WO2022166405A1 - 仿真系统、仿真方法及装置 - Google Patents

仿真系统、仿真方法及装置 Download PDF

Info

Publication number
WO2022166405A1
WO2022166405A1 PCT/CN2021/137417 CN2021137417W WO2022166405A1 WO 2022166405 A1 WO2022166405 A1 WO 2022166405A1 CN 2021137417 W CN2021137417 W CN 2021137417W WO 2022166405 A1 WO2022166405 A1 WO 2022166405A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
simulation
blood flow
processing
vessel model
Prior art date
Application number
PCT/CN2021/137417
Other languages
English (en)
French (fr)
Inventor
房劬
刘维平
赵夕
Original Assignee
上海杏脉信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海杏脉信息科技有限公司 filed Critical 上海杏脉信息科技有限公司
Publication of WO2022166405A1 publication Critical patent/WO2022166405A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones

Definitions

  • the invention relates to the technical field of simulation in computer aided medicine, in particular to a simulation system, a simulation method and a device.
  • Cardiovascular and cerebrovascular diseases are one of the types of diseases that pose the greatest threat to human life and health.
  • cardiovascular and cerebrovascular diseases such as vascular occlusion, stenosis, calcification, plaque, etc., cause local blood supply to the myocardium and brain, which can be life-threatening in severe cases.
  • Cardiovascular disease is often diagnosed clinically by medical imaging techniques. Scanning and imaging related parts by CT (computed tomography), magnetic resonance and other medical imaging equipment is a commonly used clinical diagnosis method.
  • Computer image processing technology can be used to perform computer analysis and processing on medical images obtained by scanning patients, and medical image analysis and processing results with clinical value can be obtained, which can effectively help doctors to diagnose.
  • the geometric model and physical model of the patient's blood vessels can be obtained by processing medical images, which can be analyzed in combination with fluid dynamics simulation technology to obtain a variety of patient's blood vessel parameters, including But not limited to: blood vessel flow, velocity, diameter, FFR (fractional blood flow reserve), CFR (coronary blood flow reserve), etc. These parameters can be calculated by image processing software and provided to doctors, helping doctors to better Diagnose well.
  • vascular occlusion and stenosis For clinical diseases such as vascular occlusion and stenosis, in severe cases, vascular stent implantation, vascular bypass and other methods are used for surgical treatment. The choice of specific treatment plan requires doctors to choose based on clinical experience.
  • vascular stent implantation for surgical treatment in severe cases. If stent implantation is selected for treatment, vascular stents have different sizes, materials, models, etc., and doctors need to make judgments and choices based on experience; if vascular bypass is selected for treatment, there may be multiple vascular bypass options.
  • vascular bypass is selected for treatment, there may be multiple vascular bypass options.
  • Embodiments of the present invention provide a simulation system, a simulation method, and an apparatus, so as to at least solve the technical problem in the related art that simulation and comparison of various treatment schemes cannot be performed on collected medical images.
  • a simulation system including: a model generation module, used for generating an initial blood vessel model of a target object; and an interaction module, used for applying at least two processing strategies to the initial blood vessel model. processing, respectively obtaining intermediate blood vessel models corresponding to the at least two processing strategies, wherein the at least two processing strategies are strategies that are preset and used to perform predetermined operations on the initial blood vessel model; a simulation module, used for Performing blood flow simulation processing on the intermediate blood vessel models corresponding to the at least two processing strategies, respectively, to obtain at least two blood flow simulation results; a display module for displaying the at least two blood flow simulation results.
  • the at least two treatment strategies are a combination of at least two computer simulation strategies corresponding to the following multiple vascular disease treatment methods: vascular stent implantation, vascular bypass surgery, balloon dilation, vascular rotation. Grinding, thrombus aspiration, and cutting balloon.
  • the simulation system further includes: an image acquisition module for acquiring a medical image of the target object, wherein the medical image is used to generate the initial blood vessel model; an image segmentation module for The medical image is segmented to obtain the blood vessel image of the target object.
  • the simulation system further includes: an image analysis module for analyzing the blood vessel image or the initial blood vessel model to obtain the lesion information of the target object; a processing strategy determination module for responding to an interactive instruction , and determine the at least two processing strategies based on the interaction instruction.
  • the simulation module is further configured to perform simulation processing on the initial blood vessel model before performing blood flow simulation processing on the intermediate blood vessel model to obtain an initial blood flow simulation result of the initial blood vessel model.
  • the interaction module includes: a virtual stent implantation sub-module for placing a virtual stent on the initial blood vessel model in response to an interactive instruction, so as to obtain an intermediate blood vessel model treated with a vascular stent implantation; a bridge
  • the blood vessel adding sub-module is used for adding a virtual bridge blood vessel to the initial blood vessel model in response to the interactive instruction, so as to obtain an intermediate blood vessel model processed by a blood vessel bypass operation.
  • the simulation system further includes: a blood flow parameter acquisition module, configured to separately acquire blood flow indexes corresponding to the at least two blood flow simulation results, wherein the blood flow indexes include at least one of the following: blood flow: Reserve fraction FFR, vascular wall shear stress WSS, vascular pressure, blood flow velocity; an evaluation module, used for evaluating the at least two treatment strategies based on the blood flow index, and obtaining an evaluation result.
  • a blood flow parameter acquisition module configured to separately acquire blood flow indexes corresponding to the at least two blood flow simulation results, wherein the blood flow indexes include at least one of the following: blood flow: Reserve fraction FFR, vascular wall shear stress WSS, vascular pressure, blood flow velocity
  • an evaluation module used for evaluating the at least two treatment strategies based on the blood flow index, and obtaining an evaluation result.
  • the display module compares and displays the at least two blood flow simulation results on the same interface.
  • a simulation method which is applied to the simulation system described in any one of the above, including: obtaining an initial blood vessel model of a target object; The blood vessel model is processed to obtain intermediate blood vessel models corresponding to the at least two processing strategies, wherein the at least two processing strategies are preset and used to perform predetermined operations on the initial blood vessel model; The intermediate blood vessel models corresponding to the at least two processing strategies are respectively subjected to blood flow simulation processing to obtain at least two blood flow simulation results, and the at least two blood flow simulation results are displayed.
  • the at least two treatment strategies are a combination of at least two computer simulation strategies corresponding to the following multiple vascular disease treatment methods: vascular stent implantation, vascular bypass surgery, balloon dilation, vascular rotation. Grinding, thrombus aspiration, and cutting balloon.
  • the simulation method further includes: obtaining a medical image of the target object, wherein the medical image is used to generate the initial blood vessel model;
  • the image map is segmented to obtain the blood vessel image of the target object.
  • the simulation method further includes: analyzing the blood vessel image or the initial blood vessel model to obtain the lesion information of the target object; responding to an interactive instruction, and determining the at least two types based on the interactive instruction processing strategy.
  • the simulation method before performing blood flow simulation processing on the intermediate blood vessel model, the simulation method further includes: performing simulation processing on the initial blood vessel model to obtain an initial blood flow simulation result of the initial blood vessel model.
  • At least two processing strategies are used to process the initial blood vessel model, including: in response to an interactive instruction, placing a virtual stent on the initial blood vessel model to obtain an intermediate blood vessel model treated by a blood vessel stent implantation. ; In response to a click operation acting on the initial blood vessel model and the starting position and the ending position of the blood vessel to be added based on the lesion information determined based on the lesion information, an intermediate blood vessel model processed by the blood vessel bypass operation is obtained.
  • the simulation method further includes: respectively acquiring blood flow indexes corresponding to the at least two kinds of blood flow simulation results, wherein the blood flow indexes include at least one of the following: fractional blood flow reserve FFR, blood vessel wall shear stress WSS, vascular pressure; the at least two treatment strategies are evaluated based on the blood flow index, and an evaluation result is obtained.
  • the blood flow indexes include at least one of the following: fractional blood flow reserve FFR, blood vessel wall shear stress WSS, vascular pressure; the at least two treatment strategies are evaluated based on the blood flow index, and an evaluation result is obtained.
  • a simulation device which is applied to the simulation method described in any one of the above, including: an acquisition unit for acquiring an initial blood vessel model of a target object; a processing unit for using At least two processing strategies are used to process the initial blood vessel model to obtain intermediate blood vessel models corresponding to the at least two processing strategies, wherein the at least two processing strategies are preset and used for the initial blood vessel model.
  • a strategy for performing predetermined operations on the blood vessel model a simulation unit, configured to perform blood flow simulation processing on the intermediate blood vessel models corresponding to the at least two processing strategies, obtain at least two blood flow simulation results, and display the at least two blood flow simulation results.
  • Flow simulation results Flow simulation results.
  • a computer-readable storage medium comprising a stored computer program, wherein the computer is controlled when the computer program is run by a processor
  • the device where the storage medium is located executes the simulation method described in any one of the above.
  • a processor is also provided, and the processor is configured to run a computer program, wherein the computer program executes any one of the simulation methods described above when the computer program runs.
  • a model generation module is used to generate an initial blood vessel model of the target object; an interaction module is used to process the initial blood vessel model by adopting at least two processing strategies to obtain an intermediate blood vessel corresponding to the at least two processing strategies.
  • a blood vessel model wherein at least two processing strategies are preset and used to perform predetermined operations on the initial blood vessel model;
  • a simulation module is used to perform blood flow simulation processing on the intermediate blood vessel models corresponding to the at least two processing strategies, respectively, to obtain at least two kinds of blood flow simulation results;
  • a display module for displaying the at least two blood flow simulation results.
  • the purpose of processing the initial blood vessel model by adopting at least two processing strategies and simulating the intermediate blood vessel model obtained by the processing is realized, so as to achieve a more intuitive and clear comparison of various treatment plans.
  • the technical effect of simulation and comparison is achieved, thereby solving the technical problem that simulation and comparison of various treatment plans cannot be performed on the collected medical images in the related art.
  • FIG. 1 is a schematic diagram of a simulation system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram related to cardiac coronary arteries in a simulation system interface according to an embodiment of the present invention
  • Fig. 3 (a) is a simulation interface diagram of vascular bypass surgery according to an embodiment of the present invention.
  • Fig. 3(b) is a simulation interface diagram of coronary stent implantation according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a simulation method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a simulation apparatus according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a simulation system according to an embodiment of the present invention.
  • the simulation system may include: a model generation module 11 and an interaction module 13 , simulation module 15 and display module 17 .
  • the simulation system is described below.
  • the model generating module 11 is used for generating the initial blood vessel model of the target object.
  • model generation module here can be used to generate an initial blood vessel model of the target object based on the medical image of the target object.
  • the target object here may be the cardiovascular and cerebrovascular parts of the human body.
  • the interaction module 13 is configured to process the initial blood vessel model by adopting at least two processing strategies to obtain intermediate blood vessel models corresponding to the at least two processing strategies, wherein the at least two processing strategies are preset and used to execute the initial blood vessel model Policy for scheduled actions.
  • the initial blood vessel model of the target object can be displayed through the interactive interface, and the doctor is allowed to perform simulation operations on the initial blood vessel model with two or more different treatment plans;
  • Highlighting allows for virtual manipulation of the lesion site.
  • the lesion site can be highlighted, and the doctor can be provided with a menu of instructions, such as the two main menus of stent and bypass. If stent is selected, a selection menu of different types of stents can be provided; The doctor needs to select the start position and end position of the added bridge vessel from the vessel model, and select the diameter of the bridge vessel.
  • the at least two treatment strategies are a combination of at least two computer simulation strategies respectively corresponding to the following multiple vascular disease treatment methods: vascular stent implantation, vascular bypass surgery, balloon dilation, and rotational atherectomy. , thrombus aspiration and cutting balloon into the line.
