WO2022165934A1 - 物体表面数据侦测方法、系统、电子装置和存储介质 - Google Patents

物体表面数据侦测方法、系统、电子装置和存储介质 Download PDF

Info

Publication number
WO2022165934A1
WO2022165934A1 PCT/CN2021/081584 CN2021081584W WO2022165934A1 WO 2022165934 A1 WO2022165934 A1 WO 2022165934A1 CN 2021081584 W CN2021081584 W CN 2021081584W WO 2022165934 A1 WO2022165934 A1 WO 2022165934A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
scanning
tracking
coordinate system
object surface
Prior art date
Application number
PCT/CN2021/081584
Other languages
English (en)
French (fr)
Inventor
王江峰
周强
陈尚俭
郑俊
Original Assignee
杭州思看科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州思看科技有限公司 filed Critical 杭州思看科技有限公司
Priority to US17/683,119 priority Critical patent/US11493326B2/en
Publication of WO2022165934A1 publication Critical patent/WO2022165934A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/71Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
    • G06F21/73Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information by creating or determining hardware identification, e.g. serial numbers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • G06T7/85Stereo camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging

Definitions

  • the present application relates to the technical field of visual measurement, and in particular, to a method, system, electronic device and storage medium for object surface data detection.
  • the detection technology of object surface data is widely used in parts size and position measurement, robot guidance, industrial design, defect detection, reverse engineering and other fields. It mainly scans the spatial shape, structure and color of objects to obtain The spatial coordinates of the surface of the object.
  • a tracking scanner is usually used to detect surface data of an object.
  • the tracking scanner includes a tracking device and a scanning device.
  • the tracking device is used to locate the position of the scanner, and the scanning device is used to detect the surface data of the object. Therefore, the scanning range is only limited to the field of view that can be tracked by the tracking device. When encountering a larger object to be measured, it cannot be scanned.
  • the scanning efficiency is low, and the scanning accuracy is also limited by the tracking device, resulting in the detection of object surface data. less accurate.
  • Embodiments of the present application provide an object surface data detection method, system, electronic device, and storage medium, so as to at least solve the problem of low accuracy of object surface data detection in the related art.
  • an embodiment of the present application provides a method for detecting surface data of an object, which is applied to a three-dimensional scanning system including an auxiliary detection device and a scanning device, and the method includes:
  • the detection auxiliary device Acquire a unified coordinate system established for the detection auxiliary device; wherein, the detection auxiliary device is at least two;
  • the tracking result, the first scan data and the unified coordinate system are comprehensively calculated to obtain an object surface detection result.
  • the comprehensive calculation of the tracking result, the first scan data and the unified coordinate system to obtain the object surface detection result includes:
  • the tracking result indicates that the number of tracked devices is at least two, based on a preset selection strategy, select the optimal device among all the tracked devices; wherein, the tracked device refers to successfully tracked devices the detection aid of the scanning device;
  • the preset selection strategy includes at least one of the following: a distance-based strategy, a splicing-accuracy-based strategy, and a marker-point quantity-based strategy.
  • the method when the tracking result indicates that the number of tracked devices is at least two, the method further includes:
  • each of the tracked devices obtain a weight value corresponding to each of the tracked devices
  • fusion processing is performed on all the frame scan data to obtain the fused second scan data, and then the object surface detection result is obtained.
  • the comprehensive calculation of the tracking result, the first scan data and the unified coordinate system to obtain the object surface detection result includes:
  • the tracking result indicates that the number of tracked devices is one
  • convert the first scan data to the tracking coordinate system of the tracked device to obtain second scan data
  • convert the second scan data Convert to the unified coordinate system to obtain the object surface detection result
  • acquiring the tracking result of the detection auxiliary device tracking the scanning device includes:
  • the detection auxiliary device is a binocular tracking device
  • the obtaining a unified coordinate system established for the detection auxiliary device includes:
  • the detection device establishes the unified coordinate system; or, a unified coordinate system is established for each detection auxiliary device based on the positioning device.
  • the establishing a unified coordinate system for each detection auxiliary device based on the positioning device includes:
  • a first position of a positioning identifier is tracked, a second position of the detection aid device is tracked according to the first position, and the unified coordinate system is established according to the second position; wherein, the The positioning identifier is set on the detection auxiliary device and used to cooperate with the positioning device.
  • an embodiment of the present application provides a method for detecting surface data of an object, the method comprising:
  • the detection auxiliary device is at least two;
  • the scanning device Acquire the first scan data of the surface of the object scanned by the scanning device respectively, and the tracking result of the detection auxiliary device simultaneously tracking the scanning device; wherein, the number of the scanning devices is at least two, and all the first scans The data are all corresponding to the scanning device;
  • the tracking result, the first scan data obtained by at least two scanning devices, and the unified coordinate system are comprehensively calculated to obtain the object surface data detection result.
  • acquiring the tracking result of the detection auxiliary device while tracking the scanning device includes:
  • the scanning device is tracked by the configured detection auxiliary device to obtain the tracking result.
  • the comprehensive calculation of the tracking result, the first scan data obtained by at least two of the scanning devices, and the unified coordinate system, to obtain the object surface data detection result includes:
  • the detection auxiliary device is matched with the differentiated first scan data, and based on the matching result, the object surface data detection result is obtained in combination with the unified coordinate system.
  • an embodiment of the present application provides an object surface data detection system, the system includes: a scanning device, an auxiliary detection device, and a control device;
  • the control device acquires a unified coordinate system established for the detection auxiliary equipment; wherein, the detection auxiliary equipment is at least two;
  • the control device respectively acquires first scan data of the surface of the object scanned by the scanning device, and a tracking result of the detection auxiliary device tracking the scanning device;
  • the control device comprehensively calculates the tracking result, the first scan data and the unified coordinate system to obtain the object surface data detection result.
  • control device includes a first server and a second server;
  • the first server is connected to the detection auxiliary device respectively, and is used for tracking the scanning device in real time through the detection auxiliary device to obtain the tracking result;
  • the second server is respectively connected to the first server through a network, and is used to obtain the first scan data and the tracking result respectively, and then obtain the object surface data detection result.
  • an embodiment of the present application provides an object surface data detection system, wherein the system includes: a scanning device, an auxiliary detection device, and a control device;
  • the control device acquires a unified coordinate system established for the detection auxiliary equipment; wherein, the detection auxiliary equipment is at least two;
  • the control device separately obtains the first scan data of the surface of the object scanned by the scanning device, and the detection auxiliary device simultaneously tracks the tracking result of the scanning device; wherein, the number of the scanning devices is at least two, and all of the scanning devices are at least two.
  • the first scanning data are all corresponding to the scanning device;
  • the control device comprehensively calculates the tracking result, the first scan data obtained by at least two of the scanning devices, and the unified coordinate system to obtain the object surface data detection result.
  • the scanning device and/or the detection auxiliary device are arranged on a movable device; wherein the movable device is configured to move according to a preconfigured path.
  • the object surface data detection system further includes a wearable device; wherein, the wearable device is connected to at least two of the scanning devices; or, there are at least two wearable devices, each of which is The wearable device is connected to the scanning device.
  • an embodiment of the present application provides an electronic device, including a memory, a processor, and a computer program stored on the memory and executable on the processor, when the processor executes the computer program Implement the object surface data detection method described in the first aspect and the second aspect.
  • an embodiment of the present application provides a storage medium on which a computer program is stored, and when the program is executed by a processor, implements the object surface data detection methods described in the first and second aspects above.
  • the object surface data detection method, system, electronic device, and storage medium are applied to a three-dimensional scanning system including a detection auxiliary device and a scanning device.
  • FIG. 1 is a flowchart of a method for detecting surface data of an object according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an object surface data detection architecture according to an embodiment of the present application.
  • FIG. 3 is a flowchart of another object surface data detection method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another object surface data detection architecture according to an embodiment of the present application.
  • FIG. 5 is a structural block diagram of an object surface data detection system according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an application scenario of an object surface data detection system according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an application scenario of another object surface data detection system according to an embodiment of the present application.
  • FIG. 8 is an internal structural diagram of a computer device according to an embodiment of the present application.
  • Words like "connected,” “connected,” “coupled,” and the like referred to in this application are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect.
  • the “plurality” referred to in this application means greater than or equal to two.
  • “And/or” describes the association relationship between associated objects, indicating that there can be three kinds of relationships. For example, “A and/or B” can mean that A exists alone, A and B exist at the same time, and B exists alone.
  • the terms “first”, “second”, “third”, etc. involved in this application are only to distinguish similar objects, and do not represent a specific order for the objects.
  • FIG. 1 is a flowchart of a method for detecting surface data of an object according to an embodiment of the present application. , as shown in Figure 1, the process includes the following steps:
  • Step S110 Acquire a unified coordinate system established for detection auxiliary devices; wherein, the detection auxiliary devices are at least two.
  • each auxiliary detection device is used to provide positioning for the scanning device, and the auxiliary detection device can be a binocular.
  • Each detection auxiliary device and the scanning device may be integrated devices, for example, a tracking scanner is used, and then each tracking head installed on the tracking scanner is the detection auxiliary device.
  • the above unified coordinate system can be established by the calibration process before the object surface data is detected; the unified coordinate system refers to a coordinate system that unifies the tracking coordinate systems of all detection auxiliary devices.
  • Step S120 Obtain first scan data of the surface of the object scanned by the scanning device, and a tracking result of the auxiliary detection device tracking the scanning device, respectively.
  • Wireless connection and communication between the detection auxiliary devices and between the detection auxiliary devices and the scanning device may be performed through a network, or a wired connection may also be performed through USB or the like.
  • the scanning device scans the surface of the object to obtain first scan data, and all the above-mentioned detection auxiliary devices are used to track the position of the scanning device.
  • the layout of each auxiliary detection device is related to the shape and size of the object to be measured. The principle of this layout is to ensure that each auxiliary detection device can track the object when the scanning device scans the object to be measured.
  • the position of the scanning device it can be understood that all detection auxiliary devices have overlapping tracking fields of view between each pair.
  • the above-mentioned scanning device can be applied to a wearable device, which is convenient for users to carry.
  • Step S130 Comprehensively calculate the tracking result, the first scan data and the unified coordinate system to obtain an object surface detection result.
  • the above-mentioned tracking result refers to the tracking situation of each auxiliary detection device for the scanning device.
  • the location information, the tracking result indicates that the detection auxiliary device has tracked the scanning device.
  • the above-mentioned first scan data can be converted into a tracking coordinate system that tracks and locates the detection auxiliary device of the scanning device, so as to obtain the second scan data of the detection auxiliary device.
  • the detection auxiliary device can obtain the position information of the scanning device during the tracking process; for example, infrared reflective marking points for the detection auxiliary device identification can be installed on the scanning device, and a plurality of detection auxiliary devices pass through the scanning device.
  • the current position of the scanning device can be obtained in real time by tracking the reflective marking points of the scanning device, and the position of each auxiliary detection device can be obtained in advance, then the current position of the scanning device and the position of the auxiliary detection device can be obtained.
  • Second scan data The positional relationship between the scanning device and each detection auxiliary device, and based on the positional relationship, the first scan data coordinates of the scanning device are converted into the tracking coordinate system of each detection auxiliary device, and the first scanning coordinate system under each tracking coordinate system is obtained.
  • Second scan data may be frame data at the current moment.
  • each second scan data can be processed by fusion or the like, or the optimal second scan data can be evaluated and selected according to the comprehensive error of all the second scan data, Finally, the processed or screened second scan data is converted into the above-mentioned unified coordinate system to obtain the object surface data detection result.
  • scanning and object surface data detection are usually performed only for a single tracking device, resulting in limited scanning range and scanning accuracy, and it is impossible to accurately scan a large-scale measured object or scene; while in the embodiment of the present application, the above steps S110 to S110 to Step S130, by establishing a unified coordinate system for each detection auxiliary device, and obtaining the first scan data in the to-be-scanned area through the scanning device, and tracking the scanning device in real time through the detection auxiliary device, and then converting the first scan data Under the unified coordinate system, the detection results of the object surface data are obtained, so that the high-efficiency and high-precision object surface data detection is realized through the cascade of a single scanning device and multiple tracking devices, which effectively improves the scanning process of the object surface data detection process.
  • the accuracy of the data and the efficiency of detecting the surface of the object are improved, and the problems of low efficiency and low accuracy of the object surface data detection are solved.
  • step S130 further includes the following steps:
  • Step S132 In the case that the tracking result indicates that the number of tracked devices is at least two, based on a preset selection strategy, select the optimal device among all the tracked devices; The detection aid of the scanning device.
  • the detection auxiliary device that has been tracked to the scanning device is regarded as a tracked device. Detect optimal equipment among auxiliary equipment.
  • the preset selection strategy includes at least one of the following: a distance-based strategy, a splicing-accuracy-based strategy, and a marker-point quantity-based strategy.
  • the preset selection strategy can be based on a distance strategy. Since the closer the device is in binocular measurement, the higher the accuracy, so when multiple detection auxiliary devices observe and track the scanning device, the closest device to the scanning device can be selected.
  • the detection auxiliary device is the optimal device; alternatively, the preset selection strategy can also be based on the splicing accuracy strategy, each detection auxiliary device will splicing the marking points on the scanning device when tracking the scanning device, and obtain a splicing accuracy , the higher the stitching accuracy, the better the effect.
