WO2022166292A1 - 一种显示基板和显示装置 - Google Patents

一种显示基板和显示装置 Download PDF

Info

Publication number
WO2022166292A1
WO2022166292A1 PCT/CN2021/129587 CN2021129587W WO2022166292A1 WO 2022166292 A1 WO2022166292 A1 WO 2022166292A1 CN 2021129587 W CN2021129587 W CN 2021129587W WO 2022166292 A1 WO2022166292 A1 WO 2022166292A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
substrate
target
photoresistor
Prior art date
Application number
PCT/CN2021/129587
Other languages
English (en)
French (fr)
Inventor
杜小波
景姝
李彦松
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/800,022 priority Critical patent/US20230108405A1/en
Publication of WO2022166292A1 publication Critical patent/WO2022166292A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/13Active-matrix OLED [AMOLED] displays comprising photosensors that control luminance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display substrate and a display device.
  • OLED Organic light-emitting diode, organic light-emitting diode
  • OLED display technology has the advantages of high brightness, low power consumption, fast response, high definition, with the development and maturity of OLED (Organic light-emitting diode, organic light-emitting diode) display technology , OLED display devices are more and more popular with users.
  • an embodiment of the present disclosure provides a display substrate including a substrate and a plurality of pixel units located on the substrate, each of the pixel units includes a plurality of sub-pixels, and the pixel unit includes a target pixel unit , the target pixel unit includes a target sub-pixel, the target sub-pixel includes a pixel driving circuit and a light-emitting unit that can emit light under the driving of the pixel driving circuit, and the target sub-pixel also includes a photoresistor, the photoresistor and The pixel driving circuit is electrically connected, and the resistance value of the photoresistor increases with the decrease of the light intensity.
  • the resistance of the photoresistor decreases as the light intensity increases.
  • the light-emitting unit of the target sub-pixel includes a first electrode, a second electrode, and a light-emitting layer located between the first electrode and the second electrode, and the material of the light-emitting layer includes a phosphorescent light-emitting material .
  • the sub-pixels of the pixel unit include red sub-pixels, green sub-pixels and blue sub-pixels, and the target sub-pixels include at least one of red sub-pixels and green sub-pixels.
  • the target sub-pixel further includes a blue sub-pixel, wherein, under the same illumination intensity, the resistance value of the photoresistor included in the blue sub-pixel is smaller than that of the red sub-pixel in the same target pixel unit.
  • the display substrate includes a display area and a non-display area, the display area has a power signal line, the power signal line extends along a first direction, and the power signal line has an input located in the non-display area terminal and output terminal, the target pixel unit includes a first target pixel unit and a second target pixel unit, the distance between the first target pixel unit and the input end of the power signal line in the first direction is less than the distance between the second target pixel unit and the target edge of the display substrate;
  • the first target pixel unit includes a first target sub-pixel
  • the second target pixel unit includes a second target sub-pixel
  • the first target sub-pixel and the second target sub-pixel have the same emission color
  • the display substrate includes a first display area and a second display area, and the distance between the first display area and the input end of the power signal line along the first direction is smaller than the second display area
  • the distance between the area and the target edge of the display substrate, the pixel units in the first display area are all the first target pixel units, and the pixel units in the second display area are the second target pixel unit.
  • the light-emitting unit of the target sub-pixel includes a first electrode, a light-emitting layer, and a second electrode
  • the first electrode includes a first portion connected to the pixel driving circuit and a second portion connected to the light-emitting layer.
  • the photoresistor and the first electrode are integrally arranged, and the orthographic projection of the photoresistor on the substrate is separated from the orthographic projection of the first part on the substrate, the photoresistor The orthographic projection on the substrate is separate from the orthographic projection of the second portion on the substrate.
  • the first electrode further includes a third part, the third part is located between the first part and the second part, and is connected to both the first part and the second part, so
  • the third part includes a first sub-figure and a second sub-figure arranged at intervals, the first sub-figure is connected with the first part, the second sub-figure is connected with the second part, and the first sub-figure is connected with the second part.
  • Both the pattern and the second sub-pattern are connected to the photosensitive layer, the resistivity of the photosensitive material of the photo-sensitive layer increases with the decrease of the light intensity, the photo-sensitive layer, the first sub-pattern and the second sub-pattern
  • the photoresistor is formed.
  • the first sub-pattern includes a plurality of first tooth-like structures
  • the second sub-pattern includes a plurality of second tooth-like structures
  • the first tooth-like structures and the second tooth-like structures are staggered It is arranged that the photosensitive layer is located on the side of the first electrode away from the substrate, and the orthographic projection of the photosensitive layer on the substrate is the same as the first tooth-like structure and the second tooth-like structure The orthographic projections of the structures on the substrates all overlap.
  • the orthographic projection of the photosensitive layer on the substrate is separated from the orthographic projection of the part of the first sub-pattern other than the first tooth-like structure on the substrate, and the The orthographic projection of the photosensitive layer on the substrate is separated from the orthographic projection of the portion of the second sub-pattern other than the second tooth-like structure on the substrate.
  • the first electrode further includes a fourth part, the fourth part is respectively connected with the first part and the second part, and the fourth part is connected in parallel with the third part.
  • the display substrate further includes a pixel defining layer and an opaque isolation structure located on the side of the first electrode away from the substrate, the isolation structure and the pixel defining layer are arranged in the same layer, so The isolation structure is located on a side of the photoresistor corresponding to the target sub-pixel away from the light-emitting layer of the target sub-pixel.
  • the light-emitting layer of the target sub-pixel includes a first surface close to the substrate and a second surface away from the substrate, and the orthographic projection of the first surface on the substrate is located on the substrate. the second surface is inside the orthographic projection of the substrate;
  • the orthographic projection of the second surface on the substrate and the orthographic projection of the photoresistor corresponding to the target sub-pixel on the substrate have an overlapping area, and the first surface on the substrate has an overlapping area.
  • the orthographic projection is separated from the orthographic projection of the photoresistor corresponding to the target sub-pixel on the substrate.
  • an embodiment of the present disclosure provides a display device including the display substrate according to any one of the first aspects.
  • the pixel driving circuit of the embodiment of the present disclosure includes a photoresistor, and the resistance value of the photoresistor decreases with the increase of the light intensity. Different resistance values are provided under different conditions, so as to realize the adjustment of the resistance, which helps to balance the luminous efficiency of different color sub-pixels under different brightness, thereby helping to improve the display effect.
  • FIG. 1 is a schematic circuit diagram of a target pixel unit in an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of the correspondence between currents and efficiencies of sub-pixels of different colors
  • 3 is a schematic diagram of the corresponding relationship between the voltage and efficiency of different color sub-pixels
  • FIG. 4 is a schematic structural diagram of a display substrate according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a photoresistor in an embodiment of the present disclosure.
