WO2022163738A1 - Hollow particles and method for producing same, resin composition containing said hollow particles and method for producing same - Google Patents

Hollow particles and method for producing same, resin composition containing said hollow particles and method for producing same Download PDF

Info

Publication number
WO2022163738A1
WO2022163738A1 PCT/JP2022/002990 JP2022002990W WO2022163738A1 WO 2022163738 A1 WO2022163738 A1 WO 2022163738A1 JP 2022002990 W JP2022002990 W JP 2022002990W WO 2022163738 A1 WO2022163738 A1 WO 2022163738A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow particles
resin composition
active hydrogen
producing
resin
Prior art date
Application number
PCT/JP2022/002990
Other languages
French (fr)
Japanese (ja)
Inventor
衛 界
誠 界
Original Assignee
三水株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三水株式会社 filed Critical 三水株式会社
Publication of WO2022163738A1 publication Critical patent/WO2022163738A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to hollow particles, a method for producing the same, and a resin composition containing the hollow particles and a method for producing the same. More specifically, the present invention provides a low dielectric constant, low dielectric loss tangent, and low thermal expansion coefficient for electronic circuit boards, build-up boards, sealing materials, prepregs, etc. used in electronic devices compatible with high-frequency communication systems.
  • the present invention relates to a resin composition that enables the above, a method for producing the same, hollow particles used in the resin composition, and a method for producing the same.
  • Thermosetting resins such as epoxy resins, polyimide resins, maleimide resins, and phenolic resins
  • thermoplastic resins such as polyethylene resins, acrylic resins, polycarbonate resins, polyarylate resins, and fluorine resins are used in electronic devices. It is widely used as a material for electronic circuit boards, build-up boards, sealing materials, prepregs, and the like. In order to cope with high-frequency communication systems, more excellent low dielectric properties are required, and various resin compositions have been developed in recent years.
  • Patent Document 1 discloses an electrically insulating resin composition containing a thermosetting resin and organic particles, wherein the organic particles are a polymer or copolymer of a crosslinkable monomer and/or a crosslinkable monomer and a monofunctional monomer copolymer, wherein the surfaces of the particles are masked.
  • a vinyl monomer is used as the crosslinkable monomer and the monofunctional monomer.
  • This electrically insulating resin composition has a low dielectric constant and is considered suitable for producing multilayer printed wiring boards.
  • Patent Document 2 in a low dielectric resin composition containing hollow particles consisting of a shell and a hollow portion and a thermosetting resin, 98% by mass or more of the entire shell is made of silica as the hollow particles, and the average A low dielectric resin composition having a porosity of 30 to 80% by volume and an average particle diameter of 0.1 to 20 ⁇ m is disclosed. According to this low dielectric resin composition, the dielectric constant, dielectric loss tangent, and coefficient of thermal expansion can all be reduced.
  • JP-A-2006-8750 Japanese Patent Application Laid-Open No. 2008-31409
  • the resin composition described in Patent Document 1 has a problem that it cannot sufficiently exhibit the low dielectric properties required especially in high-frequency communication systems after the fifth generation (5G), which use frequencies of several to several tens of gigahertz.
  • 5G fifth generation
  • the dielectric constant of the resin composition blended with the vinyl-based organic hollow particles of Example 1 of Patent Document 1 particles made of a divinylbenzene polymer with a hollowness of 60% and the surface of which is masked with a styrene monomer
  • the hollow particles described in Patent Document 2 in which 98% by mass or more of the entire shell is formed of inorganic silica, generally have poor affinity with organic resins, and have problems in uniform dispersion in the resin. There is In addition, in the stirring step for dispersion, cracks and cracks are likely to occur in the silica of the shell of the hollow particles, and there is a possibility that the hollow structure cannot be maintained.
  • an object of the present invention is to provide organic hollow particles and a resin composition containing the organic hollow particles that enable various electronic materials to have a low dielectric constant, a low dielectric loss tangent, and a low thermal expansion coefficient.
  • the present invention provides a method for producing hollow particles having a shell portion formed of a polymer having a urea bond and/or a urethane bond and a hollow portion surrounded by the shell portion, (a) mixing an isocyanate compound having a plurality of isocyanate groups and a hydrophobic solvent to obtain an oil-based mixture; (b) mixing an active hydrogen compound having a plurality of amino groups or hydroxy groups and/or water to obtain an aqueous mixture; (c) mixing the water-based mixed liquid and the oil-based mixed liquid to obtain an emulsified liquid in which the oil-based mixed liquid is dispersed in the water-based mixed liquid; (d) reacting the isocyanate compound with the active hydrogen compound and/or the water in the emulsified liquid to form a polymer having a urea bond and/or a urethane bond; (1) and/or (2) below: (1) the isocyanate compound is polymeric MDI; and (2) the active hydrogen compound is an acrylic polyol.
  • the present invention is formed of a polymer having a urea bond and/or a urethane bond obtained by reacting an isocyanate compound having multiple isocyanate groups with an active hydrogen compound having multiple amino groups or hydroxy groups and/or water.
  • the present invention provides a step of obtaining hollow particles by the method described above; A method for producing a resin composition, comprising the step of mixing the hollow particles and a resin component.
  • the present invention is a resin composition containing a resin component and the aforementioned hollow particles.
  • organic hollow particles that enable various electronic materials to have a low dielectric constant, a low dielectric loss tangent, and a low thermal expansion coefficient, and a resin composition containing the same.
  • FIG. 1 is a photograph taken with a scanning electron microscope (SEM) of a fractured surface of a sample piece of the resin composition of Example 1.
  • SEM scanning electron microscope
  • FIG. 2 is an enlarged photograph of hollow particles cleaved in FIG. 1.
  • FIG. It can be confirmed that a large hollow structure exists inside the hollow particles.
  • the hollow particles of the present invention are organic hollow particles, and have a shell portion formed of a polymer having a urea bond and/or a urethane bond, and a hollow portion surrounded by the shell portion.
  • the urea bond is represented by -NH-CO-NH-.
  • a compound having an isocyanate group (-NCO) and an amino group ( -NH2 ) can be formed by reaction with a compound having A urea bond can also be formed, for example, by reacting a compound having an isocyanate group (--NCO) with water ( H.sub.2O ), as represented by the following formula (2).
  • a urethane bond (also referred to as a carbamate bond) is represented by -NH-COO-.
  • a compound having an isocyanate group (-NCO) It can be formed by reaction with a compound having a hydroxy group (--OH).
  • a polymer having urea bonds and/or urethane bonds can be formed by reacting an isocyanate compound having multiple isocyanate groups with an active hydrogen compound having multiple amino groups or hydroxy groups and/or water. More specifically, an isocyanate compound having multiple isocyanate groups reacts with an active hydrogen compound having multiple amino groups and/or water to form polyurea, which is a polymer having urea bonds.
  • Polyurethane which is a polymer having urethane bonds, is formed by reaction of an isocyanate compound having multiple isocyanate groups and an active hydrogen compound having multiple hydroxy groups.
  • Polyurea is a polymer having urea bonds and urethane bonds obtained by reacting an isocyanate compound having multiple isocyanate groups, an active hydrogen compound having multiple amino groups and/or water, and an active hydrogen compound having multiple hydroxy groups.
  • a urethane is formed.
  • a reaction between an isocyanate compound having multiple isocyanate groups and an active hydrogen compound having both multiple amino groups and hydroxy groups further reaction between the isocyanate compound having multiple isocyanate groups and water may occur
  • a polyureaurethane is formed which is a polymer with urea and urethane linkages.
  • the isocyanate compound having multiple isocyanate groups is not particularly limited, and for example, known polyfunctional isocyanate compounds can be used.
  • Specific examples of isocyanate compounds having multiple isocyanate groups include hexamethylene diisocyanate (HMDI), isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymeric MDI, modified diphenylmethane diisocyanate (carbodiimide-modified, prepolymer-modified, etc.), orthotoluidine diisocyanate, naphthylene diisocyanate, xylylene diisocyanate, lysine diisocyanate, and the like.
  • the isocyanate compounds having multiple isocyanate groups can be used singly or in combination of two or more. Among these, polymeric MDI is preferred.
  • the active hydrogen compound having multiple amino groups is not particularly limited, and for example, known polyamine compounds can be used.
  • Specific examples of active hydrogen compounds having a plurality of amino groups include bifunctional polyamines such as ethylenediamine, propylenediamine, pentanediamine, isophoronediamine, xylylenediamine, diphenylmethanediamine, hydrogenated diphenylmethanediamine, and hydrazine; diethylenetriamine and triethylenetetramine. , tri- or higher functional polyamines such as tetraethylenepentamine, polyamide polyamine; and the like. Active hydrogen compounds having a plurality of amino groups can be used singly or in combination of two or more.
  • the active hydrogen compound having multiple hydroxy groups is not particularly limited, and for example, known polyol compounds can be used. Specific examples of active hydrogen compounds having multiple hydroxy groups include polyether polyols, polyester polyols, polycarbonate polyols, polyolefin polyols, acrylic polyols, and polysiloxane polyols. The active hydrogen compounds having multiple hydroxy groups can be used singly or in combination of two or more. Among these, acrylic polyols are preferred.
  • the active hydrogen compound having both an amino group and a hydroxy group is not particularly limited, and for example, known alkanolamine compounds can be used. Specific examples of active hydrogen compounds having both an amino group and a hydroxy group include monoalkanolamines such as methanolamine, ethanolamine and propanolamine; dialkanolamine; and the like. Active hydrogen compounds having both an amino group and a hydroxy group can be used singly or in combination of two or more.
  • an emulsion is prepared in which an active hydrogen compound having a plurality of amino groups or hydroxy groups is used as an aqueous phase, and an oil phase of an isocyanate compound having a plurality of isocyanate groups is dispersed therein. It is preferable to react the isocyanate compound with the active hydrogen compound and/or water near the interface of the oil phase. By doing so, it is possible to form hollow particles having a shell portion made of a polymer having a urea bond and/or a urethane bond and a hollow portion surrounded by the shell portion. More specifically, it is preferable to form hollow particles by the following method.
  • an isocyanate compound having a plurality of isocyanate groups and a hydrophobic solvent are mixed to obtain an oil-based mixture (step (a)).
  • the hydrophobic solvent is not particularly limited, and a solvent having low reactivity with the isocyanate compound and low solubility in water can be used.
  • Specific examples of hydrophobic solvents include aromatic hydrocarbons such as toluene and xylene; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aliphatic hydrocarbons such as heptane and hexane; halogenated hydrocarbons such as trichlorethylene; ester; and the like.
  • a hydrophobic solvent can be used individually by 1 type or in combination of 2 or more types. Among these, aliphatic hydrocarbons are preferred, and toluene and/or xylene are more preferred.