  • the detection auxiliary equipment with the highest stitching accuracy can be selected as the optimal equipment; or, the preset selection strategy can also be a strategy based on the number of marker points. The greater the number of markers on the scanned device, the better the theoretical stability and effect. Therefore, the detection auxiliary device with the largest number of markers can be selected as the optimal device; or, since each tracked device is a binocular Therefore, the binocular tracking device can also be split to obtain a monocular camera, and two possible monocular cameras can be combined for 3D reconstruction, tracking and positioning, and the two combined monocular cameras with the highest accuracy can be obtained as the optimal device.
  • Step S134 Convert the first scan data to the tracking coordinate system of the optimal device to obtain the second scan data, and convert the second scan data to the unified coordinate system to obtain the object surface detection result.
  • the first scan data of the optimal device is obtained, so as to perform coordinate transformation on the first scan data of the optimal device subsequently.
  • the first scan data of the above-mentioned scanning device can only be converted into the tracking coordinate system of the optimal device to obtain the second scan data, that is, the optimal device is used as the detection auxiliary device currently used for tracking the scanning device, so as to obtain the second scan data.
  • the optimal device can also be obtained after the first scan data is converted to the tracking coordinate system of all detection auxiliary devices. Finally, based on the transformation relationship between the optimal device and the unified coordinate system, all the optimal second scan data are converted into the unified coordinate system to obtain the object surface detection under the unified coordinate system. test results.
  • the optimal device among the detection auxiliary devices is selected through a preset selection strategy, and the first scan data of the optimal device is used as the optimal scan data, and the optimal device is selected as the optimal device.
  • the coordinate transformation of the first scan data of the optimized device avoids redundant scan data and large errors caused by cascading multiple detection auxiliary devices, thereby further improving the efficiency and accuracy of object surface data detection.
  • the object surface data detection method when the tracking result indicates that the data of the tracked device is at least two, the object surface data detection method further includes the following steps:
  • Step S122 Assign a weight value to each tracked device according to the positioning accuracy of each tracked device; wherein the positioning accuracy refers to the accuracy of the tracked device in tracking and positioning the scanning device.
  • each tracked device can be assigned a corresponding weight value according to the positioning accuracy of each tracked device.
  • the positioning accuracy refers to the accuracy of the tracking data obtained when each tracked device tracks and locates the scanning device; the positioning accuracy of the tracked device can be based on the tracking of the scanning device in the tracked device. The location and other information within the field of view are determined.
  • the above weight value may be determined according to the position of the scanning device within the tracking field of view of the tracked device, that is, the weight value assigned to the tracked device that detects that the scanning device is located in the edge region of the tracking field of view is relatively low , and the weight value of the tracked device that detects that the scanning position is located in the central area is relatively high.
  • the weight value can also be determined according to the number of markers on the scanning device tracked by each tracked device, the brightness quality of the marker, and the angle quality of the marker. Since the more markers, the better the stability and accuracy of the tracked device will be.
  • the binocular tracking device can also be split to obtain a monocular camera, and two possible monocular cameras can be combined to perform 3D reconstruction, tracking and positioning. The distance between the two monocular cameras can be used as the judgment basis. Theoretically, the combined monocular camera has higher accuracy, so the weight value can be determined according to the distance.
  • Step S124 Convert the first scan data to the tracking coordinate system of each tracked device, and acquire frame scan data corresponding to the tracked device.
  • the first scan data acquired by the scanning device may be converted into respective tracking coordinate systems of all tracked devices.
  • the above-mentioned frame scan data refers to the scan data of the current frame in the tracking coordinate system; because whether all the auxiliary detection devices can track the tracking results of the scanning device is obtained in real time, and each auxiliary detection device is in the scanning process.
  • the tracking status of the scanning device will change at any time, so based on the above tracking results, only the frame scanning data of the tracked device of the current frame can be obtained for splicing and fusion, so as to avoid the currently determined tracking status of the tracked device.
  • the result of object surface data detection is wrong.
  • Step S126 Based on the weight value, perform fusion processing on all the frame scan data to obtain the fused second scan data, and then obtain the object surface detection result.
  • the weight value corresponding to each detection auxiliary device can be obtained through the above-mentioned step S122, and each weight value is used to perform weighted average processing on the frame scan data of each detection auxiliary device, as shown in formula 1:
  • Date1 represents the first scan data
  • W 0 , W 1 , ..., W n represent each detection auxiliary device, that is, the weight value corresponding to the detection auxiliary device 0 to the detection auxiliary device n
  • F 0 , F 1 , ......, F n represents the frame scan data corresponding to the detection auxiliary device 0 to the detection auxiliary device n
  • n is a positive integer. Based on the weighted calculation of the above formula 1, the scan data of each frame can be finally merged to obtain the second scan data.
  • a weight value is determined for each tracked device, and based on the weight value, an algorithm such as weighted average is used to track all tracked devices.
  • the scanning data in the coordinate system is fused, which realizes the data fusion method that can average the error, and effectively improves the accuracy of object surface data detection.
  • the above step S130 further includes the following step: in the case that the tracking result indicates that the number of tracked devices is one, converting the first scan data into the tracking coordinate system of the tracked device to obtain the first scan data One scan data.
  • the only auxiliary detection device can be selected as the tracked device, and the first scan data of the scanning device can be converted to the tracking device of the tracked device. coordinate system, so that the second scan data in the tracking coordinate system can be subsequently converted into a unified coordinate system, and finally the object surface data detection result can be obtained. Therefore, the coordinate transformation is performed based on the above-mentioned only tracked device, which avoids redundant calculation caused by data processing of all detection auxiliary devices, and effectively improves the efficiency of the object surface data detection method.
  • obtaining the tracking result of the detection auxiliary device tracking the scanning device further includes the following step: when the tracking result indicates that the number of tracked devices is zero, and each of the detection auxiliary devices has at most one When the monocular camera tracks the scanning device, each of the monocular cameras is combined to obtain the tracking result again.
  • the above-mentioned detection auxiliary devices are all binocular camera devices, and there is a situation in which at least one of the two cameras on all binocular camera devices does not capture the scanning device during the tracking and positioning process.
  • Each binocular camera is split to obtain a monocular camera, and all the monocular cameras are combined in pairs, and the combined monocular camera is used for three-dimensional reconstruction, tracking and positioning of the scanning device.
  • the above combination method may be: in the process of establishing a unified coordinate system in the above step S102, all the detection auxiliary devices are calibrated, and the position information of each detection auxiliary device is obtained, then it can be based on For the position information, two monocular cameras with a short distance are selected from all the monocular cameras in turn to perform a pairwise combination. Since the field of view of the binocular camera is smaller than the field of view of the monocular camera, the above method of splitting the binocular tracking device and combining the monocular camera can avoid the blind area of the field of view caused by the too small tracking field of the binocular camera and then the scanning device can be tracked. When the location fails, the fault tolerance rate of the object surface data detection method is effectively improved.
  • the processing scheme has increased the diversified functions of object surface data detection.
  • the above step S110 further includes the following steps: establishing a unified coordinate system for each of the detection aids based on the background calibration points of the known three-dimensional data; or, selecting a detection aid from all the detection aids
  • the device is used as a unified detection device, and the unified coordinate system is established based on the unified detection device; or a unified coordinate system is established for each detection auxiliary device based on the positioning device.
  • the above-mentioned background calibration points may be measured by photogrammetry equipment, laser trackers or other high-precision equipment for global positioning.
  • a unified coordinate system is established based on the background calibration points, and there is no need to calibrate the conversion relationship between each detection auxiliary equipment. All the tracking data obtained from the detection auxiliary equipment are fused into the unified coordinate system established based on the background calibration points, and during the scanning process Detection aids can move dynamically to track background calibration points in real time.
  • the background calibration point can be attached to the object, or a tool can be installed around the object, and a symbol used for marking, such as a marking point on the tool, can be used as an identifier.
  • the first coordinates of these background calibration points can be obtained by photographing with the above-mentioned photogrammetry equipment; meanwhile, the above-mentioned background calibration points can also be used as marking points for each detection auxiliary device.
  • each detection auxiliary device can track the background calibration point in real time to obtain the second coordinate under the tracking coordinate system, and then calculate the transformation relationship from each tracking coordinate system to the unified coordinate system based on the first coordinate and the second coordinate, Finally, a unified coordinate system is established.
  • the background calibration point is obtained by using the photogrammetry device as the positioning device, and a unified coordinate system is established based on the background calibration point, so that the tracking coordinate system of multiple detection auxiliary devices can be realized through the same type of marker points.
  • the coordinates of the unified coordinate system are uniformly transformed, and the above-mentioned similar background calibration points can be deployed on-site in combination with the actual situation, which makes the deployment of the object surface data detection system easier and faster, and also reduces the cost of use.
  • a unified detection device is selected from all the auxiliary detection devices, and the unified coordinate system is established based on the unified detection device.
  • the above unified detection device can be randomly selected from various detection auxiliary devices, and the tracking coordinate system of the unified detection device is used as the unified coordinate system, so that the first tracking coordinate system of other auxiliary detection devices is the first All scanned data can be converted into the unified coordinate system, which simplifies the steps of unified coordinate transformation, reduces the amount of calculation for establishing a unified coordinate system, and is beneficial to improve the efficiency of object surface data detection.
  • the transformation relationship between each detection auxiliary device and the positioning device can be obtained according to the first identifier and the second identifier on the calibration object, and then based on the transformation relationship establishing the unified coordinate system; wherein, the first identifier is used with the positioning device, and the second identifier is used with the detection auxiliary equipment.
  • the above-mentioned positioning device is used to provide positioning for the detection auxiliary device, and the positioning device may be a binocular camera, an Optical Tracking System (OTS for short), a laser tracker, or other devices used for global positioning. equipment.
  • the above-mentioned first identifier and second identifier are used to represent symbols of different attributes used for marking, that is, the positioning device tracks the position of the first identifier, and each detection auxiliary device tracks the position of the second identifier.
  • the above-mentioned calibration object may be, for example, a calibration plate such as a Charuco board, or the calibration object may also be other objects and scenes with marked points. Taking the calibration object as a rigid calibration plate as an example, the positional relationship of the two types of markers on the rigid calibration plate can be measured in advance by the global photogrammetry equipment, that is, the first identifier and the second identifier can be photographed by the photogrammetry equipment.
  • the rigid calibration plate is processed according to the positional relationship between the predetermined first identifier and the second identifier.
  • the transformation relationship between each detection auxiliary device and the positioning device can be obtained, and a unified coordinate system can be established based on the transformation relationship, and finally the first scan data in the tracking coordinate system can be transformed uniformly Under the global coordinate system, that is, at this time, the global coordinate system of the positioning device is used as the unified coordinate system for coordinate unification of all the first scan data.
  • the positional relationship between the first identifier and the second identifier can be obtained by photographing with photogrammetry equipment or other equipment, or the positional relationship can also be guaranteed by methods such as machining. Since the installation positions of the first identifier and the second identifier are different, according to the positional relationship, the position of the first coordinate of the first identifier in the global coordinate system can be converted into a position of the first identifier and the second identifier The position of the second coordinate in the tracking coordinate system is the same as the position; alternatively, the position of the second coordinate can be converted to the same position as the first coordinate according to the position relationship, so as to unify the position of the second coordinate. the location of the first and second coordinates. Wherein, after the first coordinate and the second coordinate are converted into a unified position, the constraint relationship between the first coordinate and the second coordinate can be determined by the conversion relationship between the respective different coordinate systems, and the constraint relationship can be determined by formula 2 express:
  • the transformation relationship between each detection auxiliary device and the positioning device can be obtained by obtaining the two types of identifiers on the calibration object, which is beneficial to improve the accuracy and efficiency of establishing a unified coordinate system, so that based on the unified coordinate system
  • the relationship can efficiently and accurately realize the unified transformation of coordinates between multiple detection auxiliary devices, and then detect the surface data of the object, thereby further improving the accuracy and efficiency of the scanned data in the process of detecting the surface data of the object.
  • step S110 further includes the following steps:
  • the first position of the positioning identifier is tracked, the second position of the detection auxiliary device is tracked according to the first position, and the unified coordinate system is established according to the second position; wherein, the positioning identifier is set On the detection auxiliary device, it is used to cooperate with the positioning device.
  • a plurality of positioning identifiers can be installed on each detection auxiliary device, and the coordinates of the positioning identifier, that is, the first position, can be tracked through the positioning device; then the positioning device can track the setting based on the first position.
  • the second position of the auxiliary device is detected with the positioning identifier to establish a unified coordinate system.
  • the above-mentioned positioning identifier can be a laser target ball.
  • the deployment component for establishing a unified coordinate system in the object surface data detection method can be simplified, thereby being more suitable for setting the detection auxiliary device
  • the solution on the mobile device effectively improves the convenience of the object surface data detection method.
  • FIG. 2 is a schematic diagram of an object surface data detection architecture according to an embodiment of the present application.
  • the wearable device adopts Airgo, Airgo is connected to the scanning device and the second server respectively, and the second server is connected to the first server and the third server respectively; wherein, the first server is connected to the detection auxiliary device 1 and the detection auxiliary device 2 respectively, and the third server is respectively connected Connect the detection auxiliary device 3 and the detection auxiliary device 4.
