WO2022166047A1 - 一种用于高速列车上的隧道病害监测系统和方法 - Google Patents

一种用于高速列车上的隧道病害监测系统和方法 Download PDF

Info

Publication number
WO2022166047A1
WO2022166047A1 PCT/CN2021/097845 CN2021097845W WO2022166047A1 WO 2022166047 A1 WO2022166047 A1 WO 2022166047A1 CN 2021097845 W CN2021097845 W CN 2021097845W WO 2022166047 A1 WO2022166047 A1 WO 2022166047A1
Authority
WO
WIPO (PCT)
Prior art keywords
tunnel
disease
current
dimensional
graphic data
Prior art date
Application number
PCT/CN2021/097845
Other languages
English (en)
French (fr)
Inventor
洪开荣
冯欢欢
郭卫社
冉海军
刘永胜
贾建波
司景钊
李凤远
张俊
张兵
马亮
Original Assignee
中铁隧道局集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁隧道局集团有限公司 filed Critical 中铁隧道局集团有限公司
Publication of WO2022166047A1 publication Critical patent/WO2022166047A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the invention belongs to the technical field of tunnel monitoring equipment, and in particular relates to a tunnel disease monitoring system and method for high-speed trains.
  • Tunnels are engineering structures buried in the ground, and it is a form of human utilization of underground space. Tunnels can be divided into traffic tunnels, hydraulic tunnels, municipal tunnels, and mine tunnels; with the continuous growth of my country's national economy, tunnels are the throat of highways, especially in the construction of highways in remote mountainous areas. Basically, the route design scheme of building tunnels to shorten the traffic mileage has been widely used for high-speed trains.
  • tunnel diseases include water accumulation in the tunnel, the tunnel is blocked due to landslides, etc., and the tunnel itself is deformed and cracked. Such tunnel diseases will greatly shorten the service life of the tunnel; therefore, How to detect and monitor various diseases of the tunnel in a timely and effective manner during the operation of the tunnel has received more and more attention from road workers.
  • tunnel inspection only considers individual evaluation indicators such as water accumulation and cracking in the tunnel. These evaluation indicators have a great influence on human factors, and the detected data is inaccurate, which is not conducive to the treatment of tunnel diseases. Due to the lack of full-process and real-time monitoring, once a certain section of the tunnel has a disease problem, it is difficult to quickly and accurately deal with the disease, which affects the safe use of the tunnel and the safe running of high-speed trains in the tunnel.
  • the purpose of the present invention is to provide a tunnel disease monitoring system and method for high-speed trains, so as to solve the problem that the detection data in the prior art is inaccurate, which is not conducive to the treatment of the disease of the tunnel, and the treatment of the disease of the tunnel lacks the whole process and real-time. Monitoring, it is difficult to quickly and accurately deal with the disease of the tunnel, which affects the safe use of the tunnel.
  • the present invention provides the following technical solutions:
  • a tunnel disease monitoring system for high-speed trains comprising:
  • Vehicle-mounted laser scanning device used to obtain 3D graphics data of the current tunnel
  • Locator used to obtain current tunnel location information
  • a cloud server configured to send the current tunnel three-dimensional graphic data and current tunnel location information to the tunnel disease monitoring platform
  • the tunnel disease monitoring platform is used to compare the current three-dimensional graphic data of the tunnel and the current tunnel position information with the original three-dimensional graphic data of the tunnel and the original tunnel position information pre-stored in the BIM model database to obtain the tunnel disease information, and at the same time The tunnel disease information will be returned to the cloud server.
  • the tunnel disease monitoring platform includes:
  • a denoising module configured to perform denoising processing on the three-dimensional graphics data of the current tunnel and the current tunnel position information to obtain the three-dimensional graphics data of the current tunnel and the current tunnel position information after denoising;
  • the processing module is used to integrate the three-dimensional BIM model data of the original tunnel three-dimensional graphic data, the original tunnel position information and the denoised current tunnel three-dimensional graphic data and the current tunnel position information to obtain a contour difference map of the tunnel three-dimensional graphic data.
  • the difference map is a three-dimensional map formed by the coordinate difference of the three-dimensional graphic data of the tunnel;
  • the output module is used to mark the coordinates of the contour difference part in the contour difference map to obtain the disease position of the tunnel; at the same time, according to the contour difference map, determine the tunnel disease type and the disease contour area.
  • the vehicle-mounted laser scanning device includes: a support frame mounted on the top of the head of the high-speed train, a horizontal plate fixed on the back of the support frame and mounted on the top of the head of the high-speed train, A receiving device, and a laser scanning unit mounted on the top of the support frame.
  • the support frame is in an "n" shape, and the support frame includes: a top plate installed on the top of the head of the high-speed train, a left side plate installed on the left side of the head of the high-speed train, and a plate installed at the right side of the head of the high-speed train.
  • a top plate installed on the top of the head of the high-speed train
  • a left side plate installed on the left side of the head of the high-speed train
  • a plate installed at the right side of the head of the high-speed train.
  • the laser scanning unit includes: a camera device and a scanning device; wherein,
  • the camera equipment includes: a first camera mounted on the middle of the top plate, a second camera mounted on the left side panel, and a third camera mounted on the right side panel, the first camera, The second camera and the third camera respectively send the acquired real-time tunnel 3D graphics data to the cloud server;
  • the scanning device is installed on both sides of the top plate, and the scanning device includes: a fixed base installed on the top plate, a rotating shaft vertically fixed in the middle of the top of the fixed base, and a rotating shaft installed on the top of the rotating shaft.