  • FIG. 6 is another schematic structural diagram of a photoresistor in an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a display substrate.
  • the display substrate includes a substrate 401 and a plurality of pixel units located on the substrate 401. As shown in FIG. 1, each pixel unit includes a plurality of sub-pixels, wherein sub-pixels with different filling effects represent different The light-emitting unit of the color sub-pixel.
  • the pixel unit includes a target pixel unit, the target pixel unit includes a target sub-pixel, the target sub-pixel includes a pixel driving circuit and a light-emitting unit, and the light-emitting unit can emit light under the driving of a control chip (IC) and the pixel driving circuit.
  • IC control chip
  • the target sub-pixel in the embodiment of the present disclosure further includes a photoresistor 412.
  • the photoresistor 412 is electrically connected to the pixel driving circuit of the target sub-pixel, and the resistance value of the photoresistor 412 increases as the light intensity decreases.
  • the luminous efficiency under different brightness is different.
  • the adjustment of the resistance is realized, which helps to balance the luminous efficiency of different color sub-pixels under different brightness. , which helps to improve the display effect.
  • the light-emitting unit of the target sub-pixel includes a first electrode 409, a second electrode 411, and a light-emitting layer 410 located between the first electrode 409 and the second electrode 411, and the material of the light-emitting layer 410 includes phosphorescent light emission Material.
  • the light-emitting material system of the light-emitting unit mainly includes two kinds of fluorescent light-emitting materials and phosphorescent light-emitting materials. Due to the different material systems, the electrical effects thereof are different to some extent.
  • the material of the light-emitting layer 410 of the target sub-pixel includes a phosphorescent light-emitting material.
  • the photoresistor 412 when the driving voltage and operating current increase, the brightness of the light-emitting unit increases, and the photoresistor increases.
  • the resistance value of 412 decreases, which is equivalent to increasing the actual voltage and actual current, so as to improve the luminous brightness and avoid the actual luminous brightness not reaching the expected brightness due to the reduced efficiency of the light-emitting unit.
  • the driving voltage and operating current decrease, the brightness of the light-emitting unit decreases, and the resistance value of the photoresistor 412 increases, which is equivalent to further reducing the actual voltage and actual current of the light-emitting unit on the basis of the original driving voltage provided by the driving circuit, so that the Balanced with the working effect of light-emitting units of other material systems.
  • the resistance value of the photoresistor 412 decreases with the increase of the light intensity, so that when the brightness of the target sub-pixel increases, the resistance value of the photoresistor 412 of the target sub-pixel increases accordingly, to a certain extent
  • the actual voltage and actual current of the light-emitting unit are improved, so that the working efficiencies of the sub-pixels included in the target pixel unit are balanced, which helps to improve the display effect.
  • the sub-pixels of the pixel unit include red sub-pixels, green sub-pixels and blue sub-pixels, and the target sub-pixels include at least one of red sub-pixels and green sub-pixels.
  • Figure 2 shows the relationship between the current (luminescence) and efficiency (efficiency) of sub-pixels of different colors, wherein the abscissa is the current percentage, the ordinate is the efficiency, and Figure 3 is the different colors
  • the light-emitting units of the red sub-pixels and the green sub-pixels usually use phosphorescent light-emitting materials, while the light-emitting units of the blue sub-pixels use fluorescent light-emitting materials.
  • the roll-off phenomenon is more obvious. It can be seen from the above analysis combined with Figure 2 and Figure 3 that at low gray scales, the efficiency of the red sub-pixel increases significantly when the brightness decreases, so as the voltage decreases, the brightness ratio of red light in white light will gradually increase, while blue light will gradually increase. The proportion of , will gradually decrease, that is to say, the actual display will appear reddish at low grayscales, and appear blue at high grayscales.
  • the possible roll-off phenomenon of the red sub-pixel and the green sub-pixel can be reduced, which helps to balance the display effect.
  • the efficiency needs to be consistent with the change trend of resistance, because the efficiency of red sub-pixel and green sub-pixel increases at low brightness, and the blue sub-pixel at low brightness. Efficiency decreases, therefore, at least the photoresistor 412 needs to be added to the pixel driving circuit of the red sub-pixel and the pixel driving circuit of the green sub-pixel, so that the red sub-pixel and the green sub-pixel are connected.
  • the resistance value of the photoresistor 412 included in the red sub-pixel can be controlled to be greater than the same.
  • the target sub-pixel further includes a blue sub-pixel, wherein, under the condition of the same light intensity, the resistance value of the photoresistor 412 included in the blue sub-pixel is smaller than that of the red sub-pixel and the red sub-pixel in the same target pixel unit.
  • the photoresistor 412 corresponding to the green sub-pixel.
  • the blue sub-pixel is further used as the target sub-pixel.
  • the photoresistors 412 with different resistance values for the sub-pixels of different colors for regulation, the color changes of the sub-pixels of different colors can be made consistent. Improve the performance, help to improve the display effect.
  • the display substrate includes a display area and a non-display area, the display area has a power signal line, the power signal line extends along a first direction, the power signal line has an input end and an output end located in the non-display area, and the target pixel
  • the unit includes a first target pixel unit and a second target pixel unit. The distance between the first target pixel unit and the input end of the power signal line in the first direction is smaller than the distance between the second target pixel unit and the target edge of the display substrate.
  • the first target pixel unit includes a first target sub-pixel
  • the second target pixel unit includes a second target sub-pixel
  • the first target sub-pixel and the second target sub-pixel have the same light emission color.
  • the resistance value of the photoresistor 412 corresponding to the target sub-pixel is greater than the resistance value of the photoresistor 412 corresponding to the second target sub-pixel.
  • the display substrate includes power signal lines, and the above-mentioned first direction refers to the extending direction of the power signal lines.
  • the power signal lines are along the lateral direction of the display substrate. extension, then the first direction refers to the lateral direction at this time.
  • the resistance value of the photoresistor 412 corresponding to the target pixel unit with a larger distance from the target edge is smaller, so as to realize the compensation for the target pixel unit and help to improve the different The consistency of the display effect of the target pixel unit of the position.
  • the display substrate includes a first display area and a second display area
  • the extension directions of the first display area and the second display area are the same as the extension direction of the target edge of the display substrate
  • the first display area is connected to the power supply
  • the distance of the input end of the signal line along the first direction is smaller than the distance between the second display area and the target edge of the display substrate
  • the pixel units in the first display area are all the first target pixel units
  • the pixel units in the second display area are all the first target pixel units.
  • the pixel units are all second target pixel units.