  • the second server can use the coordinate system information of each detection auxiliary device received by the first server and the third server, and establish a unified coordinate system; then during the scanning process, the first server respectively receives to the tracking results of the scanning device by the detection auxiliary device 1 and the detection auxiliary device 2, and send each tracking result to the second server; similarly, the second server receives the detection auxiliary device 3 sent by the third server. , the tracking result corresponding to the detection auxiliary equipment 4; the second server receives the first scanning data of the scanning equipment through Airgo, and based on the above-mentioned tracking results, converts the first scanning data to the tracking coordinate system of each detection auxiliary equipment. , obtain the first scan data, convert the first scan data to the unified coordinate system, obtain the second scan data, and finally obtain the object surface data detection result.
  • FIG. 3 is a flowchart of another method for detecting surface data of an object according to an embodiment of the present application. As shown in FIG. 3 , the process includes the following steps:
  • Step S310 Acquire a unified coordinate system established for the detection auxiliary device; wherein, there are at least two detection auxiliary devices.
  • Step S320 respectively acquire the first scan data of the surface of the object scanned by the scanning device, and the tracking result that the detection auxiliary device simultaneously tracks the scanning device; wherein, the number of the scanning devices is at least two, and all the first scanning data are the same as The scanning device corresponds.
  • Wireless connection and communication can be performed between each auxiliary detection device, between each scanning device, and between each auxiliary detection device and each scanning device through a network, or a wired connection can also be performed through USB or the like.
  • the embodiments of the present application may be applied to a practical scenario in which multiple scanning devices are used. Specifically, each of the above-mentioned scanning devices can simultaneously scan the object to be detected or the scene to be detected in the area to be scanned; and all detection auxiliary devices work simultaneously to track each scanning device.
  • each auxiliary detection device can be set to be related to the shape or size of the object to be measured, and all scanning devices can divide the area to be scanned; The location of the scanning device and the field of view detected and tracked are different, so the tracking results of each detection auxiliary device for each scanning device are also different.
  • Step S330 Comprehensively calculate the tracking result, the first scan data obtained by at least two scanning devices, and the unified coordinate system to obtain the object surface data detection result.
  • the tracking results of each auxiliary detection device for each scanning device may be different.
  • auxiliary detection device 1 tracks and locates scanning device 3
  • auxiliary detection device 2 tracks and locates scanning device 1 and scanning device 2;
  • the processing of the tracking results of the above-mentioned detection auxiliary devices is to convert the first scan data of the scanning device to which each detection auxiliary device is located into the corresponding tracking coordinate system to obtain the second scan data, and finally all the first scan data are obtained.
  • the unified coordinates of the second scan data are converted into a unified coordinate system to obtain the detection result of the object surface data.
  • auxiliary equipment By using multiple detection auxiliary devices to track multiple scanning devices at the same time, and then uniformly process the first scan data of all scanning devices, so as to realize the detection based on multiple scanning devices and multiple scanning devices.
  • the object surface data detection application of auxiliary equipment further expands the area to be scanned, and expands the trackable field of view of the detection auxiliary equipment, effectively improving the detection accuracy of object surface data.
  • the above-mentioned obtaining the tracking result of the detection auxiliary device while tracking the scanning device further includes the following steps:
  • Step S322 Obtain the scanning area allocated by each of the scanning devices, and then obtain the auxiliary detection devices configured by each of the scanning devices, wherein the number of auxiliary detection devices configured by each of the scanning devices depends on the allocated number of detection auxiliary devices. Scan area.
  • the scanning device includes a scanning device 1 and a scanning device 2 , and the scanning area of the scanning device 1 for scanning the surface of the object is different from that of the scanning device 2 .
  • the detection auxiliary equipment includes detection auxiliary equipment 1 to detection auxiliary equipment 4; all detection auxiliary equipment is divided into two categories and configured to each scanning equipment, that is, scanning equipment 1 is tracked by detection auxiliary equipment 1 and detection auxiliary equipment 2, Scanning device 2 is detected by auxiliary device 3 and detected by auxiliary device 4 .
  • Step S324 Track the scanning device through the configured detection auxiliary device to obtain the tracking result.
  • the detection auxiliary device 1 and the detection auxiliary device 2 only track the position of the scanning device 1, and the detection auxiliary device 3 and the detection auxiliary device 4 only track the position of the scanning device 2. Detect the respective tracking results of auxiliary devices. Then the first scan data scanned by the scanning device 1 will be converted into the tracking coordinate system of the detection auxiliary device 1 or the detection auxiliary device 2, and finally converted to the unified coordinates of the detection auxiliary device 1 to the detection auxiliary device 4. In the same way, the data scanned by the scanning device 2 will be converted into the tracking coordinate system of the detection auxiliary device 3 or the detection auxiliary device 4, and will eventually be converted into the unified coordinate system to realize data fusion.
  • a single scanning device and at least two auxiliary detection devices are formed into a cascade unit, and a single small cascade unit is used to obtain the first tracking coordinate system of each detection auxiliary device.
  • the coordinates of the first scan data obtained by each of the multiple cascade units are finally converted into a unified coordinate system, so that a single cascade unit can realize the fast and accurate processing of the uniform coordinates of the first scan data, effectively improving the The efficiency of the object surface data detection method in the application scenario of multiple scanning devices and multiple detection auxiliary devices is analyzed.
  • step S330 further includes the following steps:
  • Step S332 Using the unique serial numbers corresponding to all the scanning devices, distinguish the first scan data obtained by scanning each of the scanning devices.
  • each scanning device is correspondingly provided with a unique serial number, and based on the unique serial number, each scanning device can be corresponding to all acquired first scanning data, for example, scanning device 1 scans a segment of first scanning data, that is 1.
  • the scanning device 2 scans another segment of the first scan data, that is, data 2.
  • the server receives the above-mentioned data 1 and the above-mentioned data 2 at the same time, and each segment of data received carries its own unique serial number, then the data 1 can be identified. is the first scan data acquired by the scanning device 1 , and data 2 is the first scan data acquired by the scanning device 2 .
  • Step S334 Identify and obtain each scanning device tracked by the detection auxiliary device according to the tracking result.
  • the tracking results of each auxiliary detection device for each scanning device may be different; for example, auxiliary detection device 1 tracks and locates scanning device 2 , and auxiliary detection device 2 tracks and locates scanning device 1 . Then, based on the analysis processing of the tracking results of each detection auxiliary device, the scanning device tracked and located by each detection auxiliary device can be identified.
  • Step S336 According to the identification result, match the detection auxiliary device with the differentiated first scan data, and based on the matching result, combine the unified coordinate system to obtain the object surface data detection result.
  • each detection auxiliary device is corresponding to the identified scanning device.
  • the identification result is that the detection auxiliary device 1 tracks and locates the scanning device 2, and the detection auxiliary device 2 tracks and locates the scanning device 1.
  • the detection auxiliary device 1 corresponds to the scanning device 2
  • the detection auxiliary device 2 corresponds to the scanning device 1 .
  • the first scan data obtained by all the scanning devices can be distinguished, and then the data scanning results of each scanning device can be obtained.
  • the first scanning data obtained by the scanning device 1 is Data 1
  • the scanning device 2 obtains
  • the obtained first scan data is data 2
  • the detection auxiliary device 1 can be matched with the first scan data of the scanning device 2, that is, the data 2
  • the detection auxiliary device 2 can be matched with the data 1 .
  • coordinate transformation is performed on the first scan data matched by each detection auxiliary device, and finally transformed into a unified coordinate system to obtain the object surface data detection result.
  • each auxiliary detection device is matched with the first scan data based on the unique serial number corresponding to the scanning device, so as to obtain the detection result of the object surface data, and realize the first detection result obtained for multiple scanning devices.
  • the quick and accurate distinction of the scanned data further improves the efficiency and accuracy of the object surface data detection method.
  • a small cascading unit is formed between the detection auxiliary equipment 2, and a small cascading unit is formed between the scanning equipment 2, the detection auxiliary equipment 3, and the detection auxiliary equipment 4.
  • the first scan data of each detection auxiliary device is acquired through the above steps S202 to S204; what has been described will not be repeated.
  • FIG. 4 is a schematic diagram of another object surface data detection architecture according to an embodiment of the present application.
  • the wearable device adopts Airgo1 and Airgo2; Airgo1 is connected to scanning device 1 and the first server respectively, and this first server is connected to detection auxiliary device 1, detection auxiliary device 2, and the second server respectively; Airgo2 is connected to scanning device 2 and the third server respectively, and The third server is respectively connected to the detection auxiliary device 3 , the detection auxiliary device 4 , and the second server.
  • the second server can receive the coordinate system information of each detection auxiliary device through the first server and the third server, and establish a unified coordinate system; then during the scanning process, the first server respectively receives Detect the tracking results of the scanning device by the auxiliary device 1 and the auxiliary device 2, and send each tracking result to the second server; similarly, the second server receives the detection auxiliary device 3, sent by the third server.
  • the tracking result corresponding to the auxiliary device 4 is detected; and the second server also receives the first scan data of the scanning device 1 through the first server, and receives the first scan data of the scanning device 2 through the third server.
  • the second server converts the first scan data to the tracking coordinate system of each detection auxiliary device to obtain second scan data, and converts the second scan data to the unified coordinate system, and finally Obtain the detection result of object surface data.
  • FIG. 5 is a structural block diagram of an object surface data detection system according to an embodiment of the present application. As shown in FIG. 5 , the system includes: a scanning device 52, Auxiliary equipment 56 and control device 54 are detected.
  • the control device 54 obtains a unified coordinate system established for the detection auxiliary device 56; wherein, the detection auxiliary device 56 is at least two; the control device 54 respectively obtains the first scan data of the scanning device 52 to scan the surface of the object, and The detection auxiliary device 56 tracks the tracking result of the scanning device 52; the control device 54 comprehensively calculates the tracking result, the first scan data obtained by at least two scanning devices, and the unified coordinate system to obtain object surface data detection result.
  • control device 54 establishes a unified coordinate system for each detection auxiliary device, obtains the first scan data in the to-be-scanned area through the scanning device 52, and tracks the scanning device in real time through the detection auxiliary device 56, and then The first scan data is converted into a unified coordinate system to obtain the object surface data detection result, so that the high-efficiency and high-precision object surface data detection is realized through the cascade of a single scanning device and multiple tracking devices, which effectively improves the object surface data.
  • the accuracy of the scanned data in the detection process improves the efficiency of detecting the surface of the object, and solves the problem of low accuracy of the object surface data detection.
  • the control device 54 includes a first server and a second server; the first server is connected to the detection auxiliary device 56 respectively, and is used to track the scanning device 52 in real time through the detection auxiliary device 56 to obtain the tracking result; the second server is respectively connected to the scanning device and the first server through the network, and is used to obtain the first scanning data and the tracking result respectively, and then obtain the detection result of the surface data of the object; wherein, the first The two servers can also connect to the scanning device 52 by connecting a wearable device.
  • This embodiment also provides an object surface data detection system, which includes: a scanning device 52 , a detection auxiliary device 56 and a control device 54 .
  • the control device 54 obtains a unified coordinate system established for the detection auxiliary device 56; wherein, the detection auxiliary device 56 is at least two; the control device 54 respectively obtains the first scan data of the scanning device 52 to scan the surface of the object, and The detection auxiliary device 56 simultaneously tracks the tracking results of the scanning device 52; wherein, there are at least two scanning devices 52, and all the first scan data are corresponding to the scanning device 52; the control device 54 comprehensively calculates the The tracking result, the first scan data obtained by at least two of the scanning devices 52, and the unified coordinate system are used to obtain the object surface data detection result.
  • the first scanning data of all scanning devices 52 is processed uniformly, thereby realizing the detection based on multiple scanning devices 52 and multiple detection devices 52.
  • the object surface data detection application of the detection auxiliary device 56 further expands the area to be scanned and the trackable field of view of the detection auxiliary device 56, thereby effectively improving the detection accuracy of object surface data.
  • the scanning device 52 and/or the detection aid 56 are provided on a movable device; wherein the movable device is configured to move according to a preconfigured path. It should be noted that, one or more of the scanning devices 52 may be set on the movable device; similarly, there may also be one or more of the detection auxiliary devices 56 set on the movable device.
  • FIG. 6 is a schematic diagram of an application scenario of an object surface data detection system according to an embodiment of the present application, as shown in FIG.
  • the positioning device 66 tracks and locates the position of the corresponding detection auxiliary device 56 through each first identifier 62 , and based on the position of each detection auxiliary device 56 ,
  • the tracking coordinate system is converted to the global coordinate system of the positioning device 66, thereby determining a unified coordinate system; then during the scanning process, the scanning device 52 obtains the first scan data, and each detection auxiliary device 56 passes the second identifier.
  • 65 Track and locate the position of the scanning device 52, convert the first scan data to the respective tracking coordinate system based on the position of the scanning device 52, and finally convert to the unified coordinate system to realize the coordinates of all the first scan data Unite.
  • a background calibration point is set in the to-be-scanned area, and the second identifier is set on the scanning device 52 .
  • 7 is a schematic diagram of an application scenario of another object surface data detection system according to an embodiment of the present application.
  • application scenario 2 two AGV trolleys are placed, and two AGV trolleys are installed on the left AGV trolley 61
  • a mechanical part 64 is fixedly installed on the right AGV trolley 63
  • a single scanning device 52 is installed on the mechanical part 64
  • the scanning device 52 is provided with a second identifier 65.
  • Application scene 2 is also distributed with a plurality of background calibration points 71.
