WO2022166510A1 - 风电场前期测风塔规划选址方法、系统、装置及存储介质 - Google Patents

风电场前期测风塔规划选址方法、系统、装置及存储介质 Download PDF

Info

Publication number
WO2022166510A1
WO2022166510A1 PCT/CN2022/070240 CN2022070240W WO2022166510A1 WO 2022166510 A1 WO2022166510 A1 WO 2022166510A1 CN 2022070240 W CN2022070240 W CN 2022070240W WO 2022166510 A1 WO2022166510 A1 WO 2022166510A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
tower
measuring tower
alternative
data
Prior art date
Application number
PCT/CN2022/070240
Other languages
English (en)
French (fr)
Inventor
张波
刘鑫
李卫东
郭小江
闫姝
周昳鸣
尹铁男
陈新明
王光文
Original Assignee
中国华能集团清洁能源技术研究院有限公司
华能海上风电科学技术研究有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 华能海上风电科学技术研究有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2022166510A1 publication Critical patent/WO2022166510A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/06Wind turbines or wind farms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present application belongs to the technical field of wind power equipment construction, and in particular relates to a method, system, device and storage medium for early-stage wind measurement tower planning and site selection of wind farms adapted to moderately complex terrain.
  • the conventional method is as follows: for wind farms with a capacity of no more than 50MW, set up one wind measurement tower, and for wind farms with a capacity of more than 100MW, set up two wind measurement towers.
  • the selected location of the wind measuring tower should be far away from tall trees and obstacles, and the field of vision should be unobstructed.
  • the shortcomings of the above technologies are: 1. The representativeness of the wind measuring towers to the site cannot be accurately judged. If the location and number of the wind measuring towers are insufficient, the assessment of the wind energy resources of the site will be inaccurate. 2. The tower height of the wind measuring tower cannot be accurately determined. If the shear of the wind measuring tower position is small and the height of the wind measuring tower is set too high, it will cause a waste of investment. The shear of the wind tower is too large, and the height of the wind tower is set too low, which will cause the inaccurate assessment of the wind energy resources of the site. In short, the prior art has poor accuracy and high cost.
  • the purpose of this application is to provide a method, system, device and storage medium for the planning and site selection of wind towers in the early stage of wind farms, which are suitable for moderately complex terrain, so as to solve the problems in the prior art for the planning and site selection of wind measurement towers in the early stage of low-mountain hilly wind farms.
  • the problem of poor accuracy is to provide a method, system, device and storage medium for the planning and site selection of wind towers in the early stage of wind farms, which are suitable for moderately complex terrain, so as to solve the problems in the prior art for the planning and site selection of wind measurement towers in the early stage of low-mountain hilly wind farms. The problem of poor accuracy.
  • Step 1 acquiring digital elevation data of the wind farm area, and correspondingly converting the acquired digital elevation data into a contour topographic map with a corresponding resolution;
  • Step 2 according to the contour topographic map of the wind farm area obtained in step 1, select multiple candidate locations of wind measuring towers;
  • Step 3 obtain the reanalysis data corresponding to the alternative location of the anemometer tower selected in step 2;
  • Step 4 obtain Globe Land30 surface coverage data, and convert the obtained Globe Land30 surface coverage data into 30m resolution surface roughness data correspondingly;
  • Step 5 Input the contour topographic map obtained in step 1, the reanalysis data corresponding to any one of the alternative wind tower positions obtained in step 3, and the surface roughness data of 30m resolution obtained in step 4 into the computational fluid. Calculate in the mechanical software, and obtain the wind speed and wind direction sequence corresponding to the alternative positions of the remaining anemometer towers respectively;
  • Step 6 Perform correlation, error analysis and wind direction rose diagram statistics on the wind speed and wind direction sequence corresponding to the candidate positions of the remaining anemometer towers obtained in step 5 and the reanalysis data obtained in step 3 respectively, and obtain multiple correlations.
  • Step 7 for the candidate location of the wind measuring tower to be selected obtained in step 6, review the representativeness of the terrain and the blocking effect of obstacles, and confirm that the candidate location of the wind measuring tower to be selected is valid;
  • Step 8 Calculate the comprehensive wind shear of the candidate position of the final wind measuring tower obtained in step 7, and set the height of the wind measuring tower according to the comprehensive wind shear value.
  • the digital elevation data is ASTER GDEM or SRTM DEM or NASA DEM.
  • the wind farm area is: a rectangle is drawn with the outer edge of the wind farm, and the rectangle is expanded by 50km.
  • the selection principle of the alternative position of the wind measuring tower is as follows: the vertical control range of the alternative position of the wind measuring tower is within the height difference range of 50m between the surface height and the surface height of the wind measuring tower, and the alternative position of the wind measuring tower is horizontal
  • the direction control range is within 3km of the horizontal direction of the optional wind tower.
  • the reanalysis data is MERRA or ERA5.
  • the reanalysis data includes the wind speed and direction sequence for the past 10 years or more corresponding to the position where the vertical height of the ground surface is 90 m.
  • the computational fluid dynamics software is Meteodyn WT or WindSim.
  • step 6 according to the correlation coefficient, the relative error coefficient of the wind speed and the dominant wind direction, the candidate position of the final wind measuring tower is selected, and the specific method is:
  • step 5 Delete the candidate positions of the anemometer tower corresponding to the correlation coefficient ⁇ 0.95, the relative error coefficient of the wind speed ⁇ 3%, and the dominant wind direction is the same. Substitute into step 5 for iterative calculation until all the alternative positions of the anemometer towers that do not satisfy the correlation coefficient ⁇ 0.95 and the relative wind speed error coefficient ⁇ 3% and the prevailing wind direction are the same conditions have participated in the calculation; finally at least one wind measurement tower is obtained. Tower alternative location.
  • step 7 the representativeness of the terrain and the occlusion effect of obstacles are reviewed, and the specific method is:
  • the height of the wind measuring tower is set according to the comprehensive wind shear value
  • the specific method is: setting the height of the wind measuring tower arranged at the alternative position of the wind measuring tower corresponding to the comprehensive wind shear value ⁇ 0.20. is not less than 140m; set the height of the wind tower at the alternative location of the wind tower corresponding to the comprehensive wind shear value ⁇ 0.15 and ⁇ 0.20 to 120m; otherwise, the height of the wind tower is set to 100m.