  • the concentration of the isocyanate compound in the oil-based mixture is preferably 5 to 65% by weight, more preferably 20 to 60% by weight.
  • an active hydrogen compound having a plurality of amino groups or hydroxy groups and/or water are mixed to obtain an aqueous mixture (step (b)). That is, it is preferable that the active hydrogen compound having a plurality of amino groups or hydroxy groups is partially or wholly soluble in water.
  • Water is a solvent component that dissolves the active hydrogen compound, but it also serves as a substrate that reacts with the isocyanate compound having a plurality of isocyanate groups.
  • the oil-based mixture obtained in step (a) and the aqueous mixture obtained in step (b) are mixed to obtain an emulsified liquid in which the oil-based mixture is dispersed in the aqueous mixture (step ( c)).
  • a homogenizer emulsifier for example, can be used to mix the water-based mixed liquid and the oil-based mixed liquid.
  • the rotation speed and rotation time of the homogenizer-emulsifier can be appropriately adjusted so that droplets of the desired size of the oil-based mixed liquid are dispersed in the aqueous mixed liquid.
  • the oil-based mixture is preferably 5 to 60 parts by weight, more preferably 15 to 40 parts by weight, per 100 parts by weight of the water-based mixture. preferable.
  • An emulsifier can also be used in step (c).
  • the emulsifier is not particularly limited, and for example, known nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants can be used.
  • a polymer-type surfactant can also be used as an emulsifier.
  • Specific examples of polymeric surfactants include polyvinyl alcohol-based surfactants, casein-based surfactants, carboxymethylcellulose-based surfactants, and acrylic surfactants.
  • an active hydrogen compound having a plurality of amino groups or hydroxy groups has a surfactant function, it can also be used as a surfactant.
  • step (d) an isocyanate compound and an active hydrogen compound and/or water are reacted in the emulsified liquid obtained in step (c) to form a polymer having a urea bond and/or a urethane bond (step (d)).
  • step (d) the isocyanate compound and the active hydrogen compound and/or water near the surface of the droplets of the oil-based mixed liquid dispersed in the aqueous mixed liquid (near the interface between the aqueous mixed liquid and the oil-based mixed liquid) can be reacted, it is possible to form particles having a shell portion made of a polymer having urea bonds and/or urethane bonds.
  • the reaction may be performed at room temperature, or the emulsion may be heated.
  • a hydrophobic solvent is present inside the particles obtained by the reaction in step (d). Therefore, it is preferable to remove the hydrophobic solvent and dry after the completion of the reaction. By doing so, hollow particles having a shell portion formed of a polymer having a urea bond and/or a urethane bond and a hollow portion surrounded by the shell portion can be obtained. Since it is considered that air exists in the hollow portion, it is possible to achieve a low dielectric constant, a low dielectric loss tangent, and a low coefficient of thermal expansion by blending the hollow particles with the resin component.
  • the average particle diameter (median diameter) of the hollow particles is preferably 0.05 to 50 ⁇ m, more preferably 0.1 to 30 ⁇ m, even more preferably 0.5 to 10 ⁇ m.
  • the average particle size (median size) of the hollow particles can be measured using, for example, a laser diffraction/scattering particle size distribution analyzer.
  • the hollowness of the hollow particles is preferably 10 to 90%, more preferably 20 to 80%, even more preferably 30 to 70%.
  • the hollowness of the hollow particles can be calculated by measuring the inner diameter and outer diameter of the hollow particles with a scanning electron microscope and using the following formula.
  • Hollow ratio (%) (inner diameter of hollow particles/outer diameter of hollow particles) 3 ⁇ 100
  • the hollow ratio of hollow particles can also be calculated by comparing the sedimentation properties with particles having no hollow portion (solid particles) made of the same material.
  • the hollow particles of the present invention By blending the hollow particles of the present invention with resin components such as electronic circuit boards for electronic devices, build-up boards, sealing materials, prepregs, etc., it is possible to reduce the dielectric constant, the dielectric loss tangent, and the coefficient of thermal expansion. It is possible.
  • the resin composition of the present invention is a resin composition that serves as an electronic circuit board for electronic devices, a build-up board, a sealing material, a prepreg, or the like, and contains a resin component and the hollow particles of the present invention.
  • the resin component include thermosetting resins such as epoxy resins, polyimide resins, maleimide resins, and phenol resins; thermoplastic resins such as polyethylene resins, acrylic resins, polycarbonate resins, polyarylate resins, and fluorine resins; be done.
  • thermosetting resins are preferred, and epoxy resins are more preferred.
  • a curing agent such as amines, acid anhydrides, imidazoles, or the like or a catalyst.
  • the resin composition of the present invention can be obtained by mixing the hollow particles and the resin component described above.
  • the blending ratio may be appropriately adjusted so as to have the desired dielectric properties, but it is preferable that the content of the hollow particles is 1 to 50% by weight, preferably 5 to 30% by weight. is more preferred.
  • the resin component is a thermosetting resin, it is preferably cured at room temperature or by heating after mixing.
  • the resin composition of the present invention has a low dielectric constant, a low dielectric loss tangent, and a low coefficient of thermal expansion, it is suitable for application to electronic circuit boards such as electronic devices, build-up boards, sealing materials, prepregs, and the like. .
  • a reactor equipped with a stirrer, a 2-liter reaction vessel, a cooling tube for solvent removal, a stirring blade, a thermometer, and an oil bath was prepared.
  • An oil-based mixture of 180 g of polymeric MDI having an NCO content of 31% (manufactured by Tosoh Corporation, trade name: Millionate MR-200) and 180 g of toluene was prepared.
  • a water-based mixed liquid consisting of 1,170 g of deionized water and 90 g of acrylic polymeric surfactant (20% solids aqueous solution) was prepared.
  • the solid content of the acrylic polymer surfactant is 35% methacrylic acid, 45% methyl methacrylate, 9% hydroxyethyl methacrylate, and 11% nonylphenoxypolyethoxy (45 mole addition) methacrylate. is salt.
  • a 2-liter container is charged with the above water-based mixed liquid, and while adding the above-mentioned oil-based mixed liquid, emulsify for 2 minutes at an emulsifying speed of 18,000 rpm with a homogenizer emulsifier (cylinder outer diameter: 25 mm).
  • a milky liquid was obtained.
  • the resulting milky white liquid was transferred to the reaction apparatus described above, and gradually heated from room temperature to 70° C. over about 2 hours in an oil bath while stirring to react isocyanate groups with water, and isocyanate groups with acrylic acid.
  • a polymer shell having urea bonds and urethane bonds was formed, resulting in an aqueous dispersion of particles containing toluene inside.
  • the aqueous dispersion is gradually heated to azeotropically remove toluene and water at about 70° C. or higher, and the liquid temperature is raised to 100° C. over about 2 hours to remove the toluene component, thereby forming urea bonds and The reaction to form the urethane linkage was completed.
  • a slurry liquid with a solid content of 19.0% obtained by cooling to room temperature is poured into a dish to a depth of about 2 cm, and the water is evaporated at 70 ° C. for 24 hours to obtain a white mass. to obtain white powdery hollow particles 1.
  • the average particle size (median size at 50% frequency) of the obtained hollow particles 1 was measured using a laser diffraction/scattering particle size distribution analyzer (trade name: LA-960, manufactured by Horiba, Ltd.). 0.52 ⁇ m.
  • Example 1 A formwork having a thickness of 1 mm, a width of 30 mm, and a length of 100 mm was prepared with a release sheet attached to the inner surface.
  • the resin composition blended as shown in Table 1 was poured into the mold and leveled to a thickness of about 1 mm. Then, after curing at room temperature for 3 hours and then at 150° C. for 2 hours, the obtained resin plate was removed from the mold and processed into a sample piece having a size of 0.9 mm thick ⁇ 3 mm wide ⁇ 80 mm long.
  • the dielectric constant and dielectric loss tangent of the obtained sample piece were measured by the cavity resonator method (frequency: 10 GHz, room temperature), and the results are shown in Table 1. Further, the coefficient of thermal expansion of the obtained sample piece was measured by the TMA method using a thermomechanical analyzer (manufactured by NETZSCH, trade name: TMA402F1 Hyperion).
  • a fractured surface of a sample piece of the resin composition of Example 1 was photographed with a scanning electron microscope (SEM). As shown in FIG. 1, it was observed that a large number of hollow particles 1 having a particle diameter of about 2 to 3 ⁇ m were present in the epoxy resin. In addition, in FIG. 2, the fractured hollow particles 1 were observed, and it was confirmed that a large hollow structure was present inside the hollow particles 1 .
  • Example 2 In the same manner as in Example 1, except that 14.2 g of hollow particles 2 were blended instead of hollow particles 1, 28.3 g of curing agent B and 0.8 g of curing agent C were blended instead of curing agent A. A sample piece was produced. Table 1 shows the dielectric constant, dielectric loss tangent, and thermal expansion coefficient of the obtained sample piece. Further, when the cut surface of the sample piece of the resin composition of Example 2 was photographed with a scanning electron microscope (SEM), it was found that the hollowness of the hollow particles 2 was about 56%.
  • SEM scanning electron microscope
  • Example 3 2.0 g of hollow particles 1 were dispersed in 8.0 g of epoxy diluent. After heating and melting 50.0 g of epoxy resin B to about 120° C., 0.2 g of curing agent C was added to and mixed with 10.0 g of the above dispersion. The mixed liquid was poured into the same mold as in Example 1 and cured at 120° C. for 1 hour. Table 1 shows the dielectric constant and dielectric loss tangent of the obtained sample piece.
  • Example 4 After heating and melting 50.0 g of epoxy resin C to about 100° C., 10.0 g of hollow particles 2 and 0.2 g of curing agent C were added and mixed. The mixed liquid was poured into the same mold as in Example 1 and cured at 100° C. for 1 hour and at 150° C. for 2 hours. Table 1 shows the dielectric constant and dielectric loss tangent of the obtained sample piece.
  • Example 1 A sample piece was prepared in the same manner as in Example 1, except that the hollow particles 1 were not blended. Table 1 shows the dielectric constant, dielectric loss tangent, and thermal expansion coefficient of the obtained sample piece.
  • Example 2 A sample piece was prepared in the same manner as in Example 2, except that the hollow particles 2 were not blended. Table 1 shows the dielectric constant, dielectric loss tangent, and thermal expansion coefficient of the obtained sample piece.
  • Example 3 A sample piece was prepared in the same manner as in Example 3, except that the hollow particles 1 were not blended. Table 1 shows the dielectric constant and dielectric loss tangent of the obtained sample piece.
  • Example 4 A sample piece was prepared in the same manner as in Example 4, except that the hollow particles 2 were not blended. Table 1 shows the dielectric constant and dielectric loss tangent of the obtained sample piece.
  • Epoxy resin A Mitsubishi Chemical, trade name: jER 828 Epoxy resin B: manufactured by Nippon Kayaku, trade name: WHR-991S Epoxy resin C: manufactured by Mitsubishi Chemical, trade name: jER YX-7700 Epoxy diluent: Yokkaichi Gosei, trade name: Epogoze HD (D) Curing agent A (amines): manufactured by Mitani Paint, trade name: Bojintex #8000 Curing agent B (acid anhydrides): manufactured by Mitsubishi Chemical, trade name: jER YH306 Curing agent C (imidazoles): 2-ethyl-4-methylimidazole, manufactured by Tokyo Chemical Industry Co., Ltd.
  • the resin composition obtained in the example can greatly reduce the dielectric constant, dielectric loss tangent, and thermal expansion coefficient compared to the resin composition obtained in the corresponding comparative example.