  • the background calibration points 71 can be photographed in advance by equipment such as global photogrammetry to determine the coordinates; at this time, the background calibration points 71 can be used to determine a unified coordinate system.
  • each auxiliary detection device 56 and scanning device 52 can be moved arbitrarily during the scanning process, thereby realizing More flexible and simple object surface data detection method, and based on mobile devices to achieve a wider range of scanning.
  • the object surface data detection system further includes a wearable device; wherein, the wearable device is connected to at least two of the scanning devices 52 ; or, there are at least two wearable devices, and each wearable device The device is connected to the scanning device 52 .
  • One of the connection methods of each scanning device 52 applied to the wearable device can be referred to FIG. 4 .
  • a wearable device to which the scanning device 52 can be applied is added to the object surface data detection system, which is convenient for the user to carry, improves the convenience of object surface data detection, and further expands the scanning range.
  • FIG. 8 is an internal structural diagram of a computer device according to an embodiment of the present application, as shown in FIG. 8 .
  • the computer device includes a processor, memory, a network interface, and a database connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium, an internal memory.
  • the nonvolatile storage medium stores an operating system, a computer program, and a database.
  • the internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium.
  • the computer device's database is used to store the unified coordinate system.
  • the network interface of the computer device is used to communicate with an external terminal through a network connection. When the computer program is executed by the processor, a method for detecting surface data of an object is realized.
  • FIG. 8 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied. Include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
  • This embodiment also provides an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to execute the steps in any of the above method embodiments.
  • the above-mentioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • the above-mentioned processor may be configured to execute the following steps through a computer program:
  • S1 Acquire a unified coordinate system established for the detection auxiliary device; wherein, there are at least two detection auxiliary devices.
  • S2 Acquire the first scan data of the surface of the object scanned by the scanning device, and the tracking result of the auxiliary detection device tracking the scanning device, respectively.
  • the embodiment of the present application may provide a storage medium for implementation.
  • a computer program is stored on the storage medium; when the computer program is executed by the processor, any one of the object surface data detection methods in the foregoing embodiments is implemented.
  • Nonvolatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in various forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Road (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Road (Synchlink) DRAM
  • SLDRAM synchronous chain Road (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Abstract

一种物体表面数据侦测方法,应用于包括侦测辅助设备(56)和扫描设备(52)的三维扫描系统中,包括:获取针对侦测辅助设备(56)建立的统一坐标系;其中,侦测辅助设备(56)为至少两个;分别获取扫描设备(52)扫描物体表面的第一扫描数据,以及侦测辅助设备(56)跟踪扫描设备(52)的跟踪结果;综合计算跟踪结果、第一扫描数据以及统一坐标系,得到物体表面数据侦测结果。还公开了一种物体表面数据侦测系统,电子装置和存储介质。

Description

物体表面数据侦测方法、系统、电子装置和存储介质
相关申请
本申请要求2021年2月5日申请的,申请号为202110170149.4,发明名称为“物体表面数据侦测方法、系统、电子装置和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及视觉测量技术领域,特别是涉及物体表面数据侦测方法、系统、电子装置和存储介质。
背景技术
物体表面数据的侦测技术在零部件尺寸及位置测量、机器人导引、工业设计、瑕疵检测、逆向工程等领域都有广泛的应用,主要是对物体空间外形和结构及色彩进行扫描,以获得物体表面的空间坐标。在相关技术中,通常使用跟踪式扫描仪进行侦测物体表面数据,跟踪式扫描仪包括跟踪设备和扫描设备,跟踪设备用于定位扫描仪的位置,扫描设备用于进行物体表面数据侦测,因此扫描范围只是局限于跟踪设备可跟踪到的视野范围内,遇到更大的被测物体时无法扫描,扫描效率低下,且扫描精度也会受跟踪设备的限制,导致物体表面数据侦测的准确性较低。
目前针对相关技术中物体表面数据侦测的效率较低且准确性低的问题,尚未提出有效的解决方案。
发明内容
本申请实施例提供了一种物体表面数据侦测方法、系统、电子装置和存储介质,以至少解决相关技术中物体表面数据侦测的准确性低的问题。
第一方面,本申请实施例提供了一种物体表面数据侦测方法,应用于包括侦测辅助设备和扫描设备的三维扫描系统中,所述方法包括:
获取针对所述侦测辅助设备建立的统一坐标系;其中,所述侦测辅助设备为至少两个;
分别获取所述扫描设备扫描物体表面的第一扫描数据,以及所述侦测辅助设备跟踪所述扫描设备的跟踪结果;
综合计算所述跟踪结果、所述第一扫描数据以及所述统一坐标系,得到物体表面侦测结果。
在一个实施例中,所述综合计算所述跟踪结果、所述第一扫描数据以及所述统一坐标系,得到物体表面侦测结果包括:
在所述跟踪结果指示已跟踪设备的数量为至少两个的情况下,基于预设选取策略,选取所有所述已跟踪设备中的最优设备;其中,所述已跟踪设备是指成功跟踪到所述扫描设备的所述侦测辅助设备;
将所述第一扫描数据转换到所述最优设备的跟踪坐标系下得到第二扫描数据,并将所述第二扫描数据转换到所述统一坐标系下,得到所述物体表面侦测结果。
在一个实施例中,所述预设选取策略包括以下至少之一:基于距离策略、基于拼接精度策略、基于标记点数量策略。
在一个实施例中,所述在所述跟踪结果指示已跟踪设备的数量为至少两个的情况下,所述方法还包括:
根据每个所述已跟踪设备的定位精度和定位状态,获取与每个所述已跟踪设备对应的权重值;
将所述第一扫描数据转换到每个所述已跟踪设备的跟踪坐标系下,获取所述已跟踪设备对应的帧扫描数据;
基于所述权重值,对所有所述帧扫描数据进行融合处理,得到融合后的所述第二扫描数据,进而得到所述物体表面侦测结果。
在一个实施例中,所述综合计算所述跟踪结果、所述第一扫描数据以及所述统一坐标系,得到物体表面侦测结果包括:
在所述跟踪结果指示已跟踪设备的数量为一个的情况下,将所述第一扫描数据转换到所述已跟踪设备的跟踪坐标系下得到第二扫描数据,并将所述第二扫描数据转换到所述统一坐标系下,得到所述物体表面侦测结果。
在一个实施例中获取所述侦测辅助设备跟踪所述扫描设备的跟踪结果包括:
在所述跟踪结果指示已跟踪设备的数量为零,且所述侦测辅助设备为双目跟踪设备的情况下,将所述双目跟踪拆分后得到的单目相机进行组合,进而利用所述单目相机重新获取所述跟踪结果。
在一个实施例中,所述获取针对所述侦测辅助设备建立的统一坐标系包括:
基于已知三维数据的背景标定点为每个所述侦测辅助设备建立统一坐标系;或者,从所有所述侦测辅助设备选取一个侦测辅助设备作为统一侦测设备,并基于所述统一侦测设备建立所述统一坐标系;或者,基于定位设备为所述每个侦测辅助设备建立统一坐标系。
在一个实施例中,所述基于定位设备为所述每个侦测辅助设备建立统一坐标系包括:
基于所述定位设备,跟踪定位标识符的第一位置,根据所述第一位置跟踪所述侦测辅助设备的第二位置,并根据所述第二位置建立所述统一坐标系;其中,所述定位标识符,设置在所述侦测辅助设备上,用于配合所述定位设备使用。
第二方面,本申请实施例提供了一种物体表面数据侦测方法,所述方法包括:
获取针对侦测辅助设备建立的统一坐标系;其中,所述侦测辅助设备为至少两个;
分别获取扫描设备扫描物体表面的第一扫描数据,以及所述侦测辅助设备同时跟踪所述扫描设备的所述跟踪结果;其中,所述扫描设备为至少两个,且所有所述第一扫描数据均和所述扫描设备相对应;
综合计算所述跟踪结果、至少两个所述扫描设备获得的第一扫描数据、以及所述统一坐标系,得到物体表面数据侦测结果。
在一个实施例中,获取所述侦测辅助设备同时跟踪所述扫描设备的跟踪结果包括:
获取每个所述扫描设备分配的扫描区域,进而获取每个所述扫描设备配置到的侦测辅助设备,其中,每个所述扫描设备所配置的侦测辅助设备的数量取决于所分配的扫描区域;
通过所述配置的侦测辅助设备跟踪扫描设备,得到所述跟踪结果。
在一个实施例中,所述综合计算所述跟踪结果、至少两个所述扫描设备获得的第一扫描数据、以及所述统一坐标系,得到物体表面数据侦测结果包括:
利用所有所述扫描设备对应的唯一序列号,对每个所述扫描设备扫描获得的所述第一扫描数据进行区分;
根据所述跟踪结果,识别得到每个所述侦测辅助设备跟踪到的扫描设备;
根据识别的结果,将所述侦测辅助设备与区分后的所述第一扫描数据相匹配,并基于匹配的结果,结合所述统一坐标系得到所述物体表面数据侦测结果。
第三方面,本申请实施例提供了一种物体表面数据侦测系统,所述系统包括:扫描设备、侦测辅助设备和控制装置;
所述控制装置获取针对侦测辅助设备建立的统一坐标系;其中,所述侦测辅助设备为至少两个;
所述控制装置分别获取所述扫描设备扫描物体表面的第一扫描数据,以及所述侦测辅助设备跟踪所述扫描设备的跟踪结果;
所述控制装置综合计算所述跟踪结果、所述第一扫描数据以及所述统一坐标系,得到物体表面数据侦测结果。
在一个实施例中,所述控制装置包括第一服务器和第二服务器;
所述第一服务器,分别连接所述侦测辅助设备,用于通过所述侦测辅助设备实时跟踪所述扫描设备,得到所述跟踪结果;
