and the engine operating conditions are completely decoupled from the vehicle driving conditions, so that the engine 101 can work stably in the high-efficiency region of its universal characteristic curve (including the optimal fuel efficiency range and/or the optimal emission range) for a long time. A number of operating points (specified speed/torque) specified within.
  • the clutch 111 is closed and locked, the ACE heavy-duty truck powertrain is switched to the parallel-hybrid mode.
  • the engine 101 is directly mechanically coupled to the main drive axle 160 or the auxiliary drive axle 180 of the vehicle in two directions through the gearbox 150.
  • the rotational speed of the engine 101 is determined by the vehicle speed. Determined jointly with the gear position of the gearbox 150, the output torque of the engine 101 can still be independently and dynamically adjusted, and is not subject to the driving conditions of the vehicle; the output power of the engine 101 is proportional to the product of its speed and torque, and is still independently adjustable. It is only at this time that the engine is in the line condition rather than the point condition in the high-efficiency region of the universal characteristic curve.
  • the engine Under high-speed working conditions, through the shifting control strategy of gearbox 150, the engine can always work stably in its high-efficiency area; for ACE heavy trucks, the high-efficiency area of the engine's universal characteristic curve is basically in the speed range. From 1000 rpm to 1600 rpm, the torque load rate is above 50% (ie actual torque/peak torque). The sum of the rated power of the generator 110 (MG1) and the drive motor 140 (MG2) should be greater than the peak power of the engine 101. In the parallel hybrid mode, the total driving power of the dual motors (110 & 140) can be dynamically adjusted according to the parallel hybrid power.
  • a basic on-off control strategy (On-Off) for the clutch-by-wire 111 in high-speed conditions (average vehicle speed above 50 km/h; rarely actively accelerating or braking), preferably in parallel mode (clutch closed) ; Under urban conditions or when driving on congested highways (average vehicle speed is lower than 45 km/h; frequent active acceleration or braking), the serial hybrid mode (clutch disconnection) is preferred; the intelligent mode switching strategy (iMS) can also be preferred , is an advanced intelligent dynamic control strategy of the clutch-by-wire 111 , and the actual effect of the iMS strategy on energy saving and emission reduction is better than that of the switch control strategy, which will be described in detail later.
  • torque and torque are synonymous, and exhaust gas and exhaust gas are synonymous.
  • the operating range of the engine can be simplified from the global surface working condition to several point working conditions or line working conditions in the high-efficiency area, it can break through the upper limit (46%) of the thermal efficiency (BTE) of the current mass-produced heavy-duty truck engine through technological innovation. Maximizing its fuel consumption and emission performance with high cost performance has opened up a new world (that is, a new technology route); at the same time, it may also effectively correspond to the next two decades in order to meet the continuous introduction of more stringent new internal combustion engine vehicle emissions (pollutant emissions) in various countries around the world. and carbon emissions) mandatory regulations for heavy truck engine blocks, ECUs, and exhaust gas treatment systems (ATS) design, calibration, and manufacturing complexity and the escalating product costs.
  • the compression ignition diesel engine CI
  • the compression ignition diesel engine has the advantages of fuel saving, high torque at low speed, durable, super long life (B10 life is more than 1 million kilometers), and high cost performance.
  • the engine of choice for the vast majority of heavy trucks (over 95%).
  • pollutant emissions especially pollutant emissions such as nitrogen oxides (NOx) and fine particles (PM), which are harmful to the atmospheric environment and human health, diesel engines are inferior to gasoline engines.
  • the low-temperature catalyst with a working temperature of 150 degrees Celsius is still in the early stage of laboratory research in Europe and the United States, and the time to mass production is still ten years.
  • the diesel engine is cold-started, running at low load or idling speed (load rate less than 25%), and instantaneously adjusting its output power greatly, its pollutant emissions and specific fuel consumption (g/kWh) will increase significantly; while in highway conditions At this time, the engine can work stably in the high-efficiency region of its universal characteristic curve, and the pollutant emission and specific fuel consumption of the diesel engine are both small.
  • the ACE heavy truck of the present invention can make the pulse-controlled engine 101 work stably at at least one optimal operating point or at least one high-efficiency point in the high-efficiency region of the first quadrant of its universal characteristic curve through the serial hybrid iSS control or the parallel hybrid iPS control technology.
  • At least one low-state operating point or operating line with zero fuel consumption and zero emissions in the fourth quadrant almost completely eliminating challenging non-efficient operating conditions outside the high-efficiency area such as engine cold start, low-speed low-load or idle speed , while reducing specific fuel consumption and CO2 emissions, it can also effectively increase and maintain the engine exhaust temperature, so that the aftertreatment system (ATS) of the engine 101 can work stably in the high temperature and high efficiency region (above 250 degrees Celsius), reducing pollutants (NOx , PM) emissions to achieve the beneficial effect of minimizing both fuel consumption and emissions.
  • ATS aftertreatment system
  • NOx , PM reducing pollutants
  • the ACE heavy-duty truck DPC engine 101 runs completely in its combustion high-efficiency region in active mode (AOM), the engine has low specific fuel consumption (BSFC) and high exhaust gas temperature, its SCR system maintains high-efficiency operation, and can also reduce the consumption of urea (DEF). ) (g/100km), thereby further reducing the operating costs of the ACE heavy truck; moreover, the diesel engine and the diesel particulate filter (DPF) of the ACE heavy truck can work in their respective high-efficiency areas stably for a long time, basically eliminating the pass-through phase.
  • AOM active mode
  • the pollutant emission value of modern diesel heavy trucks within ten minutes after cold start is usually significantly higher than the emission value of the subsequent steady-state operating conditions; 2010, Euro-VI, Guo-6) has no substantial impact, but if it is to meet the 2027 emission limits of the California diesel heavy truck ultra-low NOx combination regulation, it must be greatly reduced (90%+)) diesel heavy trucks in cold start,
  • the actual pollutant emission value under the challenging conditions of energy saving and emission reduction such as low speed, low load and idling speed, otherwise it will not be able to meet the standard.
  • the engine of the ACE heavy truck can realize the "clean cold start" function (CCS-Clean Cold Start).
  • the driver presets the vehicle's cold-start warm-up time, and the vehicle VCU commands the wire-controlled clutch 111 to disconnect, and the vehicle Enter the serial hybrid mode; the 100kWh-level effective DC power of the battery pack can be used, and the 100kW-level ePSD 123 can complete the inversion and output AC power or output 100V-level high-voltage DC power from the confluence point (X) 125.
  • each exhaust gas aftertreatment system 305 including the SCR module 340 including the SCR module 340.
  • the modules are preheated rapidly at the minute level, so that the temperature of each module (301, 320, 340) basically reaches 200 degrees Celsius (ie, the light-off temperature), and then the DPC engine is driven by the generator 110 (MG1) in the electric drive mode.
  • the preheating time of the SCR module is shorter than that of the traditional heavy truck, which does not delay the driver’s work, and the preheating opening time can be dynamically set through the software OTA;
  • the engine 101 and the generator 110 do not work, and the driving motors 140 and 170 do not work.
  • the vehicle does not have any vibration or noise; it can be temporarily powered by the battery pack, and the 100-kilowatt rated power contained in the ePSD 123 can be used.
  • the AC terminal or DC confluence point (X) 125 of the motor controller 122a or 122b supplies power to a ten kilowatt-class on-board catalyst electric heater (EHC), and raises the temperature of the SCR module 340 from minus several tens of degrees Celsius within a minute-level time. Above 200 degrees Celsius, the VCU 201 can automatically adjust the operating power consumption and time of the catalyst electric heater (EHC) based on data from the temperature sensor in the ATS system 305 .
  • the vehicle post-processing system should be protected by a thermal insulation layer, so that the heat capacity of the system is high, and the heat preservation time is at the minute level.
  • Passive non-combustion operation does not cause the operating temperature of the catalyst inside the aftertreatment system (ATS) to drop rapidly below 200 degrees Celsius; when the engine is hot started or when switching from the low state to the high state of the PWM pulse train, the Equivalent to the hot start of engine 101, it basically does not need EHC to turn on the electric heating function.
  • the temperature of its exhaust gas is significantly higher than 250 degrees Celsius.
  • the aftertreatment system (ATS) can maintain high temperature and high efficiency Operation to ensure that the vehicle RDE exhaust emissions are stable and up to standard.
  • the power of a motor is proportional to the product of its rotational speed and torque, while the size, weight, and cost of a motor are highly positively related to its peak torque (ie, maximum torque).
  • Hybrid or pure electric passenger vehicles (with a total weight of less than 3.5 tons) mostly use small and medium-sized vehicles with high speed (peak value greater than 12,000 rpm) and low torque (peak value less than 350 Nm). Low speed (peak value is less than 3000 rpm) and large torque (peak value is greater than 1000 Nm).
  • the rated power of a large motor I with a speed of 1200 rpm and a peak torque of 2000 Nm and a small and medium-sized motor II with a speed of 12000 rpm and a peak torque of 200 Nm are both 251 kW; but the size of the motor I, Weight, and cost are significantly higher than Motor II.
  • ACE heavy trucks have less volume and weight constraints on subsystems such as motors and battery packs, but are highly sensitive to their cost.
  • passenger cars are nearly dozens of times higher than trucks.
  • the rated power of the high-speed-low-torque motors used in new energy passenger vehicles is mostly less than 100 kW (peak overload rate 150%+), and the unit cost (USD/kW) decreases significantly year by year with the increase of production;
  • the unit cost (USD/kW) of large motors with low speed and high torque with rated power greater than 100 kW used in new energy large commercial vehicles will still be high. It is difficult to significantly decrease year by year.
  • New energy passenger vehicles or heavy trucks have basically the same requirements in terms of power electronic core devices such as IGBT or SiC, and devices with the same voltage platform can be used in common.
  • the hybrid heavy truck is selected in the major electric system (motor, battery, electronic control) (especially voltage platform, peak torque, peak power, etc.), it can be as close as possible to the technical requirements of new energy passenger vehicles, or even partially overlap , it is very beneficial for the big three electric system of ACE heavy truck to make full use of the scale effect of the mature supply chain of new energy passenger vehicles, reduce costs year by year, and ensure quality and supply.
  • the major electric system motor, battery, electronic control
  • the standard generator (MG1) 110 is a permanent magnet synchronous motor (PMSM) with a rated power between 100 kW and 150 kW, and an AC induction motor or an AC induction motor that meets the above rated power requirements can also be selected.
  • a permanent magnet synchronous motor with a rated power of 60 kW to 100 kW is preferred, and an AC asynchronous motor or a reluctance motor with the same power specification can also be selected.
  • the ACE heavy truck can still work normally; when the rated power is lower than the preferred lower limit, the cost of the motor , volume, and weight are reduced, but the power, redundancy, or fuel-saving rate of the vehicle may decrease under low probability extreme road conditions or working conditions (such as mountain operation); when the rated power is higher than the upper limit, the vehicle The power performance and fuel saving rate of the motor may only be improved under low probability extreme road conditions or working conditions, but the cost, volume and weight of the motor will increase significantly; both are sub-optimal choices. It should be emphasized that the peak power (10-second or 15-second pulse) of the motor or battery pack is significantly higher than its rated power, and the load rate can reach 150% to 200% (based on the rated power).
  • the electrical power shunt (ePSD) 123 shown in FIG. 2 is a three-port power electronics network (PEN) rated at one hundred kilowatts, which includes at least two insulated gate bipolar transistors (IGBTs) or silicon carbide (SiC) ) power module, but may not contain any electrical power source or electrical energy storage device.
  • PEN power electronics network
  • IGBTs insulated gate bipolar transistors
  • SiC silicon carbide
  • IGBT is the most cost-effective global mainstream automotive power electronic power module
  • SiC silicon carbide
  • the AC terminal of the internal motor controller 121 at port I of the ePSD is bidirectionally electrically connected to the three-phase AC output terminal of the external generator (MG1) 110; the AC terminal of the internal motor controller 122a at port II is electrically connected in both directions.
  • the low-voltage end of the waver 132a is bidirectionally connected to the external battery pack 130a; the low-voltage end of the chopper 132b is bidirectionally connected to the external battery pack 130b.
  • the DC terminals of all motor controllers are bidirectionally DC connected to the ePSD's DC bus junction (X) 125, and the high voltage terminals of all choppers (132a, 132b) are also bidirectionally DC connected to the interior of the ePSD DC bus junction (X) 125.
  • One end of a voltage-controlled switch (VCS) 133 with a rated power of 100 kilowatts is unidirectionally connected to the confluence point (X) 125, and the other end is unidirectionally connected to an external 100 kilowatts braking resistor 131 with a radiator.
  • VCS voltage-controlled switch
  • VCS voltage-controlled switch
  • the rated power of the voltage-controlled switch (VCS) 133 ranges from 200 kW to 350 kW, and the voltage level is above 1200V; the rated power of the corresponding braking resistor 131 should be smaller than the rated power of the voltage-controlled switch 133; from increasing system redundancy and reducing costs Considering aspects, it is also preferable to connect two sets of voltage-controlled switches 133 with a rated power of about 150 kW and a matching 100-kilowatt brake resistor 131 in parallel to realize the intelligent voltage-controlled switch (iVS) function with a total rated power of 300 kW; obviously the iVS function It is defined by software and can be continuously upgraded and iterated through over-the-air technology (OTA).
  • OTA over-the-air technology
  • the battery pack 130a or 130b is one of the most expensive subsystems of the ACE heavy truck, and it is also a potential shortcoming of the power, reliability, and durability of the whole vehicle.
  • the chopper 132a&b can also be defined by software, adding new functions without adding any hardware cost, such as battery pack intelligent pulse preheating function (iPH).
  • iPH battery pack intelligent pulse preheating function
  • the DC bus confluence point 125(X) inside the ePSD 123 of the present disclosure is the nerve center of the power electronic network of the ACE heavy-duty truck hybrid powertrain.
  • the only time-varying function of DC voltage at this point and the time-varying DC current of all incoming and outgoing branch circuits The set of functions fully describe the dynamic working state of the electric power circuit of the ACE heavy-duty truck mathematically, and is the key node of the ACE heavy-duty truck's operation of energy saving, emission reduction, and safety control.
  • the bus point X is a point in the circuit topology, there are multiple physical implementations, for example, it can be a piece of metal bus bar or a multi-connector high-power cable distributor.
  • the ePSD 123 can implement digital control of several major power electronic function modules (such as motor controllers 121, 122a &b; choppers 132a &b; voltage-controlled switches 133, etc.) to achieve a ten-millisecond response time between its three ports Dynamically adjust the path, magnitude, and direction of electrical power flow with the 100-kilowatt-class electrical rated power magnitude, and fuse mechanical power flow and electrical power according to the series hybrid power equation (2-4) or the parallel hybrid power equation (3-3) flow, dynamically matching the time-varying function P v (t) of the vehicle on-road power, and satisfying the vehicle dynamics equation (1-1) in real time.
  • major power electronic function modules such as motor controllers 121, 122a &b; choppers 132a &b; voltage-controlled switches 133, etc.
  • the VCU 201 controls the clutch 111 and the ePSD 123 cooperatively according to the machine learning algorithm (ML) for optimizing energy saving and emission reduction, and the vehicle can realize one of the two different control modes of series hybrid iSS and parallel hybrid iPS respectively.
  • Switching i.e. intelligent mode switching iMS
  • iMS intelligent mode switching
  • ACE heavy trucks are used in trunk line logistics application scenarios
  • vehicles can be When the iMS function is enabled, the frequency of switching between serial-mixing and parallel-mixing modes is low, with an average of less than 20 switching times per 100 miles, which is automatically implemented to further reduce actual fuel consumption.
  • the ePSD 123 may also be configured with several automotive-grade sensors and memories, capable of measuring and recording the dynamic voltage function Vbus (t) and current at the DC bus bussing point X at a frequency not lower than 5 Hz.
  • the time series of functions I g (t), I m (t), and I b (t), as part of the fuel-saving data set, are uploaded to the cloud computing platform in time (hour-level delay) through the on-board wireless communication gateway 210 001 is stored for subsequent analysis and processing.
  • the implementation of the fuel-saving data set will be described in detail later. .
  • P g ⁇ [-P igx ,P igx ],P bat ⁇ [-P bx ,P bx ],P m ⁇ [-P imx ,P imx ]
  • P igx is the peak power of the motor controller (MCU1) 121
  • P bx is the total peak charging and discharging power of the main battery pack 130a and the secondary battery pack 130b
  • P imx is the total peak power of the motor controllers (MCU2) 122a and (MCU3) 122b
  • the parameter configuration satisfies the following inequality: P bx >P imx >P igx .
  • P g is the time-varying function of the transient electric power of the generator (MG1) 110, which is controlled by the motor controller (MCU1) 121, P gx is its peak power (P igx >P gx ), and a positive value is the driving power (electrical change mechanical energy), the negative value is the generated power (mechanical energy becomes electrical energy); P bat is the time-varying function of the total transient electrical power of the battery pack (130a&b), controlled by the chopper (132a&b), and the positive value is the charging power (electrical energy change energy), the negative value is the discharge power (chemical energy into electrical energy); P m is a time-varying function of the total transient electric power of the main drive motor (MG2) 140 and the auxiliary drive motor (MG3) 170, which is controlled by the motor controllers 122a&b , P mx is its peak power (P imx >P mx ), the positive value is the driving power (electrical energy changes into mechanical energy), and the negative value is the regenerative braking power
  • peak power refers to the maximum continuous mechanical power of an engine; and refers to a motor, motor controller (ie, inverter), chopper, or battery pack, it refers to 10
  • the peak electric power of the second or 15-second pulse is significantly larger than the rated power (ie, the maximum continuous electric power), and most of the peak power can be as high as 150% or more of the rated power.
  • the focus will be on a scenario in which only the main drive motor (MG2) 140 and the main battery pack 130a are equipped as standard. If the ACE heavy truck system also includes optional auxiliary drive motor (MG3) 170 and/or auxiliary battery pack 130b, it is easy for ordinary people in the industry to expand to describe.
  • MG2 main drive motor
  • MG3 auxiliary drive motor
  • the ACE heavy truck can preferably close the clutch 111 to achieve parallel-mix mode operation; in urban/suburban operating conditions and congested highways, the clutch 111 can be preferably disconnected to achieve series-mix mode operation; When encountering long slopes or high mountains (meaning that the absolute value of the longitudinal slope is greater than 2.0 degrees, and the continuous uphill or downhill distance exceeds 5 kilometers), for the safety and power of the vehicle, regardless of the average speed, the parallel mode should be preferred. .
  • ACE heavy trucks are used in trunk logistics applications, where nearly 90% of the mileage is at high speed, and the clutch 111 does not need to be switched frequently; at the same time, due to the dynamic coordination of dual motors (MG1 and MG2), both of them can quickly and accurately control their speeds respectively.
  • the battery pack 132a&b is one of the most expensive subsystems of the ACE heavy truck, and it is also one of the potential shortcomings of the power, reliability, and durability (ie long life) of the ACE heavy truck, so the cost-effective design and manufacture of the battery pack is as high as important.
  • the technical requirements for power-type battery packs for ACE heavy trucks are significantly different from those for hybrid light-duty vehicles.
  • ACE heavy trucks have no rigid restrictions on the volume and weight of battery packs with a total capacity of several tens of kilowatt-hours, but have higher requirements for high and low temperature resistance (ambient temperature range: -30 degrees Celsius to +50 degrees Celsius) and shock and vibration resistance of battery packs, especially
  • the equivalent deep cycle life ie, the cumulative number of equivalent full and full discharges; 100% DOD
  • HRPSoC high-rate partial charge-discharge
  • the accumulative power throughput of the battery pack of the ACE heavy truck in the whole life cycle should be greater than 300,000 kWh; if the effective capacity of the power-type battery pack is 30 kWh, if it needs to support a total rated power of 210 kW and a peak power of 450 kW If the dual motors (MG1, MG2) are running normally, the continuous charge-discharge rate of the battery pack should be higher than 7C, and the peak (10-second) charge-discharge rate should be higher than 15C.
  • EOL end-of-life
  • the battery pack 130a (capacity 10-20 kWh) plus lower-cost LFP or NCM secondary
  • the battery pack 130b (capacity 25-50 kWh) can optimize the cost performance of the whole vehicle system according to the specific application scenarios of the ACE heavy truck 010.
  • the LTO main battery pack is 130a cold resistant and can immediately participate in high-rate charge and discharge work; at this time, the secondary battery pack of LFP or ternary lithium batteries is used 130b is controlled by the chopper 132b, and can temporarily not participate in work or only work at a low rate. After ten minutes of driving, the temperature of the internal cells of the sub-battery pack 130b is gradually heated to above 10°C, and then the sub-battery pack 130b begins to rise.
  • the disadvantage is that the heating time is long (ten minutes), and the battery pack of the ACE heavy truck cannot be negatively charged at a high rate in a short time.
  • the battery pack 130a&b is one of the most expensive subsystems in the ACE heavy truck. Mixing two or more battery packs with different electrochemical cells is beneficial to improve the overall performance of the battery pack, reduce the total cost of the battery pack, and optimize the overall cost performance of the ACE heavy truck. critical.
  • the chopper 132a or 132b through pulse width modulation (PWM) technology and software definition and remote iterative upgrade (OTA), can be based on the charge and discharge characteristic curves of the battery cells at different temperatures and the protective constraints of various battery cells.
  • PWM pulse width modulation
  • OTA remote iterative upgrade
  • the charging and discharging current value of the battery pack 130a or 130b is dynamically and continuously adjusted, and the performance, electric throughput, and equivalent cycle life of the battery pack are optimized under the premise of ensuring that the power performance of the ACE heavy-duty truck is satisfied.
  • the battery pack of the same capacity (kWh), the high-voltage battery pack solution (more cells in series and less in parallel; rated voltage around 650V) compared with the low-voltage battery pack solution (more cells in parallel and less in series; rated voltage around 400V), the former battery
  • BMS management system
  • the material and manufacturing costs of the entire battery pack are higher, and the system redundancy and robustness are poor; at the same time, the latter is easier to leverage the mainstream new energy passenger vehicle voltage platform (For example, 300V ⁇ 450V range) to obtain more cost-effective battery packs, and multi-channel quality assurance.
  • the ACE heavy truck can preferably use at least two battery packs composed of different electrochemical cells in parallel and mix and match, which is beneficial to improve the cost performance of the ACE heavy truck system.
  • the rated voltage range of lithium-ion power battery packs used in mainstream new energy passenger vehicles in the world ranges from 300V to 500V (referred to as 400V platform battery packs).
  • 400V platform battery packs There is a mature supply chain, and more than a dozen leading manufacturers in China, Japan and South Korea have combined vehicles.
  • the annual production and sales of standard lithium-ion power batteries account for more than 85% of the global market share.
  • the global output of 400V platform battery packs is rising rapidly year by year, and the cost (USD/kWh) has dropped significantly year by year; while battery packs with a rated voltage higher than 600V (referred to as 800V platform).
  • the annual global production volume of battery packs is more than an order of magnitude smaller than the former.
  • the cost of 800V platform battery packs is higher, there are fewer qualified suppliers, and the annual price reduction is low.
  • the peak electric power of the ePSD 123 of the present invention can be as high as 500 kilowatts, and the preferred range of the rated voltage of the DC bus is 600V-750V (ie, 800V platform).
  • the battery packs (130a&b) used in the present disclosure are preferably rated at a voltage between 350V and 450V, which is as close as possible to the rated voltage range of the mainstream new energy passenger car battery packs with a huge annual production and sales volume, so as to make full use of today's new energy passenger cars. Mature 400V platform power battery supply chain, reducing cost and ensuring supply.
  • These battery packs 130a or 130b can respectively pass the rated voltage of the 100-kilowatt bidirectional buck-boost DC-DC converter (Boost-Buck, also known as chopper) 132a or 132b and the DC bus of the ePSD 123 through the internal port III of the ePSD 123 match, as shown in Figure-2.
  • Boost-Buck also known as chopper
  • PWM pulse width modulation control
  • SOH The charge-discharge characteristic curve of the battery cell at different temperatures or different stages of its life cycle
  • OTA Software-defined and over-the-air
  • the chopper 132a&b can be used to perform intelligent pulse preheating (iPH) on the battery pack 130a&b in the cold winter without increasing the hardware cost, so as to solve the problem of lithium ion with cost-effective and
  • the main battery pack 130a can use a combination of lithium titanate cells (LTO) with a total capacity ranging from 12kWh to 26kWh, with a continuous charge-discharge rate of 5C to 9C, and a 10-second or 15-second pulse peak charge-discharge rate of 15C to 30C; etc.
  • LTO lithium titanate cells
  • the effective deep charge-discharge (100% DoD) cycle life (that is, the battery pack is mainly based on HRPSoC cycle conditions, the cumulative total power turnover times during the whole life cycle, referred to as "equivalent cycle life”) exceeds 12,000 times, and the working environment temperature -30 ⁇ +55 degrees Celsius.
  • the nominal voltage of the battery pack 130a is preferably in the range of 300V to 450V (ie, a 400V voltage platform); if the chopper 132a is not configured, the nominal voltage of the battery pack 130a is equal to the confluence point The rated voltage of X (ie 800V voltage platform).
  • LTO lithium titanate
  • the main battery pack 130a can also select the following power cells suitable for high-rate partial charge-discharge (HRPSoC) applications in harsh working environments: nickel-hydrogen battery (NiMH), lithium iron phosphate (LFP), ternary lithium-ion battery (NCM/ NCA), or lead carbon battery (PbC); these four types of batteries may require at least two sets of batteries when the battery pack capacity is equivalent, in order to meet the requirements of ultra-long equivalent cycle life of 12,000 times; The cost (yuan/Wh) of all kinds of batteries is significantly lower than that of lithium titanate batteries. Although two systems are required to meet the requirements of ultra-long cycle life, from the perspective of battery pack equipment investment (Capex), it is better than a set of LTO batteries.
  • HRPSoC high-rate partial charge-discharge
  • the secondary battery pack 130b can use mainstream power lithium-ion cells (continuous charge and discharge rate 3C+) with a capacity ranging from 30kWh to 60kWh, such as lithium iron phosphate (LFP) or ternary lithium (NCM or NCA) cells.
  • a secondary battery pack 130b with a capacity greater than 60kWh can also be used, which is beneficial to enhance the power of the vehicle under various operating conditions and reduce the upper limit of the equivalent cycle life of the battery pack and the peak charge-discharge rate.
  • the weight, volume, and cost of the battery pack will increase significantly, and the overall cost-effectiveness is not optimal, which needs to be considered comprehensively.
  • the battery pack 130b should preferably be a 400V voltage platform, so as to take full advantage of the sharing opportunities in the modern new energy vehicle battery pack industry chain; if the chopper 132b is not configured, the battery pack 130b should be an 800V voltage platform.
  • the trunk line logistics heavy truck When the trunk line logistics heavy truck is fully loaded, the power consumption of pure electric drive is about 2.0 kWh per mile. Even if the ACE heavy truck is equipped with a large power battery pack 130a&b with a total capacity of 90kWh, its pure electric drive The continuous driving range is only 45 miles. Accounting for a fraction of the average daily vehicle mileage of 500 miles, the engine 101 remains the main energy source for the ACE 010 cargo incident.
  • the battery packs 130a&b function like a high-power engine with a small fuel tank; compared with the diesel engine 101, the battery packs are characterized by super explosive power, extremely fast transient response speed, but seriously insufficient endurance.
  • the battery packs 130a & b can continuously provide the 120kW medium-intensity electric drive power of the drive motor (140 or 170) for a long time (10 minutes), and can also continuously provide the drive motor (140 or 170) for a short time (minute). High-intensity electric drive power of more than 300kW.
  • the heavy-duty truck 010 travels nearly 10 kilometers on pure electric at a speed of 90 km/h on a smooth and uncongested expressway; A high-inertia electromechanical system that buffers space-time at a ten-kilometer level.
  • the power-type battery pack used in the ACE heavy truck needs to support the high-rate charge and discharge requirements of the total continuous power of the drive motor of 200kW+ or the peak power of the 10-second pulse of nearly 400kW+;
  • the charge-discharge rate ranges from 4C to 8C
  • the 10-second peak charge-discharge rate ranges from 8C to 20C
  • the charge rate (continuous or peak) of the battery pack is usually higher than the discharge rate, working in the most challenging asymmetric way for the cell.
  • the equivalent cumulative throughput of the battery pack in the whole life cycle (that is, within 500,000 miles) needs to be as high as 300,000 kWh or more;
  • BOL initial
  • EOL end of life
  • the ACE heavy truck requires the chopper 132a&b to communicate with the battery management system (BMS) of the battery pack 130a&b in real time, and dynamically Only by controlling the actual charge-discharge rate of the battery pack can the battery pack performance and cycle life be optimized more effectively and reliably.
  • BMS battery management system
  • SoC working condition data
  • SoH working condition data
  • HRPSoC high-rate partial charge-discharge
  • BUL optimal upper limit of the high-efficiency area
  • the performance, safety, and cycle life of all cells are optimal, and the battery pack is charged in the high-rate part of the red line area where the SoC is higher than the URL or lower than the LRL.
  • the discharge (HRPSoC) is running, in addition to the obvious decline in the performance of the battery pack, it may also cause permanent damage to the battery cell, reduce the cycle life, and cause potential safety hazards, which should be avoided as much as possible.
  • the core of implementing predictive charge control (PSC) for the battery packs 130a&b in the present invention is to ensure that the ACE heavy truck 010 can simultaneously optimize the three indicators of vehicle power, fuel consumption and emission.
  • Intelligent Cruise Control technology, which dynamically and automatically adjusts the operating mode of the battery pack (choose one of CS, CD, CI) to maximize the long-term stable operation of the battery pack 130a&b in the high-efficiency area, so that the total charge turnover rate and Regenerative charge turnover rates are maximized.
  • VCU 201 is based on the machine learning algorithm for energy saving and emission reduction, vehicle configuration parameters, and the operating conditions of the entire vehicle and various related subsystems.
  • on-road transient power on-road transient power, and electronic horizon road three-dimensional information (especially the gradient function) and on-road power prediction the transient output power of the engine 101 and battery packs 130a&b is serial-mixed iSS or parallel-mixed iPS control can not only satisfy the vehicle dynamic equation (1-1) and the series hybrid power equation (2-4) or the parallel hybrid equation (3-3) in real time, but also predictably adjust the engine average power function.
  • the dynamic distribution of 100kW-level electrical power between the three ports of ePSD 123 and the dynamic distribution of 100kW-level mechanical power between the three ports of mPSD 124 can realize the ACE heavy truck battery pack (130a&b) in the following three charging modes (CS, CD, One of CI) continuous operation or smooth switching between: 1) In charge maintenance mode (CS), the transient state of charge time-varying function of the battery pack (referred to as transient SoC) and the average state of charge function (referred to as average The SoC; see equation (MAW)) needs to be continuously fluctuated between the optimal lower line (BLL) and the optimal upper line (BUL) (ie, the high-efficiency area); at this time, the average power of the engine 101 is basically equal to the average vehicle road load Power; vehicle drive (serial hybrid or parallel hybrid) is mainly based on the engine 101, supplemented by the battery pack 130a or 130b, and satisfies the vehicle dynamics equation (1-1) and the serial hybrid equation (2-4) or the parallel hybrid equation in real time
  • the transient SoC of the battery pack fluctuates continuously and the average SoC rises continuously between the lower red line (LRL) and the upper red line (URL); at this time, the average engine power is significantly greater than The average power on the road, except that most of the mechanical power of the engine is directly used to drive the vehicle in the parallel hybrid mode or indirectly in the series hybrid mode, the remaining mechanical power is used to continuously charge the battery pack 130a or 130b through the generator 110 to ensure that the battery
  • the packet SoC average increases continuously over time, satisfying equations (1-1) and (2-4) or (3-3) in real time.
  • the electric energy in the battery packs 130a & b can be divided into two types, one is the “engine charge” (Engine Charge) generated by the engine 101 driving the generator 110, which is “high-cost electric energy”, also known as “engine electric energy”; The second type is the “Regen Charge” generated by the motor 110, 140, or 170 using regenerative braking to recover the mechanical energy of the vehicle, which is “quasi-zero-cost electric energy”, also known as "regenerative electric energy”.
  • the ACE heavy truck can accurately measure the electronic horizon (hour-level or Hundred kilometers) on-road transient power time-space function and average power function; unless the vehicle encounters a long downhill slope (such as a continuous downhill of more than 10 kilometers), the regenerative braking charge (ie, quasi-zero valence electricity) is fully charged once for the battery pack.
  • ACE heavy trucks can always take precautions, by dynamically adjusting the difference between the average power on the road of the vehicle 010 and the average power of the engine 101, in a just-in-time (JIT) manner, the battery pack 130a&b
  • JIT just-in-time
  • a large-capacity power battery pack (for example, an effective capacity of 60kWh) should be configured; while for ACE heavy trucks operating nationwide, most of the time or mileage runs in plains or hilly areas.
  • the power battery pack with 30kWh effective capacity is more cost-effective.
  • the core of the ACE heavy-duty truck fuel-saving strategy of the present invention is to make full use of the prior three-dimensional data of the road in the electronic horizon and the 100-kilowatt-level energy generated by the changes of the longitudinal slope along the road under the premise of ensuring vehicle dynamics and active safety.
  • the positive and negative fluctuations of the power on the vertical slope through the intelligent cruise control (iCC) (that is, the one-dimensional longitudinal L1 level automatic driving function; including the predictive cruise control PCC and the adaptive cruise control ACC) and according to the AI fuel saving algorithm, the instantaneous control of the engine 101.
  • Pulse width modulation control (PWM) or pulse amplitude modulation control (PAM) for the transient power of the battery packs 130a & b (i.e.
  • the battery packs 130a & b provide driving power to the ACE heavy truck 010 through the driving motors 140 and 170 when discharging, and recover energy through the regenerative braking of the driving motors 140 and 170 during charging;
  • generator 110 in addition to engine 101 directly participating in vehicle driving or braking, generator 110 can also superimpose torque or power with drive motor 140, which is equivalent to a motor with higher peak torque or power. Participating in vehicle driving or regenerative braking to recover energy can further increase regenerative braking charge throughput and improve fuel-saving effects.
  • the ACE heavy truck should work in the parallel hybrid mode, and its power depends entirely on the peak power of the engine 101; for example, the peak power of the engine 101 If the power is not large enough, you have to change to a low gear and slow down to continue climbing, which temporarily reduces the power of the vehicle and the timeliness of freight; the generator 110 and/or the drive motors 140 & 170 will not be able to operate until there is a flat road or downhill in front of the vehicle. Opportunity to recharge the battery packs 130a & b using regenerative braking or engine-driven power generation to restore vehicle power.
  • the peak power P igx of MCU1 121 should be more than 15% higher than the peak power P gx of the generator 110, the peak power P imx of MCU2 122a should be more than 15% higher than the peak power P pmx of the main drive motor 140, and the peak power of MCU3 122b It should be more than 10% higher than the peak power P smx of the auxiliary drive motor 170, and P pmx >P smx ; the peak power of the main chopper 132a and the auxiliary chopper 132b should be higher than the main battery pack 130a or the sub battery pack 130b respectively At the same time, the total peak power of the choppers 132a & b should be more than 20% higher than the peak power P pmx of the main drive motor 140; the rated power of the voltage-controlled switch 133 should be 15% higher than the rated power of the main drive motor 140 %above.
  • the average annual improvement rate of the cost performance of power semiconductor modules such as IGBT or SiC is significantly higher than that of battery packs, motors, and braking resistors. It can make full use of the continuous innovation and upgrading of the global power semiconductor industry, and use a variety of power electronic circuit topologies to realize the cost-effective electric power shunt ePSD 123; ePSD 123 with hardware design margin is a software-defined
  • the power shunt in the electrical domain can continuously improve and evolve existing functions or add new functions through software remote upgrade iteration (OTA).
  • the three ports of ePSD 123 and external electromechanical loads such as motors, battery packs, or braking resistors can adopt industry-standard mechanical and electrical interfaces, which are convenient and flexible to match the requirements provided by many high-quality automotive suppliers.
  • Various motors and battery packs with performance requirements and target costs continue to improve and improve the cost-effectiveness of ACE heavy trucks, and ensure long-term quality and supply.
  • An inverter (invertor; bidirectional DC-AC converter) is the core part of a modern motor controller (MCU); in this disclosure, the motor controller (MCU) should be understood as a complete module with an inverter as the core module
  • MCU motor controller
  • motor controllers and inverters can be broadly understood as synonyms, and there will be no ambiguity for those of ordinary skill in the art.
  • the motor controller (MCU1 121, MCU2 122a, MCU3 122b) can dynamically and accurately control the rotational speed or torque of the three-phase AC motor (MG1 110, MG2 140, MG3 170) by means of Vector Control, which can accurately control the speed or torque in real time.
  • the choppers (132a, 132b) are bidirectional buck-boost DC-DC converters (Boost-Buck), and the high-voltage side is bidirectionally electrically connected to the DC bus of the ePSD 123.
  • the rated voltage of the DC bus is in the range of 620V to 750V;
  • Connect the battery packs 130a&b preferably the rated voltage range of the battery pack is 320V ⁇ 450V, which overlaps with the 400V voltage platform of mainstream new energy passenger vehicles for sharing; of course, you can also choose the rated voltage range: 450V ⁇ 650V, but this option is the second best cost-effective option .
  • the chopper 132a&b can be defined by software to flexibly match the battery packs 130a&b of different rated voltages (320V ⁇ 700V), and can also be used according to the power battery supplier to ensure the performance, safety, and battery life of the battery cell. The cycle life reaches the standard.
  • the optimal charge-discharge curve proposed for the battery cells under different internal temperatures and states of charge is defined by software and the control program and parameters of the iterative over-the-air (OTA) chopper are defined for each battery pack.
  • OTA over-the-air
  • the vehicle controller 201 (VCU) of the ACE heavy truck 010 can instruct the ePSD 123 to continuously adjust three interconnected 100-kilowatt-level electric power time functions in real time according to the vehicle fuel-saving emission reduction control strategy and fuel-saving machine learning (ML) algorithm.
  • VCU vehicle controller 201
  • ML fuel-saving machine learning
  • the electric power balance equation is equivalent to the previous equation (2-2) in the series-mixing mode and equation (3-2) in the parallel-mixing mode.
  • the standard main drive motor (MG2) 140 is a large permanent magnet synchronous motor with low speed and high torque, with a rated power range of 150kW to 250kW, a peak power range of 275kW to 450kW, and a peak torque range of 1500NM to 2500NM; the drive motor 140 AC induction motors or reluctance motors that meet the above power and torque requirements can also be selected.
  • the peak power of the main inverter 122a should be higher than the peak power of the main drive motor by more than 15%, leaving a margin.
  • the annual sales volume of hybrid passenger vehicles is nearly two orders of magnitude higher than that of hybrid commercial vehicles. Therefore, sharing some core components with passenger vehicles as much as possible can effectively reduce the cost of hybrid commercial vehicles and ensure mass supply.
  • the power rating of a single motor and inverter for electric (including hybrid) passenger cars is typically less than 180 kW.
  • the drive motor 140 can also be equipped with a permanent magnet synchronous motor used in large-scale new energy passenger vehicles with a rated power of 160kW to 230kW and a maximum torque of 350NM to 500NM; the mechanical torque coupler (mTC2) 104 adopts a parallel shaft structure.
  • the heavy-duty gear reducer in the range of ratio 4 to 8 mechanically couples the B end of the clutch 111 , the mechanical shaft of the drive motor 140 , and the input shaft of the gearbox 150 bidirectionally.
  • the standard generator (MG1) 110 is mechanically coupled to the flywheel end of the engine 101 in both directions through the mechanical torque coupler (mTC1) 103 (the so-called hybrid P1 position), and is also connected to the clutch 111.
  • the structure of the mechanical torque coupler (mTC1) 103 is divided into two categories.
  • Type I is a single-axis coaxial structure, and the three (engine, generator, clutch) are connected in series on the same mechanical rotation transmission shaft; at this time, the generator 110
  • the rotational speed of the motor is exactly the same as the rotational speed of the engine 101 (the rotational speed ratio is 1.0); the low-speed and high-torque permanent magnet synchronous motor with rated power of 100kW to 150kW and peak torque of 1200NM to 2000NM can be preferred;
  • Class II is a parallel shaft structure (multi-shaft) , through the heavy-duty gear reducer to mechanically connect the three in both directions.
  • the speed range of the high-efficiency area of mainstream heavy truck engines (displacement 11 liters to 16 liters) is generally: 1000 rpm to 1800 rpm, and the torque load rate is 40% to 90%; when the diesel engine works stably in the high-efficiency area, its ratio
  • the fuel consumption (BSFC; g/kWh) is the lowest (can be as low as 182g/kWh), and the temperature of the exhaust gas (Exhaust) is higher than 250 degrees Celsius, which is conducive to the efficient operation of the aftertreatment system and reduces the actual emissions.
  • the power of the engine and motor is proportional to the product of its speed and torque; at the same time, the maximum torque of the engine and generator is highly positively related to its volume, weight, and price.
  • the mechanical torque coupler (mTC1) 103 adopts a type II parallel shaft structure, which can increase the speed ratio between the generator 110 and the engine 101 to a range of 3.0 to 8.0 through a fixed-speed heavy-duty gear reducer, so that it is possible to select a new energy vehicle.
  • Using the high-speed, low-torque, high-power permanent magnet synchronous motor in the mature supply chain system of the car greatly reduces the size, weight, and price of the generator 110, and achieves high cost performance, quality and supply.
  • the generator 110 can also be selected as a vehicle-grade permanent magnet synchronous motor with a rated power of 130 kW to 200 kW and a peak torque of less than 500 NM at medium and high speeds (the maximum speed is less than 12,000 rpm).
  • MG2 140 is two-way mechanically coupled with the B-end of the clutch 111 through mTC2 104, and is also mechanically coupled with the input shaft of the gearbox 150 in two-way; the B-end of the clutch 111 and the input shaft of the gearbox 150 are preferably coaxially two-way mechanically coupled (rotation speed). ratio 1:1).
  • the structure of mTC2 is divided into two categories. Type I is a single-axis coaxial structure. The three (clutch, drive motor, and gearbox) are connected in series on the same mechanical transmission shaft.
  • the rotational speed of the drive motor 140 and the input shaft of the gearbox 150 The rotational speed of the two is exactly the same (that is, the rotational speed ratio is 1:1); Class II is a parallel shaft structure (multi-shaft), and the three are mechanically connected in both directions through a heavy-duty gear reducer. At this time, the rotational speed ratio of the drive motor 140 and the input shaft of the gearbox 150 Fixed, the preferred speed ratio range is 3-8.
  • the clutch 111 is closed, the flywheel of the engine 101 and the input shaft of the gearbox 150 are coaxially and bidirectionally mechanically coupled, and the rotational speed ratio of the two is 1:1.
  • the upper limit of the peak torque of the 16-liter engine with the largest displacement of the traditional heavy truck is 2600NM (Nm), so the maximum input torque of the input shaft of the current mainstream heavy truck gearbox is 2600NM; in the parallel hybrid mode of the ACE heavy truck, the engine 101 and the dual motors 110&140 The torques of the three can be superimposed and synergistic, and the total torque at the input shaft of the gearbox 150 can exceed 4000NM; the specially enhanced heavy-duty automatic mechanical gearbox (AMT) 150 is preferably designed, and its input peak torque can be as high as 3500NM.
  • AMT automatic mechanical gearbox
  • the number of gears can be reduced to less than 8 gears, which preferably includes a direct drive with a speed ratio of 1.0 and an overdrive with a speed ratio of less than 1.0; you can also choose the main flow production heavy truck AMT gearbox, active
  • the total effective peak torque is limited to less than 3000NM, and part of the vehicle dynamics is sacrificed to ensure the reliability and long life of the rotating system.
  • the mechanical design of the gearbox 150 has redundancy (for example, 20%), and the hybrid powertrain can dynamically and accurately control the total torque value and the rate of change of the input shaft of the gearbox 150 at the granularity of ten Nm and ten milliseconds (ie time derivative of the torque function), which can effectively prevent the input peak torque jitter from causing severe mechanical impact on the gearbox and other rotating system components, and can increase the total effective peak torque at the input end of the mainstream gearbox of ACE heavy trucks to more than 3000NM. Take into account the reliability and long life of the rotating system.
  • the ratio of the rotational speed of the main drive motor 140 to the rotational speed of the input shaft of the gearbox 150 can be increased to between 3.0 and 8.0 through the fixed-speed heavy duty reducer, so that it is possible to select the current new energy passenger vehicle
  • the high-power permanent magnet synchronous motor in the system greatly reduces the volume, weight and price of the drive motor 140;
  • the main drive motor (MG2) 140 can preferably be a permanent magnet synchronous motor or an AC asynchronous motor with a rated power between 150kW and 210kW;
  • the drive motor 140 is a permanent magnet synchronous motor or AC asynchronous motor with low speed (the maximum speed below 3000 rpm) and high torque (peak torque above 1500NM);
  • the drive motor 140 is medium-high Permanent magnet synchronous motor or AC asynchronous motor with torque (peak torque below 500NM) in rotational speed (maximum speed below 10,000 rpm); obviously, the latter is smaller in size and quality than the former, and the price
  • the optional auxiliary drive motor (MG3) 170 can be arranged between the output shaft of the gearbox 150 and the drive axle 160 (hybrid P3 position) or before the second drive axle 180 (hybrid P3 position). 170 is mechanically coupled to the drive axle in both directions.
  • the peak torque of the input end of the heavy truck drive axle can be as high as 20000NM or more, and a large reducer must be added between the auxiliary drive motor (MG3) 170 and the drive axle (160 or 180) (the reducer is not marked in Figure 1, it can be understood as deceleration
  • the motor and the auxiliary drive motor (MG3) are combined into one), the speed ratio range is 7.0 ⁇ 15.0; the rated power is 60kW ⁇ 120kW, and the peak torque is less than 500NM (Nm), medium and high speed and low torque. motor or AC asynchronous motor.
  • the input shaft of the gearbox 150 is mechanically coupled in both directions with the B end of the clutch 111 and the output shaft of the main drive motor 140 through the mTC2 104, and its output shaft is mechanically coupled with the first drive axle 160 in both directions.
  • heavy-duty 10- to 12-speed automatic mechanical transmissions AMT-10 to AMT-12
  • DCT heavy-duty dual-clutch transmissions
  • AT automatic transmission
  • AMT-5 or AMT-6 an enhanced 5-speed or 6-speed emerging heavy-duty automatic mechanical transmission
  • AMT-5 or AMT-6 can also be selected, with a maximum input torque greater than 3500NM .
  • the drive motor 140 can output the maximum torque at zero speed, and the total system torque when mixed is significantly greater than the peak torque of the top 16-liter diesel engine and the input of the gearbox 150.
  • the maximum torque that the shaft can bear can significantly reduce the frequency of downshifting due to insufficient torque, so the ACE heavy truck automatic transmission only needs 5 to 6 forward gears, and no more gears are needed; obviously the gears exceed A 12-speed AMT can also be used, but this option increases the cost of the gearbox but does not change the overall vehicle performance, which is sub-optimal.
  • the driving rotation system of the ACE heavy truck including the gearbox 150 in the present invention is not the quasi-unidirectional mechanical power transmission of the traditional heavy truck, but the two-way mechanical power transmission.
  • the torque is basically the same, so the main bearings and gears in the gearbox 150 need to be specially designed and manufactured to ensure that their performance and service life are reliable and up to standard.
  • the sub-drive motor (MG3) 170, the motor controller 122b (MCU3), and the second mechanical drive axle 180 may be combined to form an "Integrated e-Axle".
  • the 6x2 traditional diesel engine heavy truck can also be equipped with an integrated electric drive axle and converted into a 6x4 hybrid heavy truck, but at this time, the purely mechanical powertrain with the engine and gearbox and the integrated electric drive axle operate independently of each other, lacking close coordination, saving energy and reducing emissions The effect is not optimal.
  • 1 of the present disclosure has an integrated electric drive axle and includes an engine 101, an engine control unit 102, a generator (MG1) 110, an ePSD 123, a main drive motor 140, battery packs 130a & 130b, a clutch 111, the gearbox 150, and one or more subsystems including the gearbox control unit 151 are strongly coupled and closely dynamically coordinated, and are jointly controlled by the vehicle controller (VCU) 201; Adjust the path, amplitude, and direction of the mechanical power flow or electrical power flow of the vehicle powertrain, and jointly drive the ACE heavy truck to achieve the beneficial effect of optimizing vehicle energy conservation and emission reduction; at the same time, it can also improve vehicle power and braking performance, and increase vehicle power Redundancy of system and braking system.
  • VCU vehicle controller
  • the engine 101 of the ACE heavy truck can choose a large heavy-duty diesel engine or a natural gas engine with a displacement of 13L to 16L, a peak power of 320kW to 450kW, and a peak torque of 2000NM to 2600NM.
  • the ACE heavy truck is equipped with a 11L diesel engine 101 (basic or advanced) with the largest current market usage, with a peak torque of 2200NM@1200rpm and a peak power of 300kW@1800rpm; a permanent magnet synchronous generator with a rated power of 175kW and a peak torque of 1400NM.
  • MG1110 Permanent Magnet Synchronous Drive Motor with rated power of 200kW and peak torque of 1600NM (MG2)140; Ultra-long life power with continuous charge and discharge power (namely rated power) greater than 250kW and end-of-life (EOL) effective capacity of 30kWh Type battery packs 130a&b; in the parallel hybrid mode and in the high-efficiency range of the engine (for example, the speed of 1000rpm to 1600rpm), the engine and the dual motors can work together to generate power, and the total peak torque of the input shaft of the vehicle gearbox 150 can be as high as 4000NM.
  • the power performance (high-speed climbing with cargo, accelerating overtaking, etc.) is significantly better than that of traditional high-end heavy trucks with top-level 16L diesel engines.
  • Figure 4 is the universal characteristic curve (Fuel Map) of a typical modern heavy truck 11-liter diesel engine.
  • the peak torque of the engine is 2000 Nm, the peak power is 300 kW, and the minimum specific fuel consumption (BSFC) is 187g/kWh ( g/kWh), the figure is filled with multiple complementary and disjoint irregularly shaped curves, each curve is a specific fuel consumption (BSFC) contour;
  • the complete and detailed universal characteristic curve of the engine is the commercial Confidentiality will only be shared with OEMs or relevant Tier 1 suppliers after signing non-disclosure agreements.
  • the minimum specific fuel consumption of mainstream heavy-duty truck diesel engines that have been mass-produced and commercialized in the world is 182g/kWh, corresponding to a thermal efficiency (BTE) of 46%; heavy-duty truck diesel engines with a thermal efficiency (BTE) of 50% to 55% are currently in the prototype development stage in Europe and the United States. There are still three to five years before mass production and commercial use in the three regions. If the high-efficiency area of the engine 101 is defined as the operating condition area within the constant-height specific fuel consumption curve with a minimum specific fuel consumption value of 105% (ie, 196g/kWh), as shown in FIG.
  • the speed range corresponding to the high-efficiency area of the engine is 900 rpm/ Minute to 1700 rpm
  • the torque range is 670 Nm to 2000 Nm, that is, the torque load ratio is 33% to 100%. It is easy to digitize the universal characteristic curve of the engine's high-efficiency region in Figure 4 and convert it into a look-up table for computer processing, preferably with a speed step interval of 10 rpm and a rpm of 10 Nm.
  • Torque step spacing generates a 140x100 matrix list describing the characteristics of the engine's high-efficiency region, where each row of the matrix corresponds to constant torque and each column corresponds to constant speed; each element in the table (ie, a specific number of rows/columns) corresponds to an engine operating condition
  • the engine control unit (ECU) 102 of the ACE heavy truck 010 can generate a "corrected specific fuel consumption list" (referred to as "updated fuel consumption table") every two days or every thousand miles according to the actual operating data of the engine 101.
  • the updated fuel consumption table reflects both The original design performance index of this type of engine also reflects the current actual performance index after the specific engine is worn and used, which is used by the AI algorithm for energy saving and emission reduction of ACE heavy trucks
  • the universal characteristic curve of the engine 101 can be presented as a 101X51 fuel consumption matrix list (Look-up Table); the number of rows (1-101) of the matrix corresponds to the engine torque, and the number of columns (1-51) corresponds to the engine torque Speed, each matrix element represents an engine operating point, and the element value is the specific fuel consumption value (BSFC) of the operating point; the valid ranges of engine torque or speed are: -500NM ⁇ 2000NM or 500RPM ⁇ 1800RPM; average division , the torque step is 25NM, and the speed step is 26RPM.
  • BSFC specific fuel consumption value
  • matrix element (1,1) corresponds to (-500NM, 500RPM) operating point; (1,51) corresponds to (-500NM, 1800RPM); (101,1) corresponds to (2000NM, 500RPM); (101,51) corresponds to (2000NM, 1800RPM); the optimal operating point (91, 26) corresponds to (1840NM, 1150RPM), and the element value is 187 (g/kWh).
  • the specific fuel consumption values corresponding to all the fourth quadrant operating points that is, all elements with a number of rows less than 21
  • the specific fuel consumption value is set to be one thousand times the minimum specific fuel consumption, namely 187,000 (g/kWh), and the engineering is approximately infinite.
  • the specific fuel consumption values of the remaining effective combustion operating points are directly read from the universal characteristic curve of the manufacturer's engine.
  • the engine iso-torque horizontal operating condition line is composed of matrix elements with the same number of rows but the number of columns varies;
  • the iso-rotation vertical operating condition line is composed of matrix elements with different rows and the same number of columns;
  • the iso-power curve is composed of both the number of rows and the number of columns. Consists of different adjacent matrix elements.
  • the fuel consumption matrix completely describes the universal characteristics of the engine 101, and is one of the key mathematical models of the data-driven machine learning (ML) algorithm of the ACE heavy truck 010 power management strategy (PMS).
  • the change in specific fuel consumption caused by a 5% change in speed or torque in the high-efficiency combustion region of the engine is significantly less than 5%, but in the inefficient combustion region (for example, the torque load rate is less than 30%), the speed or torque change
  • the change in specific fuel consumption caused by 5% is significantly greater than 5%; in other words, for all modern heavy-duty truck engines, the combustion efficiency zone is not only low in specific fuel consumption and high in exhaust gas temperature (over 300 degrees Celsius), but also in specific fuel consumption and exhaust gas.
  • the temperature is very stable and basically does not change with the change of the engine operating point; in the non-efficient combustion area, not only the specific fuel consumption is high and the exhaust gas temperature is low (less than 250 degrees Celsius), but the specific fuel consumption or exhaust gas temperature becomes unstable, and varies with the engine operating conditions.
  • the above-mentioned characteristics of the universal characteristic curve of the engine and the corresponding fuel consumption matrix are that the actual fuel consumption and emission effect of the DPC engine of the present invention is obviously better than that of the prior art AEC engine, and the former energy saving and emission reduction optimization algorithm is more computationally intensive than the latter.
  • the physics behind phenomena that are reduced by at least an order of magnitude, faster to converge, and more robust.
  • the engine, motor, gearbox, and wheels are equipped with multiple sets of speed sensors, and the speed measurement accuracy can be stable within 0.5% for a long time.
  • the engine indirectly measures the effective torque at the flywheel end.
  • the accuracy is about 3%; the engine can directly and dynamically adjust the torque of the engine by accurately controlling the fuel injection amount in real time.
  • the torque is an independent variable, but the relative error of its dynamic measurement is large ( ⁇ 3%); the speed of the engine is determined by the transient state.
  • the torque and mechanical load are jointly determined, and the rotational speed is the dependent variable, but its measurement error is small (less than 0.5%).
  • the DPC engine 101 of the present invention has a high-state operating time accounting for 99% of the designated line operating conditions in the high-efficiency combustion zone, and 100% of the low-state operating conditions have zero fuel consumption and zero emissions; the ACE heavy truck 010 equipped with the DPC engine 101 has an online global energy saving and emission reduction Compared with the existing technology, the optimization algorithm has the characteristics of "three highs and one low": high precision, high convergence, high robustness, and low computational complexity.
  • the original list of the preferred engine 101 Or the operating point with a speed of 1200RPM (revolution per minute) and a torque of 1400NM (Nm) in the revised list is the "Best Operating Point” (BOP-Best Operating Point), and the engine power corresponding to this operating point is 176 kilowatts , called “high-state operating point”; at the same time, it is preferred that the engine runs at an idle speed of 600RPM without combustion (the optional range of the series-mixed idle speed point: 550RPM to 750RPM), and the average resistance torque of the engine 101 during passive operation is about -250NM,
  • the engine power corresponding to the "non-combustion idle point” (NCI-Non-Combustion Idle) is -16kW, which is called “low-state operating point”; the optimal operating point (BOP) is in the high-efficiency area of the engine.
  • the no-combustion idle point is within its passive operating area (POM).
  • the series-mixed low-state operating line is preferred (L sl , which is a vertical operating line, with a constant speed of 600 RPM and a variable torque range: -500NM to -150NM); the ECU 102 controls the engine 101 at the optimal operating point (BOP)
  • BOP optimal operating point
  • NCI non-combustion idle point
  • NCI non-combustion idle point
  • the traditional analog transient power time-varying function of the engine 101 in the series-mix mode is converted into a novel bipolar asymmetric equal-amplitude function (that is, rectangular) pulse width modulation (PWM) pulse sequence function; preferably, the period T s of the PWM pulse sequence ranges from 30 seconds to 90 seconds, and the duty cycle k s (that is, the BOP operating time in the same period and the pulse period T s
  • the ratio of is arbitrarily adjustable between 0.0 and 1.0.
  • the average power function value of the engine 101 in the series hybrid mode can be continuously adjusted arbitrarily between -16kW and 176kW. If the electromechanical conversion efficiency of the generator (MG1) 110 is approximately equal to 1.0 (ie 100%), the electrical power function of the series hybrid generator set is numerically the same as the mechanical power function.
  • the series hybrid power equation (2-4A) it can be Synchronized transients of battery packs 130a & b equal to the difference between the ACE heavy-duty truck 010 road-load transient power function and the engine 101 transient power PWM pulse sequence function are generated cooperatively by the electric power shunt (ePSD) 123 and the power-type battery pack 130a or 130b
  • the power pulse amplitude modulation (PAM) pulse sequence can satisfy the vehicle dynamics equation (1-1) in real time; in order to ensure that the series hybrid iSS control technology does not negatively affect the vehicle vibration and noise (NVH) characteristics, the period of PAM should be longer than the period of PWM An order of magnitude smaller, preferably the period T pk1 of the battery pack PAM pulse sequence is less than 10% of the period T s of the engine PWM pulse sequence; the amplitude of the PAM pulse can be either natural sampling (ie, curved top sampling) or equivalent flat sampling. top sampling.
  • the window period Tw of the rolling time average operation should be significantly
  • the above-mentioned pulse-controlled engine two-point operating condition embodiment is the most concise series-mixed iSS control embodiment.
  • the only adjustable parameter that can dynamically control the average power function value of the engine 101 is the duty cycle k s ; it can also be more advanced and flexible. Example of a two-wire working condition.
  • the engine 101 in the active operating mode (AOM), can be operated at any operating point on the series-mixed high-state operating line L sh (constant rotational speed 1200 RPM) in the high-efficiency region of the first quadrant of the universal characteristic curve, and the torque can be The adjustment range is from 1000NM to 1900NM, the corresponding high-state power value ranges from 126kW to 239kW, and the torque load ratio ranges from 50% to 95%; in the passive operating mode (POM), the engine 101 can be serially mixed in the fourth quadrant Running at any operating point on the low-state operating line L sl (constant speed 600RPM), the torque can be adjusted in the range of -500NM to -150NM, and the corresponding low-state power value range is from -31kW to -9kW.
  • AOM active operating mode
  • the engine 101 is driven by the generator 110, and operates with zero fuel consumption and zero emissions; the actual torque value of the PDC engine under low-state conditions completely depends on the power requirements of all auxiliary subsystems of the engine (oil pump, water pump, air pump, compressor, etc.) The absolute value of the low state power is less than 10kW most of the time.
  • the ECU 102 controls the engine 101 to run stably on the high-state operating condition line L sh or the low-state operating condition line L sl , or to switch dynamically and smoothly between the two, and converts the traditional simulation transient power time of the engine 101 in the serial hybrid mode.
  • variable function is converted into a novel bipolar asymmetric unequal amplitude (ie non-rectangular) pulse width modulation (PWM) pulse sequence function; at this time, the adjustable parameter of the average power function value of the engine 101 can be dynamically controlled except for the duty cycle k s In addition, the power amplitude is also increased; in essence, the engine 101 transient power pulse sequence function generated by the two-line iSS control embodiment is equivalent to the superposition of the kWM sequence and the PAM sequence; the average power function of the engine 101 is between -31kW to Any adjustable between +239kW.
  • PWM pulse width modulation
  • Pulse Width Modulation PWM
  • Pulse Amplitude Modulation PAM
  • the transient power function of the battery packs 130a&b can be controlled either by PWM or by PAM.
  • the ACE heavy truck 010 is running in the series-hybrid architecture, the maximum continuous torque and power of the vehicle are limited by the drive motor 140, which are 1370NM and 200kW, respectively, and the overload rate of the 10-second peak torque or power can exceed 50%. It can meet the on-road power requirements of vehicles in medium and low-speed urban working conditions, but the power performance of the ACE heavy truck series-mixing mode is obviously insufficient under high-speed working conditions, and it should be switched to the parallel-mixing mode.
  • the main configuration parameters of the ACE heavy-duty truck are the same as the above example, and the clutch 111 is closed under the hybrid structure, and the shift control strategy of the gearbox 150 can always control the speed of the engine 101 within the high-efficiency range (for example, 1000RPM ⁇ 1600RPM under the high-speed working condition of the ACE heavy-duty truck). );
  • the engine speed range corresponding to the high-efficiency region is between 1100RPM and 1500RPM (called “high-efficiency speed region"), and the base speed of the engine (Base Speed; the center point of the corresponding speed of the peak torque) is 1200RPM.
  • the vehicle speed can basically be maintained within a range of 10% up and down around the rated cruise speed (for example, 60 mph), that is, the vehicle speed is within a narrow speed range. Slow and continuous fluctuations within the band.
  • the rotational speed of the engine 101 is the dependent variable, and fluctuates slowly and continuously within a narrow rotational speed band (1080 rpm to 1320 rpm) about 10% of the base speed (1200 rpm); while The torque of the engine is an independent variable and can change rapidly and continuously below the peak torque.
  • the engine 101 can work in the first quadrant (First Quadrant; positive speed and positive torque) of the universal characteristic curve in the active operating region (AOM) or the fourth quadrant (Fourth Quadrant) in the passive operating region (POM).
  • AOM active operating region
  • POM passive operating region
  • the different high-state operating points of the value are connected into a line to form the high-state high-state line L phh
  • the different high-state operating points with the minimum specific fuel consumption and the torque minimum value in the high-efficiency area of the engine can also be connected to form a line , which constitutes the high-state low-operating condition line L phl ; obviously, the high-state operating condition lines L phh and L phl are two irregular and disjoint curves in the high-efficiency region of the engine 101 ; the
  • the engine 101 In the passive operating mode (POM), the engine 101 is towed without combustion, and the resistance torque is negative in zero fuel consumption and zero emission operation, and its absolute value is below 300NM.
  • the line connecting the operating points constitutes the low-state operating line L pl , which is a quasi-torque operating line in the fourth quadrant (positive speed and negative torque) of the universal characteristic curve of the engine.
  • the absolute value of the point power is less than 35kW, and the probability is less than 10kW.
  • the absolute value of the low-state power consumption of the DPC engine 101 is 12kW
  • the average road load power of the ACE heavy truck 010 under high-speed conditions is 150kW
  • the low-state operation of the engine per minute only consumes 0.2kWh of power
  • the driving vehicle consumes power per minute at this time.
  • the ECU 102 controls the engine 101 to run stably on either the high-state operating line (L phh or L phl ) or the low-state operating line (L pl ), or a dynamic and smooth switch between the two to achieve
  • the transient power function of the engine 101 is controlled by pulse width modulation (PWM) to generate a bipolar asymmetric asymmetric (ie, non-rectangular) pulse width modulation (PWM) pulse sequence;
  • PWM pulse width modulation
  • the high-state running part only runs stably in either L phh or L phl , and does not dynamically switch between the two in the same PWM cycle; but in adjacent PWM cycles, the high-state running part can be in different high states.
  • the working condition line L phh or L phl runs stably, which substantially increases a control degree of freedom;
  • the PWM pulse sequence period T p is preferably in the range of 30 seconds to 90 seconds, and the duty cycle k p (that is, the same period of high-state operation occupies
  • the ratio of PWM time to pulse period T p ) is continuously adjustable between 0 and 1; according to the rolling time average power function equation (MAW), by dynamically adjusting the PWM duty cycle k p , the average power function value of the engine 101 is -35kW Continuously adjustable between 251kW.
  • MAW rolling time average power function equation
  • the electric power shunt (ePSD) 123 and the power type battery pack 130a or 130b can synergistically generate a PWM pulse sequence function equal to the road load transient power function of the ACE heavy truck 010 and the engine 101 transient power
  • the differential battery pack 130a&b synchronizes the transient power pulse modulation sequence (PAM or PWM) to satisfy the vehicle dynamics equation (1-1) in real time; in order to ensure that the parallel hybrid iPS control technology does not reduce the vibration noise (NVH) of the vehicle ) characteristics, the period of the battery pack PAM should be T pk1 should be an order of magnitude smaller than the period T p of the engine PWM, and the period T pk2 of the battery pack PWM can be the same as the period T p of the engine PWM; preferably, the period T of the battery pack PAM pulse sequence pk1 is less than 10% of the engine PWM pulse sequence period T p ; according to the parallel hybrid power equation (3-3A).
  • the adjustable parameters that can dynamically control the average power function value of the engine 101 not only increase the duty cycle kp , but also increase the degree of freedom (L phh or L phl ) for power amplitude adjustment ; , L phl , L pl )
  • the engine 101 transient power pulse sequence function generated by the iPS control embodiment is equivalent to a superposition of a PWM sequence and a PAM sequence, while the two-wire condition (L phh /L pl or L phl /L pl ) )iPS control is a special case of the former.
  • the engine 101, the generator 110, and the drive motor 140 can work together to drive the vehicle; the theoretical maximum continuous torque and power of the vehicle can be as high as 4570NM and 675kW, but limited
  • the maximum torque of the 150 input shaft of the modern mainstream heavy truck gearbox is 3000NM, and the actual maximum continuous torque or power value can be as high as 3000NM or 440kW. It can also provide a temporary (10-second) overload rate of 50% peak power, and mixed with ACE heavy trucks The power performance is obviously higher than that of today's top-equipped 16-liter diesel heavy truck.
  • the total peak torque of the dual motors 110 & 140 of the ACE heavy truck 010 is greater than 3500NM.
  • the total powertrain at the input shaft of the gearbox 150 The effective maximum torque can be as high as 3000NM; in other words, the pulse control engine 101 switches between the high state and the low state, which has no effect on the short-term (minute-level) power performance of the ACE heavy truck, and the ACE heavy truck can always keep better than The power performance of the prior art 16-liter diesel heavy truck.
  • the ECU 102 can directly and dynamically control the rotation of the engine by rapidly and accurately controlling the fuel quantity and time-space distribution of the fuel injectors.
  • the engine 101 becomes the mechanical load of the generator (MG1) 110 when the engine is in passive operation (POM), and the engine 101 becomes the mechanical load of the generator (MG1) 110 at this time.
  • the ECU 102 does not actively control the engine 101, but the generator 110 drives the engine 101 to run in a low state in a power-consuming drive mode; the MCU1 121 can directly, quickly and accurately control the speed or torque of the generator 110 to meet the requirements of the engine POM.
  • the engine is electronically controlled, the torque control is the cause, the speed control is the effect, and the speed value depends on the dynamic load power of the engine;
  • the vector control of the AC motor can be the torque control as the cause and the speed control as As a result, the speed control can be the cause, and the torque control can be the effect.
  • the AC motor vector control is an order of magnitude higher than the engine electronic control in the control accuracy or response speed of the motor speed and torque; and the road load transient power function of the ACE heavy truck, except for emergency braking and other special exceptions, in seconds.
  • the granularity is an analog slow-varying spatiotemporal function; in other words, no matter how the transient power function (ie PWM pulse train) of the pulse-controlled motor 101 changes, the VCU 201 and ePSD 123, etc. can easily and dynamically adjust the power of the battery packs 130a&b.
  • the transient power function satisfies the series hybrid power equation (2-4A) or the parallel hybrid power equation (3-3A) in real time.
  • the present invention can convert the traditional analog electronic control (AEC) engine in the hybrid powertrain into a novel digital pulse control (DPC) engine through serial hybrid iSS control or parallel hybrid iPS control.
  • the complex surface operating conditions of the engine 101 are greatly simplified into several designated high-state point operating conditions or line operating conditions in the high-efficiency area.
  • the control speed and accuracy of the transient electrical power function of the battery packs 130a & b are an order of magnitude higher than the control speed and accuracy of the transient mechanical power function of the engine 101, and the power change of the battery pack 100 kilowatts does not have any mechanical vibration noise, only electromagnetic Noise;
  • the road load power is a second-level analog slow-varying function, and the pulse-controlled engine power is a bipolar non-constant-amplitude PWM pulse sequence function.
  • the battery pack 130a&b can accurately meet the series hybrid power equation in real time ( 2-4A) or the parallel hybrid power equation (3-3A), the battery pack transient power pulse sequence function is an unequal-amplitude PAM pulse sequence or a bipolar unequal-amplitude PWM pulse sequence.
  • FIG. 6 illustrates the transient power PWM pulse train function of a pulse-controlled engine 101 .
  • the pulse-controlled engine 101 can generate the same bipolar non-equal-amplitude PWM pulse sequence transient power function under the serial-mix iSS control or the parallel-mix iPS control. Just looking at the PWM power function of the engine, it is impossible to infer that the engine is running at Serial mixed iSS mode or parallel mixed iPS mode.
  • the transient power function of the digital pulse-controlled engine 101 and the transient power function of the conventional analog electronically controlled engine 101 are fundamentally different from a mathematical or physical point of view.
  • ACE heavy truck 010 is almost completely decoupled from the pulse control engine operating conditions and the ACE heavy truck vehicle operating conditions under any cycle conditions, and almost completely operates at the high-state operating point (high-efficiency Within the speed range; torque or power load rate are greater than 40%) or zero fuel consumption and zero emission low-state operating point, it almost completely avoids (that is, less than 1.0% time probability) many low-level challenges that are challenging for vehicle energy conservation and emission reduction.
  • Low-speed load operating point (speed less than 1200RPM; torque or power load rate less than 30%) or idle point (speed less than 850RPM; torque or power load rate less than 2%); ACE heavy trucks are under the parallel-hybrid architecture,
  • the simulated electronically controlled (AEC) engine operating conditions and the ACE heavy-duty truck operating conditions are strongly coupled, except that the AEC engine operates in the high-efficiency combustion zone (high-efficiency rotational speed range) most of the time, and the torque or power load rate is greater than 40%.
  • the digital pulse control of the present invention can be more than 5%.
  • DPC digital pulse control engine not only greatly simplifies the fuel consumption minimization problem of ACE heavy truck RDE, but also eliminates the cross-coupling between the two technical problems of fuel consumption optimization (ie CO2 emission optimization) and NOx emission optimization, and can independently adjust the pulse control engine The real fuel consumption and emissions of the pulse-controlled engine can be minimized at the same time.
  • the duty cycle (k s or k p ) of the PWM pulse sequence function of the transient power of the pulse-controlled engine 101 is continuously adjustable between 0 and 1, but in practice, from the engine 101 or the ACE heavy truck 010
  • NSH vibration and noise performance
  • RDE emission optimization mainly referring to the dynamic temperature control of the diesel engine after-treatment system
  • the high-state running time of the engine 101 is zero (that is, the duty cycle is zero) or greater than 20 seconds
  • the PWM pulse period is selected as 30 seconds, the preferred value range of the duty cycle is 0 or greater than 67 %; if the pulse period is selected as 60 seconds, the preferred duty cycle is equal to
  • the transition time of the PWM pulse sequence from the high state working condition to the low state working condition can be optimized to be 1 second, and the transition from the low state working condition to the high state working condition.
  • the time is 2 seconds (that is, the switching strategy of “slow rise and fast fall”); if the speed of the pulse-controlled engine 101 is 1200 RPM at this time, it means that each cylinder of the engine can have 10 combustion power strokes per second (crankshaft 2 rotations is a complete engine cycle); the pulse-controlled engine can be stepped down at a power step of 10% of the PWM high and low power difference (about 25kW), or a power step of 5% of the PWM high and low power difference (about 25kW).
  • the setting or adjustment of the switching transition time and power adjustment granularity of the pulse-controlled engine 101 between high-state operating conditions and low-state operating conditions mainly involves the optimization of the NVH performance of the vehicle, and the relationship between the three indicators of the vehicle's power, fuel consumption and emissions.
  • the optimization is not directly related; the period of the pulse-controlled engine 101 PWM pulse sequence, the transition time between high and low states, and the power adjustment granularity are all defined by software and dynamically adjustable, which can effectively avoid the pulse-controlled engine 101 of the ACE heavy truck 010 during operation (especially It is the high and low state bidirectional switching) to produce additional mechanical vibration and noise, especially the mechanical resonance of the system, to dynamically optimize the actual NVH performance of the pulse-controlled engine and the ACE heavy truck.
  • the transition time of the charging and discharging switching of the battery pack synchronized with the high-low state switching of the engine is controlled in the order of seconds instead of ten milliseconds. level, and also help reduce the generation of electromagnetic interference (EMI).
  • EMI electromagnetic interference
  • AEC analog electronically controlled
  • the engine has no essential difference in hardware and intrinsic calibration software firmware (Intrinsic Calibration Firmware), and can even be identical (that is, the universal characteristic curve of the engine is the same);
  • the power management strategy at the vehicle level ie, the software algorithm of the VCU
  • the specific control measures for the time-varying function of the transient power of the engine 101 are different, and the operating point distribution of the engine is different (AEC engine complex surface conditions; DPC engine simple Line working conditions), the time domain distribution of the formed engine transient power function is different, etc.
  • the transient power function of the analog electronically controlled (AEC) engine in the prior art is a time-domain second-level continuous gradient function, and the function value is a non-negative number ( Excluding special working conditions such as engine braking), corresponding to the complex surface working condition of the analog electronically controlled engine running in the first quadrant;
  • any analog electronically controlled (AEC) engine that has been mass-produced and commercialized can only be controlled by the hybrid vehicle level VCU 201 control software (serial hybrid iSS or parallel hybrid iPS) under the premise of keeping the hardware unchanged. It is converted into a digital pulse control (DPC) engine; obviously traditional internal combustion engine vehicles cannot support digital pulse control (DPC) engine applications, and are equipped with at least one large motor. It is the necessary hardware foundation to realize the digital pulse control engine.
  • DPC digital pulse control
  • the analog electronically controlled (AEC) engine can also realize the many-to-many bidirectional mapping between the engine operating conditions and the vehicle operating conditions, the mutual influence between the engine operating conditions and the vehicle operating conditions.
  • the two cannot be truly decoupled, so the simulated electronically controlled engine of the hybrid vehicle still works in the complex surface condition of the first quadrant of the universal characteristic curve, but the number of operating points (or running time) in the high-efficiency combustion area is distributed. probability) is higher than the analog electronically controlled engine of traditional vehicles.
  • the present invention converts the engine 101 of the ACE heavy truck 010 from a traditional Analog Electronic Control (AEC) engine to a novel Digital Pulse Control (DPC) engine through the serial hybrid iSS or parallel hybrid iPS control strategy,
  • AEC Analog Electronic Control
  • DPC Digital Pulse Control
  • the working conditions of the engine 101 are completely decoupled from the working conditions of the vehicle 010 under the serial-mix or parallel-hybrid architecture, and the powertrain system also realizes generalization and abstraction of hardware and decoupling of software and hardware , and then realize the software-defined hybrid powertrain; the hardware functions and performance of the hybrid powertrain are redundant, and the hardware (engine 101, dual motors 110 & 140, etc.) can be generalized or abstracted (Generic or Abstract HW);
  • RDE driving environment
  • the three key indicators of power, fuel consumption and emission of the hybrid powertrain are completely defined and controlled dynamically by the software of VCU 201.
  • the performance and price of 110 & 140 are basically irrelevant, and it can achieve "a thousand vehicles and a thousand faces", ensuring that ACE heavy trucks (original new cars or modified used cars) are more powerful than 16-liter diesel heavy trucks with the same age and top configuration under any cycle conditions. , fuel consumption, emissions are better in three aspects.
  • Each mass-produced and commercial modern engine (generally refers to an engine that complies with US EPA-2010, Euro-VI, and China-6 emission regulations) refers to the hardware of the engine 101 (including the engine body and after-treatment system, etc.) and the hardware of the ECU 102
  • the software and hardware integration of calibration software corresponds to the unique engine characteristic curve; obviously the hardware of the same type of engine can be configured with different calibration software to produce different styles (or models) of engines; mass production Modern engines must meet emission regulations stably for a long time within their 700,000 kilometers (about 435,000 miles) useful life cycle (Useful Life); once an engine obtains government emission certification and is finalized for mass production, each engine 101 (including The hardware or calibration software of the ECU 102) is not allowed to be changed without authorization.
  • the government-mandatory emission certification of global passenger vehicles generally adopts the "vehicle-machine integration" method (that is, the engine and the vehicle chassis are jointly certified), while large commercial vehicles (with a gross weight of more than 6 tons)
  • the emission certification of road or non-road vehicles generally adopts the method of "vehicle and machine separation" (only the bench emission certification of the engine, excluding the vehicle chassis); in other words, the same emission certified engine can be adapted Many different types of large commercial vehicles, and each vehicle does not need to be re-certified for emissions.
  • each emission-certified mass-produced engine has specific hardware and firmware (Firmware; that is, calibration software), which corresponds to a fixed universal characteristic curve of the engine; obviously changing the engine hardware will change its universal characteristic curve, only Changing the engine calibration software can also change its universal characteristic curve.
  • Firmware that is, calibration software
  • both the engine 101 and the dual motors 110&140 can be abstracted as actuators that provide driving torque for the entire vehicle; the present invention converts the analog electronically controlled engine into a series-mixed iSS or parallel-mixed iPS control method.
  • the actual operating conditions of the engine 101 are greatly simplified from the former (analog electronic control) complex surface conditions to the latter (digital pulse control) at least two simple line conditions in the generalized high-efficiency area (high state or low state), its function is analogous to the driver (Driver) instructing each hardware subsystem in the computer system; and the intelligent cruise control method iCC of the present invention, by the VCU 201 according to the configuration parameters of the ACE heavy card 010 and the dynamic operation data ( Including vehicle speed, positioning, attitude measurement, etc.), the 100-mile-level electronic horizon a priori road 3D data in the on-board MU 240 memory, combined with the vehicle dynamics equation (1-1), quasi-real-time (sub-second delay) dynamic measurement and calculation The time-varying function distribution (relative error 5%) of the future hour-level road load power of this ACE heavy truck, and then according to the series hybrid power equation (2-4) or the parallel hybrid power equation (3-3), the difference between the engine 101 and the battery pack 130a&b
  • the operating conditions of the engine 101 are dynamically adjusted by the transient power distribution between the engine and the battery pack, and the average state of charge function (SoC) of the battery pack is dynamically adjusted by the average power between the engine and the battery pack (see equation MAW), and finally the highway
  • SoC state of charge function
  • the energy saving and emission reduction optimization problem of ACE heavy truck 010 running in the design operation domain (ODD) is converted into the equivalent AI problem of computer playing Go; the energy saving and emission reduction algorithm of VCU 201 can maintain the power performance of ACE heavy truck.