  • a disk a laser scanner host and a gyro sensor mounted on the rotating disk, and a laser transmitter, the laser transmitter being located on the front of the laser scanner host.
  • the receiving device includes: a receiver mounted on the horizontal plate, and a receiving antenna vertically connected to the receiver, and the receiver is respectively connected to the laser scanner host and the cloud server.
  • a concave cavity for installing a micro-motor is provided in the middle of the top of the fixed base, and the motor output shaft of the micro-motor is drive-connected to the bottom end of the rotating shaft through a coupling.
  • the cloud server is connected to a mobile terminal, so that the staff can view the tunnel disease information.
  • the present invention also provides a kind of tunnel disease monitoring method for high-speed train, comprising the following steps:
  • the obtained tunnel disease information includes:
  • Coordinates are marked on the contour difference part in the contour difference map to obtain the disease position of the tunnel; at the same time, according to the contour difference map, the tunnel disease type and the disease contour area are determined.
  • the present invention has a high degree of automation and accuracy, and can use the vehicle-mounted laser scanning device to monitor the overall situation of the tunnel in real time throughout the entire process, comprehensively and accurately detect the tunnel disease data to quickly complete the tunnel disease detection, so as to quickly and accurately obtain the location of the tunnel disease.
  • Disease treatment is beneficial to the safe running of high-speed trains in the tunnel.
  • the present invention installs the laser scanner host on the top of the head of the high-speed train, and can scan the tunnel comprehensively when the head of the high-speed train enters the tunnel, so that the tunnel can be quickly collected during the high-speed operation of the high-speed train. It detects and collects the disease problems such as falling blocks and water seepage in the tunnel in real time, and transmits the collected relevant tunnel disease information to the tunnel disease monitoring platform to inform the technicians. Disease treatment, to ensure long-term safe use of the tunnel, is conducive to the safe running of high-speed trains in the tunnel.
  • Fig. 1 is the structural representation when the present invention is installed on the high-speed train
  • Fig. 2 is the principle block diagram of the tunnel disease monitoring system of the present invention
  • Fig. 3 is the structural perspective view of the vehicle-mounted laser scanning device of the present invention.
  • FIG. 4 is a perspective view of the overall structure of the combination of a support frame and a horizontal plate of the present invention
  • FIG. 5 is an enlarged schematic view of the structure at place A of FIG. 4 of the present invention.
  • Fig. 6 is the structural perspective view of the scanning device of the present invention.
  • Fig. 7 is the structural perspective view of the fixed base of the present invention.
  • FIG. 8 is a schematic flowchart of the tunnel disease monitoring method of the present invention.
  • 1 high-speed train 2 on-board laser scanning device, 21 support frame, 211 top plate, 212 left side plate, 213 right side plate, 22 horizontal plate, 23 receiving device, 231 receiver, 232 power supply, 233 receiving antenna, 3 laser scanning unit, 31 first camera, 32 second camera, 33 third camera, 34 scanning equipment, 341 fixed base, 3411 micro motor, 342 rotating shaft, 343 rotating disk, 344 laser scanner host, 345 laser transmitter , 346 rotary sensors, 4 cloud servers, 5 mobile terminals, 6 tunnel disease monitoring platforms, 7 locators, 8, BIM model database.
  • the present invention provides a tunnel disease monitoring system for high-speed trains, comprising:
  • Vehicle-mounted laser scanning device used to obtain 3D graphics data of the current tunnel
  • Locator used to obtain current tunnel location information
  • a cloud server configured to send the current tunnel three-dimensional graphic data and current tunnel location information to the tunnel disease monitoring platform
  • the tunnel disease monitoring platform is used to compare the current three-dimensional graphic data of the tunnel and the current tunnel position information with the original three-dimensional graphic data of the tunnel and the original tunnel position information pre-stored in the BIM model database to obtain the tunnel disease information, and at the same time The tunnel disease information will be returned to the cloud server.
  • the BIM model database uses BIM software to establish an original tunnel 3D graphics database according to the DWG design and construction drawings of the tunnel project, and the original tunnel 3D graphics database includes tunnel original 3D graphics data and original tunnel location information.
  • the tunnel disease monitoring platform includes:
  • a denoising module configured to perform denoising processing on the three-dimensional graphic data of the current tunnel and the current tunnel position information to obtain the three-dimensional graphic data of the current tunnel after denoising and the current tunnel position information, wherein the denoised current tunnel 3D graphic data is used as auxiliary image for tunnel disease detection;
  • the processing module is used to integrate the 3D BIM model data of the original tunnel 3D graphics data, the original tunnel position information and the denoised current tunnel 3D graphics data and the current tunnel position information through Navisworks to obtain the contour difference map of the tunnel 3D graphics data.
  • the contour difference map is a three-dimensional map formed by the coordinate difference of the three-dimensional graphic data of the tunnel, wherein, when the coordinate difference is 0, it means that the tunnel has no disease, and when the coordinate difference is not 0, it means that the tunnel has a disease;
  • the output module is used to mark the coordinates of the contour difference part in the contour difference map to obtain the disease position of the tunnel; at the same time, according to the contour difference map, determine the tunnel disease type and the disease contour area.
  • the tunnel disease monitoring platform transmits the scanned tunnel disease information to the mobile terminal through the cloud server so that the staff can view and deal with the disease.