所述第二服务器,通过网络分别连接所述第一服务器,用于分别获取所述第一扫描数据、所述跟踪结果,进而得到所述物体表面数据侦测结果。
第四方面,本申请实施例提供了一种物体表面数据侦测系统,其特征在于,所述系统包括:扫描设备、侦测辅助设备和控制装置;
所述控制装置获取针对所述侦测辅助设备建立的统一坐标系;其中,所述侦测辅助设备为至少两个;
所述控制装置分别获取所述扫描设备扫描物体表面的第一扫描数据,以及所述侦测辅助设备同时跟踪所述扫描设备的跟踪结果;其中,所述扫描设备为至少两个,且所有所述第一扫描数据均和所述扫描设备相对应;
所述控制装置综合计算所述跟踪结果、至少两个所述扫描设备获得的第一扫描数据、以及所述统一坐标系,得到物体表面数据侦测结果。
在一个实施例中,所述扫描设备和/或所述侦测辅助设备设置于可移动设备上;其中,所述可移动设备用于按照预先配置路径移动。
在一个实施例中,所述物体表面数据侦测系统还包括可穿戴设备;其中,所述可穿戴设备连接至少两个所述扫描设备;或者,所述可穿戴设备有至少两个,每个所述可穿戴设备连接所述扫描设备。
第五方面,本申请实施例提供了一种电子装置,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述第一方面和第二方面所述的物体表面数据侦测方法。
第六方面,本申请实施例提供了一种存储介质,其上存储有计算机程序,该程序被处 理器执行时实现如上述第一方面和第二方面所述的物体表面数据侦测方法。
相比于相关技术,本申请实施例提供的物体表面数据侦测方法、系统、电子装置和存储介质,应用于包括侦测辅助设备和扫描设备的三维扫描系统中,通过获取针对该侦测辅助设备建立的统一坐标系;其中,该侦测辅助设备为至少两个;分别获取该扫描设备扫描物体表面的第一扫描数据,以及该侦测辅助设备跟踪该扫描设备的跟踪结果;综合计算该跟踪结果、该第一扫描数据以及该统一坐标系,得到物体表面数据侦测结果,提高了侦测物体表面的效率,解决了物体表面数据侦测的准确性低的问题,实现了高效率高精度的物体表面数据侦测。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请实施例的一种物体表面数据侦测方法的流程图;
图2是根据本申请实施例的一种物体表面数据侦测架构的示意图;
图3是根据本申请实施例的另一种物体表面数据侦测方法的流程图;
图4是根据本申请实施例的另一种物体表面数据侦测架构的示意图;
图5是根据本申请实施例的一种物体表面数据侦测系统的结构框图;
图6是根据本申请实施例的一种物体表面数据侦测系统的应用场景的示意图;
图7是根据本申请实施例的另一种物体表面数据侦测系统的应用场景的示意图;
图8是根据本申请实施例的一种计算机设备内部的结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行描述和说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。基于本申请提供的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,还可以理解的是,虽然这种开发过程中所作出的努力可能是复杂并且冗长的,然而对于与本申请公开的内容相关的本领域的普通技术人员而言,在本申请揭露的技术内容的基础上进行的一些设计,制造或者生产等变更只是常规的技术手段,不应当理解为本申请公开的内容不充分。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域普通技术人员显式地和隐式地理解的是,本申请所描述的实施例在不冲突的情况下,可以与其它实施例相结合。
除非另作定义,本申请所涉及的技术术语或者科学术语应当为本申请所属技术领域内具有一般技能的人士所理解的通常意义。本申请所涉及的“一”、“一个”、“一种”、“该”等类似词语并不表示数量限制,可表示单数或复数。本申请所涉及的术语“包括”、“包含”、“具有”以及它们任何变形,意图在于覆盖不排他的包含;例如包含了一系列步骤或模块(单元)的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可以还 包括没有列出的步骤或单元,或可以还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。本申请所涉及的“连接”、“相连”、“耦接”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电气的连接,不管是直接的还是间接的。本申请所涉及的“多个”是指大于或者等于两个。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本申请所涉及的术语“第一”、“第二”、“第三”等仅仅是区别类似的对象,不代表针对对象的特定排序。
本实施例提供了一种物体表面数据侦测方法,应用于包括侦测辅助设备和扫描设备的三维扫描系统中,图1是根据本申请实施例的一种物体表面数据侦测方法的流程图,如图1所示,该流程包括如下步骤:
步骤S110:获取针对侦测辅助设备建立的统一坐标系;其中,该侦测辅助设备为至少两个。
需要说明的是,上述至少两个侦测辅助设备进行级联并且被应用在物体表面数据侦测方法中,各侦测辅助设备用于为扫描设备提供定位,该侦测辅助设备可以是双目相机、跟踪器或其他用于跟踪定位的设备;该定位设备用于给侦测辅助设备提供定位。各侦测辅助设备和该扫描设备可以为一体式设备,例如采用跟踪式扫描仪,则此时该跟踪式扫描仪上安装的各跟踪头即为侦测辅助设备。其中,上述统一坐标系可以由物体表面数据侦测前的标定过程建立;该统一坐标系,是指将所有侦测辅助设备的跟踪坐标系进行统一的坐标系。
步骤S120:分别获取该扫描设备扫描物体表面的第一扫描数据,以及该侦测辅助设备跟踪该扫描设备的跟踪结果。
各侦测辅助设备之间、以及各侦测辅助设备和扫描设备之间可以通过网络进行无线连接并通信,或者也可以通过USB等进行有线连接。具体地,在进行扫描的过程中,该扫描设备对物体表面进行扫描得到第一扫描数据,并且上述所有侦测辅助设备均用于跟踪扫描设备的位置。其中,各侦测辅助设备的布局方式与被测物体的形状、尺寸等相关,该布局方式的遵循原则是,当该扫描设备扫描被测物体时,确保每个侦测辅助设备都能跟踪到扫描设备的位置,可以理解的是,所有侦测辅助设备两两之间均有重叠的跟踪视野。上述扫描设备可以应用在可穿戴设备上,便于使用者携带。
步骤S130:综合计算该跟踪结果、该第一扫描数据以及该统一坐标系,得到物体表面侦测结果。
其中,上述跟踪结果是指各侦测辅助设备针对扫描设备的跟踪情况,例如,依次判断各侦测辅助设备是否定位到该扫描设备的位置信息,若判断检测到某个侦测辅助设备获取到该位置信息,则该跟踪结果指示该侦测辅助设备跟踪到了该扫描设备。
根据该跟踪结果,可以将上述第一扫描数据转换到跟踪定位了该扫描设备的侦测辅助设备的跟踪坐标系下,进而获取得到该侦测辅助设备的第二扫描数据。具体地,该侦测辅助设备可以在跟踪过程中获取到该扫描设备的位置信息;例如,可以在扫描设备上安装有用于侦测辅助设备识别的红外反光标记点,多个侦测辅助设备通过追踪扫描设备的反光标记点实时获取到扫描设备的当前位置,且各侦测辅助设备的自身位置可以预先获取,则通过该扫描设备的当前位置,以及该侦测辅助设备的自身位置能够得到该扫描设备和各侦测辅助设备之间的位置关系,并基于该位置关系将该扫描设备的第一扫描数据坐标转换到各 侦测辅助设备的跟踪坐标系下,得到各跟踪坐标系下的第二扫描数据。需要说明的是,该第二扫描数据可以是当前时刻的帧数据。
在获取到各侦测辅助设备的第二扫描数据后,可以对各第二扫描数据进行融合等处理,或者是根据所有第二扫描数据的综合误差来评定并选择最优的第二扫描数据,最后将处理或筛选后的第二扫描数据转换到上述统一坐标系下,得到物体表面数据侦测结果。
在相关技术中,通常只针对单个跟踪设备进行扫描和物体表面数据侦测,导致扫描范围和扫描精度受限制,无法精确扫描大型的被测物体或场景;而本申请实施例通过上述步骤S110至步骤S130,通过针对每个侦测辅助设备建立统一坐标系,以及通过扫描设备得到该待扫描区域内的第一扫描数据,并通过侦测辅助设备实时跟踪扫描设备,进而将第一扫描数据转换到统一坐标系下,得到物体表面数据侦测结果,从而通过单个扫描设备和多个跟踪设备的级联实现了高效率高精度物体表面数据侦测,有效提高了物体表面数据侦测过程中扫描数据的精度,以及提高了侦测物体表面的效率,解决了物体表面数据侦测的效率较低且准确性低的问题。
在一个实施例中,上述步骤S130还包括如下步骤:
步骤S132:在该跟踪结果指示已跟踪设备的数量为至少两个的情况下,基于预设选取策略,选取所有该已跟踪设备中的最优设备;其中,该已跟踪设备是指成功跟踪到该扫描设备的该侦测辅助设备。
具体地,在跟踪结果指示多个侦测辅助设备同时跟踪定位到扫描设备时,将这个跟踪到扫描设备的侦测辅助设备视为已跟踪设备,此时可以基于预设选取策略,选取所有该侦测辅助设备中的最优设备。
其中,预设选取策略包括以下至少之一:基于距离策略、基于拼接精度策略、基于标记点数量策略。例如,该预设选取策略可以为基于距离策略,由于在双目测量中设备距离越近精度越高,所以在多个侦测辅助设备观测跟踪到扫描设备时可以选择与该扫描设备距离最近的侦测辅助设备为最优设备;或者,该预设选取策略也可以为基于拼接精度策略,各侦测辅助设备在跟踪扫描设备时会将扫描设备上的标记点进行拼接,并得到一个拼接精度,拼接精度越高则效果越好,因此可以选择拼接精度最高的侦测辅助设备为最优设备;或者,该预设选取策略还可以为基于标记点数量策略,由于各侦测辅助设备中跟踪到的扫描设备上的标记点数量越多,则理论稳定性和效果会越好,因此可以选取标记点数量最多的侦测辅助设备为最优设备;或者,由于各已跟踪设备均为双目跟踪设备,因此也可以拆分双目跟踪设备得到单目相机,组合可能的两个单目相机进行三维重建跟踪定位,得到精度最高的两个组合的单目相机作为最优设备。
步骤S134:将该第一扫描数据转换到该最优设备的跟踪坐标系下得到该第二扫描数据,并将该第二扫描数据转换到该统一坐标系下,得到该物体表面侦测结果。
其中,选取到所有侦测辅助设备中的最优设备后,得到该最优设备的第一扫描数据,以便后续针对该最优设备的第一扫描数据进行坐标转换。具体的,可以将上述扫描设备的第一扫描数据仅转换到该最优设备的跟踪坐标系下得到第二扫描数据,即将该最优设备作为当前用于跟踪扫描设备的侦测辅助设备,以确保在扫描过程中能够始终选取到精度最高的侦测辅助设备进行数据侦测;或者,也可以在该第一扫描数据转换到所有侦测辅助设备的跟踪坐标系下之后,获取该最优设备的第二扫描数据,最后基于该最优设备对应的与统 一坐标系之间的变换关系,将所有最优的第二扫描数据都转换到统一坐标系下,得到统一坐标系下的物体表面侦测结果。
通过上述步骤S132至步骤S134,基于跟踪结果,通过预设选取策略选取到侦测辅助设备中的最优设备,并将该最优设备的第一扫描数据作为最优扫描数据,并对该最优设备的第一扫描数据进行坐标转换,避免了多侦测辅助设备级联时造成的扫描数据冗余且误差大,从而进一步提高了物体表面数据侦测的效率和准确性。
在一个实施例中,在跟踪结果指示已跟踪设备的数据为至少两个的情况下,该物体表面数据侦测方法还包括如下步骤:
步骤S122:根据每个该已跟踪设备的定位精度,为每个该已跟踪设备分配权重值;其中,该定位精度是指该已跟踪设备对该扫描设备进行跟踪定位的精度。
具体地,当跟踪结果指示有多个侦测辅助设备同时跟踪定位到扫描设备时,可以根据各已跟踪设备的定位精度,为每个已跟踪设备分配相应的权重值。需要说明的是,该定位精度是指各已跟踪设备对该扫描设备进行跟踪定位时获取到的跟踪数据的精度;该已跟踪设备的定位精度,可以基于上述扫描设备在该已跟踪设备的跟踪视野范围内的位置等信息确定。
例如,上述权重值可以根据该扫描设备在该已跟踪设备的跟踪视野范围内的位置确定,即检测到该扫描设备位于该跟踪视野范围的边缘区域的已跟踪设备所分配的权重值相对较低,而检测到该扫描位置位于中心区域的已跟踪设备的权重值相对较高。或者,也可以根据各已跟踪设备跟踪到的扫描设备上的标记点数量、标记点亮度质量以及标记点角度质量确定权重值,由于标记点数量越多已跟踪设备的稳定性和精度会越好,且在标记点亮度合适和角度合适情况下,标记点识别的精度会越好,因此可以设置标记点数量多、标记点亮度和角度适宜的已跟踪设备的权重值相对较高。或者,也可以拆分双目跟踪设备得到单目相机,组合可能的两个单目相机进行三维重建跟踪定位,其中可以基于两个单目相机之间的距离作为判断依据,由于距离越大则理论上组合的单目相机精度越高,因此可以根据距离确定该权重值。
步骤S124:将该第一扫描数据转换到每个该已跟踪设备的跟踪坐标系下,获取该已跟踪设备对应的帧扫描数据。
其中,在当前确定到上述已跟踪设备后,可以将扫描设备获取到的第一扫描数据各自转换到所有已跟踪设备各自的跟踪坐标系下。需要说明的是,上述帧扫描数据是指跟踪坐标系下当前帧的扫描数据;由于所有侦测辅助设备是否可以跟踪到扫描设备的跟踪结果是实时获取的,且各侦测辅助设备在扫描过程中针对扫描设备的跟踪状态时随时会发生变化的,因此可以基于上述跟踪结果,仅获取到当前帧的已跟踪设备的帧扫描数据进行拼接、融合,从而避免当前确定的已跟踪设备跟踪状态突变导致物体表面数据侦测结果出错。
步骤S126:基于该权重值,对所有该帧扫描数据进行融合处理,得到融合后的该第二扫描数据,进而得到该物体表面侦测结果。
具体地,通过上述步骤S122可以获取到每个侦测辅助设备对应的权重值,则利用各权重值,对各侦测辅助设备的帧扫描数据进行加权平均等处理,如公式1所示:
Figure PCTCN2021081584-appb-000001
其中,Date1表示第一扫描数据;W 0、W 1、……、W n表示各侦测辅助设备,即侦测辅助设备0至侦测辅助设备n对应的权重值;F 0、F 1、……、F n表示侦测辅助设备0至侦测辅助设备n对应的帧扫描数据;n为正整数。基于上述公式1的加权计算,最终可以融合各帧扫描数据得到第二扫描数据。
通过上述步骤S122至步骤S126,在有多个已跟踪设备跟踪定位到扫描设备时,针对每个已跟踪设备确定权重值,从而基于该权重值,利用加权平均等算法对所有已跟踪设备的跟踪坐标系下的扫描数据进行融合处理,实现了能够平均误差的数据融合方式,有效提高了物体表面数据侦测的准确性。
在一个实施例中,上述步骤S130还包括如下步骤:在该跟踪结果指示已跟踪设备的数量为一个的情况下,将该第一扫描数据转换到该已跟踪设备的跟踪坐标系下得到该第一扫描数据。