  • a system for planning and site selection of wind measuring towers in the early stage of wind farms specifically comprising:
  • the digital elevation data acquisition module is used to acquire the digital elevation data of the wind farm area, and correspondingly convert the acquired digital elevation data into a contour topographic map of corresponding resolution;
  • An alternative location selection module for wind measuring towers which is used to select multiple alternative locations for wind measuring towers according to the obtained contour topographic map of the wind farm area;
  • the reanalysis data acquisition module is used to acquire the reanalysis data corresponding to the candidate positions of the multiple wind measuring towers;
  • the surface coverage data acquisition module is used to acquire the Globe Land30 surface coverage data, and convert the acquired Globe Land30 surface coverage data into 30m resolution surface roughness data correspondingly;
  • the calculation module is used to input the contour topographic map, the reanalysis data corresponding to any alternative location of the anemometer tower and the surface roughness data with a resolution of 30m into the computational fluid dynamics software for calculation, and obtain the remaining anemometer towers respectively.
  • the module for selecting the alternative positions of the anemometer towers to be selected is used to correlate the wind speed and wind direction sequence corresponding to the remaining anemometer tower alternative positions with the re-analysis data, analyze the error and make statistics of the wind direction rose diagram, and obtain multiple correlations. coefficient, multiple wind speed relative error coefficients and multiple wind direction rose diagram dominant wind directions, according to the correlation coefficient, wind speed relative error coefficient and wind direction rose diagram dominant wind direction, select the candidate location of the wind measuring tower to be selected;
  • the review module is used to check the alternative location of the wind measuring tower to be selected, check the representativeness of the terrain and the blocking effect of obstacles, and confirm that the alternative location of the wind measuring tower to be selected is valid;
  • the wind measuring tower height setting module is used to calculate the comprehensive wind shear of the final alternative position of the wind measuring tower, and set the height of the wind measuring tower according to the comprehensive wind shear value.
  • a device for planning and site selection of wind towers in the early stage of wind farms comprising a memory and a processor; the memory is used for storing a computer program; Plan site selection methods.
  • a computer-readable storage medium on which a computer program is stored, when the computer program is executed by a processor, a method for planning and site selection of an early wind tower in a wind farm is realized.
  • the method for planning and site selection of wind towers in the early stage of wind farms adapting to moderately complex terrain is to obtain alternative locations of wind towers through digital elevation data, and then use contour topographic maps, reanalysis data and surface roughness with 30m resolution. Calculate the wind speed and wind direction sequence corresponding to the remaining candidate positions of the wind measurement tower; obtain the candidate position of the proposed wind measurement tower through the correlation, relative error and dominant wind direction, and use the three-dimensional model to confirm that the proposed position of the wind measurement tower is valid. , according to the comprehensive wind shear to determine the height of the wind measuring tower.
  • This method not only improves the accuracy of the planning and site selection of wind measuring towers for wind farms with moderately complex terrain, but also provides a basis for determining the number of wind measuring towers and reduces waste of funds; The accuracy of wind energy resource assessment of wind farms is improved, and the reasonable selection of wind tower location and tower height can reduce the uncertainty of wind energy resource assessment.
  • FIG. 1 is a flowchart of a method for planning and site selection of an early-stage wind measuring tower of a wind farm provided by an embodiment of the present application.
  • the embodiments of the present application provide a method, system, device and storage medium for the planning and site selection of wind measuring towers in the early stage of wind farms, which are suitable for moderately complex terrain, and solve the problem in the prior art for the planning and site selection of wind measuring towers in the early stage of wind farms on low hills and hills. The problem of poor accuracy.
  • the method for planning and site selection of wind measuring towers in the early stage of wind farms is suitable for moderately complex terrain, including the determination of the number and height of the wind measuring towers, and the selection of the location of the wind measuring towers.
  • the method of the present application can improve the accuracy of planning and site selection of wind measuring towers in wind farms with moderately complex terrain, and also provide a basis for determining the number of wind measuring towers, thereby reducing waste of funds; at the same time, the accuracy of wind energy resource assessment in wind farms is improved, which is reasonable
  • the choice of the location and height of the wind measuring tower can reduce the uncertainty of wind energy resource assessment.
  • Step 1 Obtain the digital elevation data of the wind farm area, and convert the obtained digital elevation data into a contour topographic map with corresponding resolution.
  • the wind farm area is: draw a rectangle with the outer edge of the wind farm, and expand the rectangle by 50km.
  • the rectangular area of the digital elevation data is: ASTER GDEM or SRTM DEM or NASA DEM.
  • Step 2 according to the contour topographic map of the wind farm area obtained in step 1, select multiple alternative positions of the wind measuring tower; the selection principle of the alternative position of the wind measuring tower is: the vertical control range of the alternative position of the wind measuring tower is: Within the range of 50m height difference between the surface height and the surface height of the anemometer tower, the horizontal direction control range of the alternative location of the anemometer tower is within 3km of the horizontal direction of the alternative anemometer tower location.
  • Step 3 according to the alternative location of the anemometer tower selected in step 2, obtain the reanalysis data corresponding to the alternative location of the anemometer tower, the reanalysis data is MERRA or ERA5, and the reanalysis data includes the location where the vertical height of the ground is 90m. Corresponding wind speed and direction sequence over the past 10 years;
  • the method for obtaining the wind speed and direction sequence for more than 10 years is as follows:
  • NWP Numerical Weather Prediction Model
  • Step 4 Obtain Globe Land30 surface coverage data; use the corresponding relationship between Globe Land30 surface coverage data and surface roughness to convert the obtained Globe Land30 surface coverage data into 30m resolution surface roughness data; the obtained Globe Land30 surface coverage data
  • the scope is: draw a rectangle with the outer edge of the wind farm, and expand the rectangle by 50km.
  • Step 5 Input the contour topographic map obtained in step 1, the reanalysis data corresponding to any one of the alternative wind tower positions obtained in step 3, and the surface roughness data of 30m resolution obtained in step 4 into the computational fluid.
  • the mechanics software Meteodyn WT or WindSim the calculation is performed to obtain the wind speed and wind direction sequences corresponding to the alternative positions of the remaining anemometer towers. , 100m, 120m and 140m.
  • Step 6 Perform correlation and error analysis on the wind speed and wind direction sequence corresponding to the candidate positions of the remaining anemometer towers obtained in step 5 and the reanalysis data obtained in step 3, respectively, to obtain multiple correlation coefficients, multiple Wind speed relative error coefficient and wind direction rose diagram statistics, where the correlation coefficient ⁇ 0.95 and the wind speed relative error coefficient ⁇ 3% and the dominant wind direction corresponding to the corresponding anemometer tower candidate positions are deleted, and then the remaining anemometer tower candidates are selected.
  • An optional location of the wind measuring tower is arbitrarily selected from the location, and it is substituted into step 5 and step 6 for iterative calculation until the remaining measurement does not satisfy the correlation coefficient ⁇ 0.95 and the relative error coefficient of wind speed is ⁇ 3% and the prevailing wind direction corresponds to the same conditions.
  • the alternative positions of the wind towers have all participated in the calculation; finally at least one alternative position of the wind tower to be selected is obtained;
  • Step 7 Input the candidate position of the wind tower to be selected in step 6 into the three-dimensional model, and use the model terrain information to calculate the elevation variation between the candidate position of the wind tower to be selected and the point area of the wind farm to be deployed. coefficient, to determine that the difference in terrain features meets the requirement of ⁇ 5%; there is no raised obstacles or ridges in the upwind direction of the candidate location of the anemometer tower to be selected, and the terrain is flat and open. If the alternative location of the wind measuring tower to be selected meets the above requirements, confirm that the alternative location of the wind measuring tower to be selected is valid; if it does not meet the above requirements, go to step 2, and re-select the alternative location of the wind measuring tower until the wind measuring tower to be selected. The alternative location of the tower meets the above requirements;
  • Step 8 Calculate the final alternative location of the wind measuring tower obtained in Step 7, the comprehensive wind shear value when the surface height is 90m, 100m, 120m and 140m, and the wind measuring tower corresponding to the comprehensive wind shear value ⁇ 0.20 is calculated.
  • the height of the wind measuring tower arranged at the alternative location is set to not less than 140m, and the height of the wind measuring tower arranged at the alternative location of the wind measuring tower corresponding to the comprehensive wind shear value ⁇ 0.15 and ⁇ 0.20 is set to 120 m, Otherwise, the height of the wind tower is set to 100m.
  • a system for planning and site selection of wind measuring towers in the early stage of wind farms specifically comprising:
  • the digital elevation data acquisition module is used to acquire the digital elevation data of the wind farm area, and correspondingly convert the acquired digital elevation data into a contour topographic map of corresponding resolution;
  • An alternative location selection module for wind measuring towers which is used to select multiple alternative locations for wind measuring towers according to the obtained contour topographic map of the wind farm area;
  • the reanalysis data acquisition module is used to acquire the reanalysis data corresponding to the candidate positions of the multiple wind measuring towers;
  • the surface coverage data acquisition module is used to acquire the Globe Land30 surface coverage data, and convert the acquired Globe Land30 surface coverage data into 30m resolution surface roughness data correspondingly;
  • the calculation module is used to input the contour topographic map, the reanalysis data corresponding to any alternative location of the anemometer tower and the surface roughness data with a resolution of 30m into the computational fluid dynamics software for calculation, and obtain the remaining anemometer towers respectively.
  • the module for selecting the alternative positions of the anemometer towers to be selected is used to correlate the wind speed and wind direction sequence corresponding to the remaining anemometer tower alternative positions with the re-analysis data, analyze the error and make statistics of the wind direction rose diagram, and obtain multiple correlations. coefficient, multiple wind speed relative error coefficients and multiple wind direction rose diagram dominant wind directions, according to the correlation coefficient, wind speed relative error coefficient and wind direction rose diagram dominant wind direction, select the candidate location of the wind measuring tower to be selected;
  • the review module is used to check the alternative location of the wind measuring tower to be selected, check the representativeness of the terrain and the blocking effect of obstacles, and confirm that the alternative location of the wind measuring tower to be selected is valid;
  • the wind measuring tower height setting module is used to calculate the comprehensive wind shear of the final alternative position of the wind measuring tower, and set the height of the wind measuring tower according to the comprehensive wind shear value.
  • a device for planning and site selection of wind towers in the early stage of wind farms comprising a memory and a processor; the memory is used for storing a computer program; Plan site selection methods.
  • a computer-readable storage medium on which a computer program is stored, when the computer program is executed by a processor, a method for planning and site selection of an early wind tower in a wind farm is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Geometry (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Databases & Information Systems (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Remote Sensing (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Game Theory and Decision Science (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Analysis (AREA)
  • Algebra (AREA)
  • Mathematical Optimization (AREA)
  • Educational Administration (AREA)
  • Computer Graphics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Wind Motors (AREA)