  • the actual vehicle (RDE) fuel consumption (CO2) and pollutant emissions (NOx, PM) are minimized at the same time, and its role is analogous to the application program (App) in the computer system.
  • the main chip of VCU 201 is preferably a 32-bit vehicle-standard multi-core embedded processor with a main frequency higher than 100MHz, a safety level of at least ASIL-C, a megabyte-level flash memory, and supports multiple or multiple data buses (at least two CAN) ;You can also choose a mature and low-cost 16-bit automotive-grade processor, but this time is limited by the upper limit of chip performance, the system scalability is poor, and the cost-effective The hardware is obviously over-provisioned, and the future scalability is strong, but the chip is more expensive and the cost performance is sub-optimal.
  • VCU 201 runs the iSS, iPS, iCC and other control programs in its memory, and commands the dynamic coordination of engine 101, motor 110&140, battery pack 130a&b, gearbox 150, clutch 111, etc. through CAN bus to realize serial hybrid iSS, parallel hybrid iPS, and intelligent cruise iCC and other functions.
  • the above-mentioned several embodiments of the pulse-controlled engine 101 describe how to effectively decouple the working conditions of the ACE heavy-duty truck from the engine working conditions, so as to realize the software-defined hybrid powertrain; Describe how to utilize the on-board 3D electronic map (MU) 240, on-board satellite navigator (GNSS) 220, and the operational structured big data ( Referred to as "Data Set”, Data Set), combined with fuel-saving machine learning (ML) algorithms and cloud platform computing power, training the cloud and vehicle-end fuel-saving AI brains, and implementing the intelligent cruise control technology in the same lane on the ACE heavy truck highway (iCC), to achieve the beneficial effect of optimizing energy saving and emission reduction of ACE heavy trucks.
  • MU on-board 3D electronic map
  • GNSS on-board satellite navigator
  • ML fuel-saving machine learning
  • a map unit (MU) 240 and a satellite navigator (GNSS) 220 are configured on the ACE heavy truck.
  • the memory of the on-board map instrument 240 as shown in FIG.
  • ADAS advanced driver assistance system
  • HD Map high-definition maps
  • Satellite Navigation System (GNSS) 220 is used to measure the longitude, latitude, altitude, longitudinal road slope, longitudinal linear velocity, longitudinal linear acceleration, system absolute time and other vehicle positioning and operating conditions of the current absolute geographic location of the ACE heavy truck 010 in real time data.
  • a satellite navigator (referred to as "RTK receiver") 220 using dual-antenna input carrier phase dynamic real-time differential (RTK) technology can perform measurements at a rate of more than five times per second (ie, measurement refresh The frequency is higher than 5 Hz) for real-time precise positioning and attitude measurement of ACE heavy trucks.
  • the international satellite navigation system currently has four independent systems, GPS in the United States, Glonass in Russia, Galileo in the European Union, and Beidou BD in China.
  • Beidou-3 can provide the latest satellite navigation services to the Asia- Pacific region with China as the core and countries along the "Belt and Road", and has just completed global network coverage in 2020; at the same time, China's Beidou system has signed compatibility agreements with three other satellite navigation systems. .
  • a satellite navigator (GNSS) 220 containing the latest Beidou-3 RTK chip is used, and two satellite antennas installed at least one meter apart on the top of the cab of the heavy truck are used to dynamically measure the timing, speed, and position of the vehicle in real time (via / latitude), and longitudinal attitude (ie, road grade angle).
  • the RTK chip can complete the satellite navigation positioning and attitude measurement according to the independent signals received from the four navigation satellites in any combination of the four GNSS systems.
  • the timing accuracy is 50 nanoseconds, the speed measurement accuracy is 0.2 m/s, the latitude and longitude positioning accuracy of the horizontal plane is less than 2.5 meters, the longitudinal slope accuracy of the highway is less than 0.15 degrees, and the measurement frequency is 10 Hz; the RTK navigator is difficult to accurately measure the vertical altitude of the road under the vehicle wheels in real time.
  • many countries in the world strictly control the surveying, mapping and release of accurate altitude information; inevitably, the present invention does not require high accuracy for the measurement of the absolute altitude of the vehicle road surface, and the accuracy of 10 meters is sufficient; but the measurement of the longitudinal slope of the road The accuracy requirements are very high, and the measurement accuracy of the longitudinal slope of the road in front of the vehicle should be better than 0.2 degrees.
  • a single-antenna satellite navigation receiver plus an inertial navigation unit can also be used to complete three-dimensional vehicle positioning and navigation; based on multiple micro-electromechanical systems (MEMS) acceleration sensors and gyroscopes (Gyro) plus dedicated
  • MEMS micro-electromechanical systems
  • Gyro gyroscopes
  • the mass production IMU of the processing chip can measure the longitudinal slope function of the road ahead of the ACE heavy truck in real time with a measurement frequency higher than 10Hz and a measurement accuracy of better than 0.2 degrees.
  • the GNSS 220 in the present invention should be understood as either a dual-antenna RTK receiver, or a single-antenna satellite navigator plus an inertial navigation IMU.
  • GNSS 220 is used to accurately measure the longitudinal slope along the highway in real time.
  • the slope distribution function together with the prior 3D information of the electronic horizon stored in the map instrument (MU) 240, is crucial to the realization of the present invention; it should be emphasized that the measurement accuracy and measurement refresh rate of the road longitudinal slope of the GNSS 220 are significantly higher.
  • the actual fuel consumption of each ACE heavy truck completed a transportation event (from the start to the end of the freight), and the configuration parameter constants of the important subsystems of the heavy truck (including various parameters of the hybrid powertrain, vehicle wind resistance coefficient, friction coefficient, etc.), vehicle total Multiple parameters or variables such as the discrete variable of mass (tractor loading trailer), two continuous variables of longitudinal vehicle speed and acceleration, three continuous variables of longitude and latitude of the travel path, and longitudinal slope distribution function are highly correlated;
  • the macro average fuel consumption of all ACE heavy trucks on all roads is basically irrelevant.
  • the driver of the ACE heavy truck before the shipment departs, input the starting point and destination of the freight event, and then the ACE heavy truck can automatically plan the driving path of the freight event, and request the cloud 001 artificial intelligence (AI) fuel-saving brain, refer to cloud storage All historical fuel-saving data sets of ACE heavy trucks running on this road section, calculate and download in real time the default (Default) optimal fuel-saving control strategy customized for the vehicle and a specific route, and then combine the on-board AI reasoning
  • the chip (included in the VCU 201) performs local calculations, modifies and optimizes vehicle fuel-saving strategies in real time, implements intelligent cruise control (iCC) for ACE heavy trucks, and implements highway co-lane with predictive power control and adaptive cruise control functions L1 level autonomous driving function; each ACE heavy truck, regardless of whether its driver has driving experience on that specific freight line or not, can rely on the collective experience and wisdom of all ACE heavy trucks to consistently achieve the best fuel consumption in the industry every time, compared to The actual fuel consumption of a modern internal combustion engine heavy truck
  • ACE heavy truck 010 can automatically collect, mark, store on the vehicle end, and upload the fuel-saving data set of the entire freight event to the cloud;
  • the so-called “fuel-saving data set” includes ACE vehicle 010, engine 101, gearbox 150, generator 110 , configuration parameters of key subsystems such as drive motor 140 or 170, battery pack 130a or 130b, clutch 111, satellite navigation system (GNSS) 220, electric power splitter (ePSD) 123 and comprehensive dynamic operating data throughout the cargo event,
  • GNSS satellite navigation system
  • ePSD electric power splitter
  • One of the core contents of the ACE heavy truck 010 fuel-saving data set is the operation big data of its electric power shunt (ePSD 123), which can include the following contents: the sampling and recording frequency is at least 5.0Hz, according to the precise timing of the satellite navigator 220 (10 Nanosecond absolute accuracy) to calibrate and synchronize the clocks of all other on-board subsystem microprocessors at any time, as the only system clock reference for the entire vehicle system; at each sampling time point t i , each microprocessor of the ACE heavy truck commands
  • the relevant sensors locally collect and store at least the following variable values: the current longitude L lg (t i ), latitude L lat (t i ), longitudinal slope G d (t i ), longitudinal vehicle speed v(t i ), Longitudinal vehicle acceleration a(t i ), DC current I g (t i ) of generator 110, total DC current Im (t i ) of drive motors 140 & 170, total DC current I bat (
  • Main time variable dynamic operation data of automatic transmission 150 such as rotational speed, torque, gear, fuel injection rate (g/sec), specific fuel consumption (g/kWh), etc.; it can also collect and store pulse control
  • the fuel-saving data set of the above-mentioned ACE heavy truck must use the hybrid ACE heavy truck system device and the pulse-controlled engine technical solution (serial hybrid iSS or parallel hybrid iPS) shown in Figure 1 of the present disclosure, and the one-time centralized dynamic collection with the vehicle and storage; it cannot be distributed (generally referring to time-sharing, land-sharing, molecular system or vehicle-sharing) collection or simulation and then synchronously spliced to generate.
  • serial hybrid iSS or parallel hybrid iPS serial hybrid iSS or parallel hybrid iPS
  • the fuel-saving dataset is used to complete the modeling, training, and optimization of the fuel-saving algorithm deep neural network (DNN).
  • the fuel-saving data set operated by the ACE heavy-duty truck is a non-public and proprietary data asset. The more accumulated it is, the greater the value will be. It is analogous to data oil; it can continue to reduce costs and increase efficiency for trunk logistics enterprises using the ACE heavy-duty truck of the present invention, and continuously improve and improve efficiency. long-term competitive advantage.
  • the vehicle controller (VCU) 201 of the ACE heavy truck 010 may be configured to: provide an electronic horizon (meter-level spacing density) along the route of the freight event based on a priori 3D map pre-stored in the mapper 240 .
  • Longitude and latitude (equivalent meter-level or ten-meter-level earth geographic absolute positioning accuracy), longitudinal road slope (referred to as “longitudinal slope", 0.1 degree accuracy) and other road information, and/or based on the satellite navigator (GNSS) 220
  • GNSS satellite navigator
  • Dynamic data such as longitude, latitude, altitude, and longitudinal slope at the location of the vehicle, or based on the configuration parameters of the ACE heavy truck 010 and the dynamic working condition data of key subsystems, real-time according to the vehicle dynamics equation (1-1).
  • subsystems including ePSD 123, engine 101, generator 110, drive motor 140 or 170, clutch 111, gearbox 150, and battery pack 130a or 130b perform predictive dynamic power control in an "independent" manner, and pursue the actual fuel consumption and/or Pollutant emissions are minimized.
  • the VCU 201 can implement the second-level time average operation or other filtering and noise reduction measures on the measured longitudinal slope time-varying function, so as to improve the accuracy and robustness of the longitudinal slope function measurement;
  • the VCU 201 can firstly control the transient power distribution among the three ports of the ePSD 123 based on the longitudinal slope data measured by the GNSS 220 to meet the needs of the vehicle in real time.
  • VCU 201 can be based on the transient power of ACE heavy truck ePSD 123 three ports Distribution parameters, vehicle 010 longitudinal linear velocity and acceleration, combined with vehicle dynamics equations, make a judgment after vehicle-in-the-loop (VIL) simulation calculation, and choose the vehicle 3D electronic map as the criterion to realize automatic error detection of ACE heavy truck positioning and attitude measurement or Error correction function.
  • VIL vehicle-in-the-loop
  • GNSS adopts dual-antenna RTK receiver scheme, the system is more complex, although the performance is superior, but the cost is high.
  • an ordinary satellite navigator 220 with only a single antenna can also be used, and a single-axis or multi-axis dynamic inclination sensor is optional (measurement accuracy is better than 0.15 degrees; range is greater than plus or minus 15 degrees; refresh rate is high
  • the Inertial Navigation Unit (IMU) at 5 Hz) is used to measure the absolute positioning (longitude/latitude) and road gradient of the driving vehicle in real time.
  • IMU Inertial Navigation Unit
  • the dynamic inclination sensor There are many ways to realize the dynamic inclination sensor; one of the cost-effective implementations is the acceleration sensor (Accelerometer) and gyroscope (Gyroscope) of the automotive micro-electromechanical system (MEMS) plus special-purpose chip integration.
  • the VCU 201 utilizes the vehicle dynamic three-dimensional positioning and attitude navigation information (especially the road gradient distribution function) to realize automatic predictive fuel-saving control will be explained in an exemplary manner.
  • the following specific examples should not be construed as limiting the protection scope of the present disclosure, but only for the purpose of better understanding the present invention for those skilled in the art.
  • the VCU 201 can adjust the instantaneous power kWM of the engine 101 through the series-mix intelligent start-stop control (iSS) or the parallel-mix intelligent power switching control (iPS) function and/or average power function to implement the battery pack predictive state of charge control function (PSC-Predictive SoC Control), so that the battery pack (130a&b) in the charge consumption (CD), charge maintenance (CS), or charge Increase (CI) one of the three operating modes for stable operation or dynamic switching between them; this is especially suitable for scenarios where the road section ahead has a "short slope” (also known as a "small slope”); because the slope length is short (eg less than 2 km), so before the battery
  • the battery packs 130a&b are recharged to recover kWh-level energy and discharge with charging; in this way, the electric power throughput turnover rate of the power-type battery packs 130a&b with limited capacity (ten kWh-level) can be increased, especially when quasi-zero cost is sought.
  • the maximum value of the regenerative charge turnover rate and the minimum value of the high-cost engine charge turnover rate are more cost-effective than the solution using a 100-kWh high-capacity energy-based battery pack (large volume/weight, high price).
  • the intelligent mode switching control mode can also be used to dynamically switch the series
  • the fuel-saving machine learning algorithm automatically explores and discovers the best fuel-saving control strategy for the specified path.
  • the ACE heavy truck may further include an automotive-grade millimeter wave radar module (mWR) 230 installed at the front end of the heavy truck, for real-time measurement of the same distance between the heavy truck and its front
  • mWR millimeter wave radar module
  • LRR long-distance millimeter-wave radar
  • FOV horizontal field of view
  • Millimeter-wave radar 230 can also include vehicle-grade short-range large viewing angle radar (SRR), with a maximum detection distance of 70 meters and a viewing angle range of +/- 65 degrees.
  • SRR vehicle-grade short-range large viewing angle radar
  • the vehicle-grade front-viewing monocular or binocular camera plus processing chip can also be used, with a maximum detection distance of more than 250 meters. It is integrated with the forward-looking millimeter-wave radar (LRR&SRR) to enhance the performance and system robustness of the vehicle front-end speed and distance measurement. ; If it is necessary to ensure the redundancy and robustness of the vehicle's forward-looking speed and distance sensor system, a low-cost LiDAR (LiDAR) with a small horizontal viewing angle (FOV +/- 10 degrees) and a forward-looking 16 lines or more can be added. The farthest detection distance is more than 200 meters.
  • the heavy-duty truck further includes an in-vehicle wireless communication gateway (T-Box) 210, which enables the heavy-duty truck 010 to communicate with the cloud through the third-generation/fourth-generation/fifth-generation (3G/4G/5G) cellular mobile communication network 002 (see FIG. 5 ).
  • the computing platform 001 has wide area wireless or wired networking, and can also support C-V2X (vehicle-road, vehicle-vehicle, vehicle-network, vehicle-person, etc.) real-time communication.
  • the VCU 201 can communicate in one-way or two-way real-time with many on-board subsystems including the satellite receiver 220 and the millimeter-wave radar 230 through the in-vehicle data bus (eg CAN bus), and control the engine 101 and its control module (ECU) in real time.
  • the in-vehicle data bus eg CAN bus
  • ECU engine 101 and its control module
  • any combination of modules or subsystems such as automatic transmission 150, transmission controller (TCU) 151, map instrument 240, etc., through the "symphony-band-style" multi-module real-time dynamic coordination, realizes the intelligent cruise control of the ACE heavy truck expressway in the same lane Function (iCC), that is, SAE L1 or L2 level automatic driving function, liberates the driver's feet, reduces the driving labor intensity, optimizes the vehicle's power, energy saving and emission reduction, and guarantees the vehicle's actual performance within the validity period of the 700,000-kilometer post-processing system.
  • iCC lane Function
  • VCU 201 can effectively utilize the 100-kilometer-level electronic horizon three-dimensional road information, and through the accumulation of the ACE heavy-duty intelligent cruise control (iCC) of the sequential kilometer-level granularity (Granularity) sections, on the premise of ensuring the vehicle dynamics, it can realize the comprehensive vehicle journey. Fuel consumption is minimized.
  • iCC ACE heavy-duty intelligent cruise control
  • Gnularity sequential kilometer-level granularity
  • the driver can manually turn on or turn off the intelligent cruise control (iCC) function.
  • iCC intelligent cruise control
  • the mass-produced commercial advanced driver assistance system ADAS it can realize the SAE L1 or L2 automatic driving function. It frees the driver's feet and reduces the labor intensity of driving; the iCC function can be activated at various vehicle speeds within the expressway ODD and in non-extreme weather (no heavy rain, heavy snow, hail, flood, etc.).
  • the above-mentioned intelligent cruise control may include the following three subdivided working modes: 1) normal mode N (Normal Mode); 2) fuel saving mode Eco (Eco Mode); and 3) high performance mode P (Power Mode); collectively referred to as the iCC sub-mode.
  • the total weight of a passenger car is less than 3.0 tons, and the maximum driving power can exceed 125kW, while the total weight of a fully loaded heavy truck can be as high as 40 tons, but the maximum driving power of mainstream heavy trucks in Europe and the United States is less than 400kW.
  • the unit weight of heavy trucks The driving power (kW/ton) is much smaller than that of passenger cars; in other words, the acceleration performance of heavy trucks is much lower than that of passenger cars, and the emergency braking distance of heavy trucks is also much higher than that of passenger cars; the dynamic driving of these two vehicles Features vary enormously.
  • the normal mode (N) takes into account both fuel saving and freight time; the fuel-saving mode (Eco) focuses on fuel saving and relaxes the freight time requirements (that is, you can drive slower but Must be fuel-efficient); high-performance mode (P) emphasizes freight timeliness and relaxes fuel-saving requirements (that is, it can consume fuel but must be fast).
  • the upper and lower limits of the cruising speed band of each of the following iCC sub-modes can be selected:
  • the cruising speed In the normal mode (N), the cruising speed (1.0-0.05)Vc ⁇ V ⁇ (1.0+0.05)Vc and cannot be higher than 103% of the legal maximum speed of the road section; in the fuel-saving mode (Eco), the cruising speed (1.0 -0.10)Vc ⁇ V ⁇ (1.0+0.05)Vc and cannot be higher than 103% of the legal maximum speed of the road section; in high performance mode (P), the cruising speed is (1.0-0.03)Vc ⁇ V ⁇ (1.0+0.03 )Vc and cannot be higher than 105% of the legal maximum speed of the road section. If the speed band of the heavy truck cruise control is set too narrow (for example, the up and down floating rate is less than 2%), it is not conducive to the optimization of energy saving and emission reduction of the heavy truck.
  • the VCU 201 can store the current 3D road information (longitude, latitude, longitudinal slope) of the vehicle and the map 240 according to the configuration parameters (especially the total vehicle mass) and dynamic operation data (especially the longitudinal speed) of the ACE heavy truck 010.
  • the three-dimensional information such as the longitudinal slope distribution function and curve curvature of the road in the vehicle's electronic horizon range (especially the kilometer-level road section ahead), calculate and adjust the time-varying function L of the safe following distance of the adaptive cruise in real time (with a delay of 100 milliseconds).
  • s (t) (referred to as the safety distance function).
  • the distribution of the longitudinal slope function of the kilometer-level road in front of the vehicle has a huge impact on the acceleration (i.e.
  • the safe following distance L s can be subdivided into three specific distances: L1 is the Alert Distance, L2 is the Warning Distance, and L3 is the Emergency Braking Distance, where L1>L2 >L3.
  • the VCU 201 can be based on vehicle configuration parameters and driving condition data (such as total vehicle mass, vehicle speed, etc.), real-time weather conditions (wind, rain, snow, ice, temperature, etc.), and 3D road data ( Longitude, latitude, longitudinal slope, etc.), combined with the vehicle dynamics equation (1-1), the above three following distance functions L1, L2, or L3 are dynamically calculated with a refresh rate higher than 10 Hz and meter-level accuracy.
  • the safety distance function is highly positively correlated with the instantaneous vehicle speed of the ACE heavy truck, the longitudinal slope function of the kilometer-level road section ahead, and the vehicle weight.
  • the warning distance is about 250 meters from L1
  • the warning distance is about 150 meters from L2
  • the emergency braking distance is about 60 meters from L3. L3) is also longer.
  • the total delay of the driver's braking reaction time plus the response time of the heavy-duty truck's mechanical braking (pneumatic braking) system exceeds 500 milliseconds; while the system response time of the ACE heavy-duty truck's rapid switching from 100 kilowatts of driving power to 100 kilowatts of regenerative braking power is 25.0 milliseconds It is at least an order of magnitude faster than the response speed of the traditional heavy truck driver plus the mechanical braking system, which can decelerate the vehicle faster and safer (unlocking the wheels), and the electric regenerative braking system and the mechanical braking system are completely independent of each other; ACE heavy trucks The advanced motor regenerative braking function not only improves the comprehensive braking performance of the vehicle, but also provides safety redundancy.
  • intelligent cruise control technologies or functions
  • ACC Adaptive Cruise Control
  • the ACE heavy truck of the present invention is compared with the 16L diesel engine heavy truck with the top configuration in modern Europe and the United States.
  • the intelligent cruise control (iCC) working scenarios of ACE heavy trucks can be divided into two categories.
  • the first category is that when there is no other vehicle within 250 meters in front of the vehicle in the same lane, the vehicle controls the ACE heavy truck to drive within the specified speed band according to the fuel-saving AI algorithm, without considering the above three safe following distances L s ;
  • the second category When there are other vehicles within 250 meters in front of the same lane of the vehicle, the ACE heavy truck needs to be controlled within the above three safe following distances L s first, and then the fuel-saving AI algorithm is considered;
  • the priority or weight of the control algorithm or the control-by-wire signal for driving safety is obviously higher than that of the control algorithm or the control-by-wire signal involving energy conservation and emission reduction.
  • Congested highways are one of the long-term "pain points" of the global highway logistics industry, and China's average highway congestion is higher than that of the United States, and the average speed is lower (the average speed of heavy trucks in China is 60 km/h; the average speed in the United States is 90 km/h. ).
  • the ACE heavy truck can turn on the "smart car following" function, which can only be used on closed roads (such as highways or urban elevated highways) at low speeds (the average speed is lower than 40 km/h), and it is not suitable for driving. Use on open urban or suburban roads.
  • closed roads such as highways or urban elevated highways
  • SRR forward-looking radar
  • camera 230 on a closed congested road section, maintain the set safe following distance L0 with the leading vehicle in front of the same lane.
  • the series-hybrid intelligent start-stop control (iSS) mainly controls the battery pack to run in the charge maintenance (CS) or charge consumption (CD) mode, and the drive motor 140 realizes frequent active acceleration or regenerative braking of the vehicle.
  • CS charge maintenance
  • CD charge consumption
  • the drive motor 140 or 170 can maintain its maximum torque output from zero speed to rated speed.
  • the acceleration, braking and deceleration of the ACE heavy truck are significantly higher than those of the traditional engine heavy truck, and even the power performance of the traditional engine light truck.
  • the heavy truck frequently brakes actively, which is very beneficial to the energy recovery of 100-kilowatt-level regenerative braking; the ACE heavy truck is more fuel-efficient than the traditional engine heavy truck in the "smart following" mode, and the actual fuel saving rate can be significantly higher than 30%. %, and greatly reduce the actual NOx emissions, while also greatly reducing the driver's driving labor intensity.
  • the ACE heavy-duty truck powertrain of the present disclosure adopts the parallel hybrid iPS control, in addition to optimizing the beneficial effect of fuel saving and emission reduction at the same time, it can also use multi-motor (110, 140, 170) regenerative braking plus the in-cylinder or cylinder of the engine 101.
  • Multi-motor 110, 140, 170
  • External braking realizing the function of 500kW-level retarder for ACE heavy trucks on long-term slopes, without adding any hardware, it can completely replace the eddy current retarder or hydraulic retarder, which is more than the above-mentioned commercial heavy trucks. Retarder products are more cost-effective.
  • the longitudinal slope power is sufficient to overcome the wheel resistance power and the wind resistance power to drive the vehicle downhill at a constant speed, and the excess longitudinal slope power
  • the motor (110, 140, 170) needs to be regenerative braking to generate electricity to recover energy, so as to prevent the vehicle from continuously accelerating downhill or starting the mechanical brake to waste this part of the remaining mechanical energy into heat energy;
  • VCU 201 can instruct the clutch 111 to close and lock, and the vehicle Working in the parallel hybrid mode, the engine 101 works in a special case of the intelligent power switching control mode (iPS), that is, the duty cycle of the PWM pulse sequence of the transient power of the engine is adjusted to zero, and the engine 101 enters passive operation at low load (does not start).
  • iPS intelligent power switching control mode
  • the generator 110 and the drive motor 140 or 170 can cooperate to recover the vehicle downhill by regenerative braking to generate electricity in the low-state condition of zero fuel consumption and zero emission of engine braking function) or high-load passive operation (starting the engine braking function).
  • the chopper 132a&b disconnects the battery packs 130a&b
  • the voltage-controlled switch (VCS) 133 switches from the off state at the same time
  • VCS voltage-controlled switch
  • the 100-kilowatt brake resistor 131 is electrically connected in one direction to serve as an effective electrical load for regenerative braking and power generation, and converts excess electrical energy into thermal energy for consumption.
  • the engine braking power and the motor regenerative braking power can be superimposed, which can greatly increase the total power of the frictionless retarding function, and can provide two sets of mutually independent and redundant retarding systems to improve the ACE heavy truck downhill.
  • Active safety while driving. In addition to recovering energy at near zero cost, saving fuel and reducing emissions, regenerative braking can also significantly extend the life of mechanical brake pads and significantly reduce the total operating and maintenance costs of the mechanical brake system in the entire life cycle of the ACE heavy truck 010. From the point of view of safety, when the ACE heavy truck is going down a long slope, no matter the speed of the vehicle, the parallel-mixing mode should be preferred, and the serial-mixing mode should be avoided as much as possible.
  • the ACE heavy truck 010 hybrid powertrain system of the present disclosure can upgrade any modern analog electronically controlled engine that is mass-produced and commercialized into a digital pulse-controlled engine through the serial-hybrid iS or parallel-hybrid iPS control technology, and realizes full digital software.
  • the defined powertrain system SDPt
  • the necessary technical features of the SDPt include the decoupling of the operating conditions of the engine 101 and the operating conditions of the vehicle 010 and the decoupling of the software and hardware of the assembly system; in other words, as long as the overall If the hardware subsystems (for example: engine 101, generator 110, clutch 111, main drive motor 140, gearbox 150, electric power splitter 123, battery pack 130a&b, etc.) of the complete system meet the threshold technical conditions, then the powertrain system
  • the three technical indicators of actual (RDE) power, fuel consumption, and emissions are completely defined by software and can be dynamically and quickly customized to achieve thousands of vehicles.
  • the performance of each hardware subsystem of the software-defined hybrid powertrain (SDPt) can reach the standard (that is, the hardware can be generalized and abstracted); the current power optimization of the hardware super-pairing ACE heavy truck 010 is neither beneficial nor harmful, but it can be Improve the redundancy of the system and the potential for future upgrades, especially by replacing the future mass-produced enhanced gearbox (maximum input torque of more than 3500 Nm) and the matching drive axle to improve the potential of the three peaks of the system.
  • the ACE heavy truck focuses on the highway ODD intelligent cruise control (iCC) function that optimizes energy saving and emission reduction.
  • L1-level automatic driving function It is essentially a 1D longitudinal L1-level automatic driving function, and has the potential to upgrade to the L2-level, L3-level, or L4-level automatic driving function.
  • the ACE heavy truck equipped with the SDPt of the present invention naturally has the system redundancy of the whole vehicle drive, power supply and brake. Upgrading L1-class ACE heavy trucks to L3 or L4-class self-driving heavy-duty trucks is the preferred vehicle platform for L4-class trunk logistics heavy trucks for mass commercial use in the future. The huge and far-reaching impact of the industrial upgrading of the mobile communication industry from 2G feature phones to 3G smart phones.
  • L1 to L4 autonomous driving heavy trucks must comply with the road vehicle functional safety standard ISO26262 and reach the specified automotive safety level (ASIL safety level). The higher the level, the higher the requirements for system reliability and redundancy.
  • ACE heavy truck 010 is based on system integration including drive motors 140 and 170, battery packs 130a&b, and ePSD 123 to achieve high-performance pure electric driving, regenerative braking energy recovery, automatic emergency braking assist (AEBA), and long descents
  • the retarder function in addition to the traditional engine and mechanical braking system of the vehicle, adds a set of fully independent redundant power regenerative braking active safety system, and also adds a redundant vehicle electric drive system (engine plus more).
  • the ACE heavy truck 010 of the present invention naturally has redundant power system, braking system, steering system, and multi-voltage power supply system, which is the future development and mass production of L4 in expressway ODD.
  • the preferred base vehicle platform for high-level autonomous heavy trucks are examples of high-level autonomous heavy trucks.
  • the ACE heavy truck of the present disclosure can simultaneously improve the three ultimate goals of the automobile industry: safety, energy saving, and environmental protection at a higher cost performance on the premise of ensuring the optimal power performance of the vehicle.
  • the ACE heavy truck of the present invention realizes the one-dimensional (1D) longitudinal SAE L1 automatic driving function in the expressway ODD through technical measures such as pulse control engine (series hybrid iSS or parallel hybrid iPS), intelligent cruise control (iCC), and achieves comprehensive
  • pulse control engine series hybrid iSS or parallel hybrid iPS
  • iCC intelligent cruise control
  • the beneficial effect of reducing fuel consumption (liter/100km) by nearly 30% compared to traditional diesel heavy trucks mainly relies on the hybrid powertrain technology, especially the electric power splitter ePSD, and makes full use of the prior data of the electronic horizon 3D map and vehicle dynamic condition data.
  • the ACE heavy truck of the present invention adopts mature and mass-produced commercial core components and system integration technology, with obvious fuel-saving effect and high cost performance.
  • the fleet does not rely on government subsidies, but only by saving actual fuel costs, and can achieve a return on investment within 2.5 years ( That is to make up for the price difference between ACE heavy trucks and traditional diesel heavy trucks), and the accumulated profit per vehicle will double in 5 years; ACE heavy trucks can be mass-produced and commercialized in North America within three years by refitting second-hand heavy trucks.
  • Non-powertrain fuel-saving technologies for heavy-duty trunk logistics trucks, such as low rolling friction tires, light weight, and reduced drag coefficient (tractor head plus trailer), etc.
  • ACE heavy trucks can be directly applied to ACE heavy trucks; it should be emphasized that , Different from modern diesel heavy trucks, the above-mentioned various non-powertrain fuel-saving technologies can produce 1+1>2 synergy of energy saving and emission reduction on ACE heavy trucks (Synergy), and low wheel resistance, light weight, and low wind resistance.
  • the ACE heavy truck has a super regenerative braking ability to recover energy, the ACE heavy truck is in high performance mode (P) or the average cruising speed exceeds 65 mph ( When running within the legal maximum speed per hour in the United States), it can not only improve the timeliness of freight and ensure that the actual fuel consumption does not increase, but also further reduce the actual fuel consumption with a high probability, effectively breaking the gap between the timeliness of modern diesel heavy trucks (that is, the maximum cruising speed) and fuel consumption. zero-sum tradeoffs.
  • ACE-modified heavy trucks which will be commercialized in batches in the United States around 2023, will be more than 20% lower than the actual fuel consumption (liter/100km) baseline (Baseline) of the 2019 version of the modern diesel heavy truck, and the actual NOx emission value (g/bhp) will be reduced by more than 20%. -hr) drops by more than 50%, and the power and braking performance are significantly improved.
  • the ACE heavy truck 010 of the embodiment shown in FIG. 1 to FIG. 7 of the present disclosure relies on a fully digital software-defined hybrid powertrain, commanded by the VCU 201, according to the configuration parameters of the vehicle and dynamic operating condition data (eg total vehicle mass, longitudinal vehicle speed and acceleration, dynamic positioning and attitude measurement of the vehicle, etc.), combined with map instrument (MU) 240 electronic horizon prior 3D road data and machine learning (ML) fuel-saving algorithm (ie AI fuel-saving algorithm), through Implement Pulse Modulation Control (PM) for the engine 101 transient power function, including Series-Hybrid Intelligent Start-Stop (iSS) or Parallel-Hybrid Intelligent Power Switching (iPS), plus Intelligent Mode Switching (iMS) and Clutchless Switching Gear control (CGS), which dynamically and continuously adjusts the engine average power function value (see equation MAW); also controls the electric power divider (ePSD 123), and connects many power sources or loads (such as generators 110, Between the drive motor 140 or 1
  • PM Puls
  • the invention configures an ACE heavy truck with a software-defined hybrid powertrain, and converts the power management problem of the ACE heavy truck in the expressway design operating domain (ODD) into a computer playing Go through technical measures of intelligent cruise control (iCC).
  • ODD expressway design operating domain
  • iCC intelligent cruise control
  • Narrow AI Narrow AI problem
  • ML machine learning
  • ML machine learning
  • the computer-readable medium of the present invention to store and upload the fuel-saving data set in the cloud, and link (training) the fuel-saving AI chip between the cloud and the vehicle. or reasoning
  • the AI fuel-saving algorithm of ACE heavy trucks outperforms human drivers in terms of actual energy-saving and emission reduction optimization and is highly consistent, making it a valuable assistant for human drivers.
  • the ACE heavy truck 010 when the ACE heavy truck 010 travels on a freight highway, it cleverly utilizes the frequent downhill gradients of tens of kilowatts to hundreds of kilowatts generated by subtle changes in the granularity of 0.1 degrees along the road.
  • the power is generated by the regenerative braking of the drive motor 140&170.
  • the battery pack 130a&b After being rectified by the electric power shunt ePSD 123, the battery pack 130a&b is charged. From every downhill of 100 meters to several kilometers along the way, it is possible to harvest 100Wh or kWh
  • the "zero-cost electric energy" that is, the regenerative braking charge) of the high-level, the small water will flow, and the small amount will add up.
  • the comprehensive energy conversion efficiency of the ACE heavy truck from the battery to the driving wheel is nearly two times higher than the comprehensive energy conversion efficiency from the fuel tank to the driving wheel; in other words, the electrical energy in the ACE heavy truck battery pack is compared with the chemical energy of the fuel in the fuel tank.
  • the former equals one to three.
  • the secret to saving fuel in ACE heavy truck highway conditions is to make maximum use of the zero-cost "regenerative braking charge" accumulated in the battery pack 130a&b to provide the driving power of part of the vehicle. In this way, the battery packs 130a&b can increase the cumulative power turnover rate during the entire transportation event, especially the regenerative braking charge turnover rate, while reducing the engine charge turnover rate to achieve the best fuel-saving effect.
  • VCU 201 uses the vehicle map instrument (MU) 240 electronic horizon prior 3D road data in real time to assess the situation and plan ahead to ensure that when the vehicle encounters a long slope with a length of more than ten kilometers and a longitudinal slope greater than 2.0%, there is enough time to command the clutch 111 engages and locks, switches to parallel-hybrid mode, implements parallel-hybrid intelligent power switching control (iPS) for engine 101 and generator (MG1) 110, and charges battery packs 130a&b in time (JIT) before the vehicle reaches the long slope (SoC reaches the URL), and increase the vehicle speed to the legal speed limit to maximize the delay and reduction of the ACE heavy truck 010 on the way to climb.
  • iPS parallel-hybrid intelligent power switching control
  • the VCU 201 can use the vehicle dynamics equation (1-1) to calculate kW-level accuracy and refresh rate higher than 1 Hz to dynamically predict the time-varying slope power function and the road-load transient power time-varying function of the vehicle within the electronic horizon (hour-level or 100-kilometer level), so as to pass the engine 101
  • the transient power function is subjected to pulse modulation (PM) control (series-mixed iSS or parallel-mixed iPS), and the transient power function of battery packs 130a&b is pulsed-modulated (PAM or PWM) to achieve the average SoC function of battery packs 130a&b.
  • PM pulse modulation
  • PAM pulsed-modulated
  • Predictive control According to the different sub-modes of the vehicle intelligent cruise control (iCC) selected by the driver, on the premise that the driving active safety and the actual (RDE) emission are always up to the standard, both the fuel-saving and dynamic performance of the ACE heavy-duty truck are sought.
  • the positive-sum trade-off between the two i.e. simultaneous optimization
  • the beneficial effect of energy saving and emission reduction It should be emphasized that the minimum value (i.e.
  • the spatial function of the longitudinal slope of the road along the way, the weather conditions along the way on the day, and the data of the dynamic working conditions of the vehicles along the way (especially the longitudinal speed or acceleration) are highly correlated.
  • the value is basically irrelevant.
  • the average fuel consumption of the ACE heavy truck is minimized when running per minute or per kilometer, and the linear superposition can ensure that the accumulated comprehensive fuel consumption of the ACE heavy truck is optimal on a daily, monthly, annual, and full life cycle. All ACE heavy truck clusters with different configurations and different loads are running on the national or continental expressway network.
  • the fuel-saving data set of trunk logistics formed over time is a valuable "data oil" for training machine learning fuel-saving algorithms, and is recommended by cloud-based fuel-saving algorithms.
  • the default fuel-saving control strategy of has general reference and guiding significance for each ACE heavy truck operated on a specific route.
  • the following describes how to use the fuel-saving data set collected by the above-mentioned ACE heavy truck 010 during driving and stored locally, after desensitization and encryption, through the mobile Internet 002 via the vehicle wireless gateway 210 in time (minutes or hours). extension) is uploaded to the cloud computing platform 001 for storage for subsequent analysis and processing.
  • Cloud platform 001 uses several preferred machine learning (ML) fuel-saving algorithms (especially deep learning algorithms) to mobilize sufficient computing power in public or private clouds, and uses the increasingly accumulated ACE heavy-duty truck fuel-saving data sets stored in the cloud to train
  • the cloud-based fuel-saving AI algorithm automatically establishes and continuously improves the deep neural network (DNN) model to seek the best fuel-saving control strategy; downloads the fuel consumption benchmark value and default value for a specific path of a freight event to each ACE heavy truck through the wireless mobile communication network (Default) Fuel-saving control strategy, so that each ACE heavy truck can make full use of the collective wisdom of all ACE heavy trucks, while optimizing energy conservation and emission reduction; each ACE heavy truck can use its VCU 201 to perform on-board AI inference calculations.
  • the default fuel-saving control strategy of the vehicle can be dynamically modified in real time to minimize the actual fuel consumption of the vehicle in this freight event.
  • the generator set (including the engine 101, ECU 102, generator 110, MCU1 121), ePSD 123, clutch 111, drive motor 140 or 170, automatic transmission 150 , TCU 151, braking resistor 131, and battery pack 130a or 130b and various configuration parameters or dynamic operation data of each main powertrain subsystem can be measured in real time by the "Internet of Things" composed of multi-sensors onboard the ACE heavy truck 010 Collection (preferably, the refresh rate of measurement and recording is above 5 Hz), in the format of structured big data commonly used in the industry, and centrally stored in, for example, the memory of the on-board VCU 201 or other on-board memories.
  • the "Internet of Things" composed of multi-sensors onboard the ACE heavy truck 010 Collection (preferably, the refresh rate of measurement and recording is above 5 Hz), in the format of structured big data commonly used in the industry, and centrally stored in, for example, the memory of the on-board VCU 201 or other on-board memories.
  • the above measurement data can also be stored. Dispersely stored in the memory of the microprocessors corresponding to several subsystems; the so-called “fuel-saving structured big data” (referred to as “fuel-saving data set”) refers to a certain "mapping relationship" that is "related" A multi-dimensional time series collection of dynamic data about the operation of various subsystems during the driving process of the ACE heavy truck recorded on the computer-readable storage medium.
  • the 10-nanosecond ultra-high-precision timing of the on-board satellite navigation system (GNSS) 220 can be used as the only system reference clock of the ACE heavy truck, and it can be repeatedly calibrated at any time (for example, at 10-minute intervals), including the VCU 201 clock.
  • the clock of each on-board microprocessor of the ACE heavy truck automatically labels and synchronizes the dynamic operation data of each subsystem of the ACE heavy truck with an orderly and unique vehicle system running time series, which is convenient for subsequent splicing and synthesizing multi-dimensional time series, generating Fuel saving datasets for specific ACE heavy trucks and specific freight events. As shown in FIGS.
  • the vehicle 010 includes a VCU 201, an engine 101, an engine control module 102, a generator 110, an electric power splitter (ePSD) 123 (including motor controllers 121, 122a & b, a voltage-controlled switch 133, a chopper 132a&b, etc.), clutch 111, drive motor 140&170, battery pack 130a&b, brake resistor 131, gearbox 150, gearbox controller 151, millimeter wave radar 230, mobile communication gateway 210, map instrument 240, satellite navigator 220, etc.
  • ePSD electric power splitter
  • All subsystems have corresponding dedicated microprocessors, memories, or sensors; these subsystems can measure and calculate in real time at the local vehicle end within the measurement frequency (f m ) range of 1.0 Hz ⁇ f m ⁇ 50.0 Hz , and record or store the time series of main dynamic running data uniquely marked by vehicle running time of each subsystem.
  • f m measurement frequency
  • the engine control module 102 can measure and record dynamic operating data such as longitudinal vehicle speed, longitudinal vehicle acceleration, rotational speed, torque, and specific fuel consumption (BSFC) of the engine 101 at a measurement frequency of more than 5 Hz; the generator controller (MCU1) 121
  • the dynamic data such as the rotational speed and torque of the generator 110, the internal temperature of the motor, or the DC voltage or current of the generator controller 121, and the internal temperature can be measured and recorded at a measurement frequency of 10 Hz or more; Frequency measurement and recording of dynamic data such as the unique DC voltage function at its DC bus junction X and the DC current function of all branch circuits;
  • the battery management module (BMS) configured by the battery packs 130a & b can record its output at a measurement frequency of 10.0 Hz DC voltage and current at the terminal, and dynamic data such as current, voltage, temperature, state of charge, etc.
  • the motor controllers 122a&b can measure and record the driving motor 140, 170 at a frequency of 10 Hz or more Dynamic data such as the speed and torque of the mechanical shaft, the temperature inside the motor, the current and voltage of the DC terminal of MCU2 or MCU3; the chopper 132a&b can measure and record the DC voltage and current dynamics of its high-voltage or low-voltage terminals at a measurement frequency of 10 Hz or more data; the transmission controller (TCU) 151 can record dynamic data such as gear position, input speed, and output speed of the gearbox 150 at a measurement frequency of 2.0 Hz or more; the satellite navigator 220 can measure and calculate at a measurement frequency of 5 Hz Record the vehicle's longitudinal speed and acceleration, latitude and longitude, longitudinal slope, timing and other dynamic data; the millimeter wave radar 230 can measure and record the absolute distance and relative speed between the vehicle and the vehicle in front at a frequency of 10 Hz and other dynamic data; pressure The control switch 133 can record its
  • VCU 201 is unidirectionally uniquely marked with the vehicle running benchmark time series, as the benchmark for all subsystem measurement data time series.
  • ACE heavy trucks are generated. 010
  • the “fuel-saving data set” generated during the operation process is highly related to the ACE heavy-duty vehicle energy-saving and emission-reduction control strategy; the fuel-saving data set can be accessed in “real time” (sub-second delay) via the mobile Internet 002 or the wired Internet. ) or "timely" (hour-level delay) upload to the Internet cloud computing platform 001 for centralized or distributed storage for subsequent data analysis and processing.
  • the ACE heavy-duty truck fuel-saving data set can be uploaded to the cloud computing platform on the Internet in time (minute-level or hour-level delay) through the wireless communication gateway 210 and the cellular mobile communication network 002 001 Decentralized or centralized storage for subsequent data processing.
  • the data package can be desensitized and encrypted before uploading to ensure data security and protect customer (driver or fleet) privacy and trade secrets.
  • the cloud platform 001 will bring together the fuel-saving data sets generated when many ACE heavy trucks of the present invention are run.
  • ACE heavy truck clusters Use these ACE heavy truck clusters to accumulate and increase operational structured big data (ie, fuel-saving data sets), and allocate corresponding cloud computing power through fuel-saving machine learning (ML) algorithms to train artificial intelligence in the cloud and on the vehicle.
  • AI machine learning
  • the cloud is the AI training chip and the vehicle end is the AI inference chip, which automatically establishes and continuously improves the deep neural network (DNN) model of the fuel-saving ML algorithm, and seeks the most optimal solution for each ACE heavy truck and each freight event.
  • DNN deep neural network
  • the festive fuel-saving control strategy realizes the beneficial effects of reducing the actual fuel consumption of ACE heavy trucks in mainline logistics by more than 25% compared with the actual fuel consumption of modern diesel heavy trucks, and basically decoupling from the driving level of the driver and the performance of the engine.
  • Cloud 001 prefers to use commercial AI training chips, which are characterized by high versatility, high performance, high power consumption, and high cost; while the car side prefers to use AI inference chips, which are characterized by high specificity, moderate performance, and low power consumption ,low cost.
  • the on-board fuel-saving AI inference chip (for example, included in the VCU201) and the cloud-based fuel-saving AI training chip are linked in real time or in time, and can find every second or every minute time period (corresponding to the driving conditions of the ACE heavy truck) according to the changing driving conditions of the ACE heavy truck.
  • the intelligent cruise control technology iCC is used to realize the 1D longitudinal L1 automatic driving function, which can convert the energy saving and emission reduction optimization problem of the ACE heavy truck into the equivalent narrow AI of computer playing Go.
  • the software-defined hybrid powertrain of the present disclosure coupled with VCU 201, iCC function and fuel-saving AI algorithm, is equivalent to an invisible industrial robot, which can be called the "fuel-saving robot" of ACE heavy truck; Go can completely outperform humans, and the ACE heavy-duty truck "fuel-saving robot" disclosed in the present disclosure can also surpass human drivers in terms of actual fuel consumption and emission indicators of heavy-duty trucks in mainline logistics.
  • the "fuel-saving robot" of the present invention will not completely replace human drivers, but is willing to be a reliable co-driver and assistant for heavy-duty truck drivers in trunk line logistics.
  • each freight event (Freight Event) of trunk line logistics heavy trucks are predictable, and the freight weight is also known and basically fixed, with few temporary random changes; the mileage of each freight event ranges from hundreds of kilometers to thousands of kilometers , from a few hours to a few days.
  • the fuel-saving robot (VCU 201) or driver of the ACE heavy truck 010 can automatically request the AI "fuel-saving brain" of the cloud platform 001 to download the journey of the cargo event through the wireless mobile gateway 210 or mobile phone.
  • the sub-mode of the iCC function can be selected (normal mode N/fuel-saving mode Eco/high-performance mode P), and the intelligent cruise control function (iCC) can be activated by VCU 201 Replacing part of the driver's driving functions, and realizing the continuous automatic control of the one-dimensional longitudinal movement (acceleration/cruise/glide/deceleration) of the heavy truck (ie, L1-level automatic driving), the driver's feet can be released for a long time and the driver's long-distance driving can be reduced.
  • Labor intensity while achieving beneficial effects such as RDE fuel consumption and emissions (CO2 and NOx) optimization (i.e.
  • Another beneficial effect of the present invention is that the fuel-saving robot realizes the simultaneous optimization of energy saving and emission reduction of ACE heavy trucks through the iCC function, which can effectively solve the various human factors of drivers (road familiarity, driving level, work attitude, fatigue, etc.)
  • this highlight is very important for transportation companies to reduce costs and increase efficiency.
  • the essential difference between the ACE heavy-duty truck 010 with intelligent cruise control (iCC) function in the present invention and any gasoline-electric hybrid vehicle or traditional diesel heavy-duty truck with similar functions on the market today is that the former highly focuses on the energy saving and reduction of heavy-duty trucks in trunk logistics. Simultaneous optimization of exhaust emissions effectively solves a worldwide problem recognized by the global automobile and transportation industry, that is, under highway conditions, the fuel-saving effect of gasoline-electric hybrid heavy-duty trucks is not obvious compared with traditional diesel heavy-duty trucks, and the actual fuel-saving rate is not high.
  • the industry problem that may be higher than 12% can achieve the actual comprehensive fuel consumption reduction of more than 25% in the main line logistics application scenario, and at the same time, it can also significantly improve vehicle power and braking effectiveness, and ensure that ACE heavy trucks can be used in China/US/EU.
  • RDE actual driving environment
  • the long-life and stable 700,000-kilometer emission standard warranty period
  • OEDR perception and decision-making
  • DDT dynamic driving task
  • the fuel-saving robot realizes the vehicle's 1D longitudinal L1-level automatic driving function through intelligent cruise control (iCC) technical measures, and realizes the optimization of vehicle energy saving and emission reduction at the same time.
  • the heavy-duty fuel-saving robot according to the performance characteristics and configuration parameters of the key subsystems of the vehicle, the vehicle Dynamic data of driving conditions, 3D road priori data of electronic horizon, vehicle energy management control strategy based on machine learning (ML) fuel-saving algorithm and on-board real-time computing power are used for AI reasoning operation, and the transient output power of engine 101 is serialized.
  • iCC intelligent cruise control
  • Hybrid Intelligent Start-Stop Control iSS
  • Parallel Hybrid Intelligent Power Switching Control iPS
  • Intelligent Mode Switching Control iMS
  • Pulse Modulation Control PWM
  • the average power function of the battery pack (equal to the difference between the average power of the vehicle on the road and the average power of the engine) makes the battery packs 130a&b in one of the three modes of charge maintenance (CS), charge consumption (CD), and charge increase (CI).
  • CS charge maintenance
  • CD charge consumption
  • CI charge increase
  • the "Adaptive Cruise Control (ACC)” function of passenger cars or commercial vehicles in the prior art mainly provides driving convenience, improves active safety, and reduces the actual comprehensive fuel saving rate of the vehicle very little (less than 2%);
  • the "Predictive Cruise Control” (PCC) of traditional internal combustion engine heavy trucks focuses on the vehicle energy management control strategy, but because it cannot effectively recover energy through regenerative braking, the actual fuel saving effect is less than 3%; at the same time, modern diesel vehicles cannot Ensure that under any RDE, especially when a certain proportion of low-speed and low-load conditions and idling conditions are included, the actual pollutant emissions will meet the long-term and stable standards; the United States, Europe and China have not found diesel vehicles that can be stable for a long time under any RDE.
  • the technical problem solved by the present invention is how to ensure the simultaneous optimization of fuel consumption and emissions of ACE diesel vehicles (especially ACE diesel heavy trucks), that is, to minimize the actual emissions of vehicle CO2 and NOx at the same time.
  • the power of a vehicle generally refers to the powertrain configured for the vehicle (for example, the hybrid powertrain of an ACE heavy truck includes engine 101, dual motors 110&140, mPSD 124, ePSD123, battery pack 130a&b, gearbox 150, drive axle 160&180 (i.e., total electromechanical torque or power), not just the power of the engine 101; although the fuel consumption and emissions of vehicles generally refer to the actual (RDE) fuel consumption and pollutants (NOx and PM) of the powertrain ) emissions, since the battery pack has zero fuel consumption and zero emissions, it essentially refers to the fuel consumption and emissions of the engine 101 .
  • the hybrid powertrain of an ACE heavy truck includes engine 101, dual motors 110&140, mPSD 124, ePSD123, battery pack 130a&b, gearbox 150, drive axle 160&180 (i.e., total electromechanical torque or power), not just the power of the engine 101; although the fuel consumption and emissions of vehicles generally refer to the actual (RDE) fuel consumption and pollutants (NO
  • the differences between Intelligent Cruise Control (iCC) and Predictive Cruise Control (PCC) or Adaptive Cruise Control (ACC) in the prior art include: 1) The effective range of iCC's electronic horizon can exceed one hundred miles or one hour, and the entire vehicle
  • the level power management strategy (PMS) includes both a second-level fast control loop and an hour-level slow control loop; while the effective range of the PCC's electronic horizon is only at the mile or minute level, and the vehicle PMS only includes a second-level fast control loop. , excluding the hour-level slow control loop; 2) iCC can automatically adjust dynamically according to vehicle configuration parameters (especially total weight), vehicle speed, weather and road conditions, and the distribution of the longitudinal slope function of the mile-level road section directly in front of the vehicle.
  • the "software-defined hybrid powertrain” technology in the present invention is a collection of multiple technical measures focusing on simultaneously optimizing the three technical indicators of the ACE heavy truck's power performance, fuel consumption, and emissions, including at least the following technical measures:
  • the combination of the two such as series-hybrid intelligent start-stop control technology (iSS), parallel-hybrid intelligent power switching control technology (iPS), intelligent mode switching control technology (iMS), intelligent cruise technology (iCC), engine clean cold start technology ( CCS), clutchless shift control technology (CGS), predictive state of charge control technology (PSC), vehicle predictive power management strategy (PPMS-Predictive Power Management Strategy) based on machine learning (ML) fuel saving algorithm, Aftertreatment system intelligent temperature control technology (iTM), engine binary cylinder deactivation technology (bCDA), etc.
  • iSS series-hybrid intelligent start-stop control technology
  • iPS parallel-hybrid intelligent power switching control technology
  • iMS intelligent mode switching control technology
  • iCC intelligent cruise technology
  • CCS engine clean cold start
  • Examples of retrofitting ACE heavy trucks are as follows: 1) Select a suitable used truck in the United States; preferably a used diesel or natural gas heavy truck that meets the US federal EPA-2010 emission regulations, with a total mileage (Milage) of less than 600,000 miles, and is in good condition.
  • the transmission 150 must be an automatic mechanical transmission (AMT) in good condition; of-frame Overhaul), only the chassis and cab of the vehicle are in good condition; 2) Prepare a hybrid conversion kit (HCK-Hybrid Conversion Kit), including dual motors 110&140 (low-speed high-torque permanent magnet synchronous or AC asynchronous motors) , rated power 100 ⁇ 200kW), battery pack 130a&b (power type liquid-cooled battery pack, total capacity 20 ⁇ 90kWh, can be combined in parallel by two groups of different cells), clutch 111 (heavy-duty wire-controlled clutch), electric power splitter (ePSD) 123, 100 kilowatt-class braking resistor 131; may also include a vehicle controller (VCU) 201, a satellite navigation system (GNSS) 220, a wireless gateway 210, a millimeter-wave radar 230, Map instrument 240 (including three-dimensional electronic map
  • the total continuous driving power of each modified ACE heavy truck in parallel mode is greater than 500kW, and its power and braking performance are significantly better than any top mass-produced commercial diesel heavy trucks in the world today, and it is better than
  • the actual (RDE) fuel consumption (CO2) of the used heavy trucks before the modification is reduced by 20% to 30%, and the RDE emissions (NOx) are reduced by more than 50%, meeting the mandatory requirements of the US GHG-II regulations for new heavy trucks in 2027.
  • the ACE heavy-duty truck technology of the present invention is not only suitable for new heavy-duty trucks, but also can convert nearly 2 million second-hand heavy-duty trucks (over 500,000 vehicles in total) to more than 25% of the diesel heavy-duty trucks in use in the United States before 2027 with high cost performance.
  • ACE heavy-duty trucks with high dynamics, ultra-low RDE fuel consumption and emissions have significant economic and social benefits.
  • the ACE heavy truck can also be configured with a diesel engine with binary cylinder deactivation (dCDA) and an existing single-box integrated aftertreatment system (ATS) with an intelligent temperature control function (iTM), which can meet the requirements of mass commercial use before 2027.
  • dCDA binary cylinder deactivation
  • ATS existing single-box integrated aftertreatment system
  • iTM intelligent temperature control function
  • the passive operating mode (POM) of the engine 101 in the fourth quadrant of its universal characteristic curve can be subdivided according to the specific working mode of a specific cylinder in a complete engine four-stroke cycle.
  • CCO is suitable for all mass-produced and commercial engines. It is essentially a specific engine fuel injection control strategy, which is completely implemented by software and does not require complicated engine configuration.
  • CDA means that some but not all designated cylinders of the engine are completely cut off the fuel injection during the combustion stroke, and the intake valve and exhaust valve of the corresponding fuel-cut cylinder are in the four-stroke engine. It remains normally closed during the Four-Strock Engine Cycle.
  • VVA variable valve actuation
  • the "combustion factor" (CF-Combustion Factor) of an engine is defined as the proportion of the number of cylinders that complete combustion work in a four-stroke engine cycle of the engine.
  • the combustion factor CF is a positive number not greater than 1; in other words, in the existing analog electronically controlled engine technology (including the CDA technology), when the engine 101 is running normally, the zero speed and torque ( That is, the CF of the engine is not allowed to be zero except for the special zero point of the engine static point, that is, the engine does not allow all cylinders to run passively and work in the fourth quadrant of its universal characteristic curve (except for engine braking mode).
  • VVA-2 VVA mechanism
  • VVA-6 VVA-6 with six independent wire control channels, which can control the intake and exhaust valves of the six cylinders respectively
  • the most complex embodiment requires twelve independent wires
  • the VVA-12 of the control channel can control the intake valve or exhaust valve of the six cylinders respectively; obviously, the higher the number of control channels, the more complicated the VVA mechanism of the engine, the higher the cost, and the higher the control dimension.
  • VVA mechanism functions are backward compatible but not upward compatible.
  • VVA-12 can be compatible with all functions of VVA-6, while VVA-6 can be compatible with all functions of VVA-2, and vice versa.
  • the main purpose is to add an effective method for thermal management of diesel engine after-treatment systems, and to maintain the RDE fuel consumption basically unchanged. Emissions (NOx and PM).
  • Cylinder deactivation (CDA) technology has been mass-produced and commercialized in light-duty vehicle gasoline or diesel engines, but in heavy-duty truck diesel engines, as of the end of 2020, the CDA technology for heavy-duty truck diesel engines worldwide is still in the research and development stage, and there is no mass production and commercialization.
  • NVH vibration and noise problem
  • the present invention focuses on a novel CDA engine technical solution-"binary cylinder deactivation technology" (bCDA-binary Cylinder DeActivation), and the specific technical measures are as follows: It is preferable to configure a set of VVA-1 by modifying the design of the engine intake and exhaust mechanism.
  • the single-channel VVA-1 mechanism is more compact and durable than the multi-channel VVA-2, VVA-6, VVA-12 and other mechanisms, the control strategy is simple and practical, and the cost delta is lower, which is the best embodiment of bCDA ;
  • various multi-channel VVA mechanisms are (
  • the binary cylinder deactivation technology (bCDA) is a significant improvement to the existing cylinder deactivation technology (CDA), and under the premise of maintaining performance, the structure is simpler and the cost is lower Lower, longer durability, better NVH characteristics.
  • the pulse-controlled engine (series hybrid iSS or parallel hybrid iPS) of the present invention can also significantly improve the vibration and noise at the engine or vehicle level caused by the cylinder deactivation technology (including the binary cylinder deactivation technology), especially the dynamic switching of the CDA mode.
  • POM passive operating mode
  • CCO fuel cut-off mode
  • bCDA binary cylinder deactivation mode
  • the intake and exhaust valves of each cylinder will switch to CDA mode after at least one complete engine cycle in the non-combustion passive operating mode; in other words, controlled by VCU 201 and/or ECU 102,
  • the CDA mode switching of the digital pulse control engine 101 can only occur in the low-state operating period of the fourth quadrant of the engine, and is not allowed to occur in the high-state operating period of the first quadrant of the engine, thus greatly avoiding the engine CDA mode.
  • NSH mechanical vibration and noise problem
  • Combustion Strock The mechanical vibration and noise problem (NVH) at the engine or vehicle level caused by the switching and the combustion stroke of each cylinder of the engine (Combustion Strock) is directly coupled and affects each other;
  • Another advantage of the AEC engine is that the former can completely avoid the vehicle-level vibration and noise problem (NVH) caused by the latter CDA mode switching and the corresponding engine and vehicle engineering adaptation problems.
  • the after-treatment system (ATS-After-Treatment System) of the modern diesel engine 101 of the ACE heavy truck 010 may include the following modules, and the exhaust gas outlet of the turbocharger (T) 108 can be regarded as between the engine body and the after-treatment system
  • the mechanical interface of the electric catalyst heater (ECH; referred to as “catalytic electric heater”) 301 can be a section of belt connecting the exhaust gas outlet of T 108 and the inlet of the integrated aftertreatment system 305 (referred to as "single box system").
  • ECH contains a car-sized electric heater with small exhaust gas flow pressure drop, controlled by power controller (PCU) 302, which can quickly heat the exhaust gas passing through the ECH (second level) to 250 degrees Celsius
  • PCU power controller
  • the power controller 302 based on IGBT power electronic technology obtains high-voltage direct current from the confluence point (X) 125 of the ePSD 123, adopts a pulse width modulation (PWM) control strategy and configures the communication capability of the CAN bus, the rated power of ECH and PCU Should be at least 30kW.
  • PWM pulse width modulation
  • a mainstream diesel integrated aftertreatment system 305 that meets current emission regulations (US EPA-2010; Euro-VI; National-6) includes the following modules: Diesel Oxidation Catalyst (DOC) 310, Series Diesel Particulate Filter (DPF) 320, Selective catalytic reducer (SCR) 340 in series, urea leakage catalyst (ASC) in series, exhaust pipe 360 in series; urea nozzle (UIU) 330 is located between the outlet of DPF 320 and the inlet of SCR 340, which can be dynamically and accurately The time and dosage of urea injection from the diesel exhaust fluid tank (DEF; ie, urea tank) 331 are controlled appropriately.
  • DEF diesel exhaust fluid tank
  • the rated electric power range of the catalytic electric heater (ECH) 301 can be preferably 30kW to 70kW, and the rated electric power range of the power controller (PCU) 302 is 25kW to 65kW.
  • ECH and PCU with rated power greater than the above upper limit have high rapid heating capacity, but the cost increases significantly, which is the sub-optimal solution; because the cost of PCU 302 is significantly higher than that of ECH 301, the rated power of ECH should be larger than that of PCU, moderately Overmatch.
  • Other embodiments include moving the position of the ECH 301 in FIG. 7 back to the interior of the single-box system 305, behind the DPF 320 and before the SCR 340.
  • the urea nozzle (UIU) 330 may include kilowatt-scale electrical heating.
  • the engine aftertreatment system (ATS) intelligent temperature control technology (iTM) in this disclosure refers to the use of modules such as ECH 301, PCU 302, UIU 330 shown in FIG. 7, and dynamic adjustment of the single box system 305 through power electronic control and electric heating.
  • the working temperature range (250 degrees Celsius to 550 degrees Celsius) of various internal catalysts (especially SCR 340) ensures that the engine after-treatment system always works in the high-efficiency area of various catalysts regardless of the working conditions of the vehicle, minimizing vehicle pollutants emission.
  • the SCR is arranged before the DOC and DPF, and it has to bear the adverse effects of more substances in the exhaust gas, such as particulate matter or sulfur, which will significantly reduce the performance and life of the LO-SCR.
  • the LO-SCR is subjected to intermittent high temperature (Above 500 degrees Celsius) Desulfation regeneration (Desulfation) will consume fuel and increase CO2 emissions.
  • the present invention proposes a diesel engine and other automotive-grade electromechanical components that can be mass-produced globally and can be mass-produced and commercialized in 2027 while meeting the CO2 limit of the U.S. GHG-II regulation and the NOx limit of the California ultra-low emission combined regulation for diesel engines (90% lower than EPA-2010) ACE heavy truck software-defined hybrid powertrain technical solution, the specific technical measures are as follows: Select a mass-produced commercial engine 101 (diesel or natural gas) with VVA mechanism, refer to Figure 1 and Figure 2 and In the foregoing embodiment, the dual-motor hybrid powertrain system of the ACE heavy truck 010 is built; the analog electronically controlled engine (AEC) is converted into a digital pulse-controlled engine (DPC) by using the serial hybrid iSS technology or the parallel hybrid iPS technology.
  • AEC analog electronically controlled engine
  • DPC digital pulse-controlled engine
  • the VVA digital pulse control engine implements binary cylinder deactivation control (bCDA), referring to FIG. 7 and the foregoing embodiment; builds an engine post-processing system with intelligent temperature control function (iTM); consists of VCU 201 and ECU 102, ePSD 123, battery The BMS (Battery Management System), TCU 151, PCU 302, UIU 330 and other control modules of package 130a&b cooperate to dynamically control engine 101, dual motors 110&140, clutch 111, gearbox 150, The operating conditions of the battery pack 130a&b, catalytic electric heater (ECH) 301, urea nozzle (UIU) 330 and other subsystems, while optimizing energy conservation and emission reduction, to achieve ACE heavy truck RDE fuel consumption and emissions are minimized at the same time, to meet the 2027 US regulations (GHG -II; California) CO2 and NOx limits for diesel heavy trucks; the above technical solutions are referred to as "diesel NZE" technical solutions.
  • bCDA binary cylinder
  • a hybrid powertrain equipped with a common engine 101 without a VVA mechanism can be used (See Figure 1 & 2), with series-hybrid iSS technology or parallel-hybrid iPS technology and AI algorithm for energy saving and emission reduction; although the engine cannot implement binary cylinder deactivation control (bCDA), it can still implement binary fuel cut-off control strategy (bCCO– binary Cylinder Cut-Off), only the ordinary single box system 305 without intelligent temperature control function (iTM) is required as the post-processing system; in North America, modern second-hand diesel heavy trucks (meeting EPA-2010 regulations) are legally converted into ACE heavy trucks, preferably The technical solution of this embodiment.
  • the advantage of binary cylinder deactivation technology (bCDA) compared with binary fuel cut off technology (bCCO) is that it completely avoids the cold exhaust gas in the passive operation mode (POM) of the digital pulse control engine to each catalyst module inside the single box system 305 Cooling down to below 250 degrees Celsius ensures that the post-processing system always operates in the high-efficiency area, which helps to reduce emissions; the second is to reduce the loss of the pump in the passive operation mode of the digital pulse control engine, which helps to save energy; the disadvantage is that the former requires modern mass production.
  • the common engine hardware is upgraded to an advanced engine with a VVA mechanism, and the system cost increases.
  • the quasi-zero emission (NZE) diesel heavy-duty diesel engine refers to a mass-produced commercial vehicle that meets both the 2027 U.S. federal GHG-II regulations and the California ultra-low NOx emission combined regulations (NOx is 90% lower than the EPA-2010 limit).
  • NZE diesel heavy truck technical embodiments preferably a large six-cylinder diesel engine with a single-channel variable valve drive mechanism (VVA-1); a large six-cylinder diesel engine with a multi-channel variable valve drive mechanism can also be selected, such as VVA-2, VVA -3, VVA-6, VVA-12, etc.
  • an embodiment of a single motor and hybrid powertrain is as follows, the generator (MG1) 110 and the motor controller (MCU1) 121 are eliminated, but the torque coupler (mTC1) 103 and the clutch 111 are retained , torque coupler (mTC2) 104, drive motor (MG2) 140; at this time electric power shunt (ePSD) 123 is simplified from a three-port power electronic network to a two-port network (close port I; keep ports II &III); preferably permanent magnet
  • the motor hybrid embodiment remains the same. Obviously, the system can work normally even if the maximum power (continuous or pulse) of the motor (MG2) 140 exceeds the optimal range; but the motor is too small (less than 150kW), although its weight and cost can be reduced, the vehicle power and energy saving and emission reduction optimization effect Also reduced; but the motor is too large (greater than 250kW), although it can improve vehicle power and energy saving and emission reduction optimization effect, but its weight and cost increase significantly; both are sub-optimal options; other single-motor parallel hybrid embodiments also include
  • the drive motor (MG2) is arranged in the positions of P1, P3 and P4 of the hybrid, but in the two positions of P3 or P4, because the motor (GM2) cannot amplify the torque through the gearbox 150, the power of the ACE heavy truck 010 and the DPC engine 101 are affected.
  • the dual-motor hybrid powertrain includes two special cases of dual-motor pure series hybrid or pure parallel hybrid, and also includes the special case of single-motor parallel hybrid powertrain.
  • one embodiment is a dual-motor hybrid powertrain, the peak power of the engine 101 is 300kW, and the rated powers of the dual motors (MG1/MG2) 110 and 140 are 125kW and 140, respectively.
  • another embodiment is a single-motor parallel powertrain, the peak power of the engine 101 is 300kW, and the rated power of the motor (MG2) is 300kW; the other subsystems (standard or optional) of the two systems are the same; according to the current global The development status of the low-speed and high-torque automotive motor industry, the cost of the dual-motor system (125kW+175kW; including the motor controller) is likely to be lower than that of a single large motor (300kW; including the motor controller). Diversification, ensuring low-cost and high-quality supply is obviously better than the latter; the two systems have basically the same comprehensive dynamic performance, and both can use the pulse modulation (serial hybrid iSS or parallel hybrid iPS) technical measures to convert the analog power of the existing technology.
  • pulse modulation serial hybrid iSS or parallel hybrid iPS
  • AEC engine 101 is converted into a digital pulse control (DPC) engine; but the former has several more system functions (such as intelligent mode switching (iMS), serial hybrid mode, dual motor redundancy, etc.) than the latter, and it is optimized at the same time.
  • the former dual-motor hybrid
  • the former has more control handles and better performance than the latter (single-motor hybrid); therefore, the former (hybrid) is more cost-effective than the latter (parallel). high, is the preferred embodiment.
  • Fuel consumption - fuel bill or emissions In order to fly in the sky, human beings cannot simply imitate birds and design aircraft with vibrating wings, but design aircraft according to the first principles of aerodynamics and cybernetics. Automation also cannot simply imitate experienced drivers, but must find a first-principle solution to the problem of energy saving and emission reduction of heavy trucks in trunk logistics.
  • the first principle of optimizing energy conservation and emission reduction for heavy trucks in mainline logistics is the vehicle dynamic equation (1-1); human drivers cannot use mental arithmetic (Mental Steps) or pen and paper (Pen and Paper) to solve vehicle dynamics in real time (second-level delay). It cannot quantitatively (relative error less than 10%) dynamically predict the distribution of the spatiotemporal function of vehicle on-road power within the electronic horizon (minute level or mile level).
  • the distribution has rough and qualitative memory; and the on-board computer (such as VCU 201) can be based on the static parameters of ACE heavy truck 010 (engine displacement and power, motor power, battery pack capacity, total vehicle weight, 3D map, wind resistance coefficient, wheel resistance coefficient etc.) and dynamic data (vehicle speed, acceleration, road gradient, time, vehicle positioning, etc.), easily dynamically solve the vehicle dynamic equation (1-1) with a refresh rate of at least 0.2Hz and a relative error of less than 10% accuracy, Real-time and accurate prediction of vehicle on-road power distribution (referred to as "predicted on-road power") within the electronic horizon (hour-level or 100-mile-level) spatiotemporal function; at the same time, various sensors and controllers of ACE heavy truck 010 (such as ECU 102, GNSS 220) , VCU 201, MCU1 121, MCU2 122a, BP1 130a, BP2 130b, etc.) in coordination, it can measure the “fuel-saving data set” with a
  • the fuel-saving data set includes the actual on-road power; the actual on-road power spatio-temporal function and the predicted on-road power spatio-temporal function are projected into the one-dimensional longitudinal space of the vehicle driving road and the difference is calculated.
  • the cloud can independently and continuously improve the accuracy of the VCU 201 to predict the on-road power; the real-time and accurate prediction of the on-road power function distribution in the 100-mile electronic horizon is the result of the trunk logistics ACE heavy truck 010 through intelligent cruise control (iCC) technology Measures to optimize the technical basis of vehicle energy saving and emission reduction at the same time;
  • VCU 201 needs the hour-level or 100-mile-level electronic horizon as the planning space of the vehicle power management strategy (PMS) to plan ahead, by dynamically controlling the transient power function of the DPC engine 101.
  • PMS vehicle power management strategy
  • SoC state of charge function
  • the essence of the optimization problem of energy saving and emission reduction of ACE heavy truck 010 is the vehicle power management strategy (PMS).
  • the present invention realizes the online real-time global power management strategy (PMS) of the vehicle through the intelligent cruise control (iCC) technical measures of ACE heavy truck 010. ; iCC realizes the customization and implementation of ACE heavy truck 010 for each freight time under the premise of ensuring vehicle dynamics and active safety through two mutually decoupled control loops (ie fast loop or slow loop).
  • Real-time & global energy saving and emission reduction optimization control strategy; the inner layer of iCC is a second-level fast control loop.
  • Dual motors 110&140, battery packs 130a&b, clutch 111, etc. satisfy the vehicle dynamic equation (1-1) and the series hybrid power equation (2-4) or the parallel hybrid power equation (3-3) in real time; Only focus on how the current time and space dynamically distribute power between the engine and the battery pack to ensure the transient power, active safety and transient local optimization of the engine's energy saving and emission reduction of the ACE heavy truck 010. It does not directly involve the real-time global energy saving and emission reduction of the engine.
  • the outer layer of iCC is an hourly slow control loop
  • VCU 201 first predicts the (hourly or 100-mile) electronic horizon with a refresh rate higher than 0.2Hz to predict the on-road transient power function and the predicted on-road average power function (See equation MAW), and then dynamically adjust the difference distribution between the predicted average on-road power and the average power function of the DPC engine 101 within the (hour-level or 100-mile level) electronic horizon according to a specific energy-saving and emission-reduction algorithm (adjusting the DPC engine’s Duty cycle; series hybrid power equation (2-4A) or parallel hybrid management equation (3-3A)) to ensure that battery packs 130a & b work stably in the high-efficiency region for a long time and seek battery pack regeneration power or total power cumulative throughput globally
  • the slow-speed loop only focuses on the real-time global optimization of vehicle energy-
  • the PWM period T PWM of the DPC engine 101 is one minute
  • the rolling average window T MAW is five minutes (that is, five PWM periods)
  • the electronic horizon time period T ehz is one hour or the end point time T ttd ;
  • ACE When the heavy truck 010 is driving normally on the highway, the average speed is higher than 40 mph. Due to the sudden deceleration of the vehicle directly in front of the same lane or other traffic conditions, the ACE heavy truck 010 may need to decelerate suddenly to maintain a safe driving distance, but this The sudden drop in the transient speed is mostly a temporary disturbance.
  • the speed of the ACE heavy truck will return to the speed of the highway traffic flow (higher than 40 mph) within one minute; because the ACE heavy truck 010 has a super regenerative system (10-second pulse regenerative braking power up to 500 kW in parallel-mix mode), this kind of temporary disturbance only has a significant impact on the transient vehicle speed, and has a negligible impact on the overall vehicle energy conservation and emission reduction; power management strategy (PMS ) fast loop is responsible for dynamically adjusting the transient speed and acceleration of the vehicle to ensure the dynamic performance and active driving safety of the vehicle.
  • PMS power management strategy
  • the relative error of VCU 201 forecasting the distribution of the average predicted on-road power function in the electronic horizon for the next hour is significantly lower than the relative error of the transient predicted on-road power function (ie the variance between the predicted value and the actual value), and at the same time
  • the robustness of the average predicted on-road power is also significantly better than the transient predicted on-road power
  • the slow loop has sufficient time (hours) to dynamically control the battery pack 130a&b by dynamically adjusting the DPC engine 101 transient power PWM duty cycle Stable operation or switching in one of the three modes of CS, CD and CI, implement predictive charge control (PSC) on the battery pack, seek the maximum value of the regenerative charge turnover rate or the maximum value of the total charge turnover rate, so as to realize the ACE heavy truck 010 Real-time global optimization of RDE energy saving and emission reduction; it should be emphasized that the energy saving and emission reduction optimization algorithm based on the iCC technology of the present invention is an online real-time global (On-
  • the former iCC
  • the latter has lower computing power requirements on the vehicle end, smaller algorithm errors and higher robustness than the latter (existing technology).
  • PMS power management strategies
  • the working condition of the engine 101 refers to the transient speed and torque at the flywheel of the engine
  • the working condition of the powertrain (including the engine 101, the motors 110&140, the gearbox 150, the drive axle 160&180, etc.) or the ACE heavy truck 010 refers to the The transient speed and total torque of all driving wheels of the vehicle; for the ACE heavy truck 010, the vehicle operating conditions are equivalent to the hybrid powertrain operating conditions, but not equivalent to the operating conditions of the engine 101; the ACE heavy truck operating conditions are equivalent to Engine operating conditions are independent of each other and can be controlled separately.
  • point condition, line condition, or surface condition of the engine respectively refers to the projection of all transient condition points on the plane of the universal characteristic curve (the speed is the horizontal axis and the torque is the vertical axis) during the running time of the engine.
  • the sets are respectively several (one to three) fixed points, lines, or planes; obviously, the operating condition of the vehicle is always the plane condition. Referring to FIG.
  • the digital pulse control (DPC) engine 101 of the ACE heavy truck 010 can always operate in a line condition (serial or parallel), wherein at least one line condition is In the active operation (AOM) high-efficiency area of the engine, the other line condition is in the passive operation (PAM) high-efficiency area of zero emission and zero fuel consumption of the engine, and the two line operating conditions can be switched smoothly in seconds;
  • the traditional analog electronically controlled (AEC) engines of hybrid heavy trucks are all under surface conditions, and cannot run stably in one of up to three line conditions (including fast switching) for a long time.
  • the transient power function of the analog electronically controlled (AEC) engine 101 of the internal combustion engine heavy truck or the hybrid heavy truck is similar to the on-road power function of the vehicle, both of which are simulated slowly changing time functions.
  • the transient power function of the engine will not have a 100-kilowatt-level jump in seconds (especially the jump from a low state to a high state);
  • the digital pulse control ( The transient power function of the DPC) engine 101 is a bipolar unequal-amplitude pulse width modulation (PWM) function, and in each PWM cycle (minute-level time period), there can be at most two hundred-kilowatt-level second-level jumps (one transition from low state to high state and/or one transition from high state to low state);
  • PWM pulse width modulation
  • one of the essential technical features of the DPC engine of the present invention is that regardless of the actual duty cycle of the ACE heavy truck 010, The transient power function of the engine will often (minute-level interval)
  • the surface operating conditions are presented, in which a non-negligible part of the operating points (10% + time probability) falls outside the combustion efficient area of the engine; while all the operating operating points of the DPC engine 101 are in the first quadrant of the engine universal characteristic curve or
  • the fourth quadrant is presented with at least two simple line operating conditions (see Figure 4), wherein almost all (99% + time probability) high-state operating points in the first quadrant fall within the specified operating conditions in the engine's combustion efficient region.
  • the DPC engine can optimize the actual fuel consumption and emissions at the same time; all the low-state operating points in the fourth quadrant fall within the specified zero-fuel-consumption and zero-emission operating point (ie, another type of high-efficiency operating point); when the engine is high
  • the time probability of transient combustion inefficiency operating points occurring during bidirectional switching between state and low state is less than 1%, and the impact of these low-probability inefficiency operating points on the actual cumulative fuel consumption and emissions of the DPC engine is negligible.
  • the intelligent mode switching (iMS) technology is a member of the intelligent cruise control (iCC) combination technology set.
  • the preferred embodiment is as follows: VCU 201 dynamically calculates the transient predicted on-road power in the hour-level electronic horizon at a refresh rate of not less than 0.5Hz and the average predicted on-road power distribution, when the absolute value of the spatio-temporal function of the average predicted on-road power is less than 50kW and the length is greater than 0.5 miles, the priority is to switch from parallel hybrid mode (clutch 111 closed) to serial hybrid mode (clutch 111 open) ), when the absolute value of the average predicted on-road load power or the average actual on-road load power is greater than 50kW, the parallel-hybrid mode is preferred; obviously, the mechanical power consumption or power consumption of the DPC engine 101 in the series-hybrid iSS low-state condition is significantly lower than the parallel-hybrid mode.
  • the iPS can further reduce the fuel consumption by 1% due to the mechanical power consumption or power consumption of the iPS in the low state; due to the mechanical connection between the drive motor 140 and the gearbox 150, the gearbox never runs in neutral, and the iMS slides in neutral with the prior art (commercially oriented). (named eCoast or SmartCoast) have obvious differences in technical measures, the former has better braking effectiveness than the latter.
  • the software-defined hybrid powertrain and ACE heavy truck of the present invention focus on vehicle RDE energy saving and emission reduction, greatly reduce the technical difficulty of using information (fuel saving data set) to save energy (fuel consumption), and significantly improve The conversion efficiency of the actual fuel consumption and emission reduction of ACE heavy trucks through consumption information.