Abstract

The present invention provides: organic hollow particles that enable a low electric permittivity, a low dielectric loss tangent, and a low thermal expansion rate with respect to various electronic materials; and a resin composition including said hollow particles. These hollow particles comprise: a shell part and a hollow part enclosed in the shell part, the shell part being formed of a polymer having a urea bond and/or a urethane bond and being obtained through a reaction between an isocyanate compound having multiple isocyanate groups and an active hydrogen compound having multiple amino groups or hydroxy groups and/or water. The hollow particles satisfy the conditions of: (1) the isocyanate compound is a polymeric MDI; and/or (2) the active hydrogen compound is an acrylic polyol.

Description

中空粒子及びその製造方法、並びにその中空粒子を含む樹脂組成物及びその製造方法Hollow particles, method for producing the same, resin composition containing the hollow particles, and method for producing the same
 本発明は、中空粒子及びその製造方法、並びにその中空粒子を含む樹脂組成物及びその製造方法に関する。より詳しくは、本発明は、高周波通信システムに対応した電子機器等に用いられる電子回路基板、ビルドアップ基板、封止材、プリプレグ等の低誘電率化、低誘電正接化、及び低熱膨張率化を可能にする樹脂組成物及びその製造方法、並びにその樹脂組成物に用いる中空粒子及びその製造方法に関する。 The present invention relates to hollow particles, a method for producing the same, and a resin composition containing the hollow particles and a method for producing the same. More specifically, the present invention provides a low dielectric constant, low dielectric loss tangent, and low thermal expansion coefficient for electronic circuit boards, build-up boards, sealing materials, prepregs, etc. used in electronic devices compatible with high-frequency communication systems. The present invention relates to a resin composition that enables the above, a method for producing the same, hollow particles used in the resin composition, and a method for producing the same.
 エポキシ樹脂、ポリイミド樹脂、マレイミド樹脂、フェノール樹脂等の熱硬化性樹脂や、ポリエチレン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、フッ素樹脂等の熱可塑性樹脂を含む樹脂組成物は、電子機器等の電子回路基板、ビルドアップ基板、封止材、プリプレグ等の材料として広く用いられている。高周波通信システムに対応するためには、より優れた低誘電特性が求められており、近年様々な樹脂組成物が開発されている。 Thermosetting resins such as epoxy resins, polyimide resins, maleimide resins, and phenolic resins, and thermoplastic resins such as polyethylene resins, acrylic resins, polycarbonate resins, polyarylate resins, and fluorine resins are used in electronic devices. It is widely used as a material for electronic circuit boards, build-up boards, sealing materials, prepregs, and the like. In order to cope with high-frequency communication systems, more excellent low dielectric properties are required, and various resin compositions have been developed in recent years.
 特許文献1には、熱硬化性樹脂と、有機粒子を含有する電気絶縁性樹脂組成物であって、前記有機粒子は、架橋性モノマーの重合体もしくは共重合体、及び/又は、架橋性モノマーと単官能性モノマーの共重合体からなり、前記粒子の表面がマスキングされている電気絶縁性樹脂組成物が記載されている。架橋性モノマー及び単官能性モノマーとしては、ビニル系モノマーが用いられている。この電気絶縁性樹脂組成物は、誘電率が低く、多層プリント配線板の作製に好適であるとされている。 Patent Document 1 discloses an electrically insulating resin composition containing a thermosetting resin and organic particles, wherein the organic particles are a polymer or copolymer of a crosslinkable monomer and/or a crosslinkable monomer and a monofunctional monomer copolymer, wherein the surfaces of the particles are masked. A vinyl monomer is used as the crosslinkable monomer and the monofunctional monomer. This electrically insulating resin composition has a low dielectric constant and is considered suitable for producing multilayer printed wiring boards.
 特許文献2には、シェル及び中空部からなる中空粒子と熱硬化性樹脂とを含有する低誘電樹脂組成物において、中空粒子として、シェル全体の98質量%以上がシリカで形成されており、平均空隙率が30~80体積%であり、かつ平均粒径が0.1~20μmであるものを用いて成る低誘電樹脂組成物が記載されている。この低誘電樹脂組成物によれば、誘電率、誘電正接、熱膨張率をいずれも小さくすることができるとされている。 In Patent Document 2, in a low dielectric resin composition containing hollow particles consisting of a shell and a hollow portion and a thermosetting resin, 98% by mass or more of the entire shell is made of silica as the hollow particles, and the average A low dielectric resin composition having a porosity of 30 to 80% by volume and an average particle diameter of 0.1 to 20 μm is disclosed. According to this low dielectric resin composition, the dielectric constant, dielectric loss tangent, and coefficient of thermal expansion can all be reduced.
特開2006-8750号公報JP-A-2006-8750 特開2008-31409号公報Japanese Patent Application Laid-Open No. 2008-31409
 しかしながら、特許文献1に記載の樹脂組成物では、特に使用周波数が数~数十ギガヘルツの第5世代(5G)以降の高周波通信システムにおいて求められる低誘電特性を十分に発揮できないという問題がある。例えば、特許文献1の実施例1のビニル系の有機質の中空粒子(ジビニルベンゼン重合体からなる中空率60%の粒子表面をスチレンモノマーでマスキングしたもの)を配合した樹脂組成物の誘電率は、比較例1と比較すると、その低減率は約9%(特許文献1の実施例1の誘電率/比較例1の誘電率=3.12/3.43=0.91)に過ぎない。当該低減率程度では、5G以降の高周波通信システムに対応することは難しい。 However, the resin composition described in Patent Document 1 has a problem that it cannot sufficiently exhibit the low dielectric properties required especially in high-frequency communication systems after the fifth generation (5G), which use frequencies of several to several tens of gigahertz. For example, the dielectric constant of the resin composition blended with the vinyl-based organic hollow particles of Example 1 of Patent Document 1 (particles made of a divinylbenzene polymer with a hollowness of 60% and the surface of which is masked with a styrene monomer) is Compared with Comparative Example 1, the reduction rate is only about 9% (permittivity of Example 1 of Patent Document 1/permittivity of Comparative Example 1=3.12/3.43=0.91). It is difficult to support high-frequency communication systems after 5G with such a reduction rate.
 一方、特許文献2に記載のシェル全体の98質量%以上がほぼ無機質のシリカで形成されている中空粒子は、一般的に有機質の樹脂との親和性が悪く、樹脂中への均一分散に課題がある。また分散のために行う攪拌工程において、中空粒子のシェルのシリカにひびや割れ等が生じやすく、中空構造を維持できないおそれもある。 On the other hand, the hollow particles described in Patent Document 2, in which 98% by mass or more of the entire shell is formed of inorganic silica, generally have poor affinity with organic resins, and have problems in uniform dispersion in the resin. There is In addition, in the stirring step for dispersion, cracks and cracks are likely to occur in the silica of the shell of the hollow particles, and there is a possibility that the hollow structure cannot be maintained.
 したがって、5G以降の高周波通信システムに求められる低誘電特性を発揮し、有機質の樹脂との親和性も良好で、攪拌工程でのシェルのひびや割れ等が生じにくく中空構造を維持できる有機質の中空粒子の開発が望まれていた。 Therefore, it exhibits the low dielectric properties required for high-frequency communication systems after 5G, has good affinity with organic resins, and is resistant to cracks and cracks in the shell during the stirring process. The development of particles has been desired.
 そこで、本発明は、各種電子材料の低誘電率化、低誘電正接化、及び低熱膨張率化を可能とする有機質の中空粒子及びそれを含む樹脂組成物を提供することを目的とする。 Therefore, an object of the present invention is to provide organic hollow particles and a resin composition containing the organic hollow particles that enable various electronic materials to have a low dielectric constant, a low dielectric loss tangent, and a low thermal expansion coefficient.
 本発明は、ウレア結合及び/又はウレタン結合を有するポリマーで形成されたシェル部と、前記シェル部に囲まれた中空部とを有する中空粒子を製造する方法であって、
(a)複数のイソシアネート基を有するイソシアネート化合物と疎水性溶剤を混合して、油系混合液を得る工程と、
(b)複数のアミノ基又はヒドロキシ基を有する活性水素化合物及び/又は水を混合して、水系混合液を得る工程と、
(c)前記水系混合液と前記油系混合液を混合して、前記水系混合液中に前記油系混合液が分散した乳化液を得る工程と、
(d)前記乳化液中で、前記イソシアネート化合物と前記活性水素化合物及び/又は前記水とを反応させて、ウレア結合及び/又はウレタン結合を有するポリマーを形成する工程とを有し、
下記(1)及び/又は(2):
(1)前記イソシアネート化合物が、ポリメリックMDIである
(2)前記活性水素化合物が、アクリル系ポリオールである
の条件を満たす
中空粒子の製造方法である。
The present invention provides a method for producing hollow particles having a shell portion formed of a polymer having a urea bond and/or a urethane bond and a hollow portion surrounded by the shell portion,
(a) mixing an isocyanate compound having a plurality of isocyanate groups and a hydrophobic solvent to obtain an oil-based mixture;
(b) mixing an active hydrogen compound having a plurality of amino groups or hydroxy groups and/or water to obtain an aqueous mixture;
(c) mixing the water-based mixed liquid and the oil-based mixed liquid to obtain an emulsified liquid in which the oil-based mixed liquid is dispersed in the water-based mixed liquid;
(d) reacting the isocyanate compound with the active hydrogen compound and/or the water in the emulsified liquid to form a polymer having a urea bond and/or a urethane bond;
(1) and/or (2) below:
(1) the isocyanate compound is polymeric MDI; and (2) the active hydrogen compound is an acrylic polyol.
 本発明は、複数のイソシアネート基を有するイソシアネート化合物と、複数のアミノ基又はヒドロキシ基を有する活性水素化合物及び/又は水との反応により得られる、ウレア結合及び/又はウレタン結合を有するポリマーで形成されたシェル部と、前記シェル部に囲まれた中空部とを有する中空粒子であって、
下記(1)及び/又は(2):
(1)前記イソシアネート化合物が、ポリメリックMDIである
(2)前記活性水素化合物が、アクリル系ポリオールである
の条件を満たす
中空粒子である。
The present invention is formed of a polymer having a urea bond and/or a urethane bond obtained by reacting an isocyanate compound having multiple isocyanate groups with an active hydrogen compound having multiple amino groups or hydroxy groups and/or water. A hollow particle having a shell portion and a hollow portion surrounded by the shell portion,
(1) and/or (2) below:
(1) the isocyanate compound is polymeric MDI; and (2) the active hydrogen compound is an acrylic polyol.
 本発明は、前述の方法により中空粒子を得る工程と、
前記中空粒子と樹脂成分を混合する工程と
を有する
樹脂組成物の製造方法である。
The present invention provides a step of obtaining hollow particles by the method described above;
A method for producing a resin composition, comprising the step of mixing the hollow particles and a resin component.
 本発明は、樹脂成分と、前述の中空粒子とを含む樹脂組成物である。 The present invention is a resin composition containing a resin component and the aforementioned hollow particles.
 本発明によれば、各種電子材料の低誘電率化、低誘電正接化、及び低熱膨張率化を可能とする有機質の中空粒子及びそれを含む樹脂組成物を提供することができる。 According to the present invention, it is possible to provide organic hollow particles that enable various electronic materials to have a low dielectric constant, a low dielectric loss tangent, and a low thermal expansion coefficient, and a resin composition containing the same.