  • the display substrate is divided into a plurality of display areas, wherein the target pixel unit in the first display area is the first target pixel unit, and the target pixel unit in the second display area is the second target pixel unit, so, It can reduce the adverse effect on the display effect caused by the resistance difference caused by the distance between different display areas and the target edge, and help reduce the possibility of color shift that may occur under different display gray scales.
  • the display substrate includes a substrate 401 , a driving circuit layer and a light-emitting unit on the substrate 401 .
  • the driving circuit layer may include a buffer layer 402, an active layer 403, a gate insulating layer 404, a gate layer 405, a source-drain metal layer 407, a dielectric layer 406 and a flat layer 408, and the light-emitting unit includes a first electrode 409, The light emitting layer 410 and the second electrode 411.
  • the first electrode 409 includes a first part 4091 connected to the pixel driving circuit and a second part 4092 connected to the light-emitting layer, the photoresistor 412 and the first electrode 409 are integrally arranged, and the orthographic projection of the photoresistor 412 on the substrate 401 is the same as the first electrode 409.
  • the orthographic projection of a portion 4091 on the substrate 401 is phase-separated, and the orthographic projection of the photoresistor 412 on the substrate 401 is phase-separated from the orthographic projection of the second portion 4092 on the substrate 401 .
  • the first electrode 409 is used as the anode of the light-emitting unit
  • the second electrode 411 is used as the cathode of the light-emitting unit for illustration.
  • the cathode of the light-emitting unit is the common electrode. Therefore, in this embodiment, the photoresistor 412 is set to be connected to the anode of the target sub-pixel, so as to adjust the voltage and current of the light-emitting layer 410 of the target sub-pixel.
  • the first electrode 409 further includes a third part 4093 , the third part 4093 is located between the first part 4091 and the second part 4092 and is connected to the first part 4091 and the second part 4092 are connected.
  • the third part 4093 includes a first sub-pattern 4121 and a second sub-pattern 4122 arranged at intervals, the first sub-pattern 4121 is connected with the first part 4091, the second sub-pattern 4122 is connected with the second part 4092, and the first sub-pattern 4121 is connected with the first part 4091.
  • a sub-pattern 4121 and a second sub-pattern 4122 are both connected to the photosensitive layer 4123.
  • the resistivity of the photosensitive material of the photo-sensitive layer 4123 increases with the decrease of the light intensity.
  • the photosensitive layer 4123, the first sub-pattern 4121 and the second sub-pattern 4122 are formed. Photoresistor 412 .
  • the photosensitive material of the photosensitive layer 4123 may include one or more of selenium, cadmium sulfide, cadmium selenide, cadmium telluride, gallium arsenide, silicon, germanium, and zinc sulfide, and is deposited or coated by deposition or coating. and other processes are formed in a specific area.
  • the resistance value of the formed photoresistor 412 can be set as required. In this embodiment, it is set to 1K ⁇ 100K ⁇ , 10Lux, that is, when the brightness is 10 lux, the resistance value of the photoresistor 412 is 1K ⁇ to 100 k ⁇ .
  • the first sub-pattern 4121 includes a plurality of first tooth-like structures
  • each of the second sub-patterns 4122 includes a plurality of second tooth-like structures.
  • the first tooth-like structures The photosensitive layer 4123 is located on the side of the first electrode 409 away from the substrate 401 , and the orthographic projection of the photosensitive layer 4123 on the substrate 401 is at the same level as the first dentate structure and the second dentate structure. The orthographic projections on the substrate 401 all overlap.
  • the first dentate structure and the second dentate structure are arranged alternately and are covered by the photosensitive layer 4123, so that when the brightness changes, the material of the photosensitive layer 4123 changes, so that the first dentate structure and the photosensitive layer 4123 change.
  • the resistance between the second dentate structures varies with the brightness, and at the same time, since the distance between the staggered first dentate structures and the second dentate structures is small, the resistance value of the photoresistor 412 can be prevented from fluctuating too much. lead to adverse effects on the display effect.
  • the size of the photoresistor 412 in this embodiment can be controlled by controlling the shape and size of the first tooth-like structure and the second tooth-like structure. It should be understood that when the pixel brightness is high, the resistance of the photoresistor 412 is very high. When the brightness is low, the resistance value of the photoresistor 412 is relatively large.
  • the distance between the first tooth-like structure and the second tooth-like structure can be controlled, and the distance can be controlled at 0.1-10 ⁇ m. Obviously, the larger the distance, the greater the resistance of the photoresistor 412 .
  • the thickness and width of the photosensitive layer 4123 can also be controlled, wherein the thickness refers to the thickness in the direction perpendicular to the substrate 401, and the width refers to the direction from the first part 4091 to the second part 4092.
  • the thickness of the photosensitive layer 4123 is controlled at 1-1000 nanometers, and the width is controlled at 0.1-20 micrometers.
  • the orthographic projection of the photosensitive layer 4123 on the substrate 401 is separated from the orthographic projection of the first sub-pattern 4121 except the first tooth-like structure on the substrate 401, and the photosensitive layer 4123 is on the substrate 401.
  • the orthographic projection on the bottom 401 is separated from the orthographic projection of the portion of the second sub-pattern 4122 on the substrate 401 other than the second tooth-like structure.
  • the first sub-pattern 4121 and the second sub-pattern 4122 can only be electrically connected through the photosensitive layer 4123 , which helps to improve the precision control of the size of the photoresistor 412 .
  • the first electrode 409 further includes a fourth part 4094 , the fourth part 4094 is connected with the first part 4091 and the second part 4092 respectively, and the fourth part 4094 is connected with the third part 4093 in parallel.
  • the photoresistor 412 is only arranged in a local area of the first electrode 409 , and the resistance change in the local area control to improve the regulation accuracy of voltage and current.
  • the display substrate further includes a pixel definition layer 413 and an opaque isolation structure, the isolation structure and the pixel definition layer 413 are disposed in the same layer, and the isolation structure is located at the photoresistor 412 corresponding to the target sub-pixel away from the target sub-pixel.
  • the light emitting layer 410 side is located at the photoresistor 412 corresponding to the target sub-pixel away from the target sub-pixel.
  • the isolation structure in this embodiment is used to block light emitted by other sub-pixels, so as to improve the control accuracy of the voltage and current of the target sub-pixel.
  • the photoresistor 412 is only exposed to the light-emitting unit of the target sub-pixel corresponding to the photoresistor 412. In this way, the resistance of the photoresistor 412 is mainly affected by the brightness of the light-emitting unit, which reduces the emission of other sub-pixels.
  • the possible influence of light on the resistance value of the photoresistor 412 makes it possible to realize the feedback adjustment control of the photoresistor 412 according to the luminous brightness of the light-emitting unit during the working process, which is helpful for the adjustment of the current and voltage of the target sub-pixel. Control effect.