Abstract

一种双电机混联动力总成系统,通过对发动机(101)和电池包(130a、130b)的瞬态功率时变函数分别进行脉冲调制控制,即串混智能启停控制或并混智能功率切换控制,将现有技术模拟电控发动机(101)的复杂面工况转换为数字脉控发动机(101)的简单线工况,在燃烧高效区内指定高态线工况与零油耗零排放的指定无燃低态线工况之间二选一时分复用;将发动机工况与车辆工况之间的传统固定式一对一双向映射关系转换为动态可调式多对多双向映射关系,全面覆盖任何整车工况;实现脉控发动机工况与整车工况解耦及混联动力总成软件与硬件解耦;通过软件定义和空中下载升级,能够针对每台车辆或每个车辆应用场景敏捷定制整车功率管理策略,实施在线实时全局性节能减排优化算法。

Description

软件定义混联动力总成及车辆 技术领域
本申请涉及混联动力总成及车辆。
背景技术
公路物流对世界各个主要经济体都至关重要。干线物流重卡(平均工作日行驶600公里以上;80%以上行驶里程为封闭式高速公路;总重超过15吨)即是公路物流行业的中坚力量,也是交通领域的油耗(CO2)和污染物排放(NOx等)大户,是各国政府常年节能减排监管整治的重点之一。当今欧美针对包括公路重型卡车(简称“重卡”)在内的大型商用车辆(车辆总重量大于10吨)的强制性排放法规已从聚焦减少尾气污染物排放的欧-VI标准(2014年开始在欧洲全面实施)和美国EPA-2010(2010年开始在美国全面实施)转变为聚焦降低尾气中以二氧化碳(CO 2)为主的各种温室气体(GHG)碳排放的一系列新排放法规。车辆的碳排放(CO 2克/公里)和其油耗(升/百公里)基本成正比,降低油耗(或提高燃油经济性MPG;英里/加仑)等同于减少碳排放。
美国联邦政府2016年颁布的针对中/重型发动机(柴油或天然气)和商用车的温室气体第二阶段法规(GHG-II),明确规定了2021年到2027年期间,所有在美国新注册销售的中/重型发动机和商用车在维持EPA-2010尾气污染物排放限值不变的前提下,逐年提高车辆燃油经济性(FE,英里/加仑),降低油耗(FC,升/百公里)或碳排放(CO2,克/公里)的详尽强制性标准。2019年欧盟通过了其历史上首部针对重卡碳排放的强制性法规(即欧洲CO2标准);该法规在维持欧-VI尾气污染物排放限值不变的前提下,以2019年柴油重卡碳排放(即油耗)为基准,要求到2025年,欧洲新重卡碳排放(CO2,克/公里)下降15%;到2030年,碳排放下降30%。中国2017年开始全国实施大型商用车辆国-5强制性排放法规,从2021年7月开始全国范围实施国-6强制性排放法规;国-6标准在尾气污染物排放限值方面与欧-VI标准和美国EPA-2010标准基本相同,个别限值甚至更严格;同时中国也有针对重卡油耗或碳排放的法规。
排放法规是世界各国车辆动力总成技术发展的最主要推动力。中国国-6重卡的动力总成将和目前北美和欧洲重卡的动力总成在历史上首次处于同一技术平台水平。根据近二十年以来中国国-1到国-6法规制定颁布都参照欧盟欧-I到欧-VI法规的历史经验,预计中国将会跟进欧盟,很快推出聚焦重卡碳排放强度和油耗的新法规。显然,2021年以后,全球三大重卡市场(中国、美国、欧盟)的强制性排放法规和行业聚焦都将从继续降低重卡的尾气污染物排放转向逐年减少重卡的油耗和碳排放。一辆干线物流重卡在欧美平均燃油费近六万美元/年,在中国重卡燃油费可高达四十万元人民币/年。美国二百多万辆重卡每年总油费超过千亿美元,中国五百多万辆重卡每年总油费超过一万亿元人民币。通过技术创新,同时降低重卡油耗和排放,对主机厂、司机、车队、运货人、政府、社会等各利益攸关方都意义非凡。
美国在重卡排放及油耗法规制定和技术研发方面一直走在世界前列。由美国能源部(DOE)牵头并资助总计1亿美元的“超级卡车“项目(SuperTruck I,2011-2016),四支由美国前四大重卡主机厂领衔的技术团队,通过五年研发,所打造的四辆超级重卡样车,2016年底都超额完成对标2009年重卡货运燃油经济性(加仑/吨英里)改善50%和柴油发动机热效率(BTE)50%的 目标。2017至2022年,美国能源部再次资助五支技术团队总计八千万美元研发费,实施“超级卡车II”项目(SuperTruck II),预期五辆超级重卡样车2022年将达到柴油机热效率(BTE)55%和重卡货运燃油经济性(加仑/吨英里)改善100%的目标。每个由重卡主机厂牵头的技术团队,企业自身的合计资源投入,都高于其从美国政府获得的资助金额;两期美国超级卡车项目(SuperTruck I&II)总计耗时十年(2011~2022),美国联邦政府总投资超过4亿美元;九辆超级重卡样车的技术路线和研发及测试成果,代表当今世界重卡行业的顶尖技术水平。
美国的超级卡车项目,包含了北美重卡行业认为2027年前可能量产并落地商用的全部重卡节能减排技术方案,今后主要挑战是如何提高各项节能减排技术方案产品化的综合性价比,加快量产商用落地的步伐。目前美国重卡行业中长期挑战是如何在有效地控制新重卡售价涨幅的前提下,达到GHG-II重卡油耗2027年的强制性要求。值得注意,上述美国超级卡车项目全部九家技术团队无一采用深度油电混动的重卡技术路线;显然,当今美国重卡行业一致认为,全混重卡(Full Hybrid HDT)技术方案在2027年前无法量产商用。
近十年来,在世界主要汽车市场,特别是世界最大的中国汽车市场,纯电或油电混合动力的乘用车和大型客车,在政府大力补贴之下,都有大规模落地商用的成功先例。但在中国/美国/欧盟这三个全球范围体量最大、技术最先进的干线物流重卡市场,国内外行业专家普遍认为2030年以前,受限于当今可产业化的动力电池技术和性能极限,零排放纯电重卡或超低排放深混重卡(Full Hybrid Truck)在无政府补贴的情况下,在干线物流场景下,难以实现大规模商用;换句话讲,干线物流重卡的电动化是当前全球新能源汽车产业未征服的技术巅峰。细节参见下列欧美公开行业研究报告:1)里卡多(Ricardo)公司2017年题为“重型车辆技术潜力和成本分析”的研究报告。Ricardo(2017),“Heavy Duty Vehicle Technology Potential and Cost Study”,Final Report for ICCT;2)国际清洁交通协会(ICCT)Oscar Delgado等专家2018年1月发表的白皮书”European Heavy-Duty Vehicles:Cost Effectiveness of Fuel-Efficiency Technologies for Long-Haul Tractor-Trailers in the 2025-2030 Timeframe”;3)国际清洁交通协会(ICCT)Felipe Rrodriguez博士2018年6月28日学术报告”HDV Fuel Efficiency Technologies”;4)美国能源部2016年6月提交国会的报告”Adoption of New Fuel Efficient Technologies from SuperTruck”。5)北美货运效率协会(NACFE)2019年题为“纯电、混动、或替代燃料重卡”的调研报告;”Viable Class 7/8 Electric,Hybrid and Alternative Fuel Tractors”,North American Council for Freight Efficiency,December 2019。
油电混动车辆的实际油耗(升/百公里)与该车辆运行工况(Duty Cycle)高度关联。城市工况(Urban)下车辆平均车速低(小于40公里/小时),主动加速、减速或制动频繁;高速公路(Highway)工况下车辆平均车速高(大于60公里/小时),主动加速、减速或制动不频繁。混动车主要通过驱动电机的再生制动来回收能量,达到节能减排的有益效果。长期以来,全球汽车产业界和学术界对混动车辆(轻型车或重型车)的节油潜力有如下“共识”:城市工况下,混动车辆比传统燃油车节油明显,综合油耗可降低30%以上;但在高速公路工况下(平均时速高于60公里/小时;很少主动加速或刹车减速),发动机能长期稳定地工作在其高效区,再生制动回收能量的机会少,混动车辆比传统燃油车节油效果不明显,综合油耗降幅不可能超过10%;特别是串联混动车辆,因发动机发电加纯电驱动需要经过多次能量转化,在高速公路工况下节油效果不如并联混动车辆,甚至可能比传统燃油车更费油。
全世界已量产商用重卡的发动机中,柴油机占比超过95%;重卡柴油机在高速工况下可稳 定地工作在其燃烧高效区,经过几十年不断改进后,其节油边际效益递减,进一步减低传统柴油机油耗和排放的技术挑战越来越大,成本增加也越来越高;在过去二十五年间,美国、欧洲、和中国干线物流重卡行业平均油耗(升/百公里)年均降幅不足1.5%;对欧美或中国的重卡制造商而言,以市场认的高性价比逐年明显降低干线物流重卡实际综合油耗(升/百公里),在技术上和商务上的挑战巨大。参见欧洲汽车制造商协会(ACEA)於2018年8月针对欧盟重卡新CO2排放标准立法的立场文件“The European Comission Proposal on CO2 Standards for New Heavy-Duty Vehicles”;ACEA当时认为,欧盟即将批准的新碳排放(CO2)强制性标准中,2025年油耗降15%,2030年油耗降30%的目标太激进;新重卡动力总成开发时间很长,目前没有性价比高和可及时量产的技术路线,来实现2025年欧盟节油法规目标;足见进一步双位百分点降低现代重卡的油耗在技术上和商务上极具挑战。显然,任何节油技术,都有降低车辆尾气污染物排放和温室气体(或碳)排放的双重益处。换句话讲,车辆节能必有利于减排(污染物和CO2),但是减少尾气污染物排放并不一定有利于节油;实际上绝大多数减小以NOx为代表的尾气污染物排放的已量产或可量产的技术方案都以增加油耗(即CO2排放)为代价。
在保证整车动力性的前提下,优化整车实际(RDE运行)节能减排是全球汽车行业长期不懈追求的二大终极目标;欧美主流重卡主机厂及相关研究机构近二十年来,投入大量的人力和物力,积极探索和开发多种重卡节油减排技术,截止2020年底,欧美各家主流重卡主机厂和一级供应商都还没有公开能够满足欧洲CO2法规2030年碳排放目标值或美国GHG-II法规2027年碳排放目标值并可及时产业化的深度油电混动的重卡动力总成新技术路线或方案。在本发明中,针对传统内燃机重卡或油电混动重卡而言,节能的核心指标(Core Metrics)是油耗(FC,升/百公里)或碳排放(CO2,克/公里),减排的核心指标是NOx排放(克/千瓦时或克/马力小时)。绝大多数已量产或近期(三年内)可量产的柴油机节能减排技术措施,在CO2与NOx排放之间只能实现零和权衡(Zero-sum Trade-off),即二者只能一降一升,无法一降一平或二者同降;能够在CO2与NOx排放之间实现正和权衡(Positive-sum Trade-off;即二者能一降一平或二者同降)的高性价比且近期可量产的技术方案凤毛麟角,是全球重卡行业几十年不懈追求的圣杯(Holy Grail)。某全球著名的汽车集团,在美国销售了近60万辆清洁柴油乘用车,对外宣称找到了能够同时优化道路车辆柴油机CO2和NOx的高性价比可量产技术方案;但2015年该汽车集团向美国政府(EPA和CARB)公开承认在车辆节能减排认证过程中排放控制软件作弊造假;在车辆排放认证测试时,软件指挥柴油机采用减排控制策略,保证NOx排放稳定达标,但此时软件既不测算也不在乎实际油耗高(即CO2排放高)的代价;而在车辆实际行驶环境(RDE-Real Driving Enviroment)运行时,软件指挥柴油机采用节能控制策略,保证CO2排放最低(即油耗最小化),但此时实际NOx排放比法规限值高二十倍以上;该汽车集团最终被以美国为首各国政府罚款总计超过二百亿美元,企业声誉大跌;这起震惊世界的“柴油门”事件,从一个侧面反映出如何发明高性价比可量产的技术方案,以达到同时优化柴油机RDE油耗和排放(即CO2和NOx排放同时最小化)的有益效果,是当今全球汽车行业急待解决的技术难题。需强调,在发动机排放法规认证过程中,与排放相关的硬件一样,标定软件版本一旦确定,如同刻在石板上,不得擅自修改;所有标定软件在工程更改之后必须重新做排放认证。
国际清洁交通协会(ICCT)於2020年5月发表了欧美重卡实际运行排放达标分析白皮书,“In-use NOx Emissions and Compliance Evaluation for Modern Heavy-Duty Vehicles in Europe and United States”,White Paper,ICCT,May 2020;根据该白皮书,欧洲和美国的现代柴油重卡, 在实际驾驶环境(RDE)下,特别是对整车油耗和排放极具挑战的低速低负荷工况或怠速工况下,使用便携式排放测试仪(PEMS),实际NOx排放普遍超标;而且在大概率发动机低速低负荷或怠速运行的城市工况下,现代美国重卡(满足EPA-2010)比现代欧洲重卡(满足欧-VI)RDE实际NOx排放值要高一倍,且二者均超标;例如当车速低于25mph(即英里/小时,城市工况)时,美国重卡的NOx实际排放均值1.1g/bhp-hr(克/马力-小时)而EPA-2010的NOx法规限值为0.2g/bhp-hr;欧洲重卡的NOx实际排放均值0.5g/bhp-hr(克/马力-小时)而欧-VI的NOx法规限值为0.34g/bhp-hr;当车速高于50mph(高速公路工况)时,美国重卡和欧洲重卡的NOx实际排放均值都稳定达标。在充满低速低负载的城市工况下,美国重卡实际NOx排放普遍明显高于欧洲重卡的底层技术原因在于美国EPA-2010排放法规中对RDE实际运行排放测试规范(即不超过规范,NTE Protocol)与欧盟欧-VI排放法规中对RDE实际运行排放测试规范(即移动平均窗口规范,MAW Protocol)相比较,在确保实验室排放认证测试结果与RDE实际运行排放测试结果高关联方面有明显的缺陷。
全球汽车行业共识,柴油机在低速低负载或怠速工况下,CO2和NOx排放值(即油耗和排放)比高速高负荷工况下CO2和NOx排放值要明显升高;但美国NTE规范允许在评判柴油重卡RDE实际运行排放测试结果是否排放达标时,可剔除所有柴油机转矩负载率(即实际转矩/峰值转矩)小于30%、功率负载率(即实际功率/峰值功率)小于30%、或发动机尾气温度低于250摄氏度工况点的排放数据,城市工况下可合法合规地排除绝大部分(90%以上)高油耗高排放的实测数据;导致城市工况下柴油重卡名义上NTE规范NOx排放限值达标,但RDE实际NOx排放限值大概率明显“合法超标”。美国联邦政府(EPA)和加州政府(CARB)已意识到当前EPA-2010法规中NTE测试规范的缺陷,正在积极准备修改相关排放法规和测试规范,例如增加发动机排放认证时低负荷和怠速循环及综合评分权重,修改NTE测试规范等,堵上这个“合法”RDE运行NOx排放超标的漏洞。
2020年8月,美国加州空气资源委员会(CARB)批准了柴油重卡低NOx排放新系列法规(Heavy-Duty Engine and Vehicle Ominibus Regulation),要求在加州销售的所有全新重型柴油车(包括大巴和重卡)於2024年将氮氧化合物NOx认证排放限值从当前的0.2g/bhp-hr(克/马力小时)减低到0.05g/bhp-hr,降幅高达75%;於2027年进一步将NOx认证排放限值降低到0.02g/bhp-hr,降幅高达90%;加州组合法规还包括新增加的柴油机低负载测试循环(LLC–Low Load Cycle)及替代NTE测试规范的实际运行RDE排放新测试规范。美国联邦政府目前正在走清洁卡车(Cleaner Truck Initiative)立法程序,预计2021年完成,要求2030年起,全美销售的所有全新大型商用车的NOx尾气排放量降低到0.02g/bhp-hr。欧盟也正在准备欧-VII立法,预计2030年起,全欧盟全美销售的所有全新大型商用车的NOx尾气排放量要求比欧-VI值减低约90%。预计中国也会追随欧盟,在2030年左右实施国7排放法规。换句话讲,2030年在美国、欧盟、和中国等三大市场销售的所有全新重型柴油车的NOx尾气排放量和CO2排放量比当前(2020年)的车型的NOx和CO2数值都必须大幅降低;重型柴油车的节能减排优化,永无止境。北美卡车和发动机制造商协会(EMA)2020年8月发布的342页的长篇技术评论,“Comments on CARB Heavy-Duty Engine and Vehicle Ominibus Regulation,Truck and Engine Manufacturers Association,August 13,2020”,阐述加州新重型柴油车系列排放法规成本昂贵(Cost Prohibitive),不可行(Infeasible),且无法执行(Unenforceable)。EMA的报告从一个侧面说明重卡行业目前对如何在2027~2030年以市场可接受的成本增加来同时大幅降低重型柴油车(Heav-Duty Diesel  Vehicle)的油耗(CO2)和尾气污染物排放(NOx),还没有发明出高性价比的可行技术方案。全球重卡行业非常需要能够打破CO2与NOx之间的零和权衡(Zero-sum Tradeoff),实现正和权衡(Positive-sum Tradeoff),即发明能够同时优化重卡节能减排的高性价比且近期可量产的技术方案,以满足2027年美国联邦GHG-II碳排放法规和加州超低NOx排放组合法规、或满足2030年欧盟的碳排放法规和未来的欧-VII污染物排放法规。
由于重卡属于生产工具,在欧美使用寿命超过二十年,在中国最长使用寿命十五年。任何重卡节能减排的新技术投放市场,要等超过十年以上的时间,才能逐渐成为市场全部在用重卡的主流;同时,旧重卡的油耗和排放都明显高于新重卡;要想在全部在用重卡宏观市场层面快速明显降低CO2和NOx排放总量,即需要快速商用推广采用最新节能减排技术的新重卡,又需要有效的技术及商业手段来加速在用旧重卡(Used Truck)的升级换代。美国重卡市场的现行法律法规允许将二手柴油重卡改装成油电混动重卡,商家自律认证而不需要政府重新认证,然后直接将改装混动重卡(Retrofitted Hybrid Heavy Truck)投放市场运营。欧盟和中国重卡市场的现行法律法规不允许将二手柴油重卡改装成油电混动重卡,每个新车型(包括车架和动力总成)必须由有资质的主机厂提交政府认证后,才能投放市场商用。
在本发明中,车辆RDE运行油耗(简称“RDE油耗”)指车辆在实际驾驶环境下运行时的油耗,等于车辆的实际燃料消耗量(升)除以累计里程,量纲为升/百公里;车辆RDE运行排放数据(简称“RDE排放”)指车辆在实际驾驶环境下运行时利用便携式排放测试仪(PEMS)所测算的污染物排放,包括氮氧化合物NOx和颗粒物PM,等于车辆的实际污染物累计排放重量(克)除以累计里程发动机总输出做功,量纲为克/千瓦时(g/kWh)或克/马力小时(g/bhp-hr),不允许剔除任何发动机非高效区工况点的排放数据;车辆NTE排放数据(简称“NTE排放”)或MAW排放数据(简称“MAW排放”)指针对RDE排放数据集,根据美国EPA-2010法规中的NTE技术规范或欧-VI法规中的MAW技术规范,允许依据规范合法剔除部分发动机非高效区工况点的排放数据后所测算的排放数据;发动机认证排放数据(简称“认证排放”),指根据美国EPA-2010法规或欧-VI法规,发动机在实验室台架根据相应法规的认证排放测算规范所测算的排放数据;重卡的名义排放(Nominal Emission)指发动机认证排放数据或整车NTE排放\MAW排放。显然,对污染物排放限值而言,发动机的认证排放限值<整车的NTE排放限值或MAW排放限值<整车的RDE排放限值;整车的RDE排放测试与发动机的实验室内台架认证排放测试的最大的区别是,前者车辆的循环工况及外部环境不固定还难重复,并且增加了司机驾驶风格这一新变量,要确保重卡RDE运行排放限值长期稳定地达标在技术上和商务上都极具挑战;而整车RDE排放才是政府及社会车辆排放监管治理的试金石,名义排放应该尽量与RDE排放一致。欧美重卡行业经过近二十年的不懈努力,迄今为止仍然无法有效地解决重卡RDE排放长期稳定达标这一技术难题;美国NTE规范允许合法剔除所有发动机转矩或功率负载率小于30%的全部排放数据,而欧盟MAW规范则要求保留大部分发动机排放高挑战性的低速低负荷或怠速工况的排放数据,这是导致欧-VI版的柴油重卡与美国EPA-2010版的柴油重卡比较,RDE排放明显更低的底层技术原因。与油耗不同,现代重卡的RDE排放看不见也摸不到,对车队或司机而言,排放达标即可,没有原动力持续降低车辆RDE运行排放;而政府环保部门及社会公众所关注的则是尽量减少名义排放与RDE运行排放之间的差异并持续降低RDE运行排放。重卡是一种生产工具,对车队或司机而言,在车辆节能方面始终有市场原动力,RDE运行油耗越低越好,为车主降本增效;况且司机或车队只认RDE运行油耗,并不太在意主机厂或 发动机厂的标称油耗;但在车辆减排方面则完全依靠政府的强制性排放法规来驱动,车队要求重卡名义排放达标即可,RDE运行排放并非越低越好,特别是当减排要以油耗略增为代价时。
需强调,2027年美国联邦GHG-II法规重卡CO2排放限值(即油耗限值)和加州超低NOx排放组合法规限值代表当今世界重卡行业最先进也最激进的重卡排放法规,预计欧盟和中国在2030年前后,会分别颁布并实施与美国类似的重卡CO2和NOx排放法规(欧-VII或国-7);找到满足上述美国柴油重卡CO2和NOx排放法规2027年限值的高性价比可量产(High-value & Production-ready)技术方案,是当今全球重卡行业急待解决的重大技术难题。
该背景技术部分的信息仅旨在增加对本发明的总体技术背景的理解,而不应当被视为承认或以任何形式暗示该信息已成为本领域一般技术人员所公知的现有技术。
发明内容
本发明提供一种软件定义的混联动力总成(Software Defined Mixed Hybrid Powertrain-SDPt)和配置该动力总成的智能网联电动(ACE)重卡,旨在解决现有技术中新柴油重卡难于找到同时满足2027年美国联邦CO2排放法规(GHG-II)和加州柴油重型车(包括重卡、大客车、工程车等)2027年超低NOx排放系列法规(Low NOx Omnibus Regulation)的高性价比、可量产商用的重卡动力总成技术路线这一行业世界性难题;还提供了在美国可将百万辆级在用二手柴油重卡或天然气重卡改装成油电混动ACE重卡,实现RDE油耗(L/100KM)降幅20%以上并确保RDE运行NOx排放(g/bhp-hr)长期稳定达标(EPA-2010)的高性价比且可量产(Cost Effective & Production Ready)的技术方案。在干线物流应用场景下,本发明的智能网联电动(ACE:Automated Connected Electrified)重卡对比传统柴油机重卡,在保证车辆动力性和出勤率的前提条件下,RDE油耗(升/百公里)降幅可高达25%以上,还能提升车辆行驶主动安全性,而且保证RDE排放在70万公里(即43.5万英里)有效寿命(Useful Life)范围内长期稳定达标;将当前美国市场百万辆级现代二手柴油重卡改装成ACE重卡,车主除享受比柴油重卡RDE平均油耗降低20%~30%的好处之外,在不增加硬件成本的前提下,仅靠动态软件定义加空中下载升级(OTA),就能有效地解决美国现代柴油重卡在包含众多低速低负载或怠速工况下,RDE运行NOx排放值“合法”明显超标这一行业技术难题,使改装ACE重卡无论在任何整车运行工况下,都能保证RDE运行NOx排放长期稳定地达标(例如:EPA-2010,NOx认证排放限值:0.2g/bhp-hr)。本公开ACE重卡的各个主要子系统都已产业化,不依赖于任何目前尚不成熟或无法近期量产的产品或技术,能够在2024年实现量产商用,提前满足欧盟CO2法规2025年碳排放目标或美国温室气体排放第二期(GHG-II)法规2027年碳排放目标,和2027年加州超低NOx排放法规汇编,后续详述。
除非明确标注,本公开中软件定义动力总成(SDPt)技术方案指采用本发明多种技术措施的集合,以双电机混联(Mixed Hybrid)动力总成系统架构为硬件基础,再配合对发动机和电池包的瞬态功率分别实施脉冲调制控制(PMC–Pulse Modulation Control);ACE重卡指配置SDPt的混联重卡;传统重卡(或车辆)指只配置内燃机(柴油发动机、天然气发动机等)但不包含任何混动装置的现代重卡(或车辆);现代重卡主要指满足美/欧/中三地现行排放法规(EPA-2010,欧-VI,国六)的重卡;混动车辆指深度油电混动车辆(Full Hybrid),其中电驱动或再生制动峰值功率超过车辆总计最大驱动功率的30%。所谓柴油重卡“准零排放”(NZE)技术,又称超低NOx排放技术,指将柴油重卡认证NOx排放限值比现行排放法规(EPA-2010,欧-VI,国六)认证限值降低90%的技术措施集合;例如在美国加州,该州法规要求重卡柴油机的NOx排放值自2027年起,从当前EPA-2010的认证排放限 值0.2g/bhp-hr降低到0.02g/bhp-hr;预计美国联邦政府近期完成重卡排放立法程序,全美范围将从2030年起,强制性全面实施与加州类似的NZE排放标准;预计欧盟和中国也将在2030年前后,强制性全面实施与加州类似的NZE排放标准。需要强调,满足NZE排放标准的天然气发动机和重卡已经量产并在美国加州等地开始小批量商用;但如何发明高性价比可量产的柴油重卡节能减排技术,使美国柴油重卡自2027年起,能同时满足加州NZE排放法规(认证NOx排放降90%)和联邦政府GHG-II法规(CO2排放限值,即油耗)仍然是行业急待解决的技术难题和急待攻克的技术难关。
本发明中所谓软件定义混联动力总成(SDPt)的“软硬件解耦”,既可指SDPt的技术特征,又可指其技术功能,至少包含以下几点:
1)ACE重卡工况与SDPt工况之间存在双向唯一映射关系,二者相互等效;
2)SDPt的瞬态工况点(即总成输出轴的瞬态转速和转矩)与发动机的瞬态工况点之间为多对多双向映射关系;换句话讲,SDPt的一个工况点可对应发动机的多个不同的工况点,而且SDPt的多个不同的工况点可对应发动机的同一个工况点;
3)ACE重卡瞬态路载功率时空函数或滚动时间平均路载功率时空函数的动态调控与发动机的瞬态功率时变函数或滚动时间平均功率时变函数的动态控制基本相互独立,互不影响;
4)SDPt的瞬态或稳态动力性指标(包括秒级脉冲峰值功率或小时级最大连续功率)与发动机、电机、电池包的相应动力性指标基本无关,即硬件组合性能和功能冗余超配;
5)针对任何ACE重卡的运行工况,SDPt的动力性、发动机的RDE油耗、发动机的RDE排放三者之间基本无交叉耦合,相互独立;可以通过软件对三者实时独立控制,同时优化;
显然,软硬件解耦是软件定义动力总成系统的必备技术特征和底层技术基石;传统重卡的发动机正常驱动模式下只能运行在第一象限复杂的面工况,整车工况与发动机工况双向唯一映射,发动机软硬件之间强耦合,技术上无法实现软件定义动力总成;现有技术中的油电混动重卡,对发动机和电机加电池包的瞬态功率函数分别进行模拟控制,虽然可以在有限范围内动态调整发动机的工况,但发动机正常驱动模式下的运行轨迹仍然是第一象限内的复杂面工况,仅增加了发动机运行在燃烧高效区的时间占比,无法将发动机运行在非高效区的时间占比减低到可忽略不计(例如小于5%);此时动力总成的各个子系统之间交叉耦合效应不可忽略,软硬件之间并没有几乎完全解耦,所以现有技术中的油电混动系统难以实现软件定义动力总成;本发明通过对现有技术发动机和电池包的瞬态功率分别进行脉冲调制控制(例如串混iSS或并混iPS),可将任何量产商用的模拟电控(AEC)发动机转换成数字脉控(DPC)发动机,该DPC发动机在至少两条指定的线工况(即至少一条发动机万有特性第一象限燃烧高效区内的高态线工况和一条第四象限零油耗零排放无燃高效区内的低态线工况)二选一时分复用运行,以DPC发动机简单的线工况完全覆盖ACE重卡所有循环工况(Duty Cycle),首次实现了混联动力总成系统的软硬件解耦,最终实现了软件定义动力总成。
重卡做为生产工具,其实际(RDE)循环工况可能千变万化;传统内燃机重卡为优化RDE油耗,需要根据车辆运行的主流循环工况来量身定制动力总成的硬件参数;但是从优化RDE油耗角度考量,高速公路工况与城市工况对硬件参数的技术要求经常有矛盾,鱼与熊掌难以两全。例如,发动机降排量或降转速(Down-sizing or Down-speeding)及变速箱超速挡(Overdrive)等技术措施为现代传统重卡高速公路工况节能减排的主流成熟技术,但上述技术手段对经常运 行在城市工况的传统重卡,无论是在动力性、系统寿命、实际节油效果等方面都有负面影响。本发明的软件定义混联动力总成技术方案能够有效地摆脱动力总成硬件配置对ACE重卡整车动力性、RDE油耗或排放的限制,只用一套由已量产商用的主流发动机、电机、功率型电池包组合而成的通用混联动力总成硬件,就可全面覆盖ACE重卡的任何循环工况,硬件上以不变应万变;通过整车功率管理策略(PMS)软件算法来动态定义SDPt的特性,实现千车千面,针对每辆ACE重卡及每个货运事件的动态循环工况,根据节能减排AI算法,同时优化整车动力性、RDE油耗或排放这三项技术指标。
ACE重卡的软件定义混联动力总成技术能够与重卡的其它节能技术,例如整车风阻降低技术、低轮阻轮胎技术、或车辆轻量化技术等,相叠加来增强节能减排效果;需强调,与传统柴油重卡相比,ACE重卡采用上述其它节能技术,还能够产生一加一大于二的协同效应;换句话讲,如果通过降低整车风阻系数和轮阻系数及轻量化等节能技术组合,令传统重卡的实际油耗可降低15%,则同样技术组合可让ACE重卡的实际油耗降幅明显超过15%。
为解决上述技术问题,达到上述有益技术效果,本发明通过以下技术方案来实现。
当前各种系统架构(串联混动、并联混动、混联混动)的油电混动乘用车或大型商用车,在主动加速和制动频繁且平均车速低于40公里/小时的城市(Urban)工况下,通过电机加动力电池包来有效地移动发动机的工况点,尽量让发动机在其万有特性曲线的高效区内运行;而且驱动电机还可通过再生制动(Regenerative Braking)给电池包充电,有效地回收能量,比传统发动机车辆RDE油耗(升/百公里)大幅降低(节油率可高达30%~60%),节能减排效果明显,性价比高,已经在世界各主要汽车市场实现大规模商用。但对干线物流重卡而言,其产品生命周期内绝大部分的运行时间和里程(85%以上)为高速公路工况,车辆很少主动加速或刹车;中国经济发达区域高速公路网常年较拥堵,干线物流重卡平均车速约60公里/小时;而美国干线物流重卡平均车速约95公里/小时。传统柴油重卡高速公路工况下,主动加速或刹车不频繁,其发动机能长期稳定地工作在高效区,RDE油耗已很优化,进一步下降空间有限,而同时实现RDE油耗和排放最小化更具挑战;而油电混动车辆此时也因车辆主动刹车不频繁,其再生制动能量回收功能英雄无用武之地;同时油电混动车辆,特别是增程式串混车辆,还背负化学能-机械能-电能-机械能之间多次能量转换的额外损耗;所以全球汽车及公路运输业界专家及普通技术人员长期存在下列“共识”:干线物流混动重卡(简称为“混动重卡”)对比传统柴油重卡RDE油耗降幅有限,其最大节油率不可能超过12%;特别是串混车辆在高速工况下运行,甚至可能会出现综合油耗略升;根据当前全球大三电(电池、电机、电控)的技术水平及产业发展现状,混动重卡比传统柴油重卡购车成本增加显著;如果实际节油率无法突破20%,混动重卡的性价比不够高,通过节省油费来弥补混动重卡与传统燃油重卡的综合成本差价的投资回报期(ROI)将长于三年,将导致混动重卡在无政府补贴时,缺乏可持续性市场竞争力。
如上所述,当前全球重卡行业专家和普通技术人员普遍认为,2030年前在包括中国、美国、欧洲这三大重卡市场,在无政府补贴情况下,难于实现干线物流混动重卡的批量商用;受制于当今汽车动力锂电池技术极限和产业化发展局限,干线物流零排放纯电动重卡需要配置至少1000千瓦时有效容量的锂离子电池包,电池包太大、太重、太贵、且难以实现快充(亚小时级);在没有政府高额补贴情况下,难以在2030年前实现批量商用;另外,以氢燃料电池为低碳清洁增程器的零排放氢电混动重卡,也因技术、产业链、和制氢/加氢基础设施不成熟及成本高等因素制约,要等到2030年后才可能开始批量商用。换句话讲,与纯电驱动乘用车市场份额 快速增长明显不同,干线物流原装新重卡今后二十年内,仍将以内燃机,特别是柴油机,为核心动力源,油电混动为辅助;零排放的锂电重卡或氢燃料电池重卡要等到2030年后,才可能逐渐成为市场主流新车型;美国、中国、欧盟干线物流重卡市场零排放重卡行业渗透率超过10%更可能要到2035年以后。
欧美公路货运行业所面临的另一大挑战是重卡司机空缺率及流失率都常年居高不下。同样的重卡、载货和路段,不同水平的司机开车,实际综合油耗(升/百公里)差异率可高达25%;干线物流重卡实际油耗因人而异,司机日常管理和培训又占用车队管理资源且效率不高,是公路物流行业的另一大痛点。很多货运公司通过培训司机,节油奖惩,加装车载传感器,进行司机驾驶行为大数据分析加节油辅导等多种方法,来减少司机人为因素所造成的实际油耗与最佳油耗之间的差异;但上述方法治标不治本,对多数干线物流车队来讲,重卡实际油耗因人而异且离散度高始终是行业痛点之一。
干线物流ACE重卡要想与传统柴油重卡,在无政府补贴情况下可持续地竞争并胜出,早日实现大规模商用,必须大幅提其高性价比。干线物流重卡在美国或中国的整车平均售价(美国零售价15万美元/辆或中国零售价40万元人民币/辆)是该国市场普通乘用车平均车价的五到八倍,但其年燃油费则是家用乘用车年油费的近三十倍。美国和中国的汽油或柴油零售价都明显低于欧洲,欧洲乘用车与重卡车价和年油费的比例类似中美。提高干线物流混动重卡性价比的有效方法有两类,一是增大其对比传统柴油车的节油率,二是减小其与传统柴油车一次购车成本加累计车辆运维成本之和之间的差价,即开源节流;在保证ACE重卡动力性、安全性、出勤率的前提下,节省的燃油费可直接转化成车队的利润。
全球汽车行业专家(特别是重卡行业专家),基于对绝大部分油电混动乘用车(总重小于3.5吨;串联、并联、或混联系统架构)在高速公路工况下对比传统内燃机车辆实际节油效果不明显这一客观事实进行主观外延推测,断定干线物流混动重卡,实际综合节油率不可能超过10%;尤其是串混重卡,甚至可能油耗略升。迄今为止(2019年底),全球范围没有发现关于深度混动重卡(Full Hybrid Truck),特别是双电机增程式串联或混联重卡,在干线物流应用场景下“三真”(真车、真路、真货)大规模路试,与传统柴油重卡油耗对比分析的公开报道或学术论文,更没有干线物流混动重卡批量落地商用的先例。但上述行业共识如同所谓“白天鹅共识”,有其历史局限性,可以通过科学实验被证伪;行业专家们忽略了干线物流混动重卡可能大幅降低实际油耗的秘密源泉:在高速行驶工况下,由于道路纵坡倾角(简称“纵坡”)的细微变化(1.0度)所带来的纵坡功率时变函数P g(t)的百千瓦级变化和重卡高速下坡时产生的通过百千瓦级驱动电机的再生制动来回收千瓦时(kWh)级电能的众多机会。
ACE重卡节能减排技术的第一性原理便是汽车行业熟知的车辆纵向行驶的动力学方程(1-1):
Figure PCTCN2022073181-appb-000001
其中,P v为车辆功率或称路载功率,所有功率项都是以千瓦(kW)为单位。
轮阻功率P r指车辆行驶时,克服轮胎滚动摩擦阻力所需功率,为非负数,其可通过如下公式(1-2)表示:
Figure PCTCN2022073181-appb-000002
风阻功率P d指车辆行驶时,克服空气阻力(无风天气时)所需功率,为非负数,其可通过如下公式(1-3)表示:
Figure PCTCN2022073181-appb-000003
纵坡功率P g指车辆行驶上坡时,克服重力并增加势能所需要的驱动功率,为正数,而当车辆下坡时纵坡功率为负数,代表其势能与动能转换所产生的驱动功率,纵坡功率P g可通过如下公式(1-4)表示:
Figure PCTCN2022073181-appb-000004
加速功率P a指车辆平路行驶时,要达到预定加速度值所需额外功率。当加速度为负值时,代表减速刹车,即可以是摩擦制动,将车辆动能转变成热能消耗掉,又可以是非摩擦再生制动,将部分车辆动能转变成电能,给电池包充电来回收能量。加速功率P a可通过如下公式(1-5)表示:
Figure PCTCN2022073181-appb-000005
在上述五个公式(1-1)至(1-5)中:V为车辆纵向线速度时空函数(米/秒);η为车辆传动系统效率;M为车辆总质量(公斤);g为重力加速度,g=9.8(米/秒平方);f r为轮胎滚动摩擦系数;α为公路纵坡空间函数,正值为上坡,负值为下坡,零为绝对水平;ρ a为空气密度(公斤/立方米);C D为车辆风阻系数;A f为车辆正前方投影面积(平方米);δ为滚动质量转换系数;dV/dt为车辆纵向加速度(米/秒平方),正值为加速,负值为减速或刹车。每条公路的纵坡仅为空间函数;除非修路,纵坡空间函数不随时间变化;由于车辆行驶时其纵向速度为时空函数,根据方程(1-4),纵坡功率为时空函数,而且是当车辆基本恒速行驶时,其动力性方程(1-1)中仅有纵波功率一项百千瓦级幅度快速变化的函数项,其余三项均可近似为常量。根据车辆的纵向速度时空函数和车载卫星导航(GNSS)定时定位,车辆运行时间与地理定位之间有双向唯一映射关系,货运事件车辆时间和空间可唯一性相互转换;功率时空函数与功率时变函数等效。在优化ACE重卡节能减排时,将ACE重卡集合迄今为止的所有功率时空函数都投影到特定道路的纵向空间维度后,再做详细数学分析更有工程意义;投影到时间维度做分析工程意义不大。本发明中,g或G等效,既可代表重量克,又可代表重力加速度,普通技术人员根据上下文可明判,不会产生歧义。
在高速公路行驶工况下,车辆很少主动制动减速或加速。当车辆基本恒速行驶时,根据上述动力学方程(1-1),加速功率近似为零,轮阻功率在小纵坡(即正负几度内的纵坡)的公路段基本不变,风阻功率亦可近似为常数,只有纵坡功率为时间变量,其变化幅度与该高速公路段的纵坡角度的正弦值、车速、和车总质量三者均成正比。公路纵坡通常简称“纵坡”,其计量单位有两种,一个是路面与水平面的夹角的度数,另一个是路面海拔升高与该路段水平投影距离之比值,以%表示。各国高速公路设计和建造多数将其纵坡限制在-7.0%~+7.0%范围内,主要是基于满载重卡在高速公路上安全行驶方面的考量。中国干线物流重卡总重多数在41吨以下, 最高法定限速为90公里/小时,中国主要高速公路长期拥堵,公路物流全行业重卡平均速度约60公里/小时;而美国干线物流重卡总重限值为36吨,最高法定限速高达125公里/小时,公路物流行业重卡平均行驶速度约95公里/小时。多数美国运输公司,出于节油和安全的考虑,通常将重卡的最高时速限定在105公里/小时。
举例来说,一辆满载总质量40吨、车速60公里/小时的重卡,遇到高速公路纵坡2.0度恒速上坡时,所需纵坡功率高达228千瓦,而此时车辆的轮阻功率与风阻功率之和仅为71千瓦;如果此时动力总成功率余量不足时,重卡必须减挡降速后,才能继续上坡。对比一辆2吨总质量的乘用车同样恒速上2.0度的纵坡时,这时该车辆的纵坡功率为11.4千瓦(仅为重卡纵坡功率的5.0%),而轮阻功率与风阻功率之和仅为3.6千瓦;这对拥有一百千瓦峰值功率发动机的乘用车来讲,此类小坡不足为虑,如履平地。换句话讲,对于每辆高速行驶的满载重卡而言,公路纵坡每变化肉眼难以察觉的1.0度时,该重卡的路载功率(主要源于纵坡功率的变化)会有超过一百千瓦的巨大变化。有上坡就必有下坡,下坡时重卡的百千瓦级纵坡功率为负值,可通过驱动电机的再生制动来维持车速恒定(等同于主动刹车时的负加速度功率),将下坡时车辆的部分机械能转换成电能来给电池包充电,回收能量。虽然ACE重卡在高速工况下很少主动刹车,但因高速公路沿途布满1.0度级别纵坡的细微变化,能带来百千瓦级的纵坡功率变化,基本匀速行驶的ACE重卡,仍然有通过下坡再生制动来回收千瓦时级电能的众多“被动刹车”机会,细水长流,积少成多;这就是干线物流ACE重卡能够比传统柴油重卡节油显著的秘密所在。
车辆在60公里/小时车速下,要实现减速度2米/秒平方(即0.2G,G为重力加速度)的中等强度制动,对总质量2.0吨的乘用车,需要制动功率为67千瓦;但对总质量40吨的重卡而言,所需制动功率则高达1333千瓦;城市电动公交大巴总质量约20吨,平均时速30公里/小时,城市公交大巴实现0.2G减速度所需的制动功率约333千瓦。受限于当今全球已产业化的车载驱动电机和/或电机控制器(电力电子)的峰值功率,目前油电混合车辆通过再生制动可回收能量的功率峰值上限在500千瓦以下;而车辆瞬时制动功率高于500千瓦的部分,无法通过电机再生制动转换成电能给电池包充电来回收能量,只能通过车辆的机械刹车系统,将这部分车辆动能转换成热能完全浪费掉;比较而言,目前世界上已商用化的最大功率的直流快速充电桩为375千瓦。在加速/减速频繁的城市或城郊混合的行驶工况下,油电混动车辆(轻型车或大型客车)能通过众多百千瓦级主动刹车的机会,利用再生制动回收能量,比传统发动机车辆明显节油,实际节油率在30%~60%。换句话讲,干线物流ACE重卡在高速工况下虽然很少主动刹车,但仍有众多百千瓦级被动刹车(下坡)的机会,可利用再生制动回收能量;然而重卡高速工况紧急刹车时,主要依靠机械刹车系统输出超过一兆瓦的刹车功率,大部分重卡动能反而无法通过再生制动有效回收。
在主动加速和减速不频繁的高速公路正常路况下,车辆平均时速高于60公里/小时,传统发动机能够稳定地工作在其高效区,油电混动车辆比传统发动机车辆节油效果不明显(小于10%),特别是串混车辆,因背负多次能量转换的额外能量损耗,甚至可能导致综合油耗不降反升;上述全球汽车行业的“共识”,对全部油电混动乘用车(总重小于3.5吨)和单电机并混大型商用车,例如峰值功率大于250千瓦发动机机械并联一个峰值功率小于200千瓦的中型电机,都适用。但是,发明人认为该行业“共识”对干线物流应用场景下的采用百千瓦级额定功率双电机增程式串混或者混联(串混-并混)系统架构的ACE重卡并不适用。高速工况下的ACE重卡,虽很少主动加速或刹车,但由于高速公路沿途布满纵坡1.0度级的细微变化,有众多利用下坡 时百千瓦级纵坡功率,通过驱动电机再生制动,回收千瓦时级电能的被动刹车机会,细水长流,积少成多。换句话讲,载货重卡在高速公路恒速行驶时,纵坡函数沿途每一处1.0度级微小变化,都能导致纵坡功率百千瓦级的变化,对路载功率的影响,等效于乘用车或公交大客车在城市水平道路频繁主动加速或刹车。
美国有近13万英里的封闭式高速公路。根据美国国家再生能源实验室(NREL)2016年的一份研究报告,美国高速公路总里程中20%的路段纵坡小于0.2%,对ACE重卡而言可认为是平路;而总里程中近75%的路段纵坡分布在0.2%~3.0%之间,对ACE重卡而言不再是平路;仅有总里程5%的路段纵坡在3.0%以上,对高速行驶的ACE重卡而言是较大的上下坡。
本公开的双电机混联ACE重卡,包含一台峰值功率大于250千瓦的重卡发动机(柴油或天然气)和两台峰值功率大于200千瓦的大型电机。其中一台电机(MG1)主要用作发电机,另一台电机(MG2)主要用作驱动电机。驱动电机是混动重卡动力性的决定性因素之一,其峰值功率应大于250千瓦;驱动电机越大,车辆动力性越好,同时再生制动回收能量的效果也更佳。为解决车规大型驱动电机成本长期居高不下的问题,还可考虑采用标配主驱动电机(MG2)加一选配副驱动电机(MG3)的三电机混动系统。
近十年来,欧美部分中高端内燃机重卡,利用包含道路纵坡信息的车载3D地图,在丘陵或山区高速公路,通过预测性巡航控制(PCC),实现节油。但传统重卡预测性巡航节油有其局限性:首先纯机械式动力总成不宜高频次瞬间(亚秒级)大幅度改变发动机输出功率或自动变速箱频繁换档,预测性巡航控制(PCC)主要适用于纵坡角度大于2.0度、坡长数公里以上的长坡;其次传统内燃机重卡没有再生制动功能,下长坡时无法回收能量;实际综合油耗降幅不到3.0%。
需要强调指出,世界上没有大范围绝对水平的高速公路;即便在广大平原地区,高速公路沿途串联的百米级颗粒度的路段,它们的纵坡函数的绝对值大概率分布在0.2%到3.0%范围内。对高速工况下基本恒速行驶的载货重卡,其轮阻功率P r与风阻功率P d之和可近似为常数,而其车辆路载功率P v时间变量影响最大的因素就是纵坡功率P g,该项与纵坡角度的正弦值成正比;道路沿途每个微小上下坡(纵坡变化1.0%),纵坡功率的变化幅度都高达一百千瓦以上,为ACE重卡提供了众多通过百千瓦级再生制动功率来回收千瓦时级电能的机会,细水长流,积少成多。如果车辆预装高速公路纵向米级间隔密度、道路定位米级精度(经纬度)、纵坡测量精度达0.1度的车载3D电子地图,再加上车路协同联网或米级高精度卫星导航(GNSS)和惯性导航(IMU)协同实时定位(经度和纬度)及测姿(纵坡),依据车辆动力学方程(1-1),车辆控制器(VCU)能实时精准地预测(亚秒级刷新计算;千瓦级精度)车辆前方沿途百公里级范围内的路载功率时变函数,特别是纵坡功率P g(t)和路载功率P v(t)千瓦级颗粒度的时变函数;VCU功率预测刷新频率可高达10.0赫兹(Hz)以上,也就是说车辆每行驶2~3米,VCU就能够动态计算并刷新其电子地平线内路载功率函数的预测,高速公路正常行驶,车速高但变化缓慢,预测功率函数与实际功率函数之间的相对误差小于5%,而且时间越短或距离越近则预测误差越小;在城市或郊区工况下行驶的ACE重卡主动加速和刹车频繁,车速变化范围宽,变化快,根据车辆动力性方程(1-1)来实时预测百公里级电子地平线路载功率,预测相对误差将恶化到10%以上;换句话讲,重卡在高速公路正常行驶时,百公里级电子地平线内路载功率可预测,预测精度在千瓦级,相当于平均路载功率的5%以内,预测刷新频率高于5Hz。
目前已在全球各国已批量商用的各种ADAS电子导航地图或支持L3+自动驾驶商用的高精 度地图(HD Map),都可用作本发明的3D地图,为车辆提供电子地平线(Electronic Horizon)先验信息;所谓电子地平线,是指车辆行驶前方特定范围内的3D电子地图所涵盖的各种道路信息,特别是高速公路沿途经度、纬度、和纵坡等三维信息。传统柴油重卡实施预测性巡航控制(PCC),受限于其不宜频繁快速变换发动机工况或变速箱频繁换挡,且无再生制动回收能量的功能,只能有效使用约5公里范围内的电子地平线信息;而本发明的ACE重卡,能够有效地使用从10公里到1000公里范围内的电子地平线道路信息;详情见下。
对于在高速公路上正常行驶的ACE重卡,很少主动刹车或加速,其车速基本恒定,车辆道路负载功率的时间变化,主要来源于公路纵坡变化所带来的纵坡功率时间变化。然而车辆行驶路径和公路沿线纵坡分布函数都确定且预先可知,所以ACE重卡的VCU可根据车辆动力学方程(1-1)、车辆配置参数和动态工况数据、电子地平线先验3D道路信息、和实时路况信息,实时地(亚秒级)计算出电子地平线范围内车辆路载功率时变函数分布,以千瓦级颗粒度预测未来(小时级或百公里级)车辆路载功率时变函数,使ACE重卡能够未雨绸缪,充分利用功率型电池包十千瓦时级电能存储功能和百千瓦级电功率削峰填谷功能,根据节油机器学习(ML)算法,对ACE重卡的混联动力总成进行动态预测性能量管理控制,实现车辆节能减排最优化。本发明的ACE重卡软件定义混联动力总成系统,可将干线物流ACE重卡油耗最小化这一世界性难题变换成计算机下围棋(例如AlphaGo)这一等价的窄人工智能(Narrow AI)问题。可利用众多ACE重卡运行产生的节油数据集,结合机器学习算法和云端算力,训练云端节油机器人的AI大脑,建立节油算法的深度神经网(DNN)模型;再由车端的AI推理芯片,根据上述深度神经网(DNN)模型进行推理运算,实时地调控ACE重卡的发动机机械功率流或电池包电力功率流的路径、幅度、和方向,在保证整车动力性和主动安全性的前提下,实现车辆节能减排最优化;在实际油耗最小化方面,AI可完胜人类司机,而且实际节油效果和司机的水平及ACE重卡发动机的配置参数基本解耦。换句话讲,现有技术的传统内燃机重卡,因无再生制动回收能量的功能,采用预测性巡航控制(PCC),实际节油率不足3%,效果有限;而本发明的双电机混联ACE重卡,因有并混合计峰值功率500千瓦再生制动回收能量的功能和十千瓦时级功率型电池包,加上具备超级运算能力和自主学习进化功能的车云协同人工智能(AI),则能实现比传统内燃机重卡节油率30%的有益效果;详情后叙。
本发明提出配置软件定义混联动力总成的ACE重卡,通过车辆控制器VCU指挥电功率分流器ePSD,能够在十毫秒级系统响应时间内,在发动机-发电机机组、电池包、和驱动电机这三个电力动力源之间精准连续地调配百千瓦级电功率的流动路径、幅度、或方向;通过对发动机或电池包的瞬态输出功率分别进行脉冲调制控制(PM),特别是脉宽调制控制(PWM)或脉幅调制控制(PAM),使发动机长期稳定地(99%时间占比)工作在其高效区,将非高效区(特别是低负荷)工作占比压缩到1%,并根据电子地平线内车辆路载功率的动态预测,让电池包在荷电维持(CS)、荷电消耗(CD)、和荷电增加(CI)三种工作模式之一稳定工作或之间平顺切换;通过电池包百千瓦级高倍率充放电,对路载瞬态功率时变函数削峰填谷,实时地抵消纵坡功率项主导的秒级时间内路载功率函数数百千瓦级瞬态变化,随时提供满足车辆动力学方程(1-1)所要求的路载功率。在保证车辆动力性、货运时效性、和车辆主动安全性的前提条件下,ACE重卡比传统柴油重卡干线物流实际运营综合油耗降幅可高达30%,实际NOx排放量降幅可高达75%。
本发明的ACE重卡,采用双电机单离合器的混联系统架构,详情后续。ACE重卡可通过车 辆控制器(VCU)来指挥离合器断开或闭合,分别实现串混模式和并混模式。城市工况下,车辆平均速度较低(小于45公里/小时)且主动加减速频繁,优选使用串混模式,可将发动机工况与车辆路载工况完全解耦,发动机能稳定地工作在其高效点,驱动电机也有众多通过再生制动回收能量的机会,与传统燃油车相比,串混车辆此时节油效果显著(30%以上);而在高速工况下,车辆平均速度较高(大于50公里/小时)且很少有主动加减速,发动机即便和车辆驱动轮有直接机械耦合,也能够通过变速箱动态挡位调节,稳定地工作在其高效区,此时优选并混模式。从节油性和动力性两个角度考虑,在高速工况下,有发动机直驱的并混模式比串混模式更优。以丰田Prius为代表的功率分流混合动力系统同时具备串混和并混功能,能兼顾优化车辆的动力性和节油性,二十年来一直是乘用车混合动力的国际标杆。但受限于当前金属材料和生产工艺,该功率分流混动系统的核心部件行星齿轮必须承受三个峰值功率大于150千瓦的发动机、发电机、和驱动电机三端同时发力。当前全球没有这种重型车规行星齿轮商品,新产品设计和量产需耗时数年且单件成本会长期居高难降,所以基于行星齿轮的机械式功率分流混动系统难于高性价比地扩展到重型车;连丰田汽车集团都没有将其特有的单行星排的功率分流混联动力总成技术运用到混动重型车上。
本公开提供了一种可时分切换串混或并混模式的双电机混联动力总成架构,包括:由发动机直接驱动发电机(MG1),用于将车载燃料的化学能转化为电能(串混模式下)或直驱车辆(并混模式下);电功率分流器(ePSD),其被配置为具有三个端口的电力电子网络,其中ePSD的第一端口(即端口I)与发电机组(即发动机加发电机)的交流电输出端双向电联接;ePSD的第二端口(即端口II)与至少一个驱动电机(MG2)交流双向电联接;ePSD的第三端口(即端口III)与至少一个功率型电池包双向直流电联接,同时还与一个刹车电阻单向直流电联接;自动变速箱,其输出轴与车辆的驱动桥双向机械联接;地图仪,其预先存储有3D地图,包含有车辆行驶道路的经度、纬度和纵坡等三维信息;至少一个标配混动P2位置的主驱动电机(MG2),与ePSD第二端口双向交流电联接,并且其输出轴与自动变速箱的输入轴双向机械联接,该主驱动电机(MG2)可被操作为:将电能转化为机械能以用于驱动车辆(电驱动模式),或将车辆的机械能转化为电能(再生制动模式),并通过ePSD第二端口内的逆变器(即电机控制器)对电池包进行充电,回收能量;其中,发动机飞轮端输出轴与混动P1位置的发电机(MG1)的机械轴双向机械联接,该机械联接方式即可以为单轴同转速(同轴联接),也可以为平行双轴加齿轮减速耦合(平行轴联接);该发动机的输出轴还通过一个重型离合器与主驱动电机(MG2)双向机械联接,该机械联接方式即可以为单轴同轴,也可以为平行双轴加齿轮减速耦合;同时该主驱动电机(MG2)还与自动变速箱的输入轴双向机械联接,该变速箱的输出轴与车辆的驱动桥双向机械联接;并且车辆还包括:车辆控制器(VCU),通过车辆的数据总线(例如CAN总线),并基于车载卫星导航仪(GNSS)和/或地图仪(MU)中的3D地图数据,来对发动机、发电机、离合器、ePSD、驱动电机、自动变速箱、以及电池包中的至少一者以独立方式进行动态控制。
本公开的ACE重卡混合动力系统架构包括至少两个百千瓦级大转矩低转速电机和至少一个重型离合器的混联(Mixed Hybrid)动力总成系统,该混联系统通过百千瓦级重型离合器与电功率分流器(ePSD)协同工作的方式来动态控制车辆动力总成系统中发动机、发电机、电池包、、驱动电机、变速箱五者之间的百千瓦级机械或电力两种截然不同的功率流闭环(Power Flow Loop)的流动路径、幅度、和方向,通过开\闭离合器来切换车辆的串混模式或并混模式;混联 架构有效地融合了串混和并混两种系统架构各自原有的优势,克服各自原有的缺点,能同时优化车辆的动力性和节油性,比双电机增程式纯串混系统或单电机纯并混系统的综合性价比及RDE运行节能减排效果都更高。发电机(MG1)被配置在混动P1位置(发动机飞轮之后,离合器之前),主驱动电机(MG2)在混动P2位置(离合器之后,变速箱之前),选装项副驱动电机(GM3)可被配置在P3(变速箱之后,传动轴之前)或混动P4(传动轴之后,轮边)位置。
上述双电机混联架构可实现以ePSD为核心的全数字化软件定义动力总成;混联动力总成通过对发动机或电池包瞬态功率时变函数分别经行脉冲调制控制,既能实现发动机工况与整车工况解耦,又能实现动力总成硬件与软件解耦,ePSD三端口电力电子网络硬件设计时,其功能及性能应预留余量,增加产品后期的可塑性,通过每辆ACE重卡在其全运营生命周期内软件远程更新迭代(OTA),实现产品的不断升级和进化。依靠持续软件远程更新(OTA),基于大数据加云端-车端互动的人工智能,可量身定制地不断修正每辆ACE重卡动力总成的实际性能,即保证每辆ACE重卡在排放法规要求的可用期(Useful Life)70万公里内,长期稳定地满足RDE运行排放法规限值,又实现该重卡RDE运行油耗最小化和智能运维(iMR–intelligent Maintenance and Repair)优化。
ePSD可被配置为三端口的电力电子网络(PEN–Power Electronic Network),其内部包含至少三个百千瓦级额定功率的独特电力电子功能模块:内联接第一端口的是一个双向交流-直流转换模块(逆变器;又称电机控制器MCU),内联接第二端口的是至少一个双向交流-直流转换模块(逆变器;又称电机控制器MCU),内联接第三端口的是至少一个双向升降压直流-直流转换模块(斩波器)或一个单向直流压控开关模块(VCS–Voltage Control Switch)。本公开聚焦ACE重卡ePSD的主要外围输入/输出电气特性和内含三种电力电子(PE)功能模块(即逆变器、斩波器、压控开关)的核心功能和特征;各种能实现上述三种PE模块及相互机电联接的电路拓扑结构之集合,都属于本发明范围。ePSD的物理包装布置形态,即可是将上述三种PE功能模块集中包装布置在一个金属盒中,也可将三种PE功能模块分别与发电机(MG1),主驱动电机(MG2),和电池包等分散在多个金属盒包装布置。
上述ACE重卡的混联动力总成通过控制离合器的开关状态,分别实现串混(离合器断开)或并混(离合器闭合)两大独特系统架构或工作模式;每种系统架构下,又可再细分出多种不同的运行子模式。车辆控制器(VCU)以电控方式(而非纯机械方式)指挥线控机电式离合器,精准平顺切换串混或并混模式,下面分别详细描述。为同时优化车辆的节油性和动力性,在高速工况(高速路顺畅,平均车速50公里/小时以上,主动加速或刹车不频繁)或下长坡(沿途纵坡绝对值大于2.0度,坡长大于5公里)任何工况下(任何车速,为安全需要缓速功能),可优选并混模式;在城市工况下(平均车速低于40公里/小时,主动加速或刹车频繁),可优选串混模式。
首先在串混模式下,从发动机到驱动轮只有电力功率流回路,没有机械功率流回路,ePSD内部三大功能模块的直流端口都双向电联接到直流母线汇流点X,该汇流点处的直流电压和电流时变函数的乘积为对应能量转换装置的电功率时变函数,这些功率项实时满足下列三个方程:
P V=η dt P MG2      (2-1)
P MG1+P MG2-P BAT=0    (2-2)
P ICE=-P MG1g      (2-3)
上述三个公式中,所有功率项均为百千瓦级时变连续函数,并假设发电机(MG1)、电池 包、和驱动电机(GM2)的一次往返能量转换系数可近似为1.0;本领域普通技术人员能够无需创造性地推导出,当实际转换系数为小于1.0的正数时的对应公式;转换系数是否近似为1.0,对本发明中的技术讨论无实质性影响。
其中:
P MG1>0,为发电机(MG1)的电驱动功率(以发动机无燃怠速运行或发动机无燃制动为负载,将电能转换为机械能);P MG1<0,为发电功率(由发动机直驱发电机来发电,将机械能转换为电能);
P MG2>0,为主驱动电机(MG2)的电驱动功率(将电能转换为机械能);P MG2<0,为再生制动功率(将机械能转换为电能),给电池包充电,回收车辆的机械能量;
P BAT>0,为所有电池包的总计放电功率(将化学能转换为电能);P BAT<0,为所有电池包的总计充电功率(将电能转换为化学能);
P ICE>0,为发动机燃烧做功(即主动工况)的有效输出驱动功率(将化学能转换为机械能);P ICE<0,为发动机无燃(不喷油)拖动或发动机制动(均为被动工况)的机械负载有效功率(各种机械能之间的相互转换);
上述四个能量转换装置的功率参数优选配置原则如下:P ICE-p>=P MG2-m>=P MG1-m;P BAT-m>P MG2-m。其中P ICE-p为发动机的峰值功率(即最大连续功率),P MG1-m、P MG2-m、P BAT-m分别为发电机、驱动电机、和电池包的额定功率(即最大连续功率)。与发动机不同,电机或电池可以承受短时间过载,电机的脉冲峰值功率(10秒)可比额定功率高50%以上;功率型电池包的脉冲峰值功率(10秒)可比其额定功率高100%以上。串混模式下,动力总成的系统峰值功率(即车辆最大连续驱动功率)完全由标配主驱动电机的P MG2-m决定。为改善车辆的动力性、节油性、和安全性,可考虑增加选配副驱动电机(MG3);MG3可安置在混动P3位置(变速箱输出轴与第一驱动桥之间或第二驱动桥输入轴);当然加了第三个电机,在提高车辆动力性和冗余性的同时,系统的复杂性及总成本也会增加。
串混模式下,P MG2为因变量,与车辆的路载功率P v成正比;路载功率为自变量,反应司机当下的驾驶意图和本车(Ego Vehicle)动态交通环境,η dt为转动系统效率(小于1.0的正数)。P MG1为另一个因变量,与发动机净输出功率P ICE这一自变量成正比,而且发动机的工况与车辆的工况完全解耦,由发动机的控制策略独立决定;η g为发电机组效率(小于1.0的正数)。显然在串混模式下,发动机的工况与车辆的工况完全解耦,可以独立动态设置发动机(ICE)和发电机(MG1)运行在各自的万有特性曲线的高效工况点(特定的转速和转矩点),确保此时发动机的燃烧热效率最高(即比油耗BSFC最小值,g/kWh),同时还能优化尾气排放。电池包功率函数P BAT等于两个电机功率函数P MG1和P MG2的代数和,也是一个因变量。ePSD内部的三大电力电子功能模块和发动机、发电机、驱动电机、自动变速箱、电池包等相关子系统,在车辆控制器(VCU)的统一指挥下,根据整车的功率管理策略(PMS),动态地调节自变量P ICE和因变量P BAT,对路载瞬态功率函数进行削峰填谷,实时地满足车辆动力学方程(1-1),在保证车辆动力性和货运时效性的前提下,达到最佳节油效果。
重新组合方程(2-1)、(2-2)、和(2-3),可以得到下列ACE重卡串混模式下运行时,描述路载功率、发动机功率、电池包功率三者关系的瞬态功率平衡方程(简称“串混功率方程”):
P V(t)=η dtg P ICE(t)+P BAT(t))      (2-4)
串混功率方程(2-4)的限制性边界条件如下:
a)电池包电量基本充足时(即高效区;BLL<SoC<BUL),
P MG1-m<max(|P V(t)|)<P MG2-m      (2-4c1)
b)电池包电量基本耗尽时(即SoC<LRL),
max(|P V(t)|)<P MG1-m<P MG2-m      (2-4c2)
c)发动机的转速和转矩在指定范围内任意连续可调    (2-4c3)
其中max(|P V(t)|)为串混模式下,ACE重卡路载功率时间函数的绝对值|P V(t)|可实现的最大值。
串混功率方程(2-4)的等效变形公式为:
P BAT(t)=P V(t)/η dtg P ICE(t)       (2-4A)
ePSD内部直流母线额定电压V bus0优选范围在600V至800V之间。ePSD的第三端口外部可双向直流电联接至少一个功率型电池包,每个电池包的额定电压V bat<V bus0,同时第三端口外部还可以单向直流电联接一个自带散热器的百千瓦级刹车电阻R bk,作为ACE重卡下长坡途中电池包基本满电量(SoC达到URL)时,驱动电机还需要继续再生制动发电,以保持车辆非摩擦式缓速功能时的有效电力负载。上述方程(2-2)假定ePSD内部的电压控制开关模块(VCS)断开,刹车电阻不起作用;如果该模块闭合时,则刹车电阻做为电负载,与电池包并联,此时方程(2-2)左侧还应该增加刹车电阻功率项P BR,为正数;同时,串混功率平衡方程(2-4)也要做相应调整,本行业普通技术人员可轻易完成;需强调,串混功率方程(2-4)是否包含P BR项,对本发明技术讨论无实质性响应。
ePSD的端口III可以通过内置斩波器分别双向电联接至少两个不同额定电压,或不同电化学成分电芯组成的电池包组合,优势互补,既可改善电池包总体性能并增加电池包系统的冗余度,又可降低电池包综合成本,给优化ACE重卡整车性价比带来多重益处。ACE重卡的电池包为超长循环寿命、宽环境温度范围、持续高倍率部分充放电(HRPSoC)运行的“峰值动力源“(Peak Power Source),在串混模式下,其主要作用是提供百千瓦级快速削峰填谷的瞬态电功率,与发电机组提供的瞬态电功率叠加,协同给驱动电机供电,由驱动电机纯电驱动,实时地满足车辆动力学方程(1-1)。该功率型电池包的容量一般都在90千瓦时以内,后续详述。一台带百升级大油箱的重卡柴油机,爆发力一般但耐力十足,可连续行驶一千公里以上;而功率型电池包更像一台带五升小油箱的大马力发动机,爆发力强劲但耐力严重不足,仅可纯电驱动连续行驶十公里;发动机和电池包结合,双方取长补短,混联动力总成的合计爆发力和耐力都超群出众;从整车功率平衡及能量管理考量,电机既不自产能量,也不储存能量,是个即无记忆又无迟滞效应的高效率能量转化器,将电能与机械能实时双向相互转换。
ACE重卡的功率型电池包容量一般只有几十千瓦时;提请注意,由于各种电池包的额定电压不尽相同,本发明中涉及电池包容量时的量纲为千瓦时(kWh),而非电池行业常用的安时(Ah)。串混模式下,如果ACE重卡遇到十公里以上连续上高山或长坡(纵坡大于2.0度)的特殊路况,很可能在车辆登顶前电池包荷电基本耗尽(即SoC达到LRL),此时串混车辆爬山的动力性(Gradeability)将完全取决于发电机组的最大连续功率P MG1-m。串混重卡在上高山的极限路况下,要保持与传统发动机重卡相同的动力性,就必须选配额定功率与发动机峰值功率相同的发电机(MG1)、驱动电机(MG2)和对应的电机控制器。目前全球主流干线物流重卡发动机(排量10L~16L)的峰值功率(指发动机的最大连续功率)都超过275千瓦,而顶配16L 发动机的峰值功率甚至超过450千瓦。虽然额定功率(指电机的最大连续功率)超过250千瓦的车规大型电机及逆变器均已产业化,但因上述产品的电压平台和功率上限要求更高且年用量更小,无法与每年产销量大近两个数量级的新能源乘用车共用,导致大功率电机和逆变器产品价格昂贵,成本会长期居高难降。例如,一台300千瓦额定功率的车规大型电机(带电机控制器)的成本要明显高于两台150千瓦额定功率中型电机(带电机控制器)的合计成本;而且前者合格供应商的数量比后者小十倍,长期降成本及保质保供都更加困难;导致大功率电机高配置的增程式串混系统的综合成本会长期居高难降,整车性价比不高。ACE重卡遇到高山或大坡时,从车辆动力性和安全性角度考量,可优选并混模式,而串混模式为次优选择。
其次在并混模式下,离合器闭合且锁定,发动机与驱动轮直接耦合,机械功率流回路和电力功率流回路二者都闭环,发动机、发电机(MG1)、和驱动电机(MG2)可三者可单独工作或协同发力,来实时地满足车辆动力学方程(1-1)。ePSD内部三大功能模块的直流端口都双向电联接到直流母线汇流点X,该汇流点处的直流电压和各个电路分支的电流的乘积为对应能量转换装置的电功率时变函数,这些功率项时刻满足下列二个功率平衡方程:
P V=η dt(P ICE+P MG1+P MG2)     (3-1)
P MG1+P MG2-P BAT=0      (3-2)
上述方程(3-2)假定ePSD内部的电压控制开关(VCS)模块断开,刹车电阻不起作用;但如果该模块闭合,则刹车电阻做为额外电负载,与电池包并联,此时方程(3-2)左侧还应该增加刹车电阻功率项P BR,为正数。除非ACE重卡下长坡,需要当电池包基本满溢时(SoC达到URL)接通刹车电阻,实现非摩擦式缓速功能,在ACE重卡绝大多数运行时间,不需要缓速功能,刹车电阻与ePSD汇流点X之间电路断开。
重新组合方程(3-1)和(3-2),可得到下列ACE重卡并混模式下运行时,描述路载功率、发动机功率、电池包功率三者关系的瞬态功率平衡方程(简称“并混功率方程”):
P V(t)=η dt(P ICE(t)+P BAT(t))     (3-3)
并混功率方程(3-3)的限制性边界条件如下:
a)电池包电量基本充足时(即高效区内;BLL<SoC<BUL),
i.P ICE-p<max(|P V(t)|)<P ICE-p+P MG2-m+P MG1-m   (3-3c1)
b)电池包电量基本耗尽时(即SoC<LRL),
i.P MG2-m<max(|P V(t)|)<P ICE-p     (3-3c2)
c)发动机的转速与车轮转速成正比,转矩任意可调      (3-3c3)
并混功率方程(3-3)的等效变形公式为:
P BAT(t)=P V(t)/η dt-P ICE(t)       (3-3A)
比较串混功率方程(2-4)与并混功率方程(3-3)及所对应的两套限制性边界条件,显而易见,只要电池包保持在高效区工作(即BLL<SoC<BUL),并混模式的可实现最大路载功率要明显大于串混模式的可实现最大路载功率,ACE重卡并混的动力性明显优于串混;同时由于并混模式下,发动机可以直接驱动车轮,避免机械能和电能之间多次能量转换所带来的额外损耗,而且此时发电机MG1和驱动电机MG2等效合并成一个峰值功率超过500千瓦的更大的电机,能通过再生制动有效地回收更多的整车能量;在高速公路循环工况下,ACE重卡并混模式大概率比串混模式实际油耗更低;当然还可以充分利用电子地平线3D道路先验数据,结合ACE重卡的配置参数及动态工况数据,预测性和智能化地动态切换串混或并混模式(即智能模式切换 技术;iMS),充分利用两种模式各自的特点和优势,进一步实现整个运输事件的RDE油耗最小化;如同下围棋,不争每一粒子的局部得失,而要纵观全局,谋求终局全面性胜利,后续详述。
在ACE重卡高速公路正常行驶时,车辆路载功率函数P V(t)在秒级颗粒度时间内为缓慢变化的模拟函数;车辆在非拥堵高速公路上正常行驶,车辆加速度绝对值基本小于0.05G(G为重力加速度),可根据车辆动力性方程(1-1)以高于2赫兹的刷新频率和千瓦级颗粒度来动态预测百公里级电子地平线内的路载功率时变函数分布;换句话讲,ACE重卡在高速公路正常行驶时,车辆未来十分钟级或小时级时间段内的路载功率函数是可以动态精准预测可知的。混动车辆控制现有技术中,通过不同功率管理策略(PMS)和实施方案对混动车辆发动机的瞬态功率和电机或电池包的瞬态功率分别进行模拟控制,实时满足串混功率方程(2-4)或并混功率方程(3-3),达到优化车辆实际运行环境下(RDE)优化节能减排的有益效果。混动车辆发动机控制与传统内燃机车辆发动机控制的核心差异点在于前者(混动车辆)发动机工况与车辆工况之间为多点对多点的双向映射,而后者(传统车辆)发动机工况与车辆工况之间为单点对单点的双向映射。显然混动车辆优化发动机节能减排的控制自由度或维度要明显高于传统内燃机车辆;但是现有技术中对混动车辆的发动机、电机、电池包的瞬态功率时变函数分别进行模拟控制也意味着混动车辆动力总成系统内各个子系统之间相互影响,交叉耦合,特别是发动机的工况无法与整车工况(等效于动力总成工况)无法完全解耦,导致动力总成硬件和软件仍然交叉关联,无法实现工程意义上的动力总成软硬件解耦;而系统软硬件解耦是实现软件定义该系统的先决条件和基石。换句话讲,现有油电混动车辆技术,特别是包含并混运行的混动车辆,难以实现工程意义上的动力总成软硬件解耦,无法实现软件定义动力总成。
ACE重卡有两个相互独立的动力源,发动机机械动力源和电池包电力动力源;从整车能量或功率管理策略角度考虑,发电机(MG1)和驱动电机(MG2)可被视为高效无源能量转换器件,以90%左右的效率将机械能与电能双向转换。本发明的核心在于,根据车辆动力学方程(1-1)和串混功率方程(2-4)或并混功率方程(3-3),对ACE重卡的发动机的瞬态机械功率时变函数和电池包的瞬态电力功率时变函数分别进行脉冲调制(PM)控制,特别是新颖独特的双极性矩形或非矩形脉宽调制(PWM)或脉幅调制(PAM)数字化控制;将发动机主动模式(AOM-Active Operating Mode;即燃烧做功运行)下的复杂面工况高度简化为其高效区内若干指定的点工况或线工况,运行时间占比99%,几乎完全避免发动机在非高效区任何主动工况;另外新增发动机被动模式(POM-Passive Operating Mode;即无燃被拖运行,此时发动机零油耗零排放;)下若干指定点工况或线工况;发动机可在主动模式与被动模式之一稳态运行或二者之间动态双向切换;在保证车辆动力性和行驶主动安全性的前提条件下,同时实现车辆实际油耗和污染物排放最小化。详情后续。根据行业熟知的发动机万有特性曲线(Engine Fuel Map),发动机的主动模式(AOM)运行为第一象限(即非负转速或转矩)的面工况,包括高效区(例如105%最小比油耗曲线BSFC内部的区域)和非高效区;而发动机的被动模式(POM)运行为第四象限(即非负转速和负转矩)的面工况,显然全部四象限面工况对发动机而言,都是零油耗零排放的“双零工况”,等效于极限高效工况。