  • the types of tunnel diseases include: water accumulation in the tunnel, the tunnel is blocked due to landslides, the tunnel itself is deformed and cracked, the air circulation in the tunnel is not smooth, and bad conditions may occur, and the tunnel is narrow and two-way driving is very likely to cause traffic accidents. And long-term blockage; tunnel diseases are manifested as: tunnel water leakage, partial blockage of secondary lining and tunnel surface, cracking deformation, and drainage system blockage, resulting in reverse slurry on the tunnel surface.
  • the vehicle-mounted laser scanning device is used to acquire the three-dimensional graphic data of the tunnel in real time, and transmit the acquired tunnel graphic data to the tunnel disease monitoring platform through the cloud server;
  • the vehicle-mounted laser scanning device includes: A support frame, a cross plate fixed on the back of the support frame and installed on the top end of the head of the high-speed train, a receiving device installed on the cross plate, and a laser scanning unit installed on the top end of the support frame.
  • a support mechanism can be provided for the laser scanning unit and the receiving device, so that the laser scanning unit and the receiving device can be stably installed on the top of the head of the high-speed train.
  • the support frame is in an "n"-shaped structure, and the support frame includes: a top plate installed on the top of the head of the high-speed train, a left side plate installed on the left side of the head of the high-speed train, and a right plate installed on the right side of the head of the high-speed train. side panel.
  • the laser scanning unit includes: a camera device and a scanning device; wherein, the camera device includes: a first camera mounted on the middle of the top plate, a second camera mounted on the left side plate, and a second camera mounted on the top plate
  • the third camera on the right side panel, the first camera, the second camera, and the third camera respectively send the acquired real-time tunnel three-dimensional graphics data to the cloud server; preferably, the first camera, the third camera
  • the second camera and the third camera are cansonic Kenny action cameras.
  • the scanning device is installed on both sides of the top plate, and the scanning device includes: a fixed base installed on the top plate, a rotating shaft vertically fixed in the middle of the top of the fixed base, and a rotating shaft installed on the top of the rotating shaft.
  • the laser scanner host is a three-dimensional laser scanner; the laser scanner host is any one of BJSD-T2 and BJQN-5A laser scanners; the laser transmitter is Z15M18B-638-LG90 Any type of transmitter, type FU650C5-BD9 and type ST780D120-3M; the rotary sensor is any type of rotary sensor of type DS-III-NR and type xt22600.
  • a concave cavity for installing a micro-motor is provided in the middle of the top of the fixed base, and the motor output shaft of the micro-motor is drive-connected with the bottom end of the rotating shaft through a coupling.
  • the micro motor adopts 39BYG205-1-17 type motor, through which the laser scanner host can be driven to rotate in a circle to scan the tunnel comprehensively, so as to obtain comprehensive three-dimensional graphic data of the tunnel.
  • the receiving device includes: a receiver mounted on the horizontal plate, and a receiving antenna vertically connected to the receiver, and the receiver is respectively connected to the laser scanner host and the cloud server.
  • the receiver transmits the real-time tunnel three-dimensional graphic data acquired by the laser scanner host to the cloud server.
  • the receiver is any one of Beidouxing TDX-328X, KW13A-GSM, and GK5101 receivers.
  • a power supply is provided on the horizontal plate, and the power supply is respectively connected to the first camera, the second camera, the third camera, the receiver, the laser scanner host, and the micro motor, and is the first camera.
  • the second camera, the third camera, the receiver, the laser scanner host, and the micro motor provide stable power supply.
  • the power supply 232 adopts SYH4-HY3002F-2 DC stabilized power supply.
  • the positioner is installed on the top of the head of the high-speed train, and preferably, the positioner is an SMC-IP8000-001 type positioner.
  • the cloud server is connected to a mobile terminal, so that the staff can view the tunnel disease information.
  • the mobile terminal is any one of a smart phone, a mobile phone, and a tablet computer.
  • the present invention also provides a kind of tunnel disease monitoring method for high-speed train, comprising the following steps:
  • Step S1 obtaining three-dimensional graphics data of the current tunnel
  • Step S2 obtaining current tunnel location information
  • Step S3 sending the three-dimensional graphics data of the current tunnel and the tunnel location information to the tunnel disease monitoring platform;
  • Step S4 compare the three-dimensional graphic data of the current tunnel and the current tunnel position information with the original three-dimensional graphic data of the tunnel and the original tunnel position information pre-stored in the BIM model database to obtain tunnel disease information, and at the same time, compare the tunnel disease information. back to the cloud server.
  • the obtained tunnel disease information includes:
  • the tunnel disease monitoring system and method of the present invention can install the laser scanner host on the top of the head of the high-speed train, and can perform a comprehensive scan of the tunnel from the beginning to the end when the head of the high-speed train enters the tunnel.
  • the scanning equipment is used to collect the disease signal of the tunnel, to detect and collect the disease problems such as block loss and water seepage in the tunnel in real time, and the collected relevant tunnel disease information is transmitted through the cloud server. Go to the tunnel disease monitoring platform, and notify the technicians through the mobile terminal to deal with the tunnel disease information according to the tunnel disease information, so as to ensure the long-term safe use of the tunnel, which is conducive to the safe running of high-speed trains in the tunnel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种用于高速列车的隧道病害监测系统和方法,包括:车载激光扫描装置,用于获取当前隧道三维图形数据;定位器,用于获取当前隧道位置信息;云端服务器,用于将当前隧道三维图形数据和当前隧道位置信息发送至隧道病害监控平台;隧道病害监控平台,用于将当前隧道三维图形数据和当前隧道位置信息,与BIM模型数据库预先存储的原始隧道三维图形数据和原始隧道位置信息进行数据对比,将得到的隧道病害信息通返回至云端服务器。采用本发明的技术方案,能够利用车载激光扫描装置全程实时监控隧道的整体情况,全面精确的检测出隧道病害数据以迅速完成隧道病害检测,从而快速准确得到隧道病害位置以对隧道进行病害处理。