其中,若当前仅有一个侦测辅助设备跟踪定位到扫描设备,则可以选择这一唯一侦测辅助设备作为该已跟踪设备,并将扫描设备的第一扫描数据转换到该已跟踪设备的跟踪坐标系下,以便后续将该跟踪坐标系下的第二扫描数据转换到统一坐标系下,最终得到物体表面数据侦测结果。从而基于上述唯一的已跟踪设备进行坐标转换,避免了对所有侦测辅助设备进行数据处理而产生的冗余计算,有效提高了物体表面数据侦测方法的效率。
在一个实施例中,上述获取该侦测辅助设备跟踪该扫描设备的跟踪结果还包括如下步骤:在该跟踪结果指示已跟踪设备的数量为零,且每个该侦测辅助设备中有至多一个单目相机跟踪到该扫描设备的情况下则将每个该单目相机进行组合,重新获取该跟踪结果。
具体地,上述侦测辅助设备均为双目相机设备,且存在在跟踪定位过程中所有双目相机设备上的两台相机中均至少有一台相机未拍摄到扫描设备的情况,则此时可以对各双目相机进行拆分,得到单目相机,并对所有单目相机两两之间进行组合,通过组合后的单目相机进行三维重建跟踪定位扫描设备。需要说明的是,上述组合的方法可以为:在执行上述步骤S102建立统一坐标系的过程中对所有侦测辅助设备进行了标定,并获取到了每个侦测辅助设备的位置信息,则可以依据该位置信息,从所有单目相机中依次选择距离较近的两个单目相机进行两两组合。由于双目相机的视野小于单目相机的视野,因此通过上述拆分双目跟踪设备并对单目相机进行组合的方式,能够避免双目相机跟踪视野过小导致存在视野盲区进而对扫描设备跟踪定位失败的情况发生,有效提高了物体表面数据侦测方法的容错率。
通过上述实施例,扩展了已跟踪设备数量为一个或零个的情况,并且针对不同情况相应提供了不同的物体表面数据侦测方法,使得侦测辅助设备在不同跟踪情况下能够自适应执行对应的处理方案,增加了物体表面数据侦测的多样化功能。
在一个实施例中,上述步骤S110还包括如下步骤:基于已知三维数据的背景标定点为每个该侦测辅助设备建立统一坐标系;或者,从所有该侦测辅助设备选取一个侦测辅助设备作为统一侦测设备,并基于该统一侦测设备建立该统一坐标系;或者,基于定位设备为该每个侦测辅助设备建立统一坐标系。
具体地,以基于背景标定点建立统一坐标系为例,上述背景标定点可以是通过摄影测量设备、激光跟踪仪或者其他高精度的用于全局定位的设备测量得到。基于背景标定点建立统一坐标系,无需标定各个侦测辅助设备之间的转换关系,所有跟侦测辅助设备得到的跟踪数据都融合到基于背景标定点建立的统一坐标系中,并且扫描过程中侦测辅助设备可动态移动以实时跟踪背景标定点。
其中,该背景标定点可以贴在物体上面,也可以在物体周围安装上工装,以在工装上贴标记点等用作标记的符号作为标识符。当背景标定点布置完成后,用上述摄影测量设备等设备可以拍摄得到这些背景标定点的第一坐标;同时,上述背景标定点也可以用作各侦测辅助设备的标记点。则每个侦测辅助设备可以实时跟踪背景标定点得到跟踪坐标系下的第二坐标,进而基于该第一坐标和该第二坐标计算得到从各跟踪坐标系转换到统一坐标系的变换关系,最终建立统一坐标系。通过上述实施例,通过将摄影测量设备作为定位设备获取背景标定点,并基于该背景标定点建立统一坐标系,从而通过同一类的标记点即可实现多个侦测辅助设备的跟踪坐标系到统一坐标系的坐标统一转换,且上述同类的背景标定点可以结合实际情况进行现场部署,使得物体表面数据侦测系统部署更加简便、快速,同时也降低了使用成本。
或者,以基于统一侦测设备建立统一坐标系为例,从所有该侦测辅助设备选取一个统一侦测设备,并基于该统一侦测设备建立该统一坐标系。其中,上述统一侦测设备可以从各侦测辅助设备中随意筛选得到,并将该统一侦测设备的跟踪坐标系作为统一坐标系,使得其他侦测辅助设备各自的跟踪坐标系下的第一扫描数据均能够转换到该统一坐标系下,从而简化了坐标统一转换的步骤,减少了建立统一坐标系的计算量,有利于提高物体表面数据侦测的效率。
或者,以基于定位设备建立统一坐标系为例,可以根据标定物上的第一标识符和第二标识符,获取每个侦测辅助设备和定位设备之间的变换关系,进而基于该变换关系建立该统一坐标系;其中,该第一标识符配合该定位设备使用,该第二标识符配合该侦测辅助设备使用。需要说明的是,上述定位设备用于给侦测辅助设备提供定位,该定位设备可以是双目相机、光学追踪系统(Optical Tracking System,简称为OTS)、激光跟踪仪或其他用于全局定位的设备。
其中,上述第一标识符和第二标识符用于表示用于标记的不同属性的符号,即定位设备追踪第一标识符的位置,且每个侦测辅助设备均各自追踪第二标识符的位置。上述标定物可以是例如Charuco板等标定板,或者,该标定物也可以是其他带有标记点的物体及场景。以该标定物是刚性标定板为例,该刚性标定板上两类标记点的位置关系可以预先由全局的摄影测量设备测量得到,即通过摄影测量设备可以拍摄出第一标识符和第二标识符的位置,进而得到该第一标识符和该第二标识符之间的位置关系;或者也可以通过机械加工保证上述位置关系,即在制作刚性标定板的时候,加工人员就会按照预先设定的第一标识符和第二标识符之间的位置关系把该刚性标定板加工出来。通过上述两类标记点的位置关系,可以得到各侦测辅助设备和定位设备之间的变换关系,并基于该变换关系建立统一坐标系,最终可以将跟踪坐标系下的第一扫描数据统一转换到该全局坐标系下,也就是说,此时是将该定位设备的全局坐标系作为上述统一坐标系,以供上述所有第一扫描数据进行坐标统一。
例如,通过摄影测量设备或其他设备可以拍摄得到第一标识符和第二标识符之间的位置关系,或者也可以通过机械加工等方法保证该位置关系。由于该第一标识符和该第二标识符的安装位置不同,因此,可以根据该位置关系,将该第一标识符在全局坐标系下的第一坐标的位置,转换到与该第二标识符在跟踪坐标系下的第二坐标所处位置相同的位置点;或者,也可以根据该位置关系,将该第二坐标的位置转换到与该第一坐标的位置相同的位置点,以便统一该第一坐标和第二坐标的位置。其中,在将第一坐标和第二坐标转换到统一位置下之后,第一坐标和第二坐标之间的约束关系可以通过各自不同坐标系之间的转换关系确定,该约束关系可以通过公式2表示:
a=R×b+T          公式2
其中,表示在全局坐标系下的第一坐标的点集,b表示转换到同一位置的在跟踪坐标系下的第二坐标的点集,R表示三维的旋转(Rotation)矩阵,T表示一维的平移(Translation)向量。已知两个点集a和b之间存在上述公式1所示的约束关系,再通过奇异值分解等算法就可以计算得到变换关系RT,并基于该变换关系RT建立统一坐标系。
通过上述实施例,通过根据标定物上的两类标识符获取得到每个侦测辅助设备和定位设备之间的变换关系,有利于提高建立统一坐标系的准确性和效率,以便基于统一坐标系关系能够高效、精确地实现多个侦测辅助设备之间的坐标统一转换,进而侦测物体表面数据,从而进一步提高了物体表面数据侦测过程中扫描数据的精度和效率。
在一个实施例中,上述步骤S110还包括如下步骤:
基于该定位设备,跟踪定位标识符的第一位置,根据该第一位置跟踪该侦测辅助设备的第二位置,并根据该第二位置建立该统一坐标系;其中,该定位标识符,设置在该侦测辅助设备上,用于配合该定位设备使用。
具体地,可以将多个定位标识符分别安装在各侦测辅助设备上,通过上述定位设备跟踪该定位标识符的坐标,即第一位置;则该定位设备基于该第一位置可以跟踪到设置有该定位标识符的侦测辅助设备的第二位置以建立统一坐标系。其中,上述定位标识符可以采用激光靶球。通过上述实施例,通过在该侦测辅助设备上设置的定位标识符建立统一坐标系,可以简化物体表面数据侦测方法中建立统一坐标系的部署组件,从而更加适用于将侦测辅助设备设置在可移动设备上的方案,有效提高了物体表面数据侦测方法的便捷性。
下面结合实际应用场景对本申请的实施例进行详细说明,图2是根据本申请实施例的一种物体表面数据侦测架构的示意图,如图2所示,该架构中,可穿戴设备采用Airgo,Airgo分别连接扫描设备和第二服务器,且该第二服务器分别连接第一服务器和第三服务器;其中,该第一服务器分别连接侦测辅助设备1和侦测辅助设备2,该第三服务器分别连接侦测辅助设备3和侦测辅助设备4。在实际应用中,该第二服务器可以通过该第一服务器和第三服务器接收到的各侦测辅助设备的坐标系信息,并建立统一坐标系;然后在扫描过程中,该第一服务器分别接收到侦测辅助设备1、侦测辅助设备2对扫描设备的跟踪结果,并将各跟踪结果发送给该第二服务器;类似的,该第二服务器接收到第三服务器发送的侦测辅助设备3、侦测辅助设备4对应的跟踪结果;该第二服务器通过Airgo接收到扫描设备的第一扫描数据,基于上述跟踪结果,将该第一扫描数据转换到各侦测辅助设备的跟踪坐标系下,得到第一扫描数据,并将该第一扫描数据转换到该统一坐标系下,得到第二扫描数据,最终得到物体表面数据侦测结果。
本实施例还提供了一种物体表面数据侦测方法,图3是根据本申请实施例的另一种物体表面数据侦测方法的流程图,如图3所示,该流程包括如下步骤:
步骤S310:获取针对侦测辅助设备建立的统一坐标系;其中,该侦测辅助设备为至少两个。
步骤S320:分别获取扫描设备扫描物体表面的第一扫描数据,以及该侦测辅助设备同时跟踪该扫描设备的跟踪结果;其中,该扫描设备为至少两个,且所有该第一扫描数据均和该扫描设备相对应。
各侦测辅助设备之间、各扫描设备之间、以及各侦测辅助设备和各扫描设备之间可以通过网络进行无线连接并通信,或者也可以通过USB等进行有线连接。其中,本申请实施例可以应用于使用多个扫描设备的实际场景下。具体地,上述每个扫描设备均可以同时对待扫描区域内的被测物体或被测场景进行扫描;且所有侦测辅助设备同时工作以跟踪各扫描设备。可以理解的是,各侦测辅助设备的布局方式可以设置为与被测物体的形状或尺寸相关,所有扫描设备可以划分该待扫描区域;并且,由于各侦测辅助设备之间在部署现场所处的位置、以及所侦测跟踪的视野均不相同,因此每个侦测辅助设备针对各扫描设备的跟踪结果也不相同。
步骤S330:综合计算该跟踪结果、至少两个该扫描设备获得的第一扫描数据、以及该统一坐标系,得到物体表面数据侦测结果。
其中,每个侦测辅助设备针对各扫描设备的跟踪结果可能不同,例如,侦测辅助设备1跟踪定位到扫描设备3,侦测辅助设备2跟踪定位到扫描设备1和扫描设备2;通过对上述各侦测辅助设备的跟踪结果的处理,将每个侦测辅助设备所定位到的扫描设备的第一扫描数据转换到相对应的跟踪坐标系下,得到第二扫描数据,最终将所有第二扫描数据统一坐标转换到统一坐标系下,得到物体表面数据侦测结果。
通过上述步骤S310至步骤S330,通过利用多个侦测辅助设备同时跟踪多个扫描设备,进而对所有扫描设备的第一扫描数据进行统一处理,从而实现了基于多个扫描设备和多个侦测辅助设备的物体表面数据侦测应用,进一步扩展了待扫描区域,以及扩展了侦测辅助设备的可跟踪视野,有效提高了物体表面数据侦测精度。
在一个实施例中,上述获取侦测辅助设备同时跟踪扫描设备的跟踪结果还包括如下步骤:
步骤S322:获取每个该扫描设备分配的扫描区域,进而获取每个该扫描设备配置到的侦测辅助设备,其中,每个该扫描设备所配置的侦测辅助设备的数量取决于所分配的扫描区域。
例如,扫描设备包括扫描设备1和扫描设备2,该扫描设备1针对物体表面进行扫描的扫描区域与该扫描2不同。侦测辅助设备包括侦测辅助设备1至侦测辅助设备4;将所有侦测辅助设备分成两类配置给各个扫描设备,即扫描设备1被侦测辅助设备1和侦测辅助设备2跟踪,扫描设备2被侦测辅助设备3和侦测辅助设备4。
步骤S324:通过该配置的侦测辅助设备跟踪扫描设备,得到该跟踪结果。
例如,在执行上述步骤S322后,侦测辅助设备1和侦测辅助设备2仅跟踪扫描设备1的位置,侦测辅助设备3和侦测辅助设备4仅跟踪扫描设备2的位置,最终得到各侦测辅助设备各自的跟踪结果。则此时扫描设备1扫描获得的第一扫描数据会转换至侦测辅助设 备1或侦测辅助设备2的跟踪坐标系中,最终转换至侦测辅助设备1至侦测辅助设备4的统一坐标系下,同理,扫描设备2扫描获得的数据会转换至侦测辅助设备3或侦测辅助设备4的跟踪坐标系中,最终也会转换至该统一坐标系下,实现数据融合。
通过上述步骤S322至步骤S324,将单个扫描设备,与至少两个侦测辅助设备之间构成一个级联单元,通过单个小的级联单元获取到各侦测辅助设备的跟踪坐标系下的第一扫描数据,最终再将多个级联单元各自得到的第一扫描数据坐标转换到统一坐标系下,从而基于单个级联单元实现了针对第一扫描数据统一坐标的快速、准确处理,有效提高了多个扫描设备和多个侦测辅助设备的应用场景下物体表面数据侦测方法的效率。
在一个实施例中,上述步骤S330还包括如下步骤:
步骤S332:利用所有该扫描设备对应的唯一序列号,对每个该扫描设备扫描获得的该第一扫描数据进行区分。
其中,各扫描设备均对应设置有唯一序列号,基于该唯一序列号,可以将各扫描设备与所有获取到的第一扫描数据相对应,例如,扫描设备1扫描到一段第一扫描数据即数据1,扫描设备2扫描到另一段第一扫描数据即数据2,服务器同时接收到上述数据1和上述数据2,且接收的各段数据均携带有各自的唯一序列号,则能够识别出数据1为扫描设备1获取到的第一扫描数据,数据2为扫描设备2获取到的第一扫描数据。
步骤S334:根据该跟踪结果,识别得到每个该侦测辅助设备跟踪到的扫描设备。
其中,每个侦测辅助设备针对各扫描设备的跟踪结果可能不同;例如,侦测辅助设备1跟踪定位到扫描设备2,侦测辅助设备2跟踪定位到扫描设备1。则基于对各侦测辅助设备的跟踪结果的解析处理,可以识别出每个侦测辅助设备所跟踪定位到的扫描设备。
步骤S336:根据识别的结果,将该侦测辅助设备与区分后的该第一扫描数据相匹配,并基于匹配的结果,结合该统一坐标系得到该物体表面数据侦测结果。
其中,得到上述识别结果后,将各侦测辅助设备和识别到扫描设备相对应,例如,识别结果是侦测辅助设备1跟踪定位到扫描设备2,侦测辅助设备2跟踪定位到扫描设备1,则将侦测辅助设备1与扫描设备2相对应,并将侦测辅助设备2与扫描设备1相对应。同时,通过上述步骤S332可以将所有扫描设备获得的第一扫描数据进行区别,进而得到各扫描设备的数据扫描结果,例如,扫描设备1获取到的第一扫描数据为数据1,扫描设备2获取到的第一扫描数据为数据2,则基于上述识别结果可以将侦测辅助设备1与扫描设备2的第一扫描数据,即数据2相匹配,并将侦测辅助设备2与数据1相匹配。匹配完成后,针对各侦测辅助设备所匹配到的第一扫描数据进行坐标转换,最终转换到统一坐标系下得到物体表面数据侦测结果。
通过上述步骤S332至步骤S336,基于扫描设备对应的唯一序列号将各侦测辅助设备与第一扫描数据相匹配,从而得到物体表面数据侦测结果,实现了针对多个扫描设备获取到的第一扫描数据的快速、精确区分,进一步提高了物体表面数据侦测方法的效率和准确性。
可以理解的是,上述步骤S310至步骤S330,以及上述步骤S322至步骤S324中,当然还可以用于实现上述实施例及可选实施方式,例如,在扫描设备1与侦测辅助设备1、侦测辅助设备2之间组成一个小的级联单元,在扫描设备2与侦测辅助设备3、侦测辅助设备4之间组成一个小的级联单元,在各自小的级联单元内,可以通过上述步骤S202至 步骤S204获取到各侦测辅助设备的第一扫描数据;已经进行过说明的不再赘述。