Abstract

本申请公开了一种风电场前期测风塔规划选址方法、系统、装置及存储介质,该方法通过数字高程数据获取测风塔的备选位置,之后根据等高线地形图、再分析数据和30m分辨率地表粗糙度数据,计算剩余测风塔备选位置所对应的风速、风向序列;通过相关关系、误差分析和主导风向得到拟选测风塔备选位置,利用三维模型,确认拟选测风塔位置有效,根据综合风切变确定测风塔的高度。该方法不仅提升了中等复杂地形风电场测风塔规划选址的精度,还为确定测风塔的数量提供依据,减少资金浪费。

Description

风电场前期测风塔规划选址方法、系统、装置及存储介质
本申请要求于2021年02月02日提交中国专利局、申请号为202110144174.5、发明名称为“风电场前期测风塔规划选址方法、系统、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于风电设备建设技术领域,具体涉及一种适应中等复杂地形的风电场前期测风塔规划选址方法、系统、装置及存储介质。
背景技术
我国国土面积辽阔,风能资源储量较为丰富。随着风力发电机组技术的进步以及开发建设成本的降低,低山丘陵等中等复杂地形风电场迎来了开发建设的高峰期。
低山丘陵风电场开发建设条件较为复杂,海拔高程落差较大,部分区域植被茂密,地形崎岖,局地气候显著,风能资源分布空间分布差异较大,因此,准确测量场址的风能资源条件对项目开发尤为重要。据统计分析,测风数据10%的误差可能导致风电场发电量30%左右的误差,而因风资源数据不准确,导致湍流、极大风速等计算不准,对机组选型及后期的安全运行造成极大的隐患。
目前,针对低山丘陵风电场前期测风塔规划选址,常规做法如下:容量不超过50MW的风电场,设置1座测风塔,容量超过100MW的风电场设置2座测风塔。测风塔所选位置需远离高大树木和障碍物,视野开阔四周无阻挡。
上述技术的不足之处在于:1.不能准确判断测风塔对场址的代表性,若测风塔设置位置和数量不足,会造成场址风能资源评估不准确,若测风塔设置数量过多,会造成投资的浪费;2.不能准确确定测风塔的塔高,若测风塔位置的切变较小,测风塔高度设置过高,会造成投资的浪费,若测风塔位置的切变较大,测风塔高度设置过低,会造成场址风能资源评估不准确。总 之,现有技术精确度差、成本高。
发明内容
本申请的目的在于提供一种风电场前期测风塔规划选址方法、系统、装置及存储介质,适应中等复杂地形,以解决现有技术中,低山丘陵风电场前期测风塔规划选址精确度差的问题。
为了达到上述目的,本申请采用的技术方案是:
一种风电场前期测风塔规划选址方法,适应中等复杂地形,包括以下步骤:
步骤1,获取风电场区域的数字高程数据,并将获取的数字高程数据对应转化为相应分辨率的等高线地形图;
步骤2,根据步骤1获取的风电场区域的等高线地形图,选取多处测风塔备选位置;
步骤3,获取步骤2中选取的测风塔备选位置所对应的再分析数据;
步骤4,获取Globe Land30地表覆盖数据,并将获取的Globe Land30地表覆盖数据对应转化为30m分辨率地表粗糙度数据;
步骤5,将步骤1得到的等高线地形图、步骤3中得到的任意一个测风塔备选位置所对应的再分析数据和步骤4中得到的30m分辨率地表粗糙度数据输入至计算流体力学软件中进行计算,分别得到剩余测风塔备选位置所对应的风速、风向序列;
步骤6,分别将步骤5中获取得到的剩余测风塔备选位置所对应的风速、风向序列与步骤3中得到的再分析数据做相关关系、误差分析和风向玫瑰图统计,得到多个相关关系系数、多个风速相对误差系数和多个风向玫瑰图主导风向,根据相关关系系数、风速相对误差系数和风向玫瑰图主导风向,选取拟选测风塔备选位置;
步骤7,对步骤6得到的拟选测风塔备选位置,复核地形代表性及障碍物遮挡效应,确认拟选测风塔备选位置有效;
步骤8,计算步骤7中得到的最终测风塔备选位置的综合风切变,根据综合风切变值设置测风塔的高度。
优选地,步骤1中,数字高程数据为ASTER GDEM或者SRTM DEM或者NASA DEM。
优选地,步骤1中,风电场区域为:以风电场的外边缘画矩形,且该矩形外扩50km的区域。
优选地,步骤2中,测风塔备选位置的选取原则为:测风塔备选位置垂直方向控制范围为地表高度与测风塔地表高度50m高差范围内,测风塔备选位置水平方向控制范围为备选测风塔位置水平方向3km范围内。
优选地,步骤3中,再分析数据为MERRA或者ERA5。
优选地,步骤3中,再分析数据包括地表垂直高度为90m的位置处所对应的近10年以上的风速风向序列。
优选地,步骤5中,计算流体力学软件为Meteodyn WT或者WindSim。
优选地,步骤6中,根据相关关系系数、风速相对误差系数和主导风向,选取最终测风塔备选位置,具体方法是:
将相关关系系数≥0.95且风速相对误差系数≤3%且主导风向相同所对应的测风塔备选位置删除,之后,在剩余测风塔备选位置中任意选取一个测风塔备选位置,代入步骤5中进行迭代计算,直至所有不满足相关关系系数≥0.95且风速相对误差系数≤3%且主导风向相同条件所对应的测风塔备选位置均已参加计算;最终得到至少一个测风塔备选位置。