Description

一种用于高速列车上的隧道病害监测系统和方法 技术领域
本发明属于隧道监测设备技术领域,尤其涉及一种用于高速列车的隧道病害监测系统和方法。
背景技术
隧道是埋置于地层内的工程建筑物,是人类利用地下空间的一种形式。隧道可分为交通隧道、水工隧道、市政隧道、矿山隧道;随着我国国民经济持续增长,隧道作为公路的咽喉,尤其是在偏远地山区公路建设中,由于客观地形条件,在保证汽车或高速列车行驶需要的根本上,修建隧道进而缩短交通里程的路线设计方案一直被广泛的应用。
但隧道运营过程中往往会出现很多的病害,隧道病害类型包括隧道内积水,隧道由于山体滑坡等情况被堵塞,隧道自身变形及开裂等,这种隧道病害会大大缩短隧道的使用寿命;因此如何在隧道运营期间,及时有效的检测和监控隧道的各种病害,受到越来越多道路工作者的关注。
现如今,隧道检测只考虑到各单项的如隧道内积水、开裂等评价指标,这些评价指标人为因素影响较大,所检测的数据不准确,不利于对隧道的病害进行处理,隧道的病害处理缺乏全程及实时的监控,一旦某段隧道出现病害问题,难以快速准确的对隧道进行病害处理,影响了隧道的安全使用,也影响了行驶在隧道内高速列车的安全行驶。
发明内容
本发明的目的在于提供一种用于高速列车上的隧道病害监测系统和方法,以解决现有技术中检测数据不准确,不利于对隧道的病害 进行处理,隧道的病害处理缺乏全程及实时的监控,难以快速准确的对隧道进行病害处理,影响隧道安全使用的问题。
为实现上述目的,本发明提供如下技术方案:
一种用于高速列车的隧道病害监测系统,包括:
车载激光扫描装置,用于获取当前隧道三维图形数据;
定位器,用于获取当前隧道位置信息;
云端服务器,用于将所述当前隧道三维图形数据和当前隧道位置信息发送至隧道病害监控平台;
隧道病害监控平台,用于将所述当前隧道三维图形数据和当前隧道位置信息,与BIM模型数据库预先存储的原始隧道三维图形数据和原始隧道位置信息进行数据对比,得到隧道病害信息,同时将所述隧道病害信息通返回至云端服务器。
作为优选,所述隧道病害监控平台包括::
去噪模块,用于对所述当前隧道三维图形数据和当前隧道位置信息进行去噪处理,得到去噪后的当前隧道三维图形数据和当前隧道位置信息;
处理模块,用于将原始隧道三维图形数据、原始隧道位置信息与去噪后的当前隧道三维图形数据、当前隧道位置信息进行三维BIM模型数据整合,得到隧道三维图形数据轮廓差图,所述轮廓差图为隧道三维图形数据坐标差形成的三维图;
输出模块,用于对所述轮廓差图中的轮廓差部分标注坐标,得到隧道的病害位置;同时根据所述轮廓差图,确定隧道病害类型和病害轮廓面积。
作为优选,所述车载激光扫描装置:包括:安装于高速列车车头顶端的支撑架、固定于所述支撑架背部并安装于所述高速列车车头顶 端的横板、安装于所述横板上的接收装置、以及安装于所述支撑架顶端的激光扫描单元。
作为优选,所述支撑架呈“n”形结构,所述支撑架包括:安装于高速列车车头顶端的顶板、安装于高速列车车头左侧的左侧板、以及安装于高速列车车头右侧的右侧板。
作为优选,所述激光扫描单元包括:摄像设备和扫描设备;其中,
所述摄像设备包括:安装于所述顶板中部的第一摄像机、安装于所述左侧板上的第二摄像机、以及安装于所述右侧板上的第三摄像机,所述第一摄像机、第二摄像机、第三摄像机分别将获取的实时隧道三维图形数据发送至所述云端服务器;
所述扫描设备安装于所述顶板的两侧,所述扫描设备包括:安装于所述顶板上的固定基座、垂直固设于所述固定基座顶端中部的转轴、安装于转轴顶端的旋转盘、安装于旋转盘上的激光扫描仪主机和回转传感器以及激光发射器,所述激光发射器位于激光扫描仪主机的正面。
作为优选,所述接收装置包括:安装于所述横板上的接收器、以及垂直连接于所述接收器的接收天线,且所述接收器分别与所述激光扫描仪主机和云端服务器连接。
作为优选,所述固定基座的顶端中部开设一安装微型电机的凹腔,所述微型电机的电机输出轴通过联轴器与所述转轴的底端传动连接。
作为优选,所述云端服务器连接一移动终端,用于使工作人员查看所述隧道病害信息。
本发明还提供一种用于高速列车的隧道病害监测方法,包括以下步骤:
获取当前隧道三维图形数据;
获取当前隧道位置信息;
将所述当前隧道三维图形数据和当前隧道位置信息发送至隧道病害监控平台;
将所述当前隧道三维图形数据和当前隧道位置信息,与BIM模型数据库预先存储的原始隧道三维图形数据和原始隧道位置信息进行数据对比,得到隧道病害信息,同时将所述隧道病害信息通返回至云端服务器。
作为优选,所述得到隧道病害信息包括:
对所述当前隧道三维图形数据和当前隧道位置信息进行去噪处理,得到去噪后的当前隧道三维图形数据和当前隧道位置信息;