下面结合实际应用场景对本申请的实施例进行详细说明,图4是根据本申请实施例的另一种物体表面数据侦测架构的示意图,如图4所示,该架构中,可穿戴设备采用Airgo1和Airgo2;Airgo1分别连接扫描设备1和第一服务器,且该第一服务器分别连接侦测辅助设备1、侦测辅助设备2、以及第二服务器;Airgo2分别连接扫描设备2和第三服务器,且该第三服务器分别连接侦测辅助设备3、侦测辅助设备4、以及第二服务器。在实际应用中,该第二服务器可以通过该第一服务器和第三服务器接收到各侦测辅助设备的坐标系信息,并建立统一坐标系;然后在扫描过程中,该第一服务器分别接收到侦测辅助设备1、侦测辅助设备2对扫描设备的跟踪结果,并将各跟踪结果发送给该第二服务器;类似的,该第二服务器接收到第三服务器发送的侦测辅助设备3、侦测辅助设备4对应的跟踪结果;并且,该第二服务器还通过该第一服务器接收到扫描设备1的第一扫描数据,以及通过该第三服务器接收到扫描设备2的第一扫描数据。该第二服务器基于上述跟踪结果,将该第一扫描数据转换到各侦测辅助设备的跟踪坐标系下,得到第二扫描数据,并将该第二扫描数据转换到该统一坐标系下,最终得到物体表面数据侦测结果。
需要说明的是,在上述流程中或者附图的流程图中示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本实施例还提供了一种物体表面数据侦测系统,图5是根据本申请实施例的一种物体表面数据侦测系统的结构框图,如图5所示,该系统包括:扫描设备52、侦测辅助设备56和控制装置54。
该控制装置54获取针对侦测辅助设备56建立的统一坐标系;其中,该侦测辅助设备56为至少两个;该控制装置54分别获取该扫描设备52扫描物体表面的第一扫描数据,以及该侦测辅助设备56跟踪该扫描设备52的跟踪结果;该控制装置54综合计算该跟踪结果、至少两个该扫描设备获得的第一扫描数据、以及该统一坐标系,得到物体表面数据侦测结果。
通过上述实施例,控制装置54针对每个侦测辅助设备建立统一坐标系,通过扫描设备52得到该待扫描区域内的第一扫描数据,并通过侦测辅助设备56实时跟踪扫描设备,进而将第一扫描数据转换到统一坐标系下,得到物体表面数据侦测结果,从而通过单个扫描设备和多个跟踪设备的级联实现了高效率高精度物体表面数据侦测,有效提高了物体表面数据侦测过程中扫描数据的精度,以及提高了侦测物体表面的效率,解决了物体表面数据侦测的准确性低的问题。
在一个实施例中,该控制装置54包括第一服务器和第二服务器;该第一服务器,分别连接该侦测辅助设备56,用于通过该侦测辅助设备56实时跟踪该扫描设备52,得到该跟踪结果;该第二服务器,通过网络分别连接该扫描设备、该第一服务器,用于分别获取该第一扫描数据、该跟踪结果,进而得到该物体表面数据侦测结果;其中,该第二服务器还可以通过连接可穿戴设备连接该扫描设备52。
上述各服务器与各设备之间的其中两种连接方式请参阅图2和图4;基于不同的服务器对扫描数据进行坐标转换和融合处理,可以有效减少服务器之间的传输量,提高计算效率;并且,通过连接各侦测辅助设备56的服务器,使得各侦测辅助设备56的可移动范围 扩大,从而扩大了侦测辅助设备56的跟踪区域。
本实施例还提供了一种物体表面数据侦测系统,该系统包括:扫描设备52、侦测辅助设备56和控制装置54。
该控制装置54获取针对侦测辅助设备56建立的统一坐标系;其中,该侦测辅助设备56为至少两个;该控制装置54分别获取该扫描设备52扫描物体表面的第一扫描数据,以及该侦测辅助设备56同时跟踪该扫描设备52的跟踪结果;其中,该扫描设备52为至少两个,且所有该第一扫描数据均和该扫描设备52相对应;该控制装置54综合计算该跟踪结果、至少两个该扫描设备52获得的第一扫描数据、以及该统一坐标系,得到物体表面数据侦测结果。
通过上述实施例,通过利用多个侦测辅助设备56同时跟踪多个扫描设备52,进而对所有扫描设备52的第一扫描数据进行统一处理,从而实现了基于多个扫描设备52和多个侦测辅助设备56的物体表面数据侦测应用,进一步扩展了待扫描区域,以及扩展了侦测辅助设备56的可跟踪视野,有效提高了物体表面数据侦测精度。
在一个实施例中,该扫描设备52和/或该侦测辅助设备56设置于可移动设备上;其中,该可移动设备用于按照预先配置路径移动。需要说明的是,可以有一个或多个该扫描设备52设置在该可移动设备上;类似地,也可以是有一个或多个该侦测辅助设备56设置在该可移动设备上。
其中,该侦测辅助设备56上设置第一标识符,该扫描设备52上设置第二标识符。以上述可移动设备采用自动导向车(Automated Guided Vehicle,简称为AGV)为例,图6是根据本申请实施例的一种物体表面数据侦测系统的应用场景的示意图,如图6所示,应用场景1放置有两辆AGV小车,左侧AGV小车61上安装有两个侦测辅助设备56,且每个侦测辅助设备56上均设置有第一标识符62,右侧AGV小车63上固定安装有机械部64,该机械部64上安装有单个扫描设备52,且该扫描设备52上设置有第二标识符65;该应用场景1还放置有定位设备66。在建立统一坐标系的过程中,该定位设备66通过各第一标识符62跟踪定位对应的侦测辅助设备56的位置,基于各侦测辅助设备56的位置,将各侦测辅助设备56的跟踪坐标系转换到该定位设备66的全局坐标系下,从而确定统一坐标系;然后在扫描过程中,该扫描设备52获取到第一扫描数据,各侦测辅助设备56通过该第二标识符65跟踪定位该扫描设备52的位置,基于该扫描设备52的位置将该第一扫描数据转换到各自的跟踪坐标系下,并最终转换到该统一坐标系下,实现所有第一扫描数据的坐标统一。
或者,该待扫描区域内设置背景标定点,该扫描设备52上设置该第二标识符。图7是根据本申请实施例的另一种物体表面数据侦测系统的应用场景的示意图,如图7所示,应用场景2放置有两辆AGV小车,左侧AGV小车61上安装有两个侦测辅助设备56,右侧AGV小车63上固定安装有机械部64,该机械部64上安装有单个扫描设备52,且该扫描设备52上设置有第二标识符65。应用场景2还分布有多个背景标定点71,该背景标定点71可以预先通过全局摄影测量等设备进行拍摄以确定坐标;则此时可以通过该背景标定点71确定统一坐标系。
通过上述实施例,通过在至少一个可移动设备上分别安装部署各侦测辅助设备56以及扫描设备52,使得在扫描过程中各侦测辅助设备56和扫描设备52均可以任意移动,从 而实现了更加灵活简便的物体表面数据侦测方法,并且基于可移动设备实现了更大范围的扫描。
在一个实施例中,该物体表面数据侦测系统还包括可穿戴设备;其中,该可穿戴设备连接至少两个该扫描设备52;或者,该可穿戴设备有至少两个,每个该可穿戴设备连接该扫描设备52。各扫描设备52应用在可穿戴设备上的其中一个连接方式可以参阅图4。通过上述实施例,在物体表面数据侦测系统中增加可应用扫描设备52的可穿戴设备,从而便于使用者携带,提高了物体表面数据侦测的便捷性,同时也进一步扩展了扫描范围。
本实施例还提供了一种计算机设备,该计算机设备可以是服务器,图8是根据本申请实施例的一种计算机设备内部的结构图,如图8所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储统一坐标系。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种物体表面数据侦测方法。
本领域技术人员可以理解,图8中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
本实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
S1:获取针对该侦测辅助设备建立的统一坐标系;其中,该侦测辅助设备为至少两个。
S2:分别获取该扫描设备扫描物体表面的第一扫描数据,以及该侦测辅助设备跟踪该扫描设备的跟踪结果。
S3:综合计算该跟踪结果、该第一扫描数据以及该统一坐标系,得到物体表面侦测结果。
需要说明的是,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
另外,结合上述实施例中的物体表面数据侦测方法,本申请实施例可提供一种存储介质来实现。该存储介质上存储有计算机程序;该计算机程序被处理器执行时实现上述实施例中的任意一种物体表面数据侦测方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失 性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
本领域的技术人员应该明白,以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种物体表面数据侦测方法,应用于包括侦测辅助设备和扫描设备的三维扫描系统中,其特征在于,所述方法包括:
    获取针对所述侦测辅助设备建立的统一坐标系;其中,所述侦测辅助设备为至少两个;
    分别获取所述扫描设备扫描物体表面的第一扫描数据,以及所述侦测辅助设备跟踪所述扫描设备的跟踪结果;
    综合计算所述跟踪结果、所述第一扫描数据以及所述统一坐标系,得到物体表面侦测结果。
  2. 根据权利要求1所述的物体表面数据侦测方法,其中,所述综合计算所述跟踪结果、所述第一扫描数据以及所述统一坐标系,得到物体表面侦测结果包括:
    在所述跟踪结果指示已跟踪设备的数量为至少两个的情况下,基于预设选取策略,选取所有所述已跟踪设备中的最优设备;其中,所述已跟踪设备是指成功跟踪到所述扫描设备的所述侦测辅助设备;
    将所述第一扫描数据转换到所述最优设备的跟踪坐标系下得到第二扫描数据,并将所述第二扫描数据转换到所述统一坐标系下,得到所述物体表面侦测结果。
  3. 根据权利要求2所述的物体表面数据侦测方法,其中,所述预设选取策略包括以下至少之一:基于距离策略、基于拼接精度策略、基于标记点数量策略。
  4. 根据权利要求2所述的物体表面数据侦测方法,其中,所述在所述跟踪结果指示已跟踪设备的数量为至少两个的情况下,所述方法还包括:
    根据每个所述已跟踪设备的定位精度,为每个所述已跟踪设备分配权重值;其中,所述定位精度是指所述已跟踪设备对所述扫描设备进行跟踪定位的精度;
    将所述第一扫描数据转换到每个所述已跟踪设备的跟踪坐标系下,获取所述已跟踪设备对应的帧扫描数据;
    基于所述权重值,对所有所述帧扫描数据进行融合处理,得到融合后的所述第二扫描数据,进而得到所述物体表面侦测结果。
  5. 根据权利要求1所述的物体表面数据侦测方法,其中,所述综合计算所述跟踪结果、所述第一扫描数据以及所述统一坐标系,得到物体表面侦测结果包括:
    在所述跟踪结果指示已跟踪设备的数量为一个的情况下,将所述第一扫描数据转换到所述已跟踪设备的跟踪坐标系下得到第二扫描数据,并将所述第二扫描数据转换到所述统一坐标系下,得到所述物体表面侦测结果。
  6. 根据权利要求1所述的物体表面数据侦测方法,其中,获取所述侦测辅助设备跟踪所述扫描设备的跟踪结果包括:
    在所述跟踪结果指示已跟踪设备的数量为零,且每个所述侦测辅助设备中有至多一个单目相机跟踪到所述扫描设备的情况下,则将每个所述单目相机进行组合,重新获取所述跟踪结果。
  7. 根据权利要求1至6任一项所述的物体表面数据侦测方法,其中,所述获取针对所述侦测辅助设备建立的统一坐标系包括:
    基于已知三维数据的背景标定点为每个所述侦测辅助设备建立统一坐标系;或者,从 所有所述侦测辅助设备选取一个侦测辅助设备作为统一侦测设备,并基于所述统一侦测设备建立所述统一坐标系;或者,基于定位设备为所述每个侦测辅助设备建立统一坐标系。
  8. 根据权利要求7所述的物体表面数据侦测方法,其中,所述基于定位设备为所述每个侦测辅助设备建立统一坐标系包括:
    基于所述定位设备,跟踪定位标识符的第一位置,根据所述第一位置跟踪所述侦测辅助设备的第二位置,并根据所述第二位置建立所述统一坐标系;其中,所述定位标识符,设置在所述侦测辅助设备上,用于配合所述定位设备使用。
  9. 一种物体表面数据侦测方法,其特征在于,所述方法包括:
    获取针对侦测辅助设备建立的统一坐标系;其中,所述侦测辅助设备为至少两个;
    分别获取扫描设备扫描物体表面的第一扫描数据,以及所述侦测辅助设备同时跟踪所述扫描设备的跟踪结果;其中,所述扫描设备为至少两个,且所有所述第一扫描数据均和所述扫描设备相对应;
    综合计算所述跟踪结果、至少两个所述扫描设备获得的第一扫描数据、以及所述统一坐标系,得到物体表面数据侦测结果。
  10. 根据权利要求9所述的物体表面数据侦测方法,其中,获取所述侦测辅助设备同时跟踪所述扫描设备的跟踪结果包括:
    获取每个所述扫描设备分配的扫描区域,进而获取每个所述扫描设备配置到的侦测辅助设备,其中,每个所述扫描设备所配置的侦测辅助设备的数量取决于所分配的扫描区域;
    通过所述配置的侦测辅助设备跟踪扫描设备,得到所述跟踪结果。
  11. 根据权利要求9或10所述的物体表面数据侦测方法,其中,所述综合计算所述跟踪结果、至少两个所述扫描设备获得的第一扫描数据、以及所述统一坐标系,得到物体表面数据侦测结果包括:
    利用所有所述扫描设备对应的唯一序列号,对每个所述扫描设备扫描获得的所述第一扫描数据进行区分;
    根据所述跟踪结果,识别得到每个所述侦测辅助设备跟踪到的扫描设备;
    根据识别的结果,将所述侦测辅助设备与区分后的所述第一扫描数据相匹配,并基于匹配的结果,结合所述统一坐标系得到所述物体表面数据侦测结果。
  12. 一种物体表面数据侦测系统,其特征在于,所述系统包括:扫描设备、侦测辅助设备和控制装置;
    所述控制装置获取针对侦测辅助设备建立的统一坐标系;其中,所述侦测辅助设备为至少两个;
    所述控制装置分别获取所述扫描设备扫描物体表面的第一扫描数据,以及所述侦测辅助设备跟踪所述扫描设备的跟踪结果;
    所述控制装置综合计算所述跟踪结果、所述第一扫描数据以及所述统一坐标系,得到物体表面侦测结果。
  13. 根据权利要求12所述的物体表面数据侦测系统,其中,所述控制装置包括第一服务器和第二服务器;
    所述第一服务器,分别连接所述侦测辅助设备,用于通过所述侦测辅助设备实时跟踪所述扫描设备,得到所述跟踪结果;
    所述第二服务器,通过网络分别连接所述扫描设备、所述第一服务器,用于分别获取所述第一扫描数据、所述跟踪结果,进而得到所述物体表面数据侦测结果。