优选地,步骤7中,对地形代表性及障碍物遮挡效应进行复核,具体方法是:
将拟选测风塔备选位置输入到三维模型中,利用模型地形信息,确认拟选测风塔备选位置与风电场拟布风机点位区域地形特征差异≤5%;拟选测风塔备选位置上风向3km内无凸起障碍物或山脊遮挡,地势平坦开阔。
优选地,步骤8中,根据综合风切变值设置测风塔的高度,具体方法是:将综合风切变值≥0.20所对应的测风塔备选位置处布置的测风塔的高度设置为不低于140m;将综合风切变值≥0.15且<0.20所对应的测风塔备选位置处布置的测风塔的高度设置为120m;否则,测风塔的高度设置为100m。
本申请提供的另一个技术方案是:
一种用于风电场前期测风塔规划选址方法的系统,具体包括:
数字高程数据获取模块,用于获取风电场区域的数字高程数据,并将获取的数字高程数据对应转化为相应分辨率的等高线地形图;
测风塔备选位置选取模块,用于根据获取的风电场区域的等高线地形图,选取多处测风塔备选位置;
再分析数据获取模块,用于获取多处测风塔备选位置所对应的再分析数据;
地表覆盖数据获取模块,用于获取Globe Land30地表覆盖数据,并将获取的Globe Land30地表覆盖数据对应转化为30m分辨率地表粗糙度数据;
计算模块,用于将等高线地形图、任意一个测风塔备选位置所对应的再分析数据和30m分辨率地表粗糙度数据输入至计算流体力学软件中进行计算,分别得到剩余测风塔备选位置所对应的风速、风向序列;
拟选测风塔备选位置选取模块,用于分别将剩余测风塔备选位置所对应的风速、风向序列与再分析数据做相关关系、误差分析和风向玫瑰图统计,得到多个相关关系系数、多个风速相对误差系数和多个风向玫瑰图主导风向,根据相关关系系数、风速相对误差系数和风向玫瑰图主导风向,选取拟选测风塔备选位置;
复核模块,用于对拟选测风塔备选位置,复核地形代表性及障碍物遮挡效应,确认拟选测风塔备选位置有效;
测风塔高度设置模块,用于计算最终测风塔备选位置的综合风切变,根据综合风切变值设置测风塔的高度。
本申请提供的又一个技术方案是:
一种用于风电场前期测风塔规划选址方法的装置,包括存储器和处理器;存储器,用于存储计算机程序;处理器,用于当执行计算机程序时,实现的风电场前期测风塔规划选址方法。
本申请提供的再一个技术方案是:
一种计算机可读的存储介质,存储介质上存储有计算机程序,当计算机程序被处理器执行时,实现的风电场前期测风塔规划选址方法。
与现有技术相比,本申请的有益效果是:
本申请提供的适应中等复杂地形的风电场前期测风塔规划选址方法,通过数字高程数据获取测风塔的备选位置,之后根据等高线地形图、再分析数据和30m分辨率地表粗糙度数据,计算剩余测风塔备选位置所对应的风速、风向序列;通过相关关系、相对误差和主导风向得到拟选测风塔备选位置,利用三维模型,确认拟选测风塔位置有效,根据综合风切变确定测风塔的高度,该方法不仅提升了中等复杂地形风电场测风塔规划选址的精度,还为确定测风塔的数量提供依据,减少资金浪费;同时,提升了风电场风能资源评估的准确性,合理的测风塔位置及塔高的选择,可以降低风能资源评估的不确定性。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对发明的不当限定。在附图中:
图1为本申请实施例提供的风电场前期测风塔规划选址方法流程图。
具体实施方式
下面将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以下详细说明均是示例性的说明,旨在对本申请提供进一步的详细说明。除非另有指明,本申请所采用的所有技术术语与本申请所属领域的一般技术人员的通常理解的含义相同。本申请所使用的术语仅是为了描述具体实施方式,而并非意图限制根据本申请的示例性实施方式。
本申请实施例提供了一种风电场前期测风塔规划选址方法、系统、装置及存储介质,适应中等复杂地形,解决了现有技术中,低山丘陵风电场前期测风塔规划选址精确度差的问题。
如图1所示,本申请实施例提供的风电场前期测风塔规划选址方法,适应中等复杂地形,包括测风塔数量及塔高的确定,测风塔位置的选择。通过本申请方法能够提升中等复杂地形的风电场测风塔规划选址的精度,还为确定测风塔的数量提供依据,减少资金浪费;同时,提升了风电场风能资源评估的准确性,合理的测风塔位置及塔高的选择,可以降低风能资源评估的不确定性。
具体包括以下步骤:
步骤1,获取风电场区域的数字高程数据,并将获取的数字高程数据对应转化为相应分辨率的等高线地形图,风电场区域为:以风电场的外边缘画矩形,矩形外扩50km的矩形区域,数字高程数据为:ASTER GDEM或者SRTM DEM或者NASA DEM。
步骤2,根据步骤1获取的风电场区域的等高线地形图,选取多处测风塔备选位置;测风塔备选位置的选取原则为:测风塔备选位置垂直方向控制范围为地表高度与测风塔地表高度50m高差范围内,测风塔备选位置水平方向控制范围为备选测风塔位置水平方向3km范围内。