将原始隧道三维图形数据、原始隧道位置信息与去噪后的当前隧道三维图形数据、当前隧道位置信息进行三维BIM模型数据整合,得到隧道三维图形数据轮廓差图,所述轮廓差图为隧道三维图形数据坐标差形成的三维图;
对所述轮廓差图中的轮廓差部分标注坐标,得到隧道的病害位置;同时根据所述轮廓差图,确定隧道病害类型和病害轮廓面积。
本发明的有益效果是:
1、本发明自动化程度及精确度高,能够利用车载激光扫描装置全程实时监控隧道的整体情况,全面精确的检测出隧道病害数据以迅速完成隧道病害检测,从而快速准确得到隧道病害位置以对隧道进行病害处理,有利于隧道内高速列车的安全行驶。
2、本发明将激光扫描仪主机安装在高速列车的车头顶端,能够在高速列车的车头行驶进入到隧道时,就对隧道进行全面扫描,从而在高速列车高速运行的过程中,迅速采集到隧道的病害问题信号,对 隧道内出现的掉块、渗水等病害问题实时的检测采集出来,并将采集到相关的隧道病害信息传输至隧道病害监控平台以告知技术人员,针对隧道病害信息进行隧道的病害处理,保证隧道长久安全的使用,有利于高速列车在隧道内安全的行驶。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图,其中,
图1为本发明安装于高速列车上时的结构示意图;
图2为本发明隧道病害监测系统的原理框图;
图3为本发明车载激光扫描装置的结构立体图;
图4为本发明支撑架与横板相组合的整体结构立体图;
图5为本发明图4的A处结构放大示意图;
图6为本发明扫描设备的结构立体图;
图7为本发明固定基座的结构立体图;
图8为本发明隧道病害监测方法的流程示意图。
图中:1高速列车、2车载激光扫描装置、21支撑架、211顶板、212左侧板、213右侧板、22横板、23接收装置、231接收器、232供电电源、233接收天线、3激光扫描单元、31第一摄像机、32第二摄像机、33第三摄像机、34扫描设备、341固定基座、3411微型电机、342转轴、343旋转盘、344激光扫描仪主机、345激光发射器、346回转传感器、4云端服务器、5移动终端、6隧道病害监控平台、7定位器、8、BIM模型数据库。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1-7所示,本发明提供一种用于高速列车的隧道病害监测系统,包括:
车载激光扫描装置,用于获取当前隧道三维图形数据;
定位器,用于获取当前隧道位置信息;
云端服务器,用于将所述当前隧道三维图形数据和当前隧道位置信息发送至隧道病害监控平台;
隧道病害监控平台,用于将所述当前隧道三维图形数据和当前隧道位置信息,与BIM模型数据库预先存储的原始隧道三维图形数据和原始隧道位置信息进行数据对比,得到隧道病害信息,同时将所述隧道病害信息通返回至云端服务器。
进一步,所述BIM模型数据库,利用BIM软件根据隧道工程的DWG设计和施工图纸建立原始隧道三维图形数据库,所述原始隧道三维图形数据库包括隧道原始三维图形数据及原始隧道位置信息。
进一步,所述隧道病害监控平台包括:
去噪模块,用于对所述当前隧道三维图形数据和当前隧道位置信息进行去噪处理,得到去噪后的当前隧道三维图形数据和当前隧道位置信息,其中,所述去噪后的当前隧道三维图形数据作为隧道病害检测的辅助图像;
处理模块,用于通过Navisworks将原始隧道三维图形数据、原 始隧道位置信息与去噪后的当前隧道三维图形数据、当前隧道位置信息进行三维BIM模型数据整合,得到隧道三维图形数据轮廓差图,所述轮廓差图为隧道三维图形数据坐标差形成的三维图,其中,其坐标差为0时则代表隧道没有病害,其坐标差不为0时则代表隧道存在病害;
输出模块,用于对所述轮廓差图中的轮廓差部分标注坐标,得到隧道的病害位置;同时根据所述轮廓差图,确定隧道病害类型和病害轮廓面积。
隧道病害监控平台将扫描所得的隧道病害信息通过云端服务器传输至移动终端以便于工作人员查看并针对病害进行处理。所述隧道病害类型包括:隧道内积水,隧道由于山体滑坡情况被堵塞,隧道自身变形及开裂,隧道内空气流通不畅易有不良情况发生,隧道内由于狭窄并且双向行驶极易造成交通事故而长时间堵塞;隧道病害表现为:隧道渗漏水、二衬及隧道面局部断块、开裂变形、以及排水系统阻塞致使隧道面反浆。
进一步,所述车载激光扫描装置用于实时获取隧道三维图形数据,并将获取的隧道图形数据通过云端服务器传输至隧道病害监控平台;所述车载激光扫描装置:包括:安装于高速列车车头顶端的支撑架、固定于所述支撑架背部并安装于所述高速列车车头顶端的横板、安装于所述横板上的接收装置、以及安装于所述支撑架顶端的激光扫描单元。通过支撑架与横板的配合,能够为激光扫描单元与接收装置提供支撑机构,从而让激光扫描单元与接收装置稳固安装在高速列车的车头顶端。