実施例1の樹脂組成物の試料片の割断面を走査電子顕微鏡(SEM)で撮影した写真である。エポキシ樹脂中に約2~3μmの粒子径の中空粒子が無数に存在することが確認できる。1 is a photograph taken with a scanning electron microscope (SEM) of a fractured surface of a sample piece of the resin composition of Example 1. FIG. It can be confirmed that a large number of hollow particles having a particle diameter of about 2 to 3 μm are present in the epoxy resin. 図1において割断された中空粒子を拡大した写真である。中空粒子の内部には大きな中空構造が存在することが確認できる。FIG. 2 is an enlarged photograph of hollow particles cleaved in FIG. 1. FIG. It can be confirmed that a large hollow structure exists inside the hollow particles.
 <中空粒子及びその製造方法>
 本発明の中空粒子は、有機質の中空粒子であって、ウレア結合及び/又はウレタン結合を有するポリマーで形成されたシェル部と、そのシェル部に囲まれた中空部とを有する。このような中空粒子を各種電子材料に配合することで、低誘電率化、低誘電正接化、及び低熱膨張率化が可能となる。
<Hollow particles and method for producing the same>
The hollow particles of the present invention are organic hollow particles, and have a shell portion formed of a polymer having a urea bond and/or a urethane bond, and a hollow portion surrounded by the shell portion. By blending such hollow particles into various electronic materials, it is possible to achieve a low dielectric constant, a low dielectric loss tangent, and a low coefficient of thermal expansion.
 ウレア結合は、-NH-CO-NH-で表されるものであり、例えば、下記式(1)で表されるように、イソシアネート基(-NCO)を有する化合物と、アミノ基(-NH)を有する化合物との反応により、形成することができる。また、ウレア結合は、例えば、下記式(2)で表されるように、イソシアネート基(-NCO)を有する化合物と、水(HO)との反応により、形成することもできる。ウレタン結合(カルバミン酸エステル結合とも言う)は、-NH-COO-で表されるものであり、例えば、下記式(3)で表されるように、イソシアネート基(-NCO)を有する化合物と、ヒドロキシ基(-OH)を有する化合物との反応により、形成することができる。 The urea bond is represented by -NH-CO-NH-. For example, as represented by the following formula (1), a compound having an isocyanate group (-NCO) and an amino group ( -NH2 ) can be formed by reaction with a compound having A urea bond can also be formed, for example, by reacting a compound having an isocyanate group (--NCO) with water ( H.sub.2O ), as represented by the following formula (2). A urethane bond (also referred to as a carbamate bond) is represented by -NH-COO-. For example, as represented by the following formula (3), a compound having an isocyanate group (-NCO), It can be formed by reaction with a compound having a hydroxy group (--OH).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ウレア結合及び/又はウレタン結合を有するポリマーは、複数のイソシアネート基を有するイソシアネート化合物と、複数のアミノ基又はヒドロキシ基を有する活性水素化合物及び/又は水との反応により、形成することができる。より具体的には、複数のイソシアネート基を有するイソシアネート化合物と、複数のアミノ基を有する活性水素化合物及び/又は水との反応により、ウレア結合を有するポリマーであるポリウレアが形成される。複数のイソシアネート基を有するイソシアネート化合物と、複数のヒドロキシ基を有する活性水素化合物との反応により、ウレタン結合を有するポリマーであるポリウレタンが形成される。複数のイソシアネート基を有するイソシアネート化合物と、複数のアミノ基を有する活性水素化合物及び/又は水と、複数のヒドロキシ基を有する活性水素化合物との反応により、ウレア結合及びウレタン結合を有するポリマーであるポリウレアウレタンが形成される。複数のイソシアネート基を有するイソシアネート化合物と、複数のアミノ基及びヒドロキシ基の両方を有する活性水素化合物との反応(さらに複数のイソシアネート基を有するイソシアネート化合物と水との反応が起きてもよい)により、ウレア結合及びウレタン結合を有するポリマーであるポリウレアウレタンが形成される。 A polymer having urea bonds and/or urethane bonds can be formed by reacting an isocyanate compound having multiple isocyanate groups with an active hydrogen compound having multiple amino groups or hydroxy groups and/or water. More specifically, an isocyanate compound having multiple isocyanate groups reacts with an active hydrogen compound having multiple amino groups and/or water to form polyurea, which is a polymer having urea bonds. Polyurethane, which is a polymer having urethane bonds, is formed by reaction of an isocyanate compound having multiple isocyanate groups and an active hydrogen compound having multiple hydroxy groups. Polyurea is a polymer having urea bonds and urethane bonds obtained by reacting an isocyanate compound having multiple isocyanate groups, an active hydrogen compound having multiple amino groups and/or water, and an active hydrogen compound having multiple hydroxy groups. A urethane is formed. A reaction between an isocyanate compound having multiple isocyanate groups and an active hydrogen compound having both multiple amino groups and hydroxy groups (further reaction between the isocyanate compound having multiple isocyanate groups and water may occur), A polyureaurethane is formed which is a polymer with urea and urethane linkages.
 複数のイソシアネート基を有するイソシアネート化合物としては、特に限定されず、例えば、公知の多官能性イソシアネート化合物を用いることができる。複数のイソシアネート基を有するイソシアネート化合物の具体例としては、ヘキサメチレンジイソシアネート(HMDI)、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ポリメリックMDI、変性ジフェニルメタンジイソシアネート(カルボジイミド変性、プレポリマー変性等)、オルソトルイジンジイソシアネート、ナフチレンジイソシアネート、キシリレンジイソシアネート、リジンジイソシアネート等が挙げられる。複数のイソシアネート基を有するイソシアネート化合物は、1種を単独で、又は2種以上を組み合わせて用いることができる。これらの中でも、ポリメリックMDIが好ましい。 The isocyanate compound having multiple isocyanate groups is not particularly limited, and for example, known polyfunctional isocyanate compounds can be used. Specific examples of isocyanate compounds having multiple isocyanate groups include hexamethylene diisocyanate (HMDI), isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymeric MDI, modified diphenylmethane diisocyanate (carbodiimide-modified, prepolymer-modified, etc.), orthotoluidine diisocyanate, naphthylene diisocyanate, xylylene diisocyanate, lysine diisocyanate, and the like. The isocyanate compounds having multiple isocyanate groups can be used singly or in combination of two or more. Among these, polymeric MDI is preferred.
 複数のアミノ基を有する活性水素化合物としては、特に限定されず、例えば、公知のポリアミン化合物を用いることができる。複数のアミノ基を有する活性水素化合物の具体例としては、エチレンジアミン、プロピレンジアミン、ペンタンジアミン、イソホロンジアミン、キシリレンジアミン、ジフェニルメタンジアミン、水素添加ジフェニルメタンジアミン、ヒドラジン等の2官能ポリアミン;ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリアミドポリアミン等の3官能以上のポリアミン;等が挙げられる。複数のアミノ基を有する活性水素化合物は、1種を単独で、又は2種以上を組み合わせて用いることができる。 The active hydrogen compound having multiple amino groups is not particularly limited, and for example, known polyamine compounds can be used. Specific examples of active hydrogen compounds having a plurality of amino groups include bifunctional polyamines such as ethylenediamine, propylenediamine, pentanediamine, isophoronediamine, xylylenediamine, diphenylmethanediamine, hydrogenated diphenylmethanediamine, and hydrazine; diethylenetriamine and triethylenetetramine. , tri- or higher functional polyamines such as tetraethylenepentamine, polyamide polyamine; and the like. Active hydrogen compounds having a plurality of amino groups can be used singly or in combination of two or more.
 複数のヒドロキシ基を有する活性水素化合物としては、特に限定されず、例えば、公知のポリオール化合物を用いることができる。複数のヒドロキシ基を有する活性水素化合物の具体例としては、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリカーボネート系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ポリシロキサン系ポリオール等が挙げられる。複数のヒドロキシ基を有する活性水素化合物は、1種を単独で、又は2種以上を組み合わせて用いることができる。これらの中でも、アクリル系ポリオールが好ましい。 The active hydrogen compound having multiple hydroxy groups is not particularly limited, and for example, known polyol compounds can be used. Specific examples of active hydrogen compounds having multiple hydroxy groups include polyether polyols, polyester polyols, polycarbonate polyols, polyolefin polyols, acrylic polyols, and polysiloxane polyols. The active hydrogen compounds having multiple hydroxy groups can be used singly or in combination of two or more. Among these, acrylic polyols are preferred.
 アミノ基及びヒドロキシ基の両方を有する活性水素化合物としては、特に限定されず、例えば、公知のアルカノールアミン化合物を用いることができる。アミノ基及びヒドロキシ基の両方を有する活性水素化合物の具体例としては、メタノールアミン、エタノールアミン、プロパノールアミン等のモノアルカノールアミン;ジメチロールエチルアミン、ジエタノールメチルアミン、ジプロパノールエチルアミン、ジブタノールメチルアミン等のジアルカノールアミン;等が挙げられる。アミノ基及びヒドロキシ基の両方を有する活性水素化合物は、1種を単独で、又は2種以上を組み合わせて用いることができる。 The active hydrogen compound having both an amino group and a hydroxy group is not particularly limited, and for example, known alkanolamine compounds can be used. Specific examples of active hydrogen compounds having both an amino group and a hydroxy group include monoalkanolamines such as methanolamine, ethanolamine and propanolamine; dialkanolamine; and the like. Active hydrogen compounds having both an amino group and a hydroxy group can be used singly or in combination of two or more.
 特に、本発明では、複数のアミノ基又はヒドロキシ基を有する活性水素化合物を水相とし、そこに、複数のイソシアネート基を有するイソシアネート化合物の油相が分散した乳化液を調製し、その水相と油相の界面付近で、イソシアネート化合物と活性水素化合物及び/又は水とを反応させることが好ましい。こうすることで、ウレア結合及び/又はウレタン結合を有するポリマーからなるシェル部と、そのシェル部に囲まれた中空部とを有する中空粒子を形成することができる。より具体的には、次のような方法で中空粒子を形成することが好ましい。 In particular, in the present invention, an emulsion is prepared in which an active hydrogen compound having a plurality of amino groups or hydroxy groups is used as an aqueous phase, and an oil phase of an isocyanate compound having a plurality of isocyanate groups is dispersed therein. It is preferable to react the isocyanate compound with the active hydrogen compound and/or water near the interface of the oil phase. By doing so, it is possible to form hollow particles having a shell portion made of a polymer having a urea bond and/or a urethane bond and a hollow portion surrounded by the shell portion. More specifically, it is preferable to form hollow particles by the following method.
 まず、複数のイソシアネート基を有するイソシアネート化合物と疎水性溶剤を混合して、油系混合液を得る(工程(a))。疎水性溶剤としては、特に限定されず、イソシアネート化合物との反応性が小さく、水への溶解性が小さい溶剤を用いることができる。疎水性溶剤の具体例としては、トルエン、キシレン等の芳香族炭化水素;メチルエチルケトン、メチルイソブチルケトン等のケトン;ヘプタン、ヘキサン等の脂肪族炭化水素;トリクロロエチレン等のハロゲン化炭化水素;酢酸エチル等のエステル;等が挙げられる。疎水性溶剤は、1種を単独で、又は2種以上を組み合わせて用いることができる。これらの中でも、脂肪族炭化水素が好ましく、トルエン及び/又はキシレンがより好ましい。油系混合液におけるイソシアネート化合物の濃度は、5~65重量%が好ましく、20~60重量%がより好ましい。 First, an isocyanate compound having a plurality of isocyanate groups and a hydrophobic solvent are mixed to obtain an oil-based mixture (step (a)). The hydrophobic solvent is not particularly limited, and a solvent having low reactivity with the isocyanate compound and low solubility in water can be used. Specific examples of hydrophobic solvents include aromatic hydrocarbons such as toluene and xylene; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aliphatic hydrocarbons such as heptane and hexane; halogenated hydrocarbons such as trichlorethylene; ester; and the like. A hydrophobic solvent can be used individually by 1 type or in combination of 2 or more types. Among these, aliphatic hydrocarbons are preferred, and toluene and/or xylene are more preferred. The concentration of the isocyanate compound in the oil-based mixture is preferably 5 to 65% by weight, more preferably 20 to 60% by weight.