步骤3,根据步骤2选取的测风塔备选位置,获取测风塔的备选位置所对应的再分析数据,再分析数据为MERRA或者ERA5,再分析数据包括地表垂直高度为90m的位置处所对应的近10年以上的风速风向序列;
近10年以上的风速风向序列获取方法具体是:
利用数值天气预报模式(NWP)进行获取,该模式使用的输入数据是过去50年的全球天气数据;高分辨率的地形、土壤和植被数据;以及现场实测数据;采用气候变化分析、长时段历史数据以及空间分布图,可以获取项目区域风能状况长期变化。
步骤4,获取Globe Land30地表覆盖数据;利用Globe Land30地表覆盖数据与地表粗糙度的对应关系,将获取的Globe Land30地表覆盖数据对应转化为30m分辨率地表粗糙度数据;获取的Globe Land30地表覆盖数据范围为:以风电场的外边缘画矩形,矩形外扩50km。
表1GlobeLand30地表覆盖分类与地表粗糙度的对应关系
Figure PCTCN2022070240-appb-000001
步骤5,将步骤1得到的等高线地形图、步骤3中得到的任意一个测风塔备选位置所对应的再分析数据和步骤4中得到的30m分辨率地表粗糙度数据输入至计算流体力学软件Meteodyn WT或者WindSim中,进行计算,分别得到剩余测风塔备选位置所对应的风速风向序列,其中,在计算流体力学软件中, 将测风塔备选位置处的地表高度设置为90m、100m、120m和140m。
步骤6,分别将步骤5中获取得到的剩余测风塔备选位置所对应的风速、风向序列与步骤3中得到的再分析数据做相关关系及误差分析,得到多个相关关系系数、多个风速相对误差系数和风向玫瑰图统计,其中,将相关关系系数≥0.95且风速相对误差系数≤3%且主导风向相同所对应的测风塔备选位置删除,之后,在剩余测风塔备选位置中任意选取一个测风塔备选位置,代入步骤5、步骤6中进行迭代计算,直至剩余的不满足相关关系系数≥0.95且风速相对误差系数≤3%且主导风向相同条件所对应的测风塔备选位置均已参加计算;最终得到至少一个拟选测风塔备选位置;
步骤7,对步骤6得到的拟选测风塔备选位置,输入到三维模型中,利用模型地形信息,分别计算拟选测风塔备选位置与风电场拟布风机点位区域的高程变异系数,确定地形特征差异满足≤5%的要求;拟选测风塔备选位置上风向3km内无凸起障碍物或山脊遮挡,地势平坦开阔。若拟选测风塔备选位置满足上述要求,则确认拟选测风塔备选位置有效;若不满足上述要求,则进行步骤2,重新选取测风塔备选位置,直至拟选测风塔备选位置满足上述要求;
步骤8,计算步骤7中得到的最终测风塔备选位置,在地表高度为90m、100m、120m和140m时的综合风切变值,将综合风切变值≥0.20所对应的测风塔备选位置处布置的测风塔的高度设置为不低于140m,将综合风切变值≥0.15且<0.20所对应的测风塔备选位置处布置的测风塔的高度设置为120m,否则,测风塔的高度设置为100m。
本申请提供的另一个技术方案是:
一种用于风电场前期测风塔规划选址方法的系统,具体包括:
数字高程数据获取模块,用于获取风电场区域的数字高程数据,并将获取的数字高程数据对应转化为相应分辨率的等高线地形图;
测风塔备选位置选取模块,用于根据获取的风电场区域的等高线地形图,选取多处测风塔备选位置;
再分析数据获取模块,用于获取多处测风塔备选位置所对应的再分析数据;
地表覆盖数据获取模块,用于获取Globe Land30地表覆盖数据,并将获取的Globe Land30地表覆盖数据对应转化为30m分辨率地表粗糙度数据;
计算模块,用于将等高线地形图、任意一个测风塔备选位置所对应的再分析数据和30m分辨率地表粗糙度数据输入至计算流体力学软件中进行计算,分别得到剩余测风塔备选位置所对应的风速、风向序列;
拟选测风塔备选位置选取模块,用于分别将剩余测风塔备选位置所对应的风速、风向序列与再分析数据做相关关系、误差分析和风向玫瑰图统计,得到多个相关关系系数、多个风速相对误差系数和多个风向玫瑰图主导风向,根据相关关系系数、风速相对误差系数和风向玫瑰图主导风向,选取拟选测风塔备选位置;
复核模块,用于对拟选测风塔备选位置,复核地形代表性及障碍物遮挡效应,确认拟选测风塔备选位置有效;
测风塔高度设置模块,用于计算最终测风塔备选位置的综合风切变,根据综合风切变值设置测风塔的高度。
本申请提供的又一个技术方案是:
一种用于风电场前期测风塔规划选址方法的装置,包括存储器和处理器;存储器,用于存储计算机程序;处理器,用于当执行计算机程序时,实现的风 电场前期测风塔规划选址方法。
本申请提供的再一个技术方案是:
一种计算机可读的存储介质,存储介质上存储有计算机程序,当计算机程序被处理器执行时,实现的风电场前期测风塔规划选址方法。
由技术常识可知,本申请可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本申请范围内或在等同于本申请的范围内的改变均被本申请包含。