  • the simulation module 15 is configured to perform blood flow simulation processing on the intermediate blood vessel models corresponding to at least two processing strategies, respectively, to obtain at least two blood flow simulation results.
  • the display module 17 is used to display the at least two blood flow simulation results.
  • the display module may display at least two kinds of blood flow simulation results on the same interface by comparison. That is, the simulation results of the simulation module can be displayed in linkage, for example, the FFR calculation results of a variety of different treatment plans can be displayed at the same time. Specifically, the user can place or click the mouse on a specific blood vessel position on the blood vessel, and the terminal device can display it. The FFR of the specific location under various treatment plans is obtained, which is convenient for doctors to compare.
  • the model generation module can be used to generate the initial blood vessel model of the target object; then the interaction module is used to process the initial blood vessel model by adopting at least two processing strategies to obtain the corresponding at least two processing strategies.
  • An intermediate blood vessel model wherein at least two processing strategies are preset and used to perform predetermined operations on the initial blood vessel model; and a simulation module is used to perform blood flow simulation processing on the intermediate blood vessel models corresponding to the at least two processing strategies, respectively, to obtain At least two kinds of blood flow simulation results; and displaying the at least two kinds of blood flow simulation results by using a display module, realizing the process of using at least two processing strategies to process the initial blood vessel model and simulating the processed intermediate blood vessel model.
  • the purpose is to achieve the technical effect of simulating and comparing various treatment plans more intuitively and clearly.
  • the simulation system provided by the embodiment of the present invention solves the technical problem in the related art that simulation and comparison of various treatment plans cannot be performed on the collected medical images.
  • the simulation system further includes: an image acquisition module for acquiring a medical image of the target object, wherein the medical image is used to generate an initial blood vessel model; an image segmentation module for The image map is segmented to obtain the blood vessel image of the target object.
  • an image acquisition module can be used to acquire a medical image (ie, a medical image) of the target object, for example, CT angiography (CTA), CT perfusion scan (CTP), CT non-contrast scan (NCCT) and other modes ; It can also be magnetic resonance image, X-ray angiography, molecular imaging, intravascular ultrasound, etc.
  • CTA CT angiography
  • CTP CT perfusion scan
  • NCCT CT non-contrast scan
  • It can also be magnetic resonance image, X-ray angiography, molecular imaging, intravascular ultrasound, etc.
  • the method of segmenting the medical image may be either a traditional image segmentation method or a deep learning segmentation algorithm, which is not specifically limited in this embodiment of the present invention.
  • the simulation system further includes: an image analysis module for analyzing the blood vessel image or the initial blood vessel model to obtain the lesion information of the target object; a processing strategy determination module for responding to the interactive instruction , and determine at least two processing strategies based on the interactive instructions.
  • the lesion detection can be performed through the image analysis module.
  • the medical image or the initial blood vessel model can be processed to automatically detect the location of the lesion (obstruction, stenosis, plaque and other lesions), and can give hint.
  • the corresponding lesion detection algorithm or deep learning AI algorithm can be used here.
  • the simulation module is further configured to perform simulation processing on the initial blood vessel model before performing the blood flow simulation processing on the intermediate blood vessel model to obtain an initial blood flow simulation result of the initial blood vessel model.
  • hydrodynamic simulation can be performed on the initial blood vessel model to obtain the blood flow reserve fraction FFR, blood vessel wall shear stress WSS, blood vessel pressure, etc. of the initial blood vessel model, that is, before treatment is obtained.
  • the results of the hydrodynamic simulation of the vascular model can be performed on the initial blood vessel model to obtain the blood flow reserve fraction FFR, blood vessel wall shear stress WSS, blood vessel pressure, etc. of the initial blood vessel model, that is, before treatment is obtained.
  • the lesion area may be processed by vascular stent implantation and vascular bypass surgery respectively.
  • vascular stent implantation, vascular bypass and balloon dilation can also be used to treat the lesion area respectively.
  • the interaction module of the simulation system may include: a virtual stent implantation sub-module for responding to the interaction instruction , place the virtual stent on the initial blood vessel model, and obtain the intermediate blood vessel model after vascular stent implantation; the bridge blood vessel adding sub-module is used to respond to the action on the initial blood vessel model based on the lesion information to determine the to-be-added blood vessel model. Click operation of the starting position and ending position to obtain the intermediate blood vessel model after vascular bypass surgery.
  • vascular stent implantation and vascular bypass surgery are used to treat the lesion area, so as to obtain an intermediate blood vessel model treated with these two different treatment strategies, which is convenient for subsequent analysis of these two different treatment strategies.
  • the processing results are compared and analyzed.
  • vascular stent implantation is used to process the lesion area, and an appropriate virtual stent can be selected according to the characteristic information of the lesion area, and then the selected virtual stent is placed in the initial blood vessel model.
  • the vascular bridge can be generated in response to the click operation on the starting position and the ending position of the bridged blood vessel on the initial vascular model; here, after the vascular bridge is generated, the vascular bridge can be generated as needed. make adjustments.
  • the detected lesions can be highlighted, and the doctor can only operate on the lesions, wherein the processing solutions capable of virtual operation may include but are not limited to: 1) virtual stent implantation : The initial vascular model can be simulated to place vascular stents (ie, vascular stent implantation). Before that, it is necessary to provide a variety of stent model selections that are consistent with various real stent models; 2) Virtual vascular bypass: can be used for initial vascular bypass.
  • the blood vessel model is simulated bypass, and the doctor manually adds the bridge blood vessel on the original blood vessel model; 3) Percutaneous coronary balloon angioplasty; 4) Coronary stent implantation; 5) Coronary atherectomy; 6) Intracoronary thrombus suction The thrombus in the coronary artery is drawn out using a suction catheter with negative pressure; 7) The balloon is cut to perform the operation.
  • the above-mentioned percutaneous coronary balloon angioplasty adopts the femoral artery approach or the radial artery approach, and the guiding catheter is sent to the ostium of the coronary artery to be expanded, and then the balloon of the corresponding size is sent along the guiding wire to the stenotic node.
  • Coronary stent implantation is to place a mesh-shaped stent made of stainless steel or alloy material with gaps into the coronary artery to support the vascular wall in the stage of stenosis and maintain blood flow.
  • Rotational coronary atherectomy is to selectively remove fibrotic or calcified atherosclerotic plaques according to the principle of "selective cutting" using an olive-shaped rotational atherectomy head with diamond particles without cutting elastic tissue and normal coronary arteries; it is mainly used in lesions with severe stenosis and severe calcification.
  • Intracoronary thrombus aspiration uses a negative pressure suction catheter to extract thrombus in the coronary artery, which is mostly used for thrombotic lesions or saphenous vein graft vascular lesions.
  • the cutting balloon is performed by installing 3-4 micro blades longitudinally on the balloon. When the balloon begins to expand, the blades cut the proliferative tissue at the stenosis of the blood vessel into 3-4 parts, and then the balloon fully expands the lesion. It is mainly used for in-stent restenosis lesions or lesions dominated by fibrous tissue proliferation.
  • the simulation system may further include: a blood flow parameter acquisition module, configured to respectively acquire blood flow indexes corresponding to at least two kinds of blood flow simulation results, wherein the blood flow indexes include at least one of the following : Fractional flow reserve FFR, vascular wall shear stress WSS, vascular pressure; evaluation module, used to evaluate at least two treatment strategies based on blood flow indicators, and obtain the evaluation results.
  • a blood flow parameter acquisition module configured to respectively acquire blood flow indexes corresponding to at least two kinds of blood flow simulation results, wherein the blood flow indexes include at least one of the following : Fractional flow reserve FFR, vascular wall shear stress WSS, vascular pressure
  • evaluation module used to evaluate at least two treatment strategies based on blood flow indicators, and obtain the evaluation results.
  • the FFR calculation of the hemodynamic index can be based on the FFR calculation based on the fluid dynamics solution, or the FFR value can be obtained based on machine learning and deep learning models; it can also be automatically based on the patient's medical image or initial blood vessel model.
  • the part is detected and prompted to the user, and the processing strategy for the lesion part can also be edited, and the entire initial blood vessel model can be edited.
  • At least two treatment strategies may be evaluated by using the above blood flow index, so as to obtain a treatment strategy with better treatment effect among the at least two treatment strategies.
  • fluid dynamics simulation can be performed on the intermediate blood vessel model processed by various treatment strategies to obtain relevant parameters (ie, blood flow indicators) for evaluating blood flow conditions, including but not limited to the following Several types: Fractional Flow Reserve (FFR), Wall Shear Stress (WSS), Pressure, Coronary Flow Reserve (CFR), Microvascular Circulatory resistance coefficient (Index of Microcirculatory Resistance, IMR for short), flow rate, flow rate, and show the simulation results of various treatment strategies to the doctor, for example, different colors can be used to represent each position on the blood vessel model in a pseudo-color map Different parameter values are displayed.
  • FFR Fractional Flow Reserve
  • WSS Wall Shear Stress
  • CFR Coronary Flow Reserve
  • IMR Microvascular Circulatory resistance coefficient
  • IMR Microvascular Circulatory resistance coefficient
  • the simulation system may further determine, based on the blood flow indexes corresponding to the at least two blood flow simulation results, a target processing strategy that satisfies a preset condition among the at least two processing strategies.
  • comparison rules or scoring rules for treatment strategies can be set, and the software can automatically score or compare different treatment plans.
  • the predetermined blood flow reserve fraction at the distal end of the vascular stenosis after at least two different treatment strategies is used as the scoring rule.
  • the optimal treatment strategy is to make the post-treatment fractional flow reserve larger at the distal end of the vascular stenosis.
  • doctors can choose to display different indicators through the interactive interface, including: fractional blood flow reserve FFR, vascular wall shear stress WSS, pressure, etc., can also be displayed in pseudo-color images, and can set comparison rules for treatment strategies or Scoring rules, where software can be used to automatically score or compare different processing strategies.
  • the simulation system further includes: an output module for outputting blood flow simulation results.
  • the output module can be used to output the analysis and processing results of different processing strategies for reference by doctors.
  • Fig. 2 is a schematic diagram related to cardiac coronary arteries in a simulation system interface according to an embodiment of the present invention, as shown in Fig. 2, the upper left part of the figure shows the CT angiography image of the heart, and the upper right part shows the coronary artery model , in the embodiment of the present invention, the lesion information is obtained mainly by analyzing the coronary artery model shown in the upper right, and then at least two different processing strategies are selected to process the coronary artery model, and at least two different processing strategies are obtained. At least two intermediate blood vessel models processed by the strategy, and dynamic blood flow simulation processing is performed on the at least two intermediate blood vessel models, and the at least two blood flow simulation results can be displayed in linkage.
  • Fig. 3(a) is a simulation interface diagram of vascular bypass surgery according to an embodiment of the present invention
  • Fig. 3(b) is a simulation interface diagram of coronary stent implantation according to an embodiment of the present invention.
  • the two treatment strategies of coronary artery implantation and bypass grafting can be compared intuitively and clearly, which is convenient for doctors to provide a better reference for subsequent treatment.
  • the processing method for the detected lesion area is not limited to the above-mentioned two processing methods of coronary artery implantation and bypass grafting, and may also include balloon dilation, rotational atherectomy, One or more of thrombus aspiration and cutting balloon.
  • the simulation interface the linked display of balloon dilation, rotational atherectomy, thrombus aspiration and cutting balloon will be displayed.
  • the medical image acquisition module can be used to obtain the medical image of the target object, and then the blood vessel model generation module can be used to obtain the initial blood vessel model according to the medical image of the target object, and then the treatment
  • the scheme generation module obtains the processing plans of several different processing strategies according to the interactive instructions, and generates the processed intermediate blood vessel models corresponding to various processing strategies, and uses the analysis processing module according to the processed intermediate blood vessel models corresponding to the various processing strategies. Obtain the hemodynamic indexes of the blood vessels processed by each treatment strategy; and use the output module to output the analysis and processing results of the different treatment strategies for reference by doctors.