 一方、複数のアミノ基又はヒドロキシ基を有する活性水素化合物及び/又は水を混合して、水系混合液を得る(工程(b))。すなわち、複数のアミノ基又はヒドロキシ基を有する活性水素化合物は、水に一部又は全部が溶解するものであることが好ましい。なお、水は、活性水素化合物を溶解させる溶媒成分であるが、複数のイソシアネート基を有するイソシアネート化合物と反応する基質にもなる。 On the other hand, an active hydrogen compound having a plurality of amino groups or hydroxy groups and/or water are mixed to obtain an aqueous mixture (step (b)). That is, it is preferable that the active hydrogen compound having a plurality of amino groups or hydroxy groups is partially or wholly soluble in water. Water is a solvent component that dissolves the active hydrogen compound, but it also serves as a substrate that reacts with the isocyanate compound having a plurality of isocyanate groups.
 次いで、工程(a)で得られた油系混合液と工程(b)で得られた水系混合液を混合して、水系混合液中に油系混合液が分散した乳化液を得る(工程(c))。水系混合液と油系混合液の混合には、例えば、ホモジナイザー乳化機を用いることができる。ホモジナイザー乳化機の回転速度及び回転時間は、水系混合液中に所望のサイズの油系混合液の液滴が分散した状態を形成するように、適宜調整することができる。水系混合液と油系混合液の配合割合に関しては、水系混合液100重量部に対して、油系混合液を5~60重量部とすることが好ましく、15~40重量部とすることがより好ましい。 Next, the oil-based mixture obtained in step (a) and the aqueous mixture obtained in step (b) are mixed to obtain an emulsified liquid in which the oil-based mixture is dispersed in the aqueous mixture (step ( c)). A homogenizer emulsifier, for example, can be used to mix the water-based mixed liquid and the oil-based mixed liquid. The rotation speed and rotation time of the homogenizer-emulsifier can be appropriately adjusted so that droplets of the desired size of the oil-based mixed liquid are dispersed in the aqueous mixed liquid. Regarding the mixing ratio of the water-based mixture and the oil-based mixture, the oil-based mixture is preferably 5 to 60 parts by weight, more preferably 15 to 40 parts by weight, per 100 parts by weight of the water-based mixture. preferable.
 工程(c)では、乳化剤(界面活性剤)を用いることもできる。乳化剤としては、特に限定されず、例えば、公知のノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、両イオン系界面活性剤を用いることができる。また、乳化剤として高分子型の界面活性剤を用いることもできる。高分子型の界面活性剤の具体例としては、ポリビニルアルコール系界面活性剤、カゼイン系界面活性剤、カルボキシルメチルセルロース系界面活性剤、アクリル系界面活性剤等が挙げられる。なお、複数のアミノ基又はヒドロキシ基を有する活性水素化合物が界面活性機能を有する場合は、それを界面活性剤として用いることもできる。 An emulsifier (surfactant) can also be used in step (c). The emulsifier is not particularly limited, and for example, known nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants can be used. A polymer-type surfactant can also be used as an emulsifier. Specific examples of polymeric surfactants include polyvinyl alcohol-based surfactants, casein-based surfactants, carboxymethylcellulose-based surfactants, and acrylic surfactants. In addition, when an active hydrogen compound having a plurality of amino groups or hydroxy groups has a surfactant function, it can also be used as a surfactant.
 そして、工程(c)で得られた乳化液中で、イソシアネート化合物と活性水素化合物及び/又は水とを反応させて、ウレア結合及び/又はウレタン結合を有するポリマーを形成する(工程(d))。工程(d)により、水系混合液中に分散している油系混合液の液滴の表面付近(水系混合液と油系混合液の界面付近)でイソシアネート化合物と活性水素化合物及び/又は水とを反応させることができることから、ウレア結合及び/又はウレタン結合を有するポリマーからなるシェル部を有する粒子を形成することができる。反応は室温で行ってもよく、乳化液を加熱してもよい。 Then, an isocyanate compound and an active hydrogen compound and/or water are reacted in the emulsified liquid obtained in step (c) to form a polymer having a urea bond and/or a urethane bond (step (d)). . In the step (d), the isocyanate compound and the active hydrogen compound and/or water near the surface of the droplets of the oil-based mixed liquid dispersed in the aqueous mixed liquid (near the interface between the aqueous mixed liquid and the oil-based mixed liquid) can be reacted, it is possible to form particles having a shell portion made of a polymer having urea bonds and/or urethane bonds. The reaction may be performed at room temperature, or the emulsion may be heated.
 なお、工程(d)の反応により得られる粒子の内部には、疎水性溶剤が存在する。したがって、反応終了後に疎水性溶剤を除去・乾燥することが好ましい。こうすることで、ウレア結合及び/又はウレタン結合を有するポリマーで形成されたシェル部と、そのシェル部に囲まれた中空部とを有する中空粒子が得られる。なお、中空部には空気が存在すると考えられることから、この中空粒子を樹脂成分に配合することで、低誘電率化、低誘電正接化、及び低熱膨張率化が可能となる。 A hydrophobic solvent is present inside the particles obtained by the reaction in step (d). Therefore, it is preferable to remove the hydrophobic solvent and dry after the completion of the reaction. By doing so, hollow particles having a shell portion formed of a polymer having a urea bond and/or a urethane bond and a hollow portion surrounded by the shell portion can be obtained. Since it is considered that air exists in the hollow portion, it is possible to achieve a low dielectric constant, a low dielectric loss tangent, and a low coefficient of thermal expansion by blending the hollow particles with the resin component.
 中空粒子の平均粒子径(メジアン径)は、0.05~50μmであることが好ましく、0.1~30μmであることがより好ましく、0.5~10μmであることがさらに好ましい。なお、中空粒子の平均粒子径(メジアン径)は、例えば、レーザー回折/散乱式粒子径分布測定装置を用いて測定することができる。 The average particle diameter (median diameter) of the hollow particles is preferably 0.05 to 50 µm, more preferably 0.1 to 30 µm, even more preferably 0.5 to 10 µm. The average particle size (median size) of the hollow particles can be measured using, for example, a laser diffraction/scattering particle size distribution analyzer.
 中空粒子の中空率は、10~90%であることが好ましく、20~80%であることがより好ましく、30~70%であるのがさらに好ましい。なお、中空粒子の中空率は、走査型電子顕微鏡で中空粒子の内径及び外径を測定し、下記計算式より算出することができる。
  中空率(%)=(中空粒子の内径/中空粒子の外径)×100
 また、中空粒子の中空率は、同じ材料で形成された中空部を有しない粒子(密実粒子)との沈降性を対比することでも算出することができる。
The hollowness of the hollow particles is preferably 10 to 90%, more preferably 20 to 80%, even more preferably 30 to 70%. The hollowness of the hollow particles can be calculated by measuring the inner diameter and outer diameter of the hollow particles with a scanning electron microscope and using the following formula.
Hollow ratio (%) = (inner diameter of hollow particles/outer diameter of hollow particles) 3 × 100
The hollow ratio of hollow particles can also be calculated by comparing the sedimentation properties with particles having no hollow portion (solid particles) made of the same material.
 本発明の中空粒子は、電子機器等の電子回路基板、ビルドアップ基板、封止材、プリプレグ等の樹脂成分に配合することで、低誘電率化、低誘電正接化、及び低熱膨張率化が可能である。 By blending the hollow particles of the present invention with resin components such as electronic circuit boards for electronic devices, build-up boards, sealing materials, prepregs, etc., it is possible to reduce the dielectric constant, the dielectric loss tangent, and the coefficient of thermal expansion. It is possible.
 <樹脂組成物及びその製造方法>
 本発明の樹脂組成物は、電子機器等の電子回路基板、ビルドアップ基板、封止材、プリプレグ等となる樹脂組成物であり、樹脂成分と本発明の中空粒子とを含むものである。このように、樹脂成分に本発明の中空粒子を配合することで、各種電子材料の低誘電率化、低誘電正接化、及び低熱膨張率化が可能となる。樹脂成分の具体例としては、エポキシ樹脂、ポリイミド樹脂、マレイミド樹脂、フェノール樹脂等の熱硬化性樹脂;ポリエチレン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、フッ素樹脂等の熱可塑性樹脂;等が挙げられる。これらの中でも、熱硬化性樹脂が好ましく、エポキシ樹脂がより好ましい。なお、樹脂成分としてエポキシ樹脂を用いる場合は、適宜、アミン類、酸無水物類、イミダゾール類等の硬化剤又は触媒を混合することが好ましい。
<Resin composition and its manufacturing method>
The resin composition of the present invention is a resin composition that serves as an electronic circuit board for electronic devices, a build-up board, a sealing material, a prepreg, or the like, and contains a resin component and the hollow particles of the present invention. Thus, by blending the hollow particles of the present invention with the resin component, it is possible to reduce the dielectric constant, dielectric loss tangent, and thermal expansion coefficient of various electronic materials. Specific examples of the resin component include thermosetting resins such as epoxy resins, polyimide resins, maleimide resins, and phenol resins; thermoplastic resins such as polyethylene resins, acrylic resins, polycarbonate resins, polyarylate resins, and fluorine resins; be done. Among these, thermosetting resins are preferred, and epoxy resins are more preferred. When an epoxy resin is used as the resin component, it is preferable to appropriately mix a curing agent such as amines, acid anhydrides, imidazoles, or the like or a catalyst.
 本発明の樹脂組成物は、前述の中空粒子と樹脂成分を混合することで得ることができる。その配合割合に関しては、所望の誘電特性を有するように適宜調整すればよいが、中空粒子の含有率が1~50重量%となるように配合することが好ましく、5~30重量%であることがより好ましい。樹脂成分が熱硬化性樹脂の場合は、混合後に、室温で又は加熱して硬化させることが好ましい。 The resin composition of the present invention can be obtained by mixing the hollow particles and the resin component described above. The blending ratio may be appropriately adjusted so as to have the desired dielectric properties, but it is preferable that the content of the hollow particles is 1 to 50% by weight, preferably 5 to 30% by weight. is more preferred. When the resin component is a thermosetting resin, it is preferably cured at room temperature or by heating after mixing.
 本発明の樹脂組成物は、低誘電率、低誘電正接、及び低熱膨張率を有することから、電子機器等の電子回路基板、ビルドアップ基板、封止材、プリプレグ等への適用に好適である。 Since the resin composition of the present invention has a low dielectric constant, a low dielectric loss tangent, and a low coefficient of thermal expansion, it is suitable for application to electronic circuit boards such as electronic devices, build-up boards, sealing materials, prepregs, and the like. .
 <中空粒子1の製造>
 撹拌機、2リッターの反応容器、溶剤除去の冷却管、攪拌羽根、温度計、オイルバスを装備した反応装置を準備した。NCO含有量31%のポリメリックMDI(東ソー社製、商品名:ミリオネートMR-200)180gとトルエン180gからなる油系混合液を準備した。脱イオン水1,170gとアクリル系高分子型界面活性剤90g(固形分20%水溶液)からなる水系混合液を準備した。なお、アクリル系高分子型界面活性剤の固形分は、メタクリル酸35%、メチルメタクリレート45%、ヒドロキシエチルメタクリレート9%、ノニルフェノキシポリエトキシ(45モル付加)メタクリレート11%からなる共重合体のナトリウム塩である。
<Production of hollow particles 1>
A reactor equipped with a stirrer, a 2-liter reaction vessel, a cooling tube for solvent removal, a stirring blade, a thermometer, and an oil bath was prepared. An oil-based mixture of 180 g of polymeric MDI having an NCO content of 31% (manufactured by Tosoh Corporation, trade name: Millionate MR-200) and 180 g of toluene was prepared. A water-based mixed liquid consisting of 1,170 g of deionized water and 90 g of acrylic polymeric surfactant (20% solids aqueous solution) was prepared. The solid content of the acrylic polymer surfactant is 35% methacrylic acid, 45% methyl methacrylate, 9% hydroxyethyl methacrylate, and 11% nonylphenoxypolyethoxy (45 mole addition) methacrylate. is salt.