从本质上讲,车辆动力性方程(1-1)、串混功率方程(2-4)、并混功率方程(3-3)描述了配置本发明的混联动力总成的ACE重卡在任何循环工况及系统架构(串混或并混)下,包括车辆路载机械功率函数P V(t)、发动机机械功率函数P ICE(t)、电池包电力功率函数P BAT(t)在内 的各种功率项之间的瞬态功率平衡(Instantaneous Power Balance);无论是串混运行或并混运行,车辆路载瞬态功率都等于该车发动机瞬态功率和电池包瞬态功率的线性叠加;但发动机和电池包的瞬态功率和工况必须满足串混或并混功率方程(2-4)或(3-3)的全部限制性边界条件。本发明中如无特别指明,则各项功率函数泛指瞬态功率函数。下面再定义一个称为“滚动平均”的新函数(MAW–Moving Average Window),对原函数在窗口周期T w内进行滚动时间积分时间平均运算,如下方程所示:
Figure PCTCN2022073181-appb-000006
其中
Figure PCTCN2022073181-appb-000007
为滚动时间平均功率时空函数,简称“平均功率”;P(t)为瞬态功率时空函数,简称“瞬态功率”;t为时间变量;T w为窗口周期(分钟级常量)。
显然对上述串混功率方程(2-4)或并混功率方程(3-3)两边各个瞬态功率项根据上述方程(MAW)分别进行数学运算,方程(2-4)或(3-3)依然成立;此时原有的“瞬态功率”项都转换成双向唯一对应的“平均功率”项。平均功率函数的物理意义在于,充分利用ACE重卡在发动机被动模式(POM),能够依靠十千瓦时级车载功率型电池包给电机MG1和/或MG2单独供电,纯电驱动车辆在基本平缓的高速公路上满载正常高速行驶近十英里的电能缓存(Electrical Energy Buffer)特点,将实时地满足车辆动力学方程(1-1)及串混功率方程(2-4A)或并混功率方程(3-3A)的车辆路载功率、发动机功率、电池包功率三者之间的“瞬态(亚秒级)功率平衡”的技术要求(又称“快速控制环”)与通过动态调节车辆路载平均功率与发动机平均功率之间的差值(即电池包平均功率函数值基本为零、明显大于零、明显小于零),来主动调节电池包的工作模式(三选一运行或动态切换,荷电保持CS、荷电消耗CD、荷电增加CI),从而动态控制电池包的平均荷电状态时变函数(SoC)的“稳态(分钟级)荷电状态调整”的技术要求(又称“慢速控制环”)完全解耦;使ACE重卡的发动机和电池包的“瞬态功率控制问题”(涉及车辆动力性、局部油耗及排放;但不涉及电池包平均SoC控制或全局油耗及排放)与“平均功率控制问题”(涉及电池包平均SoC控制或工作模式控制、车辆局部和全局油耗及排放;但不涉及车辆动力性)这两个维度的技术问题之间完全解耦;瞬态功率(快速控制环)与平均功率(慢速控制环)可以独立调整,互不影响,分别优化。发动机和电池包的瞬态功率函数实施脉冲调制控制,可决定车辆运行时的瞬态(亚秒级)车辆动力性、发动机实时油耗及污染物排放这三项重要动态指标,可对三项指标同时且分别优化;而平均功率控制则决定了无论ACE重卡实际循环工况如何,都能将发动机和电池包长期稳定地控制在二者的高效工作区内运行,几乎完全消除发动机或电池包的非高效区工况点;并可以通过电池包在荷电保持(CS)、荷电增加(CI)、荷电消耗(CD)三选一稳定运行或三种模式之间动态切换来实现对电池包平均荷电状态时变函数(SoC)的实时控制,在宏观准稳态(分钟级)意义上,同时优化车辆节能减排;车辆节能减排瞬态优化和稳态优化正交组合,达到同时优化整个货运事件ACE重卡RDE油耗和排放的有益效果。显然,根据串混功率方程(2-2)和并混功率方程(3-2),电池包瞬态功率函数与双电机MG1和MG2的瞬态功率函数之代数和在数学上完全等价;但电机的功率函数从物理意义上与电池包功率函数不同;前者具备机电二象性,一方面代表机械功率,由电机轴的转速与转矩之乘积决定,另一方面又同时代表电力功率,由电机的交流电压与电流之复数乘积决定;而后者仅代表电力功率,由电池包的直流电压与电流之乘积决定。在串混功率方程(2-4)和并混功率方程(3-3)中,电机功率函数虽然从数学意义上讲并没有显性出现,仅隐性地出现 在上述方程的边界条件中;但从物理意义上讲,双电机MG1和MG2恰恰是低损耗高效率地联接ACE重卡的路载机械功率函数、发动机机械功率函数、电池包电力功率函数三者的实体桥梁。
在ACE重卡并混模式下,发动机与车辆驱动桥之间有直接双向机械联接,所以发动机的转速受控于车辆工况(特别是车速和变速箱的挡位);路载功率P V为自变量,可以独立控制,体现了司机对车辆行驶的控制意图(例如纵向车速或加速度)和本车(Ego Vehicle)所处动态交通状况,其值与车辆驱动轮的转速和总计驱动转矩的乘积成正比;车辆正常行驶时(即驱动轮不打滑时),发动机的转速与驱动轮转速成正比,为因变量,不能独立设定;而发动机的转矩在该转速下的有效峰值转矩范围内为自变量,可根据车辆能量管理控制策略来独立动态设定;换句话讲,在并混模式下,发动机的瞬态功率函数仍为自变量,可以独立控制;但此时发动机的转速受控于车辆的速度和变速箱挡位,不能独立控制,仅转矩独立可控。从车辆RDE节能减排同时优化角度考虑,在城市工况下(车辆平均时速小于40公里/小时,主动加速和刹车频繁),可优选串混模式;而在高速工况下(即正常高速公路工况,车辆平均时速大于50公里/小时,主动加速和刹车不频繁),可优选并混模式。
当前全球在用重卡发动机95%以上为柴油机;重卡柴油机的高效区(即发动机最小比油耗BSFC值的105%的等油耗曲线内的工况区域)一般在转速1100~1600转/分(rpm)范围,转矩50%~90%最大转矩范围(即转矩负荷率50%~90%),功率负荷率超过40%;在高效区外,发动机的比油耗值(BSFC;g/kWh)将明显升高(增幅超过6%);特别当柴油机低负荷工况区(转矩负荷率或功率负荷率小于30%)运行时,除比油耗(BSFC)明显升高(增幅超过10%)外,其尾气温度通常低于250摄氏度,导致后处理系统催化剂转化效率下降,车辆RDE污染物排放(NOx和PM)明显增加。通过发动机降转速(Down Speed)或减排量(Down Size)来降低整车油耗,是欧美重卡行业近十年的大趋势;但上述两项节油措施与车辆在任何循环工况下的动力性都优化有矛盾,且对车辆传动系统的可靠性和耐久性有负面影响。ACE重卡在并混模式下,有两个额定功率百千瓦级的发电机和驱动电机可以和发动机三者协同发力,此时ACE重卡的动力性明显优于所有传统柴油机重卡或增程式串混重卡(峰值功率均小于450千瓦),可实现总计峰值驱动功率(即最大路载功率)或再生制动功率超过500千瓦,具备超群出众的加速超车或爬坡能力和紧急刹车或缓速能力。
干线物流混联ACE重卡遇到十公里以上长坡或高山的极限路况,车辆控制器(VCU)可根据车载3D地图和车辆定位,车到山脚下提前闭合离合器,切换到并混模式,由发动机直接驱动车辆,省去从发动机到驱动轮的多次能量转换,提高驱动效率。如果ACE重卡登顶前电池包荷电耗尽(SoC<LRL),发电机和驱动电机都可被配置为无负载空转,此时车辆继续爬山时的动力性完全取决于发动机的峰值功率(通常大于300千瓦)。在本发明的混联架构下,峰值功率参数配置条件:P ICE-p>P MG2-m>P MG1-m,可选配P ICE-p>300kW,P MG2-m<250kW,P MG1-m<200kW。如果电机额定功率小于200千瓦,可以明显降低电机和逆变器的成本。除上高山的极限路况外,在平原和丘陵地带,并混模式下ACE重卡能让电池包长期运行在荷电维持(CS)模式,通过对发动机瞬态输出功率进行智能功率切换控制(iPS),结合电子地平线先验3D道路信息,将电池包荷电状况(SoC)保持在最佳工作区域(例如30%~70%),此时发动机和双电机(MG1、MG2)可三者共同发力驱动车辆,并混动力总成分钟级持续时间的最大总驱动功率可高达500千瓦以上,混联重卡的动力性、安全性、和节油性等方面即明显优于传统发动机重卡,也优于高配置的增程式串混重卡。
ACE重卡完成整个货运事件所做的累计有用功都直接或间接地来源于发动机瞬态功率函数对时间的积分,即累计有效机械能(又称有效驱动功,Effective Propulsion Work)。ACE重卡节油策略的关键之一就是最大限度地保持发动机在其万有特性曲线的高效区内长期稳定地运转,尽量减少发动机在其高效区以外运行,特别是长时间在低负载工况区或怠速工况点运行。发动机启停技术(SS–Stop Start)和发动机停缸技术(CDA-Cylinder Deactivation)是当前全球汽车行业人士熟知的节能减排现有技术,已广泛应用于乘用车行业;但这两种现有技术各自的缺点和使用局限性也是行业常识。
干线物流重卡运行绝大多数时间(85%+)在高速公路工况运行,不常遇见红绿灯,车辆启停频次很低,同时主动加速或刹车的频次也较低;重卡发动机在运转启停切换时,所引发的车辆振动噪声(NVH)问题比内燃机乘用车更突出;发动机停转时,重卡上多种机械式附属子系统(例如冷却风扇、水泵、油泵、气泵、转向助力泵、空调压缩机等)无法从发动机处直接获取机械能量来维持正常工作,会引发众多负面影响;发动机频繁启停会缩短发动机、启动马达、离合器、蓄电池等子系统的寿命;干线物流重卡发动机启停技术的实际节油效果甚微(节油率小于2%);所以乘用车(总重小于3.5吨)节能减排现有技术中的发动机启停技术(SS)并不适用于干线物流重卡,至今全球范围重卡发动机启停技术(SS)还没有量产商用。同时干线物流重卡正常行驶时绝大部分时间其发动机稳定地工作在燃烧高效区,较少时间工作在发动机低转速、低负载的工况下,虽然在道路拥堵或等待装卸挂车时仍会怠速或低转速、低负载运行,但时间占比较小。干线物流重卡发动机若采用停缸技术(CDA),则需要增加一套复杂的可变气门驱动装置(VVA),通过动态切断发动机部分但非全部气缸(例如6缸变4缸、3缸、或2缸)喷油并且在四冲程发动机完整的周期内(曲轴两圈或转角720度)常闭这些被动气缸(Deactivated Cylinder)的全部进/排气门,增加其余主动气缸(Activated Cylinder)的实际燃烧做功负载率,有助于节能减排;需强调柴油机CDA的首要目的是在车辆低负载工况下提升发动机尾气温度,使后处理系统(ATS)内部各种催化剂在其高效区运行(摄氏250度至500度),减少车辆污染物排放;次要目的才是通过调整主动气缸的实际工况点来节油。发动机停缸技术(CDA)明显增加了发动机的结构复杂性和成本,降低其可靠性和寿命,恶化车辆的振动噪声特性(NVH),对干线物流重卡而言,综合节能减排效果有限,性价比不高。全球范围干线物流重卡市场,目前(2021年初)都没有批量商用重卡发动机启停技术(SS)或停缸技术(CDA)。当然,柴油重卡如果要满足美国加州2027年超低排放组合法规(即比EPA-2010法规的NOx显著降低90%)和美国联邦GHG-II法规,则必须考虑批量商用重卡柴油机停缸技术(CDA)。
ACE重卡混联动力总成的机械驱动功率回路和电力驱动功率回路,即可各自独立工作,也可二者协同工作,来实时地满足车辆动力学方程(1-1)、串混功率方程(2-4)、或并混功率方程(3-3)。ACE重卡即便发动机进入被动模式运行(停机或无燃被拖),仅由电池包单独给驱动电机供电,也可以维持车辆满载高速行驶至少五分钟;从车辆功率或能量管理策略角度来讲,ACE重卡的行驶过程本质上是一种有分钟级响应时间的高惯性时变机电系统,根据冲量等效原理,可以对其发动机瞬态输出功率采取脉冲调制(PM)数字式控制策略,例如脉宽调制控制(PWM)或脉幅调制控制(PAM),可保证发动机长期稳定地运行在其燃烧高效区或零油耗零排放的无燃被动区,通过功率型电池包的瞬态功率函数对发动机瞬态功率脉冲序列函数进行动态补偿,削峰填谷,二者线性叠加后再现模拟缓变路载功率函数,实时地满足车辆动力学方程(1-1)、串混功率方程(2-4)、或并混功率方程(3-3);为充分利用各种数字信号处理技术、数字控制技术、大数据(BD)技术、机器学习(ML)技术来同时优化ACE重卡节能减排铺平道路。电池包或电机的瞬态功率比车辆路载瞬态功率或发动机瞬态功率的变化速度高一个数量级以上,电池包的瞬态功率函数完全能根据串混功率方程(2-4A)或并混方功 率程(3-3A)来快速精准地(十毫秒级时延或千瓦级颗粒度)跟随路载瞬态功率函数与发动机瞬态功率函数之差值,实时地满足车辆动力学方程(1-1);而且ACE重卡在整车动力性能、刹车性能、噪声和振动(NVH)特性、RDE油耗或排放等方面要明显优于传统柴油重卡。本公开将ACE重卡发动机输出功率的控制策略从现有技术的模拟调幅(AM)电子控制升级到基于脉宽调制(PWM)或脉幅调制(PAM)的数字电子控制技术;为充分利用各种新兴的人工智能、大数据、云计算(ABC)技术来优化干线物流重卡节能减排提供了高性价比的技术基础、装置、和方法。下面详细阐述本公开的核心发明点之一,两种既可以克服现有技术中的发动机启停技术(SS)或停缸技术(CDA)的原有缺点,又能够保留它们各自的原有优点,同时优化ACE重卡节能减排的新颖发动机脉冲数字控制技术:“智能启停”(iSS–intelligent Stop Start)技术和“智能功率切换”(iPS–intelligent Power Switch)技术。
首先描述ACE重卡串混“智能启停”(iSS)控制技术。ACE重卡在串混模式下运行时,发动机与车辆的驱动轮完全机械解耦(即无机械联接),此时发动机的工况点(即转速和转矩)可任意设定,与车辆的工况点无关。根据发动机的具体配置参数,可选定发动机万有特性曲线(Fuel Map)中比油耗最小值等高线所定义的“最佳工况区”内的最大功率点为“最佳工况点”;该工况点一般在发动机峰值转矩所对应的最高转速(即基速)附近,转矩负荷率在80%~90%之间(实际转矩与峰值转矩的比值),发动机在最佳工况点的输出功率值(定义为“最佳输出功率”)一般为其峰值功率值的60%~80%之间;该工况点发动机的比油耗(BSFC;g/kWh)最小(即热效率BTE最高),同时发动机排气口处废气的温度也高于250摄氏度,有利于车辆废气后处理系统(ATS)高效运行,最大限度减少污染物排放且延长后处理系统在实际运行环境下(RDE)的有效寿命。发动机的最佳输出功率应小于发电机(MG1)的额定功率;发动机的峰值功率显然大于最佳输出功率,也应大于发电机(MG1)的额定功率,只是发动机峰值功率工况点的比油耗(BSFC)通常大于最小值。另外还可将发动机稳定地运行在一个零油耗零排放的被动工况点:“无燃怠速点”(NCIP–Non-Combustion Idle Point),该点的转速值可设定在400转/分至700转/分之间,以保证ACE重卡上必须从发动机处直接获取机械能量的各种附属子系统都能够正常工作;此时发动机切断其全部气缸的喷油(Fuel Cutoff),进入被动模式(POM)运行,转矩变为负数,平均绝对值基本小于300牛米,需要由发电机(MG1)在驱动模式下拖动发动机旋转,该工况点的发动机功率定义为“无燃怠速功率”,为负数,其绝对值基本小于发动机峰值功率的10%;发动机在被动模式下,其作用相当于一个一进多出的变速箱(即机械功率分流器),将发电机在驱动模式下输出的十千瓦级机械功率反向转递到车辆各个需要从发动机处获得连续机械能供应的附属子系统,赋能这些附属子系统正常运行。显然在无燃怠速工况点,发动机零油耗零排放,但发电机在驱动模式下会耗电。iSS模式下发动机的最佳输出功率又称“高态额定功率”;无燃怠速功率又称“低态额定功率”。
对没有可变气门驱动(VVA)功能的基本型发动机,在无燃怠速点一个完整的四冲程发动机周期内(曲轴转角720度;简称发动机周期),吸气和排气两个冲程将分别产生泵气损失(Pumping Loss),压缩和做功两个冲程得益于缸内压缩空气弹簧一缩一伸,基本没有泵气损失;发动机的自身机械损失(包括摩擦损失和泵气损失)与其转速高度正向关联。无燃怠速点的发动机做为机械负载,无燃怠速功率时间平均值基本小于20千瓦,额定功率百千瓦级的发电机可轻易地反拖发动机运转,且在分钟级时间内耗电量有限,一般在百瓦时级。对有可变气门驱动(VVA)功能的高级型发动机,则可控制全部气缸的所有进/排气门在发动机被动模式运行时保持常关状态,可明显减少泵气损失,从而进一步降低无燃怠速功率,减少电耗。发动机运行在被动模式运行时,如果此时发动机所有气缸的全部进/排气门同时保持常闭状态,定义为“二元停缸”功能(bCDA-binary Cylinder Deactivation),实现该功能的 可变气门驱动(VVA)技术方案则称二元停缸技术。本发明的发动机二元停缸技术与现有技术中的发动机停缸技术(CDA)在必备技术特征、控制方法、有益技术效果等方面有本质上的差异,后续详述。二元停缸技术除了能够明显减少发动机泵气损失,有利于节油外,另一重要益处是避免发动机被动模式运行时产生的大量清洁低温尾气,吹凉后处理系统内的各种催化剂,降温到关灯温度(Light-off Temperature)以下(即+200摄氏度)的缺陷,将脉控发动机的后处理系统中各个催化剂子系统的内部温度长期稳定地保持在关灯温度以上,能保持车辆RDE排放长期稳定地满足加州2027年超低排放法规限值(比EPA-2010降低90%)。当然,ACE重卡只采用智能启停技术(iSS)但不选用二元停缸技术,也能满足当前柴油重卡NOx排放法规限值(EPA-2010、欧-VI、国-6)的要求,但要满足2027年加州柴油重卡NOx超低排放限值0.02g/bph-hr的法规要求,则必须采用二元停缸技术,还需要增加后处理系统主动智能废气温控技术(iETM),后续详述。
所谓智能启停技术(iSS),指由车辆控制器(VCU),根据ACE重卡在串混模式下的系统配置参数、车辆动态行驶数据、电子地平线道路三维信息、和聚焦优化节能减排的机器学习(AI)算法,指挥发动机在“无燃怠速点”和“最佳工况点”二者之一平稳运行或二者之间动态平顺切换,对发动机瞬态输出功率时间函数实施双极性非对称脉宽调制控制(PWM);再通过电功率分流器(ePSD),对电池包瞬态功率时变函数进行同步的(Synchronized)脉冲调制控制(PWM或PAM),实时地满足车辆动力学方程(1-1)和串混功率方程(2-4A)及相应边界条件;在保证车辆行驶的动力性和安全性的前提条件下,同时优化车辆节能减排。该PWM脉冲序列的周期为亚分钟级,占空比k s定义为脉冲周期内高态(High State;又称主动态,AS-Active State)最佳工况点运行时间与脉冲周期的比值(%),在0和1之间连续可调;而低态(Low State;又称被动态,PS–Passive State)无燃怠速点运行时间占比则等于1-k s;可以通过动态调节占空比k s来实现发动机的平均功率(参见方程MAW)在“无燃怠速功率”与“最佳输出功率”之间连续可调。优选发动机工况动态切换控制实施方式如下:从低态(无燃怠速点)切换到高态(最佳工况点)时,先由发电机(MG1)拖动无燃发动机,将其转速从怠速点提升到最佳工况点后,发动机再开始喷油燃烧做功;在其万有特性曲线(Fuel Map)固定转速垂直线上逐步增加转矩(秒级过渡时间),到达最佳工况点后稳定地运行;从高态向低态反向切换时,发动机先在最佳工况点迅速(亚秒级)减少喷油直到完全切断喷油,依靠发动机飞轮的惯性,快速进入无燃状态(被动工况,做负功);在最佳工况点的定转速下先将转矩迅速减小成负数(亚秒级过渡时间),然后再由发电机拖动无燃发动机减速至无燃怠速点后稳定地工作。显然在串混iSS控制模式下,发动机的瞬态功率函数由现有技术的模拟时变函数被转换成非对称双极性PWM脉冲序列函数;将发动机瞬态功率函数的控制方式从复杂全域面工况的模拟控制转换成新颖独特的指定双点工况或双线工况数字控制。串混ACE重卡为纯电驱动,十千瓦时级功率型电池包可在短时间内(分钟级)单独支持驱动电机(MG2)满负荷(即额定功率分钟级或峰值功率秒级)运转;同时电池包瞬态充放电功率的响应速度比发动机瞬态功率的响应速度高一个数量级,瞬态功率值在电池包的负峰值功率到正峰值功率之间连续可调,完全胜任根据串混功率方程(2-4A),对路载瞬态功率函数与发动机瞬态功率函数之差值进行快速精准地跟踪(十毫秒级时延及千瓦级颗粒度),削峰填谷;既能保证整车瞬态动力性(即动力总成合计驱动功率)丝毫不受发动机两个工况点(高态或低态)之间动态切换的影响,实时地满足车辆动力学方程(1-1);又能保证混联动力总成运行时整车的振动和噪声性能(NVH)优于传统内燃机重卡;从整车NVH性能优化角度考量,发动机高低态工况点切换的过渡时间不宜太短,应在秒级。对ACE重卡而言,无燃低态的发动机是发电机在驱动模式下的机械负载;而在发电模式下,发电机则是燃烧高态的发动机的机械负载。发动机在最佳工况点工作时,发电机(MG1)的输出功率称为 “最佳发电功率”,为正数,该值通常高于发电机额定功率的85%且上限为发电机的额定功率;发动机在无燃怠速点工作时,发电机(MG1)的功耗称为“无燃耗电功率”,为负数,其时平均绝对值小于百千瓦级发电机额定功率的15%;换句话讲,在串混iSS控制模式下,通过动态调节PWM序列占空比k s,可实现发电机组(指发动机加发电机)平均电功率函数在无燃耗电功率与最佳发电功率之间连续可调。
从本质上讲,智能启停技术(iSS)将串混模式下ACE重卡发动机的实际燃烧做功运行区域从复杂面工况极致地简化到单一最佳工况点(固定转速和转矩;比油耗最小),通过对最佳工况点发动机运行所产生的恒定输出机械功率,进行非对称双极性矩形脉宽调制(PWM)控制,来动态连续地调节发动机分钟级平均输出机械功率和对应发电机组的发电平均功率,根据分钟级路载平均功率与发电平均功率之间的差值基本为零、明显大于零、明显小于零三种不同情况,使电池包在荷电保持(CS)、荷电消耗(CD)、或荷电增加(CI)三种工作模式之一稳定工作或模式之间平顺切换;通过动态精准地(亚秒级时延及千瓦级颗粒度)预测车辆电子地平线范围内(小时级或百公里级)路载平均功率时变函数并调节发动机平均功率函数,最大限度地使电池包长期稳定地工作在高效区(BLL<SoC<BUL);尽量避免因电池包电量基本耗尽(SoC<LRL),导致ACE重卡动力性降低的不良情况出现,或因电池包电量基本满溢(SoC>URL),导致无法有效地回收再生制动电量的不良情况出现;发电机组(发动机+发电机)和电池包协同供电,确保驱动电机能实时地满足车辆路载功率要求,在保证ACE重卡行驶动力性的前提下,实现RDE油耗和污染物排放同时最小化。
最简洁有效的PWM控制策略如下,发动机的无燃怠速点和最佳工况点一旦选定后固定不变,通过动态调整发动机瞬态功率双极性等幅脉冲序列(PWM)的占空比k s来实现发电机组的分钟级发电平均功率在无燃耗电功率与最佳发电功率之间连续可调。当然智能启停(iSS)功能还可以拓展到发动机的可调节的无燃怠速点与多个高效工况点(即不同的最佳工况功率)之间动态切换的其它技术方案,但这些可调多工况点iSS技术方案更复杂且综合性价比并不优于上述固定双工况点的iSS技术方案。由于驱动电机转速和转矩的调节速度和精度比变速箱快一个数量级,在串混iSS模式下,如果车辆需要换挡,驱动电机(MG2)能够轻松的完成瞬态转矩中断和快速转速同步,令变速箱平顺换挡,整个变速箱换挡操作与发动机的工况无关。
现代重卡柴油机普遍采用涡轮增压器;智能启停技术(iSS)即适用于不带可变气门驱动(VVA)功能且配置低成本固定截面涡轮增压器(FGT)的基本型发动机;也适用于带可变气门驱动(VVA)功能和/或可变截面涡轮增压器(VGT)的高级型发动机。基本型发动机和高级型发动机虽然在万有特性曲线高效区(大小或形状)、动态特性(例如涡轮增压器延迟Turbo Lag等)、和价格等方面差异明显,但两种发动机的最小比油耗(BSFC)值或最佳输出功率值基本相同;借助ACE重卡串混智能启停技术(iSS),配置基本型发动机的ACE重卡对比配置高级发动机的车辆,在各种运行工况和应用场景下,均能达到相同的动力性和节能减排效果;换句话讲,ACE重卡对比传统柴油重卡,大幅降低了对发动机的技术先进性及综合性能的要求,使发动机不再是ACE重卡动力性、RDE油耗或排放的瓶颈;ACE重卡能轻松适配任何量产商用的现代重卡发动机。未来中国国-6新ACE重卡即便配置成本较低的国产基本型发动机,在确保极具挑战的重卡七十万公里实际运行环境(RDE)排放长期稳定达标的前提条件下,仍能同时优化车辆动力性和燃油经济性。绝大多数发动机的最佳输出功率在其峰值功率的55%至85%之间;满负荷(负荷率>90%)或轻负荷(负荷率<30%)时,发动机的比油耗(克/千瓦时)都明显高于最小值。发动机的万有特性曲线中,比油耗(克/千瓦时)的等高线为多个互不相交的不规则环形曲线,其比油耗全域最小值等高线内部所包含的区域称最佳工况区,俗称发 动机的“甜点”(Sweet Spot),其中每一点都是最佳工况点(特定转速和转矩),比油耗值相同;比油耗等于最小值的105%的等高线所包含的区域可称为高效工况区(简称“高效区”);显然高效区的面积明显大于甜点并完全包含甜点。大多数重卡发动机的甜点所对应的转速在其基速(指峰值转矩点的转速)的95%到125%范围内,所对应的转矩在其峰值转矩的65%至90%之间。现代重卡发动机(柴油或天然气)基本型(Base Model)的高效区面积较小,而高级型(Advanced Model)的高效区面积较大;两种柴油机在甜点的最小比油耗值均可达到186克/千瓦时。为持续降低油耗(升/百公里),近十年来,欧美重卡发动机研发的大趋势是降排量(Down-Size)或降转速(Down-Speed),发动机的基速(即峰值转矩点转速)从1200转/分逐年下降到1100转/分以下,甚至向1000转/分逼近;主流发动机的排量也逐渐向12L聚集。无论具体应用场景如何,ACE重卡在串混iSS控制模式下,都能将整车工况和发动机的工况完全解耦,在保证整车动力性前提条件下,令发动机在98%以上的时间工作在其高效区内或零油耗零排放的无燃怠速区内,基本完全消除发动机功率满负荷、低负荷、或有燃怠速运行工况(时间占比<2%),达到同时优化节能减排的有益效果。
下面再描述并混“智能功率切换”(iPS)控制技术。ACE重卡在并混模式下运行时,因发动机与驱动轮直接机械联接(即机械耦合),其转速完全由变速箱挡位和车速来决定并随时间变化,为因变量(无法独立控制),但其转矩仍然是自变量,可以独立动态调整;此时对发动机,不能采用智能启停(iSS)控制技术,必须采用智能功率切换(iPS)控制技术。ACE重卡在高速路正常行驶时(平均行驶速度高于50公里/小时,无紧急刹车),可优选并混模式运行,在无长坡的路段,其路载平均功率基本大于发动机峰值功率的35%,绝大部分时间为中高负载工况;车辆的瞬态速度在一窄速度带内随时间缓慢变化,车速变化率一般在平均车速正负15%范围内波动,所以车辆的发动机的转速的变化率的绝对值也小于15%;本车主动加速度的绝对值基本小于重力加速度G的5.0%(即0.5米/秒平方),此时发动机的瞬态输出转矩仍然大范围独立可调。ACE重卡变速箱的自动换挡控制策略,总能让发动机在高速工况始终稳定地运行在基速(即峰值转矩点的转速)附近狭窄范围内(高效区),例如在1100转/分到1600转/分之间。在并混模式下,发电机(GM1)和驱动电机(GM2)的转速也都和发动机的转速成正比,且两电机的瞬态转矩仍然大范围分别独立可调。可对发动机的瞬态机械功率函数和功率型电池包的瞬态电功率函数(充电或放电)分别进行双极性非矩形脉宽调制控制(PWM)或双极性非等幅(即非矩形)脉幅调制控制(PAM),实时地满足车辆动力学方程(1-1)和并混功率平衡方程(3-3A),而且还能通过控制发动机瞬态功率PWM脉冲序列的占空比来动态连续调节发动机平均功率函数,令车辆路载平均功率与发动机平均功率之差值(方程3-3A)基本等于零(绝对值小于30千瓦)、明显大于零或小于零,使电池包在荷电保持(CS)、荷电消耗(CD)、和荷电增加(CI)三种工作模式之一稳定工作或之间平顺切换;保证电池包绝大部分时间(90%+)在高效区运行(BLL<SoC<BUL),完全杜绝电池包在上下红线外运行(SoC<LRL或SoC>URL)。
ACE重卡并混模式运行时,可对发动机的瞬态输出功率进行脉冲调制控制(PM;含PWM或PAM),实现“智能功率切换”(iPS)控制功能,具体技术措施如下:车辆控制器(VCU)通过车辆数据总线(CAN总线)对发动机的瞬态输出功率函数进行双极性非矩形脉宽调制控制(PWM),脉冲序列的周期T为亚分钟级,双极性非矩形(即非等幅)PWM脉冲序列同周期内可分为高态工况或低态工况,低态工况可设定为发动机无燃被拖动时的线工况(功率为负数,小范围波动),该低态工况线的转矩范围由车辆上所有必须从发动机持续获取机械能才能正常工作的子系统的集合决定,为负数,绝对值在百牛米级;转速范围由ACE重卡的车速时间函数和变速箱挡位决定,为正数(1000~1800RPM);高态工况线可设定为脉冲周期内发动机转速波动范围内,比油耗(BSFC)高效区域内(即 发动机最小比油耗105%的比油耗曲线内包含的区域)功率值相对极大的多个工况点联接而成的线工况(转矩或功率为正数,有小波动);占空比k p定义为高态工况运行时间与PWM脉冲序列周期T的比值,在0和1之间任意可调;而同一周期内低态工况时间占比则等于1-k p;由于并混时发动机的转速受制于车速,在PWM脉冲周期内(亚分钟级)有小范围的波动,发动机瞬态功率函数高态脉冲部分或低态脉冲部分都是非等幅(即非矩形)的脉冲。在串混智能启停(iSS)控制模式下,发动机的瞬态输出功率时间函数可转换为双极性等幅(即矩形)PWM脉冲序列,直接设定无燃耗电功率与最佳发电功率为常数,与车辆动态工况无关;但在并混智能功率切换(iPS)控制模式下,发动机的瞬态输出功率时间函数只能转换为双极性非矩形PWM脉冲序列,高态脉冲和低态脉冲部分的具体形状,与车辆动态工况高度关联,PWM脉冲的顶部幅度曲线会随时间在小范围内缓慢波动。在并混iPS模式下,与全高态脉冲序列(即占空比为1.0)一个周期T内时间积分面积相同(即等冲量)的等幅功率值定义为“高态等效功率”,是个大于发动机峰值功率70%的正数;与全低态脉冲序列(即占空比为0)一个周期内时间积分面积相同(即等冲量)的等幅功率值定义为“低态等效功率”,是个绝对值小于发动机峰值功率10%的负数;iPS模式下,发动机的平均功率函数在负的低态等效功率和正的高态等效功率之间任意可调,为缓变模拟时变函数。上述PWM控制方案,通过对发动机喷油量的动态控制(断油或喷油),使发动机在其燃烧高效区内的高态工况线和零油耗零排放的低态工况线之间,沿垂直方向(即定转速,变转矩)来回平顺切换,动态地调整发动机平均功率函数(见方程MAW),令车辆路载平均功率与发动机平均功率的差值在基本为零(例如绝对值小于15千瓦)、持续明显大于零(大正15千瓦)、持续明显小于零(小于负15千瓦)三种状态之间动态可调,使ACE重卡的电池包在荷电保持(CS)、荷电消耗(CD)、和荷电增加(CI)三种工作模式之一稳定工作或三种模式之间动态切换;最大限度地避免因电池包电量基本耗尽(SoC<URL),导致电池包无法继续给驱动电机供电,ACE重卡动力性降低的不良情况出现,或因电池包电量基本满溢(SoC>LRL),导致电池包无法继续通过再生制动回收整车能量的不良情况出现;再由发动机、发电机(MG1)、和驱动电机(MG2)三者协同驱动,实时地满足车辆动力学方程(1-1)和并混功率方程(3-3)。
ACE重卡并混模式下,发动机、发电机(MG1)、和驱动电机(MG2)三者都和车辆的驱动轮直接机械耦合,三者的转速在变速箱挡位固定时,完全受控制于车速时变函数这个自变量,均为秒级缓慢小幅变化(每秒变化率小于5%)的因变量时变函数;而三者的转矩则都是百毫秒级可快速大幅变化(每秒变化率大于20%)的自变量时变函数;三者的瞬态转矩可直接叠加,整车变速箱输入轴处驱动转矩的合计峰值可超过4000牛米,明显高于当今世界上顶级配置干线物流重卡16L柴油机的峰值转矩(约2800牛米);所以并混ACE重卡在高速工况下可长期稳定地工作在变速箱的最高挡位(直驱档或超速挡),很少因加速超车或上坡时峰值转矩不足而向下换挡;为保护变速箱和传动系统的机械寿命,需要对并混模式下变速箱输入轴的最大转矩进行动态限制。如果ACE重卡并混模式运行中需要换挡,特别是向下换挡(即高挡位换低档位),由于双电机(MG1和MG2)转矩或转速的调整速度比发动机快近十倍,可在换挡时先切断发动机喷油,令发动机进入无燃低态工况线运行,再由双电机(MG1和MG2)协同工作在驱动模式下,既拖动无燃发动机又驱动车辆;此时不需要断开离合器,就可以在秒级时间内完成发动机的飞轮与变速箱的输入轴之间转矩中断及转速同步后挂上新档,然后发动机再重新喷油燃烧做功,进入高态工况线运行,整套换挡动作在秒级时间自动完成。ACE重卡在并混iPS控制模式下换档时,不会出现明显的车辆驱动转矩中断,基本消除传统内燃机重卡变速箱换档时(特别是向下换档时)的明显顿挫感,还明显改善了整车运行时的振动及噪声特性(NVH)。换句话讲,在并混iPS模式下,如果ACE重卡需要换挡,则整个换挡操作必须在发动机瞬态功率PWM 脉冲序列函数的低态脉冲部分完成(秒级);与传统内燃机重卡换挡操作不同(特别是向下换挡操作不同),此时换挡不需要断开离合器,由双电机(MG1和MG2)协同驱动车辆并拖动低态工况下的发动机,实现变速箱输入轴瞬态驱动转矩中断和转速同步,完成换挡操作;既减少离合器磨损,延长其寿命,又改善换挡时整车的动力性和NVH性能,上述并混(iPS)功能下的“无离合器换挡”(CGS-Clutchless Gearshift)技术措施与现有技术中的传统内燃机车辆或并混车辆离合器换挡方法有本质性差异,优点突出,后续详述。ACE重卡在高速公路正常行驶时,平均车速高于50公里/小时,很少主动加速或刹车,可优选并混模式。
并混模式下发动机的机械功率主要用来直接驱动车辆,而发电机和驱动电机可以工作在相同模式下,等效成一个峰值转矩和功率更大的组合电机,既可从电池包获取电能来驱动车辆,又可通过再生制动给电池包高倍率充电,回收能量。传统内燃机重卡高速路正常行驶时,变速箱的实际换挡频率,主要取决于司机的驾驶风格、实际道路纵坡函数、整车配置参数、车辆行驶工况、及车辆驱动的峰值功率或转矩等多重因素,发动机排量越大,转矩或功率余量越充沛,则换挡频率越低;ACE重卡在并混模式下,发动机、发电机、驱动电机三者的转矩或功率可以叠加,其车辆合计驱动转矩(大于3500牛米)或功率(大于450千瓦)要明显大于目前市场上顶级配置的16L柴油机重卡,所以ACE重卡并混运行时的换挡频率要明显低于所有的传统内燃机重卡,既可改善车辆的动力性和NVH性能,又延长变速箱自动换挡机构的寿命;在某些特殊路况下,发电机和驱动电机还可以工作在相反模式,即一个为发电模式而另一个为驱动模式。当然智能功率切换(iPS)功能还可以通过除脉宽调制控制(PWM)之外的其它技术措施来实现,例如对发动机瞬态输出功率进行非矩形脉幅调制(PAM)控制;普通技术人员受本发明启发,容易举一反三,借助成熟的现代数字通信技术或数字信号处理技术,联想出多种对发动机瞬态输出功率函数实施脉冲调制控制(PMC)的等效技术方案或措施;但这些等效技术方案或技术措施在系统性能、成本、可靠性等方面比上述PWM技术方案并无明显优势。
本发明的ACE重卡串混iSS或并混iPS技术,能将全球量产商用的任何一款现代模拟电控(AEC)重卡发动机在保持发动机硬件和标定软件不变的前提下,转换成一款新颖的数字脉控(DPC)发动机,简称脉控发动机;脉控发动机的运行工况分两大类;第一类为主动模式(AOM-Active Operation Mode),此时发动机燃烧做正功(转矩和转速均为正值;对应万有特性曲线第一象限),全部运行工况从传统的复杂面工况简化为燃烧高效区内若干指定的高态(High State)工况点或工况线,时间占比高于99%,几乎完全避免非高效区内的任何其它工况点,特别是对同时优化发动机节能减排极具挑战的低速低负载或怠速工况,非高效工况点时间占比小于1%;第二类为被动模式(POM-Passive Operation Mode),此时发动机无燃被拖做负功(转矩为负而转速为正;对应第四象限),全部运行工况简化为零油耗零排放的若干指定低态(Low State)工况点或工况线;显然,对脉控发动机节能减排而言,所有低态工况点都是绝对高效工况点,但此时需耗费电池包存储的电能。与传统的发动机电控技术不同,脉控发动机通过上述串混iSS或并混iPS技术措施将其瞬态功率时变函数从模拟函数转换成双极性脉冲序列函数(PWM或PAM),并将脉控发动机的工况从复杂的面工况大幅简化为至少两条指定的线工况并与ACE重卡整车的工况完全解耦,对发动机的实际运行工况可完全独立控制,以不变应万变;换句话讲,无论ACE重卡的整车循环工况(Vehicle Duty Cycle)如何,脉控发动机的实际运行工况都是在主动模式(高效区燃烧做功)和被动模式(无燃被拖,零油耗零排放)之一稳定运行或在二者之间平顺切换;脉控发动机实现了发动机工况与整车工况解耦和混联动力总成软件与硬件解耦,为软件定义动力总成打下坚实的技术基础。可将脉控发动机视为只有特定高态和低态的二元状态机,有利于发动机硬件通用化(Generic)、抽象化(Abstract)、软硬解耦(SW & HW Decoupling), 从而大幅简化ACE重卡RDE节能减排在线实时全局优化算法,提高算法的收敛性和鲁棒性。。
ACE重卡可根据百公里级电子地平线道路三维信息(包括经度/纬度/纵坡)、车辆配置参数及动态运行数据、和司机所选择的智能巡航控制(iCC)子模式,依靠车辆动力学方程(1-1)实时精准地测算(秒级时延及千瓦级颗粒度)车辆在非拥堵的高速公路上未来小时级电子地平线路载瞬态功率或路载平均功率函数分别,车辆控制器(VCU)对发动机实施并混智能功率切换控制(iPS),通过动态控制发动机瞬态功率函数PWM序列占空比k p来连续调整平均功率函数值,使功率型电池包在荷电保持(CS)模式(发动机平均功率基本等于路载平均功率)、荷电消耗(CD)模式(发动机平均功率明显小于路载平均功率)、和荷电增加(CI)模式(发动机平均功率明显大于路载平均功率)三者之一稳定地工作或之间平顺切换;对电池包进行及时(JIT)充放电,保证电池包最大限度地工作在高效区(BLL<SoC<BUL),电池包高效运行时间占比90%,完全避免电池包进入清空(SoC<LRL)或满溢(SoC>URL)的极限红线工况;发动机、发电机(MG1)、和驱动电机(MG2)三者协同驱动,实时地满足车辆动力学方程(1-1)和并混功率方程(3-3),以实现ACE重卡实际油耗和污染物排放同时最小化的有益效果。
ACE重卡在并混模式下,发动机、发电机、和驱动电机三者的驱动总转矩在变速箱输入轴处可以线性叠加,合计峰值转矩能轻易突破4000牛米,而目前全球已量产干线物流重卡的顶级配置的16升重卡发动机的峰值转矩小于2800牛米,全球现有量产商用重卡变速箱最大输入扭矩基本都小于3000牛米,现有重卡变速箱输入轴处最大转矩主要受制于变速箱、传动轴、或驱动桥的原设计机械强度和寿命,如果重新设计并量产峰值输入扭矩大于3500牛米的重卡变速箱,近期研发和生产单位成本将居高难下。换句话讲,即便只配置价廉物美的基本型重卡发动机(例如排量9升到12升;峰值功率大于260千瓦;峰值转矩小于2500牛米)和主流高性价比的百千瓦级发电机(MG1)和驱动电机(MG2),配置本发明混联动力总成的ACE重卡也能在分钟级短时间内,爆发性输出合计驱动功率(机械功率与电力功率之和)超过450千瓦,合计峰值转矩超过3500牛米,其动力性明显的高于全球市场上已量产的顶级配置16升传统发动机重卡。目前已量产商用干线物流重卡变速箱输入端的最大输入转矩基本都小于3000牛米;为适配ACE重卡,现有重卡变速箱或其它传动子系统在机械强度和寿命方面需重新强化设计;应将变速箱输入端的峰值转矩提升到3000牛米以上,还可以将其档位总数从10至16档减半到5至8档。
现有技术中混动车辆功率功率策略(PMS)一般包括下列七种车辆运行子模式(又称控制子模式);除非特别注明,否则某一模式对串混或并混均适用;各个控制子模式之间的切换不频繁,平均切换间隔一般在分钟级或十分钟级。
1)纯电池驱动模式:此时发动机不燃烧做功运行,电池包在荷电消耗(CD)模式工作,单独为驱动电机供电,满足路载功率要求。此时发动机平均功率为零,明显低于路载平均功率。
2)纯发动机驱动模式:此时完全靠发动机燃烧做功直接机械驱动车辆(并混)或通过驱动发电机发电来间接机械驱动车辆(串混),电池包基本不参与工作(即无放电;有再生制动充电),属荷电保持(CS)模式。此时发动机平均功率基本等于路载平均功率。
3)混合驱动模式:发动机、发电机、驱动电机、电池包协同驱动车辆。此时发动机平均功率与路载平均功率基本相同;而电池包通过高倍率充放电,对路载瞬态功率削峰填谷,实时地满足车辆动力学方程;电池包工作在荷电保持(CS)模式。
4)发动机驱动加充电模式:发动机除提供完全满足路载功率要求外,剩余功率通过发电机给电池包充电,电池包工作在荷电保持(CS)或荷电增加(CI)模式。此时发动机平均功率明显高于路载 平均功率。
5)再生制动模式:此时路载功率为负数(下坡或刹车),发动机无燃不做正功,驱动电机通过再生制动发电,给电池包充电来回收车辆的机械能,给车辆减速。此时电池包工作在荷电保持(CS)或荷电增加(CI)模式;发动机平均功率非正数,但明显高于路载平均功率。
6)驻车充电模式:此时车辆停止,路载功率为零。发动机功率完全通过发电机用来给电池包充电,驱动电机不工作,此时电池包工作在荷电增加(CI)模式;发动机平均功率明显高于路载平均功率。
7)混合充电模式:此时路载功率为负数(下坡或刹车),发动机通过发电机给电池包充电,同时驱动电机再生制动也给电池包充电,此时电池包工作在荷电增加(CI)模式;发动机平均功率明显高于路载平均功率。
显然,本发明中ACE重卡的功率管理策略(PMS)及运行子模式与上述现有技术集合中混动车辆PMS及运行子模式有本质性区别;ACE重卡通过串混iSS或并混iPS,将上述混动车辆现有控制技术中除驻车充电子模式外的其余六种控制子模式对混动车辆的百千瓦级机械功率流或电力功率流的各种模拟控制技术措施,在发动机瞬态功率脉宽调制(PWM)序列的各个脉冲周期内(亚分钟级)有机地融合应用并数字化;通过对ACE重卡的发动机瞬态功率函数进行脉冲调制(PM)控制,特别是串混iSS控制或并混iPS控制,将混动车辆运行时对机械功率流或电力功率流的复杂多维度非线性模拟控制问题转换成等价的简单降维准线性脉冲调制(PM)数字控制问题,非常适合以一种全新的数字信息技术方案来解决内燃机重卡节能减排这一世界性难题,使ACE重卡在整车动力性、实际运行环境(RDE)污染物排放、和实际油耗(升/百公里)这三项关键指标上比现有内燃机重卡都有明显改善;综合节油率(即油耗或CO2降幅比例)可达30%,RDE污染物排放量(例如NOx)降低75%以上(以现代柴油重卡为基准),且整车动力性优于顶级配置16升柴油重卡。
现有技术集合中的内燃机车辆发动机启停技术(SS)、发动机停缸技术(CDA)、油电混动车辆的上述七种控制子模式等技术方案的必备技术特征,包括发动机是否旋转运行(SS),发动机的部分但非全部气缸(例如六缸发动机中的二个缸或三个缸停缸)是否燃烧做功(CDA),以及不同混动控制子模式之间切换等都与车辆路载瞬态功率函数高度关联;本发明的ACE重卡混联动力总成脉冲调制(PM)控制技术方案,包括串混智能启停技术(iSS)、并混智能功率切换技术(iPS)、和智能模式转换技术(iMS)等,必备技术特征包括发动机始终旋转,其全部而非部分气缸,或者在燃烧高效区内的高态工况点或线运行(AOM),或者在零排放零油耗的低态工况点或线运行(POM),高态工况与低态工况之间可双向动态平顺切换;显然脉控混联动力总成的不同工作子模式的分类方法(AOM或POM)和各个子模式下对动力总成机械功率流或电功率流的具体控制方法及所生成的发动机或电池包的瞬态功率脉冲序列函数,和现有技术集合有本质性区别;发动机高态工况(AOM)与低态工况(POM)之间的动态切换或电池包不同模式间的动态切换(CS、CI、CD三选一)与车辆路载瞬态功率函数分布(即整车瞬态工况)基本无关,而与电子地平线内路载平均功率函数分布高度关联。本发明的串混iSS或并混iPS控制技术,即保留了现有发动机启停技术(SS)和停缸技术(CDA)的主要优点(例如节油、尾气温度控制等),又有效地克服两者的主要缺点(例如空调制冷的功能中断;整车震动噪声NVH特性恶化;增加系统复杂性和成本,降低发动机等子系统的可靠性和寿命等),在不增加任何硬件的前提下,以更高的性价比来实现ACE重卡节能减排最优化(Optimization)。需强调,从理论上讲,串混iSS控制或并混iPS控制在ACE重卡从静止到最高法定车速的全域整车工况都适用;但当ACE重卡平均车速低于30英里/小时且主动加速或刹车频繁时(即拥堵高速路况或城市工 况),串混iSS控制在整车动力性和节能减排效果等方面比并混iPS控制有明显的优势,应为首选;而当ACE重卡在高速公路正常行驶时(平均车速高于40英里/小时,主动加速或刹车不频繁),应优选并混iPS控制方式。
当前部分欧美先进内燃机重卡采用空挡滑行控制技术(商用名e-Coast或SmartCoast等)来进一步节油;如果某路段车辆路载平均功率绝对值小于预定阈值时(例如绝对值小于20千瓦;重卡下长缓坡),重卡整车控制器(VCU)可根据英里级电子地平线3D道路信息,指挥自动变速箱(AMT)换空挡滑行(Neutral)或断开线控离合器滑行;此时发动机与变速箱的输出轴或车辆的驱动轮均机械解耦,发动机先减转矩后减转速,切换到怠速工况点运行,进一步减少机械功耗,车辆凭借自身巨大的惯性仍能以缓慢减速无驱动滑行一段距离(英里级或分钟级),达到节油效果;当路载平均功率绝对值超出特定阈值时(例如绝对值大于20千瓦),VCU指挥发动机再增加转速使发动机与变速箱转速同步后,闭合线控离合器,变速箱重新挂挡,秒级时间恢复发动机正常驱动模式或制动模式。重卡发动机在怠速工况为低转速和低负荷,比油耗(BSFC)较高,仍有油耗和排放,但此时因发动机负荷低(功率负荷率小于15%),油耗总量并不高,但污染物排放强度会增加;重卡下缓坡挂空挡滑行(包括断开离合器滑行),虽能省油,但此时车辆失去发动机制动功能,明显增加机械刹车系统的负担,同时也失去迅速加速车辆的能力,对车辆主动安全明显不利;司机开手动挡重卡下坡时,从驾驶主动安全考虑,绝大多数车队明令禁止挂空挡滑行来省油。受限于发动机和变速箱等机械系统反应速度较慢,空挡滑行控制技术模式切换的间隔在分钟级,很难以秒级间隔高频率来回切换;干线物流重卡实际行驶道路只有部分路段适用空挡滑行模式(例如总路程占比小于30%),实际节油效果并不显著(小于1%),而且还要随时平衡空挡滑行节油与刹车安全之间的矛盾;同时空挡滑行模式将大幅增加变速箱换挡累计次数或离合器开关累计次数,对变速箱的换挡机构和离合器的使用寿命都有负面影响,还可能负面影响整车的振动和噪声性能(NVH)。
ACE重卡在串混iSS或并混iPS控制模式下,在发动机瞬态功率函数的每个PWM脉冲序列周期内,都分布式地包含了发动机零油耗零排放的低态工况,还可采用下述“智能模式切换”控制技术(iMS)来进一步节油,具体实施技术措施如下;ACE重卡根据车辆配置参数、动态工况数据、和电子地平线先验3D道路数据等信息,能实时地(亚秒级时延)以千瓦级颗粒度计算并预测未来小时级或百公里级前方路段内,路载瞬态功率函数和路载平均功率函数分布;对路载平均功率函数的绝对值小于设定阀值(例如50千瓦)的英里级路段,可优选切换到串混iSS控制模式运行;而对路载平均功率的绝对值大于设定阀值(例如50千瓦)的其它路段,则优选切换到并混iPS控制模式运行;显然,串混iSS模式下的PWM周期的低态工况的转速和等效能耗要明显低于并混iPS模式下的对应PWM周期的低态工况的转速和等效能耗,前者单位距离的能耗(即电耗或油耗)更低,更利于节油;需强调,无论在串混iSS模式下还是在并混iPS模式下,车辆变速箱始终挂挡运行,永远杜绝空挡滑行,能兼顾节能减排和刹车有效性。驱动电机(MG2)的峰值转矩与发动机的峰值转矩旗鼓相当,但电机的工况(即转矩或转速)调节速度比发动机快一个数量级,无论是串混iSS还是并混iPS模式,驱动电机(MG2)能在十毫秒级响应时间内,通过变速箱给车辆提供百千瓦级驱动正功率或再生制动负功率,既同时优化发动机油耗和排放,又完全避免空挡滑行,保证刹车有效,同时还可减少自动变速箱换挡次数,改善整车振动和噪声性能(NVH);如上所述,智能模式切换技术(iMS)的实际节油效果要明显优于空挡滑行现有技术,二者的实施技术措施有本质性差异,同时完全克服后者因变速箱换挡次数明显增加而对变速箱换挡机构寿命、线控离合器寿命、和整车NVH性能等方面的负面影响,和整车刹车有效性降低及刹车片磨损增加等缺点。
传统内燃机重卡的离合器与轮胎和刹车片类似,均为易耗品(Consumables);离合器的核心功能是对发动机到变速箱输入轴之间的转矩传输(Torque Transfer)进行时间域开关控制,在离合器的完全断开与完全闭合两个稳定状态之间双向切换的秒级过渡态,离合器通过内部摩擦片来完成发动机飞轮与变速箱输入轴之间的转速同步和转矩传输;离合器的正常使用寿命明显低于发动机或变速箱的使用寿命,而且与重卡司机的驾驶风格高度关联,离合器和刹车系统永远是传统重卡日常运维工作的重点;更换或维修离合器既费钱,又影响车辆的出勤率,一直是许多车队日常运维的痛点之一。传统内燃机重卡行驶途中换挡时,特别是向下换档时(Downshift;即高档换低挡),必须先断开离合器,实现转矩中断(Torque Interrupt),等变速箱完成换挡操作和发动机在低负载率下提升转速后,再重新闭合离合器,在秒级换挡过渡时期内,利用离合器两端内部摩擦片打滑来消除发动机飞轮与变速箱输入轴之间的转速差,实现发动机与变速箱输入轴转速同步,离合器达到完全闭合后,发动机才可高效传输转矩,恢复高负载率运行,驱动车辆;整个重卡变速箱换挡操作一般在数秒内完成;由于发动机难以快速精准地调控转速,每次离合器闭合时其摩擦片不同程度的打滑在所难免,显然变速箱频繁换挡以及在秒级过渡期(即完全闭合前)内离合器主动端和从动端之间的转速差或转矩差过大等因素对离合器寿命和整车NVH性能都有负面影响;司机激进的驾驶风格能导致重卡单位里程换挡频率猛增,离合器实际寿命里程缩短50%以上。现代交流电机通过矢量控制,实现对电机转速和转矩的动态精准控制;电机转速控制的响应速度和精度比发动机转速控制要高近一个数量级;混动P2位置的百千瓦级驱动电机通过矢量控制(Vector Control)可轻松地完成变速箱换挡操作所必须的瞬态转矩中断和调速同步(亚秒级),不需要离合器的任何协助。本发明的ACE重卡能够指挥双电机混联动力总成,实现车辆无离合器换挡(CGS–Clutchless Gear Shift)功能;即ACE重卡无论在串混模式下或并混模式下,变速箱换挡时都不需要离合器的同步开关动作,在整个变速箱换挡操作过程中(秒级),离合器始终处于完全闭合状态(并混)或完全断开状态(串混);具体技术措施如下:当ACE重卡稳态运行在串混iSS模式时,离合器一直断开,发动机和变速箱完全解耦,电功率分流器(ePSD)通过矢量控制技术指挥驱动电机可以轻松地实现变速箱输入端的瞬态驱动转矩中断和变速同步,令变速箱平顺完成换挡操作;当ACE重卡稳态运行在并混iPS模式时,离合器一直闭合(变速箱换挡时离合器也无开关动作),发动机与双电机(MG1和MG2)和变速箱的转速同步或同比例,如果变速箱需要换挡,则可以动态调节发动机瞬态功率函数PWM脉冲序列的占空比,先将发动机的工况切换并维持在PWM低态工况(秒级),由发电机在驱动模式下拖动发动机运转,此时发动机等效于一个功耗小于50千瓦的中小机械负载;百千瓦级发电机(MG1)和驱动电机(MG2)同转速(同轴联接)或速比固定(平行轴联接),转矩可线性叠加,双电机合计峰值转矩可高于3000牛米,合计驱动功率可高达500千瓦,电功率分流器(ePSD)通过矢量控制技术,指挥双电机(MG1和MG2)协同,可以轻松地既拖动无燃的发动机运转,又实现变速箱输入端的瞬态驱动转矩中断和变速同步,令变速箱平顺地完成无离合器(CGS)换挡操作(秒级),然后发动机可重新切换到PWM高态工况运行。显然,就某一PWM周期内脉控发动机的占空比动态控制而言,满足变速箱无离合器换挡(CGS)要求比满足电池包工作模式(CS/CD/CI)要求的优先级更高。
智能模式切换控制技术(iMS)指ACE重卡串混iSS模式与并混iPS模式之间受控双向动态切换,此时离合器必须完成一次开关动作(开变关或关变开);)从串混切换到并混时(即离合器从断开到闭合),通过动态调节发动机PWM脉冲序列占空比,令发动机运行在低态工况(秒级),由发电机(MG1)拖动被动模式(POM)的发动机来实现发动机转速与驱动电机机械轴及变速箱输入轴转速之间的转速同步后,再闭合离合器,然后发动机可重新进入高态工况;由于发电机和驱动电机的转 速和转矩都可以动态精准控制,能保证发电机(MG1)和驱动电机(MG2)在整车各种工况下都能实现快速同步(Synchronize),离合器两端的转速同步相对误差可以严格控制在0.5%以内;而传统重卡换挡时,离合器两端的转速同步相对误差大于3%;所以在iMS控制模式下,ACE重卡离合器每次开关的磨损程度比传统内燃机重卡离合器开关的磨损程度大幅降低近一个数量级;显然ACE重卡的离合器需要稳定地工作在常开或常关两个稳态之一,而大多数传统离合器只有常闭一个稳态,其它方面与传统重卡离合器的要求基本相同。换句话讲,ACE重卡只有在串混模式与并混模式切换时,才需要离合器一次断开或闭合操作;而且在ACE重卡串混与并混之间双向切换的秒级过渡态,驱动电机始终与变速箱输入轴机械联接,向ACE重卡连续提供百千瓦级的瞬态驱动功率或再生制动功率,比现有技术(例如空挡滑行技术等)在整车动力性、节油效果、刹车有效性等方面都有明显的优势;车辆稳态运行时如果变速箱需要换挡(在串混iSS模式下或并混iPS模式下),可优选无离合器换挡(CGS)控制,不需要离合器任何操作。一辆干线物流内燃机重卡每天平均行驶500英里,需要完成数百次变速箱换挡操作;ACE重卡的动力性(指整车合计峰值功率或峰值转矩)要明显优于所有干线物流内燃机重卡,可以将车辆日行500英里的变速箱换挡操作次数减少70%以上;而智能模式切换控制操作(iMS)的日平均次数仅几十次;再加上无离合器换挡功能(CGS)可以基本消除因变速箱换挡而引发的离合器开关操作;综上所述,ACE重卡通过无离合器换挡技术(CGS)和智能模式切换技术(iMS),对比现代柴油重卡离合器(即现有技术),能将离合器的开关操作累计次数减少75%以上,将离合器的有效寿命(即更换里程数)提升300%以上,明显降低车辆运维费用,提升出勤率,在不增加任何硬件的前提下,以高性价比解决了重卡司机和车队日常运维中的一个痛点;需强调,本发明的ACE重卡在离合器开关操作过渡期,脉控发动机始终运行在被动模式(POM),全部操作由计算机(VCU)控制,完全避免了由于某些司机的剧烈驾驶风格对离合器实际寿命的明显负面影响,实现了离合器实际寿命与ACE重卡的循环工况和司机的驾驶风格均解耦。
传统内燃机重卡行驶时,其发动机瞬态功率与车辆路载瞬态功率基本相同,动态均衡,二者均为模拟时变函数;对车辆的节能减排优化问题进行计算机模拟分析,需要以发动机气缸单个燃烧做功冲程为基本单元来建模分析。发动机在其万有特性曲线全域面工况运行是个非常复杂的多变量非线性系统问题,发动机每个气缸燃烧做功冲程的总体时间不足100毫秒,人类至今仍无法在发动机全域面工况燃烧做功冲程层面,以百毫秒级的每次缸内燃烧做功冲程为基本单位,建立完整的动态微观(分子级)数理模型或数字模型,实现对发动机动态特性、比油耗、和排放等指标的高保真度计算机实时模拟(百毫秒级);也无法实时采集在发动机单个四个冲程周期内(吸气/压缩/燃烧/排气),能完备地描述发动机全域工况下节能减排最优化问题的发动机运行大数据;传统AEC内燃机的燃油喷射电子控制技术实质上是以发动机的单个四冲程周期(曲轴两圈,转角720度)为最小基本单位,对发动机瞬态功率这个模拟时变函数,进行模拟信号处理或模拟电子控制;此时发动机及动力总成的各个子系统之间交叉耦合,各个子系统自身的硬件与软件也高度耦合,而且发动机工况与整车工况的对应关系为双向一对一映射,发动机设计和标定(Design & Calibration)只能谋求面面俱到,以其固定的万有特性曲线的复杂面工况来适应不同车型或指定车辆不同运行工况(Duty Cycle)的要求,发动机的硬件和标定软件(即最底层的固件Firmware)一但通过强制性排放法规认证就完全固定,在量产和使用寿命周期内,绝不允许擅自更改;传统发动机只能以不变应万变,千车一面;无法针对车辆各种不同的应用场景,敏捷定制化地调整发动机的外特性来同时优化车辆的节能减排,实现千车千面。
本发明的ACE重卡可通过实施串混iSS或并混iPS控制,将DPC发动机和电池包的瞬态功率函数从现有技术中的软硬件强耦合且复杂多变的秒级缓变模拟函数(万有特性曲线面工况)转换成软硬 件解耦且简洁的脉冲序列数字函数(几个固定的点工况和线工况;包含每个PWM脉冲周期内高态与低态之间最多一次往复切换;覆盖任意车型或车辆循环工况),例如双极性矩形(串混)或双极性非矩形(并混)脉宽调制(PWM)脉冲时间序列和非矩形脉幅调制(PAM)脉冲时间序列,将车辆动力性优化问题(主要基于瞬态功率控制)、车辆能量管理(即RDE油耗)优化问题(主要基于平均功率控制)、车辆实际行驶环境下(RDE)污染物排放长期稳定达标问题(同时基于瞬态功率控制和平均功率控制)这三个高度非线性且交叉耦合的复杂模拟信号处理和控制问题(Analogue Signal)简化为三个可线性化且无交叉耦合的数字信号处理和控制问题(Digital Signal),然后依靠计算机程序及AI算法来自动有效地解决ACE重卡节能减排最优化这一在线实时全局优化技术问题,真正实现了软件定义且全数字化的油电混合动力总成。本发明中,ACE重卡可将任何一款量产商用的现代模拟电控(AEC)发动机(满足EPA-2010,欧-VI,国-6),通过串混智能启停控制(iSS)或并混智能功率切换(iPS)技术方案转换成一款数字脉控(DPC)发动机,简称“脉控发动机”。
“脉冲调制”控制技术可有两种不同含义,第一种含义,以脉冲序列函数为数字化载波(Digital Carrier),该载波的特定参数(例如脉冲序列的脉宽PW、脉幅PA、脉位PP)随相对脉冲序列重复频率更低频的模拟调制信号而变化,即以低频模拟信号来调制控制数字载波信号;第二种含义,以脉冲序列函数为数字调制信号,对模拟时变函数(例如高频振荡载波)进行调制控制,即以数字脉冲信号来调制控制模拟信号。利用电力电子IGBT或碳化硅(SiC)模块对电机或电池的瞬态模拟功率函数(即模拟调制信号-Analogue Modulating Signal)进行动态控制,生成对应的数字脉冲序列功率函数(即数字被调制信号–Digital Modulated Signal),多数是基于第一种含义下的脉宽调制(PWM)或脉幅调制(PAM)控制技术;根据惯性系统控制的“等效冲量原理”,以模拟调制信号或以数字被调制信号为输入激励的惯性系统的输出响应函数基本相同,在工程意义上等效;而本发明ACE重卡的脉控发动机技术(串混iSS或并混iPS),则是基于第二种含义下的脉冲调制控制技术,以PWM或PAM脉冲调制信号分别对发动机和电池包的瞬态模拟功率函数直接进行同步数字脉冲调制控制,生成两个含同步且互补跃变的双极性脉宽调制(PWM)或脉幅调制(PAM)脉冲序列数字函数,发动机瞬态功率、电池包瞬态功率、车辆路载瞬态功率三者实时地满足车辆动力性方程(1-1)和串混功率方程(2-4)或并混功率方程(3-3);所谓发动机脉冲功率函数与电池包脉冲功率函数同步互补跃变指当发动机瞬态功率函数从高态向低态秒级百千瓦级跃变时(从AOM切换到POM),电池包的瞬态功率函数同步等幅从低态向高态跃变(放电功率增加或充电功率减小),反之亦然;根据串混功率方程(2-4)或并混功率方程(3-3),脉控发动机的瞬态功率PWM脉冲序列函数与同步的电池包的瞬态功率PAM或PWM脉冲序列函数之代数和等于ACE重卡的瞬态路载功率模拟函数。显然发动机或电池包的瞬态缓变模拟功率函数与瞬态数字脉冲功率函数(PAM或PWM)在数学或物理意义上都有本质性差异;模拟功率时变函数与脉冲功率时变函数代表发动机或电池包两类完全不同的运行工况点分布。
汽车行业普通技术人员都知道,如果能在混动车辆任何整车循环工况下动力性最优的前提下,将发动机实际工况分布从复杂的面工况大幅简化为高效区内几个固定的工况点或工况线,尽量避免发动机低速低负载、怠速运行、或发动机各工况点之间快速大幅切换等挑战性低效运行工况,则既能明显简化发动机动态控制又能同时优化车辆节能减排;但迄今为止,全球汽车行业还没有找到并公开混动车辆(特别是重型并混车辆)实现上述设想的一套可行技术方案;本发明提供了一个以高性价比的方式实现上述设想(特别是将并混模式下发动机的复杂面工况简化为点工况或线工况)的可行技术方案。通过对ACE重卡发动机的瞬态功率时变函数实施脉冲调制控制(PMC;串混iSS或并混iPS),将发动机的运行工况从复杂的面工况大幅简化为其万有特性曲线第一象限(正转速、正转矩;AOM)高效 区内的至少一个高态点工况或一条高态线工况,并额外增加了新颖的万有特性曲线第四象限(正转速、负转矩;POM)零油耗零排放的至少一个低态点工况或一条低态线工况;再加上ACE重卡发动机工况与整车工况之间的对应关系可转变为双向N对M映射(M和N均为大于1的正整数),即每个整车工况可对应N种发动机工况,每个发动机工况可对应M种整车工况;通过对发动机和电池包的瞬态功率分别进行同步互补的脉冲调制控制(PWM或PAM),实现发动机工况与整车工况几乎完全解耦,以及混联动力总成层面的控制软件与物理层硬件解耦;通过硬件标准化冗余设计,,以(底层硬件和标定软件的)不变应(车辆运行的)万变;加上控制软件动态定制及空中迭代(OTA),实现软件定义的混联动力总成,高性价比地实现可敏捷批量定制(Agile Mass Customization)的千车千面的有益效果;能够同时优化ACE重卡的RDE动力性、油耗、污染物排放等多维度重要指标。所谓“千车千面”有两重意思,一是针对不同车型,都有高性价比可敏捷批量定制的动力总成控制技术方案;二是针对每辆车每个工作日的不同循环工况(Duty Cycle),也有高性价比敏捷批量定制的动力总成控制技术方案;可通过软件定义和空中迭代(OTA),实现针对任何ACE重卡车型或特定车辆的任何循环工况的双重动态定制动力总成的控制策略;无论整车具体配置参数如何,使每辆ACE重卡都成为全能型重卡,针对每日任何不同的整车循环工况,都能同时优化车辆RDE动力性、油耗、排放这三大指标,打破了现有重卡参数配置难以同时优化高速工况与城市工况的困境;可在ACE重卡的生命周期内,持续改善车辆动力总成的现有功能及性能,并不断增加新的功能。
需强调,任意一款在欧美中三大重卡市场上已量产商用的现代重卡AEC发动机(排量9升至16升;无论是基本型还是先进型的柴油发动机或天然气发动机)都能通过本发明的串混iSS或并混iPS技术措施,转换成为数字脉控(DPC)发动机;将DPC发动机的实际工况分布从全域复杂的面工况大幅简化到可预先设定的第一象限高效区内的至少一个点工况或线工况,有效地屏蔽了各种不同排量或技术档次的重卡发动机在万有特性曲线全域面工况内,瞬态或稳态动力性(转矩或功率特性)、比油耗(BSFC)、污染物排放等多方面的特性差异对ACE重卡整车RDE动力性、油耗、排放的影响;使发动机不再是ACE重卡车辆动力性和实际节能减排效果的系统瓶颈,可明显提升配置混联动力总成的ACE重卡的性价比。ACE重卡依靠额定功率百千瓦级双电机加容量十千瓦时级功率型电池包,与百千瓦级重型发动机这两套相互独立冗余的机电动力系统优势互补,在改善车辆动力性和主动安全性的前提下,同时实现车辆油耗和污染物排放的最优化,而且其实际节能减排效果与该ACE重卡的发动机的全工况域动态性能极限值(万有特性曲线)或司机的驾驶水平都基本解耦;所以,ACE重卡还可以有效地解决传统发动机重卡因动力总成配置不同和司机的驾驶水平不同,而引发车辆实际油耗高离散性这一公路物流业的长期痛点,让每辆ACE重卡在机器学习(ML)软件算法的控制下,能高度一致性地实现干线物流重卡节能减排最优化,完胜人类司机。
显然,百千瓦级电池包(或电机)的瞬态功率函数的变化速度要比百千瓦级内燃机或车辆路载的瞬态功率函数的变化速度要快一个数量级;受控于电功率分流器(ePSD),电池包能够实时精准地(十毫秒级时延,千瓦级精度)跟踪路载瞬态功率函数与发动机瞬态功率函数之差值的动态变化,实时地满足串混功率方程(2-4A)或并混功率方程(3-3A),对应发动机瞬态功率的双极性矩形或非矩形PWM脉冲序列函数而同步地生成电池包瞬态充放电功率的双极性非矩形脉宽调制(PWM)或脉幅调制(PAM)时间序列函数;电池包脉冲序列的等效幅度值在电池包充电峰值功率(负值)和放电峰值功率(正值)之间连续可调;电池包PWM的周期与发动机PWM的周期相同,而电池包PAM的周期可设定为发动机PWM周期的十分之一;实现对车辆路载瞬态功率模拟时变函数的数字化转换和控制;换句话讲,对ACE重卡路载瞬态功率模拟时变函数的实时控制问题可被转换为下列等价技术问题,对 发动机瞬态机械功率函数进行脉宽调制(PWM)控制并同步地对电池包瞬态电功率函数进行脉冲调制(PAM或PWM)控制;然后再根据串混功率方程(2-4)或并混功率方程(3-3)对二者进行叠加,生成与原始路载瞬态功率模拟时变函数(简称“原始路载功率”)冲量等效的数字化路载瞬态功率脉冲序列函数(简称“数字路载功率”),保证ACE重卡实时地满足车辆动力学方程(1-1);原始路载功率函数与数字路载功率函数之间虽有细微差异,但二者的冲量相同(即做功量,等于功率函数对的时间积分);重卡行驶是一种高惯性动态机电系统,根据“冲量等效原理”,数字路载功率与原始路载功率都能够实时地满足车辆动力学方程(1-1),将产生基本相同的整车驱动效果;显然,数字路载功率为包含发动机机械功率PWM脉冲序列和电池包电力功率脉冲序列(PAM或PWM)的复合脉冲序列函数。干线物流ACE重卡在整个运输事件中的能量管理(稳态,功率函数的时间积分)或功率管理(瞬态,能量函数的时间微分)技术问题一旦通过本发明的串混iSS技术、并混iPS技术、智能模式切换技术(iMS)、无离合器换挡技术(CGS)、智能巡航控制技术(iCC)等组合技术措施完成数字化和软硬件解耦以后,其“整车节能减排最优化”问题就被转换成了一个和“计算机下围棋”(例如谷歌的AlphaGo)问题完全等价的狭义人工智能(Narrow AI)问题,非常适合采用机器学习(ML)算法,特别是多种深度学习算法(Deep Learning),来自动解题;AlphaGo在围棋上已经完胜人类棋手,ACE重卡借力AI节油算法,在干线物流重卡节能减排最优化这一特定垂直应用领域,也能够完胜人类司机,并成为卡车司机的最佳助手或副驾驶。
国际清洁交通协会(ICCT)2020年5月发表白皮书,详细报告了美国和欧洲现代重卡实际驾驶环境(RDE)污染物NOx排放数据分析;“In-use NOx Emissions and Compliance Evaluation for Modern Heavy-duty Vehicles in Europe and US”,F Posada,ICCT,May 2020。虽然美国EPA-2010排放法规氮氧化合物(NOx)的限值比欧-VI排放法规的限值更低,但由于美国EPA-2010排放法规车辆实际驾驶环境(RDE)污染物测试方法(NTE)的固有设计缺陷,美国的EPA-2010柴油重卡与欧洲的欧-VI柴油重卡利用移动排放测量系统(PEMS)在实际驾驶环境(RDE)下测试时,在最具挑战的低速低负荷工况下(转矩或功率负荷率小于30%),美国柴油重卡的实际NOx排放量比欧-VI柴油重卡高近100%,而比EPA-2010法定限值高近300%。美国加州空气资源委员会(CARB)2020年8月颁布的最新重型柴油车低NOx排放州法汇编(Heavy-Duty Low Nox Omnibus Regulations),除强制性要求2027年起在加州销售的新重型柴油车NOx排放值比EPA-2010限值降低90%外,还增加新的低负荷测试(Low Load Cycle)及怠速测试规范(Idling)及限值。换句话讲,对美国、欧洲、中国的现代柴油重卡而言,虽然新柴油重卡从名义上都满足各国排放法规(美国EPA-2010、欧-VI、国-6),但在充满低速低负载(转矩或功率负载率小于30%)和怠速的城市循环工况(Urban Duty Cycle)RDE实际NOx排放值基本比法规限值要高出100%以上,对人口密度较高的城区或郊区的本地空气质量和人体健康负面影响明显,属于“合法”超标排放;如何在重型柴油车各种实际驾驶环境下(RDE)都保证实际NOx排放能够长期稳定地达标,是当前全球柴油重卡行业急待解决的技术难题。当前全球各国重卡的污染物排放政府认证(例如美国EPA-2010;欧-VI;国-6),主要依据发动机实验室台架排放测试数据,必须达标,否则产品无法销售;但发动机排放认证达标后继续降低整车RDE污染物排放并不加分,对厂商或车主均无显性经济意义,无人愿埋单;而降低整车RDE油耗(即降低CO2排放)则多多益善,永无止境,且显性经济意义重大,有人愿埋单。现有技术的柴油重卡,动力总成软硬件强耦合,发动机工况与整车工况双向一对一映射,现代柴油重卡的最小油耗和污染物排放值由设计和制造工艺决定,出厂时已固化,无法售后调整或改 善(强制性售后召回除外);除非政府修改现行排放法规,特别是柴油重卡RDE污染物排放(NOx和PM等)测试规范(例如美国的NTE规范或欧洲的MAW规范),强迫主机厂和发动机厂耗资耗时重新设计并生产新型柴油机和重卡,否则美/欧/中三地所有现代柴油重卡在城市工况下(频繁低速、低负荷、怠速)RDE污染物排放(NOx/PM)严重超标这一技术难题和环境污染的社会问题无法有效地解决。
柴油发动机降低以NOx为代表的污染物排放和以CO2为代表的油耗及温室气体排放(GHG)之间通常是有矛盾的,多数降低整车尾气污染物排放的技术对同时减少油耗是不利的,例如增加尾气再循环(EGR)比例、提升柴油机怠速、后处理系统(ATS)增加微型燃油加热器(Mini-burner)等技术措施都有助于柴油重卡在低速低负载运行时减少NOx排放,但这些措施也都会增减油耗(即增加CO2排放);反之亦然,例如将EGR比例减为零、尾气废热回收(WHR)等技术措施,虽然有益于整车油耗及CO2排放优化(即最小化),但对实际驾驶环境下(RDE),特别是在低速低负载的城市或郊区工况下,对污染物排放(NOx和PM等)最小化有负面影响;现有技术中能在实际驾驶环境下(RDE)同时优化柴油重卡的RDE油耗(CO2)和排放(NOx)且可立即量产商用的技术方案非常稀缺,为全行业技术人员不断追求的“圣杯”(Holy Grail)。重卡柴油机停缸(CDA)技术、催化剂电加热(EHC)技术、尿素加热喷射(Heated Dosing)技术、油电混动技术(Hybrid)等技术措施可能在包括低速低负荷或怠速工况在内的各种高挑战性工况下同时减少柴油重卡的实际CO2和NOx排放,但上述技术措施目前在全球柴油重卡上都没有量产商用。
配置本发明软件定义混联动力总成的ACE重卡,能够有效地采取多种新颖的技术措施来根据不同的整车实时循环工况,动态优化整车RDE排放,同时实现整车CO2和NOx实际排放值最小化。柴油重卡降低RDE污染物排放的有效技术手段主要分两类,第一类是降低发动机排气管出口废气中的污染物(Engine-out Emission),例如废气再循环(EGR)技术;第二类是通过多种被动式(Passive)或主动式(Active)温度管理(Thermal Management)技术措施,使车辆后处理系统(ATS)长期稳定地工作在关灯温度(Light-off Temperature;200deg C+)以上,提升各种催化剂的转换效率(90%+),最大限度降低车辆尾气排放中污染物限值。