  • a method embodiment of a simulation method is provided. It should be noted that, when applied to the simulation system of any of the above, the steps shown in the flowchart of the accompanying drawing can be performed in a set of computer software, such as The instructions are executed in a computer system and, although a logical order is shown in the flowcharts, in some cases the steps shown or described may be performed in an order different from that herein.
  • FIG. 4 is a flowchart of a simulation method according to an embodiment of the present invention. As shown in FIG. 4 , the simulation method includes the following steps:
  • Step S402 acquiring an initial blood vessel model of the target object.
  • the simulation method may further include: acquiring a medical image map of the target object, wherein the medical image map is used to generate the initial blood vessel model; The image is segmented to obtain the blood vessel image of the target object.
  • a medical image ie, a medical image
  • a medical image of the target object can be acquired, specifically: a CT image, for example, CT angiography (CTA), CT perfusion scan (CTP), CT non-contrast scan (NCCT) It can also be MRI, X-ray angiography, molecular imaging, intravascular ultrasound, etc.
  • CTA CT angiography
  • CTP CT perfusion scan
  • NCCT CT non-contrast scan
  • MRI magnetic resonance imaging
  • X-ray angiography X-ray angiography
  • molecular imaging molecular imaging
  • intravascular ultrasound etc.
  • the computer image segmentation technology can be used to obtain the blood vessels in the image by segmentation, so that the initial blood vessel model or the intermediate blood vessel model of the target object can be constructed through computer geometric modeling.
  • the medical image of the patient is a medical image of the coronary artery of the heart.
  • the medical image may be an image including three-dimensional voxel information obtained by imaging methods including but not limited to CT, MRI, etc.
  • a two-dimensional image eg, DSA image
  • image segmentation technology can be used to segment the medical image to generate an initial blood vessel model; for example, an image segmentation model based on a neural network can be used to segment the medical image to obtain the initial blood vessel model; specifically, the medical image can be input to For the image segmentation model, the output of the image segmentation model can be converted into the above-mentioned initial blood vessel model.
  • the threshold method can also be used to segment the medical image to obtain the initial blood vessel model; specifically, the gray value range of coronary blood vessels can be obtained, and all the pixels located in the gray value range can be extracted from the medical image, The set of these pixel points is the initial blood vessel model.
  • Step S404 using at least two processing strategies to process the initial blood vessel model to obtain intermediate blood vessel models corresponding to the at least two processing strategies, wherein the at least two processing strategies are preset and used to perform predetermined operations on the initial blood vessel model.
  • the blood vessel geometric model of the target object can be displayed through an interactive interface, and the doctor is allowed to perform simulation operations on the blood vessel geometric model with two or more different processing strategies.
  • the at least two treatment strategies are combinations of at least two computer simulation strategies corresponding to the following multiple vascular disease treatment methods: vascular stent implantation, vascular bypass surgery, balloon dilation, vascular disease Rotational atherectomy, thrombus aspiration, and balloon cutting.
  • Step S406 Perform blood flow simulation processing on the intermediate blood vessel models corresponding to the at least two processing strategies, respectively, to obtain at least two blood flow simulation results, and display the at least two blood flow simulation results.
  • At least two processing strategies can be used to process the initial vascular model to obtain an intermediate vascular model after vascular stent implantation and a vascular bypass processed model.
  • the intermediate blood vessel model can be displayed in linkage, so that the doctor can compare the results of vascular stent implantation and vascular bypass treatment more intuitively and clearly.
  • At least two kinds of blood flow simulation results are displayed, and at least two kinds of blood flow simulation results can be displayed in comparison on the same interface. That is, the simulation results of the simulation module can be displayed in linkage, for example, the FFR calculation results of a variety of different treatment schemes can be displayed simultaneously. computer) can display the FFR of the specific location under various treatment plans, which is convenient for doctors to compare.
  • the initial blood vessel model of the target object can be obtained; at least two processing strategies are used to process the initial blood vessel model, and intermediate blood vessel models corresponding to the at least two processing strategies are obtained, wherein at least two processing strategies are used.
  • the processing strategies are preset and used to perform predetermined operations on the initial blood vessel model; blood flow simulation processing is performed on the intermediate blood vessel models corresponding to at least two processing strategies respectively, at least two blood flow simulation results are obtained, and at least two blood flow simulation results are displayed.
  • the simulation results of blood flow can realize the purpose of using at least two processing strategies to process the initial blood vessel model, and simulate and compare the obtained intermediate blood vessel model, so as to achieve a more intuitive and clear comparison of various treatment plans. Simulation and comparison of technical effects.
  • the simulation method provided by the embodiment of the present invention solves the technical problem in the related art that simulation and comparison of various treatment schemes cannot be performed on the collected medical images.
  • the simulation method further includes: analyzing a blood vessel image or an initial blood vessel model to obtain lesion information of the target object; and determining the at least two processing strategies based on the interactive instruction in response to the interactive instruction .
  • the lesion detection can be performed on the blood vessel image or the initial blood vessel model, specifically, the medical image image or the initial blood vessel model can be processed to automatically detect the location of the lesion (obstruction, stenosis, plaque and other lesions), and prompts can be given.
  • the corresponding lesion detection algorithm or deep learning AI algorithm can be used here; then at least two processing strategies are selected to process the lesion area.
  • the simulation system may further include: performing simulation processing on the initial blood vessel model to obtain an initial blood flow simulation result of the initial blood vessel model.
  • the lesion area may be processed by vascular stent implantation and vascular bypass surgery respectively.
  • vascular stent implantation, vascular bypass surgery and balloon dilation can also be used to treat the lesion area respectively.
  • using at least two processing strategies to process the initial vascular model includes: responding to the interactive instruction, placing the virtual stent Placed on the initial blood vessel model to obtain an intermediate blood vessel model after vascular stent implantation; in response to the click operation on the initial blood vessel model based on the lesion information to determine the starting position and end position of the blood vessel to be added, obtained by Intermediate vessel model after vascular bypass surgery.
  • vascular stent implantation and vascular bypass surgery are used to treat the lesion area, so as to obtain an intermediate blood vessel model treated with these two different treatment strategies, which is convenient for subsequent analysis of these two different treatment strategies.
  • the processing results are compared and analyzed.
  • vascular stent implantation is used to process the lesion area, and an appropriate virtual stent can be selected according to the characteristic information of the lesion area, and then the selected virtual stent is placed in the initial blood vessel model.
  • the vascular bridge can be generated in response to the click operation on the starting position and the ending position of the bridged blood vessel on the initial vascular model; here, after the vascular bridge is generated, the vascular bridge can be generated as needed. make adjustments.
  • blood flow simulation processing may be performed on the two intermediate blood vessel models to obtain at least two blood flow simulation results, thereby enabling At least two treatment strategies are evaluated.
  • the simulation method further includes: respectively acquiring blood flow indexes corresponding to at least two kinds of blood flow simulation results, wherein the blood flow indexes include at least one of the following: fractional blood flow reserve FFR, blood vessel wall surface Shear stress, WSS, vascular pressure; at least two treatment strategies were assessed based on blood flow indicators, and the results were obtained.
  • the blood flow indexes include at least one of the following: fractional blood flow reserve FFR, blood vessel wall surface Shear stress, WSS, vascular pressure; at least two treatment strategies were assessed based on blood flow indicators, and the results were obtained.
  • analyzing the blood vessel model processed by at least two processing strategies may include, but is not limited to, the following methods: 1) Divide the blood vessel model obtained by segmentation into a limited number of fine cell grids , as the pre-step of computational fluid dynamics analysis, and then set the boundary conditions for the computational analysis of the blood vessel model, and use the computational fluid dynamics (CFD) technology to analyze and calculate to obtain a variety of fluid dynamics at each position of the blood vessel model.
  • CFD computational fluid dynamics
  • Deep learning neural network can be used to absorb the analysis of the blood vessel model, specifically, a neural network model can be built, and a large amount of training data can be used Train the neural network model (the training data here can include multiple blood vessel models and their corresponding hemodynamic indicators), and obtain a trained AI network model dedicated to the analysis of the blood vessel model.
  • the model is input to the blood vessel model, and various hemodynamic indexes of the blood vessel model can be obtained.
  • an optimal target processing strategy may be selected from at least two processing strategies through scoring or other rules, so that after the initial blood vessel model is processed by using the optimal target processing strategy, the blood vessel blood flow is close to condition under normal circumstances.
  • the initial blood vessel model of the target object can be obtained based on the medical image, and at least two processing strategies are used for the initial blood vessel model.
  • the model is processed, and the processed intermediate blood vessel model is obtained, so that the intermediate blood vessel model can be simulated and calculated by the computer, and several simulation results can be displayed through the linkage display method.
  • FIG. 5 is a schematic diagram of the simulation apparatus according to the embodiment of the present invention.
  • the The simulation apparatus may include: an acquisition unit 51 , a processing unit 53 and a simulation unit 55 .
  • the simulation device will be described below.
  • the obtaining unit 51 is used for obtaining the initial blood vessel model of the target object.
  • the processing unit 53 is configured to process the initial blood vessel model by adopting at least two processing strategies to obtain intermediate blood vessel models corresponding to the at least two processing strategies, wherein the at least two processing strategies are preset and used to execute the initial blood vessel model Policy for scheduled actions.
  • the simulation unit 55 is configured to perform blood flow simulation processing on the intermediate blood vessel models corresponding to at least two processing strategies, respectively, to obtain at least two kinds of blood flow simulation results, and to display at least two kinds of blood flow simulation results.
  • the above-mentioned acquisition unit 51, processing unit 53 and simulation unit 55 correspond to steps S402 to S406 in Embodiment 2, and the examples and application scenarios implemented by the above-mentioned units and corresponding steps are the same, But it is not limited to the content disclosed in the above embodiment 2. It should be noted that the above-mentioned units may be executed in a computer system such as a set of computer-executable instructions as part of an apparatus.
  • the acquisition unit can be used to obtain the initial blood vessel model of the target object; then the processing unit uses at least two processing strategies to process the initial blood vessel model, and obtains corresponding to the at least two processing strategies.
  • An intermediate blood vessel model wherein at least two processing strategies are preset and used to perform predetermined operations on the initial blood vessel model; and a simulation unit is used to perform blood flow simulation processing on the intermediate blood vessel models corresponding to the at least two processing strategies, respectively, to obtain At least two blood flow simulation results, and present at least two blood flow simulation results.
  • the purpose of processing the initial blood vessel model by adopting at least two processing strategies, and simulating the intermediate blood vessel model obtained by the processing is realized, so as to achieve a more intuitive and clear comparison of various treatments.
  • the technical effect of the simulation and comparison of the scheme solves the technical problem that the simulation and comparison of various treatment schemes cannot be performed on the collected medical images in the related art.
  • a computer-readable storage medium includes a stored computer program, wherein when the computer program is run by the processor, the device where the computer storage medium is located is controlled to execute the above-mentioned any of the simulation methods.
  • a processor is also provided, where the processor is configured to run a computer program, wherein when the computer program runs, any one of the above simulation methods is executed.
  • the disclosed technical content may be implemented in other ways.
  • the device embodiments described above are only illustrative, for example, the division of the units may be a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components may be combined or Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of units or modules, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solution of the present invention is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage medium includes: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Robotics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种仿真系统、仿真方法及装置。仿真系统包括:模型生成模块(11),用于生成目标对象的初始血管模型;交互模块(13),用于采用至少两种处理策略对初始血管模型进行处理,得到与至少两种处理策略对应的中间血管模型,其中,至少两种处理策略为预先设置、并用于对初始血管模型执行预定操作的策略;仿真模块(15),用于对至少两种处理策略对应的中间血管模型分别进行血流仿真处理,得到至少两种血流仿真结果;展示模块(17),用于展示至少两种血流仿真结果。解决了相关技术中无法对采集的医学影像图进行多种治疗方案的仿真以及比较的技术问题。