进一步,所述支撑架呈“n”形结构,所述支撑架包括:安装于高速列车车头顶端的顶板、安装于高速列车车头左侧的左侧板、以及 安装于高速列车车头右侧的右侧板。
进一步,所述激光扫描单元包括:摄像设备和扫描设备;其中,所述摄像设备包括:安装于所述顶板中部的第一摄像机、安装于所述左侧板上的第二摄像机、以及安装于所述右侧板上的第三摄像机,所述第一摄像机、第二摄像机、第三摄像机分别将获取的实时隧道三维图形数据发送至所述云端服务器;优选地,所述第一摄像机、第二摄像机和第三摄像机采用cansonic肯尼运动摄像机。所述扫描设备安装于所述顶板的两侧,所述扫描设备包括:安装于所述顶板上的固定基座、垂直固设于所述固定基座顶端中部的转轴、安装于转轴顶端的旋转盘、安装于旋转盘上的激光扫描仪主机和回转传感器以及激光发射器,所述激光发射器位于激光扫描仪主机的正面。优选地,所述激光扫描仪主机为三维激光扫描仪;所述激光扫描仪主机为BJSD-T2型、BJQN-5A型激光扫描仪的任意一种;所述激光发射器为Z15M18B-638-LG90型、FU650C5-BD9型、以及ST780D120-3M型发射器的任意一种;回转传感器为DS-III-NR型、xt22600型回转传感器的任意一种。
进一步,所述固定基座的顶端中部开设一安装微型电机的凹腔,所述微型电机的电机输出轴通过联轴器与所述转轴的底端传动连接。所述微型电机采用39BYG205-1-17型电机,通过所述微型电机,可驱使激光扫描仪主机圆周旋转以对隧道进行全面的扫描,便于获取隧道的全面三维图形数据。
进一步,所述接收装置包括:安装于所述横板上的接收器、以及垂直连接于所述接收器的接收天线,且所述接收器分别与所述激光扫描仪主机和云端服务器连接。所述接收器将所述激光扫描仪主机获取的实时隧道三维图形数据传输至所述云端服务器。优选地,接收器为 北斗星TDX-328X型、KW13A-GSM型、GK5101型接收器的任意一种。
进一步,在所述横板上设有供电电源,所述供电电源分别连接所述第一摄像机、第二摄像机、第三摄像机、接收器、激光扫描仪主机、微型电机,为所述第一摄像机、第二摄像机、第三摄像机、接收器、激光扫描仪主机、微型电机提供稳定电源。供电电源232采用SYH4-HY3002F-2型直流稳压电源。
作为优选,所述定位器安装于安装于高速列车车头顶端,优选地,所述定位器为SMC-IP8000-001型定位器。
作为优选,所述云端服务器连接一移动终端,用于使工作人员查看所述隧道病害信息。移动终端为智能手机、移动电话、平板电脑任意一种。
如图8所示,本发明还提供一种用于高速列车的隧道病害监测方法,包括以下步骤:
步骤S1、获取当前隧道三维图形数据;
步骤S2、获取当前隧道位置信息;
步骤S3、将所述当前隧道三维图形数据和隧道位置信息发送至隧道病害监控平台;
步骤S4、将所述当前隧道三维图形数据和当前隧道位置信息,与BIM模型数据库预先存储的原始隧道三维图形数据和原始隧道位置信息进行数据对比,得到隧道病害信息,同时将所述隧道病害信息通返回至云端服务器。
进一步,所述得到隧道病害信息包括:
对所述当前隧道三维图形数据和当前隧道位置信息进行去噪处理,得到去噪后的当前隧道三维图形数据和当前隧道位置信息;
将原始隧道三维图形数据、原始隧道位置信息与去噪后的当前隧道三 维图形数据、当前隧道位置信息进行三维BIM模型数据整合,得到隧道三维图形数据轮廓差图,所述轮廓差图为隧道三维图形数据坐标差形成的三维图;
对所述轮廓差图中的轮廓差部分标注坐标,得到隧道的病害位置;同时根据所述轮廓差图,确定隧道病害类型和病害轮廓面积
本发明的隧道病害监测系统和方法,能够将激光扫描仪主机安装在高速列车的车头顶端,能够在高速列车的车头行驶刚刚进入到隧道时,就对隧道进行从头到尾的全面扫描,从而在高速列车高速运行的过程中,利用扫描设备采集到隧道的病害问题信号,对隧道内出现的掉块、渗水等病害问题实时的检测采集出来,并将采集到相关的隧道病害信息通过云端服务器传输至隧道病害监控平台,并通过移动终端以告知技术人员,针对隧道病害信息进行隧道的病害处理,保证隧道长久安全的使用,有利于高速列车在隧道内安全的行驶。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解为在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