  • the length of the first portion 4091 is greater than the length of the third portion 4093 in the direction from the first end to the second end. That is to say, the photoresistor 412 in the present embodiment is closer to the light-emitting unit, so as to improve the detection accuracy of the photoresistor 412 for brightness, thereby improving the accuracy of the brightness adjustment control for the light-emitting unit.
  • the light-emitting layer 410 of the target sub-pixel includes a first surface close to the substrate 401 and a second surface far away from the substrate 401, and the orthographic projection of the first surface on the substrate 401 is located on the second surface on the substrate 401.
  • the inside of the orthographic projection of the bottom 401 in other words, the area of the orthographic projection of the second surface on the substrate 401 is larger than the area of the orthographic projection of the first surface on the substrate 401, and the second surface is on the substrate 401.
  • the orthographic projection covers the orthographic projection of the first surface on the substrate 401 .
  • the orthographic projection of the second surface on the substrate 401 and the orthographic projection of the photoresistor 412 corresponding to the target sub-pixel on the substrate 401 have an overlapping area, and the orthographic projection of the first surface on the substrate 401 corresponds to the target sub-pixel.
  • the orthographic projection of the photoresistor 412 on the substrate 401 is phase-separated.
  • the interface of the light-emitting layer 410 in the direction perpendicular to the substrate 401 is roughly an inverted trapezoid, and the length of the upper base of the trapezoid is greater than the length of the lower base.
  • the first surface covers the photoresistor 412 to a certain extent, so that the photoresistor 412 can be more fully exposed to the light emitting layer 410, and when the light emitting layer 410 emits light, the detection accuracy of the brightness of the light emitting layer 410 can be improved.
  • Embodiments of the present disclosure further provide a display device, including the display substrate according to any one of the first aspects.
  • the display device of this embodiment includes all the technical solutions of the above-mentioned display substrate embodiments, so at least all the above-mentioned technical effects can be achieved, which will not be repeated here.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供一种显示基板和显示装置。显示基板包括衬底和位于衬底上的多个像素单元,每一像素单元包括多个子像素,像素单元包括目标像素单元,目标像素单元包括目标子像素,目标子像素包括像素驱动电路和能够在像素驱动电路驱动下发光的发光单元,目标子像素还包括光敏电阻,光敏电阻与像素驱动电路电连接,光敏电阻的阻值随光照强度的降低而增加。本公开的像素驱动电路包括光敏电阻,光敏电阻的阻值随光照强度的增加而降低,由于不同颜色的子像素在不同亮度下的发光效率是不同的,通过设置光敏电阻以在不同亮度条件下提供不同的阻值,从而实现对于电阻的调节,有助于平衡不同颜色子像素在不同亮度下的发光效率,从而有助于提高显示效果。

Description

一种显示基板和显示装置
相关申请的交叉引用
本申请主张在2021年2月5日在中国提交的中国专利申请号202110162434.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板和显示装置。
背景技术
OLED(Organic light-emitting diode,有机发光二极管)显示技术具有亮度高、功耗低、响应快、清晰度高等优点,随着OLED(Organic light-emitting diode,有机发光二极管)显示技术的发展和成熟,OLED显示装置越来越受到用户的欢迎。
发明内容
第一方面,本公开实施例提供了一种显示基板,包括衬底和位于所述衬底上的多个像素单元,每一所述像素单元包括多个子像素,所述像素单元包括目标像素单元,所述目标像素单元包括目标子像素,所述目标子像素包括像素驱动电路和能够在所述像素驱动电路驱动下发光的发光单元,所述目标子像素还包括光敏电阻,所述光敏电阻与所述像素驱动电路电连接,所述光敏电阻的阻值随光照强度的降低而增加。
可选的,所述光敏电阻的阻值随光照强度的增加而降低。