首先本发明的串混智能启停技术(iSS)和并混智能功率切换技术(iPS),在ACE重卡任何循环工况(Duty Cycle)下运行时,将发动机(柴油机或天然气发动机)始终控制在主动模式下(AOM)燃烧高效区内的若干固定点工况或线工况,几乎完全避免发动机主动怠速或低负荷工况;再加上新颖的被动模式下(POM)若干固定的零油耗零排放工况点或工况线;通过实时控制发动机瞬态功率函数脉宽调制(PWM)的占空比(Duty Cycle)来实现对发动机平均功率的动态调整;此时发动机的工况与整车的工况完全解耦,DPC发动机在高态工况运行时,比油耗很低(BSFC),热效率高(BTE),同时发动机排气管出口废气(出机废气)温度明显高于关灯温度(250摄氏度以上),发动机在低态工况运行时(POM),为零油耗零排放,但有十千瓦级电耗;脉控发动机,能够同时实现整车实际CO2和NOx排放最小化。无论ACE重卡实际工况如何,iSS和iPS技术中的脉冲周期都在分钟级,发动机从高态工况(POM,零油耗零排放)向高态工况(AOM,有油耗有排放)切换时,等效于发动机频繁热启动,后处理系统不会冷透;而发动机一旦进入高态工况,其出机废气(Engine-out Exhaust)流量充足且温度肯定明显高于关灯温度,即便后处理系统仅采用被动机械隔热保温措施,不采用主动温控措施,也能够保证后处理系统中各种催化剂都能够高效地工作(例如SCR催化转换效率大于90%),确保ACE重卡RDE排放能长期稳定地达标(EPA-2010、欧-VI、国-6等)。
但如果要同时满足美国加州(CARB)2020年颁布的于2027年开始将柴油重卡NOx排放限值比EPA-2010法规限值降低90%的超低排放要求(ULE-Ultra Low Emission or NZE-Near Zero Emission)和美国联邦GHG-II法规CO2排放限值,则在串混iSS和并混iPS技术措施之外,还必须在基本保留现代发动机本体设计或主流集成一体化后处理系统(ATS:DOC/PDF/SCR/ASC)设计的前提下,增加发动机二元停缸技术(bCDA)和/或后处理系统主动温控技术,例如尿素喷射电加热技术(Heated Dosing)和/或催化剂电加热技术(EHC)等,后续详述。
本发明中的ACE重卡可配置多个电机,至少标准配置两个额定功率百千瓦级,转速和转矩分别独立任意可调的低转速高转矩车规电机;其中在混动P1位置的电机(MG1)主要运行模式为发电模式,简称“发电机”;另一个在混动P2位置的电机(MG2)主要运行在驱动模式下,称“主驱动电机”或简称“驱动电机”;当然发电机也可运行在驱动模式下(拖动无燃发动机),驱动电机也可运行在发电模式下(再生制动);还可以选配一个在混动P3位置的额定功率百千瓦级的副驱动电机(MG3),其转速与主驱动电机成比例,转矩任意可调。本发明ACE重卡的系统架构为双电机混联架构,其中在混动P1位置的发电机与发动机的飞轮双向机械联接(等速同轴或定速比平行轴),组成发电机组(Gen Set);在混动P2位置的驱动电机即与变速箱输入轴双向机械联接(等速同轴或定速比平行轴),还通过一个线控重卡离合器与发动机的飞轮和发电机的机械轴同时双向机械联接。显而易见,增程式串混重卡可视为上述混联ACE重卡在离合器常开时或取消离合器情景下的一种特例,而并混车辆则可视为上述混联ACE重卡在离合器常闭时的另一种特例,只是此时两个机械联接且转速比例固定的发电机和驱动电机可合二为一,等效为一个额定功率为两者之和的更大的电机。根据串混功率方程(2-4)或并混功率方程(3-3)及对应边界条件,可以从理论上推导证明,在整车全域工况保证动力性和主动安全性的前提条件下,寻求同时优化ACE重卡的节能减排时,本公开的混联ACE重卡(Mixed Hybrid)的性价比要明显高于同等配置的增程式串混重卡或并混重卡。
ACE重卡还包括:卫星导航仪(GNSS),其可为双天线载波相位实时动态差分(RTK)接收机,能实时地测算车辆行驶过程中的纵向道路的经度、纬度、海拔高度、纵坡、以及线速度等参数;或可为高精度单天线卫星导航仪,能以优于十米级绝对定位精度,实时地测算车辆行驶过程道路的经度、纬度、以及线速度等(相对精度优于3%);再配合含动态(秒级)倾角传感器的惯性导航单元(IMU),能实时地测量道路纵坡,测量绝对精度达到0.15%。ACE重卡的车辆控制器VCU可被配置为:基于卫星导航仪(GNSS)实时测算的车辆在行驶过程中的经度、纬度、纵坡、车速、和车加速度,并结合车辆电子地平线内的先验3D道路信息(经度、纬度、纵坡等),来对ACE重卡的发电机组(发动机+发电机)、离合器、驱动电机、自动变速箱、ePSD、和电池包(统称“混联动力总成“)进行智能巡航控制(iCC);iCC技术包含了预测性控制技术(Predicative Control)和自适应巡航控制技术(ACC),后续详述。
功率型电池包即是ACE重卡中最昂贵的子系统之一,也经常是整车各个重要子系统中性能和寿命的短板之一。ACE重卡要想早日实现大规模商用,必须同时解决好功率型电池包的成本、性能、和寿命这三大难题。ACE重卡对电芯和电池包的技术要求与混动乘用车的要求对比有明显差异,首先在电池包总重量或体积等方面要求更宽松,基本没有限制;但在电池包耐高低温和振动,特别是在高倍率部分充放电(HRPSoC)工况下的循环寿命等方面要求更高。ACE重卡需要采用超长循环寿命、耐低温、安全可靠、高性价比的功率型电池包;其电芯在高效区内高倍率部分充放电工况下(例如SoC 30%~70%),需要能承受5C~10C倍率的连续充放电和10C~25C倍率的峰值充放电(10秒或15秒脉冲),电芯要长期工作在最具挑战的高倍率部分 充放电(HRPSoC)工况,而且其充电倍率经常会高于放电倍率,进一步挑战当前锂离子电芯充电倍率明显小于放电倍率的短板;车辆外工作环境温度-30℃~+55℃宽温度区间内电池包要能正常工作;等效深度充放电(DoD 100%)循环寿命超过12000次。整车寒冬室外-30℃熄火停车24小时后,发动机冷启动后,原地驻车发动机怠速热车三分钟以内,车辆启动行驶十分钟内,电池包应能基本工作;此时电池包充放电性能允许暂时降低,等电芯内部温度上升到10℃时需能恢复全部充放电能力;但不允许因低温高倍率充电而永久性损伤电芯,减少循环寿命,甚至造成电芯热失控的重大安全隐患。
主流的锂离子动力电芯例如磷酸铁锂(LFP)和三元锂(NCM或NCA等)等都普遍怕冷。当电芯温度低于零摄氏度时,其高倍率放电(2C以上)能力明显暂时下降,等电芯温度回升到10摄氏度以上时,电芯放电性能恢复正常;电池包低温高倍率放电不会永久性地损伤电芯;但电芯内部低温下(特别是小于0摄氏度时)高倍率充电,则容易造成电芯碳负极镀锂(Lithium Plating),严重永久性地减少电芯寿命;电芯的损伤机理主要是负极镀锂所产生的金属锂枝晶可能刺穿隔膜,造成电芯内短路而引发热失控的安全隐患。电池管理系统(BMS)会实时监控电芯的温度,严禁电芯低温时高倍率充电。除非采取有效的电池包预热及制冷温控技术措施,LFP,NCM,或NCA等主流汽车动力电芯均难以单独胜任ACE重卡的电池包。与上述主流车规动力电芯不同,钛酸锂电芯(LTO;正极三元锂/负极钛酸锂)负极永远不会出现镀锂现象,是唯一能完全满足ACE重卡全部技术要求的量产汽车动力电芯。对比上述几种主流锂离子电芯,LTO电芯有超长寿命及高安全性、耐低温、高倍率部分充放电(HRPSoC)性能最优异等多项明显优点,也有电芯比能量低(小于80wh/KG)和成本高($/kWh约四倍于LFP/NMC电芯)两大明显缺点。因ACE重卡对总容量仅几十千瓦时的功率型电池包在体积和重量等方面基本没有硬性布置限制,LTO比能量低和体积大的缺点不足为虑,但其成本高昂的缺点却会阻碍ACE重卡大规模商用,必须千方百计地降低功率型电池包系统总成本;本发明通过并联至少两个由不同电化学电芯组成的十千瓦时级功率型电池包,来同时优化ACE重卡电池包的综合性能和成本;后续实施例章节详述。
ACE重卡的电池包可以工作在三种不同的模式下:1)在荷电保持模式(CS)下,电池包的瞬态荷电状态函数(SoC)和分钟级时间平均SoC函数两者都始终保持在其高效区内(最佳上限BUL到最佳下限BLL之间)连续上下波动变化;2)在荷电消耗模式(CD)下,电池包的瞬态SoC函数始终保持在上红线(URL)到下红线(LRL)之间连续波动变化,而其平均SoC函数(分钟级滚动时间平均)在上红线(URL)到下红线(LRL)之间随时间持续下降;3)在荷电增加模式(CI)下,电池包的瞬态SoC函数始终保持在上红线(URL)到下红线(LRL)之间连续波动变化,而其平均SoC函数在上红线(URL)到下红线(LRL)之间随时间持续上升。电池包的最佳工作区(又称高效区)为荷电状态函数(SoC)在最佳下限(BLL)至最佳上限(BUL)之间波动;在高效区内,电池包高倍率部分充放电(HRPSoC)的性能最佳,而且全生命周期内实际等效循环寿命(即总吞吐电量与电池包有效容量的比值)最长;而当电池包SoC在下红线(LRL)至最佳下限(BLL)之间或最佳上限(BUL)至上红线(URL)之间高倍率部分充放电运行时,其充放电性能虽非最佳,但不会对电芯造成永久性伤害,不会降低等效循环寿命。显然电池包SoC函数的URL>BUL>BLL>LRL,每种电池包的上述四个SoC的限值由电芯制造商指定;应当完全避免电池包在红线以外运行(即SoC<LRL或SoC>URL)。
本发明ACE重卡的智能巡航控制(iCC)技术方案中,电池包的充放电功率控制策略与ACE重 卡发动机机械功率控制策略和整车总驱动功率(即闭环驱动有效机械功率与有效电功率之和)控制策略息息相关;本发明ACE重卡功率管理策略(PMS)的核心是将“整车节能减排最优化”这一复杂的多维度非线性模拟控制问题分拆并转换成两个相对简单的降维准线性数字控制(Digital Control)问题,一个是亚秒级“瞬态功率管理”的数字控制问题,另一个是分钟级“平均功率管理”的数字控制问题;首先在瞬态功率(亚秒级)控制方面,通过串混iSS控制或并混iPS控制,将电池包的瞬态电功率模拟函数与发动机的瞬态机械功率模拟函数分别转换为两个同步互补的(Synchronized & Complimentary)PAM或PWM脉冲序列(电池包)和双极性PWM脉冲序列(发动机),实时地满足车辆动力学方程(1-1)、串混功率方程(2-4)、或并混功率方程(3-3);此时电池包的瞬态荷电状态(SoC)时变函数在下红线(LRL)与上红线(URL)之间连续上下波动;其次在稳态平均功率(分钟级滚动平均)控制方面,通过分别动态调整上述PAM脉冲序列的幅度或PWM脉冲序列的占空比,并对上述PAM脉冲序列或PWM脉冲序列分别实施分钟级滚动时间平均运算(方程MAW),来分别动态连续地调整电池包平均功率函数值或发动机平均功率函数值;还可以根据车辆动力学方程(1-1),结合车辆卫星定位(GNSS)加道路3D电子地图,以千瓦级颗粒度实时地(秒级时延)计算并预测电子地平线内(小时级或百公里级)路载瞬态功率函数和平均功率函数(方程MAW)分布,再通过动态调整路载平均功率函数与发动机平均功率函数之间的差值,令电池包在荷电保持(CS)模式(差值基本等于零)、荷电消耗(CD)模式(差值明显大于零)、或荷电增加(CI)模式(差值明显小于零)三种工作模式之一稳定运行或模式之间平顺切换,最大限度地使功率型电池包能够长期稳定地工作在高效区,寻求电池包再生荷电周转率最大化及发动机荷电周转率最小化,实现同时优化ACE重卡的动力性、安全性、和节能减排等多重有益效果。
ACE重卡的电池包中所存储的荷电(又可称电量)分两种:一种是来源于发动机直接发电的高成本荷电,即“发动机荷电”(Engine Charge),另一种为来自驱动电机再生制动所回收的准零成本荷电,即“再生荷电”(Regen Charge);显而易见,再生荷电也间接来源于发动机,实属废物利用。除非特别注明,本发明中各种荷电或电量的量纲为千瓦时。ACE重卡在整个货运事件(Freight Event)中功率管理策略(PMS)聚焦在保证整车动力性和主动安全性的前提下,实现车辆RDE油耗和排放最小化(即CO2和NOx同时最小化);首先应尽量增加电池包的累计荷电吞吐量,完成充电-放电完整的循环(Round Trip),电能用于驱动车辆;其次是最大限度地提高再生荷电在总荷电中所占比例,同时尽量降低发动机荷电在总荷电中所占比例;显然总荷电等于再生荷电与发动机荷电之和,三者的量纲均为千瓦时。总荷电吞吐量与电池包有效容量的比值定义为“总荷电周转率”,累计再生荷电与电池包有效容量的比值定义为“再生荷电周转率”,累计发动机荷电与电池包有效容量的比值定义为“发动机荷电周转率”;如果忽略电池包充放电完整循环的损耗,则可得到下列公式,总荷电周转率=再生荷电周转率+发动机荷电周转率。本发明中ACE重卡“节能减排优化”的表述,即可以指待解决的技术问题或技术目标,也可以指解决上述技术问题所达到的技术效果(即油耗和排放最小化)或益处,结合上下文既可判定;而ACE重卡智能巡航控制(iCC,即L1级自动驾驶功能)则指通过软件定义混联动力总成同时实现车辆RDE油耗及排放最小化(即CO2和NOx同时最小化)有益效果的技术方案,为本发明中多种具体技术措施的集合;iCC实质上是ACE重卡的敏捷批量定制化(即千车千面)整车动态功率控制策略,其油耗最小化的核心之一便是在尽量提升每个货运事件电池包总荷电周转率的前提条件下,同时寻求再生荷电周转率最大值和发动机荷电周转率最小值。市场驱动力(Market Force)对ACE重卡节能目标的追求永无止境,油耗或油费只有更低,没 有最低;对减排目标的追求则终点明确,确保长期稳定地满足当地重卡污染物排放法规(新车认证排放、有效使用寿命、实际排放验证(NTE或MAW)),排放达标后则无市场原动力再花费资源进一步减排。。
VCU可被配置为:基于GNSS接收机的精准授时,实时地校准包括VCU的内置时钟在内的各个子系统微处理器的内置时钟,以具备单向性和唯一性的系统时间序列来自动标注ACE重卡整车及与车辆行驶横向或纵向控制相关联的各个子系统的动态运行数据,进行采样频率高于5赫兹(即每秒至少五次)的测算和存储;在第一维度上,将来自包括GNSS接收机、地图仪、发动机、发电机、电功率分流器(ePSD)、离合器、驱动电机、自动变速箱、以及电池包的中至少两个子系统的配置参数和/或动态工况数据,同步后拼接成数据组;以及按照系统时间序列,将多个数据组在第二维度上进行校准、对齐、或排列,以形成关于ACE重卡运行的结构化的大数据(即节油数据集),用于描述其动态运行状况,特别聚焦车辆节能减排及行驶自动安全;可选地,为保护司机和车队的隐私和商业秘密,对节油数据集进行脱敏加密,随后以安全的方式通过移动互联网或有线互联网,实时地(亚秒时延)或及时地(小时级时延)上传云端计算平台存储,供后续大数据分析处理。
VCU还可被配置为:基于电子地平线范围内3D地图先验道路纵坡分布函数、车辆GNSS定位、发动机的万有特性曲线数字模型、发电机万有特性的数字模型、电池包充放电特性的数字模型、变速箱特性的数字模型、以及驱动电机万有特性的数字模型中的至少一者,来对发动机、发电机、电池包、ePSD、变速箱、以及驱动电机中的相应的至少一者进行实时控制。
VCU还可被配置为:在车辆行驶过程中,指挥众多车载传感器和微处理器集合,实时采集并本地存储ACE重卡运行的结构化大数据(即节油数据集);并且将车载存储的节油数据集,经由无线移动互联网,实时地(亚秒级时延)或及时地(小时级时延)向远方云端计算平台进行发送并存储,以供后续在云端进行分析处理。在云平台上,集成深度学习算法、云平台算力、和众多ACE重卡集群的节油数据集,来训练ACE重卡的云端AI大脑(即AI训练芯片),建立节油算法的深度神经网(DNN)模型,并将针对特定货运事件的默许节油算法下载或无线远程推送(OTA)到指定ACE重卡,再由该车端AI大脑(即AI推理芯片)进行本地实时推理运算,优化车辆油耗和排放。根据特定ACE重卡和具体货运路径,结合同一路径历史上所有ACE重卡的运行大数据,云端AI大脑迅速计算出该车辆在该路径行驶的默认最佳节油功率控制方案,下传推送给该车辆,再由车端AI大脑根据具体车况和路况,进行本地推理运算,实时修正功率控制策略,达到车辆油耗(升/百公里)和排放最优(即最小化)。
中国国-6重卡柴油机和现代欧美重卡柴油机(美国EPA-2010、欧-VI)的后处理系统(ATS)采用基本相同的技术路线,由柴油氧化催化器(DOC)、柴油颗粒过滤器(DPF)、消除氮氧化合物(NOx)的选择性催化还原器(SCR)、和尿素疏漏催化器(ASC)四大子系统从前向后依次循序串联组成,称集成后处理系统(IATS);除非特别注明,本发明中的后处理系统(ATS)指上述集成后处理系统(IATS)。ATS各种催化剂减排转换高效温度范围一般在250℃(摄氏度)至550℃之间;柴油机在中高负荷工况下(转矩或功率负荷率大于40%),其尾气温度一般在250℃到500℃之间,此时ATS系统运行在高效区,有利于减排;而发动机冷启动、怠速或低负荷运行时,其尾气温度明显低于250摄氏度,后处理系统内部的各种催化剂表面温度无法迅速达到其高效区阈值,即所谓的关灯温度(Light-off Tempreture;约250℃),此时催化剂转换效率不高(例如小于50%),污染物(微粒物、NOx等)排放污染较高。车辆累计排放污 染的大部分来自其发动机冷启动、低负荷或怠速、和其它转速和转矩突变的瞬态;如何在70万公里ATS系统有效工作期内,长期稳定地满足车辆实际驾驶环境(RDE)下污染物排放法规限制,是包括中国国-6新重卡在内的所有现代柴油重卡都要有效解决的一道技术难题。
受控于实时监测车辆尾气排放情况的车载自诊断模块(OBD-II),现代柴油重卡每隔一段时间(百英里级或千英里级),就必须停车完成DPF系统主动再生(Active Regeneration),清除淤积在DPF内部的碳颗粒;主动再生的频次(次/百公里)主要取决于车辆的配置参数和其主流运行工况(Duty Cycle);DPF主动再生既耗时(约30分钟停车怠速柴油机),又费油做无用功;DPF主动再生一直是欧美重卡司机和运输公司的痛点之一,也将成为使用新国-6重卡的中国司机和车队的痛点之一。
本发明的混联ACE重卡,能在其运行全生命周期内,通过实施串混智能启停控制(iSS)和并混智能功率切换控制(iPS),将发动机长期稳定地设置在其燃烧高效区或最佳工况点,可比单电机并混重卡或传统柴油重卡的主动再生频次降低75%以上;在优化车辆油耗的同时,保证其排放后处理系统内催化剂表面温度长期稳定地落在高效转换温度范围内(高于250摄氏度),即能降低油耗,又能减少重卡实际运行中的污染物排放,长期稳定地满足美欧中三地现行排放法规中实际行驶环境下(RDE)的排放控制强制性要求(CO2和NOx同时优化,稳定达标)。
如上所述,在干线物流应用场景下,本公开配置了混联动力总成(脉控发动机、双电机、单离合器)的ACE重卡能比传统发动机重卡综合油耗(升/百公里)可降低30%,且动力性、主动安全性、RDE污染物排放达标一致性等方面更优异。同时与双电机增程式串混重卡或单电机纯并混重卡相比,双电机混联重卡在节油性、动力性、主动安全性、和成本竞争力等方面都更具优势。
本发明的ACE重卡可根据电子地平线内的先验道路3D数据(经度、纬度、纵坡)、车辆配置参数及动态运行数据(总质量、滚动摩擦系数、风阻系数、车速、车加速度、实时定位等)等信息,和车辆动力学方程(1-1),以高于2.0赫兹的刷新频率和千瓦级颗粒度动态预测电子地平线内(小时级或百英里级)的路载功率时空函数,然后根据聚焦节能减排的机器学习(ML)算法,在车端实时(亚秒级)自动生成并执行车辆功率控制策略,指挥混联ACE重卡动态实施串混智能启停控制(iSS)或并混智能功率切换控制(iPS)、智能模式切换控制(iMS)、无离合器换挡(CGS)、智能巡航控制(iCC)等一系列技术措施组合,再加上云端-车端协同,和通过软件空中升级(OTA)实现持续改进的节能减排优化机器学习算法(ML),在保证车辆动力性和主动安全性的前提条件下,令发动机和电池包都能长期稳定地工作在各自的高效区,实时地满足车辆动力学方程(1-1),串混功率方程(2-4)或并混功率方程(3-3),实现ACE重卡实际节能减排同时最优化,特别是RDE油耗最小化;上述多种技术措施之集合被定义为ACE重卡的“智能巡航控制”(iCC:inteligent Cruise Control)技术方案或功能。对比不带任何混动功能的传统内燃机重卡,在相同路径、相同负载、相同货运时间的条件下,ACE重卡通过iCC技术方案,可实现实际油耗均值降幅超过25%,油耗离散度(即方差)比人类司机小一个数量级,且与ACE重卡人类司机的水平和发动机的性能基本解耦。显然iCC技术方案可实现ACE重卡纵向SAE定义的L1级自动驾驶功能;在本公开中,iCC既可代表具体技术方案,又可代表该技术方案所能实现的L1级自动驾驶功能;iCC技术包含了现有技术中聚焦节油的预测性巡航控制(PCC–Predicative Cruise Control)和聚焦主动安全和驾驶便捷性的自适应巡航控制 (ACC–Adaptive Cruise Control)两类功能,同时iCC对实现PCC和ACC功能的具体技术措施和最终技术效果等方面做出了重大技术改进,在实施例部分有进一步描述。
本公开的ACE重卡,其全部核心子系统或零部件都基于已经产业化的产品和技术,在公路干线物流应用场景下,对比现有技术的柴油机重卡,在保证车辆动力性、主动安全性、RDE排放长期达标、和出勤率的前提条件下,能够实现综合节油率30%的有益效果。ACE重卡在无政府补贴的情况下,通过节省车辆燃油费、运维费、提高重卡司机的劳动生产率,使车队或个体车主能在两年内或四十万公里内收回成本差价(指ACE重卡与传统柴油重卡之间综合成本(TOC)的差价)。量产全新ACE重卡(即原装ACE重卡)能够提前达到欧盟最近颁布的CO2法规2025年碳排放目标值和美国温室气体排放第二阶段法规(GHG-II)2027年碳排放目标值;还能够在现代柴油机和后处理系统都无重大设计更改的前提下,满足美国加州2020年8月颁布的2027年柴油重卡超低NOx排放组合法规。
在美国,重卡(特别是底盘或车架)平均使用寿命超过20年或150万英里,每辆重卡全生命周期内一副车架可能会配置两到三套动力总成(发动机+变速箱;约60万英里后更换大修),第二套或第三套动力总成多为原厂认可企业大修过的二手动力总成(Remanufactured)。北美地区新重卡平均年销售量约二十五万辆,而每年改装重卡数量(即二手重卡换动力总成)超过二十五万辆。得益于当前美国宽进严出的重卡监管法律法规体系,允许改装后的重卡,包括将二手传统内燃机重卡改装成ACE重卡,不需要经过政府重新认证或审批,改装ACE重卡在美国市场就可以直接进入商业化运营;本发明的软件定义混联动力总成技术除可适配全新原装ACE重卡外,还可用于批量改装升级当前美国市场存量近二百万辆的二手传统柴油重卡,三年内可实现万辆级改装ACE重卡批量商用落地;使大量改装ACE重卡也能像全新原装ACE重卡一样,提前达到美国GHG-II法规2027年碳排放目标值,明显降低美国大批存量二手传统柴油重卡的RDE油耗(升/百公里)并能保证改装ACE重卡RDE排放长期稳定地达标,对美国干线物流行业的经济意义和社会意义重大深远;同时为促进全球范围原装新ACE重卡量产商用打下坚实的基础。需强调,中国和欧洲对所有道路车辆生产和销售采取政府强制性认证制度,二手重卡混动改装在目前中国或欧洲现行法律框架下不可行;但是本发明的改装ACE重卡在美国早日商用化,会极大促进在美国、中国、或欧洲推广原装ACE重卡商用的进程。
美国重卡的平均使用寿命可超过二十年。根据美国清洁柴油论坛(Clean Diesel Forum)2020年的一份媒体公告,截止2018年底,全美全部在用柴油重卡中仅有43%的柴油发动机满足美国现行排放法规EPA-2010(即市场渗透率43%),其余柴油重卡都还是不满足EPA-2010且污染物排放量都更高的老式柴油机;换句话讲,美国要等到2030年,绝大部分在用的柴油重卡(市场渗透率90%以上)才都会使用满足现行污染物排放标准EPA-2010的现代柴油机,在重卡市场,一种新技术的市场渗透率增长缓慢,以十年为单位统计。显然从总体上讲,全美约二百万辆在用二手重卡(Used Truck)的油耗和排放都明显高于崭新的原装重卡;美国的法律法规允许对二手传统重卡进行混动改装,然后无需经过耗时耗资的政府重新认证,改装混动重卡可直接上路拉货运营;利用本发明的软件定义混联动力总成可将美国大量的二手柴油重卡改装成ACE重卡(Retrofit ACE Truck),能以高性价比快速明显地降低美国百万辆级在用重卡整体的油耗和排放,具备技术和商业可行性,经济和社会价值巨大,可立即开展落地商用。
本发明内容虽然聚焦干线物流重卡,但本发明的待解决技术问题、具体技术方案及措施、和有益技术效果对总重超过五吨的大中型公路混联商用车(卡车或客车)运行,同样适用;同 时,串混智能启停控制技术(iSS)、并混智能功率切换控制技术(iPS)、智能模式切换技术(iMS)、无离合器换挡技术(CGS)、智能巡航控制技术(iCC)等单项技术或组合技术也适用于双电机混联轻型车(总重小于四吨)。
本发明若干实施例聚焦描述干线物流混动重卡,主要因为全球汽车行业普遍认为干线物流重卡电动化的可量产工程技术(PRET-Production Ready Engineering Technology)挑战极高,主要受限于现代锂离子动力电池技术和直流快充技术商业化现状,不能将乘用车的混动或纯电动技术直接拓展到干线物流重卡领域,干线物流混动重卡或零排放纯电动重卡在2030年前在全球范围难以量产商用;本公开对现有技术的创造性贡献在于:在充分利用2020年已量产商用的重卡柴油机和集成化后处理系统,不需要对发动机和后处理系统进行硬件设计更改的前提下,提供了一种於2025年前能够同时满足从2027年开始强制执行的美国GHG-II重卡碳排放限值(即油耗)和加州超低NOx排放组合法规限值(比EPA-2010的限值降低90%)的高性价比可量产的工程技术方案。本公开的软件定义混联动力总成和ACE重卡的关键子系统硬件都已量产商用,发明点集中在动力总成系统架构、机电联接方式、发动机和电池包的瞬态或平均功率函数的脉控调制控制方法、节油数据集的采集和存储方法等方面,技术讨论聚焦干线物流重卡;汽车行业的普通技术人员,受本公开启发,无需创造性脑力劳动,就能将本发明的软件定义混联动力总成技术方案(特别是串混iSS和并混iPS控制技术,智能巡航控制iCC技术等)推广应用到其它道路或非道路混动轻型车(总重小于4.5吨)或混动大中型商用车(总重大于5吨)。
本发明的第一方面公开了一种混动重卡,该混动重卡包括:驱动电机,与所述所述混动重卡的驱动轴机械连接;发电机组和至少一个动力电池包,其各自能够独立地向所述驱动电机提供功率,其中所述发电机组包括双向机械连接的发动机和发电机;和车辆控制器,其被配置为:控制所述发动机,使其仅能够工作在一指定的燃烧状态或另一指定的未燃状态下,并能够在所述两个状态下之间进行切换,从而以第一调制模式对所述发动机所提供的功率进行调节,其中,在所述燃烧状态下,所述发动机具有在一指定的第一正值范围内的转速,和在一指定的正值范围内的转矩;以及在所述未燃状态下,所述发动机具有在一指定的第二正值范围内的转速,和在一指定的负值范围内的转矩,并且所述负值范围内的转矩的绝对值均低于所述正值范围内的转矩值,以及,所述车辆控制器还被配置为:以第二调制模式,对所述动力电池包所提供的功率进行调节,所述第二调制模式基于所需的路载功率和所述第一调制模式来确定。
根据本发明的一些实施例,所述混动重卡还包括:可控离合器,设置在所述发电机组与所述驱动电机之间,并能够被操作为:当所述离合器耦合时,使得所述发电机组与所述驱动电机之间具有直接机械连接;以及当所述离合器断开时,使得所述发电机组与所述驱动电机之间失去直接机械连接。
根据本发明的一些实施例,所述以第一调制模式对所述所述发动机所提供的功率进行调节包括:在每个控制周期内,确定所述发动机工作在所述燃烧状态下的时间与所述控制周期之间的占空比。
根据本发明的一些实施例,所述以第一调制模式对所述所述发动机所提供的功率进行调节还包括:在每个控制周期内,根据未来某一时间点处所需的电池的电荷状态,来进一步调节所确定的所述占空比,以得到更新后的占空比。
根据本发明的一些实施例,所述以第一调制模式对所述发动机所提供的功率进行调节还包括:在每个控制周期内,控制所述发动机工作在所述燃烧状态下的功率幅度和/或工作在所述未 燃状态下的功率幅度。
根据本发明的一些实施例,所述控制所述发动机工作在所述燃烧状态下的功率幅度包括:当所述离合器耦合时,所述发动机所提供的功率幅度选自:由转速的所述第一正值范围和转矩的所述正值范围共同限定出的区域中、预定义的比油耗曲线上的工作点所对应的功率幅度;以及当所述离合器断开时,转速的所述第一正值范围被设定为一固定值,并且所述发动机的所提供的功率的幅度选自:由所述转速的固定值和转矩的所述正值范围共同限定出的区域中的一条直线段上的工作点所对应的功率幅度。
根据本发明的一些实施例,所述混动重卡还包括:电功率分流器,具有第一端口、第二端口和第三端口,其中所述第一端口与所述发电机组双向交流电连接;所述第二端口与所述驱动电机的输入端双向电连接;和所述第三端口与所述至少一个动力电池包双向直流电连接,以及所述电功率分流器受控于所述车辆控制器,在所述发电机机组、所述电池包、和所述驱动电机之间,对电功率的流动路径、幅度、和方向进行控制。
根据本发明的一些实施例,所述车辆控制器还被配置为:确定多个控制周期内的所述路载功率的平均值和所述内燃机所提供的功率的平均值;以及基于所确定的所述路载功率的平均值与所述内燃机所提供的功率的平均值之差,来确定所述动力电池包在所述多个控制周期内的工作模式,以使得所述电池包能够进入下述三种模式中的一种:-当所述路载功率的平均值和所述内燃机所提供的功率的平均值之间的差值基本为0时,进入电荷保持模式,其中电荷状态保持在预定义的第一上限和第一下限之间;-当所述路载功率的平均值和所述内燃机所提供的功率的平均值之间的差值实质上大于0时,进入电荷消耗模式,其中所述电荷状态的平均值在预定义的第二上限和第二下限之间单调下降;以及-当所述路载功率的平均值和所述内燃机所提供的功率的平均值之间的差值实质上小于0时,进入电荷增加模式,其中所述电荷状态的平均值在预定义的第二上限和第二下限之间单调上升,其中所述第二上限高于所述第一上限,所述第二下限低于所述第一下限。
根据本发明的一些实施例,所述混动重卡还包括:功率控制单元、催化电热器和后处理系统,其中,所述后处理系统沿废气排放方向布置在所述催化电热器的下游,其中,所述功率控制单元在所述内燃机处于所述未燃状态下以及从所述未燃状态向所述燃烧状态转变时,控制所述催化电热器对所述后处理系统进行加热。
根据本发明的一些实施例,所述车辆控制器还被配置为:在所述内燃机处于所述未燃状态下时,使所述内燃机的全部气缸的进气阀和排气阀均进入闭合状态,以降低吸入的空气对所述下游催化系统的温度的影响。
本发明的第二方面公开了一种混动重卡,该混动重卡包括:驱动电机,与所述所述混动重卡的驱动轴机械连接;发动机和至少一个动力电池包,其各自能够独立地向所述驱动电机提供功率;和车辆控制器,其被配置为:控制所述发动机,使其仅能够工作在一指定的燃烧状态或另一指定的未燃状态下,并能够在所述两个状态下之间进行切换,从而以第一调制模式对所述发动机所提供的功率进行调节,其中,在所述燃烧状态下,所述发动机具有在一指定的第一正值范围内的转速,和在一指定的正值范围内的转矩;以及在所述未燃状态下,所述发动机具有在一指定的第二正值范围内的转速,和在一指定的负值范围内的转矩,并且所述负值范围内的转矩的绝对值均低于所述正值范围内的转矩值,以及,所述车辆控制器还被配置为:以第二调制模式,对所述动力电池包所提供的功率进行调节,所述第二调制模式根据所述所需的路载功 率和所述第一调制模式来确定。
本发明的第三方面公开了一种改装传统燃油重卡的方法,包括:提供一已有的传统燃油重卡,所述已有的传统燃油重卡中已经包含发动机;提供驱动电机,将其与所述传统燃油重卡的驱动轴机械连接;提供发电机,将其与所述发动机双向机械连接;提供至少一个动力电池包,其中所述发电机和所述动力电池包被设置成能够分别独立地向所述驱动电机提供功率;以及提供车辆控制器,其被配置为:控制所述发动机,使其仅能够工作在一指定的燃烧状态或另一指定的未燃状态下,并能够在所述两个状态下之间进行切换,从而以第一调制模式对所述发动机所提供的功率进行调节,其中,在所述燃烧状态下,所述发动机具有在一指定的第一正值范围内的转速,和在一指定的正值范围内的转矩;以及在所述未燃状态下,所述发动机具有在一指定的第二正值范围内的转速,和在一指定的负值范围内的转矩,并且所述负值范围内的转矩的绝对值均低于所述正值范围内的转矩值,以及,所述车辆控制器还被配置为:以第二调制模式,对所述动力电池包所提供的功率进行调节,所述第二调制模式根据所述所需的路载功率和所述第一调制模式来确定。
本发明的第四方面公开了一种用于控制车辆的装置,包括:处理单元;以及存储器,耦合到所述处理单元并包含有计算机程序代码,所述计算机程序代码当被所述处理单元执行时,使得所述装置执行如下动作:控制所述车辆的发动机,使其仅能够工作在一指定的燃烧状态或另一指定的未燃状态下,并能够在所述两个状态下之间进行切换,从而以第一调制模式对所述发动机所提供的功率进行调节,其中,在所述燃烧状态下,所述发动机具有在一指定的第一正值范围内的转速,和在一指定的正值范围内的转矩;以及在所述未燃状态下,所述发动机具有在一指定的第二正值范围内的转速,和在一指定的负值范围内的转矩,并且所述负值范围内的转矩的绝对值均低于所述正值范围内的转矩值,以及,所述装置还被配置为:以第二调制模式,对所述车辆的动力电池包所提供的功率进行调节,所述第二调制模式基于所述所需的路载功率和所述第一调制模式来确定。
本发明的第五方面公开了一种用于控制车辆的方法,包括:控制所述车辆的发动机,使其仅能够工作在一指定的燃烧状态或另一指定的未燃状态下,并能够在所述两个状态下之间进行切换,从而以第一调制模式对所述发动机所提供的功率进行调节,其中,在所述燃烧状态下,所述发动机具有在一指定的第一正值范围内的转速,和在一指定的正值范围内的转矩;以及在所述未燃状态下,所述发动机具有在一指定的第二正值范围内的转速,和在一指定的负值范围内的转矩,并且所述负值范围内的转矩的绝对值均低于所述正值范围内的转矩值,以及,以第二调制模式,对所述车辆的动力电池包所提供的功率进行调节,所述第二调制模式基于所述所需的路载功率和所述第一调制模式来确定。
本发明的第六方面公开了一种计算机程序产品,其存储在非易失性计算机可读介质上并包括机器可执行指令,所述可执行指令当被执行时引起所述机器执行根据本发明第五方面所述的方法的步骤。
附图说明
图1示出了根据本公开的一个实施例的配置软件定义混联动力总成的ACE重卡的系统框图;
图2示出了根据本公开的一个实施例的ACE重卡的电功率分流器(ePSD)的系统框图;
图3示出了根据本公开的一个实施例的ACE重卡所配置的软件定义混联动力总成的功能示意图;
图4示出了根据本公开的一个实施例的ACE重卡的发动机的万有特性曲线(Engine Fuel Map);
图5示出了根据本公开的一个实施例的ACE重卡通过移动互联网与云计算平台联网通信的车-云系统框图;
图6示出了根据本公开的一个实施例的ACE重卡的脉控发动机的瞬态功率PWM脉冲序列函数;以及
图7示出了根据本公开的一个实施例的ACE重卡的发动机尾气后处理系统框图。
这些附图中,相同或相似参考符号或标号用于表示相同或相似的元素(Element)或装置(Aparatus)。
具体实施方式
现在将参照若干示例实施例来论述本公开。应当理解,论述了这些实施例仅是为了使得本领域普通技术人员能够更好地理解且因此实现本公开,而不是暗示对本公开的范围的任何限制。
如本文所使用的,术语“包括”及其变体要被解读为意味着“包括但不限于”的开放式术语。术语“基于”要被解读为“至少部分地基于”。术语“一个实施例”和“一种实施例”要被解读为“至少一个实施例”。术语“另一个实施例”要被解读为“至少一个其他实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其它明确的和隐含的定义。在本文中,“单向”或“双向”联接,是指电力的或机械的功率流或能量流从其动力源流向负载的方向是否可逆,二者的角色是否可以相互转换。单向联接时,动力源和负载的角色固定,功率流从源向负载的流向单一,且永不可逆;双向联接时,动力源和负载的角色可以动态转换,功率流向可逆,能够时分双向流动。除非特别说明,本发明中所有机电零件、模块或装置等都是车规级。车辆发动机包括车规内燃机或涡轮机;目前全球重卡近95%采用柴油机,很少部分采用天然气机。转矩和扭矩为同义词。本发明中“车辆”可泛指至少4个车轮且总车重(GVW,车自重加上最大法定负载)至少1.5吨的道路或非道路机动车,重卡可泛指至少6个车轮且总重至少10吨的道路或非道路机动车(即大型商用车)。
下面参考各个附图并结合若干示例实施例来展开说明本公开的技术方案、技术手段技术功能和效果。
图1显示了根据本发明一个实施例的ACE重卡010的混联(Mixed Hybrid)动力总成系统框图。该系统既可以被配置为含双电机,即混动P1位置的发电机(MG1)110和混动P2位置的主驱动电机(MG2)140,一个主动驱动桥160和一个被动驱动桥180的6x2动力总成系统,或者两个主动驱动桥160和180的6x4动力总成系统;也可以被配置为含三电机,即混动P1位置的发电机(MG1)110、P2位置的主驱动电机(MG2)140、P3位置的副驱动电机(MG3)170,两个主动驱动桥160(主驱动桥)和180(副驱动桥)的6x4动力总成系统。在一些实施例中,该重卡可以是车辆总重大于15吨的主要用于干线物流的混动重卡。
如图1所示,总体上,该ACE重卡混联动力总成可包括:发动机101、发动机控制单元(ECU) 102、机械扭矩耦合器(mTC1)103、发电机(MG1)110、电功率分流器(ePSD)123、离合器111、机械扭矩耦合器(mTC2)104、至少一个主电池包130a、刹车电阻131、自动变速箱(T)150、变速箱控制单元(TCU)151、至少一个主驱动电机(MG2)140、以及车辆控制器(VCU)201、主驱动桥160、副驱动桥180等。其中主电池包130a和主驱动电机140为必装件(标配),而副电池包130b和副驱动电机170为选装件(选配);图中明确显示了上述各个带唯一标号的子系统或装置之间的机械或电力/电子联接关系。
具体来说,发动机101的飞轮端通过机械扭矩耦合器103分别双向机械联接配置在混动P1位置的发电机(MG1)110的机械轴和离合器111的A端,并受控于发动机控制器(ECU)102;发动机101的飞轮端、发电机110的机械轴、线控离合器111的A端(又称“从动端”)三者通过三端口机械扭矩耦合器103分别双向机械联接,机械扭矩耦合器(mTC1)103既可以采用最简洁的同心轴(Coaxial)结构来实施(简称同轴联接),也可采用更加复杂灵活的多平行轴加齿轮耦合(即减速器,飞轮与离合器A端同转速,发电机转速更高)结构来实施(简称平行轴联接)。可优选同轴联接,该机械联接方式最简单高效,但此时百千瓦级发电机110需要采用大扭矩(峰值扭矩大于1000牛米)低转速(最高转速小于3000转/分)且成本高昂的大型车规电机;还可优选采用平行轴联接,此时发动机101的飞轮输出端与离合器111的一端同轴直连(同转速双向机械联接),可选配性价比更高的中等转矩(最大转矩小于500牛米)和中高转速(最高转速小于12000转/分)的百千瓦级车规发电机110,发电机110的机械轴通过包含固定齿比(4~8)的大型减速器的mTC1 103与上述发动机101的飞轮输出端和离合器111的从动端(即A端)双向机械联接;但mTC1如采用减速器结构会增加平行轴联接方式的复杂性、成本、和可靠性风险。图1内的机械扭矩耦合器(mTC1)103、离合器111、机械扭矩耦合器(mTC2)104三个装置一字排列,双向串联机械联接,三者组合构成机械功率分流器(mPSD)124;mPSD 124实质上是一个百千瓦级重型线控三端口组合型机械装置,与百千瓦级电力功率分流器(ePSD)123协同配合,可动态调节百千瓦级发动机(101)机械功率流或电池包(130a或130b)电力功率流的闭环路径、幅度、流向,实时地满足车辆动力学方程(1-1)和串混功率方程(2-4)或并混功率方程(3-3)。
参考图2,电功率分流器(ePSD)123为三端口的百千瓦级电力电子网络(Power Electronics Network--PEN),其端口I(也称为“第一端口”)内部以百千瓦级逆变器(Inverter)为核心模块的电机控制器(MCU1)121的三相交流端与外部发电机110的三相交流电端双向电联接;外部电池包130a或130b与所述ePSD 123的端口III(也称为“第三端口”)内部的百千瓦级直流斩波器(DC Chopper;又称直流-直流转换器,简称“斩波器”)132a或132b的低压端分别双向直流电联接;外部百千瓦级刹车电阻131与端口III内部的百千瓦级压控开关(VCS)133的一端(即外联端)单向直流电联接。外部百千瓦级驱动电机140和170的三相交流端与所述ePSD的端口II(也称为“第二端口”)内部的以百千瓦级逆变器为核心模块的电机控制器(MCU2)122a或(MCU3)122b的交流端分别双向电联接;三个电机控制器121、122a、122b的直流端都双向电联接到ePSD内部的直流母线汇流点X(125);百千瓦级压控开关(VCS)133的另一端(即内联端)单向直流电联接汇流点X;斩波器132a或132b的高压端与汇流点X分别双向直流电联接。
返回参考图1,自动变速箱150的输出轴与车辆的主驱动桥160双向机械联接,并受控于变速箱控制器(TCU)151。配置在混动P2位置的标配主驱动电机(MG2)140的机械轴通过机 械扭矩耦合器(mTC2)104分别与离合器111的B端(又称主动端)及变速箱150的输入轴双向机械联接,而离合器111的B端与变速箱150的输入轴可优选同轴同转速机械联接,也可采用平行轴齿轮或链条双向联接。mTC2 104采用平行轴联接结构时,驱动电机(MG2)140的机械轴可通过固定齿比的百千瓦级重型单速减速器(优选速比范围:3~9)与变速箱150的输入轴和离合器111的B端双向机械联接。配置在混动P3位置的选配副驱动电机(MG3)170的机械轴通过百千瓦级重型单速减速器(优选速比范围:3~9)与第二驱动桥180的输入轴双向机械联接,本发明图1并没有显性标注该减速器,可理解选配副驱动电机(MG3)170包含合适的单速减速器。标配主驱动电机(MG2)140或选配副驱动电机(MG3)170可被操作为:将电能转化为机械能以用于驱动ACE重卡(电驱动),或者将ACE重卡的机械能转化为电能(再生制动),再通过所述ePSD 123内部的电机控制器122a或122b和斩波器132a或132b对电池包130a或130b进行充电,有效地回收能量。若以降低系统成本和复杂性为重点考虑,可以不选用副驱动电机(MG3)170及对应电机控制器(MCU3)122b。
作为本公开关键部件之一,ACE重卡的车辆控制器(VCU)201可通过车载数据总线(图一中虚线所示,无标号;例如CAN总线或无线通信虚拟数据线等)并基于对车载卫星导航仪(GNSS;简称导航仪)220实时测量到的车辆定位及姿态三维数据(经度、纬度、纵坡)、地图仪(MU)240内存储的电子地平线先验道路三维数据、车辆配置参数和动态工况数据(例如车速、车加速度等)、车辆纵向线控信号(反应人类司机或AI司机的驾驶意图)等信息,利用车辆动力学方程(1-1),以高于0.2赫兹的刷新频率和千瓦级颗粒度预测电子地平线内车辆路载功率时空函数,并根据优化车辆油耗及排放的机器学习(ML)算法,对上述的发动机101、发电机110、ePSD 123、离合器111、驱动电机140&170、自动变速箱150、以及电池包130a&b中的一者或多者以“独立”的方式分别或同时进行动态控制。
在一些实施例中,VCU 201可以是车规级高性能嵌入式单核或多核微处理器。类似早期个人电脑为增加整机图像处理性能而增加图形处理器,VCU 201还可外挂车端AI推理芯片(AIU,又称AI处理器;图1中没有标注),提高在ACE重卡010车端执行节能减排机器学习算法时的人工智能(AI)推理运算能力;同时AIU还可以被升级为支持SAE L4级自动驾驶软件堆栈的硬件计算平台。可以理解,非限制性地,VCU 201或AIU也可以是异构微电子硬件逻辑部件,包括:通用微处理器(CPU)、现场可编程门阵列(FPGA)、图形处理器(GPU)、专用集成电路(ASIC)、数字处理器(DSP)、片上系统(SoC)、复杂可编程逻辑设备(CPLD)等等。
优选地,ACE重卡的发动机101为排量9升到13升,峰值功率范围250千瓦到350千瓦的重卡市场主流六缸柴油发动机或天然气发动机;也可选用更大排量(13升~16升)的重卡发动机,其峰值功率范围350千瓦至520千瓦,有更多功率余量,高速公路工况爬高山(连续上山超过十公里,纵坡大于2.0度)时,车辆爬坡动力性更好,但实际节油效果比优选发动机基本无提升,且发动机体积、重量、和成本都明显增加,性价比次优;还可选用更小排量(低于9升)的发动机,其峰值功率一般小于260千瓦,虽然节油效果较好,体积、重量、成本都较低,但发动机的功率余量不足,高速公路爬高山时,如果电池包130a&b中的荷电基本耗尽(SoC<LRL),无法继续向驱动电机供电,驱动全靠发动机,则ACE重卡010爬坡动力性会明显不足,需要换低挡位减速才能继续上坡,同时小马拉大车,对发动机实现超长实际寿命不利(一百万公里),性价比次优。可以理解,备选地,发动机101还可选用满足上述功率要求的车用燃气轮机。汽油机在燃烧热效率、低转速大扭矩、和使用寿命(B10寿命公里数)等方面都明显低 于柴油机,不适合干线物流重卡使用。
注意到,如图1所示,在本公开的各种实施例中,当离合器111断开时,ACE重卡动力总成系统为串混模式;此时发动机101与车辆的驱动桥160或180之间无任何机械联接,发动机运行工况与车辆行驶工况完全解耦,使得发动机101能够长期稳定地工作在其万有特性曲线高效区(包括最佳燃油效率范围和/或最佳排放范围)内指定的若干工况点(指定转速/转矩)。当离合器111闭合并锁定时,ACE重卡动力总成切换为并混模式,此时发动机101通过变速箱150与车辆的主驱动桥160或副驱动桥180直接双向机械联接,发动机101的转速由车速和变速箱150的挡位共同决定,发动机101的输出转矩仍可以独立动态调整,并不受制于车辆的行驶工况;发动机101的输出功率与其转速和转矩的乘积成正比,仍然独立可调,只是此时发动机在万有特性曲线高效区为线工况而非点工况。车辆在高速工况下,通过变速箱150的换挡控制策略,总能让发动机稳101定地工作在其高效区内;对ACE重卡而言,发动机万有特性曲线的高效区基本在转速范围1000转/分至1600转/分,转矩负荷率在50%以上(即实际转矩/峰值转矩)。发电机110(MG1)和驱动电机140(MG2)的额定功率之和应大于发动机101的峰值功率,在并混模式下完全可以通过动态调节双电机(110&140)的总计驱动功率,根据并混功率(3-3)及边界条件,实现对车辆路载瞬态功率削峰填谷,实时地满足车辆的动力学方程(1-1)。一种线控离合器111的基本型开关控制策略(On-Off),在高速工况下(车辆平均时速高于50公里/小时;很少主动加速或刹车),优选并混模式(离合器闭合);城市工况下或拥堵的高速公路行驶时(车辆平均时速低于45公里/小时;频繁主动加速或刹车),优选串混模式(离合器断开);还可优选智能模式切换策略(iMS),为线控离合器111的高级型智能动态控制策略,iMS策略的节能减排实际效果要优于开关控制策略,后续详述。在本发明中,转矩和扭矩为同义词,尾气和废气为同义词。
传统重卡发动机电控的难点在于必须在全域面工况下(即全部转速和转矩范围内),动态满足发动机的动力性、节油性、排放性、和成本等多个交叉耦合且经常相互矛盾的技术目标,满足世界各国日益严格的强制性排放法规(包括污染物排放和碳排放);过去二十年来(2000~2020),全球范围现代量产重卡发动机无论是最小比油耗(BSFC;克/千瓦时)或热效率(BTE;%),还是实际综合油耗(升/百公里)这两项指标方面,累计改善幅度不到20%,已遇到了内燃机研发技术和生产工艺的瓶颈。发动机的运行范围如果能从全域面工况简化为高效区内的若干点工况或线工况,可为通过技术创新,突破当前可量产重卡发动机热效率(BTE)的上限(46%),以高性价比最大限度地优化其油耗和排放性能,开辟了新天地(即新技术路线);同时也可能有效地对应今后二十年为满足世界各国不断推出更严格的新内燃机汽车排放(污染物排放和碳排放)强制性法规,对重卡发动机本体、ECU、和尾气处理系统(ATS)设计、标定、和制造的复杂性和产品成本日益飙升所带来的严峻挑战,例如前述2020年8月颁布的美国加州柴油重卡超低NOx组合法规(2024降75%、2027降90%)。
对比点燃式汽油机(SI),压燃式柴油机(CI)以节油,低转速时大转矩,皮实耐用,超长寿命(B10寿命大于一百万公里),高性价比等优点,成为当前全球绝大多数重卡(超过95%)的发动机首选。但在污染物排放方面,特别是对大气环境和人体健康有害的氮氧化合物(NOx)和微颗粒(PM)等污染物排放方面,柴油机比汽油机逊色。满足美国EPA-2010、欧-VI、和中国国-6发动机排放强制性法规,减少重卡柴油机尾气污染物NOx和PM排放的世界主流后处理技术路线包括选择性催化还原器(SCR)及柴油微粒捕捉器(DPF),SCR和DPF都需要在内 部工作温度(即尾气温度)达到250摄氏度以上的关灯温度时(Light-off Temperature),后处理系统内的催化剂才能正常高效地工作;当尾气温度低于200摄氏度时,催化剂的催化转换效率大幅降低,此时发动机污染物排放飙升;工作温度150摄氏度的低温催化剂在欧美还处在实验室科研早期,距离量产时间还以十年计算。柴油机在冷启动、低负荷或怠速运行(负荷率小于25%)、及瞬间大幅度输出功率调整时,其污染物排放和比油耗(克/千瓦时)都会大幅增加;而在高速公路工况下,发动机能够稳定地工作在其万有特性曲线的高效区,此时柴油机的污染物排放和比油耗都较小。传统重卡,很难在发动机万有特性曲线全部转速/转矩范围内(即面工况下),同时优化油耗和污染物排放;目前美国重卡行业还没有找到能同时满足2027年联邦GHG-II温室气体排放法规(CO2排放)和加州超低NOx排放(降幅90%;0.02g/bhp-hr)的可量产商用的重卡动力总成技术方案。
本发明的ACE重卡通过串混iSS控制或并混iPS控制技术,能让脉控发动机101稳定地工作在其万有特性曲线第一象限高效区内的至少一个最佳工况点或至少一条高态工况线或第四象限内至少一个零油耗零排放的低态工况点或工况线,几乎完全消除发动机冷启动、低转速低负荷或怠速等高效区以外的挑战性非高效工况,在降低比油耗和CO2排放的同时,还能有效地提升并维持发动机尾气温度,令发动机101的后处理系统(ATS)稳定地工作在高温高效区(250摄氏度以上),减少污染物(NOx,PM)排放,实现油耗和排放双重最小化的有益效果。同时,由于ACE重卡DPC发动机101在主动模式(AOM)下完全运行在其燃烧高效区,发动机的比油耗低(BSFC)且尾气温度高,其SCR系统保持高效运行,还能够减少耗材尿素(DEF)的用量(克/百公里),从而进一步降低ACE重卡的运营费用;而且,ACE重卡的柴油机和柴油微粒过滤器(DPF)都能长期稳定地工作在各自的高效区,基本消除通过阶段性强制驻车30~45分钟,通过柴油机过量喷柴油怠速空转,进行DPF系统主动再生(Active Regeneration),以消除沉积在其内部的大量微粒这一即耗时又费油的行业用户长期痛点,进一步降低车队运营费用,改善货运效率。
现代柴油重卡在冷启动后十分钟内的污染物排放值通常要明显高于后续稳态工况时的排放值;冷启动阶段高排放对满足美/欧/中三地现行排放法规(EPA-2010、欧-VI、国-6)没实质性影响,但如要满足加州柴油重卡超低NOx组合法规2027年排放限值,则必须大幅减少(降幅90%+))柴油重卡在冷启动、低速低负载、怠速等节能减排高挑战性工况下的实际污染物排放值,否则无法达标。与传统柴油重卡不同,ACE重卡的发动机能够实现“清洁冷启动”功能(CCS-Clean Cold Start)。ACE重卡在室外严寒下(环境温度负10摄氏度以下)长期停车(十小时以上)后冷启动发动机时,通过司机预设车辆冷启动预热时间,由车辆VCU指挥线控离合器111断开,车辆进入串混模式;可利用电池包十千瓦时级有效直流电量,由百千瓦级ePSD 123完成逆变并输出交流电或从汇流点(X)125输出百伏级高压直流电,通过安装(原装或后装)在ACE重卡后处理系统内峰值功率范围20千瓦至60千瓦的车规催化剂电加热器(EHC)301(参见图-7),对尾气后处理系统305中包括SCR模块340在内的各个模块进行分钟级快速预加热,使各个模块(301、320、340)的温度基本达到200摄氏度(即关灯温度),然后再由发电机110(MG1)在电驱动模式下,拖动DPC发动机101无燃运行(POM)到1000转/分~1200转/分之间指定高怠速点后,再首次喷油压燃点火做功,进入高效工况点(AOM),对发动机采用串混智能启停控制(iSS),此时发动机功率函数PWM序列的占空比大于0.5,催化剂电加热器(EHC)301成为发电机组(102和110)或电池包(130a或130b)的电阻性负载;可将从 发动机冷启动点火到尾气后处理系统达到其高效工作温度(约250摄氏度)的过渡时间(即所谓“关灯时间”,Light-off Time)大幅减低90%以上,能比传统柴油机重卡冷启动时污染物排放量降低90%以上;如果要想实现ACE重卡超低排放,将柴油机NOx排放限值(特别是车辆RDE排放值)从当前EPA-2010或国-6排放法规的基础上再降低90%,优选采用上述CCS功能为高性价比的解决方案。传统柴油机重卡冷启动时,也通常要驻车怠速预热发动机几分钟后(即热车时间),才挂挡动车开始行驶;ACE重卡清洁冷启动(CCS)驻车加热尾气后处理系统(ATS)的SCR模块的预热时间要小于传统重卡的热车时间,不耽误司机的工作,而且还可以通过软件OTA动态设定预热开启时间;需强调,ACE重卡驻车电预热发动机后处理系统时间内,发动机101和发电机110并不工作,驱动电机140和170也不工作,此时车辆无任何振动或噪声;可暂时由电池包供电,利用ePSD 123内含的百千瓦级额定功率的电机控制器122a或122b的交流端或直流汇流点(X)125给十千瓦级的车载催化剂电加热器(EHC)供电,在分钟级时间内将SCR模块340的温度从零下几十摄氏度提升至200摄氏度以上,VCU 201可根据ATS系统305内的温度传感器的数据,自动地调节催化剂电加热器(EHC)的运行功耗和时间。车辆后处理系统应加装热绝缘层保护,使系统热容较高,保温时间在分钟级,脉控发动机一旦进入稳定运行后,其PWM脉冲序列的亚分钟级或分钟级低态工况(被动无燃)运行并不会导致后处理系统(ATS)内部的催化剂的工作温度迅速降低到200摄氏度以下;发动机热启动时或从PWM脉冲序列的低态工况切换到高态工况时,等效于发动机101热启动,基本不需要EHC开启电加热功能,脉控发动机高态工况运行时,其尾气的温度明显高于250摄氏度,此时后处理系统(ATS)能够保持高温和高效运行,确保车辆RDE尾气排放稳定达标。
2021年中国开始全面强制执行的柴油重卡国六排放标准,对绝大部分技术积累不足的中国本土发动机和关键动力总成零部件供应商来说,是一场巨大的技术和商务挑战。在确保整车出厂时达到并持续满足国六排放标准,特别是70万公里RDE排放系统可用期(Useful Life)的前提条件下,本发明的ACE重卡对柴油机101的技术性能要求从全域面工况降维简化为发动机高效区内的若干指定点工况或线工况,要比传统内燃机重卡(无混动)对发动机101的面工况综合技术要求降低或放松很多,为多种高性价比的新颖技术路线同时优化车辆节能减排,早日实现批量商用创造了新机会,为广大中国的重卡动力总成和关键零部件供应商开辟了在后国六时代生存发展的另一片新天地。
电机的功率与其转速和转矩的乘积成正比,同时电机的体积、重量、和成本都与其峰值转矩(即最大转矩)高度正向关联。混动或纯电乘用车(总重小于3.5吨)多采用高转速(峰值大于12000转/分)低转矩(峰值小于350牛米)的中小型车规电机;而混动重卡多使用低转速(峰值小于3000转/分)大转矩(峰值大于1000牛米)的大型车规电机。例如,转速1200转/分及峰值转矩2000牛米的大型电机I和转速12000转/分及峰值转矩200牛米的中小型电机II的额定功率都是251千瓦;但电机I的体积、重量、和成本都明显高于电机II。与乘用车应用相比,ACE重卡对电机和电池包等子系统在体积和重量方面限制较少,但对它们的成本则高度敏感。在全球新能源车辆年产销量方面,乘用车比重卡高近几十倍。目前新能源乘用车所使用的高转速-低转矩电机的额定功率绝大多数都小于100千瓦(峰值过载率150%+),单位成本(美元/千瓦)随产量增加而逐年明显下降;但新能源大型商用车(总重大于15吨)所使用的额定功率大于100千瓦的低转速-大转矩的大型电机,在今后二十年内,其单位成本(美元/千瓦)仍然会高昂,难以逐年明显下降。新能源乘用车或重卡,在IGBT或SiC等电力电子核心器件方 面,要求基本相同,同电压平台的器件可以通用。如果混动重卡在大三电系统(电机、电池、电控)选型上(特别是电压平台、峰值转矩、峰值功率等)能与新能源乘用车的技术要求尽量靠拢,甚至部分重叠,则非常有利于ACE重卡的大三电系统充分利用新能源乘用车成熟供应链的规模效应,逐年降低成本、保质保供。
优选地,针对图1实施例,标配发电机(MG1)110为永磁同步电机(PMSM),额定功率为100千瓦到150千瓦之间,也可选用满足上述额定功率要求的交流感应电机或磁阻电机;标配主驱动电机(MG2)140优选额定功率150千瓦至210千瓦的永磁同步电机,还可选用同功率规格的交流异步电机或磁阻电机;选配副驱动电机(MG3)170优选额定功率60千瓦至100千瓦的永磁同步电机,还可选用同功率规格的交流异步电机或磁阻电机。图1各种实施例中,如果三个电机(110、140、170)的额定功率分别超出上述优选参数范围时,ACE重卡仍能正常工作;当额定功率低于优选下限值时,电机成本、体积、重量都降低,但车辆的动力性、冗余量、或节油率在小概率极限路况或工况下(例如山区运行)可能会下降;当额定功率高于上限值时,车辆的动力性和节油率仅在小概率极限路况或工况下可能会提升,但电机成本、体积、重量都明显升高;二者均为次优选择。需强调,电机或电池包的峰值功率(10秒或15秒脉冲)要明显高于其额定功率,负载率可达150%~200%(以额定功率为基准)。
图2所示的电功率分流器(ePSD)123为具有三个端口的额定功率百千瓦级的电力电子网络(PEN),其中包含至少两个绝缘栅双极型晶体管(IGBT)或碳化硅(SiC)功率模块,但可以不包含任何电力电源或电力储能装置。有多种电力电子电路拓扑设计,可实现该三端PEN的输入输出特性和内部各种子系统的功能。需要指出,本公开并不旨在限制某种包括有IGBT或SiC功率模块的三端PEN的具体电路拓扑实现,而是只要是能够实现本公开所描述的ePSD 123的关键输入输出功能及特性的各种电力电子电路拓扑设计,均应落入本公开的范围内。鉴于电力电子模块集成设计的灵活性,为提高系统性能和/或降低成本,ePSD 123内部的电机控制器(MCU1,MCU2,MCU3)121,122a&b、斩波器132a&b、和压控开关(VCS)133等既可集中包装在一个金属盒中,也可以分散包装在多个金属盒中。目前IGBT为性价比最高的全球主流车规电力电子功率模块,碳化硅(SiC)功率模块为后起之秀,性能虽更好但近期成本也更高,但随着SiC产量增加,其市场占比会逐年提升。本公开中提及的IGBT模块,可泛指包括IGBT或SiC在内的各种已产业化的电力电子功率模块。
在图2所示的实施例中,ePSD的端口I内部电机控制器121的交流端与外部发电机(MG1)110的三相交流电输出端双向电联接;端口II内部电机控制器122a的交流端与外部主驱动电机(MG2)140的三相交流电输出端双向电联接,内部电机控制器122b的交流端与外部副驱动电机(MG3)170的三相交流电输出端双向电联接;端口III内部斩波器132a低压端与外部电池包130a双向直流电联接;斩波器132b的低压端与外部电池包130b双向直流电联接。所有电机控制器(121、122a、122b)的直流端都双向直流联接到ePSD的直流母线汇流点(X)125,所有斩波器(132a、132b)的高压端也都双向直流电联接到ePSD内部的直流母线汇流点(X)125。额定功率百千瓦级的压控开关(VCS)133的一端与汇流点(X)125单向直流电联接,另一端与外部百千瓦级带散热器的刹车电阻131单向直流电联接。
优选采用IGBT功率模块来实现压控开关(VCS)133,采用直流电压触发方式来控制压控开关VCS的导通或断开,具体控制方式由软件定义且动态可调,故称“智能压控开关”(iVS);行业普通技术人员能采用多种电力电子拓扑结构来实现VCS功能。iVS控制策略实施例如下: V on=(1+k on)V bus0;V off=(1+k off)V bus0;其中V on为导通电压阈值,V off为断开电压阈值;V bus0为直流母线额定电压,优选范围600V~750V;k on为导通偏置系数,优选范围2%~10%;k off为断开偏置系数,优选范围-5%~+2%;k on和k off由软件定义,可分别动态调整;当汇流点125(X)的直流电压上升至导通电压V on时,压控开关(VCS)133能以毫秒级响应时间从断开状态切换到导通状态并保持导通状态,使百千瓦级刹车电阻131成为ePSD 123汇流点125的有效电负载;当汇流点X的直流电压下降至断开电压V off时,压控开关133又能以毫秒级响应时间从导通状态切换到断开状态并保持断开状态。当电池包130a或130b的瞬态荷电状态(SoC)函数值超过其上红线URL时,为保护电池包,斩波器132a或132b将迅速切断对电池包的充电路径(十毫秒级);但此时如果ACE重卡从主动安全角度仍需要驱动电机140或170的再生制动功能,且突然失去电池包这一有效电负载时,会导致汇流点X处的直流电压瞬时急剧升高,甚至可能超过IGBT模块的击穿电压(例如1200V),出现瞬态“极限电压脉冲”,可能导致ePSD 123内部各个IGBT模块或其它电子元件遭受永久性损伤;而智能压控开关(iVS)技术方案正是防止汇流点X出现极限电压脉冲的有效措施。智能压控开关(iVS)控制策略除能在电池包130a&b基本满溢时(SoC=URL),接通刹车电阻131,提供ACE重卡下长坡时非摩擦式稳态缓速功能外,还提供另一项重要的汇流点X瞬态过压保护功能,以避免ePSD 123内部含IGBT模块的主要电子元器件,例如电机控制器121、122a、122b和斩波器132a、132b等,在ePSD 123某些极限工况下,出现跳闸中断工作或遭受永久性损伤(特别是IGBT过压击穿损伤)等严重失效模式。优选压控开关(VCS)133的额定功率范围200千瓦至350千瓦,电压等级在1200V以上;相应刹车电阻131的额定功率应小于压控开关133的额定功率;从增加系统冗余度并降低成本方面考量,还可优选两套额定功率150千瓦左右的压控开关133及匹配的百千瓦级刹车电阻131并联的方式来实现合计额定功率300千瓦的智能压控开关(iVS)功能;显然iVS功能由软件定义,并可通过空中下载技术(OTA)实现持续升级迭代。
当电池包130a或130b的标称电压V bp(即电池包室温下荷电状态SoC=50%时的开路电压)等于ePSD 123的直流母线额定电压V bus0时,为简化系统并降低成本,可以考虑省略斩波器132a或132b,将电池包130a&b直接双向电联接汇流点(X)125;但这时电池包的标称电压必须固定等于直流母线额定电压,而且电池包也将失去通过软件定义主动调节百千瓦级瞬态充放电功率的功能;同时ePSD 123也失去了通过软件定义(现场或OTA远程迭代),灵活匹配新能源汽车供应链各种的不同额定电压的高性价比电池包的能力;为次优选项。电池包130a或130b是ACE重卡成本最高的子系统之一,也是整车动力性、可靠性、和耐久性的潜在短板,其高倍率部分充放电(HRPSoC)特性曲线及循环寿命与其荷电状态(SoC)和电芯温度等动态工况数据高度关联;采用百千瓦级斩波器132a或132b的另一项益处在于可以根据电池包供应商所提供的电芯HRPSoC数字化特性曲线列表、电芯工况数据(SoC、温度等)、和ACE重卡整车动态工况数据,迅速调整(十毫秒级时延)电池包(132a或132b)的瞬态充放电倍率,令电池包长期稳定地工作在高效区,以达到电池包性能和循环寿命最优化的有益效果;斩波器132a&b还可以通过软件定义,在不增加任何硬件成本的前提下,增加新功能,例如电池包智能脉冲预热功能(iPH)。
本公开ePSD 123内部的直流母线汇流点125(X),是ACE重卡混联动力总成的电力电子网络的神经中枢,该点的唯一直流电压时变函数和所有进出分支电路的直流电流时变函数的集合,从数学上完备地描述了ACE重卡电力功率回路的动态工作状态,是ACE重卡运行节能、 减排、及安全控制的关键节点。汇流点X虽然在电路拓扑上是一个点,但有多种物理实现方式,例如可以是一片金属汇流排或一个多接头的大功率电缆分配器等。
ePSD 123可以通过对内含几大电力电子功能模块(例如电机控制器121、122a&b;斩波器132a&b;压控开关133等)实施数字控制,实现其三个端口之间以十毫秒级响应时间和百千瓦级电力额定功率幅度来动态调整电力功率流的路径、幅度、和方向,根据串混功率方程(2-4)或并混功率方程(3-3)来融合机械功率流和电力功率流,动态匹配车辆路载功率时变函数P v(t),实时地满足车辆动力学方程(1-1)。VCU 201根据优化节能减排的机器学习算法(ML),协同操控离合器111和ePSD 123,车辆可以分别实现串混iSS和并混iPS两种不同控制模式之一稳定运行或二者之间的动态切换(即智能模式切换iMS),在满足车辆行驶动力性、安全性和货运时效性的前提下,达到发动机油耗及排放最优化(即最小化);ACE重卡在干线物流应用场景下,车辆可启用iMS功能,串混和并混模式间切换频次较低,平均每百英里切换二十次以下,自动实施,进一步降低实际油耗。
可选地或附加地,ePSD 123还可以配置若干车规级传感器和存储器,能以不低于5赫兹的频率来测量并记录直流母线汇流点X处的动态电压函数V bus(t)和电流函数I g(t),I m(t),I b(t)时间序列,作为节油数据集的一部分,并通过车载无线通信网关210,及时地(小时级时延)上传到云计算平台001存储,以供后续分析处理。关于节油数据集的实施方式后续详述。。
已知ePSD 123内部直流母线汇流点(X)125处的电功率平衡方程为:
P g+P bat+P m+P br=0      (4-1)
其中P g∈[-P igx,P igx],P bat∈[-P bx,P bx],P m∈[-P imx,P imx];P igx为电机控制器(MCU1)121的峰值功率,P bx为主电池包130a和副电池包130b的合计峰值充放电功率,P imx为电机控制器(MCU2)122a和(MCU3)122b的合计峰值功率;参数配置满足下列不等式:P bx>P imx>P igx。P g为发电机(MG1)110的瞬态电功率时变函数,受控于电机控制器(MCU1)121,P gx为其峰值功率(P igx>P gx),正值为驱动功率(电能变机械能),负值为发电功率(机械能变电能);P bat为电池包(130a&b)合计瞬态电功率时变函数,受控于斩波器(132a&b),正值是充电功率(电能变化学能),负值是放电功率(化学能变电能);P m为主驱动电机(MG2)140和副驱动电机(MG3)170的合计瞬态电功率时变函数,受控于电机控制器122a&b,P mx为其峰值功率(P imx>P mx),正值是驱动功率(电能变机械能),负值是再生制动功率(机械能变电能,回收能量;等效于发电功率);P br为刹车电阻131的瞬态电功率时变函数,受控于压控开关(VCS)133,为非负数且峰值功率应不小于主驱动电机(MG2)140的峰值功率。在本公开中,除非特别标注,峰值功率对发动机而言,指其最大连续机械功率;而对电机、电机控制器(即逆变器)、斩波器、或电池包而言,则指10秒或15秒脉冲的峰值电功率,明显大于额定功率(即最大连续电功率),多数峰值功率可高达额定功率的150%以上。
本公开实施例描述时,重点讨论只有标配主驱动电机(MG2)140和主电池包130a的情景。如果ACE重卡系统还包含选配副驱动电机(MG3)170和/或副电池包130b,普通行业人士很容易扩展来描述。ACE重卡在高速工况下,可优选闭合离合器111,实现并混模式运行;在城市/郊区工况和拥堵的高速路时,可优选断开离合器111,实现串混模式运行;而当ACE重卡遇到长坡或高山时(指纵坡绝对值大于2.0度,连续上坡或下坡路程超过5公里),出于对车辆行驶安全性和动力性考量,不论平均车速高低,应优选并混模式。ACE重卡在干线物流应用场景,近90%的里程为高速工况,其离合器111不需要频繁切换;同时由于有双电机(MG1和 MG2)动态协同,二者都能快速精准地分别控制其转速或转矩,可实现并混模式无离合器换挡(CGS)功能,ACE重卡换档时并不会出现明显的驱动转矩中断和车辆行驶顿挫感,整车动力性和NVH性能都明显优于现有技术的内燃机重卡。
电池包132a&b是ACE重卡成本最高的子系统之一,同时也是ACE重卡整车动力性、可靠性、和耐久性(即长寿命)的潜在短板之一,所以电池包的高性价比设计制造至关重要。ACE重卡对功率型电池包的技术要求与混动轻型车相比,有明显差异。ACE重卡对总容量几十千瓦时的电池包的体积和重量无硬性限制,但对电池包耐高低温(环境温度范围:-30摄氏度至+50摄氏度)及耐冲击震动要求更高,特别是对电池包在高倍率部分充放电(HRPSoC)工况下的等效深度循环寿命(即等效满充满放累计次数;100%DOD)要求要高数倍。例如,ACE重卡的电池包在全生命周期内的累计电吞吐量要大于30万千瓦时;如果功率型电池包的有效容量为30千瓦时,如需支持合计额定功率210千瓦和峰值功率450千瓦的双电机(MG1,MG2)正常运行,则电池包的连续充放电倍率要高于7C,峰值(10秒)充放电倍率要高于15C,考虑到生命周期末(EOL)衰减率20%,其等效深循环寿命要高于12000次;显然,如果电池包的有效容量增大一倍,变成60千瓦时,则等效循环寿命可减半,降为6000次,且充放电倍率也基本减小50%,但此时电池包的体积、重量、和总成本都明显增加,大电池包的综合性价比并非最优,需根据ACE重卡的主流循环工况(Duty Cycle)和经常行驶的高速公路的纵坡分布函数等多种因素综合考量决定。