Claims (10)

  1. 风电场前期测风塔规划选址方法,其特征在于,包括以下步骤:
    获取风电场区域的数字高程数据,并将获取的数字高程数据对应转化为相应分辨率的等高线地形图;
    根据获取的风电场区域的等高线地形图,选取多处测风塔备选位置;
    获取多处测风塔备选位置所对应的再分析数据;
    获取Globe Land30地表覆盖数据,并将获取的Globe Land30地表覆盖数据对应转化为30m分辨率地表粗糙度数据;
    将等高线地形图、任意一个测风塔备选位置所对应的再分析数据和30m分辨率地表粗糙度数据输入至计算流体力学软件中进行计算,分别得到剩余测风塔备选位置所对应的风速、风向序列;
    分别将剩余测风塔备选位置所对应的风速、风向序列与再分析数据做相关关系、误差分析和风向玫瑰图统计,得到多个相关关系系数、多个风速相对误差系数和多个风向玫瑰图主导风向,根据相关关系系数、风速相对误差系数和风向玫瑰图主导风向,选取拟选测风塔备选位置;
    对拟选测风塔备选位置,复核地形代表性及障碍物遮挡效应,确认拟选测风塔备选位置有效;
    计算最终测风塔备选位置的综合风切变,根据综合风切变值设置测风塔的高度。
  2. 根据权利要求1所述的风电场前期测风塔规划选址方法,其特征在于,所述风电场区域为:以风电场的外边缘画矩形,且该矩形外扩50km的区域。
  3. 根据权利要求1所述的风电场前期测风塔规划选址方法,其特征在于, 测风塔备选位置的选取方法为:测风塔备选位置垂直方向控制范围为地表高度与测风塔地表高度50m高差范围内,测风塔备选位置水平方向控制范围为备选测风塔位置水平方向3km范围内。
  4. 根据权利要求1所述的风电场前期测风塔规划选址方法,其特征在于,所述再分析数据包括地表垂直高度为90m的位置处所对应的近10年以上的风速、风向序列。
  5. 根据权利要求1所述的风电场前期测风塔规划选址方法,其特征在于,选取拟选测风塔备选位置的具体方法是:
    将相关关系系数≥0.95且风速相对误差系数≤3%且主导风向相同所对应的测风塔备选位置删除,之后,在剩余测风塔备选位置中任意选取一个测风塔备选位置,输入至计算流体力学软件中进行迭代计算,直至所有不满足相关关系系数≥0.95且风速相对误差系数≤3%且主导风向相同条件所对应的测风塔备选位置均已参加计算;最终得到至少一个测风塔备选位置。
  6. 根据权利要求1所述的风电场前期测风塔规划选址方法,其特征在于,对地形代表性及障碍物遮挡效应进行复核,具体方法是:
    将拟选测风塔备选位置输入到三维模型中,利用模型地形信息,确认拟选测风塔备选位置与风电场拟布风机点位区域地形特征差异≤5%;拟选测风塔备选位置上风向3km内无凸起障碍物或山脊遮挡,地势平坦开阔。
  7. 根据权利要求1所述的风电场前期测风塔规划选址方法,其特征在于,根据综合风切变值设置测风塔的高度,具体方法是:
    将综合风切变值≥0.20所对应的测风塔备选位置处布置的测风塔的高度设置为不低于140m;将综合风切变值≥0.15且<0.20所对应的测风塔备选位 置处布置的测风塔的高度设置为120m;将综合风切变值<0.15所对应的测风塔备选位置处布置的测风塔的高度设置为100m。
  8. 一种用于权利要求1所述风电场前期测风塔规划选址方法的系统,其特征在于,具体包括:
    数字高程数据获取模块,用于获取风电场区域的数字高程数据,并将获取的数字高程数据对应转化为相应分辨率的等高线地形图;
    测风塔备选位置选取模块,用于根据获取的风电场区域的等高线地形图,选取多处测风塔备选位置;
    再分析数据获取模块,用于获取多处测风塔备选位置所对应的再分析数据;
    地表覆盖数据获取模块,用于获取Globe Land30地表覆盖数据,并将获取的Globe Land30地表覆盖数据对应转化为30m分辨率地表粗糙度数据;
    计算模块,用于将等高线地形图、任意一个测风塔备选位置所对应的再分析数据和30m分辨率地表粗糙度数据输入至计算流体力学软件中进行计算,分别得到剩余测风塔备选位置所对应的风速、风向序列;
    拟选测风塔备选位置选取模块,用于分别将剩余测风塔备选位置所对应的风速、风向序列与再分析数据做相关关系、误差分析和风向玫瑰图统计,得到多个相关关系系数、多个风速相对误差系数和多个风向玫瑰图主导风向,根据相关关系系数、风速相对误差系数和风向玫瑰图主导风向,选取拟选测风塔备选位置;
    复核模块,用于对拟选测风塔备选位置,复核地形代表性及障碍物遮挡效应,确认拟选测风塔备选位置有效;
    测风塔高度设置模块,用于计算最终测风塔备选位置的综合风切变,根据 综合风切变值设置测风塔的高度。
  9. 一种用于所述风电场前期测风塔规划选址方法的装置,其特征在于,包括存储器和处理器;所述存储器,用于存储计算机程序;所述处理器,用于当执行所述计算机程序时,实现如权利要求1至7任一项所述的风电场前期测风塔规划选址方法。
  10. 一种计算机可读的存储介质,其特征在于,所述存储介质上存储有计算机程序,当所述计算机程序被处理器执行时,实现如权利要求1至7任一项所述的风电场前期测风塔规划选址方法。
PCT/CN2022/070240 2021-02-02 2022-01-05 风电场前期测风塔规划选址方法、系统、装置及存储介质 WO2022166510A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110144174.5A CN112800697B (zh) 2021-02-02 2021-02-02 风电场前期测风塔规划选址方法、系统、装置及存储介质
CN202110144174.5 2021-02-02

Publications (1)

Publication Number Publication Date
WO2022166510A1 true WO2022166510A1 (zh) 2022-08-11

Family

ID=75813722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070240 WO2022166510A1 (zh) 2021-02-02 2022-01-05 风电场前期测风塔规划选址方法、系统、装置及存储介质

Country Status (2)