可选的,所述目标子像素的发光单元包括第一电极、第二电极、以及位于所述第一电极和所述第二电极之间的发光层,所述发光层的材料包括磷光发光材料。
可选的,所述像素单元的子像素包括红色子像素、绿色子像素和蓝色子像素,所述目标子像素包括红色子像素和绿色子像素中的至少一种。
可选的,所述目标子像素还包括蓝色子像素,其中,在光照强度相同的 情况下,所述蓝色子像素包括的光敏电阻的阻值小于同一所述目标像素单元中的红色子像素和绿色子像素对应的光敏电阻的阻值。
可选的,所述显示基板包括显示区和非显示区,所述显示区具有电源信号线,所述电源信号线沿第一方向延伸,所述电源信号线具有位于所述非显示区的输入端和输出端,所述目标像素单元包括第一目标像素单元和第二目标像素单元,所述第一目标像素单元与所述电源信号线的输入端在所述第一方向上的的距离小于所述第二目标像素单元与所述显示基板的目标边缘之间的距离;
其中,所述第一目标像素单元包括第一目标子像素,所述第二目标像素单元包括第二目标子像素,所述第一目标子像素和所述第二目标子像素的发光颜色相同,在光照强度相同的情况下,所述第一目标子像素对应的光敏电阻的阻值大于所述第二目标子像素对应的光敏电阻的阻值。
可选的,所述显示基板包括第一显示区和第二显示区,所述第一显示区与所述电源信号线的输入端在沿所述第一方向上的距离小于所述第二显示区与所述显示基板的目标边缘之间的距离,所述第一显示区中像素单元均为所述第一目标像素单元,所述第二显示区中的像素单元均为所述第二目标像素单元。
可选的,所述目标子像素的发光单元包括第一电极、发光层和第二电极,所述第一电极包括与所述像素驱动电路相连的第一部分和与所述发光层相连的第二部分,所述光敏电阻和所述第一电极一体设置,且所述光敏电阻在所述衬底上的正投影与所述第一部分在所述衬底上的正投影相分离,所述光敏电阻在所述衬底上的正投影与所述第二部分在所述衬底上的正投影相分离。
可选的,所述第一电极还包括第三部分,所述第三部分位于所述第一部分和所述第二部分之间,且与所述第一部分和所述第二部分均相连,所述第三部分包括间隔设置的第一子图形和第二子图形,所述第一子图形与所述第一部分相连,所述第二子图形与所述第二部分相连,所述第一子图形和所述第二子图形均与光敏层相连,所述光敏层的光敏材料的电阻率随光照强度的降低而增加,所述光敏层、所述第一子图形和所述第二子图形形成所述光敏电阻。
可选的,所述第一子图形包括多个第一齿状结构,所述第二子图形包括多个第二齿状结构,所述第一齿状结构和所述第二齿状结构交错设置,所述光敏层位于所述第一电极远离所述衬底的一侧,且所述光敏层在所述衬底上的正投影与所述第一齿状结构和所述第二齿状结构在所述衬底上的正投影均交叠。
可选的,所述光敏层在所述衬底上的正投影与所述第一子图形除所述第一齿状结构之外的部分在所述衬底上的正投影相分离,所述光敏层在所述衬底上的正投影与所述第二子图形除所述第二齿状结构之外的部分在所述衬底上的正投影相分离。
可选的,所述第一电极还包括第四部分,所述第四部分分别与所述第一部分和所述第二部分相连,且所述第四部分与所述第三部分相并联。
可选的,所述显示基板还包括位于所述第一电极远离所述衬底一侧的像素界定层和不透光的隔离结构,所述隔离结构与所述像素界定层同层设置,所述隔离结构位于所述目标子像素对应的光敏电阻远离所述目标子像素的发光层一侧。
可选的,所述目标子像素的发光层包括靠近所述衬底的第一表面和远离所述衬底的第二表面,所述第一表面在所述衬底上的正投影位于所述第二表面在所述衬底的正投影的内部;
所述第二表面在所述衬底上的正投影与所述目标子像素对应的光敏电阻在所述衬底上的正投影存在交叠区域,所述第一表面在所述衬底上的正投影与所述目标子像素对应的光敏电阻在所述衬底上的正投影相分离。
第二方面,本公开实施例提供了一种显示装置,包括第一方面中任一项所述的显示基板。
本公开实施例的像素驱动电路包括光敏电阻,光敏电阻的阻值随光照强度的增加而降低,由于不同颜色的子像素在不同亮度下的发光效率是不同的,通过设置光敏电阻以在不同亮度条件下提供不同的阻值,从而实现对于电阻的调节,有助于平衡不同颜色子像素在不同亮度下的发光效率,从而有助于提高显示效果。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获取其他的附图。
图1是本公开一实施例中目标像素单元的电路示意图;
图2是不同颜色子像素的电流和效率之间对应关系示意图;
图3是不同颜色子像素的电压和效率之间对应关系示意图;
图4是本公开一实施例中显示基板的结构示意图;
图5是本公开一实施例中光敏电阻的结构示意图;
图6是本公开一实施例中光敏电阻的又一结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获取的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了一种显示基板。
在一个实施例中,该显示基板包括衬底401和位于衬底401上的多个像素单元,如图1所示,每一像素单元包括多个子像素,其中,不同填充效果的子像素代表不同颜色子像素的发光单元。
像素单元包括目标像素单元,目标像素单元包括目标子像素,目标子像素包括像素驱动电路和发光单元,发光单元能够在控制芯片(IC)和像素驱动电路驱动下发光。
本公开实施例中的目标子像素还包括光敏电阻412,光敏电阻412与目标子像素的像素驱动电路电连接,且光敏电阻412的阻值随光照强度的降低而增加,由于不同颜色的子像素在不同亮度下的发光效率是不同的,通过设置光敏电阻412以在不同亮度条件下提供不同的阻值,从而实现对于电阻的调节,有助于平衡不同颜色子像素在不同亮度下的发光效率,从而有助于提 高显示效果。
在其中一些实施例中,目标子像素的发光单元包括第一电极409、第二电极411、以及位于第一电极409和第二电极411之间的发光层410,发光层410的材料包括磷光发光材料。
应当理解的是,发光单元的发光材料体系主要包括荧光发光材料和磷光发光材料两种,由于材料的体系不同,因此,其电学效应有一定的差异。
相关技术人员在实现本申请的技术方案的过程中发现,随着电流和电压的上升,磷光发光材料的发光单元的效率逐渐下降,也就是说,在电压降低时,磷光发光材料的发光单元的效率会显著上升,这种现象又称效率滚降(Efficiency roll-off)。而随着电流和电压的上升,荧光发光材料的发光单元的效率不下降或有一定的上升,在电压降低,亮度下降时,荧光发光材料的发光单元的效率变化不明显。
基于上述分析可知,随着电压和电流的变化,不同材料体系的发光单元的效率变化是不一致的。
本实施例的技术方案中,目标子像素的发光层410的材料包括磷光发光材料,这样,通过设置光敏电阻412,在驱动电压和工作电流增加时,该发光单元的亮度增加,而该光敏电阻412的阻值下降,这样,相当于提高了实际电压和实际电流,以提高发光亮度,避免由于发光单元的效率降低导致实际发光亮度不能达到预期亮度。
在驱动电压和工作电流降低时,发光单元的亮度降低,光敏电阻412的阻值增加,相当于在驱动电路提供的原驱动电压的基础上,进一步降低了发光单元的实际电压和实际电流,以与其他材料体系的发光单元的工作效果相平衡。
在其中一些实施例中,光敏电阻412的阻值随光照强度的增加而降低,这样,当目标子像素的亮度增加时,该目标子像素的光敏电阻412的阻值随之增加,一定程度上提高了发光单元的实际电压和实际电流,使得目标像素单元包括的各子像素的工作效率相平衡,有助于提高显示效果。
在其中一些实施例中,像素单元的子像素包括红色子像素、绿色子像素和蓝色子像素,目标子像素包括红色子像素和绿色子像素中的至少一种。
如图2和图3所示,图2为不同颜色子像素的电流(luminescence)和效率(efficiency)之间的关系,其中,横坐标为以电流百分比,纵坐标为效率,图3为不同颜色子像素的电压(voltage)和效率(efficiency)之间的关系,其中,横坐标单位为伏特,纵坐标单位为百分比。