Description

仿真系统、仿真方法及装置 技术领域
本发明涉及计算机辅助医疗中仿真技术领域,具体而言,涉及一种仿真系统、仿真方法及装置。
背景技术
心脑血管疾病是对人类的生命健康具有最大威胁的疾病类型之一。其中,心血管、脑血管出现血管阻塞、狭窄、钙化、斑块等病变,引起心肌、脑部的局部供血不足,严重时会危及生命。心血管疾病在临床上常通过医学影像技术进行诊断。通过CT(计算机断层扫描)、磁共振等医学影像设备对相关部位进行扫描成像属于临床常用的诊断方法。
目前,图像处理技术得到发展和应用,可以利用计算机图像处理技术,对扫描患者得到的医学图像进行计算机分析处理,可以得到具有临床价值的医学图像分析处理结果,可以有效地帮助医生进行诊断。
另外,在心脑血管疾病诊断和治疗领域,通过对医学影像进行处理得到患者血管的几何模型及物理学模型,并可以结合流体动力学仿真技术进行分析,可以得到患者的多种血管参数,包括但不限于:血管的流量、流速、直径、FFR(血流储备分数)、CFR(冠脉血流储备)等等,这些参数可以通过图像处理软件计算获得并提供给医生,有助于医生更好地进行诊断。
对于血管阻塞、狭窄等临床疾病,严重时临床上会采用血管支架植入、血管搭桥等方式进行手术治疗。具体治疗方案的选择,需要医生结合临床经验进行选择。
当下,对于血管阻塞、狭窄等临床疾病,严重时临床上会采用血管支架植入、血管搭桥等方式进行手术治疗。若选择支架植入方式治疗,血管支架有不同的尺寸、材质、型号等,需要医生根据经验做出判断选择;若选取血管搭桥方式进行治疗,也可能有多种血管搭桥方案。但是,上述方案均会由于无法有效地对采集的医学影像图进行分析。
针对上述相关技术中无法对采集的医学影像图进行多种治疗方案的仿真以及比较的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种仿真系统、仿真方法及装置,以至少解决相关技术中无法对采集的医学影像图进行多种治疗方案的仿真以及比较的技术问题。
根据本发明实施例的一个方面,提供了一种仿真系统,包括:模型生成模块,用于生成目标对象的初始血管模型;交互模块,用于采用至少两种处理策略对所述初始血管模型进行处理,分别得到与所述至少两种处理策略对应的中间血管模型,其中,所述至少两种处理策略为预先设置、并用于对所述初始血管模型执行预定操作的策略;仿真模块,用于对所述至少两种处理策略对应的中间血管模型分别进行血流仿真处理,得到至少两种血流仿真结果;展示模块,用于展示所述至少两种血流仿真结果。
可选地,所述至少两种处理策略为以下多种血管疾病治疗方式分别对应的计算机仿真策略的至少两种策略的组合:血管支架植入术、血管搭桥术、球囊扩张术、血管旋磨术、血栓抽吸术以及切割球囊成行术。
可选地,该仿真系统还包括:图像获取模块,用于获取所述目标对象的医学影像图,其中,所述医学影像图用于生成所述初始血管模型;图像分割模块,用于对所述医学影像图进行分割,得到所述目标对象的血管图像。
可选地,该仿真系统还包括:图像分析模块,用于对所述血管图像或所述初始血管模型进行分析,得到所述目标对象的病灶信息;处理策略确定模块,用于响应于交互指令,并基于所述交互指令确定所述至少两种处理策略。
可选地,所述仿真模块,还用于在对所述中间血管模型进行血流仿真处理之前,对所述初始血管模型进行仿真处理,得到所述初始血管模型的初始血流仿真结果。
可选地,所述交互模块包括:虚拟支架植入子模块,用于响应于交互指令,将虚拟支架放置于所述初始血管模型,得到采用血管支架植入术处理后的中间血管模型;桥血管添加子模块,用于响应于交互指令,在所述初始血管模型上添加虚拟桥血管,得到采用血管搭桥术处理后的中间血管模型。
可选地,该仿真系统还包括:血流参数获取模块,用于分别获取所述至少两种血流仿真结果对应的血流指标,其中,所述血流指标包括以下至少之一:血流储备分数FFR、血管壁面切应力WSS、血管压力、血流速度;评估模块,用于基于所述血流指标对所述至少两种处理策略进行评估,并得到评估结果。
可选地,所述展示模块在同一界面对比展示所述至少两种血流仿真结果。
根据本发明实施例的另外一个方面,还提供了一种仿真方法,应用于上述任一项 所述的仿真系统,包括:获取目标对象的初始血管模型;采用至少两种处理策略对所述初始血管模型进行处理,得到与所述至少两种处理策略对应的中间血管模型,其中,所述至少两种处理策略为预先设置、并用于对所述初始血管模型执行预定操作的策略;对所述至少两种处理策略对应的中间血管模型分别进行血流仿真处理,得到至少两种血流仿真结果,并展示所述至少两种血流仿真结果。
可选地,所述至少两种处理策略为以下多种血管疾病治疗方式分别对应的计算机仿真策略的至少两种策略的组合:血管支架植入术、血管搭桥术、球囊扩张术、血管旋磨术、血栓抽吸术以及切割球囊成行术。
可选地,在获取目标对象的初始血管模型之前,该仿真方法还包括:获取所述目标对象的医学影像图,其中,所述医学影像图用于生成所述初始血管模型;对所述医学影像图进行分割,得到所述目标对象的血管图像。
可选地,该仿真方法还包括:对所述血管图像或所述初始血管模型进行分析,得到所述目标对象的病灶信息;响应于交互指令,并基于所述交互指令确定所述至少两种处理策略。
可选地,在对所述中间血管模型进行血流仿真处理之前,该仿真方法还包括:对所述初始血管模型进行仿真处理,得到所述初始血管模型的初始血流仿真结果。
可选地,采用至少两种处理策略对所述初始血管模型进行处理,包括:响应于交互指令,将虚拟支架放置于所述初始血管模型,得到采用血管支架植入术处理后的中间血管模型;响应于作用在所述初始血管模型上基于所述病灶信息确定的待添加桥血管的起始位置和终止位置的点击操作,得到采用血管搭桥术处理后的中间血管模型。
可选地,该仿真方法还包括:分别获取所述至少两种血流仿真结果对应的血流指标,其中,所述血流指标包括以下至少之一:血流储备分数FFR、血管壁面切应力WSS,血管压力;基于所述血流指标对所述至少两种处理策略进行评估,并得到评估结果。
根据本发明实施例的另外一个方面,还提供了一种仿真装置,应用于上述中任一项所述的仿真方法,包括:获取单元,用于获取目标对象的初始血管模型;处理单元,用于采用至少两种处理策略对所述初始血管模型进行处理,得到与所述至少两种处理策略对应的中间血管模型,其中,所述至少两种处理策略为预先设置、并用于对所述初始血管模型执行预定操作的策略;仿真单元,用于对所述至少两种处理策略对应的中间血管模型分别进行血流仿真处理,得到至少两种血流仿真结果,并展示所述至少两种血流仿真结果。
根据本发明实施例的另外一个方面,还提供了一种计算机可读存储介质,所述计 算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序被处理器运行时控制所述计算机存储介质所在设备执行上述中任一项所述的仿真方法。
根据本发明实施例的另外一个方面,还提供了一种处理器,所述处理器用于运行计算机程序,其中,所述计算机程序运行时执行上述中任一项所述的仿真方法。
在本发明实施例中,采用模型生成模块,用于生成目标对象的初始血管模型;交互模块,用于采用至少两种处理策略对初始血管模型进行处理,得到与至少两种处理策略对应的中间血管模型,其中,至少两种处理策略为预先设置、并用于对初始血管模型执行预定操作的策略;仿真模块,用于对至少两种处理策略对应的中间血管模型分别进行血流仿真处理,得到至少两种血流仿真结果;展示模块,用于展示所述至少两种血流仿真结果。通过本发明实施例提供的仿真系统,实现了对采用至少两种处理策略对初始血管模型进行处理,并对处理得到的中间血管模型进行仿真的目的,达到了比较直观清晰地对多种治疗方案进行仿真和比较的技术效果,进而解决了相关技术中无法对采集的医学影像图进行多种治疗方案的仿真以及比较的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的仿真系统的示意图;
图2是根据本发明实施例的仿真系统界面中心脏冠状动脉相关的示意图;
图3(a)是根据本发明实施例的血管搭桥术仿真界面图;
图3(b)是根据本发明实施例的冠状动脉支架植入仿真界面图;
图4是根据本发明实施例的仿真方法的流程图;
图5是根据本发明实施例的仿真装置的示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于 本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例1
根据本发明实施例的一个方面,提供了一种仿真系统,图1是根据本发明实施例的仿真系统的示意图,如图1所示,该仿真系统可以包括:模型生成模块11、交互模块13、仿真模块15以及展示模块17。下面该仿真系统进行说明。
模型生成模块11,用于生成目标对象的初始血管模型。
可选的,这里的模型生成模块,可以用于基于目标对象的医学影像图来生成目标对象的初始血管模型。
这里的目标对象可以为人体的心脑血管部位。
交互模块13,用于采用至少两种处理策略对初始血管模型进行处理,得到与至少两种处理策略对应的中间血管模型,其中,至少两种处理策略为预先设置、并用于对初始血管模型执行预定操作的策略。
可选的,在该实施例中,可以通过交互界面展示目标对象的初始血管模型,并允许医生对初始血管模型进行两种以上不同治疗方案的模拟操作;具体地,医生可以对检测出的病灶进行突出显示,以便于对病灶部位进行虚拟操作。比如,可以在显示初始血管模型后对病灶部位进行突出显示,并为医生提供指令方案菜单,如支架和搭桥两项主菜单,如果选择支架,可以提供不同型号的支架选择菜单;如果选择搭桥,需要医生再从血管模型上选择添加的桥血管的起始位置和结束位置,并选择桥血管的直径。
可选地,至少两种处理策略为以下多种血管疾病治疗方式分别对应的计算机仿真策略的至少两种策略的组合:血管支架植入术、血管搭桥术、球囊扩张术、血管旋磨术、血栓抽吸术以及切割球囊成行术。
仿真模块15,用于对至少两种处理策略对应的中间血管模型分别进行血流仿真处 理,得到至少两种血流仿真结果。
