WO2022163492A1 - Polarizing plate and display device - Google Patents

Polarizing plate and display device Download PDF

Info

Publication number
WO2022163492A1
WO2022163492A1 PCT/JP2022/001999 JP2022001999W WO2022163492A1 WO 2022163492 A1 WO2022163492 A1 WO 2022163492A1 JP 2022001999 W JP2022001999 W JP 2022001999W WO 2022163492 A1 WO2022163492 A1 WO 2022163492A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
optical film
polarizer
refractive index
polarizing plate
Prior art date
Application number
PCT/JP2022/001999
Other languages
French (fr)
Japanese (ja)
Inventor
愛実 高間
光星 島田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2022578303A priority Critical patent/JPWO2022163492A1/ja
Publication of WO2022163492A1 publication Critical patent/WO2022163492A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a polarizing plate and a display device.
  • a liquid crystal display device having a liquid crystal panel in which a light source side polarizing plate, a liquid crystal cell and a viewing side polarizing plate are provided in this order, and a light source for irradiating the liquid crystal panel with light is generally known.
  • various optical films are used for the purpose of protecting polarizers contained in polarizing plates, widening the viewing angle, improving display characteristics, and the like.
  • cellulose ester resins and polycarbonate resins have been used as such optical film materials.
  • JP-A-2016-79210 discloses a stretched film layer made of a thermoplastic resin containing a polymer having a molecular weight of a predetermined value or more, A multilayer film having a cured layer of a coating film of a polyurethane-containing coating liquid provided on at least one surface of the stretched film layer is disclosed. Further, Japanese Patent Application Laid-Open No. 2016-79210 discloses a polarizing plate having the multilayer film and a liquid crystal display device having the multilayer film or a polarizing plate having the same. Further, Japanese Patent Laid-Open No. 2016-79210 also discloses that the multilayer film has excellent adhesion to the polarizer included in the polarizing plate.
  • the present inventors have discovered that, depending on the type of optical film used in the display device, display unevenness recognized as screen roughness is observed when observed from an oblique direction.
  • display unevenness recognized as screen roughness is observed when observed from an oblique direction.
  • the frequency and degree of display unevenness that is recognized as luminance unevenness differs between display devices. It is confirmed that the variation in quality becomes large.
  • the display unevenness as described above cannot be solved by the multilayer film described in JP-A-2016-79210 or the display device using the polarizing plate having the same, and there is room for improvement.
  • an object of the present invention is to provide means for reducing display unevenness.
  • the above problems of the present invention can be solved by the following means:
  • the polarizing plate has a polarizer and an optical film,
  • the optical film has at least a substrate, the substrate contains at least a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1);
  • Formula (1) 0 ⁇ (refractive index of the optical film ⁇ refractive index of the polarizer) ⁇ 0.02
  • a display device having a polarizing plate and a display device unit
  • the polarizing plate has a polarizer and an optical film
  • the optical film has at least a substrate, the substrate contains at least a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1);
  • Formula (1) 0 ⁇ (refractive index of the optical film ⁇ refractive index of the polarizer) ⁇ 0.02
  • a display device wherein the RMS granularity of a display image photographed from a position inclined by 10° from the display surface toward the viewing side when the display device displays black is 0.30 to 1.30.
  • a polarizing plate having a polarizer and an optical film The optical film has at least a substrate, the substrate contains at least a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1); Formula (1) 0 ⁇ (refractive index of the optical film ⁇ refractive index of the polarizer) ⁇ 0.02
  • the RMS granularity of the displayed image taken from a position inclined by 10° from the display surface to the viewing side when the display device displays black is 0.30 to 1.34.
  • a polarizing plate having a polarizer and an optical film The optical film has at least a substrate, the substrate contains at least a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1); Formula (1) 0 ⁇ (refractive index of the optical film ⁇ refractive index of the polarizer) ⁇ 0.02
  • the RMS granularity of a display image taken from a position inclined by 10° from the display surface to the viewing side when the display device displays black is 0.30 to 1.30.
  • FIG. 4 is a schematic diagram for explaining imaging positions for evaluation of RMS granularity; RMS granularity in a direction rotated +45° along the display surface with respect to the absorption axis direction of the polarizer of the polarizing plate (viewing side polarizing plate) arranged on the viewing side (observer side, front side) of the display cell
  • FIG. 4 is a schematic diagram for explaining imaging positions for evaluation of degree
  • 1 is a schematic diagram showing an example of a basic configuration of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing another example of the basic configuration of the liquid crystal display device according to one embodiment of the present invention. It is a photographed image of display unevenness of the liquid crystal display device 7 according to the embodiment of the present invention. It is the photographed image of the display unevenness of the liquid crystal display device 13 according to the comparative example of the present invention.
  • X to Y means "X or more and Y or less”.
  • operations, physical properties, etc. are measured under the conditions of room temperature (20 to 25° C.)/relative humidity of 40 to 50% RH.
  • (co)polymer is a generic term including copolymers and homopolymers.
  • (meth)acrylate is a generic term for acrylate and methacrylate.