红色子像素和绿色子像素的发光单元通常采用磷光发光材料,而蓝色子像素的发光单元的采用荧光发光材料,因此,红色子像素和绿色子像素可能存在滚降现象,且红色子像素的滚降现象更加明显。由上述分析结合图2和图3可知,在低灰阶下,红色子像素在亮度下降时效率明显上升,所以随着电压的下降,红光在白光中的亮度占比会逐渐提升,而蓝光的占比会逐渐减少,也就是说,会使实际显示效果在低灰阶下发红,在高灰阶下看起来发蓝。
本实施例中,通过将红色子像素和绿色子像素作为目标子像素,并设置光敏电阻412,能够降低红色子像素和绿色子像素可能出现的滚降现象,有助于平衡显示效果。
应当理解的是,器件的效率可以理解为亮度用于电流的比值,即效率=亮度/电流,进一步的,电流=电压/电阻,因此,可以大致认为,效率=亮度*电阻/电压,即亮度/电压=效率/电阻。
如果需要不同颜色子像素的亮度随电压的变化趋势一致,则需要使效率随电阻的变化趋势一致,由于红色子像素和绿光子像素在低亮度时效率上升,而蓝色子像素在低亮度时效率下降,因此,至少需要在红色子像素的像素驱动电路和绿色子像素的像素驱动电路中加上光敏电阻412,使红色子像素和绿色子像素。
进一步的,由于红色子像素的滚降现象比绿色子像素的滚降现象更加明显,本实施例中,可以控制在光照强度相同的情况下,红色子像素包括的光敏电阻412的阻值大于同一目标像素单元中的绿色子像素对应的光敏电阻412。
在其中一些实施例中,目标子像素还包括蓝色子像素,其中,在光照强度相同的情况下,蓝色子像素包括的光敏电阻412的阻值小于同一目标像素单元中的红色子像素和绿色子像素对应的光敏电阻412。
本实施例的技术方案中,进一步将蓝色子像素作为目标子像素,这样, 通过针对不同颜色的子像素设置不同阻值的光敏电阻412进行调控,能够使得不同颜色的子像素的颜色变化一致性提高,有助于提高显示效果。
在其中一些实施例中,显示基板包括显示区和非显示区,显示区具有电源信号线,电源信号线沿第一方向延伸,电源信号线具有位于非显示区的输入端和输出端,目标像素单元包括第一目标像素单元和第二目标像素单元,第一目标像素单元与电源信号线的输入端在第一方向上距离小于第二目标像素单元与显示基板的目标边缘之间的距离。
第一目标像素单元包括第一目标子像素,第二目标像素单元包括第二目标子像素,第一目标子像素和第二目标子像素的发光颜色相同,在光照强度相同的情况下,第一目标子像素对应的光敏电阻412的阻值大于第二目标子像素对应的光敏电阻412的阻值。
本实施例中,显示基板包括电源信号线,上述第一方向指的是电源信号线的延伸方向,示例性的,在显示基板的某一放置状态下,电源信号线沿着该显示基板的横向延伸,那么第一方向则指的是此时横向的方向。
应当理解的是,由于电源信号线等结构本身存在的电阻,在提供的驱动电压一定的情况下,不同位置的像素单元的实际工作电压是不同的,而随着与电源信号线的输入端之间的距离的增加,实际工作电压与希望提供的驱动电压的差值也就越大。
本实施例中,在其他条件相同的情况下,与目标边缘之间距离越大的目标像素单元对应的光敏电阻412的阻值越小,从而实现对于目标像素单元的补偿,有助于提高不同位置的目标像素单元的显示效果的一致性。
在其中一些实施例中,显示基板包括第一显示区和第二显示区,第一显示区和第二显示区的延伸方向均与显示基板的目标边缘的延伸方向相同,第一显示区与电源信号线的输入端在沿第一方向上的距离小于第二显示区与显示基板的目标边缘之间的距离,第一显示区中像素单元均为第一目标像素单元,第二显示区中的像素单元均为第二目标像素单元。
本实施例中,将显示基板划分为多个显示区,其中,第一显示区中的目标像素单元为第一目标像素单元,第二显示区的目标像素单元为第二目标像素单元,这样,能够降低不同显示区域与目标边缘之间距离导致的电阻差异 对显示效果产生的不利影响,有助于降低在不同显示灰阶下可能出现色偏的可能性。
如图4所示,在其中一些实施例中,显示基板包括衬底401、位于衬底401上的驱动电路层和发光单元。其中,驱动电路层可以包括缓冲层402、有源层403、栅极绝缘层404、栅极层405、源漏金属层407、介电层406和平坦层408,发光单元包括第一电极409、发光层410和第二电极411。
第一电极409包括与像素驱动电路相连的第一部分4091和与发光层相连的第二部分4092,光敏电阻412和第一电极409一体设置,且光敏电阻412在衬底401上的正投影与第一部分4091在衬底401上的正投影相分离,光敏电阻412在衬底401上的正投影与第二部分4092在衬底401上的正投影相分离。
如图5和图6所示,以第一电极409为发光单元的阳极,第二电极411为发光单元的阴极做示例性说明。一般来说,发光单元的阴极为公共电极,因此,本实施例中将光敏电阻412设置为与目标子像素的阳极相连,从而实现调节目标子像素的发光层410的电压和电流。
如图5和图6所示,在其中一些实施例中,第一电极409还包括第三部分4093,该第三部分4093位于上述第一部分4091和第二部分4092之间,且与第一部分4091和第二部分4092均相连。
如图5所示,第三部分4093包括间隔设置的第一子图形4121和第二子图形4122,第一子图形4121与第一部分4091相连,第二子图形4122与第二部分4092相连,第一子图形4121和第二子图形4122均与光敏层4123相连,光敏层4123的光敏材料的电阻率随光照强度的降低而增加,光敏层4123、第一子图形4121和第二子图形4122形成光敏电阻412。
本实施例中,光敏层4123的光敏材料可以包括硒、硫化镉、硒化镉、碲化镉、砷化镓、硅、锗、硫化锌中的一项或多项,并通过沉积或涂覆等工艺形成于特定的区域。所形成的光敏电阻412的阻值大小可以根据需要设定,本实施例中,设置为1KΩ~100KΩ,10Lux,即在亮度为10勒克斯的情况下,光敏电阻412的阻值大小为1千欧至100千欧。
如图5和图6所示,在其中一些实施例中,第一子图形4121包括多个第 一齿状结构,第二子图形4122均包括多个第二齿状结构,第一齿状结构和第二齿状结构交错设置,光敏层4123位于第一电极409远离衬底401的一侧,且光敏层4123在衬底401上的正投影与第一齿状结构和第二齿状结构在衬底401上的正投影均交叠。
本实施例中的第一齿状结构和第二齿状结构交错设置,且被光敏层4123覆盖,这样,当亮度发生变化时,光敏层4123的材料发生变化,从而使得第一齿状结构和第二齿状结构之间的电阻大小随着亮度变化,同时,由于交错设置的第一齿状结构和第二齿状结构之间的距离较小,能够避免光敏电阻412的阻值波动过大导致对于显示效果造成的不利影响。
本实施例中的光敏电阻412的大小可以通过控制第一齿状结构和第二齿状结构的形状和尺寸进行控制,应当理解的是,当像素亮度较高时,光敏电阻412的阻值很小,而当亮度较低时,光敏电阻412的阻值比较大。
本实施例中,可以控制第一齿状结构和第二齿状结构之间的间距,该间距可以控制在0.1-10微米,显然,该间距越大,则光敏电阻412的阻值越大。
本实施例中还可以控制光敏层4123的厚度及宽度,其中,厚度指的是垂直于衬底401方向上的厚度,而宽度则指的是由沿上述第一部分4091到第二部分4092的方向上的距离,其中,本实施例中光敏层4123的厚度控制在1-1000纳米,宽度控制在0.1-20微米,具体尺寸可以根据需要设置,以实现对于光敏电阻412的阻值大小的控制。
在其中一些实施例中,光敏层4123在衬底401上的正投影与第一子图形4121除第一齿状结构之外的部分在衬底401上的正投影相分离,光敏层4123在衬底401上的正投影与第二子图形4122除第二齿状结构之外的部分在衬底401上的正投影相分离。