展示模块17,用于展示所述至少两种血流仿真结果。
可选的,在本发明实施例中,展示模块可以在同一界面对比展示至少两种血流仿真结果。即,可以对仿真模块的仿真结果进行联动展示,比如,同时展示多种不同治疗方案的FFR计算结果,具体地,用户可将鼠标放置或点击在血管上的特定血管位置,终端设备即可显示出各种不同治疗方案下该特定位置的FFR,便于医生进行比较。
由上可知,在本发明实施例中,可以利用模型生成模块生成目标对象的初始血管模型;然后利用交互模块采用至少两种处理策略对初始血管模型进行处理,得到与至少两种处理策略对应的中间血管模型,其中,至少两种处理策略为预先设置、并用于对初始血管模型执行预定操作的策略;并利用仿真模块对至少两种处理策略对应的中间血管模型分别进行血流仿真处理,得到至少两种血流仿真结果;以及利用展示模块展示所述至少两种血流仿真结果,实现了对采用至少两种处理策略对初始血管模型进行处理,并对处理得到的中间血管模型进行仿真的目的,达到了比较直观清晰地对多种治疗方案进行仿真和比较的技术效果。
因此,通过本发明实施例提供的仿真系统,解决了相关技术中无法对采集的医学影像图进行多种治疗方案的仿真以及比较的技术问题。
在一种可选的实施例中,该仿真系统还包括:图像获取模块,用于获取目标对象的医学影像图,其中,医学影像图用于生成初始血管模型;图像分割模块,用于对医学影像图进行分割,得到目标对象的血管图像。
在该实施例中,可以利用图像获取模块获取目标对象的医学图像(即,医学影像图),例如,CT血管造影(CTA)、CT灌注扫描(CTP)、CT平扫(NCCT)等不同模式;也可以是磁共振图像、X射线血管造影、分子影像、血管内超声等。
另外,在该实施例中,对医学影像图分割的方式,既可以是传统的图像分割方式,也可以是深度学习分割算法,在本发明实施例中不做具体限定。
在一种可选的实施例中,该仿真系统还包括:图像分析模块,用于对血管图像或初始血管模型进行分析,得到目标对象的病灶信息;处理策略确定模块,用于响应于交互指令,并基于交互指令确定至少两种处理策略。
在该实施例中,可以通过图像分析模块进行病灶检测,具体地,可以对医学影像图或初始血管模型进行处理,自动检测出病灶(阻塞、狭窄、斑块等病灶)位置,并可以给出提示。需要说明的是,此处可以有相应的病灶检出算法或深度学习AI算法完 成。
在一种可选的实施例中,仿真模块,还用于在对中间血管模型进行血流仿真处理之前,对初始血管模型进行仿真处理,得到初始血管模型的初始血流仿真结果。
可选的,在该实施例中,可以对初始血管模型进行流体动力学仿真,以得到初始血管模型的血流储备分数FFR、血管壁面切应力WSS、血管压力等,也即是,得到治疗前的血管模型的流体动力学仿真结果。
由上可知,在本发明实施例中,针对检测出的初始血管模型的病灶区域可以采取至少两种处理策略进行处理,例如,可以采用血管支架植入术和血管搭桥术分别对病灶区域进行处理,也可以采用血管支架植入术、血管搭桥术以及球囊扩张术分别对病灶区域进行处理。
其中,在采用血管支架植入术和血管搭桥术这两种处理策略分别对病灶区域进行处理的情况下,该仿真系统的交互模块可以包括:虚拟支架植入子模块,用于响应于交互指令,将虚拟支架放置于初始血管模型,得到采用血管支架植入术处理后的中间血管模型;桥血管添加子模块,用于响应于作用在初始血管模型上基于病灶信息确定的待添加桥血管的起始位置和终止位置的点击操作,得到采用血管搭桥术处理后的中间血管模型。
在该实施例中,对病灶区域采用血管支架植入术和血管搭桥术进行处理,以得到经过这两种不同的处理策略处理后的中间血管模型,便于后续对这两种不同的处理策略的处理结果进行对比分析。
具体地,采用血管支架植入术对病灶区域进行处理,可以根据病灶区域的特征信息选择合适的虚拟支架,然后将选择的虚拟支架置入初始血管模型。采用血管搭桥术对病灶区域进行处理,可以响应于作用于初始血管模型上桥血管的起始位置和终止位置上的点击操作,生成血管桥;这里在生成血管桥之后,可以根据需要对血管桥进行调整。
由上可知,在本发明实施例中,可以对检出的病灶进行突出显示,医生可以仅对病灶部位进行操作,其中,能够虚拟操作的处理方案可以包括但不限于:1)虚拟支架植入:可以对初始血管模型模拟放置血管支架(即,血管支架植入术),在此之前,需要提供与真实的各种支架型号相符的多种支架模型选择;2)虚拟血管搭桥:可以对初始血管模型做模拟搭桥,在原始的血管模型上有医生手动添加桥血管;3)经皮冠状动脉球囊血管成形术;4)冠状动脉支架植入术;5)冠状动脉旋磨术;6)冠脉内血栓抽吸应用负压的抽吸导管将冠脉内的血栓抽出;7)切割球囊成行术。
其中,上述经皮冠状动脉球囊血管成形术是采用股动脉途径或桡动脉途径,将指引导管送至待扩张的冠状动脉口,再将相应大小的球囊沿导引钢丝送到狭窄的节段,根据病变的特点用适当的压力和时间进行扩张,达到解除狭窄的目的。冠状动脉支架植入术是将以不锈钢或合金材料制成的网状带有间隙的支架置入冠状动脉内狭窄的阶段支撑血管壁,维持血流通常,可减少PTCA后的血管弹性回缩,并封闭PTCA是可能产生的夹层,大大减少了PTCA术中急性血管闭塞的发生。冠状动脉旋磨术是采用呈橄榄形的带有钻石颗粒旋磨头、根据“选择性切割”的原理选择性的磨除纤维化或钙化的动脉硬化斑块,而不会切割有弹性的组织和正常冠脉;主要应用于严重狭窄伴重度钙化的病变。冠脉内血栓抽吸应用负压的抽吸导管将冠脉内的血栓抽出,多用于血栓性病变或大隐静脉桥血管病变。切割球囊成行术是在球囊上纵向安装3-4片微型刀片,当球囊开始扩张时,刀片将血管狭窄处的增生组织切成3-4份,而后球囊充分扩张病变处。主要用于支架内再狭窄病变或是纤维组织增生为主的病变。
在一种可选的实施例中,该仿真系统还可以包括:血流参数获取模块,用于分别获取至少两种血流仿真结果对应的血流指标,其中,血流指标包括以下至少之一:血流储备分数FFR、血管壁面切应力WSS,血管压力;评估模块,用于基于血流指标对至少两种处理策略进行评估,并得到评估结果。
此外,血流动力学指标FFR计算,可以是基于流体动力学求解的FFR计算,也可以是基于机器学习、深度学习模型获得FFR值;也可以自动根据患者的医学影像图或初始血管模型进行病灶部位检出,并提示给用户,也可以进对病灶部位编辑处理策略,并可以对整个初始血管模型进行编辑。
在一种可选的实施例中,可以利用上述血流指标对至少两种处理策略进行评估,以得到至少两种处理策略中处理效果较好的处理策略。
即,在该实施例中,可以对多种处理策略处理后的中间血管模型进行流体动力学仿真,以得到用于评估血流情况的相关参数(即,血流指标),包括但不限于以下几种:血流储备分数(Fractional Flow Reserve,简称FFR)、血管壁面切应力(Wall Shear Stress,简称WSS)、血管压力(Pressure)、冠脉血流储备(Coronary Flow Reserve,简称CFR)、微循环阻力系数(Index of Microcirculatory Resistance,简称IMR)、流量、流速,并将各种处理策略的仿真结果展示给医生,例如,可以用伪彩图的方式在血管模型上以不同的颜色表示各位置不同的参数值的方式展示。
在一种可选的实施例中,该仿真系统还可以基于至少两种血流仿真结果对应的血流指标确定至少两种处理策略中满足预设条件的目标处理策略。
例如,可以设定处理策略的比较规则或打分规则,由软件自动对不同治疗方案进行打分或比较。比如,将至少两种不同处理策略处理后血管狭窄远端处的预定血流储备分数作为打分规则,血管狭窄远端处的血流储备分数越大则说明该处理策略越好,进而可以将能够使血管狭窄远端处治疗后血流储备分数较大的处理策略作为最优处理策略。
具体地,医生可以通过交互界面选择展示不同的指标,包括:血流储备分数FFR、血管壁面切应力WSS,压力Pressure等,也可以用伪彩图展示,并可以设定处理策略的比较规则或打分规则,这里可以利用软件自动对不同处理策略进行打分或比较。
在一种可选的实施例中,该仿真系统还包括:输出模块,用于输出血流仿真结果。
例如,在该实施例中,可以利用输出模块输出对不同处理策略的分析处理结果以供医生参考。
下面结合附图并以心脏冠状动脉为例进行说明。
图2是根据本发明实施例的仿真系统界面中心脏冠状动脉相关的示意图,如图2所示,在该图中左上方示出了心脏部位CT血管造影图像,右上部分示出了冠状动脉模型,在本发明实施例中,主要是通过对右上方所示的冠状动脉模型进行分析后,得到病灶信息,然后选择至少两种不同的处理策略对冠状动脉模型进行处理,得到至少两种不同处理策略处理后的至少两个中间血管模型,并对这至少两个中间血管模型进行动力学血流仿真处理,并可以对至少两个两种血流仿真结果进行联动展示。
图3(a)是根据本发明实施例的血管搭桥术仿真界面图,图3(b)是根据本发明实施例的冠状动脉支架植入仿真界面图,通过图3(a)和图3(b)所示,可以很直观、清晰地将冠状动脉植入和搭桥两种处理策略进行比较,便于医生进行后续处理提供比较好的参考。
需要说明的是,在本发明实施例中,对检测出的病灶区域的处理方式,并不限于上述冠状动脉植入和搭桥两种处理方式,也可以包括球囊扩张术、血管旋磨术、血栓抽吸术以及切割球囊成行术中一种或多种,在这种情况下,在仿真界面图中则会展示联动展示球囊扩张术、血管旋磨术、血栓抽吸术以及切割球囊成行术中一种或多种处理后的中间血管模型进行仿真的示意图。
综上所述,通过本发明实施例提供的仿真系统,可以利用医学影像获取模块获取目标对象的医学影像图,接着利用血管模型生成模块根据目标对象的医学影像图得到初始血管模型,然后利用治疗方案生成模块根据交互指令获得若干种不同的处理策略的处理规划,并生成各种处理策略对应的处理后的中间血管模型,并利用分析处理模 块根据各种处理策略对应的处理后的中间血管模型得到各处理策略处理后的血管的血流动力学指标;以及利用输出模块输出不同处理策略的分析处理结果用于供医生参考。
实施例2
根据本发明实施例,提供了一种仿真方法的方法实施例,需要说明的是,应用于上述中任一项的仿真系统,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图4是根据本发明实施例的仿真方法的流程图,如图4所示,该仿真方法包括如下步骤:
步骤S402,获取目标对象的初始血管模型。
在一种可选的实施例中,在获取目标对象的初始血管模型之前,该仿真方法还可以包括:获取目标对象的医学影像图,其中,医学影像图用于生成初始血管模型;对医学影像图进行分割,得到目标对象的血管图像。
在该实施例中,可以获取目标对象的医学图像(即,医学影像图),具体可以是:CT图像,例如,CT血管造影(CTA)、CT灌注扫描(CTP)、CT平扫(NCCT)等不同模式;也可以是磁共振图像、X射线血管造影、分子影像、血管内超声等。
此处,可以利用计算机图像分割技术,以分割得到图像中的血管,从而可以通过计算机几何建模,构建目标对象的初始血管模型或中间血管模型。
例如,患者的医学图像为心脏冠状动脉部位的医学图像,该医学图像可以为采用包括但不限于CT、核磁共振等成像方式获得的包括三维体素信息的图像,也可以是根据多幅不同的二维图像(例如,DSA影像)进行处理计算得到的三维图像。
其中,可以采用图像分割技术对医学图像进行分割,进而生成初始血管模型;例如,可以采用基于神经网络的图像分割模型对医学图像进行分割以获取初始血管模型;具体地,可以将医学图像输入至图像分割模型,将图像分割模型的输出转换为上述初始血管模型即可。
另外,也可以采用阈值法对医学图像进行分割以获取初始血管模型;具体地,可以获取冠脉血管的灰度值范围,并从医学图像中提取所有位于该灰度值范围内的像素点,这些像素点组成的集合即为初始血管模型。
步骤S404,采用至少两种处理策略对初始血管模型进行处理,得到与至少两种处 理策略对应的中间血管模型,其中,至少两种处理策略为预先设置、并用于对初始血管模型执行预定操作的策略。
在该实施例中,可以通过交互界面展示目标对象的血管几何模型,并允许医生对血管几何模型进行两种以上不同处理策略的模拟操作。
需要说明的是,这里的至少两种处理策略为以下多种血管疾病治疗方式分别对应的计算机仿真策略的至少两种策略的组合:血管支架植入术、血管搭桥术、球囊扩张术、血管旋磨术、血栓抽吸术以及切割球囊成行术。
步骤S406,对至少两种处理策略对应的中间血管模型分别进行血流仿真处理,得到至少两种血流仿真结果,并展示至少两种血流仿真结果。
在该实施例中,可以采用至少两种处理策略(例如,血管支架植入术和血管搭桥术)对初始血管模型进行处理,以得到血管支架植入后的中间血管模型和血管搭桥处理后的中间血管模型,并可以将这两个中间模型进行联动展示,从而医生可以比较直观清晰地对血管支架植入术和血管搭桥术处理后的结果进行比较。
可选的,在本发明实施例中,展示至少两种血流仿真结果,可以是在同一界面对比展示至少两种血流仿真结果。即,可以对仿真模块的仿真结果进行联动展示,比如,同时展示多种不同治疗方案的FFR计算结果,具体地,用户可将鼠标放置或点击在血管上的特定血管位置,终端设备(例如,电脑)即可显示出各种不同治疗方案下该特定位置的FFR,便于医生进行比较。
由上可知,在本发明实施例中,可以获取目标对象的初始血管模型;采用至少两种处理策略对初始血管模型进行处理,得到与至少两种处理策略对应的中间血管模型,其中,至少两种处理策略为预先设置、并用于对初始血管模型执行预定操作的策略;对至少两种处理策略对应的中间血管模型分别进行血流仿真处理,得到至少两种血流仿真结果,并展示至少两种血流仿真结果,实现了对采用至少两种处理策略对初始血管模型进行处理,并对处理得到的中间血管模型进行仿真以及比较的目的,达到了比较直观且清晰地对多种治疗方案进行仿真和比较的技术效果。
因此,通过本发明实施例提供的仿真方法,解决了相关技术中无法对采集的医学影像图进行多种治疗方案的仿真以及比较的技术问题。
在一种可选的实施例中,该仿真方法还包括:对血管图像或初始血管模型进行分析,得到目标对象的病灶信息;响应于交互指令,并基于交互指令确定所述至少两种处理策略。
在该实施例中,可以通过对血管图像或初始血管模型进行病灶检测,具体地,可以对医学影像图或初始血管模型进行处理,自动检测出病灶(阻塞、狭窄、斑块等病灶)位置,并可以给出提示。需要说明的是,此处可以有相应的病灶检出算法或深度学习AI算法完成;然后选择出至少两种处理策略对病灶区域进行处理。
在一种可选的实施例中,在对中间血管模型进行血流仿真处理之前,该仿真系统还可以包括:对初始血管模型进行仿真处理,得到初始血管模型的初始血流仿真结果。
由上可知,在本发明实施例中,针对检测出的初始血管模型的病灶区域可以采取至少两种处理策略进行处理,例如,可以采用血管支架植入术和血管搭桥术分别对病灶区域进行处理,也可以采用血管支架植入术、血管搭桥术以及球囊扩张术分别对病灶区域进行处理。
其中,在采用血管支架植入术和血管搭桥术这两种处理策略分别对病灶区域进行处理的情况下,采用至少两种处理策略对初始血管模型进行处理包括:响应于交互指令,将虚拟支架放置于初始血管模型,得到采用血管支架植入术处理后的中间血管模型;响应于作用在初始血管模型上基于病灶信息确定的待添加桥血管的起始位置和终止位置的点击操作,得到采用血管搭桥术处理后的中间血管模型。
在该实施例中,对病灶区域采用血管支架植入术和血管搭桥术进行处理,以得到经过这两种不同的处理策略处理后的中间血管模型,便于后续对这两种不同的处理策略的处理结果进行对比分析。
具体地,采用血管支架植入术对病灶区域进行处理,可以根据病灶区域的特征信息选择合适的虚拟支架,然后将选择的虚拟支架置入初始血管模型。采用血管搭桥术对病灶区域进行处理,可以响应于作用于初始血管模型上桥血管的起始位置和终止位置上的点击操作,生成血管桥;这里在生成血管桥之后,可以根据需要对血管桥进行调整。
在一种可选的实施例中,在得到至少两种处理策略对应的中间血管模型之后,可以对这两种中间血管模型进行血流仿真处理,以得到至少两种血流仿真结果,从而能够对至少两种处理策略进行评估。
在一种可选的实施例中,该仿真方法还包括:分别获取至少两种血流仿真结果对应的血流指标,其中,血流指标包括以下至少之一:血流储备分数FFR、血管壁面切应力WSS,血管压力;基于血流指标对至少两种处理策略进行评估,并得到评估结果。
另外,在本发明实施例中,对至少两种处理策略处理后的血管模型进行分析可以包括但不限于以下几种方式:1).将分割得到的血管模型划分为有限数量的细小单元 网格,作为计算流体动力学分析的前置步骤,接着设定对血管模型进行计算分析的边界条件,并利用计算流体动力学CFD技术进行分析计算,以得到血管模型的各个位置的多种流体动力学指标(例如,FFR、血液流速、血管压力、血管壁面应力等);2)可以利用深度学习神经网络来是吸纳对血管模型的分析,具体地,可以搭建一个神经网络模型,并利用大量训练数据对神经网络模型进行训练(这里的训练数据可以包括多个血管模型及其对应的血流动力学指标),得到一个专用于血管模型分析的训练后的AI网络模型,实现的效果是对AI网络模型输入血管模型,即可得到该血管模型的各项血流动力学指标。
在该实施例中,可以通过评分或其他规则从至少两种处理策略中选择出最优的目标处理策略,以在利用该最优的目标处理策略对初始血管模型进行处理后,血管血流接近正常情况下的状况。
综上所述,通过本发明实施例提供的仿真方法,可以在获取到目标对象的医学影像图后,基于该医学影像图得到目标对象的初始血管模型,并利用至少两种处理策略对初始血管模型进行处理,并得到处理后的中间血管模型,以对中间血管模型采用计算机进行流体力学仿真计算,并通过联动展示方式将若干种仿真结果展示出来。
实施例3
根据本发明实施例的另外一个方面,还提供了一种仿真装置,应用于上述中任一项的仿真方法,图5是根据本发明实施例的仿真装置的示意图,如图5所示,该仿真装置可以包括:获取单元51、处理单元53以及仿真单元55。下面对该仿真装置进行说明。
获取单元51,用于获取目标对象的初始血管模型。
处理单元53,用于采用至少两种处理策略对初始血管模型进行处理,得到与至少两种处理策略对应的中间血管模型,其中,至少两种处理策略为预先设置、并用于对初始血管模型执行预定操作的策略。
仿真单元55,用于对至少两种处理策略对应的中间血管模型分别进行血流仿真处理,得到至少两种血流仿真结果,并展示至少两种血流仿真结果。
由上可知,此处需要说明的是,上述获取单元51、处理单元53以及仿真单元55对应于实施例2中的步骤S402至S406,上述单元与对应的步骤所实现的示例和应用场景相同,但不限于上述实施例2所公开的内容。需要说明的是,上述单元作为装置的一部分可以在诸如一组计算机可执行指令的计算机系统中执行。
由上可知,在本申请上述实施例中,可以利用获取单元获取目标对象的初始血管模型;然后利用处理单元采用至少两种处理策略对初始血管模型进行处理,得到与至少两种处理策略对应的中间血管模型,其中,至少两种处理策略为预先设置、并用于对初始血管模型执行预定操作的策略;并利用仿真单元对至少两种处理策略对应的中间血管模型分别进行血流仿真处理,得到至少两种血流仿真结果,并展示至少两种血流仿真结果。通过本发明实施例提供的仿真系统,实现了对采用至少两种处理策略对初始血管模型进行处理,并对处理得到的中间血管模型进行仿真的目的,达到了比较直观且清晰地对多种治疗方案进行仿真和比较的技术效果,解决了相关技术中无法对采集的医学影像图进行多种治疗方案的仿真以及比较的技术问题。
实施例4
根据本发明实施例的另外一个方面,还提供了一种计算机可读存储介质,计算机可读存储介质包括存储的计算机程序,其中,在计算机程序被处理器运行时控制计算机存储介质所在设备执行上述中任一项的仿真方法。
实施例5
根据本发明实施例的另外一个方面,还提供了一种处理器,处理器用于运行计算机程序,其中,计算机程序运行时执行上述中任一项的仿真方法。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以 是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (11)