通过混搭高性能(低温高倍率充放电)、超长寿命、和高成本的钛酸锂电芯(LTO)的主电池包130a(容量10~20千瓦时)加上较低成本的LFP或NCM副电池包130b(容量25~50千瓦时),则可以根据ACE重卡010的具体应用场景,优化整车系统性价比。当寒冬(低于零下10摄氏度)车辆室外停车超过10小时,车辆冷启动后,LTO主电池包130a耐寒,可立即参与高倍率充放电工作;此时采用LFP或三元锂电芯的副电池包130b受控于斩波器132b,可暂时不参与工作或仅低倍率工作,等行车十几分钟后将副电池包130b内部电芯温度逐渐加热到10℃以上后,副电池包130b才开始高倍率充放电;很容易利用ACE重卡发动机散热器(Radiator)的热水在十分钟级时间内将电池包逐渐加热到10℃,对整车油耗或排放无负面影响;这种电池包加热方法的缺点是加热时间较长(十分钟级),短时间内ACE重卡的电池包无法高倍率负充电。电池包130a&b是ACE重卡中最昂贵的子系统之一,混搭不同电化学电芯的两个甚至多个电池包,有益于改善电池包综合性能,降低电池包总成本,对优化ACE重卡综合性价比至关重要。斩波器132a或132b,通过脉宽调制(PWM)技术和软件定义及远程迭代升级(OTA),能根据电芯在不同温度下的充放电特性曲线和各种电芯的保护性限制条件,动态连续地调节电池包130a或130b的充放电电流值,在保证满足ACE重卡整车动力性的前提条件下,优化电池包的性能、电吞吐量、和等效循环寿命。
LTO单电芯标称电压(SoC=50%的开路电压)仅为2.2V,低于LFP单电芯标称电压3.3V和NCM单电芯标称电压3.7V。同样容量(千瓦时)的电池包,高电压电池包方案(电芯多串联少并联;额定电压650V左右)对比低电压电池包方案(电芯多并联少串联;额定电压400V左右),前者电池管理系统(BMS)的设计和控制更复杂,整个电池包的材料和制造成本更高,且系统冗余度和鲁棒性较差;同时后者更容易借力主流新能源乘用车电压平台(例如300V~450V范围)获得性价比更高的电池包,有多渠道保质保供。ACE重卡可优选采用至少两个由不同电化学电芯组成的电池包并联混搭,有益于提高ACE重卡系统性价比。目前全球主流新能源乘用 车所采用的锂离子动力电池包的额定电压范围在300V~500V(简称400V平台电池包),有成熟的供应链,中日韩三国十几家领先制造商合计车规锂离子动力电池年产销量占全球市场份额超过85%,400V平台电池包全球产量逐年快速攀升,成本(美元/千瓦时)逐年明显下降;而高于600V额定电压的电池包(简称800V平台电池包)每年全球生产量比前者小一个数量级以上,800V平台电池包成本较高,合格供应商少,年降价幅度低。本发明ePSD 123的峰值电功率可高达500千瓦,其直流母线额定电压优选范围为600V~750V(即800V平台)。本公开所用电池包(130a&b)优选额定电压值在350V至450V之间,尽量与年产销总量巨大的主流新能源乘用车电池包的额定电压范围重合,便于充分利用当今新能源乘用车成熟的400V平台动力电池供应链,降本保供。这些电池包130a或130b可分别通过ePSD 123端口III内部的百千瓦级双向升降压直流-直流转换器(Boost-Buck,又称斩波器)132a或132b与ePSD 123的直流母线的额定电压相匹配,如图-2所示。除直流变压功能外,百千瓦级斩波器(132a&b)的另一有益功能是通过脉宽调制控制(PWM),在0%~100%电池包充放电峰值电流范围内,可根据各种电芯在不同温度下或生命周期不同阶段(SOH)的充放电特性曲线和电池包厂商为保证电芯的循环寿命和安全性对其工况的各种限制条件,通过斩波器(132a&b)内含微处理器的软件定义和空中升级(OTA),自动精准地动态调节电池包130a&b的充放电直流电流的幅度及方向,以保证电池包在全生命周期内,性能和循环寿命都最优化(Optimization);同时,还可以在不增加硬件成本的前提下,利用斩波器132a&b对电池包130a&b在寒冬进行智能脉冲预热(iPH),以高性价比和高能效的技术措施来解决锂离子电池(特别是除LTO电芯外其它主流电芯,例如LPF或NCM)怕冷但又难于高效均匀加热这一行业难题。
优选地,主电池包130a可以采用总容量在12kWh~26kWh范围内的钛酸锂电芯(LTO)组合,连续充放电倍率5C~9C,10秒或15秒脉冲峰值充放电倍率15C~30C;等效深度充放电(100%DoD)循环寿命(即电池包以HRPSoC循环工况为主,全生命周期内累计吞吐总电量周转次数,简称“等效循环寿命”)超过1.2万次,工作环境温度-30~+55摄氏度。如果配置百千瓦级斩波器132a,则电池包130a的标称电压优选范围为300V~450V(即400V电压平台);如果没有配置斩波器132a,则电池包130a的标称电压等于汇流点X的额定电压(即800V电压平台)。全球现代已商业化的各种电化学配方的汽车规格动力电池中,只有钛酸锂电芯(LTO)仅一套电池就可以满足上述ACE重卡电池包的全部苛刻要求,特别是超长循环寿命和低温高倍率部分充放电的要求。LTO电芯比能量(Wh/KG)较低的缺点对ACE重卡应用而言,LTO电池包体积或重量较高不是问题;但LTO电池包的另一缺点是成本高昂,全球可选合格供应商少,其每千瓦时(kWh或度)电芯的成本(元/瓦时)为其它主流汽车级锂离子电芯(例如LFP、NCM、NCA)成本的三倍以上,导致LTO电池包的成本长期居高难降,如果全部采用LTO电芯,会因电池包总成本过高而限制ACE重卡在全球范围广泛应用;LTO电池包全生命周期的高成本问题必须有效地解决。主电池包130a还可以选用适合恶劣工作环境下高倍率部分充放电(HRPSoC)应用的如下功率型电芯:镍氢电池(NiMH)、磷酸铁锂(LFP)、三元锂离子电池(NCM/NCA)、或碳铅电池(PbC);这四种电芯在电池包容量相当时,都可能需要至少两套电芯,才能满足过1.2万次超长等效循环寿命的要求;同时这四种电芯的成本(元/瓦时)都明显低于钛酸锂电芯,虽然需要两套系统才能满足超长循环寿命要求,但从电池包设备投资(Capex)角度考量,比一套LTO电芯有经济优势;还可以考虑采用上述两种不同电化学成分电芯组成的电池包并联混合搭配(例如LTO与LFP搭配),如图2所示;同时将电池包(130a 和130b)的总容量提升到40kWh~90kWh范围,以谋求电池包130a&b在ACE重卡全生命周期内性价比最优。
优选地,副电池包130b可以采用容量30kWh~60kWh范围内的主流功率型锂离子电芯(连续充放电倍率3C+),例如磷酸铁锂(LFP)或三元锂(NCM或NCA)电芯。当然也可选用容量大于60kWh的副电池包130b,这样虽有利于增强整车在各种运行工况下的动力性,减少电池包等效循环寿命上限值和充放电倍率峰值;但大容量电池包的重量、体积、和成本都将明显升高,综合性价比并非最优,需综合考量。如果配置斩波器132b,则电池包130b优选400V电压平台,以便充分利用现代新能源汽车电池包产业链的共享机会;如果没有配置斩波器132b,则电池包130b应为800V电压平台。干线物流重卡满载行驶时,纯电驱动时的电耗约每英里2.0度电,即便ACE重卡配置总容量90kWh的大号功率型电池包130a&b,其纯电驱动连续行驶里程也仅有45英里,占车辆日平均里程500英里的零头,发动机101仍然是ACE重卡010货运事件的主要能量源。
本发明中,电池包130a&b的作用类似一个带有小号油箱的大功率发动机;对比柴油发动机101,电池包的特点在于爆发力超强、瞬态响应速度极快、但耐力严重不足。电池包130a&b既可以较长时间内(10分钟级)连续提供驱动电机(140或170)的120kW中强度电驱动功率,也可较短时间内(分钟级)连续提供驱动电机(140或170)超过300kW的高强度电驱动功率。假定ACE重卡电池包130a&b的总有效容量为30kWh,双电机MG1和MG2的总计额定功率为300kW,在脉控发动机101被动模式运行时(PAM),电池包130a&b在荷电消耗模式下(CD)从满溢(SoC=URL)以10C连续放电至亏空(SoC=LRL),可给双电机(110和140)以300kW强度连续6分钟单独供电,让满载(总重40吨)的并混ACE重卡010在平缓不拥堵的高速公路上以90公里/小时的速度纯电行驶近10公里;换句话讲,从整车驱动功率控制或能量管理层面考虑,ACE重卡010为具备五分钟级或十公里级缓冲时空的高惯性机电系统。
ACE重卡采用的功率型电池包,需支持驱动电机总计连续功率200kW+或10秒脉冲峰值功率近400kW+的高倍率充放电需求;电池包(130a&b)优选有效容量范围25kWh~65kWh,电池包的平均连续充放电倍率范围4C至8C,10秒峰值充放电倍率范围8C至20C,而且电池包的充电倍率(连续或峰值)通常要高于放电倍率,以对电芯最具挑战的非对称方式工作。ACE重卡如果要实现比传统柴油重卡在50万英里运行里程累计节油30%,其电池包全生命周期内(即50万英里内)等效累计吞吐电量需高达30万kWh以上;如选用生命初期(BOL)30kWh有效容量的电池包,考虑电池包生命末期(EOL)容量衰减率20%,则需要电池包130a&b的等效循环寿命要超过1.2万次;ACE重卡电池包对电芯性能和寿命的要求明显高于新能源乘用车电池包。受限于当前世界车规锂离子电芯技术路线和产业化发展水平,电池包的实际性能和循环寿命与电芯的瞬态工况(电流、电压、温度、SoC、SOH等)密切相关;ACE重卡需要斩波器132a&b与电池包130a&b的电池管理系统(BMS)实时通讯,根据电池包130a&b的瞬态荷电状态(SoC)、电芯温度、电芯健康状态(SOH)等数据,动态地控制电池包的实际充放电倍率,才能更有效可靠地实现电池包性能和循环寿命最优化。
功率型电池包要想既保证性能达标,又实现超长循环寿命,必须根据电池包130a&b的工况数据(SoC、SoH、温度、电压等),在高倍率部分充放电(HRPSoC)工况下,动态调整高倍率充放电的电流幅度及方向,严格控制电池包所有电芯的荷电状态(SoC)时变函数。现代车规功率型电芯的充放电荷电状态SoC上红线(URL)一般在85%至95%,下红线(LRL)一般在10%至20%;高效区的最佳上限(BUL)70%至85%,最佳下限(BLL)20%至35%。电池包在SoC高效区(BLL<SoC<BUL) 工作时,所有电芯的性能、安全性、和循环寿命最优,而电池包在SoC高于URL或低于LRL的红线区域高倍率部分充放电(HRPSoC)运行时,除电池包性能明显下降外,还可能会对电芯造成永久性损伤,减少循环寿命,产生安全隐患,需尽量避免。本发明对电池包130a&b实施预测性荷电控制(PSC)的核心,就是为保证ACE重卡010能够同时优化车辆的动力性、油耗、排放这三大指标,通过串混iSS或并混iPS控制及智能巡航控制(iCC)技术,动态自动调整电池包的运行模式(CS、CD、CI三选一),最大限度地让电池包130a&b长期稳定地工作其在高效区,令总荷电周转率和再生荷电周转率都最大化。
ACE重卡010在串混模式下(离合器111断开)或并混模式下(离合器111闭合),VCU 201根据节能减排机器学习算法、车辆配置参数、整车和各个相关子系统的运行工况、路载瞬态功率路载瞬态功率、和电子地平线道路三维信息(特别是纵坡函数)及路载功率预测,对发动机101和电池包130a&b的瞬态输出功率进行串混iSS或并混iPS控制,既可以实时地满足车辆动力性方程(1-1)及串混功率方程(2-4)或并混方程(3-3),又可预测性地调节发动机平均功率函数,通过控制ePSD 123三端口之间百千瓦级电功率的动态分配和mPSD 124三端口之间百千瓦级机械功率的动态分配,来实现ACE重卡电池包(130a&b)在下列三种荷电模式(CS、CD、CI)之一连续运行或之间平顺切换:1)在荷电维持模式(CS)下,电池包的瞬态荷电状态时变函数(简称瞬态SoC)和平均荷电状态函数(简称平均SoC;参见方程(MAW))需始终维持在最佳下线(BLL)到最佳上线(BUL)之间(即高效区内)连续波动;此时发动机101的平均功率基本等于车辆路载平均功率;车辆驱动(串混或并混)以发动机101为主,电池包130a或130b为辅,实时地满足车辆动力学方程(1-1)及串混方程(2-4)或并混方程(3-3);2)在荷电消耗模式(CD)下,电池包的瞬态SoC连续波动而平均SoC在上红线(URL)到下红线(LRL)之间连续下降;此时发动机平均功率明显小于路载平均功率,车辆驱动以发动机101为辅,主要靠电池包130a或130b给驱动电机140或170供电,,实时地满足方程(1-1)及(2-4)或(3-3);3)在荷电增加模式(CI)下,电池包的瞬态SoC连续波动而平均SoC在下红线(LRL)到上红线(URL)之间连续上升;此时发动机平均功率明显大于路载平均功率,发动机的机械功率除大部分在并混模式下直接或串混模式下间接用于驱动车辆外,剩余的机械功率通过发电机110给电池包130a或130b持续充电,以保证电池包SoC平均值随时间连续上升,实时地满足方程(1-1)及(2-4)或(3-3)。
电池包130a&b中的电能可分两种,一种是由发动机101驱动发电机110所产生的“发动机荷电”(Engine Charge),为“高成本电能”,又称“发动机电能”;另一种则是通过电机110、140、或170利用再生制动回收车辆的机械能所产生的“再生荷电”(Regen Charge),为“准零成本电能”,又称“再生电能”。要想最大限度地降低ACE重卡在整个运输事件中的综合油耗(FC;升/百公里),首先需要尽量将电池包(130a或130b)中的电能随放随充,将电池包的累计吞吐总电能(kWh;指发动机电能与再生电能之和)或总荷电周转率(定义为累计吞吐总电能与电池包等效容量的比值)最大化;其次要尽量提升再生电能在总电能中的占比(即再生荷电周转率最大化),抓住每一个通过再生制动回收电能的机会;同时应尽量减低发动机电能的占比(即发动机荷电周转率最小化);要最大限度地避免因电池包满溢(SoC=URL),无法接受新增的再生电能,触发压控开关(VCS)133导通,由刹车电阻131将这部分再生电能完全浪费掉的情景出现。根据车载地图仪240内存的先验3D道路数据及车辆配置参数和动态工况数据,ACE重卡能实时地(亚秒级时延)以千瓦级颗粒度精准地测算出电子地平线内(小时级或百公里级)路载瞬态功率时空函数和平均功率函数;除非车辆遇到下长坡(例如超过10公里连续下坡)时 再生制动荷电(即准零价电)一次充满电池包这种可预知但不常见的情景之外,ACE重卡总能够未雨绸缪,通过动态调节车辆010的路载平均功率与发动机101的平均功率之差值,以准时生产(JIT)的方式,将电池包130a&b的电能随充随放,最大限度地让电池包稳定地工作在高效区,避免因电池包过满(SoC=URL)而无法回收再生电能或过空(SoC=LRL)而无法提供驱动爆发力这两类不良情景出现;谋求再生制动荷电周转率和总荷电周转率同时最大化。显然,对长期运行在高山地区的ACE重卡,应配置大容量的功率型电池包(例如有效容量60kWh);而全国范围运行的ACE重卡,绝大部分时间或里程运行在平原或丘陵地区,配置30kWh有效容量的功率型电池包,性价比更高。本发明ACE重卡节油策略的核心,就是在保证车辆动力性和主动安全性的前提条件下,充分利用电子地平线内的先验道路三维数据和道路沿途的纵坡变化带来的百千瓦级的纵坡功率正负波动,通过智能巡航控制(iCC)(即一维纵向L1级自动驾驶功能;包含预测性巡航控制PCC和自适应巡航控制ACC)并根据AI节油算法,对发动机101的瞬态功率或电池包130a&b的瞬态功率分别进行脉宽调制控制(PWM)或脉幅调制控制(PAM)(即串混iSS或并混iPS),动态地调节ACE重卡010的机械功率流和电功率流的路径、幅度、或方向,实时地满足车辆动力学方程(1-1)和串混功率方程(2-4)或并混方程(3-3),令电池包130a&b在荷电维持(CS)、荷电消耗(CD)、和荷电增加(CI)三种工作模式之一稳定地工作或之间平顺切换,谋求电池包再生电量周转率和总荷电周转率最大化,实现预测性荷电状态控制功能(PSC-Predicative SoC Control),以达到同时优化车辆节能减排的有益效果(即CO2和NOx实际排放同时最小化)。
在串混模式下(离合器111断开),电池包130a&b放电时通过驱动电机140和170给ACE重卡010提供驱动功率,充电时通过驱动电机140和170再生制动回收能量;在并混模式下(离合器111闭合并锁定),除发动机101直接参与车辆驱动或制动外,发电机110也可以和驱动电机140转矩或功率叠加,等效为一个更大峰值转矩或功率的电机,共同参与车辆驱动或再生制动回收能量,能进一步提升再生制动荷电吞吐量,改善节油效果。如果ACE重卡上长坡且电池包130a&b荷电基本耗尽(SoC=URL),此时的ACE重卡应工作在并混模式,其动力性完全取决于发动机101的峰值功率;如发动机101的峰值功率不够大,则只好换低挡减速继续爬坡,暂时降低车辆的动力性和货运时效性;一直要等到本车前方出现平路或下坡时,发电机110和/或驱动电机140&170才能有机会再利用再生制动或发动机驱动发电给电池包130a&b充电,恢复车辆动力性。
今后二十年,基于硅IGBT或碳化硅(SiC)MOSFET的电力电子(PE)功率模块的性价比年改善率要明显高于电机或电池包的性价比年改善率。继续参考图2,优先考虑在设计电域功率分流器ePSD 123所包含的六个百千瓦级PE功率模块时(例如端口I内接标配MCU1 121,端口II内接标配MCU2 122a和选配MCU3 122b,端口III内接压控开关133、标配主斩波器132a和选配副斩波器132b等),在电力电子硬件的功能和性能方面(特别是额定功率和峰值功率)都应采用过设计原则,留足余量(Over-design),以便能在ACE重卡全生命周期内,能通过软件远程升级迭代(OTA),持续改善各子系统的现有性能和功能或增加新功能。MCU1 121的峰值功率P igx应比发电机110的峰值功率P gx高15%以上,MCU2 122a的峰值功率P imx应比主驱动电机140的峰值功率P pmx高15%以上,MCU3 122b的峰值功率应比副驱动电机170的峰值功率P smx高10%以上,且P pmx>P smx;主斩波器132a和副斩波器132b的峰值功率应分别高于主电池包130a或副电池包130b的峰值功率15%以上,同时斩波器132a&b的合计峰值功率应比 主驱动电机140的峰值功率P pmx高20%以上;压控开关133的额定功率应比主驱动电机140的额定功率高15%以上。
功率半导体模块例如IGBT或SiC性价比年平均改善速度要明显高于电池包、电机、和刹车电阻等。可以充分利用全球功率半导体产业的不断创新和升级,采用多种电力电子电路拓扑结构来实现高性价比的电功率分流器ePSD 123;具备硬件设计余量的ePSD 123从一开始就是一种基于软件定义的电域功率分流器,可通过软件远程升级迭代(OTA)不断改善和进化已有的功能或增加新功能。采用上述模块化设计策略,ePSD 123的三个端口与外接的电机、电池包、或刹车电阻等机电负载可采用行业标准的机械和电气接口,方便灵活配套多家优质汽车供应商所提供的满足性能要求及目标成本的各种电机和电池包,持续改进和提高ACE重卡整车性价比,长期保质保供。
逆变器(Invertor;即双向DC-AC转换器)是现代电机控制器(MCU)的核心部分;在本公开中,电机控制器(MCU)应理解为以逆变器为核心模块的完整的车规电机控制器,有多种成熟的电路拓扑结构可以实现MCU,电机控制器与逆变器可广义理解为同义词,对本领域普通技术人员不会产生歧义。电机控制器(MCU1 121,MCU2 122a,MCU3 122b)能以矢量控制(Vector Control)方式动态精准地控制三相交流电机(MG1 110,MG2 140,MG3 170)的转速或转矩,可以实时精准地(十毫秒级时延,2%精度)调节百千瓦级电力功率流的幅度和方向,实现电能与机械能之间的双向转换。斩波器(132a,132b)为双向升降压直流-直流转换器(Boost-Buck),高压侧双向电联接ePSD 123的直流母线,优选直流母线额定电压范围为620V~750V;低压侧双向电联接电池包130a&b,优选电池包额定电压范围为320V~450V,与主流新能源乘用车的400V电压平台重合,以便共享;当然还可以选择额定电压范围:450V~650V,只是此选项性价比次优。斩波器132a&b既可以通过软件定义来灵活地匹配各种不同额定电压(320V~700V)的电池包130a&b,又可以根据动力电池供应商为保证其电芯全生命周期内的性能、安全、和循环寿命达标,对不同电芯内部温度及荷电状态下的电芯所提出的优选充放电曲线,通过软件定义和空中下载迭代(OTA)斩波器的控制程序及参数,为每个电池包自动地定制并动态地更新充放电控制方案,最大限度地动态补偿电池包(130a&b)在高低温运行性能、可靠性、循环寿命等方面的短板。
ACE重卡010的整车控制器201(VCU)能根据车辆节油减排控制策略和节油机器学习(ML)算法,指挥ePSD 123实时连续地调节三个相互关联的百千瓦级电功率时间函数,包括独立变量发电机功率P g(t),独立变量驱动电机功率P m(t),和非独立变量电池包充放电功率P b(t),随时满足ePSD直流母线汇流点X处的电功率平衡方程:
P m(t)+P g(t)-P b(t)=0。    (6-1)
该电功率平衡方程方程等价于前面串混模式下的方程(2-2)和并混模式下的方程(3-2)。
优选地,标配的主驱动电机(MG2)140为低转速高转矩大型永磁同步电机,额定功率范围150kW~250kW,峰值功率范围275kW~450kW,峰值转矩范围1500NM~2500NM;驱动电机140也可选用满足上述功率和转矩要求的交流感应电机或磁阻电机。主逆变器122a的峰值功率应高于主驱动电机的峰值功率15%以上,留有余量。油电混合乘用车的年销量比油电混合商用车高近两个数量级,所以尽量选择与乘用车共用某些核心零部件,可有效降低混动商用车的成本并保证批量供应。电动(包括油电混动)乘用车所用单个电机和逆变器的额定功率通常小于180千瓦。驱动电机140还可选配额定功率160kW~230kW,最大转矩350NM~500NM的大 型新能源乘用车所用的永磁同步电机;机械转矩耦合器(mTC2)104采用平行轴结构,通过齿轮速比4~8范围的重型齿轮减速器将离合器111的B端、驱动电机140的机械轴、及变速箱150的输入轴三者双向机械联接。
针对图1的ACE重卡系统框图,标配发电机(MG1)110通过机械转矩耦合器(mTC1)103与发动机101的飞轮端双向机械联接(即所谓混动P1位置),同时还与离合器111的A端(从动端)双向机械联接。机械转矩耦合器(mTC1)103的结构又分两类,I类为单轴同轴结构,三者(发动机、发电机、离合器)串在同一根机械转传动轴上;此时发电机110的转速与发动机101的转速完全相同(转速比1.0);可优选额定功率100kW~150kW,峰值转矩1200NM~2000NM的低转速高转矩永磁同步电机;II类为平行轴结构(多轴),通过重型齿轮减速器将三者双向机械联接,此时发动机101的飞轮与离合器111的A端同轴联接,且二者与发电机110通过重型齿轮减速器联接,转速比固定。主流重卡发动机(排量11升~16升)高效区的转速范围一般为:1000转/分~1800转/分,转矩负载率40%~90%;柴油机在高效区稳定工作时,其比油耗(BSFC;g/kWh)最低(可低到182g/kWh),同时废气(Exhaust)的温度高于250摄氏度,有利于后处理系统高效地运行,降低实际排放。发动机和电机的功率与其转速和转矩的乘积成正比;同时发动机和发电机的最大转矩与其体积、重量、和价格高度正向关联。机械转矩耦合器(mTC1)103采用II类平行轴结构,可通过固定速比重型齿轮减速器将发电机110与发动机101的转速比提升到3.0~8.0范围,从而有可能选配新能源乘用车成熟的供应链体系内的高转速低转矩大功率永磁同步电机,大幅降低发电机110的体积、重量、和价格,实现高性价比保质保供。发电机110还可选择额定功率在130kW~200kW,峰值转矩小于500NM的中高速(最高转速小于12000转/分)车规永磁同步电机。
MG2 140通过mTC2 104与离合器111的B端双向机械联接,同时还与变速箱150的输入轴双向机械联接;离合器111的B端与变速箱150的输入轴之间优选同轴双向机械联接(转速比1:1)。mTC2的结构又分两类,I类为单轴同轴结构,三者(离合器、驱动电机、变速箱)串联在同一根机械传动轴上,此时驱动电机140的转速与变速箱150输入轴的转速完全相同(即转速比1:1);II类为平行轴结构(多轴),通过重型齿轮减速器将三者双向机械联接,此时驱动电机140与变速箱150输入轴的转速比值固定,优选速比范围在3~8。当离合器111闭合时,发动机101飞轮与变速箱150的输入轴之间同轴双向机械联接,两者转速比为1:1。传统重卡最大排量16升发动机的峰值转矩上限为2600NM(牛米),所以当前主流重卡变速箱输入轴的最大输入转矩为2600NM;ACE重卡在并混模式下,发动机101和双电机110&140可三者转矩叠加协同发力,变速箱150输入轴处合计转矩能够超过4000NM;优选经过特别强化设计的增强型重卡自动机械变速箱(AMT)150,其输入峰值扭矩可高达3500NM,总档位数则可减少至8档以下,其中最好包括速比1.0的直接档(Direct Drive)和速比小于1.0的超驱档(Overdrive);也可选用主流量产重卡AMT变速箱,主动限制合计有效峰值转矩小于3000NM,牺牲部分整车动力性,以保证转动系统的可靠性和长寿命。变速箱150的机械设计有冗余量(例如20%),混联动力总成可以十牛米级和十毫秒级颗粒度动态精准地控制变速箱150输入轴合计转矩值和变化速率(即转矩函数的时间导数),能有效地避免输入峰值转矩抖动对变速箱和其它转动系统部件产生剧烈机械冲击,可以将ACE重卡主流变速箱输入端的合计有效峰值转矩提升至3000NM以上,同时兼顾转动系统的可靠性和长寿命。采用II类平行轴结构可通过固定速比重型减速器将主驱动电机140转速与变速箱150的输入轴的转速的比值提升到3.0~8.0之间,从 而有可能选配当前新能源乘用车体系内的大功率永磁同步电机,大幅降低驱动电机140的体积、重量、和价格;主驱动电机(MG2)140可优选额定功率在150kW~210kW之间的永磁同步电机或交流异步电机;mTC2I类结构下,驱动电机140为低转速(最高转速3000转/分以下)大转矩(峰值转矩1500NM以上)的永磁同步电机或交流异步电机;II类结构下,驱动电机140为中高转速(最高转速10000转/分以下)中转矩(峰值转矩500NM以下)的永磁同步电机或交流异步电机;显然,后者比前者体积和质量都更小,价格也更低。
选配的副驱动电机(MG3)170即可以配置在变速箱150输出轴与驱动桥160之间(混动P3位置),也可配置在第二驱动桥180之前(混动P3位置),电机170与驱动桥双向机械联接。重卡驱动桥输入端的峰值转矩可高达20000NM以上,副驱动电机(MG3)170与驱动桥(160或180)之间必需加一个大型减速器(图1中没有标注该减速器,可理解为减速器与副驱动电机(MG3)合二为一),速比范围7.0~15.0;可优选额定功率在60kW~120kW,峰值转矩小于500NM(牛米)的中高转速低转矩车规永磁同步电机或交流异步电机。
图1中,变速箱150的输入轴通过mTC2 104分别与离合器111的B端和主驱动电机140的输出轴双向机械联接,其输出轴与第一驱动桥160双向机械联接。优选地,采用当前成熟批量商用的最大输入转矩至少2500牛米的重型10速~12速的自动机械变速箱(AMT-10~AMT-12),也可选用重型双离合器变速箱(DCT)或带液力转矩转换器的自动变速箱(AT);还可以选用经过强化设计的5档或6档新兴重型自动机械变速箱(AMT-5或AMT-6),最大输入转矩大于3500NM。与发动机101低转速时转矩较小的动力特性不同,驱动电机140零转速时可输出最大转矩,且并混时系统合计转矩明显大于顶级16升柴油机的峰值转矩和变速箱150输入轴可承受的最大转矩,明显减少因转矩不足而向下换挡的频率,所以ACE重卡自动变速箱只需要5~6个前进挡就足够用,无需更多挡位;显然挡位超过12档的AMT也能用,但该选项变速箱成本升高但整车性能不变,为次优。需强调,本发明中ACE重卡包括变速箱150在内的驱动转动系统并非传统重卡的准单向机械功率传递,而是双向机械功率传递,再生制动时最大反向转矩与正向峰值转矩基本相同,所以变速箱150内的主要轴承和齿轮需要特殊强化设计和制造,才能保证其性能和寿命都可靠达标。
本公开中,副驱动电机(MG3)170、电机控制器122b(MCU3)、和第二机械驱动桥180可三者合一构成“集成电驱动桥”(Integrated e-Axle)。6x2传统柴油机重卡也可选配集成电驱动桥而改装成6x4混动重卡,但此时发动机加变速箱的纯机械式动力总成与集成电驱动桥相互独立运行,缺乏密切协同,节能减排效果并非最佳。与现有技术不同,本公开图1中的ACE重卡,其集成电驱动桥与包括发动机101、发动机控制单元102、发电机(MG1)110、ePSD 123、主驱动电机140、电池包130a&130b、离合器111、变速箱150、和变速箱控制单元151在内的一个以上的子系统动态强耦合且密切动态协同,共同受控于整车控制器(VCU)201;可根据具体车况和路况,通过动态调整车辆动力总成机械功率流或电功率流的路径、幅度、和方向,共同驱动ACE重卡,达到优化车辆节能减排的有益效果;同时还可提升车辆的动力性和刹车性能,并增加车辆动力系统和刹车系统的冗余度。
ACE重卡的发动机101可选择排量13L~16L、峰值功率320kW~450kW、峰值转矩2000NM~2600NM的大型重卡柴油机或天然气发动机;还可以选择排量9L~12L、峰值功率250kW~320kW,峰值转矩1500NM~2100NM的中重卡柴油机或天然气发动机;混联ACE重卡优选采用当今世界主流的11L~13L的重卡柴油机,综合性价比最优。例如,ACE重卡配置一台 当前市场用量最大的11L柴油机101(基本型或高级型),峰值转矩2200NM@1200rpm,峰值功率300kW@1800rpm;额定功率175kW和峰值转矩1400NM的永磁同步发电机(MG1)110;额定功率200kW和峰值转矩1600NM的永磁同步驱动电机(MG2)140;连续充放电功率(即额定功率)大于250kW且生命终期(EOL)有效容量30kWh的超长寿命功率型电池包130a&b;在并混模式下和发动机高效区内(例如转速1000rpm~1600rpm),发动机和双电机三者可协同发力,车辆变速箱150输入轴合计峰值转矩可高达4000NM,其车辆动力性(载货高速爬坡、加速超车等)要明显优于顶级配置16L柴油机的传统高端重卡,为防止变速箱和转动系统因过载而折寿,需对并联架构下的动力总成动态限制转矩;该ACE重卡同负载、同路径货运事件的实际综合油耗(升/百公里)比可比柴油重卡(基本相同的车辆年份和动力性)要降低20%以上,而且ACE重卡可实现的最佳油耗完全取决于节油机器人的节油ML算法,实际结果高度一致,与该车司机的驾驶水平和经验无关,与发动机101的技术水平和性能指标也基本无关。
图4为一个典型的现代重卡11升柴油机的万有特性曲线图(Fuel Map),该发动机的峰值转矩为2000牛米,峰值功率为300千瓦,最小比油耗(BSFC)为187g/kWh(克/千瓦时),图中布满互补不相交的多条不规则形状曲线,每条曲线都是一条比油耗(BSFC)等高线;发动机完整详细的万有特性曲线是发动机制造商的商业机密,只会与整车厂或有关的一级供应商在签署保密协议后分享。目前全球已量产商用的主流重卡柴油机的最小比油耗为182g/kWh,对应热效率(BTE)46%;热效率(BTE)50%~55%的重卡柴油机目前欧美还在样机研发阶段,距离欧美中三地量产商用还有三到五年时间。如果将发动机101的高效区定义为最小比油耗值105%的等高比油耗曲线内的工况区域(即196g/kWh),参考图4所示,发动机的高效区对应的转速范围900转/分至1700转/分,转矩范围670牛米至2000牛米,即转矩负荷率33%至100%。很容易将图4的发动机高效区的万有特性曲线数字化后,变换成一个便于计算机处理的列表(Look-up Table),优选地以10转/分的转速步进间距和10牛米的转矩步进间距生成描述发动机高效区特性的一个140x100矩阵列表,矩阵每行对应恒转矩而每列对应恒转速;该表中每一个元素(即特定行数/列数)对应一个发动机工况点(即特定转速/转矩)的比油耗值(BSFC;克/千瓦时),称为“原始比油耗列表”(简称“原始油耗表”),该原始列表反应该发动机的原始设计指标;ACE重卡010的发动机控制单元(ECU)102可以根据发动机101实际运行数据,每两日或每一千英里生成一个“修正比油耗列表”(简称“更新油耗表”),该更新油耗表既反映该型号发动机的原始设计性能指标,又反映特定发动机磨损使用后,当前实际性能指标,供ACE重卡的节能减排AI算法使用。
参见图4,发动机101的万有特性曲线能以一个101X51的油耗矩阵列表(Look-up Table)呈现;该矩阵的行数(1~101)对应发动机转矩,列数(1~51)对应转速,每个矩阵元素代表一个发动机工况点,元素值为该工况点的比油耗值(BSFC);发动机转矩或转速的有效范围分别为:-500NM~2000NM或500RPM~1800RPM;平均分割,转矩步幅为25NM,转速步幅为26RPM。例如矩阵元素(1,1)对应(-500NM,500RPM)工况点;(1,51)对应(-500NM,1800RPM);(101,1)对应(2000NM,500RPM);(101,51)对应(2000NM,1800RPM);最佳工况点(91,26)对应(1840NM,1150RPM),元素值为187(g/kWh)。显然全部第四象限工况点(即所有行数小于21的元素)对应的比油耗值都设置为0;将第一象限发动机最大转矩曲线以外全部不可能出现的燃烧工况点所对应的比油耗值设定为最小比油耗的一千倍,即187,000(g/kWh),工程近似无穷大。其余有效燃烧工况点的比油耗值从厂家发动机万有特性 曲线直接读取。发动机等转矩水平工况线由行数相同但列数变化的矩阵元素组成;等转速垂直工况线由行数不同但列数相同的矩阵元素组成;等功率曲线由行数和列数都不同的相邻矩阵元素组成。该油耗矩阵完备地描述了发动机101的万有特性,是ACE重卡010功率管理策略(PMS)数据驱动机器学习(ML)算法的关键数理模型之一。
参见图4,发动机燃烧高效区内转速或转矩变化5%所引发的比油耗变化要明显小于5%,但在燃烧非高效区(例如转矩负荷率小于30%),转速或转矩变化5%所引发的比油耗变化要明显大于5%;换句话讲,对所有现代重卡发动机而言,燃烧高效区内不但比油耗低且废气温度高(超过300摄氏度),而且比油耗及废气温度很稳定,基本不随发动机工况点的变化而变化;燃烧非高效区内不但比油耗高且废气温度低(小于250摄氏度),而且比油耗或废气温度变得不稳地,随发动机工况点的变化而明显变化;发动机万有特性曲线及对应油耗矩阵的上述特征,是本发明DPC发动机实际油耗排放效果明显优于现有技术AEC发动机,以及前者节能减排优化算法比后者计算量降低至少一个数量级、收敛更快、鲁棒性更高等现象背后的物理基础。发动机、电机、变速箱、车轮由多组速度传感器,转速测量精度能长期稳定在0.5%以内,然而目前全球还没有车规量产商用的转矩传感器,发动机靠间接测算飞轮端有效转矩的精度约为3%;发动机可通过实时精准控制喷油量来直接动态调整发动机的转矩,转矩为自变量,但其动态测量相对误差较大(~3%);发动机的转速由瞬态转矩和机械负荷共同决定,转速为因变量,但其测量误差小(小于0.5%)。本发明DPC发动机101高态工况运行时间占比99%为燃烧高效区指定线工况,低态工况100%为零油耗零排放;配置DPC发动机101的ACE重卡010的节能减排在线全局优化算法对比现有技术具备“三高一低”的特点:高精度、高收敛、高鲁棒性、低计算量。
下面结合图4讨论脉控发动机101的若干实施例。首先讨论若干串混智能启停控制(iSS)实施例。假定ACE重卡配置的发电机(MG1)110的额定功率为175kW(千瓦),额定转矩1200NM@1400RPM,15秒峰值过载率超过50%;标配主驱动电机(MG2)140的额定功率为200kW,额定转矩1370NM@1400RPM,15秒峰值过载率超过50%;发动机101的原设计万有特性曲线如图4所示,最佳转速可选范围在1100RPM至1300RPM之间,优选发动机101原始列表或修正列表中转速1200RPM(转/分)及转矩1400NM(牛米)的工况点为“最佳工况点”(BOP–Best Operating Point),该工况点对应的发动机功率为176千瓦,称“高态工况点”;同时优选发动机无燃运行在怠速600RPM(串混怠速点可选范围:550RPM至750RPM),此时发动机101被动运行时的平均阻力转矩约为-250NM,该“无燃怠速点”(NCI–Non-Combustion Idle)所对应的发动机功率为-16kW,称“低态工况点”;最佳工况点(BOP)在发动机高效区内的优选串混高态工况线上(L sh,为一条垂直工况线;例如定转速1200RPM,可变转矩范围:1000NM至1800NM),无燃怠速点(NCI)在其被动运行区(POM)内的优选串混低态工况线上(L sl,为一条垂直工况线,定转速600RPM,可变转矩范围:-500NM至-150NM);ECU102控制发动机101在最佳工况点(BOP)或无燃怠速点(NCI)二选一稳定运行或二者之间动态平顺切换,将串混模式下的发动机101的传统模拟瞬态功率时变函数转换成新颖的双极性非对称等幅(即矩形)脉宽调制(PWM)脉冲序列函数;优选PWM脉冲序列的周期T s取值范围30秒至90秒,占空比k s(即同周期内BOP运行占时与脉冲周期T s的比值)在0.0和1.0之间任意可调。显然通过动态调节占空比k s就能够实现串混模式下发动机101的平均功率函数值(见方程(MAW))在-16kW至176kW之间任意连续可调。如果将发电机(MG1)110的机电转 换效率近似等于1.0(即100%),则串混发电机组的电功率函数与机械功率函数在数值上相同,根据串混功率方程(2-4A),可以由电功率分流器(ePSD)123和功率型电池包130a或130b协同生成等于ACE重卡010路载瞬态功率函数与发动机101瞬态功率PWM脉冲序列函数差值的电池包130a&b同步(Synchronized)瞬态功率脉幅调制(PAM)脉冲序列,实时地满足车辆动力学方程(1-1);为保证串混iSS控制技术不负面影响整车震动噪声(NVH)特性,PAM的周期应比PWM的周期小一个数量级,优选电池包PAM脉冲序列的周期T pk1为发动机PWM脉冲序列周期T s的10%以下;PAM脉冲的幅度,既可采用自然抽样(即曲顶抽样),又可采用等效平顶抽样。根据方程(MAW),滚动时间平均运算的窗口周期T w应明显大于PWM的周期T s,可优选T w>2T s
上述脉控发动机双点工况实施例是最简洁的串混iSS控制实施例,此时可动态控制发动机101平均功率函数值的唯一可调参数就是占空比k s;还可以优选更高级灵活的双线工况实施例。例如,在主动运行模式(AOM)下,发动机101可在万有特性曲线第一象限高效区内串混高态工况线L sh(等转速1200RPM)上的任意工况点运行,转矩可调范围在1000NM至1900NM,所对应的高态功率值范围在126kW至239kW,转矩负荷率范围在50%至95%;在被动运行模式(POM)下,发动机101可在第四象限串混低态工况线L sl(等转速600RPM)上的任意工况点运行,转矩可调范围在-500NM至-150NM,所对应的低态功率值范围在-31kW至-9kW,显然此时发动机101被发电机110拖动,零油耗零排放运行;PDC发动机低态工况实际转矩值完全取决于发动机的全部辅助子系统(油泵、水泵、气泵、压缩机等)的功率需求,绝大多数时间低态功率绝对值小于10kW。ECU 102控制发动机101在高态工况线L sh或低态工况线L sl二选一稳定运行或二者之间动态平顺切换,将串混模式下的发动机101的传统模拟瞬态功率时变函数转换成新颖的双极性非对称不等幅(即非矩形)脉宽调制(PWM)脉冲序列函数;此时可动态控制发动机101平均功率函数值的可调参数除占空比k s外,还增加了功率幅度;实质上双线工况iSS控制实施例所生成的发动机101瞬态功率脉冲序列函数等效于kWM序列与PAM序列的叠加;发动机101的平均功率函数在-31kW至+239kW之间任意可调。需强调,为保证ACE重卡的NVH特性优于柴油重卡,最好对发动机的瞬态功率函数进行脉宽调制控制(PWM),不宜采用脉幅调制控制(PAM);但电池包充放电时无任何机械运动,对电池包130a&b的瞬态功率函数则既可以进行PWM控制,又可以采用PAM控制。显然,ACE重卡010在串混架构运行时,车辆的最大连续转矩和功率受限于驱动电机140,分别为1370NM和200kW,10秒级峰值转矩或功率的过载率可超过50%,虽能满足中低速城市工况的车辆路载功率要求,但高速工况下ACE重卡串混模式的动力性明显不足,应切换到并混模式。
其次讨论若干并混智能功率切换控制(iPS)实施例。ACE重卡主要配置参数同上例,并混架构下离合器111闭合,变速箱150的换挡控制策略,在ACE重卡高速工况下,总能将发动机101的转速控制在高效区内(例如1000RPM~1600RPM);参考图4,高效区对应的发动机转速范围在1100RPM至1500RPM之间(称“高效转速区”),该发动机的基速(Base Speed;既峰值转矩对应转速的中心点)为1200RPM。ACE重卡010在非拥堵的高速公路开启智能巡航控制(iCC)功能时,车速基本能维持在以额定巡航速度(例如60英里/小时)为中心上下10%范围内波动,即车速在一个窄速度带内缓慢连续波动。在并混iPS控制模式下,发动机101的转速为因变量,在基速(1200转/分)左右10%的窄转速带内(1080转/分至1320转/分))缓慢连续波动;而发动机的转矩为自变量,可以在峰值转矩以下快速连续变化。参见图4,发动 机101可工作在万有特性曲线的第一象限(First Quadrant;正转速正转矩)内主动运行区(AOM)或第四象限(Fourth Quadrant)内被动运行区(POM)。在并混架构下,对应每个发动机瞬态转速因变量,从发动机101的原始油耗表(见图4))或更新油耗表中,选取发动机高效区内比油耗极小值且转矩极大值的不同高态工况点连成线,构成高态高工况线L phh,还可选取发动机高效区内比油耗极小值且转矩极小值的不同高态工况点连成线,构成高态低工况线L phl;显然,高态工况线L phh和L phl为发动机101高效区中的两条不规则且不相交的曲线;L phh工况线上所对应的发动机瞬态功率在230kW至251kW之间,转矩负荷率在80%至100%;L phl工况线上所对应的发动机瞬态功率在167kW至173kW之间,转矩负荷率在53%至75%。在被动运行模式下(POM),发动机101无燃被拖,零油耗零排放运行时,阻力转矩为负值,其绝对值在300NM以下,所有高效转速区内(1100RPM至1500RPM)各个低态工况点连线构成低态工况线L pl,为一条在发动机万有特性曲线第四象限(正转速负转矩)的准等转矩工况线,如前所述,低态工况点功率的绝对值小于35kW,且大概率小于10kW。假定DPC发动机101的低态功耗绝对值为12kW,ACE重卡010高速工况下平均路载功率150kW,每分钟发动机低态运行被拖仅耗电0.2kWh,而此时驱动车辆每分钟耗电高达2.5kWh;换句话讲,DPC发动机低态工况的被拖电耗仅为驱动ACE重卡电耗的零头。
在并混iPS模式下,ECU 102控制发动机101在高态工况线(L phh或L phl)或低态工况线(L pl)二选一稳定运行或二者之间动态平顺切换,实现在ACE重卡并混架构下,对发动机101瞬态功率函数进行脉宽调制(PWM)控制,生成双极性非对称非等幅(即非矩形)脉宽调制(PWM)脉冲序列;在每个PWM周期内,高态运行部分只在L phh或L phl二选一稳定运行,同一PWM周期内,不在两者之间动态切换;但相邻PWM周期,高态运行部分可在不同的高态工况线L phh或L phl稳定运行,实质上增加了一个控制自由度;该PWM脉冲序列周期T p优选取值范围30秒至90秒,占空比k p(即同周期高态运行占时与脉冲周期T p的比值)在0和1之间连续可调;根据滚动时间平均功率函数方程(MAW),通过动态调整PWM占空比k p,发动机101的平均功率函数值在-35kW至251kW之间连续可调。根据并混功率方程(3-3A),可以由电功率分流器(ePSD)123和功率型电池包130a或130b协同生成等于ACE重卡010路载瞬态功率函数与发动机101瞬态功率PWM脉冲序列函数差值的电池包130a&b同步(Synchronized)瞬态功率脉冲调制序列(PAM或PWM),实时地满足车辆动力学方程(1-1);为保证并混iPS控制技术不降低整车震动噪声(NVH)特性,电池包PAM的周期应T pk1应比发动机PWM的周期T p小一个数量级,而电池包PWM的周期T pk2可与发动机PWM的周期T p相同;优选电池包PAM脉冲序列的周期T pk1为发动机PWM脉冲序列周期T p的10%以下;根据并混功率方程(3-3A),电池包PAM脉冲的幅度,既可采用自然抽样(即曲顶抽样),又可采用等效平顶抽样;而电池包PWM脉冲的幅度则必然为非等幅。功率函数滚动时间平均运算(见方程MAW)的窗口周期应明显大于PWM的周期,可优选T w>3T p。此时可动态控制发动机101平均功率函数值的可调参数除占空比k p外,还增加了功率幅度调节的自由度(L phh或L phl);实质上并混三线工况(L phh,L phl,L pl)iPS控制实施例所生成的发动机101瞬态功率脉冲序列函数等效于PWM序列与PAM序列的叠加,而双线工况(L phh/L pl或L phl/L pl)iPS控制则为前者的特例。显然,ACE重卡010在并混架构运行时,发动机101、发电机110、驱动电机140三者可共同发力驱动车辆;车辆的最大连续转矩和功率理论值可高达4570NM和675kW,但受限于现代主流重卡变速箱150输入轴的最大转矩3000NM,实际最大连续转矩或功率值可高达3000NM或440kW,还能提供 暂时(10秒级)过载率50%的峰值动力,并混ACE重卡的动力性明显超过当今顶配16升柴油重卡。在并混iPS模式下,ACE重卡010双电机110&140的合计峰值转矩大于3500NM,在各个PWM周期内,无论脉控发动机101运行在高态或低态,变速箱150输入轴处动力总成合计有效最大转矩都可高达3000NM;换句话讲,脉控发动机101在高态与低态之间切换,对ACE重卡的短期(分钟级)动力性毫无影响,ACE重卡始终能保持优于现有技术16升柴油重卡的动力性。
需要强调,当脉控发动机101(串混iSS或并混iPS)在主动运行时(AOM),ECU 102可通过快速精准地控制喷油嘴的油量及时空分布来直接动态地控制发动机的转矩,并根据发动机的动态功率要求(即实际负载),达到间接控制发动机转速的效果;当发动机在被动运行时(POM),发动机101变成了发电机(MG1)110的机械负载,此时ECU 102并不主动控制发动机101,而由发电机110在耗电的驱动模式下拖动发动机101低态运行;MCU1 121可直接快速精准地控制发电机110的转速或转矩,满足发动机POM的动态功率要求,从而达到间接控制脉控发动机POM时转矩或转速的效果。换句话讲,发动机电控,转矩控制为因,转速控制为果,转速值取决于发动机的动态负载功率;交流电机矢量控制(Vector Control),既可以转矩控制为因,转速控制为果,又可以转速控制为因,转矩控制为果。显然交流电机矢量控制在电机转速和转矩的控制精度或响应速度上都比发动机电控要高一个数量级;而ACE重卡的路载瞬态功率函数,除紧急刹车等特例外,在秒级时间颗粒度内为模拟缓变的时空函数;换句话讲,无论脉控发动机101瞬态功率函数(即PWM脉冲序列)如何变化,VCU 201和ePSD 123等都能轻松地动态调整电池包130a&b的瞬态功率函数,实时地满足串混功率方程(2-4A)或并混功率方程(3-3A)。本发明通过串混iSS控制或并混iPS控制可将混联动力总成中的传统模拟电控(AEC)发动机转换成新颖的数字脉控(DPC)发动机,在确保ACE重卡在任何循环工况下的动力性都超过当前全球顶级配置量产商用的柴油重卡的前提条件下,将发动机101复杂的面工况大幅简化为高效区内的若干指定高态点工况或线工况,同时新增添若干零油耗零排放的低态点工况或线工况;为充分利用现有已量产的汽车技术和产品,以高性价比有效地解决现代柴油重卡如何在2027年同时满足美国联邦温室气体排放法规(GHG-II;即RDE油耗达标或CO2排放达标)和美国加州柴油重卡超低NOx排放组合法规(即RDE污染物排放达标)这一行业技术难题提供了新颖可量产的技术路径和技术方案,能够同时优化ACE重卡实际行驶环境下(RDE)的节能减排,在2025年前量产商用能满足上述美国联邦GHG-II和加州新法规对CO2和NOx排放2027年限值的ACE重卡。
电池包130a&b的瞬态电力功率函数的控制速度和精度比发动机101的瞬态机械功率函数的控制速度和精度要高一个数量级,而且电池包百千瓦级功率变化没有任何机械振动噪声,仅有电磁噪声;路载功率为秒级模拟缓变函数,脉控发动机功率为双极性非等幅PWM脉冲序列函数,通过斩波器132a&b的控制软件,电池包130a&b能实时精准满足串混功率方程(2-4A)或并混功率方程(3-3A),电池包瞬态功率脉冲序列函数为非等幅PAM脉冲序列或双极性非等幅PWM脉冲序列。
图6例举了一台脉控发动机101的瞬态功率PWM脉冲序列函数。显然脉控发动机101在串混iSS控制下或并混iPS控制下可以产生相同的双极性非等幅PWM脉冲序列瞬态功率函数,单看发动机的PWM功率函数,无法反推判断发动机运行在串混iSS模式还是并混iPS模式。图6中周期1内,占空比k 1=t h1/T;周期2内,占空比k 2=t h2/T;周期3内,占空比k 2=t h3/T=0。 数字脉控发动机101的瞬态功率函数与传统模拟电控发动机101的瞬态功率函数之间从数学或物理角度看都有本质性差别。ACE重卡010在任何循环工况下,脉控发动机工况与ACE重卡整车工况几乎完全解耦,几乎完全运行在(即大于99.0%的时间概率)燃烧高效区高态工况点(高效转速范围内;转矩或功率负荷率均大于40%)或零油耗零排放低态工况点,几乎完全避免了(即小于1.0%的时间概率)对整车节能减排充满挑战的众多低转速低负荷工况点(转速小于1200RPM;转矩或功率负荷率均小于30%)或怠速点(转速小于850RPM;转矩或功率负荷率均小于2%);ACE重卡在并混架构下,现有技术模拟电控(AEC)发动机工况与ACE重卡整车工况属于强耦合,除AEC发动机大部分时间运行在燃烧高效区(高效转速范围内,转矩或功率负荷率均大于40%),仍无法避免对整车节能减排充满挑战的低转速低负荷工况点(转速小于1200RPM;转矩或功率负荷率均小于30%)或怠速点(转速小于850RPM;转矩或功率负荷率均小于10%),非燃烧高效区工况点运行时间占比可高于5%,仍属于复杂面工况;对比现有技术的模拟电控(AEC)发动机,本发明的数字脉控(DPC)发动机不但大幅简化了ACE重卡RDE油耗最小化问题,而且消除了油耗优化(即CO2排放优化)与NOx排放优化这两个技术问题之间的交叉耦合,能够分别独立地调整脉控发动机的油耗和排放,能实现脉控发动机的实际(RDE)油耗和排放同时最小化。
虽然从理论上讲,脉控发动机101瞬态功率PWM脉冲序列函数的占空比(k s或k p)在0到1之间连续可调,但实际上,从发动机101或ACE重卡010的振动噪声性能(NVH)优化或RDE排放优化角度考量(主要指柴油机后处理系统的动态温度控制),则应尽量避免发动机101在高态工况与低态工况之间切换频次过高(例如每分钟超过2次)、以及高态工况连续运行时间过短(例如小于15秒)等情况发生,需要对占空比的允许动态取值范围做进一步的限制;在每个PWM脉冲周期内,优选发动机101的高态运行时间为零(即占空比为零)或者大于20秒;如果PWM脉冲周期选定为30秒时,则优选占空比的取值范围则为0或大于67%;如果脉冲周期选定为60秒,则优选占空比等于0或大于33%;显然,在PWM一个周期内,最多允许一次从低态切换到高态或从高态切换到低态,最少允许零次切换(占空比为零或一)。为保证ACE重卡的NVH性能优于传统内燃机重卡,可优选PWM脉冲序列从高态工况切换到低态工况的过渡时间为1秒钟,从低态工况切换到高态工况的过渡时间为2秒钟(即“慢升快降”的切换策略);如果此时脉控发动机101的转速为1200RPM,则意味着发动机的每个气缸1秒钟能有10个燃烧做功冲程(曲轴旋转2圈为一个完整的发动机周期);脉控发动机能以PWM高低态功率差值10%的功率步伐(约25kW)阶梯式下调,或以PWM高低态功率差值5%的功率步伐(约12.5kW)阶梯式上调,完成高态工况与低态工况之间的平顺切换;如果高低态之间的过渡时间太短(例如0.1秒),意味着在脉控发动机一个四冲程完整周期内一步完成幅度超过250千瓦的功率阶跃,将明显恶化(Degrade)整车的NVH性能。显然,脉控发动机101高态工况与低态工况切换过渡时间和功率调整颗粒度的设定或调整,主要涉及整车NVH性能优化,与车辆的动力性、油耗、排放三大指标的同时优化无直接关联;脉控发动机101PWM脉冲序列的周期、高低态过渡时间、功率调整颗粒度等都由软件定义且动态可调,能有效地避免ACE重卡010的脉控发动机101运行时(特别是高低态双向切换时)生产额外的机械震动及噪声,特别是系统机械共振,动态优化脉控发动机和ACE重卡的实际NVH性能。而对电池包130a&b而言,虽然电池包充放电不涉及任何机械运动且过渡时间为十毫秒级,但与发动机高低态切换相同步的电池包充放电切换过渡时间控制在秒级而非十毫秒级,还有利于减少生成电磁干扰(EMI)。
需强调,目前全球已量产商用的重卡发动机,全部(即100%)都是模拟电控(AEC)发动机;本发明的数字脉控(DPC)发动机与现有技术的模拟电控(AEC)发动机在硬件和本征标定软件固件(Intrinsic Calibration Firmware)上无本质性差异,甚至可以完全相同(即发动机万有特性曲线相同);二者间的本质性差异集中在通过动力总成系统或整车层面的功率管理策略(即VCU的软件算法)方面,即对发动机101瞬态功率时变函数的具体控制措施不同、发动机的运行工况点分布不同(AEC发动机复杂面工况;DPC发动机简单线工况)、所形成的发动机瞬态功率函数时域分布不同等;现有技术模拟电控(AEC)发动机的瞬态功率函数为时域秒级连续缓变函数,函数值为非负数(排除发动机制动这类特殊工况),对应模拟电控发动机运行在第一象限的复杂面工况;而本发明的数字脉控(DPC)发动机的瞬态功率函数为时域双极性非等幅脉冲序列函数,函数值既可为正数也可为负数,在每一个脉冲周期内的大部分时间为连续缓变函数,但可能出现一次或两次高态(正数)与低态(负数)之间的百千瓦级双向跃变,对应数字脉控发动机运行在第一象限或第四象限的简单线工况。换句话讲,任何已量产商用的模拟电控(AEC)发动机,都可以在保持硬件不变的前提下,仅通过混动车辆层面VCU 201的控制软件(串混iSS或并混iPS)而转换成数字脉控(DPC)发动机;显然传统内燃机车辆无法支持数字脉控(DPC)发动机应用,配置至少一个大型电机的油电混合动力总成(串混、并混、混联)的车辆是实现数字脉控发动机的必备硬件基础。现有串混或并混车辆技术中,模拟电控(AEC)发动机虽然也能实现发动机工况与整车工况之间多对多双向映射,但发动机工况与整车工况的相互影响不能忽略,二者无法真正解耦,因此混动车辆的模拟电控发动机仍然工作在万有特性曲线第一象限的复杂面工况,只是在燃烧高效区的工况点分布数量(或运行时间概率)要高于传统车辆的模拟电控发动机。参见图-3,本发明通过串混iSS或并混iPS控制策略,将ACE重卡010的发动机101从一台传统的模拟电控(AEC)发动机转换成一台新颖的数字脉控(DPC)发动机,从工程意义上实现无论在串混或并混架构下,发动机101的工况都与整车010的工况完全解耦,并且动力总成系统也实现硬件通用化和抽象化及软硬解耦,进而实现软件定义混联动力总成;混联动力总成的硬件功能和性能有冗余,硬件(发动机101、双电机110&140等)可通用化或抽象化(Generic or Abstract HW);在实际行驶环境下(RDE)该混联动力总成的动力性、油耗、排放这三大关键指标完全由VCU 201的软件动态定义和控制,与ACE重卡的具体硬件配置(特别是发动机101和双电机110&140的性能和价格)基本无关,可实现“千车千面”,保证ACE重卡(原装新车或改装二手车)在任何循环工况下,比同车龄顶级配置的16升柴油重卡在动力性、油耗、排放三方面都更优异。
每款量产商用的现代发动机(泛指满足美国EPA-2010、欧-VI、国-6排放法规的发动机)均指发动机101的硬件(包括发动机本体和后处理系统等)和ECU 102的硬件及标定软件(一种固件,Firmware)的软硬件集成,对应唯一的发动机万有特性曲线;显然同型号发动机的硬件可以配置同不的标定软件而产生不同款式(或型号)的发动机;量产现代发动机必须在其70万公里(约43.5万英里)有效生命周期内(Useful Life)长期稳定地满足排放法规;一但某款发动机获得政府排放认证并定型量产后,每台发动机101(包括ECU 102)的硬件或标定软件都不允许擅自更改,即便发动机硬件不变,仅更改其标定软件也必须重新通过政府的排放认证,否则属于违法。现有车辆技术(内燃机车辆或混动车辆)以量产模拟电控发动机唯一不变的万有特性曲线(即复杂的面工况特性)来适应车辆千变万化的实际循环工况,难以通过整车层面敏捷定制动力总成控制策略来实现千车千面,同时优化车辆的动力性、油耗、排放这三大指标。
全球乘用车(总重小于3.5吨的道路车辆)的政府强制性排放认证普遍采用“车机合一”的方式(即发动机加车辆底盘共同认证),而大型商用车(总重大于6吨的道路或非道路车辆)的排放认证普遍采用“车机分离”的方式(只做发动机的台架排放认证,不包括车辆底盘);换句话讲,同一款排放认证后的发动机可以适配多种不同类型的大型商用车,而每款整车不需要重新做排放认证。参见图6,每款经排放认证量产的发动机都有特定的硬件和固件(Firmware;即标定软件),对应固定的发动机万有特性曲线;显然更改发动机硬件会改变其万有特性曲线,仅更改发动机标定软件同样能改变其万有特性曲线。从VCU 201对动力总成控制的视角,发动机101和双电机110&140均可抽象为提供整车驱动转矩的执行器;本发明通过串混iSS或并混iPS控制方法,将模拟电控发动机转换成数字脉控发动机,将发动机101的实际运行工况从前者(模拟电控)的复杂面工况大幅简化成后者(数字脉控)广义高效区内的至少两条简洁线工况(高态或低态),其作用类比计算机系统中的指挥各个硬件子系统的驱动程序(Driver);而本发明的智能巡航控制方法iCC,由VCU 201根据ACE重卡010的配置参数和动态运行数据(包括车速,定位,测姿等)、车载MU 240内存的百英里级电子地平线先验道路3D数据,结合车辆动力学方程(1-1),准实时(亚秒级时延)地动态测算出本ACE重卡未来小时级路载功率时变函数分布(相对误差5%),再根据串混功率方程(2-4)或并混功率方程(3-3),以发动机101与电池包130a&b之间的瞬态功率分配来动态调节发动机101的运行工况,以发动机与电池包之间的平均功率(见方程MAW)来动态调节电池包的平均荷电状态函数(SoC),最终将高速公路设计运行域(ODD)内ACE重卡010运行的节能减排优化问题转换成计算机下围棋这一等价AI问题;VCU 201的节能减排算法能在保持ACE重卡动力性由于所有量产柴油重卡的前提下,同时实现车辆实际(RDE)油耗(CO2)和污染物排放(NOx,PM)最小化,其作用类比计算机系统中的应用程序(App)。
VCU 201的主芯片优选32位车规多内核嵌入式处理器,主频高于100MHz,安全等级至少ASIL-C,兆字节级闪存,支持多种或多路数据总线(至少两路CAN);也可选择成熟低成本的16位车规处理器,但此时受限于芯片性能上限,系统可拓展性差,性价比次优;还可选未来量产的64位车规处理器,此时硬件明显超配,未来可拓展性强,但芯片较贵,性价比次优。VCU 201运行其内存的iSS、iPS、iCC等控制程序,通过CAN总线指挥发动机101、电机110&140、电池包130a&b、变速箱150、离合器111等动态协同,实现串混iSS、并混iPS、智能巡航iCC等功能。
上述脉控发动机101(串混iSS或并混iPS)若干实施例,描述了如何将ACE重卡整车工况与发动机工况有效解耦,从而实现软件定义混联动力总成;接下来将进一步描述如何利用车载3D电子地图(MU)240、车载卫星导航仪(GNSS)220、以及云计算平台001(见图5)上(例如,云端服务器)存储的ACE重卡集群的运行结构化大数据(简称“数据集”,Data Set),结合节油机器学习(ML)算法和云平台算力,培训云端和车端的节油AI大脑,实施ACE重卡高速公路上同车道内的的智能巡航控制技术(iCC),实现ACE重卡节能减排最优化的有益效果。
在图1的某些实施例中,该ACE重卡上配置地图仪(MU)240和卫星导航仪(GNSS)220。地图仪240中预先存储有的覆盖全国高速公路和其它主要封闭式道路的先验三维电子地图(或称3D地图);该3D地图信息包括但不限于:描述自我车辆绝对位置的经度、纬度、以及特别是显示道路纵向坡度(诸如图5中所示的上坡角度α u和下坡角度α d)的信息。例如,如图1所示的车载地图仪240内存中可以包含道路米级或十米级绝对地理定位精度(经纬度)和道路纵 坡0.1度级绝对精度的3D地图;包含上述道路三维信息的各种高级驾驶辅助系统(ADAS)地图,在全球各个主要汽车市场,均已实现批量商用;能够支持L3或L4自动驾驶系统的高清地图(HD Map),也已进入初步商用阶段;本发明的描述中,ADAS地图应广义理解为可以包含HD地图。
卫星导航仪(GNSS)220用于实时地测算ACE重卡010当前绝对地球地理位置的经度、纬度、海拔高度、纵向道路坡度、纵向线速度、纵向线加速度、系统绝对时间等车辆定位和运行工况数据。在某些实施例中,可采用双天线输入的载波相位动态实时差分(RTK)技术的卫星导航仪(简称“RTK接收机”)220,能以每秒五次以上的测量速度(即测量刷新频率高于5赫兹)对ACE重卡进行实时精准定位和测姿。国际卫星导航系统(GNSS)目前有四大独立体系,美国的GPS、俄国的Glonass、欧盟的Galileo、和中国的北斗BD。目前北斗三号可对以中国为核心的亚太地区和“一带一路“沿线各国提供最新卫星导航服务,2020年刚完成全球组网覆盖;同时中国的北斗系统已与其它三家卫星导航系统签署兼容协议。优选地,采用含最新北斗三号RTK芯片的卫星导航仪(GNSS)220,匹配安装在重卡驾驶室顶部间隔至少一米的两个卫星天线,实时动态测算车辆的授时、速度、位置(经/纬度)、和纵向姿态(即道路纵坡角度)。该RTK芯片可根据收到GNSS四大体系中任意组合的四颗导航卫星的相互独立的信号,完成卫星导航定位及测姿的测算。授时精度50纳秒,测速精度0.2米/秒,水平面经纬度定位精度小于2.5米,公路纵坡精度小于0.15度,测算频率10赫兹;该RTK导航仪难以实时准确测算车辆轮下路面的垂直海拔高度,同时世界上许多国家,对精准海拔高度信息的测绘和发布严格管控;所幸本发明对车辆路面绝对海拔高度的测量精准度要求不高,10米级精度即可;但对道路纵坡的测量精度要求很高,本车正前方道路纵坡测量精度应优于0.2度。在某些实施例中,也可以采用单天线卫星导航接受机加惯性导航单元(IMU)来完成车辆三维定位和导航;基于多个微机电系统(MEMS)加速度传感器和陀螺仪(Gyro)加专用处理芯片的车规量产IMU能以高于10Hz的测量频率和优于0.2度的测量精度实时地测量ACE重卡前方道路的纵坡函数。本发明中的GNSS 220应理解为既可以是双天线RTK接收机,也可以是单天线卫星导航仪加惯导IMU。ACE重卡高速行驶时,道路纵坡函数0.1度级微小变化所引发的十千瓦级纵坡功率函数变化是ACE重卡大幅节油减排的秘密源泉,所以采用GNSS 220实时精确地测量高速公路沿途纵坡分布函数,再加上地图仪(MU)240所存储的电子地平线先验3D信息,对实现本发明至关重要;需强调,GNSS 220的道路纵坡测量精度和测量刷新速度都远明显高于现有技术中重卡自动变速箱所配置的传统纵坡传感器。
每辆ACE重卡完成一个运输事件(货运起点至终点)的实际油耗,和该重卡各重要子系统的配置参数常量(包括混联动力总成各个参数、车辆风阻系数、摩擦系数等)、车辆总质量(牵引头加载货挂车)这个离散变量、纵向车速和加速度这二个连续变量、行驶路径的经度、纬度、和纵坡分布函数这三个连续变量等多个参数或变量高度关联;而与包含所有ACE重卡在所有道路上行驶的宏观平均油耗基本无关。ACE重卡的司机,在货运出发前,输入本次货运事件的的起点和终点,然后ACE重卡就能自动化规划货运事件的行驶路径,并请求云端001人工智能(AI)节油大脑,参考云端存储的所有历史上在该路段运行的ACE重卡运行的节油数据集,实时地计算并下载针对该车辆和特定路径所及时定制的默认(Default)最佳节油控制策略,再结合车端AI推理芯片(包含在VCU 201中)进行本地计算,实时地修改并优化车辆节油策略,对ACE重卡实施智能巡航控制(iCC),实现包含预测性功率控制和自适应巡航控制功能的高速公路同 车道L1级自动驾驶功能;每辆ACE重卡,无论其司机是否有该特定货运线路的驾驶经验,都可以依靠所有ACE重卡的集体经验和智慧,每次都能一致性地实现行业最佳油耗,比现代内燃机重卡的实际油耗可降低30%,而且节能减排效果与司机的水平和发动机101的性能解耦,并一致性地优于人类司机。
ACE重卡010能够自动地采集、标注、在车端存储、向云端上传整个货运事件的节油数据集;所谓“节油数据集”包括ACE整车010、发动机101、变速箱150、发电机110、驱动电机140或170、电池包130a或130b、离合器111、卫星导航仪(GNSS)220、电功率分流器(ePSD)123等关键子系统的配置参数和在整个货运事件中的全面动态运行数据,是关于ACE重卡能量管理的专用结构化大数据,是训练和持续自主进化ACE重卡的机器学习(ML)算法的“数据石油”;该结构化大数据简称“节油数据集”。
ACE重卡010节油数据集的核心内容之一是其电功率分流器(ePSD 123)的运行大数据,可包括如下内容:采样并记录的频率至少5.0Hz,根据卫星导航仪220的精准授时(10纳秒级绝对精度)来随时校准并同步所有其它车载子系统微处理器的时钟,做为整车系统的唯一系统时钟基准;在每个采样时刻点t i,ACE重卡的各个微处理器指挥相关传感器本地采集并存储至少下列变量值:ACE重卡010的当前的经度L lg(t i)、纬度L lat(t i)、纵坡G d(t i)、纵向车速v(t i)、纵向车加速度a(t i)、发电机110的直流电流I g(t i)、驱动电机140&170的合计直流电流I m(t i)、电池包130a&b的合计直流电流I bat(t i)、直流母线汇流点X处的直流电压V bus(t i)、电池包130a&b的各自荷电状态(SoC)C bat(t i)、刹车电阻131的直流电流I bk(t i)、车外环境温度T(t i)、环境风速及风向v xyz(t i);还可以本地采样并存储采样时点(t i)各个电机(发电机110、主驱动电机140、副驱动电机170)、发动机101、自动变速箱150的主要时间变量类动态运行数据,例如转速、转矩、挡位、喷油率(克/秒)、比油耗(克/千瓦时)等;还可以采集并存储脉控发动机101(串混iSS或并混iPS)瞬态机械功率PWM脉冲序列函数采样时点t i的瞬态幅度值、脉冲周期、占空比等数据,以及电池包130a&b(串混iSS或并混iPS)瞬态电功率PAM或PWM脉冲序列函数采样时点t i的瞬态幅度值、脉冲周期、占空比等数据。需要强调,上述ACE重卡的节油数据集,必须使用本公开图1所示的混联ACE重卡系统装置和脉控发动机技术方案(串混iSS或并混iPS),一次性随车集中动态采集并存储;无法分散(泛指分时、分地、分子系统或分车)采集或模拟后再同步拼接后生成。
初期训练和后续持续改善云端或车端节油人工智能(AI)模型时,可采用多种开源或专有的机器学习(ML)算法和随需随购的网联云端计算机算力,结合上述节油数据集来完成节油算法深度神经网(DNN)的建模、训练、和优化。ACE重卡运行的节油数据集为非公开及专有的数据资产,积累越多则价值越大,类比数据石油;可以为采用本发明ACE重卡的干线物流企业继续降本增效,不断提高并长期保持竞争优势。在某些实施例中,ACE重卡010的车辆控制器(VCU)201可以被配置为:基于预先存储在地图仪240中先验3D地图所提供的货运事件沿途电子地平线(米级间隔密度)的经纬度(等效米级或十米级地球地理绝对定位精度)、纵向道路坡度(简称“纵坡”,0.1度精度)等道路信息,和/或基于由卫星导航仪(GNSS)220所测算的所述车辆所处位置处的经度、纬度、海拔高度、纵坡等动态数据,或基于ACE重卡010的配置参数和关键子系统动态工况数据,根据车辆动力学方程(1-1)来实时地(亚秒级)预测电子地平线内车辆路载功率函数时间序列值(千瓦级精度)和节油AI算法,来对下列至少一个子系统,包括ePSD 123、发动机101、发电机110、驱动电机140或170、离合器111、变速箱150、 和电池包130a或130b以“独立”方式进行预测性动态功率控制,在保障车辆行驶动力性和安全性的前提下,追求ACE重卡实际油耗和/或污染物排放最小化。
可选地或附加地,VCU 201可对实测纵坡时变函数实施秒级时间平均运算或其它滤波降噪措施,提高纵坡函数测量的精度和鲁棒性;当预存在地图仪240内的3D地图中的先验道路信息与由卫星导航仪(GNSS)220实测的道路信息之间的偏差的绝对值超出允许公差范围时,尤其是作为节油ML算法的关键信息之一,车辆当前的纵坡数据出现偏差的绝对值超出允许公差范围的时候,则VCU 201可先以GNSS 220实测的纵坡数据为准,来控制ePSD 123三端口之间的瞬态电力功率分布,实时地满足车辆动力学方程(1-1)。如果此时车辆的速度或加速度明显偏离控制预期值,则说明实际情况是GNSS 220的实测数据出错,而3D地图的先验数据正确,VCU 201则可根据ACE重卡ePSD 123三端口的瞬态功率分布参数、车辆010纵向线速度和加速度,结合车辆动力学方程,进行车辆在环(VIL)模拟计算后做出判断,改选以车载三维电子地图为准,实现ACE重卡定位测姿自动检错或纠错功能。
GNSS采用双天线RTK接收机方案系统较复杂,虽然性能优越,但成本较高。当然,为降低系统成本,也可选用只有单天线的普通卫星导航仪220,同时选配包含单轴或多轴动态倾角传感器(测量精度优于0.15度;量程大于正负15度;刷新频率高于5Hz)的惯性导航仪(IMU)来实时测量行驶车辆的绝对定位(经度/纬度)和道路纵坡。动态倾角传感器有多种实现方法;其中一种高性价比的实施方案为车规微机电系统(MEMS)的加速度传感器(Accelerometer)、陀螺仪(Gyroscope)再加专用芯片集成。在下面的若干实施例中,将以示例性方式阐释VCU 201是如何利用车辆动态三维定位测姿导航信息(尤其是道路纵坡分布函数)来实现自动化预测性节油控制。再次指出,下面具体示例并不应被理解为限制本公开的保护范围,而完全是出于为了本领域技术人员更好地理解本发明的目的。