 2リッター容器に、上記の水系混合液を仕込み、さらに上記の油系混合液を加えながら、ホモジナイザー乳化機(シリンダー外径:25mm)で回転速度18,000rpmの乳化速度で2分間乳化して、乳白色液を得た。得られた乳白色液を上記の反応装置に移し、攪拌しながら、オイルバスで液温を約2時間かけて室温から70℃までに徐々に加熱して、イソシアネート基と水、及びイソシアネート基とアクリル系高分子型界面活性剤中のヒドロキシ基の反応を促進させることで、ウレア結合及びウレタン結合を有するポリマーのシェル(殻)が形成され、内部にトルエンを含有した粒子の水分散液となった。当該水分散液を徐々に加熱して約70℃以上でトルエンと水を共沸除去し、さらに約2時間かけて液温を100℃に上昇させてトルエン成分を除去することで、ウレア結合及びウレタン結合を形成する反応を完結させた。 A 2-liter container is charged with the above water-based mixed liquid, and while adding the above-mentioned oil-based mixed liquid, emulsify for 2 minutes at an emulsifying speed of 18,000 rpm with a homogenizer emulsifier (cylinder outer diameter: 25 mm). A milky liquid was obtained. The resulting milky white liquid was transferred to the reaction apparatus described above, and gradually heated from room temperature to 70° C. over about 2 hours in an oil bath while stirring to react isocyanate groups with water, and isocyanate groups with acrylic acid. By promoting the reaction of hydroxy groups in the high-molecular-weight surfactant, a polymer shell having urea bonds and urethane bonds was formed, resulting in an aqueous dispersion of particles containing toluene inside. . The aqueous dispersion is gradually heated to azeotropically remove toluene and water at about 70° C. or higher, and the liquid temperature is raised to 100° C. over about 2 hours to remove the toluene component, thereby forming urea bonds and The reaction to form the urethane linkage was completed.
 室温に冷却して得られた固形分19.0%のスラリー液を深さ約2cmまで皿に流し込み、70℃、24時間で水分を蒸発させることで、白色の塊を得た後、粉砕機で粉砕して白色粉末状の中空粒子1を得た。 A slurry liquid with a solid content of 19.0% obtained by cooling to room temperature is poured into a dish to a depth of about 2 cm, and the water is evaporated at 70 ° C. for 24 hours to obtain a white mass. to obtain white powdery hollow particles 1.
 得られた中空粒子1の平均粒子径(頻度50%のメジアン径)を、レーザー回折/散乱式粒子径分布測定装置(堀場製作所製、商品名:LA-960)を用いて測定したところ、2.52μmであった。 The average particle size (median size at 50% frequency) of the obtained hollow particles 1 was measured using a laser diffraction/scattering particle size distribution analyzer (trade name: LA-960, manufactured by Horiba, Ltd.). 0.52 μm.
 <中空粒子2の製造>
 アクリル系高分子型界面活性剤(固形分20%水溶液)の添加量を45gとし、ホモジナイザー乳化機の回転速度を10,000rpmに変更した以外は、中空粒子1と同様にして、白色粉末状の中空粒子2を得た。得られた中空粒子2の平均粒子径は5.01μmであった。
<Production of hollow particles 2>
White powdery particles were obtained in the same manner as in Hollow Particles 1, except that the amount of acrylic polymer surfactant (20% solids aqueous solution) added was 45 g and the rotation speed of the homogenizer emulsifier was changed to 10,000 rpm. Hollow particles 2 were obtained. The average particle diameter of the obtained hollow particles 2 was 5.01 μm.
 <実施例1>
 内面に離型シートを貼付した厚み1mm×幅30mm×長さ100mmの型枠を作製した。表1の通りに配合した樹脂組成物を前述の型枠に流し込み、約1mm厚になるように均した。その後、室温で3時間、続いて150℃で2時間硬化させた後、得られた樹脂板を型枠から取り出し、厚み0.9mm×幅3mm×長さ80mmのサイズの試料片に加工した。得られた試料片の誘電率及び誘電正接を、空洞共振器法(周波数:10GHz、室温)により測定したところ、表1の通りであった。また、得られた試料片の熱膨張係数を、熱機械分析装置(NETZSCH製、商品名:TMA402F1 Hyperion)を用いたTMA法により測定したところ、表1の通りであった。
<Example 1>
A formwork having a thickness of 1 mm, a width of 30 mm, and a length of 100 mm was prepared with a release sheet attached to the inner surface. The resin composition blended as shown in Table 1 was poured into the mold and leveled to a thickness of about 1 mm. Then, after curing at room temperature for 3 hours and then at 150° C. for 2 hours, the obtained resin plate was removed from the mold and processed into a sample piece having a size of 0.9 mm thick×3 mm wide×80 mm long. The dielectric constant and dielectric loss tangent of the obtained sample piece were measured by the cavity resonator method (frequency: 10 GHz, room temperature), and the results are shown in Table 1. Further, the coefficient of thermal expansion of the obtained sample piece was measured by the TMA method using a thermomechanical analyzer (manufactured by NETZSCH, trade name: TMA402F1 Hyperion).
 実施例1の樹脂組成物の試料片の割断面を走査電子顕微鏡(SEM)で撮影した。図1の通り、エポキシ樹脂中に約2~3μmの粒子径の中空粒子1が無数に存在することが観察された。また、図2では割断された中空粒子1が観察され、中空粒子1の内部には大きな中空構造が存在していることを確認できた。 A fractured surface of a sample piece of the resin composition of Example 1 was photographed with a scanning electron microscope (SEM). As shown in FIG. 1, it was observed that a large number of hollow particles 1 having a particle diameter of about 2 to 3 μm were present in the epoxy resin. In addition, in FIG. 2, the fractured hollow particles 1 were observed, and it was confirmed that a large hollow structure was present inside the hollow particles 1 .
 ここで、中空粒子1の中空率は、下記の通りに定義することができる。
  中空粒子1の中空率(%)=(中空粒子1の内径/中空粒子1の外径)×100
 図2の割断された中空粒子1の内径(シェルの内径)及び外径(シェルの外径)を測定すると、それぞれ、2.37μm及び2.89μmであった。これらの測定値を上述の中空率の式に代入すると、下記の通りとなる。
  中空粒子1の中空率(%)=(2.37/2.89)×100=55
 以上より、中空粒子1の中空率は約55%であることが分かった。
Here, the hollowness of the hollow particles 1 can be defined as follows.
Hollow ratio (%) of hollow particles 1 = (inner diameter of hollow particles 1/outer diameter of hollow particles 1) 3 × 100
The inner diameter (inner diameter of the shell) and the outer diameter (outer diameter of the shell) of the cleaved hollow particles 1 in FIG. 2 were measured to be 2.37 μm and 2.89 μm, respectively. Substituting these measured values into the above formula for the hollowness yields the following.
Hollow ratio (%) of hollow particles 1 = (2.37/2.89) 3 × 100 = 55
From the above, it was found that the hollowness of the hollow particles 1 was about 55%.
 <実施例2>
 中空粒子1に代えて中空粒子2を14.2g配合し、硬化剤Aに代えて硬化剤Bを28.3g、硬化剤Cを0.8g配合した以外は、実施例1と同様にして、試料片を作製した。得られた試料片の誘電率、誘電正接、及び熱膨張係数は、表1の通りであった。また、実施例2の樹脂組成物の試料片の割断面を走査電子顕微鏡(SEM)で撮影したところ、中空粒子2の中空率は約56%であることが分かった。
<Example 2>
In the same manner as in Example 1, except that 14.2 g of hollow particles 2 were blended instead of hollow particles 1, 28.3 g of curing agent B and 0.8 g of curing agent C were blended instead of curing agent A. A sample piece was produced. Table 1 shows the dielectric constant, dielectric loss tangent, and thermal expansion coefficient of the obtained sample piece. Further, when the cut surface of the sample piece of the resin composition of Example 2 was photographed with a scanning electron microscope (SEM), it was found that the hollowness of the hollow particles 2 was about 56%.
 <実施例3>
 2.0gの中空粒子1をエポキシ希釈剤8.0gに分散させた。50.0gのエポキシ樹脂Bを約120℃に加熱・溶融させた後、前記の分散液10.0gに硬化剤Cを0.2g添加・混合した。混合液を実施例1と同様の型枠に流し込み、120℃で1時間硬化させた後、実施例1と同様にして、試料片を製造した。得られた試料片の誘電率及び誘電正接は、表1の通りであった。
<Example 3>
2.0 g of hollow particles 1 were dispersed in 8.0 g of epoxy diluent. After heating and melting 50.0 g of epoxy resin B to about 120° C., 0.2 g of curing agent C was added to and mixed with 10.0 g of the above dispersion. The mixed liquid was poured into the same mold as in Example 1 and cured at 120° C. for 1 hour. Table 1 shows the dielectric constant and dielectric loss tangent of the obtained sample piece.
 <実施例4>
 50.0gのエポキシ樹脂Cを約100℃に加熱・溶融させた後、中空粒子2を10.0g、硬化剤Cを0.2g添加・混合した。混合液を実施例1と同様の型枠に流し込み、100℃で1時間、150℃で2時間硬化させた後、実施例1と同様にして、試料片を製造した。得られた試料片の誘電率及び誘電正接は、表1の通りであった。
<Example 4>
After heating and melting 50.0 g of epoxy resin C to about 100° C., 10.0 g of hollow particles 2 and 0.2 g of curing agent C were added and mixed. The mixed liquid was poured into the same mold as in Example 1 and cured at 100° C. for 1 hour and at 150° C. for 2 hours. Table 1 shows the dielectric constant and dielectric loss tangent of the obtained sample piece.
 <比較例1>
 中空粒子1を配合しなかった以外は、実施例1と同様にして、試料片を作製した。得られた試料片の誘電率、誘電正接、及び熱膨張係数は、表1の通りであった。
<Comparative Example 1>
A sample piece was prepared in the same manner as in Example 1, except that the hollow particles 1 were not blended. Table 1 shows the dielectric constant, dielectric loss tangent, and thermal expansion coefficient of the obtained sample piece.
 <比較例2>
 中空粒子2を配合しなかった以外は、実施例2と同様にして、試料片を作製した。得られた試料片の誘電率、誘電正接、及び熱膨張係数は、表1の通りであった。
<Comparative Example 2>
A sample piece was prepared in the same manner as in Example 2, except that the hollow particles 2 were not blended. Table 1 shows the dielectric constant, dielectric loss tangent, and thermal expansion coefficient of the obtained sample piece.
 <比較例3>
 中空粒子1を配合しなかった以外は、実施例3と同様にして、試料片を作製した。得られた試料片の誘電率及び誘電正接は、表1の通りであった。
<Comparative Example 3>
A sample piece was prepared in the same manner as in Example 3, except that the hollow particles 1 were not blended. Table 1 shows the dielectric constant and dielectric loss tangent of the obtained sample piece.
 <比較例4>
 中空粒子2を配合しなかった以外は、実施例4と同様にして、試料片を作製した。得られた試料片の誘電率及び誘電正接は、表1の通りであった。
<Comparative Example 4>
A sample piece was prepared in the same manner as in Example 4, except that the hollow particles 2 were not blended. Table 1 shows the dielectric constant and dielectric loss tangent of the obtained sample piece.
Figure JPOXMLDOC01-appb-T000002
エポキシ樹脂A:三菱ケミカル製、商品名:jER 828
エポキシ樹脂B:日本化薬製、商品名:WHR-991S
エポキシ樹脂C:三菱ケミカル製、商品名:jER YX-7700
エポキシ希釈剤:四日市合成製、商品名:エポゴーゼーHD(D)
硬化剤A(アミン類):三谷ペイント製、商品名:ボウジンテックス#8000
硬化剤B(酸無水物類):三菱ケミカル製、商品名:jER YH306
硬化剤C(イミダゾール類):2-エチル-4-メチルイミダゾール、東京化成工業製
Figure JPOXMLDOC01-appb-T000002
Epoxy resin A: Mitsubishi Chemical, trade name: jER 828
Epoxy resin B: manufactured by Nippon Kayaku, trade name: WHR-991S
Epoxy resin C: manufactured by Mitsubishi Chemical, trade name: jER YX-7700
Epoxy diluent: Yokkaichi Gosei, trade name: Epogoze HD (D)
Curing agent A (amines): manufactured by Mitani Paint, trade name: Bojintex #8000
Curing agent B (acid anhydrides): manufactured by Mitsubishi Chemical, trade name: jER YH306
Curing agent C (imidazoles): 2-ethyl-4-methylimidazole, manufactured by Tokyo Chemical Industry Co., Ltd.
 以上の結果より、実施例で得られた樹脂組成物は、対応する比較例で得られた樹脂組成物に比べて、誘電率、誘電正接、及び熱膨張係数を大きく低減できることが分かった。 From the above results, it was found that the resin composition obtained in the example can greatly reduce the dielectric constant, dielectric loss tangent, and thermal expansion coefficient compared to the resin composition obtained in the corresponding comparative example.