  1. 一种仿真系统,其特征在于,包括:
    模型生成模块,用于生成目标对象的初始血管模型;
    交互模块,用于采用至少两种处理策略对所述初始血管模型进行处理,分别得到与所述至少两种处理策略对应的中间血管模型,其中,所述至少两种处理策略为预先设置、并用于对所述初始血管模型执行预定操作的策略;
    仿真模块,用于对所述至少两种处理策略对应的中间血管模型分别进行血流仿真处理,得到至少两种血流仿真结果;
    展示模块,用于展示所述至少两种血流仿真结果。
  2. 根据权利要求1所述的仿真系统,其特征在于,所述至少两种处理策略为以下多种血管疾病治疗方式分别对应的计算机仿真策略的至少两种策略的组合:血管支架植入术、血管搭桥术、球囊扩张术、血管旋磨术、血栓抽吸术以及切割球囊成行术。
  3. 根据权利要求1所述的仿真系统,其特征在于,还包括:
    图像获取模块,用于获取所述目标对象的医学影像图,其中,所述医学影像图用于生成所述初始血管模型;
    图像分割模块,用于对所述医学影像图进行分割,得到所述目标对象的血管图像。
  4. 根据权利要求3所述的仿真系统,其特征在于,还包括:
    图像分析模块,用于对所述血管图像或所述初始血管模型进行分析,得到所述目标对象的病灶信息;
    处理策略确定模块,用于响应于交互指令,并基于所述交互指令确定所述至少两种处理策略。
  5. 根据权利要求1所述的仿真系统,其特征在于,所述仿真模块,还用于在对所述中间血管模型进行血流仿真处理之前,对所述初始血管模型进行仿真处理,得到所述初始血管模型的初始血流仿真结果。
  6. 根据权利要求1所述的仿真系统,其特征在于,所述交互模块包括:
    虚拟支架植入子模块,用于响应于交互指令,将虚拟支架放置于所述初始血管模型,得到采用血管支架植入术处理后的中间血管模型;
    桥血管添加子模块,用于响应于交互指令,在所述初始血管模型上添加虚拟桥血管,得到采用血管搭桥术处理后的中间血管模型。
  7. 根据权利要求1所述的仿真系统,其特征在于,还包括:
    血流参数获取模块,用于分别获取所述至少两种血流仿真结果对应的血流指标,其中,所述血流指标包括以下至少之一:血流储备分数、血管壁面切应力、血管压力、血流速度;
    评估模块,用于基于所述血流指标对所述至少两种处理策略进行评估,并得到评估结果。
  8. 根据权利要求1至7中任一项所述的仿真系统,其特征在于,所述展示模块在同一界面对比展示所述至少两种血流仿真结果。
  9. 一种仿真方法,其特征在于,应用于上述权利要求1至8中任一项所述的仿真系统,包括:
    获取目标对象的初始血管模型;
    采用至少两种处理策略对所述初始血管模型进行处理,得到与所述至少两种处理策略对应的中间血管模型,其中,所述至少两种处理策略为预先设置、并用于对所述初始血管模型执行预定操作的策略;
    对所述至少两种处理策略对应的中间血管模型分别进行血流仿真处理,得到至少两种血流仿真结果,并展示所述至少两种血流仿真结果。
  10. 一种仿真装置,其特征在于,应用于上述权利要求9所述的仿真方法,包括:
    获取单元,用于获取目标对象的初始血管模型;
    处理单元,用于采用至少两种处理策略对所述初始血管模型进行处理,得到与所述至少两种处理策略对应的中间血管模型,其中,所述至少两种处理策略为预先设置、并用于对所述初始血管模型执行预定操作的策略;
    仿真单元,用于对所述至少两种处理策略对应的中间血管模型分别进行血流仿真处理,得到至少两种血流仿真结果,并展示所述至少两种血流仿真结果。
  11. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括存储的计 算机程序,其中,在所述计算机程序被处理器运行时控制所述计算机存储介质所在设备执行权利要求9所述的仿真方法。
PCT/CN2021/137417 2021-02-03 2021-12-13 仿真系统、仿真方法及装置 WO2022166405A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110150238.2A CN112971979B (zh) 2021-02-03 2021-02-03 仿真系统、仿真方法及装置
CN202110150238.2 2021-02-03