在一些实施例中,当车辆前方百公里范围内的高速公路仅有短坡,指坡度小于预定义第二坡度阈值(例如,小于3.0°)并且坡度路段的长度小于预定义的第二长度阈值(例如,小于10公里、或甚至小于2公里)的路段,VCU 201可通过串混智能启停控制方式(iSS)或并混智能功率切换控制方式(iPS)来调节发动机101的瞬态功率kWM函数和/或平均功率函数,实现电池包预测性荷电状态控制功能(PSC-Predicative SoC Control),使电池包(130a&b)在荷电消耗(CD)、荷电维持(CS)、或荷电增加(CI)三种工作模式之一稳定运行或之间动态切换;这尤其适于前方路段具有“短坡”(也可以称为“小坡”)的情景;因为坡度长度较短(例如小于2公里),所以在电池包130a&b将其存储的电能释放完之前,车辆就已经能爬上坡顶,在随后的下坡阶段,很快又能通过驱动电机140百千瓦级再生制动功率给电池包130a&b再次充电,回收千瓦时级能量,随充随放;通过这种方式,能增加容量有限的(十千瓦时级)功率型电池包130a&b的电能吞吐周转率,特别是寻求准零成本的再生荷电周转率极大值和高成本发动机荷电周转率极小值,比使用百千瓦时级大容量的能量型电池包(体积/重量大,价格高)的方案性价比更高。在比较平坦地区或丘陵地区的高速公路,没有长坡或高山(指纵坡绝对值大于2.0度;坡长超过10公里的情景),还可以采用智能模式转换控制方式(iMS),动态切换串混iSS与并混iPS,由节油机器学习算法来自动探索并发现针对该指定路径的最佳节油控制策略。
返回参考图1,出于行驶安全性的考虑,在一些实施例中,ACE重卡还可以包括安装在重卡前端的汽车级毫米波雷达模块(mWR)230,用于实时地测量重卡与其正前方同车道领航车辆(Leading Vehicle)之间的绝对距离和两车之间的相对速度;所述长距离毫米波雷达(LRR) 的前方最大探测距离超过250米,水平视角(FOV)范围:+/-10度;毫米波雷达230还可以包括车规级短距离大视角雷达(SRR),最大探测距离70米,视角范围+/-65度。还可采用车规级前视单目或双目摄像头加处理芯片,最大探测距离超过250米,与前视毫米波雷达(LRR&SRR)融合,增强车辆前端测速和测距的性能和系统鲁棒性;如需要保证车辆前视速度和距离传感器系统的冗余性和鲁棒性,还可加装一个小水平视角(FOV+/-10度)前视16线以上的低成本激光雷达(LiDAR),最远探测距离超过200米。本公开图1中的毫米波雷达mWR 230,应理解为上述三种测量、跟踪、或识别车辆周围,特别是前方物体或事件相对速度和绝对距离的多品种多个传感器(毫米波雷达、激光雷达、摄像头)的任意组合。
在一些实施例中,重卡还包括车载无线通信网关(T-Box)210,通过三代/四代/五代(3G/4G/5G)蜂窝移动通信网002(参见图5),让重卡010与云计算平台001广域无线或有线联网,还能支持C-V2X(车-路、车-车、车-网、车-人等)实时通讯。
VCU 201可以通过车载数据总线(例如CAN总线)与包括卫星接收机220、毫米波雷达230在内的众多车载子系统单向或双向实时通讯,实时地操控包括发动机101及其控制模块(ECU)102、发电机110、离合器111、电功率分流器ePSD 123(内含MCU1 121、MCU2 122a、MCU3 122b,压控开关(VCS)133,斩波器132a&b)、电池包130a&b、驱动电机140和170、自动变速箱150及变速箱控制器(TCU)151、地图仪240等模块或子系统的任意组合,通过“交响乐队式”的多模块实时动态协同,实现ACE重卡高速公路同车道内行智能巡航控制功能(iCC),即SAE L1或L2级自动驾驶功能,解放司机的双脚,减轻驾驶劳动强度,同时优化车辆的动力性和节能减排,并且在70万公里后处理系统有效期内保证车辆实际尾气污染物排放稳定达标(国-6、欧-VI、EPA-2010)。VCU 201可以有效地利用百公里级电子地平线三维道路信息,通过累计顺序公里级颗粒度(Granularity)路段的ACE重卡智能巡航控制(iCC),在保证车辆动力性的前提下,实现车辆全旅程综合油耗最小化。
此外,ACE重卡在封闭的高速公路行驶时,还可由司机人工开启或关闭智能巡航控制(iCC)功能,结合已量产商用的高级辅助驾驶系统ADAS,实现SAE L1或L2级自动驾驶功能,基本解放了司机的双脚,减轻其驾驶劳动强度;iCC功能在高速公路ODD内和非极限天气下(无大雨、大雪、冰雹、洪水等)各种车辆速度都能启用。
在一些实施例中,上述智能巡航控制(iCC)可包括下列三种细分工作模式:1)普通模式N(Normal Mode);2)节油模式Eco(Eco Mode);和3)高性能模式P(Power Mode);统称iCC子模式。
举例来说,一辆乘用车总重不足3.0吨,最大驱动功率可超过125kW,而一辆满载重卡总重可高达40吨,但欧美主流重卡的最大驱动功率不足400kW,显然重卡的单位重量驱动功率(千瓦/吨)远小于乘用车;换句话讲,重卡的加速性能远低于乘用车,同时重卡的紧急刹车距离也远高于乘用车;这两种车辆的动态行驶特性差异巨大。重卡载货在非拥堵的高速公路行驶时,难以恒速上下2.0度以上的纵坡,也很难保持恒定距离跟随领航的乘用车;若保持恒速行驶,重卡每次上坡加油或下坡刹车即等效于主动加速或刹车,导致发动机的油耗和排放增加。ACE重卡在高速公路设计运行域(ODD)进入智能巡航控制(iCC)时,需要根据司机选定的车辆额定巡航速度Vc和子模式,来合理设定巡航速度带的上限和下限,并将车辆控制在巡航速度带内;上述三种iCC子模式的侧重点不同,普通模式(N)兼顾节油和货运时效;节油模式(Eco)侧重节油而放松货运时效要求(即可以开慢点但必须省油);高性能模式(P)强调货运时效而 放松节油要求(即可以费油但必须快)。优选地,可选择下列各个iCC子模式的巡航速度带的上下限值:
普通模式(N)下,巡航车速(1.0-0.05)Vc<V<(1.0+0.05)Vc且不可高于该路段的法定最高车速的103%;节油模式(Eco)下,巡航车速(1.0-0.10)Vc<V<(1.0+0.05)Vc且不可高于该路段的法定最高车速的103%;高性能模式(P)下,巡航车速(1.0-0.03)Vc<V<(1.0+0.03)Vc且不可高于该路段的法定最高车速的105%。如将重卡巡航控制的速度带设置的过窄(例如上下浮动率小于2%),不利于重卡节能减排优化。
VCU 201能根据包括ACE重卡010的配置参数(特别是整车总质量)和动态运行数据(特别是纵向车速),结合车辆当下的3D道路信息(经度、纬度、纵坡)和地图仪240存储的车辆电子地平线范围(特别是前方公里级路段)道路的纵坡分布函数和弯道曲率等三维信息,实时地(百毫秒时延)计算并调整自适应巡航的安全跟车距离时变函数L s(t)(简称安全距离函数)。与乘用车自适应巡航控制不同,本车前方公里级道路纵坡函数分布对载货高速行驶的ACE重卡的加速性(即动力性)或减速性(即刹车有效性)影响巨大;乘用车因为其单位质量的驱动功率(千瓦/吨)和刹车功率都数倍于重卡,没有必要根据本车前方道路纵坡分布函数来动态地调节其安全跟车距离L s;但动态调整L s对ACE重卡在上述iCC子模式下行驶主动安全性十分重要。安全跟车距离L s可再细分为三个特定距离:L1为预警距离(Alert Distance),L2为警告距离(Warning Distance),L3为紧急制动距离(Emergency Braking Distance),其中L1>L2>L3。VCU 201可根据车辆配置参数和行驶工况数据(例如车辆总质量,车速等)、实时天气情况(风、雨、雪、冰、温度等)、和车辆前方公里级范围内的3D道路数据(经度、纬度、纵坡等),结合车辆动力学方程(1-1),以高于10赫兹的刷新频率和米级精度动态计算上述三个跟车距离函数L1、L2、或L3。显然安全距离函数与ACE重卡的瞬态车速、前方公里级路段的纵坡函数、整车重量等可知数据高度正向关联;在无长坡或高山的平坦路段,以60英里/小时车速行驶的满载重卡,预警距离L1约250米,警告距离L2约150米,紧急制动距离L3约60米;显然,ACE重卡的总重越高或车速越高,则上述三种距离(L1、L2、L3)也越长。
高速公路工况下,ACE重卡主要采用并混iPS控制;当并混ACE重卡010的安全距离函数L s=L1而且相对速度v>0时(表示不断缩短两辆车之间的跟车距离)时,VCU 201通过车内声觉、视觉、触觉等多种物理信号中至少一个给出预警提示,同时立即将(0.1秒时延)脉控发动机101的瞬态功率PWM脉冲序列占空比下调至50%以下,降低发动机的平均功率函数值,车辆驱动以电池包为主,发动机为辅,令电池包130a&b工作在荷电保持(CS)模式或荷电消耗(CD)模式,为快速(十毫秒级时延)再生制动刹车做好准备;当安全距离函数L s=L2而且相对速度v>0时,VCU 201通过车内声觉、视觉、触觉等多种物理信号中至少两个同时给出更高强度警告提示,同时立即下调(十毫秒级时延)脉控发动机101的PWM脉冲序列占空比为零(即0%),发动机进入被动模式(POM),其平均功率函数值为负数;发动机101变成发电机110的机械负载,令电池包130a&b工作在荷电保持(CS)模式或荷电消耗(CD)模式并提供全部车辆驱动电功率;可利用电机140加电池包130a&b在十毫秒级响应时间内有百千瓦级驱动功率或再生制动功率之间快速切换的能力,尽最大努力将跟车距离L s保持在警告距离L2和紧急制动距离L3之间,并为立即实施紧急刹车做准备;当安全距离函数L s=L3而且相对速度v>0时,VCU 201通过车内声觉、视觉、触觉等多种物理信号同时给司机最高强度紧急刹车提示,维持发动机101在被动模式运行(POM;PWM占空比为零),并立即开启发动机自身制动功能;此时发动机 平均功率函数值为负数,经过秒级时延后,发动机制动功率可达百千瓦级;且立即实施(十毫秒级时延)双电机110&140合计峰值功率近五百千瓦的再生制动紧急刹车辅助,同时还可启动(亚秒级时延)一兆瓦级机械制动紧急刹车;电机再生制动和发动机制动为紧急刹车辅助功能,二者均为非摩擦性制动,合计制动功率虽不足以将高速行驶的重卡急停下来,但也不会导致驱动车轮锁死而引发车辆失控,是对ACE重卡机械刹车系统的快速冗余补充,明显改善了ACE重卡的刹车有效性;双电机(110、140或170)合计500kW的最大再生制动功率,对高速行驶的满载重卡而言,也只够满足加速度绝对值不足0.1G(G为重力加速度)的辅助性制动减速要求;遇紧急情况,必须依靠司机踩刹车板或ADAS系统线控信号来启动重卡的摩擦式机械制动系统(兆瓦级),才能实现加速度绝对值超过0.2G的紧急制动。司机刹车反应时间加上重卡机械制动(气动刹车)系统响应时间合计时延超过500毫秒;而ACE重卡从百千瓦级驱动功率快速切换为百千瓦级再生制动功率的系统响应时间在25.0毫秒内,比传统重卡司机加机械制动系统的反应速度快至少一个数量级,能更快更安全(不锁轮)地令车辆减速,而且电力再生制动系统与机械刹车系统完全相互独立;ACE重卡的电机再生制动功能,既改善了车辆的综合刹车性能,又提供了安全冗余性。前面描述的动态控制车辆巡航速度带或安全跟车距离的多种技术措施集合统称为智能巡航控制(iCC)技术或功能;显然,本发明的智能巡航控制(iCC)与现有技术集合中的车用车或传统柴油重卡的自适应巡航控制(ACC)比较,无论在具体技术措施方面,还是在技术效果方面都有本质区别;本发明的ACE重卡对比现代欧美顶级配置的16L柴油机重卡,在整车动力性、节能减排、刹车有效性、和系统安全冗余性等多方面都有明显的优势。
ACE重卡的智能巡航控制功能(iCC)工作情景可分为两类。第一类是本车同车道前方250米内无其它车辆时,车辆根据节油AI算法,将ACE重卡控制在指定的车速带内行驶,无需考虑上述三种安全跟车距离L s;第二类是当本车同车道正前方250米内有其它车辆时,首先需要将ACE重卡控制在上述三种安全跟车距离L s之内,然后再考虑节油AI算法;换句话讲,凡是涉及车辆行驶安全的控制算法或线控信号的优先级或权重都明显高于涉及节能减排的控制算法或线控信号。本发明的ACE重卡智能巡航控制技术(iCC)与传统柴油重卡的预测性自适应巡航控制技术(即现有技术)相比较,最明显的差异点是通过脉控发动机101(串混iSS或并混iPS),根据本车定位测姿和电子地平线3D道路信息和节油AI算法,动态调整安全跟车距离L1/L2/L3并对电池包130a&b进行预测性荷电状态控制(PSC),在保证车辆动力性、时效性、安全性的前提下,同时优化车辆的油耗和污染物排放,达到实际CO2和NOx排放值同时最小化的有益效果。
干线物流重卡不时会遇到因上下班交通高峰、修路、极端天气、或交通事故等因素造成的拥堵路段城市工况(平均车速低于40公里/小时;主动加减速频繁),此时司机驾驶劳动强度、重卡油耗及排放都明显增加。拥堵的高速公路是全球公路物流行业的长期“痛点“之一,而且中国比美国高速公路平均拥堵程度更高,平均车速更低(重卡中国平均车速60公里/小时;美国平均时速90公里/小时)。ACE重卡此时可开启“智能跟车”功能,该功能只能在封闭式道路(例如高速公路或城市高架公路等)低速行驶时(平均车速低于40公里/小时)才能使用,不适合在开放式城市或郊区道路上使用。利用前视雷达(SRR)加摄像头230,在封闭的拥堵公路段,与同车道正前方领航车保持设定的安全跟车距离L0,由VCU 201指挥ACE重卡断开离合器111,对发动机101采取串混智能启停控制(iSS),将电池包主要控制在荷电维持(CS)或荷电消耗 (CD)模式下运行,完全由驱动电机140实现车辆频繁主动加速或再生制动。驱动电机140或170从零转速至额定转速范围内都能够保持其最大转矩输出,此时ACE重卡的加速性和刹车减速性都明显高于传统发动机重卡,甚至能和传统发动机轻卡的动力性能相媲美;此时重卡频繁主动刹车,十分有利于百千瓦级再生制动回收能量;ACE重卡在“智能跟车“模式下,比传统发动机重卡更加节油,实际节油率可明显高于30%,且大幅降低实际NOx排放,同时还可大幅减轻司机的驾驶劳动强度。
载货重卡高速公路下长坡(超过10公里)行驶时,机械刹车系统因长时间制动摩擦生热而导致性能下降(Brake Fade)甚至完全失效的风险不可忽略。2018年3月,中国兰海高速公路兰州某收费站,因一辆重卡经17公里长下坡路段行驶时,刹车系统过热失灵,撞向多辆排队缴费的乘用车,造成17人死亡,34人受伤的特大交通事故。目前欧洲法规强制要求干线物流重卡加装重卡非摩擦式缓速器;美国和中国的重卡当前虽无重卡缓速器强制性法规要求,但越来越多的重卡用户选装重卡缓速器。现有量产商用的缓速器,例如电涡流缓速器、液力缓速器、和发动机制动缓速器等都各有优缺点。电涡流缓速器和液力缓速器都只有一项缓速功能,不参与车辆驱动,还增加车辆的重量和万元人民币以上成本,且车辆低速行驶时其缓速效果明显下降。发动机缸内或缸外制动缓速器虽能一机多用,但缸内制动缓速器工作时噪声巨大,制动功率大多低于发动机的峰值功率,且车辆低速时其缓速效果明显下降。本公开的ACE重卡动力总成,采用并混iPS控制,除同时优化节油减排的有益效果外,还能通过多电机(110、140、170)再生制动加上发动机101缸内或缸外制动,实现ACE重卡下长时坡五百千瓦级缓速器功能,不需增加任何硬件,就可完全取代电涡流缓速器或液力缓速器,比上述已商用的几种重卡缓速器产品的性价比都更高。
ACE重卡010遇到长坡路段(纵坡绝对值大于2度,坡长大于5公里)下行时,纵坡功率足以克服轮阻功率加风阻功率,驱动车辆恒速下坡,多余的纵坡功率需通过电机(110、140、170)再生制动发电来回收能量,避免车辆不断加速下坡或启动机械刹车将这部分剩余的机械能变成热能浪费掉;VCU 201可指挥离合器111闭合锁定,车辆工作在并混模式下,此时发动机101工作在智能功率切换控制模式(iPS)的一种特例,即将发动机瞬态功率PWM脉冲序列的占空比下调为零,进入低负载被动运行(不启动发动机制动功能)或高负载被动运行(启动发动机制动功能)的零油耗及零排放低态线工况,发电机110和驱动电机140或170可协力通过再生制动发电来回收车辆下坡时的机械能量,经过ePSD 123给电池包130a&b充电;当电池包130a&b充满时(即SoC=URL),斩波器132a&b断开电池包130a&b,同时压控开关(VCS)133从断开状态切换至导通状态,单向电联接百千瓦级刹车电阻131,做为再生制动发电的有效电力负载,将多余的电能转换成热能消耗掉。并混模式下,发动机制动功率和电机再生制动功率可叠加,即可大幅提高无摩擦缓速功能的总功率,又可提供两套相互独立冗余的缓速系统,提高ACE重卡下坡行驶时的主动安全性。再生制动除能近零成本回收能量节油减排外,还可以大幅延长机械刹车片的寿命,明显降低ACE重卡010全生命周期内机械刹车系统运维总成本。从安全性考虑,ACE重卡下长坡时,无论车速高低,都应首选并混模式,尽量避免串混模式。
本公开的ACE重卡010混联动力总成系统通过串混iS或并混iPS控制技术,能够将任何一款量产商用的现代模拟电控发动机升级转换成数字脉控发动机,实现了全数字化软件定义的动力总成系统(SDPt);该SDPt的必备技术特征包括发动机101的工况与整车010的工况解耦及总成系统的软硬件解耦;换句话讲,只要该总成系统的各个硬件子系统(例如:发动机101、 发电机110、离合器111、主驱动电机140、变速箱150、电功率分流器123、电池包130a&b等)满足门槛技术条件,则动力总成系统的实际(RDE)动力性、油耗、排放这三大技术指标完全由软件定义并可动态敏捷定制,实现千车千面,三大指标与发动机101、电机110&140等硬件的具体技术性能和价格基本无关;软件定义混联动力总成(SDPt)的各个硬件子系统性能达标即可(即硬件可通用化和抽象化);硬件超配对ACE重卡010当前的动力性最优化无益也无害,但可提升系统的冗余性和未来升级潜力,特别是通过置换未来量产强化型变速箱(最大输入扭矩超过3500牛米)和相匹配的驱动桥来提升系统三大指标峰值的潜力。ACE重卡聚焦优化节能减排的高速公路ODD智能巡航控制(iCC)功能,实质上是1D纵向L1级自动驾驶功能,并具备了向L2级、L3级、或L4级自动驾驶功能升级的潜力。配置了本发明SDPt的ACE重卡天然具备整车驱动、电源、刹车的系统冗余性,很容易通过对多种环境感知传感器、线控自动转向装置、自动驾驶AI芯片等硬件和软件升级换代,将L1级ACE重卡升级成L3或L4级自动驾驶重卡,是未来批量商用L4级干线物流重卡的优选车辆平台,L4级ACE重卡未来批量商用将对全球干线物流重卡行业产生的影响,可类比全球移动通信行业从2G功能手机到3G智能手机的产业升级换代所产生的巨大深远影响。
行业专家一致认为,L5级无人驾驶重卡很难在2030年前在全球主要市场进入批量商用。L1到L4级的自动驾驶重卡都必须遵从道路车辆功能安全标准ISO26262,达到指定的汽车安全等级(ASIL安全等级),级别越高,对系统可靠性和冗余度的要求越高。ACE重卡010基于包括驱动电机140和170、电池包130a&b、和ePSD 123的系统集成,来实现高性能纯电驱动行驶、再生制动回收能量、自动紧急刹车辅助功能(AEBA)、和长下坡缓速器功能,在车辆的传统发动机和机械刹车系统之外,增加了一套完全独立冗余的电力再生制动刹车主动安全系统,同时还增加了冗余的车辆电力驱动系统(发动机加多电机)和冗余的电源;换句话讲,本发明的ACE重卡010天然具备冗余的动力系统、刹车系统、转向系统、及多电压电源系统,是未来开发和量产高速公路ODD内L4级自动驾驶重卡的优选基础车辆平台。本公开的ACE重卡比所有量产商用的现代内燃机重卡,能够在确保整车动力性最优的前提下,以更高性价比来同时改善汽车产业的三大终极目标:安全、节能、和环保。
需强调,本发明ACE重卡通过脉控发动机(串混iSS或并混iPS)、智能巡航控制(iCC)等技术措施,实现高速公路ODD内一维(1D)纵向SAE L1自动驾驶功能,达到综合油耗(升/100公里)对比传统柴油重卡降低近30%的有益效果,主要依靠混联动力总成技术,特别是电功率分流器ePSD,充分利用电子地平线3D地图先验数据,车辆动态工况数据,再加上车-云协同的节油数据集和节油机器学习(ML)算法;即便由人类司机手动驾驶ACE重卡(即L0级),也可以实现节油率近25%,即实现节能减排优化潜力的约80%;通过ACE重卡的iCC功能,实现高速公路ODD内纵向L1级自动驾驶,则可以确保每辆ACE重卡的综合油耗(升/100公里)与该车发动机的技术档次及性能和司机的个人驾驶水平(指能力、道路经验、和工作态度等)高度解耦,在实际节油效果和一致性两方面都明显优于人类司机。本发明的ACE重卡采用成熟并已量产商业的核心零部件和系统集成技术,节油效果明显,性价比高,车队不依靠政府补贴,仅靠实际燃油费节省,就可实现2.5年内回本(即补齐ACE重卡与传统柴油重卡之间的差价),5年累计单车利润翻番;ACE重卡能够在三年内以改装二手重卡的方式在北美首先实现量产商用。其它已商业化的各种干线物流重卡非动力总成节油技术,例如低滚动摩擦轮胎、轻量化、降低风阻系数(牵引车头加挂车)等,都可以直接叠加应用到ACE重卡上;需强调,与现代柴 油重卡不同,上述各种非动力总成节油技术在ACE重卡上能够产生1+1>2的节能减排协同效应(Synergy),而且低轮阻、轻量化、低风阻的节油效果越明显,则ACE重卡的协同效果也越强;同时由于ACE重卡具备超强的再生制动回收能量的能力,ACE重卡在高性能模式(P)或平均巡航速度超过65英里/小时(在美国法定最高时速以内)运行时,不但能提高货运时效性,保证实际油耗不增加,而且大概率能进一步降低实际油耗,有效地打破现代柴油重卡时效性(即最高巡航速度)与油耗之间的零和权衡。预计2023年前后在美国开始批量商用化的ACE改装重卡要比2019年版的现代柴油重卡的实际油耗(升/100公里)基准线(Baseline)降幅将超过20%,实际NOx排放值(g/bhp-hr)降幅超过50%,动力性和刹车性明显提升。
与现有技术不同,本公开图1至图7所示实施例的ACE重卡010,依靠全数字化软件定义混联动力总成,由VCU 201指挥,根据车辆的配置参数和动态工况数据(例如车总质量、纵向车速及加速度、本车动态定位测姿等),结合地图仪(MU)240电子地平线先验3D道路数据和机器学习(ML)节油算法(即AI节油算法),通过对发动机101瞬态功率函数实施脉冲调制控制(PM),包括串混智能启停控制(iSS)或并混智能功率切换控制(iPS),再加上智能模式转换控制(iMS)和无离合器换挡控制(CGS),动态连续地调节发动机平均功率函数值(见方程MAW);还通过控制电功率分配器(ePSD 123),在其三端口电力电子网络外接众多电源或负载(例如发电机110、驱动电机140或170、电池包130a或130b、刹车电阻131等)之间,动态调节百千瓦级电功率的流向、路径、和幅度;根据串混功率方程(2-4)或并混功率方程(3-3),对电池包130a&b的瞬态功率函数实施脉冲调制控制(PAM或PWM),让电池包130a&b在荷电保持(CS)、荷电消耗(CD)、或荷电增加(CI)三种模式之一稳定地工作或之间平顺切换,实现对电池包的平均SoC函数的预测性控制(PSC),使电池包130a&b长期稳定地工作在高效区(BLL<SoC<BUL),追求总荷电周转率和再生制动荷电周转率同时最大化,实时地满足车辆动力学方程(1-1);再结合智能巡航控制(iCC)功能,达到比现代柴油重卡RDE油耗(升/百公里)降低25%以上、明显提升车辆的动力性和刹车有效性、确保实际排放长期稳定达标、降低司机驾驶的劳动强度、改善司机反怠速(Anti-Idling)驻车时的休息体验等多重有益效果。本发明配置软件定义混联动力总成的ACE重卡,通过智能巡航控制(iCC)技术措施,将ACE重卡在高速公路设计运行域(ODD)内的功率管理问题,转换成计算机下围棋这一等价窄人工智能问题(Narrow AI),非常适合利用机器学习(ML)节油算法和本发明计算机可读介质存储并上传云端的节油数据集,通过云端和车载的节油AI芯片联动(训练或推理),自动地掌握最优节油策略并持续自主进化,ACE重卡的AI节油算法在实际节能减排最优化方面完胜人类司机且一致性极强,能够成为人类司机的宝贵助手。
如前面所讨论的,ACE重卡010在载货高速公路行驶时,通过巧妙地利用频繁出现的由道路沿途纵坡0.1度颗粒度细微变化所产生的几十千瓦到数百千瓦的下坡纵坡功率,通过驱动电机140&170再生制动发电,经电功率分流器ePSD 123整流后,给电池包130a&b充电,从沿途每个百米到数公里长度的下坡,均可能收获百瓦时级或千瓦时级的“零成本电能”(即再生制动电荷),细水长流,积少成多。另外,ACE重卡从电池到驱动轮的综合能量转换效率比从油箱到驱动轮的综合能量转换效率高出近两倍;换句话讲,ACE重卡电池包内的电能对比油箱内燃料的化学能,在驱动车辆做功时,前者以一抵三。ACE重卡高速路工况下节油的秘密,就在于最大限度地利用电池包130a&b内累积的零成本的“再生制动荷电”,提供部分车辆的驱动功率,通过随充随放的快速周转方式,提高电池包130a&b在整个运输事件中累计吞吐电能周转率, 特别是再生制动荷电周转率,同时降低发动机荷电周转率,达到最佳节油效果。
VCU 201实时地根据车辆地图仪(MU)240电子地平线先验3D道路数据,审时度势,未雨绸缪,保证当车辆遇到长度超过十公里以上且纵坡大于2.0%的长坡之前,有足够时间指挥离合器111接合并锁定,切换到并混模式下,对发动机101和发电机(MG1)110实施并混智能功率切换控制(iPS),在车辆到达长坡前,及时地(JIT)将电池包130a&b充满(SoC达到URL),并将车辆速度提升到法定车速上限,最大限度地延缓和减少ACE重卡010爬坡途中,电池包电能耗尽后,因发动机的峰值功率不足以单独支持车辆高速恒速上坡,只好换低挡减速上坡,影响车辆动力性和运输时效性。根据车载MU 240存储的3D地图,特别是电子地平线内高精度纵坡空间分布函数,和车辆的配置参数和动态工况和定位数据,VCU 201可以通过车辆动力学方程(1-1),以千瓦级精度及高于1赫兹的刷新频率来动态地预测电子地平线内(小时级或百公里级)车辆的纵坡功率时变函数和路载瞬态功率时变函数,以便通过对发动机101的瞬态功率函数进行脉冲调制(PM)控制(串混iSS或并混iPS),对电池包130a&b的瞬态功率函数进行脉冲调制控制(PAM或PWM),实现对电池包130a&b的平均SoC函数的预测性控制;根据司机选定的车辆智能巡航控制(iCC)不同子模式,在保证行车主动安全性和实际(RDE)排放始终达标的前提条件下,寻求ACE重卡节油性和动力性二者之间的正和权衡(即同时优化),实时地满足车辆动力学方程(1-1)和串混功率方程(2-4)或并混功率方程(3-3),可达到同时优化ACE重卡节能减排的有益效果。需要强调的是,某一辆ACE重卡完成特定货运事件的综合油耗(升/百公里)最小值(即最优值)和该车辆的配置参数(特别是总重)、特定旅程(或路线)沿途道路的纵坡空间函数、当日沿途气象条件、和沿途车辆动态工况数据(特别是纵向速度或加速度)等高度关联,而与类同配置和负载的重卡在全国范围内宏观大数据平均油耗值基本无关。ACE重卡在每分钟运行或每公里行驶时,实现平均油耗最小化,线性叠加,就能保证该ACE重卡每日、每月、每年、和全生命周期内累计综合油耗最优。所有不同配置和不同负载的ACE重卡集群在全国或全大洲高速公路网运行,日积月累形成的干线物流节油数据集,是训练机器学习节油算法的宝贵“数据石油”,云端节油算法所推荐的默认节油控制策略,对特定旅程(route)运营的每一辆ACE重卡,都有普遍借鉴和指导意义。
参照图5,下面来描述如何利用由上述ACE重卡010在行驶期间所采集并本地存储的节油数据集,脱敏加密后,经由车载无线网关210通过移动互联网002及时地(分钟或小时级时延)上传至云计算平台001来存储,供后续分析处理。云平台001通过若干种优选的机器学习(ML)节油算法(特别是深度学习算法),调集公有云或私有云的足够计算力,利用云端存储的日益累计的ACE重卡节油数据集,训练云端节油AI算法,自动建立并持续改进深度神经网(DNN)模型,寻求最佳节油控制策略;通过无线移动通讯网向每辆ACE重卡下传针对某货运事件特定路径的油耗标杆值和默认(Default)节油控制策略,使每辆ACE重卡都充分利用所有ACE重卡的集体智慧,同时优化节能减排;每辆ACE重卡可利用其VCU 201,进行车端AI推理运算,根据ACE重卡此时此地的环境、路况和车辆运行动态数据,实时动态地修改本车默认节油控制策略,实现该车辆该货运事件的实际油耗最小化。
在一些实施例中,在ACE重卡010行驶过程中,来自上述发电机组(包括发动机101、ECU 102、发电机110、MCU1 121)、ePSD 123、离合器111、驱动电机140或170、自动变速箱150、TCU 151、刹车电阻131、以及电池包130a或130b等各个主要动力总成子系统的各种配置参数或动态运行数据,均可被ACE重卡010车载的多传感器构成的“物联网”实时地测量采集 (优选测量和记录的刷新频率在5赫兹以上),以行业常用的结构化大数据的格式,集中地存储在例如车载VCU 201的存储器或其它车载存储器中,当然,也可以将上述测量数据分散地存储在若干子系统所对应的微处理器的存储器中;所谓的“节油结构化大数据”(简称“节油数据集”),是指以某种“映射关系”而被“相关联地”记录在计算机可读取存储介质上的关于ACE重卡行驶过程中各个子系统运行动态数据的多维时间序列集合。
举例说明,可以利用车载卫星导航仪(GNSS)220的十纳秒级超高精度授时,做为ACE重卡的唯一系统基准时钟,随时反复地校准(例如十分钟级间隔)包括VCU 201时钟在内的各个车载微处理器的时钟,用有序唯一的车辆系统运行时间序列,来自动地标注并同步(Label and synchronize)ACE重卡各个子系统的动态运行数据,方便后续拼接合成多维时间序列,生成针对特定ACE重卡和特定货运事件的节油数据集。如图1~5所示,车辆010上包括VCU 201、发动机101、发动机控制模块102、发电机110、电功率分流器(ePSD)123(包含电机控制器121,122a&b、压控开关133、斩波器132a&b等)、离合器111、驱动电机140&170、电池包130a&b、刹车电阻131、变速箱150、变速箱控制器151、毫米波雷达230、移动通信网关210、地图仪240、卫星导航仪220等重要的子系统都有对应的专用微处理器、存储器、或传感器;这些子系统都能在1.0赫兹<f m<50.0赫兹的测量频率(f m)范围内,在本地车端实时地测量、计算、并记录或存储各子系统以车辆运行时间为唯一性标注的主要动态运行数据的时间序列。例如:发动机控制模块102能以5赫兹以上的测量频率测算并记录纵向车速、纵向车加速度、发动机101的转速、转矩、比油耗(BSFC)等动态运行数据;发电机控制器(MCU1)121能以10赫兹以上的测量频率测算并记录发电机110的转速和转矩、电机内部温度、或发电机控制器121的直流电压或电流、和内部温度等动态数据;ePSD 123能以10赫兹的频率测量并记录其直流母线汇流点X处唯一的直流电压函数及所有分支电路的直流电流函数等动态数据;电池包130a&b所配置的电池管理模块(BMS)能以10.0赫兹的测量频率记录其输出端的直流电压、电流,和其内部电芯和电池模组级别的电流、电压、温度、荷电状态等动态数据;电机控制器122a&b能以10赫兹以上的频率测算并记录驱动电机140、170的机械轴的转速和转矩、电机内部温度、MCU2或MCU3直流端电流和电压等动态数据;斩波器132a&b能以10赫兹以上的测量频率测算并记录其高压端或低压端的直流电压和电流动态数据;变速箱控制器(TCU)151能以2.0赫兹以上的测量频率记录变速箱150的挡位、输入端转速、输出端转速等动态数据;卫星导航仪220能以5赫兹的测量频率测算并记录车辆的纵向车速及加速度、经纬度、纵坡、授时等动态数据;毫米波雷达230能以10赫兹的频率测算并记录本车辆与正前方车辆之间的绝对距离和相对速度等动态数据;压控开关133能以10赫兹的频率记录其直流电压和电流等动态数据。各个子系统的传感器测量数据可能相互有部分重叠,而数据重叠冗余有助于提高全系统测量的容错性和纠错性。
接下来,如图1~5所示,VCU 201以车辆运行基准时间序列单向唯一标注,作为所有子系统测量数据时间序列的基准,通过自动化拼装、集成、和脱敏加密后,生成ACE重卡010运行过程中产生的与ACE重卡整车节能减排控制策略高度关联的“节油数据集”;该节油数据集可经由移动互联网002或有线互联网被“实时地”(亚秒级时延)或“及时地”(小时级时延)上传到互联网云端计算平台001集中式或分布式地存储,供后续数据分析处理。
例如,如图1和图5所示,可以通过无线通信网关210和蜂窝移动通信网002,将ACE重卡节油数据集及时地(分钟级或小时级时延)上传到互联网上的云端计算平台001分散式或集 中式存储,供后续数据加工处理。可选地,该数据包在上传之前可以被脱敏并加密,以确保数据安全性,保护客户(司机或车队)的隐私权和商业秘密。该云平台001将汇集使用本发明的众多ACE重卡运行时生成的节油数据集。利用这些ACE重卡集群日益累积增加的运行结构化大数据(即节油数据集),通过聚焦节油的机器学习(ML)算法,调配相应的云端计算机算力,来训练云端和车端的人工智能(AI)芯片,其中云端为AI训练芯片而车端为AI推理芯片,自动建立并持续完善节油ML算法的深度神经网(DNN)模型,寻求针对每辆ACE重卡和每个货运事件的最佳节油控制策略,实现干线物流ACE重卡的实际油耗比现代柴油重卡的实际油耗降低25%以上且与司机的驾驶水平和发动机的性能基本解耦等有益效果。云端001优选采用已商用的AI训练芯片,其特点是高通用性、高性能、高功耗、高成本;而车端优选采用AI推理芯片,其特点是高专用性、性能适中、低功耗、低成本。车端节油AI推理芯片(例如含在VCU201中)和云端节油AI训练芯片实时或及时联动,能根据不断变化的ACE重卡行驶状况,寻找每一秒钟或每一分钟时间段(对应行车距离二十米到二千米)的动态最佳节油控制策略;脉控发动机101的主动运行(AOM)无滞后效应或记忆效应,通过每一时段内取得微观最低油耗(升/百公里),不断累积,线性叠加,能最终实现ACE重卡010在整个货运事件全程宏观最低油耗。VCU 201指挥ACE重卡010在高速公路ODD行驶时,通过智能巡航控制技术(iCC)来实现1D纵向L1自动驾驶功能,可将ACE重卡节能减排优化问题转换成计算机下围棋这一等价狭义AI问题;本公开的软件定义混联动力总成,加上VCU 201、iCC功能及节油AI算法,等效于一个无人形的工业机器人,可称ACE重卡的“节油机器人”;如同AlphaGo下围棋能够完胜人类,本公开的ACE重卡“节油机器人”也能在干线物流重卡实际油耗和排放指标方面超越人类司机。同时还要强调,本发明的“节油机器人”不会完全取代人类司机,而是甘当干线物流重卡司机的可靠副驾和助手。
干线物流重卡的每一货运事件(Freight Event)的起点和终点都是预知的,货运重量也是可知且基本固定的,极少临时随机变化;每个货运事件的里程从数百公里至数千公里,时间从数小时至几天。每次运货事件出发前,ACE重卡010的节油机器人(VCU 201)或司机能通过无线移动网关210或手机自动地向云平台001的AI“节油大脑”要求下载针对该货运事件旅程的最优节油控制默认(Default)方案及当前针对该路径的行业最佳油耗标杆(升/百公里),作为车辆VCU 201节油机器学习算法实施本地实时运算和动态调整时的初值或参考;这样,每辆ACE重卡,都能够将全行业ACE重卡在同路段运行的集体智慧为我享用,达到最佳节油效果。当司机将ACE重卡开上封闭式高速公路后,即可选定iCC功能的子模式(普通模式N/节油模式Eco/高性能模式P),启用智能巡航控制功能(iCC),由VCU 201替代司机的部分驾驶职能,实现该重卡一维纵向运动(加速/巡航/滑行/减速)持续性自动控制(即L1级自动驾驶),即可长时间解放司机的双脚,降低司机长途驾驶的劳动强度,又能同时实现RDE油耗和排放(CO2和NOx)最优化(即最小化)且与司机的驾驶水平解耦等有益效果;需强调,此时司机的手、眼、耳、脑仍需工作,负责车辆周围目标与事件探测及响应(OEDR),持续实时地控制该车辆的转向或紧急制动,对该重卡行驶安全付全责。本发明的另一个有益效果是节油机器人通过iCC功能来实现ACE重卡节能减排同时优化,可有效地解决由于司机的各种人为因素(道路熟悉度、驾驶水平、工作态度、疲劳度等)而导致实际综合油耗值(升、百公里)离散度(Spread)高达20%这一众所周知的干线物流行业长期难题,保证每一辆ACE重卡和任何司机在同路段运行时,都能高度一致性地达到最低油耗,该亮点对运输公司降本增效而言,非常重要。
总之,本发明中带智能巡航控制(iCC)功能的ACE重卡010与当今市场上具备类似功能的任何油电混动车辆或传统柴油重卡相比的本质区别在于,前者高度聚焦干线物流重卡节能减排同时最优化,有效地解决了全球汽车及运输行业公认的世界性难题,即在高速公路工况下,油电混动重卡与传统柴油重卡相比节油效果不明显,实际节油率不可能高于12%这一行业难题,可以达到干线物流应用场景下,实际综合油耗降幅高于25%,同时还能明显提升车辆动力性和刹车有效性、并保证ACE重卡在中国/美国/欧盟三大重卡市场实际行驶环境下(RDE),长寿命稳定地(70万公里排放达标质保期)满足污染物排放和碳排放法规指标等多重有益效果。换句话讲,ACE重卡010在非拥堵的封闭式高速公路行驶时,司机可只负责动态驾驶任务(DDT)中车辆周围物体与事件的感知与决策(OEDR)和车辆横向控制,交由重卡节油机器人通过智能巡航控制(iCC)技术措施来实现车辆1D纵向L1级自动驾驶功能,实现车辆节能减排同时最优化。
在智能巡航控制(iCC)司机预设子模式下(指普通模式N/节油模式Eco/高性能模式P三选一),重卡节油机器人根据车辆关键子系统的性能特征及配置参数、车辆行驶工况动态数据、电子地平线三维道路先验数据,采用基于机器学习(ML)节油算法的车辆能量管理控制策略和车载实时算力进行AI推理运算,对发动机101的瞬态输出功率进行串混智能启停控制(iSS)、或并混智能功率切换控制(iPS)、或智能模式转换控制(iMS),对电池包130a&b的瞬态功率函数进行脉冲调制控制(PAM或PWM),动态调节电池包平均功率函数(等于车辆路载平均功率与发动机平均功率的差值),使电池包130a&b在荷电维持(CS)、荷电消耗(CD)、荷电增加(CI)三种模式之一稳定工作或之间平顺切换,在满足车辆动力性、主动安全性、尾气排放RDE长期达标等约束条件下,实时地满足车辆动力学方程(1-1)和串混功率方程(2-4)或并混方程(3-3),实现整个货运事件实际油耗最小化,对比传统柴油机重卡,ACE重卡实际综合节油率可高达30%,并保证在任何RDE环境下,其污染物排放长期稳定地达标(EPA-2010、欧-VI、国-6)。现有技术中乘用车或商用车的“自适应巡航控制(ACC)”功能,主要提供驾驶便捷性,改善主动安全性,对车辆实际综合节油率的降幅很小(小于2%);而传统内燃机重卡的“预测性巡航控制”(PCC),虽聚焦车辆能量管理控制策略,但因无法通过再生制动有效地回收能量,实际节油效果也不足3%;同时,现代柴油车无法保证在任何RDE下,特别是包含一定比例的低速低负荷工况和怠速工况时,实际污染物排放长期稳定达标;美欧中三地当前都没有找到柴油车在任何RDE下都能够长期稳定地满足当前污染物排放法规限值(EPA-2010、欧-VI、国-6)的可行(即高性价比、可量产)技术方案,更缺乏满足美国加州新NOx排放组合法规(Omnibus Regulations)2027年超低排放(再降90%)的高性价比可量产的技术方案。本发明聚焦解决的技术问题是如何保证同时优化ACE柴油车辆(特别是ACE柴油重卡)的油耗和排放,即车辆CO2和NOx实际排放同时最小化。显然,车辆的动力性泛指该车辆所配置的动力总成(例如ACE重卡的混联动力总成包括发动机101、双电机110&140、mPSD 124、ePSD123、电池包130a&b、变速箱150、驱动桥160&180等子系统)的动力性(即合计机电转矩或功率),并非单指发动机101的动力性;车辆的油耗和排放虽泛指动力总成的实际(RDE)油耗及污染物(NOx和PM)排放,因电池包零油耗零排放,实质上单指发动机101的油耗和排放。
智能巡航控制(iCC)与现有技术中预测巡航控制(PCC)或自适应巡航控制(ACC)的区别技术特征包括:1)iCC的电子地平线的有效范围可超过百英里或一小时,整车层面功率管 理策略(PMS),既包括秒级快速控制环,又包括小时级慢速控制环;而PCC的电子地平线有效范围仅为英里级或分钟级,整车PMS只包括秒级快速控制环,不包括小时级慢速控制环;2)iCC可根据车辆配置参数(特别是总重量)、车速、天气和路面状况、本车正前方英里级路段道路纵坡函数分布等信息,自主动态调节安全跟车距离(L1>L2>L3),而ACC的安全跟车距离为可预设的静态参数,无法动态调整;本发明iCC技术在RDE油耗及排放最小化、货运时效性和刹车有效性等有益技术效果方面都要明显优于现有技术PCC加ACC。
与现有技术不同,本发明中“软件定义混联动力总成”技术是聚焦同时优化ACE重卡的动力性、油耗、排放三大技术指标的多种技术措施的集合,包括下列技术措施中至少两种的组合,例如串混智能启停控制技术(iSS)、并混智能功率切换控制技术(iPS)、智能模式切换控制技术(iMS)、智能巡航技术(iCC)、发动机清洁冷启动技术(CCS)、无离合器换挡控制技术(CGS),预测性荷电状态控制技术(PSC)、基于机器学习(ML)节油算法的整车预测性功率管理策略(PPMS–Predicative Power Management Strategy)、后处理系统智能温控技术(iTM)、发动机二元停缸技术(bCDA)等。虽然本发明的若干实施例聚焦干线物流ACE柴油重卡,但软件定义混联动力总成技术同样适用配置混联动力总成的各种类型和吨位的道路或非道路车辆(乘用车,轻型/中型/重型商用车)和各种内燃机(点燃式汽油机,压燃式柴油机,点燃式或压燃式天然气发动机);可采用上述组合技术措施,达到车辆在实际驾驶环境下(RDE)同时优化油耗及排放的有益效果。
改装ACE重卡实施例如下:1)在美国选择合适的二手重卡(Used Truck);优选满足美国联邦EPA-2010排放法规,总里程(Milage)小于60万英里、车况良好的二手柴油或天然气重卡,发动机101只要状态良好,排量11升~16升都能用,变速箱150必须是状态良好的自动机械变速箱(AMT);如果连发动机101和变速箱150都要拆下大修(Powertrain Out-of-frame Overhaul),则只需整车底盘和驾驶室状况良好;2)准备混动改装套件(HCK-Hybrid Conversion Kit),包括双电机110&140(低转速高转矩永磁同步或交流异步电机,额定功率100~200kW)、电池包130a&b(功率型液冷电池包,总容量20~90kWh,可由两组不同电芯组合并联)、离合器111(重型线控离合器)、电功率分流器(ePSD)123,百千瓦级刹车电阻131;还可以包括实现新增混联动力总成域控制器功能的车辆控制器(VCU)201、卫星导航仪(GNSS)220、无线网关210、毫米波雷达230、地图仪240(含全国道路ADAS三维电子地图),和配合上述关键子系统改装所需的各种机电配件组合;3)由经过训练并获得上岗许可的技工完成ACE重卡010的改装。无论发动机101的排量大小,每辆改装ACE重卡在并联模式下的整车合计连续驱动功率均大于500kW,其动力性和刹车性能明显优于当今全球任何顶级量产商用的柴油重卡,并且比改装前的二手重卡的实际(RDE)油耗(CO2)减少20%~30%,RDE排放(NOx)降低50%以上,达到美国GHG-II法规针对2027年新重卡的强制性要求。本发明的ACE重卡技术,除适用于新重卡外,还能以高性价比在2027年前,将美国近200万量在用柴油重卡中超过25%的二手重卡(累计超过50万辆)改装成高动力性、超低RDE油耗和排放的ACE重卡,具有重大的经济和社会益处。ACE重卡还可以配置带二元停缸功能(dCDA)的柴油机和增加智能温控功能(iTM)的现有技术的单箱集成式后处理系统(ATS),在2027年前批量商用能够同时满足2027年全美GHG-II法规CO2限值和加州超低排放组合法规(NOx比EPA-2010限值减少90%)的ACE重卡。
参见图6,发动机101在其万有特性曲线第四象限内(正转速,负转矩)被动运行模式(POM) 可按照特定气缸在一个完整的发动机四冲程循环周期的具体工作方式再细分为两类;第一类为“断油模式”(CCO–Cylinder Cut-Off),第二类为“停缸模式”(CDA);所谓CCO,指特定气缸在燃烧冲程完全切断喷油,但该缸的进气阀和排气阀都正常开关运行,显然CCO适用于所有量产商用的发动机,实质上为一种特定的发动机喷油控制策略,完全由软件实现,并不需要发动机配置复杂的可变气门驱动机构(VVA);而所谓CDA,指发动机部分但非全部指定气缸除在燃烧冲程完全切断喷油之外,对应断油气缸的进气阀和排气阀都在发动机四冲程周期(Four-Strock Engine Cycle)内保持常闭,显然CDA控制策略只适用于配置复杂可变气门驱动机构(VVA)的先进发动机,无VVA机构的普通发动机则无法实现CDA功能。
发动机的“燃烧因子”(CF-Combustion Factor)定义为在发动机一个四冲程发动机周期(Engine Cycle)内完成燃烧做功的气缸数占比。例如对现代重卡的直列六缸(I6)柴油机而言,CF=1对应发动机全部六个气缸都正常燃烧做功;CF=1/2对应发动机只有三个气缸正常燃烧做功,另外三个气缸无燃被动运行(CCO或CDA);CF=1/3对应发动机只有两个气缸正常燃烧做功,其余四个气缸被动运行(CCO或CDA);CF=0对应发动机全部六个气缸都被动运行(CCO或CDA)。现有发动机CDA技术中,燃烧因子CF为不大于1的正数;换句话讲,现有模拟电控发动机技术(包括CDA技术)中,发动机101正常运行时,除零转速和转矩(即发动机静止点)的特殊零点外,发动机的CF不允许为零,即发动机不允许全部气缸都被动运行,工作在其万有特性曲线的第四象限(发动机刹车模式除外)。
以I6发动机为例,要实现CDA功能,该发动机必须配置VVA机构;现有CDA技术最简单的实施例需要两路独立线控信道的VVA机构(称VVA-2),可分别控制两组气缸的进排气阀,每组包括三个气缸;多数为有六个独立线控信道的VVA-6,可分别控制六个气缸的进排气阀;最复杂的实施例需要十二路独立线控信道的VVA-12,可分别控制六个气缸的进气阀或排气阀;显然线控信道数越高,发动机的VVA机构也越复杂,成本也更高,同时控制的维度更高,性能更好;同时VVA机构功能向下兼容而非向上兼容,例如VVA-12可兼容VVA-6的全部功能,而VVA-6可兼容VVA-2的全部功能,反之不成立。与现代汽油机采用CDA技术聚焦降低RDE油耗不同,现代重卡柴油机采用CDA技术,主要目的是增加一种柴油机后处理系统热管理的有效方法,在维持RDE油耗基本不变的前提下,明显降低柴油机RDE排放(NOx和PM)。
发动机停缸技术(CDA)在轻型车汽油机或柴油机上已经量产商用,但在重卡柴油机上,截止2020年底,世界范围内重卡柴油机CDA技术仍处于研发阶段,没有量产商用。重卡柴油机CDA技术的挑战除发动机需重新设计,增加复杂的VVA机构及成本,重新标定,待验证VVA机构的长期寿命(百万英里级)外,还有CDA发动机模式切换(即发动机正常运行(CF=1)与各种CDA模式(0<CF<1)之间的动态切换)时所引起的整车层面的振动噪声问题(NVH);而CDA发动机的NVH问题无法在发动机台架上通过调整测试来有效地解决,必须在整车层面定制化调测解决,费时耗资。本发明聚焦一种新颖的CDA发动机技术方案–“二元停缸技术”(bCDA–binary Cylinder DeActivation),具体技术措施如下:优选通过对发动机进排气机构进行设计更改,配置一套VVA-1机构,该机构包含一个气阀组离合器(VtC–Valve-train Clutch),该VtC由一路数字信号(例如高态为1,低态为0)控制,有两个稳定的VtC工况,断开或闭合;线控信号为1时,离合器(VtC)闭合时,发动机的所有进排气阀都由发动机的凸轮轴驱动正常工作,CF=1或0;线控信号为0时,离合器(VtC)断开,发动机的所有进排气阀都与发动机的凸轮轴机械解耦,全部进排气阀在发动机四冲程周期内都常闭,CF=0;显然,对六缸重卡CDA 发动机101而言,单信道VVA-1机构比多信道VVA-2、VVA-6、VVA-12等机构都更简洁耐用,控制策略简单实用,成本增量(Cost Delta)更低,为bCDA最优实施例;当然,各种多信道VVA机构(例如VVA-2、VVA-6、VVA-12等)也能向下兼容实现VVA-1机构的所有功能,但性价比都不如VVA-1,为次优实施例。发动机行业的技术人员可采用多种可量产商用的可变气门启动技术方案来实现VtC装置,而配置VtC装置的单信道VVA-1机构,是实施发动机二元停缸技术(bCDA)的多种可行技术方案中最简单和性价比最高的VVA装置;本发明以抽象化的VtC为一个系统零件,聚焦软件定义动力总成和ACE重卡。需强调,二元停缸技术(bCDA)应结合数字脉控发动机技术(iSS或iPS),才能充分发挥同时优化发动机节能减排的有益功效,而现有技术的发动机停缸技术方案,并不包含本发明的二元停缸技术方案;换句话讲,二元停缸技术(bCDA)是对现有停缸技术(CDA)的明显改进,在保持性能的前提下,结构更简单、成本更低、耐久性更长、NVH特性更优。
本发明的脉控发动机(串混iSS或并混iPS)还能够明显改善由停缸技术(包括二元停缸技术),特别是CDA模式动态切换,所引发的发动机或整车层面的振动噪声特性(NVH)恶化问题,具体技术措施如下:将脉控发动机CDA模式切换的瞬态时间都控制在数字脉控发动机101的被动运行模式(POM)时间段内,例如发动机在高态(CF=1)与低态(CF=0)之间双向切换时,先实施断油模式(CCO),等发动机在低态运行开始至少0.5秒后再断开VtC,启动二元停缸模式(bCDA),全部气缸的进排气阀都进入常闭状态;后等发动机低态运行结束前至少0.5秒再闭合VtC,退出二元停缸模式,全部气缸的进排气阀都恢复到正常开关工作状态,每个气缸的进排气阀,都会在无燃被动运行模式下经过至少一个完整的发动机周期后才会出现CDA模式双向切换;换句话讲,受控于VCU 201和/或ECU 102,数字脉控发动机101的CDA模式切换,只会发生在发动机第四象限的低态工况时间段,不允许发生在发动机第一象限的高态工况时间段,从而极大避免了发动机CDA模式切换与发动机各个气缸燃烧冲程(Combustion Strock)直接耦合并相互影响所引发的发动机或整车层面的机械振动噪声问题(NVH);本发明的数字脉控(DPC)发动机比现有技术的模拟电控(AEC)发动机的另一个优点在于前者能完全避免后者CDA模式切换所引发的整车层面振动噪声问题(NVH)和相应的发动机与整车工程适配联调问题。
参考图7,ACE重卡010的现代柴油机101的后处理系统(ATS–After-Treatment System)可包括下列模块,涡轮增压器(T)108的废气出口可视为发动机本体与后处理系统之间的机械接口,催化剂电加热器(ECH;简称“催化电热器”)301的外形结构可为一段联接T 108的废气出口与集成式后处理系统305(简称“单箱系统”)的入口的带耐热绝缘外层的不锈钢管,ECH内部包含废气流通压降小的车规电加热器,受控于功率控制器(PCU)302,可将通过ECH的废气迅速加热(秒级)至250摄氏度以上,还可以迅速加热单箱系统305内部的各个催化剂模块,例如DOC 310、DPF 320、SCR 340等。优选基于IGBT电力电子技术的功率控制器302,从ePSD 123的汇流点(X)125获取高压直流电,可采用脉宽调制(PWM)控制策略并配置CAN总线的通讯能力,ECH和PCU的额定功率应至少30kW。除非特别注明,本发明中的各种基于IGBT电力电子技术的强电功率控制器和弱电微处理器或微控制器都具备双向CAN总线通讯能力。满足当前排放法规(美国EPA-2010;欧-VI;国-6)的主流柴油机集成式后处理系统305包括下列模块:柴油氧化催化器(DOC)310,串联柴油微粒捕捉器(DPF)320,串接选择性催化还原器(SCR)340,串联尿素泄漏催化器(ASC),串接排气管360;尿素喷嘴(UIU) 330位于DPF 320的出口与SCR 340的入口之间,可动态精准地控制从柴油排放液体罐(DEF;即尿素罐)331的喷尿素时间和剂量。
可优选催化电热器(ECH)301的额定电功率范围30kW~70kW,功率控制器(PCU)302的额定电功率范围25kW~65kW;额定功率小于上述下限的ECH和PCU成本更低,但迅速加热能力有限,为次优方案;额定功率大于上述上限的ECH和PCU迅速加热能力高,但成本明显增加,为次优方案;因PCU 302的成本明显高于ECH 301,ECH的额定功率应大于PCU,适度超配。其它实施例还包括,将图7中ECH 301的位置后移到单箱系统305的内部,放置在DPF320之后和SCR 340之前。尿素喷嘴(UIU)330可包括千瓦级电加热功能。本公开中的发动机后处理系统(ATS)智能温控技术(iTM),指采用图7所示ECH 301、PCU 302、UIU 330等模块,通过电力电子控制和电加热来动态调节单箱系统305内部各种催化剂(特别是SCR 340)的工作温度范围(250摄氏度至550摄氏度),保证整车工况如何,发动机后处理系统始终工作在各种催化剂的高效区,最大限度降低整车污染物排放。
当前美国重卡行业还没有找到能够同时满足柴油重卡2027年GHG-II法规CO2排放限值(等效油耗)和加州超低NOx排放限值(比EPA-2010限值降低90%)的可量产商用的技术方案;行业专家普遍认为,可行的技术方案应包括对现代柴油机本体加后处理系统实施全局性(Holistic)的设计更改(硬件和软件方面),例如发动机停缸技术(CDA),在涡轮增压器108的出口与集成式后处理系统305的入口之间增加一个前置性“关灯选择性催化还原器”(LO-SCR,包括另一个尿素喷嘴)等;LO-SCR的主要作用是当柴油机涡轮增压器出口废气温度(ToT–Turbo Out Temperature)低于250摄氏度时(后处理系统的“关灯”状态;LO–Light Out),以更快的速度加热升温,承担柴油机低负荷(功率或转矩负荷率<30%)或怠速工况运行降低NOx排放的主要任务;配置LO-SCR除增加后处理系统的体积、重量、复杂性、成本之外,还因LO-SCR布置在DOC及DPF之前,要承受更多废气内物质的不良影响,例如颗粒物或硫等,会明显降低LO-SCR的性能和寿命,而通过改变发动机工况对LO-SCR实施间歇性高温(500摄氏度以上)脱硫再生(Desulfation)又会消耗燃料,提升CO2排放。
本发明提出一项基于当前全球可量产商用的柴油机和其它车规机电零部件,能在2027年量产商用同时满足美国GHG-II法规CO2限值和加州柴油机超低排放组合法规NOx限值(比EPA-2010降低90%)的ACE重卡软件定义混联动力总成技术方案,具体技术措施如下:选择带VVA机构的量产商用发动机101(柴油或天然气),参照图1和图2和前述实施例,搭建ACE重卡010的双电机混联动力总成系统;利用串混iSS技术或并混iPS技术,将该模拟电控发动机(AEC)转换成一台数字脉控发动机(DPC),对该VVA数字脉控发动机实施二元停缸控制(bCDA),参照图7和前述实施例;搭建具备智能温控功能(iTM)的发动机后处理系统;由VCU 201与ECU 102、ePSD 123、电池包130a&b的BMS(电池管理系统)、TCU 151、PCU 302、UIU 330等控制模块协同,根据ACE重卡010的节能减排AI算法,动态控制发动机101、双电机110&140、离合器111、变速箱150、电池包130a&b、催化电热器(ECH)301、尿素喷嘴(UIU)330等子系统的运行工况,同时优化节能减排,实现ACE重卡RDE油耗和排放同时最小化,满足2027年美国法规(GHG-II;加州)柴油重卡CO2和NOx的限值;上述技术方案简称“柴油NZE”技术方案。
如果ACE重卡010要同时满足美国联邦GHG-II(CO2排放)法规和EPA-2010法规(NOx法规),性价比最优实施例中,可采用配置无VVA机构的普通发动机101的混联动力总成(参 见图1&2),配合串混iSS技术或并混iPS技术及节能减排AI算法;该发动机虽无法实施二元停缸控制(bCDA),但仍可实施二元断油控制策略(bCCO–binary Cylinder Cut-Off),只需不带智能温控功能(iTM)的普通单箱系统305为后处理系统;在北美将现代二手柴油重卡(满足EPA-2010法规)合法改装成ACE重卡,优选该实施例的技术方案。显然,二元停缸技术(bCDA)与二元断油技术(bCCO)相比,优点首先在于完全避免数字脉控发动机被动运行模式下(POM)的冷废气给单箱系统305内部各个催化剂模块降温到250摄氏度以下,保证后处理系统始终运行在高效区,有助减排;其次才是降低数字脉控发动机被动运行模式下的泵其损失,有助节能;缺点是前者要将现代量产普通发动机硬件升级成带VVA机构的先进发动机,系统成本增加。
本发明中,准零排放(NZE)柴油重卡特指同时满足2027年美国联邦GHG-II法规和加州超低NOx排放组合法规(NOx比EPA-2010限值降低90%)的可量产商用的柴油重卡,目前行业还在积极寻找高性价比和可量产商用的NZE柴油重卡技术方案。柴油NZE技术实施例,优选采用带单信道可变气门驱动机构(VVA-1)的大型六缸柴油机;还可选用带多信道可变气门驱动机构的大型六缸柴油机,例如VVA-2、VVA-3、VVA-6、VVA-12等。
需强调,针对并混车辆实施iPS控制技术,其实只需要一台峰值转矩或功率与发动机相当的大型电机(混动P1或P2位置)与发动机101并联,以转矩叠加共同驱动车辆,就能通过VCU201的软件将该车的模拟电控发动机转换成一台数字脉控发动机,实现软件定义的并混动力总成;并不强求使用双电机(110和140)加离合器111。单电机的ACE并联重卡可视为配置了图1所示双电机混联动力总成的特例。参见图1和图2,一种单电机并混动力总成的实施例如下,取消发电机(MG1)110和电机控制器(MCU1)121,但保留转矩耦合器(mTC1)103、离合器111、转矩耦合器(mTC2)104、驱动电机(MG2)140;此时电功率分流器(ePSD)123从三端口电力电子网络简化为双端口网络(关闭端口I;保留端口II&III);优选永磁同步(PMSM)或交流异步(ACIM)电机(MG2)140的最大连续功率值(即额定功率)范围:150kW~220kW,最大脉冲功率值(10秒级)范围:250kW~410kW;电机控制器(MCU2)122a的最大连续功率值和最大脉冲功率值应比电机(MG2)的对应限值略高(至少110%);图1和图2中的其余标配或选配的子系统与上述双电机混联实施例保持相同。显然,电机(MG2)140的最大功率(连续或脉冲)超出优选范围系统也能正常工作;但电机太小(小于150kW)虽能降低其重量和成本,但车辆动力性和节能减排优化效果也降低;但电机太大(大于250kW)虽能提升车辆动力性和节能减排优化效果,但其重量和成本明显增加;二者均为次优选项;其它单电机并混实施例还包括将驱动电机(MG2)布置在混动P1、P3、P4位置,但在P3或P4两种位置因电机(GM2)无法通过变速箱150放大转矩,对ACE重卡010整车动力性和DPC发动机101的正常运行都有负面影响,为次优选项。本发明中,除非特别声明,双电机混联动力总成即包含双电机纯串混或纯并混这两个特例,也包括单电机并混动力总成这一特例。
参见图1&2,比较下列两类实施例的优劣;一个实施例为双电机混联动力总成,发动机101的峰值功率300kW,双电机(MG1/MG2)110和140的额定功率分别为125kW和175kW;另一个实施例为单电机并联动力总成,发动机101的峰值功率300kW,电机(MG2)的额定功率为300kW;两套系统的其它子系统(标配或选装)相同;根据目前全球低转速大转矩车规电机产业的发展现状,双电机系统(125kW+175kW;包括电机控制器)的成本大概率会低于单个大电机(300kW;包括电机控制器),前者在供货商多样化,确保低成本高质量供货方面明 显优于后者;二者的系统综合动力性基本相同,都可通过脉冲调制(串混iSS或并混iPS)技术措施将现有技术的模拟电控(AEC)发动机101转换成数字脉控(DPC)发动机;但前者比后者多出若干系统功能(例如智能模式切换(iMS),串混模式,双电机冗余性等),在同时优化整车节能减排方面,前者(双电机混联)比后者(单电机并混)控制抓手更多,性能更优;所以前者(混联)比后者(并混)的综合性价比更高,为优选实施例。
全球重卡行业常识,同样车辆配置参数(发动机排量、总重等)和货运路线的条件下,干线物流重卡的实际油耗与司机的驾驶风格密切相关,RDE油耗值离散度高达20%;省油的司机擅长充分利用高速重卡的巨大惯性和对前方英里级路段纵坡函数分布的观察和记忆,尽量减少猛踩油门或刹车,将车速平稳地控制在一个速度带内;而费油的司机既不会充分利用高速重卡的巨大惯性,也不擅长对前方英里级路段纵坡函数分布的观察和记忆,高频次猛踩油门或刹车来维持车速或超车,每一脚油门或刹车都意味着增加油耗-油费或排放。人类要上天飞行,不能简单地模仿鸟类,设计出带振动翅膀的飞行器,而要根据空气动力学第一性原理和控制论来设计飞行器;同样,人类要将干线物流重卡节能减排优化任务自动化,同样不能简单模仿有经验的司机,而要找到解决干线物流重卡节能减排问题的第一性原理。
干线物流重卡优化节能减排的第一性原理为车辆动力性方程(1-1);人类司机无法用心算(Mental Steps)或笔算(Pen and Paper)来实时(秒级时延)求解车辆动力性方程,不能定量地(相对误差小于10%)动态预测电子地平线内(分钟级或英里级)车辆路载功率时空函数的分布,省油的司机也只能对全国范围内部分熟悉路段的纵坡分布有粗犷定性的记忆;而车载计算机(例如VCU 201)可根据ACE重卡010的静态参数(发动机排量和功率、电机功率、电池包容量、车辆总重、3D地图、风阻系数、轮阻系数等)和动态数据(车速、加速度、道路纵坡、时间、本车定位等),轻松地以至少0.2Hz的刷新频率和相对误差小于10%精度动态求解车辆动力性方程(1-1),实时精准地预测电子地平线内(小时级或百英里级)车辆路载功率时空函数分布(简称“预测路载功率”);同时ACE重卡010的各种传感器和控制器(例如ECU 102、GNSS 220、VCU 201、MCU1 121、MCU2 122a、BP1 130a、BP2 130b等)协同,能以高于2Hz的刷新频率测算、本车存储、云端上传重卡实测“节油数据集”。显然节油数据集中包含实际路载功率;将实际路载功率时空函数与预测路载功率时空函数投影到车辆行驶道路纵向一维空间并计算差值,可借助机器学习(ML)算法,车端和云端协同(见图5),自主持续改善VCU 201预测路载功率的精度;实时精准地预测百英里级电子地平线内路载功率函数分布是干线物流ACE重卡010通过智能巡航控制(iCC)技术措施来同时优化车辆节能减排的技术基础;VCU 201需要小时级或百英里级电子地平线做为整车功率管理策略(PMS)的规划空间来未雨绸缪,通过动态控制DPC发动机101瞬态功率函数的占空比并实时测算电子地平线内路载平均功率和发动机平均功率(方程MAW)来动态规划并控制电池包130a&b的平均荷电状态函数(SoC),保证电池包130a&b大多数时间(90%+)工作在其高效区(BLL<SoC<BUL),全部时间(100%)运行在其安全区(LRL<SoC<URL),实现ACE重卡的DPC发动机101在整个货运事件实际油耗排放都最小化,且ACE重卡实际节能减排效果与司机水平和发动机性能都基本无关。
ACE重卡010节能减排优化问题的本质是整车功率管理策略(PMS)问题,本发明通过ACE重卡010的智能巡航控制(iCC)技术措施,实现整车在线实时全局的功率管理策略(PMS);iCC通过两个相互解耦的控制环(即快速环或慢速环),在保证整车动力性和主动安全性的前 提下,实现ACE重卡010针对每个货运时间定制(Customize)并实施实时全局(Real-time & global)节能减排优化控制策略;iCC内层为秒级快速控制环,任何时刻,无论DPC发动机101工况点是高态或低态,VCU 201都能动态指挥ePSD 123、双电机110&140、电池包130a&b、离合器111等,实时地满足车辆动力性方程(1-1)及串混功率方程(2-4)或并混功率方程(3-3);显然快速环只关注当下时空如何在发动机和电池包之间动态分配功率,以保证ACE重卡010的瞬态动力性、主动安全性和发动机节能减排的瞬态局部优化,不直接涉及发动机实时全局节能减排优化;iCC外层为小时级慢速控制环,VCU 201先以高于0.2Hz的刷新频率预测(小时级或百英里级)电子地平线内预测路载瞬态功率函数和预测路载平均功率函数(见方程MAW),再根据特定的节能减排算法来动态调节预测平均路载功率与DPC发动机101平均功率函数在(小时级或百英里级)电子地平线内的差值分布(调DPC发动机的占空比;串混功率方程(2-4A)或并混管理方程(3-3A)),以保证电池包130a&b长期稳定地工作在高效区并寻求电池包再生电能或总电能累计吞吐量全局最大化,实现特定货运事件DPC发动机101实时全局节能减排最优化(Real-time and Global Optimization);显然慢速环只关注实时全局优化车辆的节能减排,不关注发动机与电池包之间(即发动机与电机之间)的瞬态功率分配,而且慢速环与快速环之间解耦,二者可分别独立控制。
优选实施例中,DPC发动机101的PWM周期T PWM为一分钟,滚动平均窗口T MAW为五分钟(即五个PWM周期),电子地平线时间段T ehz为一小时或到达终点时间T ttd;ACE重卡010在高速公路正常行驶时,平均车速高于40英里/小时,由于受同车道正前方车辆突然减速或其它交通状况的影响,ACE重卡010可能需要突然减速以保持行车安全距离,但这种瞬态车速突然下降多为暂时扰动(Transient Disturbance),在一分钟内ACE重卡的车速会恢复到高速公路交通流的速度(高于40英里/小时);由于ACE重卡010具备超强的再生制动能力(并混模式下10秒脉冲再生制动功率高达500千瓦),这类暂时扰动仅对瞬态车速有明显影响,对整车全局节能减排的影响可忽略不计;功率管理策略(PMS)的快速环负责动态调节车辆的瞬态速度和加速度,保证车辆的动力性和主动行驶安全,其整车层面合计转矩千牛米级跃变或合计功率百千瓦级跃变的响应时间在百毫秒级;显然VCU 201预测未来一小时电子地平线内平均预测路载功率函数分布的相对误差要明显低于瞬态预测路载功率函数的相对误差(即预测值与实际值的方差),同时平均预测路载功率的鲁棒性也明显优于瞬态预测路载功率;慢速环有充足的时间(小时级)通过动态调节DPC发动机101瞬态功率PWM占空比来动态控制电池包130a&b在CS、CD、CI三种模式之一稳定运行或切换,对电池包实施预测性荷电控制(PSC),寻求再生荷电周转率最大值或总荷电周转率最大值,从而实现ACE重卡010实时全局性优化RDE节能减排;需强调,基于本发明iCC技术的节能减排优化算法为在线实时全局(On-line Real-time Global)优化算法,与现有技术内燃机车辆或混动车辆所采用的功率管理策略(PMS)有实质性差异,前者(iCC)比后者(现有技术)有车端算力要求低、算法误差小且鲁棒性高、发动机101油耗和排放(CO2&NOx)同时最小化、可实现“千车千面”等多重优点。
在本发明中,发动机101的工况指发动机飞轮处的瞬态转速和转矩,动力总成(含发动机101,电机110&140,变速箱150,驱动桥160&180等)或ACE重卡010的工况指车辆所有驱动轮的瞬态转速和合计转矩;对ACE重卡010而言,车辆工况与混联动力总成工况等效,但与发动机101的工况不等效;ACE重卡工况与发动机工况相互独立,可以分别控制。所谓发动机的点工况、线工况、或面工况分别指在发动机运行时间内,其所有瞬态工况点在万有特性曲线 平面(转速为横轴,转矩为纵轴)的投影集合分别为若干(一至三)固定的点、线、或面;显然车辆的运行工况永远为面工况。参见图4,本发明与现有技术的区别特征之一是ACE重卡010的数字脉控(DPC)发动机101能永远以线工况运行(串混或并混),其中至少一条线工况在发动机的主动运行(AOM)高效区,另一条线工况在发动机零排放零油耗的被动运行(PAM)高效区,两条线工况之间可秒级平顺切换;而现有技术中内燃机重卡或混动重卡(特别是并混或混联重卡)的传统模拟电控(AEC)发动机均为面工况,无法长期稳定地以最多三条线工况之一运行(含快速切换)。
现有技术中内燃机重卡或混动重卡的模拟电控(AEC)发动机101的瞬态功率函数与车辆路载功率函数类似,均为模拟缓变时间函数,车辆正常行驶时(紧急刹车除外),发动机瞬态功率函数不会出现秒级时间内百千瓦级的跃变(特别是从低态向高态的跃变);参见图4和图6,本发明ACE重卡所配置的数字脉控(DPC)发动机101的瞬态功率函数为双极性非等幅脉宽调制(PWM)函数,在每个PWM周期内(分钟级时间段),最多可出现两次百千瓦级的秒级跃变(一次低态向高态跃变和/或一次高态向低态跃变);本发明DPC发动机的必备技术特征之一便是无论ACE重卡010的实际循环工况(Duty Cycle)如何,发动机瞬态功率函数会经常(分钟级间隔)出现百千瓦级跃变(秒级);显然DPC发动机的瞬态功率函数与现有技术AEC发动机的瞬态功率函数在时间域的表现形式有本质性的差异,上述两种不同发动机瞬态功率函数表现形式所对应的物理解释如下:现有技术的AEC发动机101的全部运行工况点在发动机万有特性曲线第一象限内以点云分布复杂面工况呈现,其中有不可忽略的部分工况点(10%+时间概率)落在发动机的燃烧高效区以外;而DPC发动机101的全部运行工况点在发动机万有特性曲线第一象限或第四象限内以至少两条简单线工况呈现(参见图4),其中第一象限内的高态工况点几乎全部(99%+时间概率)落在发动机的燃烧高效区内指定的工况线,保证DPC发动机能同时优化实际油耗和排放;第四象限内的低态工况点全部落在指定的零油耗零排放工况线(即另一类高效工况点);在发动机高态与低态之间双向切换瞬态燃烧低效工况点出现的时间概率小于1%,这些小概率低效工况点对DPC发动机实际累计油耗和排放的影响可忽略不计。
智能模式切换(iMS)技术是智能巡航控制(iCC)组合技术集合中的一员,优选实施例如下:VCU 201以不低于0.5Hz刷新频率动态计算小时级电子地平线内瞬态预测路载功率和平均预测路载功率分布,在平均预测路载功率时空函数绝对值小于50kW且长度大于0.5英里的高速公路路段,优先从并混模式(离合器111闭合)切换到串混模式(离合器111断开),当平均预测路载功率绝对值或平均实际路载功率大于50kW时,优选并混模式;显然DPC发动机101在串混iSS低态工况的机械功耗或电耗要明显低于并混iPS低态工况的机械功耗或电耗,iMS能进一步降低油耗1%;由于驱动电机140与变速箱150机械联接,变速箱永远不挂空挡运行,iMS与现有技术的空挡滑行(商用名eCoast或SmartCoast)在技术措施上有明显差异,前者比后者的刹车有效性更优。
本发明的软件定义混联动力总成和ACE重卡与现有技术相比,聚焦车辆RDE节能减排,大幅降低了利用信息(节油数据集)节省能量(油耗)的技术难度,明显提升了通过消耗信息导致ACE重卡实际油耗排放下降的转化效率。
尽管本公开采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。