Country Link
CN (1) CN112800697B (zh)
WO (1) WO2022166510A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112800697B (zh) * 2021-02-02 2023-05-02 华能陇东能源有限责任公司 风电场前期测风塔规划选址方法、系统、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110054868A1 (en) * 2009-09-02 2011-03-03 Korea Institute Of Energy Research Atmospheric flow simulation method considering influence of terrain elevation data resolution
CN110929459A (zh) * 2019-11-28 2020-03-27 中国大唐集团科学技术研究院有限公司西北电力试验研究院 一种复杂地形风电场测风塔选址方法
CN111080003A (zh) * 2019-12-10 2020-04-28 华能威宁风力发电有限公司 一种适应复杂山地风电场的测风塔规划选址方法
CN111666725A (zh) * 2020-06-02 2020-09-15 华能盐城大丰新能源发电有限责任公司 一种适应非复杂地形风电场的测风塔规划选址方法及系统
CN111967205A (zh) * 2020-08-14 2020-11-20 中国华能集团清洁能源技术研究院有限公司 一种基于风加速因子的测风塔微观选址方法
CN112800697A (zh) * 2021-02-02 2021-05-14 华能陇东能源有限责任公司 风电场前期测风塔规划选址方法、系统、装置及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258242A (zh) * 2013-04-18 2013-08-21 国家电网公司 基于大规模风电基地风电场布局的测风网络布局方法
CN103886179B (zh) * 2014-02-25 2017-05-31 国家电网公司 一种基于尾流效应分群的风电场风机聚合方法
CN108537361A (zh) * 2018-03-06 2018-09-14 西安大衡天成信息科技有限公司 一种机动雷达和通信台站的选址评估方法
CN108491630B (zh) * 2018-03-23 2021-06-08 河海大学 一种基于大气稳定度风向标准差法的风速外推方法
CN108960293B (zh) * 2018-06-12 2021-02-05 玩咖欢聚文化传媒(北京)有限公司 基于fm算法的ctr预估方法及系统
CN110929360B (zh) * 2018-08-31 2023-10-27 北京金风科创风电设备有限公司 风力发电机组点位地形复杂度的确定方法、装置及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110054868A1 (en) * 2009-09-02 2011-03-03 Korea Institute Of Energy Research Atmospheric flow simulation method considering influence of terrain elevation data resolution
CN110929459A (zh) * 2019-11-28 2020-03-27 中国大唐集团科学技术研究院有限公司西北电力试验研究院 一种复杂地形风电场测风塔选址方法
CN111080003A (zh) * 2019-12-10 2020-04-28 华能威宁风力发电有限公司 一种适应复杂山地风电场的测风塔规划选址方法
CN111666725A (zh) * 2020-06-02 2020-09-15 华能盐城大丰新能源发电有限责任公司 一种适应非复杂地形风电场的测风塔规划选址方法及系统
CN111967205A (zh) * 2020-08-14 2020-11-20 中国华能集团清洁能源技术研究院有限公司 一种基于风加速因子的测风塔微观选址方法
CN112800697A (zh) * 2021-02-02 2021-05-14 华能陇东能源有限责任公司 风电场前期测风塔规划选址方法、系统、装置及存储介质

Also Published As

Publication number Publication date
CN112800697A (zh) 2021-05-14
CN112800697B (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
US11333796B2 (en) Spatial autocorrelation machine learning-based downscaling method and system of satellite precipitation data
Sun et al. Estimating the spatial distribution of solar photovoltaic power generation potential on different types of rural rooftops using a deep learning network applied to satellite images
Fogl et al. Influence of vegetation canopies on solar potential in urban environments
CN111369436A (zh) 一种顾及多元地形特征的机载LiDAR点云抽稀方法
CN104574512A (zh) 一种顾及地形语义信息的多尺度dem构建方法
CN111080003B (zh) 一种适应复杂山地风电场的测风塔规划选址方法
CN104463164A (zh) 一种基于伞骨法与冠高比的树木冠层结构信息提取方法
CN111666725A (zh) 一种适应非复杂地形风电场的测风塔规划选址方法及系统
WO2022166510A1 (zh) 风电场前期测风塔规划选址方法、系统、装置及存储介质
CN105844547A (zh) 一种基于热岛效应消解的城市通风廊道划定方法
CN114611834B (zh) 一种基于多维特征分析的电力发电站选址评估规划方法
CN108154193A (zh) 一种长时间序列降水数据降尺度方法
CN105974418A (zh) 基于天气雷达反射率特征匹配的降水估测方法
CN114296050B (zh) 基于激光雷达云图探测的光伏电站短期发电功率预测方法
CN114266984B (zh) 一种利用高分辨遥感影像计算建筑物屋顶光伏可改造区减碳量的方法
CN111666677A (zh) 一种考虑年内分布订正的测风数据代表年订正方法及系统
Yan et al. Estimation of urban-scale photovoltaic potential: A deep learning-based approach for constructing three-dimensional building models from optical remote sensing imagery
CN117433513B (zh) 一种地形测绘的地图构建方法及系统
Özdemir et al. SPAN: An open-source plugin for photovoltaic potential estimation of individual roof segments using point cloud data
CN112166688B (zh) 基于小卫星的沙漠与沙漠化土地监测方法
CN103424782A (zh) 一种中层径向辐合的自动识别方法
CN115830476A (zh) 地形因子空间降尺度方法
CN114742206A (zh) 综合多时空尺度多普勒雷达数据的降雨强度估计方法
Tahir et al. Estimate of the wind resource of two cities in the sahara and sahel in Chad
El Yazidi et al. Analysis of wind data and assessment of wind energy potential in Lamhiriz Village, Morocco

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22748789

Country of ref document: EP

Kind code of ref document: A1