Publications (1)

Publication Number Publication Date
WO2022166405A1 true WO2022166405A1 (zh) 2022-08-11

Family

ID=76346487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137417 WO2022166405A1 (zh) 2021-02-03 2021-12-13 仿真系统、仿真方法及装置

Country Status (2)

Country Link
CN (1) CN112971979B (zh)
WO (1) WO2022166405A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112971979B (zh) * 2021-02-03 2022-08-16 上海友脉科技有限责任公司 仿真系统、仿真方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160022371A1 (en) * 2014-07-22 2016-01-28 Siemens Aktiengesellschaft Method and System for Automated Therapy Planning for Arterial Stenosis
US20160225291A1 (en) * 2015-01-29 2016-08-04 Infinitt Healthcare Co., Ltd. System and method for displaying medical images
CN107491636A (zh) * 2017-07-26 2017-12-19 武汉大学 一种基于计算流体力学的脑血管储备力仿真系统和方法
CN110223271A (zh) * 2019-04-30 2019-09-10 深圳市阅影科技有限公司 血管图像的自动水平集分割方法及装置
CN110742688A (zh) * 2019-10-30 2020-02-04 北京理工大学 血管模型建立方法、装置及可读取存储介质
CN112971979A (zh) * 2021-02-03 2021-06-18 上海友脉科技有限责任公司 仿真系统、仿真方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031744A1 (ja) * 2011-08-26 2013-03-07 イービーエム株式会社 血流性状診断のためのシステム、その方法及びコンピュータソフトウエアプログラム
US9390232B2 (en) * 2014-03-24 2016-07-12 Heartflow, Inc. Systems and methods for modeling changes in patient-specific blood vessel geometry and boundary conditions
CN104116563A (zh) * 2014-07-02 2014-10-29 北京工业大学 一种个性化冠状动脉搭桥术的血流动力学快速规划方法
EP3258890B1 (en) * 2015-02-17 2023-08-23 Siemens Healthcare GmbH Method and system for personalizing a vessel stent
CN105013042B (zh) * 2015-07-31 2017-10-31 中国医科大学附属第一医院 微创冠状动脉桥血管内干细胞持续注射系统
CN109064559A (zh) * 2018-05-28 2018-12-21 杭州阿特瑞科技有限公司 基于力学方程的血管血流模拟方法及相关装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160022371A1 (en) * 2014-07-22 2016-01-28 Siemens Aktiengesellschaft Method and System for Automated Therapy Planning for Arterial Stenosis
US20160225291A1 (en) * 2015-01-29 2016-08-04 Infinitt Healthcare Co., Ltd. System and method for displaying medical images
CN107491636A (zh) * 2017-07-26 2017-12-19 武汉大学 一种基于计算流体力学的脑血管储备力仿真系统和方法
CN110223271A (zh) * 2019-04-30 2019-09-10 深圳市阅影科技有限公司 血管图像的自动水平集分割方法及装置
CN110742688A (zh) * 2019-10-30 2020-02-04 北京理工大学 血管模型建立方法、装置及可读取存储介质
CN112971979A (zh) * 2021-02-03 2021-06-18 上海友脉科技有限责任公司 仿真系统、仿真方法及装置

Also Published As

Publication number Publication date
CN112971979A (zh) 2021-06-18
CN112971979B (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
JP6820382B2 (ja) 脈管構造を数値的に評価するためのシステムおよび方法
US9888968B2 (en) Method and system for automated therapy planning for arterial stenosis
US10130266B2 (en) Method and system for prediction of post-stenting hemodynamic metrics for treatment planning of arterial stenosis
KR102336929B1 (ko) 환자-특정 기하학적 모델들을 변경함으로써 치료들을 결정하기 위한 방법 및 시스템
JP6262027B2 (ja) 医用画像処理装置
JP2019133678A (ja) タッチレス高度画像処理及び視覚化
CN105877767A (zh) 一种冠脉图像造影方法和装置
CN113241183B (zh) 治疗方案预测方法及装置
WO2022166405A1 (zh) 仿真系统、仿真方法及装置
CN110494893A (zh) 基于ffr的对非侵入性成像的交互监测
JP2019147004A (ja) 医用画像処理装置、医用画像処理方法および記録媒体
JP2018064967A (ja) 医用画像処理装置、医用画像処理方法および記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924398

Country of ref document: EP

Kind code of ref document: A1