Claims (15)

  1. 一种混动重卡,包括:
    驱动电机,与所述所述混动重卡的驱动轴机械连接;
    发电机组和至少一个动力电池包,其各自能够独立地向所述驱动电机提供功率,其中所述发电机组包括双向机械连接的发动机和发电机;和
    车辆控制器,其被配置为:
    控制所述发动机,使其仅能够工作在一指定的燃烧状态或另一指定的未燃状态下,并能够在所述两个状态下之间进行切换,从而以第一调制模式对所述发动机所提供的功率进行调节,其中,
    在所述燃烧状态下,所述发动机具有在一指定的第一正值范围内的转速,和在一指定的正值范围内的转矩;以及
    在所述未燃状态下,所述发动机具有在一指定的第二正值范围内的转速,和在一指定的负值范围内的转矩,并且所述负值范围内的转矩的绝对值均低于所述正值范围内的转矩值,以及,
    所述车辆控制器还被配置为:
    以第二调制模式,对所述动力电池包所提供的功率进行调节,所述第二调制模式基于所需的路载功率和所述第一调制模式来确定。
  2. 根据权利要求1所述的混动重卡,还包括:
    可控离合器,设置在所述发电机组与所述驱动电机之间,并能够被操作为:
    当所述离合器耦合时,使得所述发电机组与所述驱动电机之间具有直接机械连接;以及
    当所述离合器断开时,使得所述发电机组与所述驱动电机之间失去直接机械连接。
  3. 根据权利要求1或2所述的混动重卡,其中所述以第一调制模式对所述所述发动机所提供的功率进行调节包括:
    在每个控制周期内,确定所述发动机工作在所述燃烧状态下的时间与所述控制周期之间的占空比。
  4. 根据权利要求3所述的混动重卡,其中所述以第一调制模式对所述所述发动机所提供的功率进行调节还包括:
    在每个控制周期内,根据未来某一时间点处所需的电池的电荷状态,来进一步调节所确定的所述占空比,以得到更新后的占空比。
  5. 根据权利要求3所述的混动重卡,其中所述以第一调制模式对所述发动机所提供的功率进行调节还包括:
    在每个控制周期内,控制所述发动机工作在所述燃烧状态下的功率幅度和/或工作在所述未燃状态下的功率幅度。
  6. 根据权利要求5所述的混动重卡,其中所述控制所述发动机工作在所述燃烧状态下的功率幅度包括:
    当所述离合器耦合时,所述发动机所提供的功率幅度选自:由转速的所述第一正值范围和转矩的所述正值范围共同限定出的区域中、预定义的比油耗曲线上的工作点所对应的功率幅度;以及
    当所述离合器断开时,转速的所述第一正值范围被设定为一固定值,并且所述发动机的所提供的功率的幅度选自:由所述转速的固定值和转矩的所述正值范围共同限定出的区域中的一条直线段上的工作点所对应的功率幅度。
  7. 根据权利要求1所述的混动重卡,还包括:
    电功率分流器,具有第一端口、第二端口和第三端口,其中
    所述第一端口与所述发电机组双向交流电连接;
    所述第二端口与所述驱动电机的输入端双向电连接;和
    所述第三端口与所述至少一个动力电池包双向直流电连接,以及
    所述电功率分流器受控于所述车辆控制器,在所述发电机机组、所述电池包、和所述驱动电机之间,对电功率的流动路径、幅度、和方向进行控制。
  8. 根据权利要求1所述的混动重卡,其中所述车辆控制器还被配置为:
    确定多个控制周期内的所述路载功率的平均值和所述内燃机所提供的功率的平均值;以及
    基于所确定的所述路载功率的平均值与所述内燃机所提供的功率的平均值之差,来确定所述动力电池包在所述多个控制周期内的工作模式,以使得所述电池包能够进入下述三种模式中的一种:
    -当所述路载功率的平均值和所述内燃机所提供的功率的平均值之间的差值基本为0时,进入电荷保持模式,其中电荷状态保持在预定义的第一上限和第一下限之间;
    -当所述路载功率的平均值和所述内燃机所提供的功率的平均值之间的差值实质上大于0时,进入电荷消耗模式,其中所述电荷状态的平均值在预定义的第二上限和第二下限之间单调下降;以及
    -当所述路载功率的平均值和所述内燃机所提供的功率的平均值之间的差值实质上小于0时,进入电荷增加模式,其中所述电荷状态的平均值在预定义的第二上限和第二下限之间单调上升,其中所述第二上限高于所述第一上限,所述第二下限低于所述第一下限。
  9. 根据权利要求1所述的混动重卡,还包括:
    功率控制单元、催化电热器和后处理系统,其中,所述后处理系统沿废气排放方向布置在所述催化电热器的下游,
    其中,所述功率控制单元在所述内燃机处于所述未燃状态下以及从所述未燃状态向所述燃烧状态转变时,控制所述催化电热器对所述后处理系统进行加热。
  10. 根据权利要求9所述的混动重卡,其中所述车辆控制器还被配置为:
    在所述内燃机处于所述未燃状态下时,使所述内燃机的全部气缸的进气阀和排气阀均进入闭合状态,以降低吸入的空气对所述下游催化系统的温度的影响。
  11. 一种混动重卡,包括:
    驱动电机,与所述所述混动重卡的驱动轴机械连接;
    发动机和至少一个动力电池包,其各自能够独立地向所述驱动电机提供功率;和
    车辆控制器,其被配置为:
    控制所述发动机,使其仅能够工作在一指定的燃烧状态或另一指定的未燃状态下,并能够在所述两个状态下之间进行切换,从而以第一调制模式对所述发动机所提供的功率进行调节,其中,
    在所述燃烧状态下,所述发动机具有在一指定的第一正值范围内的转速,和在一指定的正值范围内的转矩;以及
    在所述未燃状态下,所述发动机具有在一指定的第二正值范围内的转速,和在一指定的负值范围内的转矩,并且所述负值范围内的转矩的绝对值均低于所述正值范围内的转矩值,以及,
    所述车辆控制器还被配置为:
    以第二调制模式,对所述动力电池包所提供的功率进行调节,所述第二调制模式根据所述所需的路载功率和所述第一调制模式来确定。
  12. 一种改装传统燃油重卡的方法,包括:
    提供一已有的传统燃油重卡,所述已有的传统燃油重卡中已经包含发动机;
    提供驱动电机,将其与所述传统燃油重卡的驱动轴机械连接;
    提供发电机,将其与所述发动机双向机械连接;
    提供至少一个动力电池包,其中所述发电机和所述动力电池包被设置成能够分别独立地向所述驱动电机提供功率;以及
    提供车辆控制器,其被配置为:
    控制所述发动机,使其仅能够工作在一指定的燃烧状态或另一指定的未燃状态下,并能够在所述两个状态下之间进行切换,从而以第一调制模式对所述发动机所提供的功率进行调节,其中,
    在所述燃烧状态下,所述发动机具有在一指定的第一正值范围内的转速,和在一指定的正值范围内的转矩;以及
    在所述未燃状态下,所述发动机具有在一指定的第二正值范围内的转速,和在一指定的负值范围内的转矩,并且所述负值范围内的转矩的绝对值均低于所述正值范围内的转矩值,以及,
    所述车辆控制器还被配置为:
    以第二调制模式,对所述动力电池包所提供的功率进行调节,所述第二调制模式根据所述所需的路载功率和所述第一调制模式来确定。
  13. 一种用于控制车辆的装置,包括:
    处理单元;以及
    存储器,耦合到所述处理单元并包含有计算机程序代码,所述计算机程序代码当被所述处理单元执行时,使得所述装置执行如下动作:
    控制所述车辆的发动机,使其仅能够工作在一指定的燃烧状态或另一指定的未燃状态下,并能够在所述两个状态下之间进行切换,从而以第一调制模式对所述发动机所提供的功率进行调节,其中,
    在所述燃烧状态下,所述发动机具有在一指定的第一正值范围内的转速,和在一指定的正值范围内的转矩;以及
    在所述未燃状态下,所述发动机具有在一指定的第二正值范围内的转速,和在一指定的负值范围内的转矩,并且所述负值范围内的转矩的绝对值均低于所述正值范围内的转矩值,以及,
    所述装置还被配置为:
    以第二调制模式,对所述车辆的动力电池包所提供的功率进行调节,所述第二调制模式基于所述所需的路载功率和所述第一调制模式来确定。
  14. 一种用于控制车辆的方法,包括:
    控制所述车辆的发动机,使其仅能够工作在一指定的燃烧状态或另一指定的未燃状态下,并能够在所述两个状态下之间进行切换,从而以第一调制模式对所述发动机所提供的功率进行调节,其中,
    在所述燃烧状态下,所述发动机具有在一指定的第一正值范围内的转速,和在一指定的正值范围内的转矩;以及
    在所述未燃状态下,所述发动机具有在一指定的第二正值范围内的转速,和在一指定的负值范围内的转矩,并且所述负值范围内的转矩的绝对值均低于所述正值范围内的转矩值,以及,
    以第二调制模式,对所述车辆的动力电池包所提供的功率进行调节,所述第二调制模式基于所述所需的路载功率和所述第一调制模式来确定。
  15. 一种计算机程序产品,其存储在非易失性计算机可读介质上并包括机器可执行指令,所述可执行指令当被执行时引起所述机器执行根据权利要求14所述的方法的步骤。
PCT/CN2022/073181 2021-02-05 2022-01-21 软件定义混联动力总成及车辆 WO2022166616A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22748895.4A EP4331885A1 (en) 2021-02-05 2022-01-21 Software-defined hybrid powertrain and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110163841.4 2021-02-05
CN202110163841.4A CN114872532A (zh) 2021-02-05 2021-02-05 软件定义混联动力总成及车辆

Publications (1)

Publication Number Publication Date
WO2022166616A1 true WO2022166616A1 (zh) 2022-08-11

Family

ID=82667378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073181 WO2022166616A1 (zh) 2021-02-05 2022-01-21 软件定义混联动力总成及车辆

Country Status (3)

Country Link
EP (1) EP4331885A1 (zh)
CN (1) CN114872532A (zh)
WO (1) WO2022166616A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116309079A (zh) * 2023-05-10 2023-06-23 南京凯视迈科技有限公司 一种动态图像采集拼接优化系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116228050B (zh) * 2023-05-09 2023-08-11 中汽研汽车检验中心(昆明)有限公司 一种企业车辆环保监测方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345154A (en) * 1993-02-26 1994-09-06 General Electric Company Electric continuously variable transmission and controls for operation of a heat engine in a closed-loop power-control mode
CN1857941A (zh) * 2006-06-08 2006-11-08 上海交通大学 串并联混联式混合动力系统
CN108973979A (zh) * 2018-07-18 2018-12-11 乾碳国际公司 混动车辆预测性功率控制系统方案
CN109823188A (zh) * 2019-01-10 2019-05-31 乾碳国际公司 混动商用车再生制动和缓速系统
CN111746259A (zh) * 2019-03-29 2020-10-09 乾碳国际公司 重卡节油机器人装置和控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345154A (en) * 1993-02-26 1994-09-06 General Electric Company Electric continuously variable transmission and controls for operation of a heat engine in a closed-loop power-control mode
CN1857941A (zh) * 2006-06-08 2006-11-08 上海交通大学 串并联混联式混合动力系统
CN108973979A (zh) * 2018-07-18 2018-12-11 乾碳国际公司 混动车辆预测性功率控制系统方案
CN109823188A (zh) * 2019-01-10 2019-05-31 乾碳国际公司 混动商用车再生制动和缓速系统
CN111746259A (zh) * 2019-03-29 2020-10-09 乾碳国际公司 重卡节油机器人装置和控制方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Congress", June 2016, THE UNITED STATES ENERGY DEPARTMENT, article "Adoption of New Fuel Technologies from SuperTruck"
"Heavy Duty Vehicle Technology Potential and Cost Study", FINAL REPORT FOR ICCT
"North America Cargo Efficiency Association (NACFE) 2019 year is ''pure electricity, mix, or replace fuel heavy truck'' research report", 2019, NORTH AMERICAN COUNCIL FOR FREIGHT EFFICIENCY, article "Viable Class 7/8Electric, Hybrid and Alternative Fuel Tractors"
"White Paper", May 2020, ICCT, article "In-use NOx Evaluation and Compliance Evaluation for Modern Heavy-Duty Vehicles in Europe and United States"
FELIPE RRODRIGUEZ, PH: "HDV Fuel Efficiency Technologies", 28 June 2018, INTERNATIONAL CLEAN TRANSPORT ASSOCIATION (ICCT
OSCAR DELGADO ET AL.: "The White Paper", January 2018, INTERNATIONAL CLEAN TRANSPORTATION ASSOCIATION (ICCT, article "European Heavy-Duty Vehicles: Cost Effects of Effects -Efficiency Technologies for Long-Haul Tractor-Trailers in the 2025-2030Timeframe"
RICARDO: "Heavy Vehicle Technology Potential and Cost Analysis", RICARDO'S 2017 STUDY REPORT, 2017

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116309079A (zh) * 2023-05-10 2023-06-23 南京凯视迈科技有限公司 一种动态图像采集拼接优化系统
CN116309079B (zh) * 2023-05-10 2023-08-04 南京凯视迈科技有限公司 一种动态图像采集拼接优化系统

Also Published As

Publication number Publication date
EP4331885A1 (en) 2024-03-06
CN114872532A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
WO2020199909A1 (zh) 重卡节油机器人装置和控制方法
WO2021143594A1 (zh) 具有节油系统的重卡及其节油控制方法
WO2021213253A1 (zh) Ace重卡节油机器人系统
WO2020143495A1 (zh) 混动商用车再生制动和缓速系统
US20210291803A1 (en) Hybrid vehicle predictive power control system solution
CN103197667B (zh) 一种混合动力汽车整车控制器的仿真与测试方法
WO2022166616A1 (zh) 软件定义混联动力总成及车辆
CN105946857A (zh) 基于智能交通系统的并联phev能量管理方法
Markel et al. Modeling grid-connected hybrid electric vehicles using ADVISOR
Gujarathi et al. Fuzzy logic based energy management strategy for converted parallel plug-in hybrid electric vehicle
Lu et al. Fuzzy logic control approach to the energy management of parallel hybrid electric vehicles
Zhao et al. Modelling and Analysis of Plug-in Series-Parallel Hybrid Medium-Duty Vehicles
WO2024022141A1 (zh) 智能多模混动总成及智能网联电动重卡
Rossi et al. A hybrid Car by ENEA for Urban Mobility
Steffan et al. Potentials of a 48 volt belt-starter-generator in the powertrain of an ultra-light vehicle
Kraus et al. A New Approach to an Adaptive and Predictive Operation Strategy for PHEVs
Ord et al. Powertrain Design to Meet Performance and Energy Consumption Goals for EcoCAR 3
Gao et al. Electric and Conventional Vehicle Performance over Eco-Driving Cycles: Energy Benefits and Component Loss
Dalton et al. Cummins Electric Truck with Range-Extending Engine (ETREE) Project (Final Technical Report)
Liebl Der Antrieb von morgen 2019: Diversifizierung konsequent vorantreiben 13. Internationale MTZ-Fachtagung Zukunftsantriebe
Madanda et al. Model based engineering and realization of the KAYOOLA Electric City Bus powertrain
Zahraei et al. Look-forward longitudinal dynamic modelling for a series-parallel hybrid electric vehicle
Cole The Effectiveness of Energy storage in hybrid Vehicles
Harries et al. Plug-In Hybrid Electric Vehicle Architecture Comparison for Strong Hybridization of A Mid-Size Sedan as Part of EcoCAR2: Plugging Into the Future
Park Modelling and control of a light-duty hybrid electric truck

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022748895

Country of ref document: EP

Effective date: 20230905