  1. 一种用于高速列车的隧道病害监测系统,其特征在于,包括:
    车载激光扫描装置,用于获取当前隧道三维图形数据;
    定位器,用于获取当前隧道位置信息;
    云端服务器,用于将所述当前隧道三维图形数据和当前隧道位置信息发送至隧道病害监控平台;
    隧道病害监控平台,用于将所述当前隧道三维图形数据和当前隧道位置信息,与BIM模型数据库预先存储的原始隧道三维图形数据和原始隧道位置信息进行数据对比,得到隧道病害信息,同时将所述隧道病害信息通返回至云端服务器。
  2. 根据权利要求1所述的用于高速列车的隧道病害监测系统,其特征在于,所述隧道病害监控平台包括:
    去噪模块,用于对所述当前隧道三维图形数据和当前隧道位置信息进行去噪处理,得到去噪后的当前隧道三维图形数据和当前隧道位置信息;
    处理模块,用于将原始隧道三维图形数据、原始隧道位置信息与去噪后的当前隧道三维图形数据、当前隧道位置信息进行三维BIM模型数据整合,得到隧道三维图形数据轮廓差图,所述轮廓差图为隧道三维图形数据坐标差形成的三维图;
    输出模块,用于对所述轮廓差图中的轮廓差部分标注坐标,得到隧道的病害位置;同时根据所述轮廓差图,确定隧道病害类型和病害轮廓面积。
  3. 根据权利要求1或2所述的用于高速列车的隧道病害监测系统,其特征在于,所述车载激光扫描装置:包括:安装于高速列车车头顶端的支撑架、固定于所述支撑架背部并安装于所述高速列车车头顶端的横板、安装于所述横板上的接收装置、以及安装于所述支撑架 顶端的激光扫描单元。
  4. 根据权利要求3所述的安置于高速列车上的隧道病害监测系统,其特征在于,所述支撑架呈“n”形结构,所述支撑架包括:安装于高速列车车头顶端的顶板、安装于高速列车车头左侧的左侧板、以及安装于高速列车车头右侧的右侧板。
  5. 根据权利要求4所述的用于高速列车的隧道病害监测系统,其特征在于,所述激光扫描单元包括:摄像设备和扫描设备;其中,
    所述摄像设备包括:安装于所述顶板中部的第一摄像机、安装于所述左侧板上的第二摄像机、以及安装于所述右侧板上的第三摄像机,所述第一摄像机、第二摄像机、第三摄像机分别将获取的实时隧道三维图形数据发送至所述云端服务器;
    所述扫描设备安装于所述顶板的两侧,所述扫描设备包括:安装于所述顶板上的固定基座、垂直固设于所述固定基座顶端中部的转轴、安装于转轴顶端的旋转盘、安装于旋转盘上的激光扫描仪主机和回转传感器以及激光发射器,所述激光发射器位于激光扫描仪主机的正面。
  6. 根据权利要求5所述的用于高速列车的隧道病害监测系统,其特征在于,所述接收装置包括:安装于所述横板上的接收器、以及垂直连接于所述接收器的接收天线,且所述接收器分别与所述激光扫描仪主机和云端服务器连接。
  7. 根据权利要求5所述的用于高速列车的隧道病害监测系统,其特征在于,所述固定基座的顶端中部开设一安装微型电机的凹腔,所述微型电机的电机输出轴通过联轴器与所述转轴的底端传动连接。
  8. 根据权利要求1所述的用于高速列车上的隧道病害监测系统,其特征在于,所述云端服务器连接一移动终端,用于使工作人员查看 所述隧道病害信息。
  9. 一种用于高速列车的隧道病害监测方法,其特征在于,包括以下步骤:
    获取当前隧道三维图形数据;
    获取当前隧道位置信息;
    将所述当前隧道三维图形数据和当前隧道位置信息发送至隧道病害监控平台;
    将所述当前隧道三维图形数据和当前隧道位置信息,与BIM模型数据库预先存储的原始隧道三维图形数据和原始隧道位置信息进行数据对比,得到隧道病害信息,同时将所述隧道病害信息通返回至云端服务器。
  10. 如权利要求9所述用于高速列车的隧道病害监测方法,其特征在于,所述得到隧道病害信息包括:
    对所述当前隧道三维图形数据和当前隧道位置信息进行去噪处理,得到去噪后的当前隧道三维图形数据和当前隧道位置信息;
    将原始隧道三维图形数据、原始隧道位置信息与去噪后的当前隧道三维图形数据、当前隧道位置信息进行三维BIM模型数据整合,得到隧道三维图形数据轮廓差图,所述轮廓差图为隧道三维图形数据坐标差形成的三维图;
    对所述轮廓差图中的轮廓差部分标注坐标,得到隧道的病害位置;同时根据所述轮廓差图,确定隧道病害类型和病害轮廓面积。
PCT/CN2021/097845 2021-02-02 2021-06-02 一种用于高速列车上的隧道病害监测系统和方法 WO2022166047A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110141203.2A CN112945096B (zh) 2021-02-02 2021-02-02 一种用于高速列车上的隧道病害监测系统和方法
CN202110141203.2 2021-02-02