这样,本实施例中,第一子图形4121和第二子图形4122之间仅能通过光敏层4123实现电连接,有助于提高对于光敏电阻412大小的精度控制。
如图6所示,在其中一些实施例中,第一电极409还包括第四部分4094,第四部分4094分别与第一部分4091和第二部分4092相连,且第四部分4094与第三部分4093相并联。
如图4所示,为了避免光敏电阻412的阻值变化范围过大,进一步的, 在一个实施例中,仅在第一电极409的局部区域设置了光敏电阻412,通过对于局部区域的电阻变化控制,以提高对于电压和电流的调节精度。
在其中一些实施例中,显示基板还包括像素界定层413和不透光的隔离结构,隔离结构与像素界定层413同层设置,隔离结构位于目标子像素对应的光敏电阻412远离目标子像素的发光层410一侧。
本实施例中的隔离结构用于阻挡其他子像素发出的光线,以提高对于目标子像素的电压和电流的控制精确度。通过设置隔离结构,使得光敏电阻412仅暴露于该光敏电阻412对应的目标子像素的发光单元,这样,光敏电阻412的阻值主要受到该发光单元的亮度的影响,降低了其他子像素发出的光线对于该光敏电阻412的阻值可能带来的影响,使得工作过程中,能够根据该发光单元的发光亮度实现对于光敏电阻412的反馈调节控制,有助于对于目标子像素的电流和电压的控制效果。
在其中一些实施例中,沿由第一端到第二端的方向上,第一部分4091的长度大于第三部分4093的长度。也就是说,本实施例中的光敏电阻412更靠近发光单元,以提高光敏电阻412对于亮度的检测精度,进而提高对于发光单元的亮度调节控制的准确性。
在其中一些实施例中,目标子像素的发光层410包括靠近衬底401的第一表面和远离衬底401的第二表面,第一表面在衬底401上的正投影位于第二表面在衬底401的正投影的内部,换句话说,第二表面在衬底401上的正投影的面积大于第一表面在衬底401上的正投影的面积,且第二表面在衬底401上的正投影覆盖第一表面在衬底401上的正投影。
第二表面在衬底401上的正投影与目标子像素对应的光敏电阻412在衬底401上的正投影存在交叠区域,第一表面在衬底401上的正投影与目标子像素对应的光敏电阻412在衬底401上的正投影相分离。
本实施例中,可以理解为,发光层410在垂直于衬底401的方向上的界面大致呈倒置的梯形,该梯形的上底边的长度大于下底边的长度,这样,发光层410的第一表面一定程度上覆盖了光敏电阻412,使得光敏电阻412能够更加充分的暴露于发光层410,在发光层410发光时,能够提高对于发光层410的亮度的检测精度。
本公开实施例还提供了一种显示装置,包括第一方面中任一项所述的显示基板。
本实施例的显示装置包括上述显示基板实施例的全部技术方案,因此至少能够实现上述全部技术效果,此处不再赘述。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种显示基板,包括衬底和位于所述衬底上的多个像素单元,每一所述像素单元包括多个子像素,所述像素单元包括目标像素单元,所述目标像素单元包括目标子像素,所述目标子像素包括像素驱动电路和能够在所述像素驱动电路驱动下发光的发光单元,所述目标子像素还包括光敏电阻,所述光敏电阻与所述像素驱动电路电连接,所述光敏电阻的阻值随光照强度的降低而增加。
  2. 根据权利要求1所述的显示基板,其中,所述光敏电阻的阻值随光照强度的增加而降低。
  3. 根据权利要求1所述的显示基板,其中,所述目标子像素的发光单元包括第一电极、第二电极、以及位于所述第一电极和所述第二电极之间的发光层,所述发光层的材料包括磷光发光材料。
  4. 根据权利要求3所述的显示基板,其中,所述像素单元的子像素包括红色子像素、绿色子像素和蓝色子像素,所述目标子像素包括红色子像素和绿色子像素中的至少一种。
  5. 根据权利要求4所述的显示基板,其中,所述目标子像素还包括蓝色子像素,其中,在光照强度相同的情况下,所述蓝色子像素包括的光敏电阻的阻值小于同一所述目标像素单元中的红色子像素和绿色子像素对应的光敏电阻的阻值。
  6. 根据权利要求1所述的显示基板,其中,所述显示基板包括显示区和非显示区,所述显示区具有电源信号线,所述电源信号线沿第一方向延伸,所述电源信号线具有位于所述非显示区的输入端和输出端,所述目标像素单元包括第一目标像素单元和第二目标像素单元,所述第一目标像素单元与所述电源信号线的输入端在所述第一方向上的距离小于所述第二目标像素单元与所述显示基板的目标边缘之间的距离;
    其中,所述第一目标像素单元包括第一目标子像素,所述第二目标像素单元包括第二目标子像素,所述第一目标子像素和所述第二目标子像素的发光颜色相同,在光照强度相同的情况下,所述第一目标子像素对应的光敏电 阻的阻值大于所述第二目标子像素对应的光敏电阻的阻值。
  7. 根据权利要求6所述的显示基板,其中,所述显示基板包括第一显示区和第二显示区,所述第一显示区与所述电源信号线的输入端在沿所述第一方向上的距离小于所述第二显示区与所述显示基板的目标边缘之间的距离,所述第一显示区中像素单元均为所述第一目标像素单元,所述第二显示区中的像素单元均为所述第二目标像素单元。
  8. 根据权利要求1所述的显示基板,其中,所述目标子像素的发光单元包括第一电极、发光层和第二电极,所述第一电极包括与所述像素驱动电路相连的第一部分和与所述发光层相连的第二部分,所述光敏电阻和所述第一电极一体设置,且所述光敏电阻在所述衬底上的正投影与所述第一部分在所述衬底上的正投影相分离,所述光敏电阻在所述衬底上的正投影与所述第二部分在所述衬底上的正投影相分离。
  9. 根据权利要求8所述的显示基板,其中,所述第一电极还包括第三部分,所述第三部分位于所述第一部分和所述第二部分之间,且与所述第一部分和所述第二部分均相连,所述第三部分包括间隔设置的第一子图形和第二子图形,所述第一子图形与所述第一部分相连,所述第二子图形与所述第二部分相连,所述第一子图形和所述第二子图形均与光敏层相连,所述光敏层的光敏材料的电阻率随光照强度的降低而增加,所述光敏层、所述第一子图形和所述第二子图形形成所述光敏电阻。
  10. 根据权利要求9所述的显示基板,其中,所述第一子图形包括多个第一齿状结构,所述第二子图形包括多个第二齿状结构,所述第一齿状结构和所述第二齿状结构交错设置,所述光敏层位于所述第一电极远离所述衬底的一侧,且所述光敏层在所述衬底上的正投影与所述第一齿状结构和所述第二齿状结构在所述衬底上的正投影均交叠。
  11. 根据权利要求10所述的显示基板,其中,所述光敏层在所述衬底上的正投影与所述第一子图形除所述第一齿状结构之外的部分在所述衬底上的正投影相分离,所述光敏层在所述衬底上的正投影与所述第二子图形除所述第二齿状结构之外的部分在所述衬底上的正投影相分离。
  12. 根据权利要求9至11中任一项所述的显示基板,其中,所述第一电 极还包括第四部分,所述第四部分分别与所述第一部分和所述第二部分相连,且所述第四部分与所述第三部分相并联。
  13. 根据权利要求1所述的显示基板,其中,所述显示基板还包括位于第一电极远离所述衬底一侧的像素界定层和不透光的隔离结构,所述隔离结构与所述像素界定层同层设置,所述隔离结构位于所述目标子像素对应的光敏电阻远离所述目标子像素的发光层一侧。
  14. 根据权利要求1所述的显示基板,其中,所述目标子像素的发光层包括靠近所述衬底的第一表面和远离所述衬底的第二表面,所述第一表面在所述衬底上的正投影位于所述第二表面在所述衬底的正投影的内部;
    所述第二表面在所述衬底上的正投影与所述目标子像素对应的光敏电阻在所述衬底上的正投影存在交叠区域,所述第一表面在所述衬底上的正投影与所述目标子像素对应的光敏电阻在所述衬底上的正投影相分离。
  15. 一种显示装置,包括权利要求1至14中任一项所述的显示基板。