  14. 一种物体表面数据侦测系统,其特征在于,所述系统包括:扫描设备、侦测辅助设备和控制装置;
    所述控制装置获取针对所述侦测辅助设备建立的统一坐标系;其中,所述侦测辅助设备为至少两个;
    所述控制装置分别获取所述扫描设备扫描物体表面的第一扫描数据,以及所述侦测辅助设备同时跟踪所述扫描设备的跟踪结果;其中,所述扫描设备为至少两个,且所有所述第一扫描数据均和所述扫描设备相对应;
    所述控制装置综合计算所述跟踪结果、至少两个所述扫描设备获得的第一扫描数据、以及所述统一坐标系,得到物体表面数据侦测结果。
  15. 根据权利要求14所述的物体表面数据侦测系统,其中,所述扫描设备和/或所述侦测辅助设备设置于可移动设备上;其中,所述可移动设备用于按照预先配置路径移动。
  16. 根据权利要求14或15所述的物体表面数据侦测系统,其中,所述物体表面数据侦测系统还包括可穿戴设备;其中,所述可穿戴设备连接至少两个所述扫描设备;或者,所述可穿戴设备有至少两个,每个所述可穿戴设备连接所述扫描设备。
  17. 一种电子装置,包括存储器和处理器,其特征在于,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行权利要求1或9所述的物体表面数据侦测方法。
  18. 一种存储介质,其特征在于,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行权利要求1或9所述的物体表面数据侦测方法。
PCT/CN2021/081584 2021-02-05 2021-03-18 物体表面数据侦测方法、系统、电子装置和存储介质 WO2022165934A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/683,119 US11493326B2 (en) 2021-02-05 2022-02-28 Object surface data detection method and system, electronic apparatus, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110170149.4A CN112802002B (zh) 2021-02-05 2021-02-05 物体表面数据侦测方法、系统、电子装置和存储介质
CN202110170149.4 2021-02-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/683,119 Continuation US11493326B2 (en) 2021-02-05 2022-02-28 Object surface data detection method and system, electronic apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2022165934A1 true WO2022165934A1 (zh) 2022-08-11

Family

ID=75814678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081584 WO2022165934A1 (zh) 2021-02-05 2021-03-18 物体表面数据侦测方法、系统、电子装置和存储介质

Country Status (2)

Country Link
CN (1) CN112802002B (zh)
WO (1) WO2022165934A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116437016A (zh) * 2023-06-13 2023-07-14 武汉中观自动化科技有限公司 物体扫描方法、装置、电子设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115493512B (zh) * 2022-08-10 2023-06-13 思看科技(杭州)股份有限公司 数据处理方法、三维扫描系统、电子装置和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010038705A1 (en) * 1999-03-08 2001-11-08 Orametrix, Inc. Scanning system and calibration method for capturing precise three-dimensional information of objects
CN106846488A (zh) * 2017-01-11 2017-06-13 江苏科技大学 一种基于多立体跟踪器的大型物体三维建模系统及方法
JP2018022247A (ja) * 2016-08-01 2018-02-08 キヤノン株式会社 情報処理装置およびその制御方法
CN108759669A (zh) * 2018-05-31 2018-11-06 武汉中观自动化科技有限公司 一种室内自定位三维扫描方法及系统
CN109000582A (zh) * 2018-03-15 2018-12-14 杭州思看科技有限公司 跟踪式三维扫描装置的扫描方法及系统、存储介质、设备
CN109238168A (zh) * 2018-08-06 2019-01-18 大连理工大学 大尺寸测量件表面三维形状高精度测量方法
CN109410320A (zh) * 2018-09-30 2019-03-01 先临三维科技股份有限公司 三维模型重建方法、装置、计算机设备和存储介质
CN111879235A (zh) * 2020-06-22 2020-11-03 杭州思看科技有限公司 弯管的三维扫描检测方法、三维扫描系统和计算机设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3805568C2 (de) * 1988-02-23 1997-08-28 Lre Technology Partner Gmbh Mit einer Schlitzblende ablesbare Codekarte
TWI444073B (zh) * 2011-10-31 2014-07-01 Univ Nat Central Location and Tracking of Low Complexity Decentralized Message Transmission with Multiple Heterogeneous Data Fusion
EP3134709A4 (en) * 2014-04-22 2018-01-03 BASF (China) Company Ltd. Detector for optically detecting at least one object
CN104050661B (zh) * 2014-05-29 2016-08-31 华中科技大学 面扫描三维测量系统精度的实时调整方法
KR101628283B1 (ko) * 2014-07-09 2016-06-08 (주)쓰리디솔루션 3차원 스캐닝을 활용한 재난 안전 관리 시스템, 서버 및 방법
CN106918300B (zh) * 2017-01-11 2019-04-05 江苏科技大学 一种基于多立体跟踪器的大型物体三维测量数据拼接方法
CN106908822B (zh) * 2017-03-14 2020-06-30 北京京东尚科信息技术有限公司 无人机定位切换方法、装置和无人机
WO2018218538A1 (zh) * 2017-05-31 2018-12-06 深圳市大疆创新科技有限公司 一种激光雷达的扫描控制方法、装置及设备
CN108801142B (zh) * 2018-07-27 2020-10-16 复旦大学 一种特大尺寸工件双移动测量机器人系统及方法
CN109917151B (zh) * 2019-02-01 2021-09-10 山东省科学院海洋仪器仪表研究所 一种基于动态权值分配的船舶相对风融合算法
CN110340886B (zh) * 2019-06-03 2020-10-23 武汉中观自动化科技有限公司 一种双目跟踪实现机器人路点迁移的方法及其系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010038705A1 (en) * 1999-03-08 2001-11-08 Orametrix, Inc. Scanning system and calibration method for capturing precise three-dimensional information of objects
JP2018022247A (ja) * 2016-08-01 2018-02-08 キヤノン株式会社 情報処理装置およびその制御方法
CN106846488A (zh) * 2017-01-11 2017-06-13 江苏科技大学 一种基于多立体跟踪器的大型物体三维建模系统及方法
CN109000582A (zh) * 2018-03-15 2018-12-14 杭州思看科技有限公司 跟踪式三维扫描装置的扫描方法及系统、存储介质、设备
CN108759669A (zh) * 2018-05-31 2018-11-06 武汉中观自动化科技有限公司 一种室内自定位三维扫描方法及系统
CN109238168A (zh) * 2018-08-06 2019-01-18 大连理工大学 大尺寸测量件表面三维形状高精度测量方法
CN109410320A (zh) * 2018-09-30 2019-03-01 先临三维科技股份有限公司 三维模型重建方法、装置、计算机设备和存储介质
CN111879235A (zh) * 2020-06-22 2020-11-03 杭州思看科技有限公司 弯管的三维扫描检测方法、三维扫描系统和计算机设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU XINGLIN: "Study on Large Section Geometric Shape Vision Measurement System", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 1 July 2006 (2006-07-01), pages 1 - 114, XP055956410, ISSN: 1674-022X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116437016A (zh) * 2023-06-13 2023-07-14 武汉中观自动化科技有限公司 物体扫描方法、装置、电子设备及存储介质
CN116437016B (zh) * 2023-06-13 2023-10-10 武汉中观自动化科技有限公司 物体扫描方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN112802002B (zh) 2021-11-16
CN112802002A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2022165934A1 (zh) 物体表面数据侦测方法、系统、电子装置和存储介质
CN110910459B (zh) 一种对摄像装置的标定方法、装置及标定设备
CN108702439B (zh) 信息处理设备、方法、计算机可读介质和多摄像机系统
US20160238394A1 (en) Device for Estimating Position of Moving Body and Method for Estimating Position of Moving Body
KR20050058085A (ko) 변이지도 및 깊이지도의 융합을 통한 3차원 장면 모델생성 장치 및 그 방법
CN111220126A (zh) 一种基于点特征和单目相机的空间物体位姿测量方法
JP4132068B2 (ja) 画像処理装置及び三次元計測装置並びに画像処理装置用プログラム
CN105278454A (zh) 基于机械臂视觉定位系统的机器人手眼定位算法
CN113592721B (zh) 摄影测量方法、装置、设备及存储介质
CN112949478A (zh) 基于云台相机的目标检测方法
WO2021195939A1 (zh) 一种双目拍摄装置的外参的标定方法、可移动平台及系统
CN108362205B (zh) 基于条纹投影的空间测距方法
KR102309608B1 (ko) 라이다(Lidar)와 스테레오-카메라(Stereo-Camera) 간의 좌표계 정합 방법
CN112017238A (zh) 一种线状物体的空间位置信息确定方法及装置
JP7427370B2 (ja) 撮像装置、画像処理装置、画像処理方法、撮像装置の校正方法、ロボット装置、ロボット装置を用いた物品の製造方法、制御プログラムおよび記録媒体
CN114219866A (zh) 双目结构光三维重建方法、重建系统及重建设备
US20220252385A1 (en) Object surface data detection method and system, electronic apparatus, and storage medium
CN116817787A (zh) 三维扫描方法、三维扫描系统和电子装置
CN113776491B (zh) 基于b-m2m的多维测距方法、mec及测距单元
CN113112532B (zh) 一种多ToF相机系统实时配准方法
CN115615436A (zh) 一种多机重定位的无人机定位方法
CN112669388B (zh) 激光雷达与摄像装置的标定方法及装置、可读存储介质
CN114454177A (zh) 一种基于双目立体视觉的机器人末端位置补偿方法
CN110766740B (zh) 一种基于行人跟踪的实时高精度双目测距系统及方法
CN112804515A (zh) 全向立体视觉的摄像机配置系统及摄像机配置方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923943

Country of ref document: EP

Kind code of ref document: A1