Publications (1)

Publication Number Publication Date
WO2022166047A1 true WO2022166047A1 (zh) 2022-08-11

Family

ID=76241355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097845 WO2022166047A1 (zh) 2021-02-02 2021-06-02 一种用于高速列车上的隧道病害监测系统和方法

Country Status (2)

Country Link
CN (1) CN112945096B (zh)
WO (1) WO2022166047A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115422418A (zh) * 2022-08-25 2022-12-02 新誉时代工程咨询有限公司 基于bim的公路建设数据监测方法、系统、设备及存储介质
CN116055338A (zh) * 2023-03-28 2023-05-02 杭州觅睿科技股份有限公司 一种误报消除方法、装置、设备及介质
CN116740174A (zh) * 2023-08-08 2023-09-12 苏州工业园区测绘地理信息有限公司 隧道病害在三维实景模型中的定位方法、装置和存储介质
CN117309903A (zh) * 2023-10-10 2023-12-29 青岛峻海物联科技有限公司 一种隧道内缺陷定位方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113377838A (zh) * 2021-06-15 2021-09-10 中铁隧道局集团有限公司 一种隧道病害信息的展示方法、装置、终端设备和服务器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188998A (ja) * 2001-10-03 2002-07-05 Keisoku Kensa Kk トンネルの内部壁面のひび割れ検出方法及びその表示方法
CN108267096A (zh) * 2017-12-25 2018-07-10 中铁科学技术开发公司 铁路隧道衬砌表面病害快速检测系统
CN109708702A (zh) * 2019-01-27 2019-05-03 郭德平 一种基于bim技术的铁路隧道病害检测系统及使用方法
CN109927610A (zh) * 2019-03-26 2019-06-25 中国铁建重工集团有限公司 既有线铁路隧道病害综合检测车
CN211505253U (zh) * 2020-01-16 2020-09-15 中国水利水电第十一工程局有限公司 一种基于激光技术的跨断层隧道病害检测装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2602818B2 (ja) * 1986-12-03 1997-04-23 朝日航洋 株式会社 トンネル構造物の空洞・亀裂等の異常を検査する方法
CN106767402B (zh) * 2016-11-30 2023-01-06 华中科技大学 一种盾构法隧道表观质量检测方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188998A (ja) * 2001-10-03 2002-07-05 Keisoku Kensa Kk トンネルの内部壁面のひび割れ検出方法及びその表示方法
CN108267096A (zh) * 2017-12-25 2018-07-10 中铁科学技术开发公司 铁路隧道衬砌表面病害快速检测系统
CN109708702A (zh) * 2019-01-27 2019-05-03 郭德平 一种基于bim技术的铁路隧道病害检测系统及使用方法
CN109927610A (zh) * 2019-03-26 2019-06-25 中国铁建重工集团有限公司 既有线铁路隧道病害综合检测车
CN211505253U (zh) * 2020-01-16 2020-09-15 中国水利水电第十一工程局有限公司 一种基于激光技术的跨断层隧道病害检测装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115422418A (zh) * 2022-08-25 2022-12-02 新誉时代工程咨询有限公司 基于bim的公路建设数据监测方法、系统、设备及存储介质
CN116055338A (zh) * 2023-03-28 2023-05-02 杭州觅睿科技股份有限公司 一种误报消除方法、装置、设备及介质
CN116055338B (zh) * 2023-03-28 2023-08-11 杭州觅睿科技股份有限公司 一种误报消除方法、装置、设备及介质
CN116740174A (zh) * 2023-08-08 2023-09-12 苏州工业园区测绘地理信息有限公司 隧道病害在三维实景模型中的定位方法、装置和存储介质
CN116740174B (zh) * 2023-08-08 2024-02-13 园测信息科技股份有限公司 隧道病害在三维实景模型中的定位方法、装置和存储介质
CN117309903A (zh) * 2023-10-10 2023-12-29 青岛峻海物联科技有限公司 一种隧道内缺陷定位方法及装置
CN117309903B (zh) * 2023-10-10 2024-05-07 青岛峻海物联科技有限公司 一种隧道内缺陷定位方法及装置

Also Published As

Publication number Publication date
CN112945096A (zh) 2021-06-11
CN112945096B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2022166047A1 (zh) 一种用于高速列车上的隧道病害监测系统和方法
CN106192634B (zh) 一种铁路轨道弹条扣件状态自动检测装置以及方法
CN106049210B (zh) 一种轨道状态智能检测平台
CN103778681B (zh) 一种车载高速公路巡检系统及数据获取和处理方法
CN206034212U (zh) 一种铁路轨道弹条扣件状态自动检测装置
CN101694084B (zh) 地面车载移动检测系统
CN111895911B (zh) 一种应用于浅部砂层地面塌陷隐患监测方法
CN109278053B (zh) 一种铁路隧道运营状态检测监测方法
CN105905132A (zh) 一种轨道状态智能巡检装置和方法
CN102564335A (zh) 一种大型隧道变形测量方法
CN206756149U (zh) 一种用于铁路隧道全断面综合检测的轨道车
CN105488958A (zh) 一种非接触式滑坡灾害监测系统及其方法
CN112965135B (zh) 一种石窟崖体裂隙空间异质分布的无损探测综合方法
CN111610193A (zh) 采用多镜头拍摄巡检地铁隧道管片结构缺陷的系统及方法
CN101845788A (zh) 基于结构光视觉的水泥混凝土路面错台检测装置及方法
CN110700056B (zh) 一种沥青路面病害监控系统及监测方法
CN211043666U (zh) 基于激光点云技术的隧道监测系统
CN208872301U (zh) 一种单轨式地铁隧道安全巡检机器人
CN205557277U (zh) 一种路面裂缝病害检测系统
CN111579560A (zh) 一种用于隧道内的缺陷定位装置和方法
CN205954421U (zh) 一种轨道状态智能检测平台
CN116740174A (zh) 隧道病害在三维实景模型中的定位方法、装置和存储介质
CN111535370A (zh) 一种深基坑实时监测系统
CN115755069A (zh) 一种轨道异物检测装置、检测系统及检测方法
CN111101949A (zh) 一种涉及风险源穿越过程的动态监测管理系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924054

Country of ref document: EP

Kind code of ref document: A1