Claims (17)

  1.  ウレア結合及び/又はウレタン結合を有するポリマーで形成されたシェル部と、前記シェル部に囲まれた中空部とを有する中空粒子を製造する方法であって、
    (a)複数のイソシアネート基を有するイソシアネート化合物と疎水性溶剤を混合して、油系混合液を得る工程と、
    (b)複数のアミノ基又はヒドロキシ基を有する活性水素化合物及び/又は水を混合して、水系混合液を得る工程と、
    (c)前記水系混合液と前記油系混合液を混合して、前記水系混合液中に前記油系混合液が分散した乳化液を得る工程と、
    (d)前記乳化液中で、前記イソシアネート化合物と前記活性水素化合物及び/又は前記水とを反応させて、ウレア結合及び/又はウレタン結合を有するポリマーを形成する工程と
    を有し、
    下記(1)及び/又は(2):
    (1)前記イソシアネート化合物が、ポリメリックMDIである
    (2)前記活性水素化合物が、アクリル系ポリオールである
    の条件を満たす
    中空粒子の製造方法。
    A method for producing hollow particles having a shell portion formed of a polymer having a urea bond and/or a urethane bond and a hollow portion surrounded by the shell portion,
    (a) mixing an isocyanate compound having a plurality of isocyanate groups and a hydrophobic solvent to obtain an oil-based mixture;
    (b) mixing an active hydrogen compound having a plurality of amino groups or hydroxy groups and/or water to obtain an aqueous mixture;
    (c) mixing the water-based mixed liquid and the oil-based mixed liquid to obtain an emulsified liquid in which the oil-based mixed liquid is dispersed in the water-based mixed liquid;
    (d) reacting the isocyanate compound with the active hydrogen compound and/or the water in the emulsified liquid to form a polymer having a urea bond and/or a urethane bond;
    (1) and/or (2) below:
    (1) The isocyanate compound is polymeric MDI. (2) The active hydrogen compound is an acrylic polyol.
  2.  前記疎水性溶剤が、芳香族炭化水素である
    請求項1に記載の中空粒子の製造方法。
    2. The method for producing hollow particles according to claim 1, wherein the hydrophobic solvent is an aromatic hydrocarbon.
  3.  前記芳香族炭化水素が、トルエン及び/又はキシレンである
    請求項2に記載の中空粒子の製造方法。
    3. The method for producing hollow particles according to claim 2, wherein the aromatic hydrocarbon is toluene and/or xylene.
  4.  前記工程(c)で乳化剤を用いる
    請求項1~3のいずれか1項に記載の中空粒子の製造方法。
    4. The method for producing hollow particles according to any one of claims 1 to 3, wherein an emulsifier is used in the step (c).
  5.  前記中空粒子の平均粒子径(メジアン径)が、0.05~50μmである
    請求項1~4のいずれか1項に記載の中空粒子の製造方法。
    The method for producing hollow particles according to any one of claims 1 to 4, wherein the hollow particles have an average particle diameter (median diameter) of 0.05 to 50 µm.
  6.  前記中空粒子の中空率が、10~90%である
    請求項1~5のいずれか1項に記載の中空粒子の製造方法。
    The method for producing hollow particles according to any one of claims 1 to 5, wherein the hollow particles have a hollowness of 10 to 90%.
  7.  請求項1~6のいずれか1項に記載の方法により中空粒子を得る工程と、
    前記中空粒子と樹脂成分を混合する工程と
    を有する
    樹脂組成物の製造方法。
    obtaining hollow particles by the method according to any one of claims 1 to 6;
    A method for producing a resin composition, comprising a step of mixing the hollow particles and a resin component.
  8.  前記中空粒子の含有率が、1~50重量%である
    請求項7に記載の樹脂組成物の製造方法。
    8. The method for producing a resin composition according to claim 7, wherein the content of the hollow particles is 1 to 50% by weight.
  9.  前記樹脂成分が、熱硬化性樹脂である
    請求項7又は8に記載の樹脂組成物の製造方法。
    The method for producing a resin composition according to claim 7 or 8, wherein the resin component is a thermosetting resin.
  10.  前記熱硬化性樹脂が、エポキシ樹脂である
    請求項9に記載の樹脂組成物の製造方法。
    The method for producing a resin composition according to claim 9, wherein the thermosetting resin is an epoxy resin.
  11.  複数のイソシアネート基を有するイソシアネート化合物と、複数のアミノ基又はヒドロキシ基を有する活性水素化合物及び/又は水との反応により得られる、ウレア結合及び/又はウレタン結合を有するポリマーで形成されたシェル部と、前記シェル部に囲まれた中空部とを有する中空粒子であって、
    下記(1)及び/又は(2):
    (1)前記イソシアネート化合物が、ポリメリックMDIである
    (2)前記活性水素化合物が、アクリル系ポリオールである
    の条件を満たす
    中空粒子。
    a shell portion formed of a polymer having a urea bond and/or a urethane bond obtained by reacting an isocyanate compound having a plurality of isocyanate groups with an active hydrogen compound having a plurality of amino groups or hydroxy groups and/or water; , and a hollow portion surrounded by the shell portion,
    (1) and/or (2) below:
    (1) The isocyanate compound is polymeric MDI. (2) The active hydrogen compound is an acrylic polyol.
  12.  平均粒子径(メジアン径)が、0.05~50μmである
    請求項11に記載の中空粒子。
    12. The hollow particles according to claim 11, which have an average particle size (median size) of 0.05 to 50 μm.
  13.  中空率が、10~90%である
    請求項11又は12に記載の中空粒子。
    Hollow particles according to claim 11 or 12, which have a hollowness of 10 to 90%.
  14.  樹脂成分と、請求項11~13のいずれか1項に記載の中空粒子とを含む
    樹脂組成物。
    A resin composition comprising a resin component and the hollow particles according to any one of claims 11 to 13.
  15.  前記中空粒子の含有率が、1~50重量%である
    請求項14に記載の樹脂組成物。
    15. The resin composition according to claim 14, wherein the content of said hollow particles is 1 to 50% by weight.
  16.  前記樹脂成分が、熱硬化性樹脂である
    請求項14又は15に記載の樹脂組成物。
    The resin composition according to claim 14 or 15, wherein the resin component is a thermosetting resin.
  17.  前記熱硬化性樹脂が、エポキシ樹脂である
    請求項16に記載の樹脂組成物。
    17. The resin composition according to claim 16, wherein said thermosetting resin is an epoxy resin.
PCT/JP2022/002990 2021-02-01 2022-01-27 Hollow particles and method for producing same, resin composition containing said hollow particles and method for producing same WO2022163738A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-014173 2021-02-01
JP2021014173A JP6924533B1 (en) 2021-02-01 2021-02-01 Hollow particles and a method for producing the same, and a resin composition containing the hollow particles and a method for producing the same.