PCT/CN2021/129587 2021-02-05 2021-11-09 一种显示基板和显示装置 WO2022166292A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/800,022 US20230108405A1 (en) 2021-02-05 2021-11-09 Display substrate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110162434.1A CN112802882A (zh) 2021-02-05 2021-02-05 一种显示基板和显示装置
CN202110162434.1 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022166292A1 true WO2022166292A1 (zh) 2022-08-11

Family

ID=75814452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129587 WO2022166292A1 (zh) 2021-02-05 2021-11-09 一种显示基板和显示装置

Country Status (3)

Country Link
US (1) US20230108405A1 (zh)
CN (1) CN112802882A (zh)
WO (1) WO2022166292A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112802882A (zh) * 2021-02-05 2021-05-14 京东方科技集团股份有限公司 一种显示基板和显示装置
CN113376906B (zh) * 2021-08-12 2021-12-17 惠科股份有限公司 彩膜基板和显示装置
CN113725268B (zh) * 2021-08-25 2022-09-27 武汉华星光电半导体显示技术有限公司 Oled显示面板及显示终端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110248973A1 (en) * 2010-04-09 2011-10-13 Delphi Technologies, Inc. Brightness control drive circuit for a current-driven display device
CN105679245A (zh) * 2016-03-31 2016-06-15 上海天马有机发光显示技术有限公司 一种像素补偿电路及像素结构
CN108807495A (zh) * 2018-07-20 2018-11-13 京东方科技集团股份有限公司 阵列基板、显示面板及其测光方法和控制方法
CN109859693A (zh) * 2019-02-26 2019-06-07 上海天马有机发光显示技术有限公司 一种阵列基板及显示装置
CN110556408A (zh) * 2019-09-10 2019-12-10 京东方科技集团股份有限公司 显示基板及其控制方法、和显示装置
CN112802882A (zh) * 2021-02-05 2021-05-14 京东方科技集团股份有限公司 一种显示基板和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110248973A1 (en) * 2010-04-09 2011-10-13 Delphi Technologies, Inc. Brightness control drive circuit for a current-driven display device
CN105679245A (zh) * 2016-03-31 2016-06-15 上海天马有机发光显示技术有限公司 一种像素补偿电路及像素结构
CN108807495A (zh) * 2018-07-20 2018-11-13 京东方科技集团股份有限公司 阵列基板、显示面板及其测光方法和控制方法
CN109859693A (zh) * 2019-02-26 2019-06-07 上海天马有机发光显示技术有限公司 一种阵列基板及显示装置
CN110556408A (zh) * 2019-09-10 2019-12-10 京东方科技集团股份有限公司 显示基板及其控制方法、和显示装置
CN112802882A (zh) * 2021-02-05 2021-05-14 京东方科技集团股份有限公司 一种显示基板和显示装置

Also Published As

Publication number Publication date
CN112802882A (zh) 2021-05-14
US20230108405A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
WO2022166292A1 (zh) 一种显示基板和显示装置
US9711692B2 (en) Display device using semiconductor light emitting devices having different structures
US7781957B2 (en) Electro-luminescent device with improved efficiency
US20190165323A1 (en) Electroluminescent display device
CN105303985A (zh) 石墨烯显示器及其显示驱动方法
JP6192431B2 (ja) 有機el表示装置の駆動方法、及び有機el表示装置
CN108054286B (zh) 一种电致发光器件、显示装置及其制作方法
CN104716167A (zh) 一种有机电致发光显示器件、其制作方法及显示装置
TW201913624A (zh) 微型發光二極體顯示面板及其驅動方法
US20070159073A1 (en) Electroluminescent device, display apparatus, exposure apparatus, and lighting apparatus using the same
TWI720495B (zh) 顯示裝置及顯示裝置之驅動方法
KR20180000177A (ko) 발광소자 패키지 및 이를 포함하는 표시장치
CN112018130A (zh) 电子装置
WO2021189696A1 (zh) 显示基板和显示装置
WO2021189329A1 (zh) 显示基板和显示装置
JP2021529347A (ja) 発光ダイオードを備えた光電子デバイス
US9142595B2 (en) Color-tunable OLED lighting device
WO2024012148A1 (zh) 显示基板及其制备方法和显示装置
CN110379835B (zh) 一种显示面板、显示装置和显示面板的制备方法
CN111627350B (zh) 一种阵列基板及其制作方法、显示面板及显示装置
CN108520890B (zh) 显示基板及其制备方法和显示面板
CN115101009A (zh) 显示面板及其驱动方法和显示装置
CN214477460U (zh) 一种显示基板和显示装置
CN113451488B (zh) 显示设备及其制备方法
US11289012B2 (en) Micro light emitting diode display panel and driving method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/11/2023)