Publications (1)

Publication Number Publication Date
WO2022163738A1 true WO2022163738A1 (en) 2022-08-04

Family

ID=77364519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002990 WO2022163738A1 (en) 2021-02-01 2022-01-27 Hollow particles and method for producing same, resin composition containing said hollow particles and method for producing same

Country Status (3)

Country Link
JP (1) JP6924533B1 (en)
TW (1) TW202244095A (en)
WO (1) WO2022163738A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188897A1 (en) * 2022-03-30 2023-10-05 根上工業株式会社 Hollow particle and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008750A (en) * 2004-06-22 2006-01-12 Matsushita Electric Works Ltd Electrically insulating resin composition, prepreg, laminated sheet and multilayer printed wiring board
JP2006326457A (en) * 2005-05-25 2006-12-07 Casio Electronics Co Ltd Hollow microcapsule and its production method
JP2007126533A (en) * 2005-11-02 2007-05-24 Sanyo Chem Ind Ltd Method for producing hollow resin particle
JP2008031409A (en) * 2006-06-27 2008-02-14 Matsushita Electric Works Ltd Low dielectric resin composition, prepreg, metal-clad laminate, printed circuit board
JP2019034283A (en) * 2017-08-18 2019-03-07 三井化学株式会社 Hollow resin particle, heat-sensitive recording material and manufacturing method of hollow resin particle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008750A (en) * 2004-06-22 2006-01-12 Matsushita Electric Works Ltd Electrically insulating resin composition, prepreg, laminated sheet and multilayer printed wiring board
JP2006326457A (en) * 2005-05-25 2006-12-07 Casio Electronics Co Ltd Hollow microcapsule and its production method
JP2007126533A (en) * 2005-11-02 2007-05-24 Sanyo Chem Ind Ltd Method for producing hollow resin particle
JP2008031409A (en) * 2006-06-27 2008-02-14 Matsushita Electric Works Ltd Low dielectric resin composition, prepreg, metal-clad laminate, printed circuit board
JP2019034283A (en) * 2017-08-18 2019-03-07 三井化学株式会社 Hollow resin particle, heat-sensitive recording material and manufacturing method of hollow resin particle

Also Published As

Publication number Publication date
TW202244095A (en) 2022-11-16
JP6924533B1 (en) 2021-08-25
JP2022117594A (en) 2022-08-12

Similar Documents

Publication Publication Date Title
US9845245B2 (en) Foams of graphene, method of making and materials made thereof
CN101379108B (en) Microcapsule based harderner for epoxy resin, masterbatch-based hardenercomposition for epoxy resin, one-part epoxy resin composition, and processed good
US7022377B2 (en) Method for producing porous polyimide resin and porous polymide resin
WO2022163738A1 (en) Hollow particles and method for producing same, resin composition containing said hollow particles and method for producing same
JP4058672B2 (en) Epoxy resin composition and cured product thereof
WO2010122995A1 (en) Imidazole compound-containing microcapsulated composition, curable composition using same, and masterbatch type curing agent
TW200300149A (en) Manufacture of prepregs and laminates with relatively low dielectric constant for printed circuit boards
CN106867158A (en) The non-aqueous dispersoid of fluorine resin, containing the thermally curable resin composition of fluorine resin and its solidfied material and adhesive composite
EP0193068A1 (en) One liquid type epoxy resin composition
JP3168016B2 (en) Hardener masterbatch for epoxy resin
JP2006291053A (en) Method for producing latent curing agent
JP3270774B2 (en) Latent curing agent for spherical epoxy resin and method for producing the same
CN109912932A (en) A kind of halogen-free adhesive of high CTI value and its preparation method and application
CN111269535B (en) Water-based epoxy resin graphene composite material, preparation method and application
JP2017019977A (en) Method for producing epoxy resin composition
JP4301044B2 (en) Prepreg and laminate manufacturing method
JP3912302B2 (en) Manufacturing method of epoxy resin varnish, manufacturing method of prepreg, manufacturing method of laminated board and printed wiring board
WO2023106322A1 (en) Hollow particles, method for producing hollow particles, and resin composition
US6416625B1 (en) Manufacturing method of fluoro based composite boards
CN110325565B (en) Thermosetting resin composition
JPS59112096A (en) Reinforcement of corugated board
JP3582770B2 (en) Manufacturing method of laminated board
CN111393801A (en) Water-based epoxy resin graphene composite material, preparation method and application
WO2024038848A1 (en) Maleimide-modified styrenic elastomer, and method for producing maleimide-modified styrenic elastomer
JP2000297156A (en) True-sphere resin particle dispersion and preparation thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745957

Country of ref document: EP

Kind code of ref document: A1