  • compounds containing (meth) such as (meth)acrylic acid are collective names for compounds having "meta” in their names and compounds not having "meta” in their names.
  • One aspect of the present invention is a display device comprising a polarizing plate and a display device unit, wherein the polarizing plate comprises a polarizer and an optical film, the optical film comprises at least a substrate, and the substrate comprises at least contains a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1); Formula (1) 0 ⁇ (refractive index of the optical film ⁇ refractive index of the polarizer) ⁇ 0.02
  • the present invention relates to a display device in which the RMS granularity of a display image photographed from a position inclined by 10° from the display surface toward the viewing side when the display device displays black is 0.30 to 1.34.
  • a preferred embodiment of the present invention is a display device comprising a polarizing plate and a display device unit, wherein the polarizing plate comprises a polarizer and an optical film, the optical film comprises at least a substrate, and the substrate contains at least a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1), Formula (1) 0 ⁇ (refractive index of the optical film ⁇ refractive index of the polarizer) ⁇ 0.02
  • the present invention relates to a display device in which the RMS granularity of a display image photographed from a position inclined by 10° from the display surface toward the viewing side when the display device displays black is 0.30 to 1.30.
  • the inventors presume the mechanism by which the present invention solves the problem as follows.
  • the present inventors found that display unevenness is reduced when the refractive index difference between the optical film and the polarizer (refractive index of the optical film - refractive index of the polarizer) is 0 or more. I found out.
  • the present inventors have found that the RMS granularity of a photographed image photographed from a specific direction of the display device is set to a specific range, and the optical film in the polarizing plate of the display device and the polarizing By satisfying a predetermined relationship between the difference in refractive index between the two elements, the display unevenness recognized as unevenness in brightness, which appears as the variation in display quality between display devices, can be satisfactorily suppressed, while the display unevenness recognized as roughness of the screen can be suppressed. found to be reduced. It is believed that the reason for this is that the display device of the present invention slightly scatters the light emitted from the display device so as to cancel the interference of light between pixel grids. Although the details are unknown, the above RMS granularity and the above refractive index difference between the optical film and the polarizer influence the scattering properties of the light particularly favorably in eliminating light interference between the pixel gratings. considered to change.
  • the RMS granularity is one of the graininess evaluation indexes, and is known as the root mean square (RMS) representation of the density variation of a captured image.
  • RMS root mean square
  • the RMS granularity (RMS granularity of the display device) of a display image taken from a position tilted 10° from the display surface to the viewing side when the display device displays black is 0.30 to 1.34, preferably 0.30 to 1.30.
  • the above RMS granularity is the polarizer of the polarizing plate (if there are more than one, one of the polarizing plates to be noticed, preferably the viewing side polarizing plate) when the display device is displayed in black. +45°, +135°, +225° (-135°), and +315° (-45°) along the display surface with respect to the absorption axis direction of 10° from the display surface to the viewing side in each direction It represents the average value of the RMS granularity (RMS granularity at a specific angle) of a display image taken from an oblique position.
  • the average value of the RMS granularities of the individual display images photographed from the above four positions is also simply referred to as "the RMS granularity of the display device.”
  • the RMS granularity of each display image taken from a position tilted 10° from the display surface toward the viewing side at a specific angle along the display surface is also simply referred to as "the RMS granularity at a specific angle”.
  • the RMS granularity of the display device is less than 0.30, variations in display quality between display devices, particularly display unevenness recognized as luminance unevenness, increase. Further, when the RMS granularity of the display device exceeds 1.30, particularly significantly exceeds 1.34, display unevenness, particularly display unevenness recognized as screen roughness, increases.
  • a position inclined by 10° from the display surface to the viewing side means that the plane on which the display surface of the display device exists is 0°, and the position used as a reference for photographing the display surface is represents the position on a straight line forming an angle of 10° toward the normal direction (vertical direction) of the observer side (viewing side, front side).
  • FIG. 1 is a schematic diagram for explaining imaging positions for evaluating RMS granularity.
  • a reference position O is a position used as a reference for photographing the display surface 1 of the display device.
  • the plane on which the display surface 1 exists is set to 0°, and the normal direction (vertical direction) of the display surface 1 to the observer side (visible side, front side) is 10° toward the Z direction side.
  • the position on the straight line L forming the angle is "the position inclined 10 degrees from the display surface toward the viewing side”.
  • a position inclined from the display surface to the viewing side other than this angle is also considered in the same manner.
  • the display device unit includes a display cell, and at least one polarizing plate is arranged on the visible side (observer side, front side) of the display cell of the display device unit. is preferred. Further, it is more preferable that the number of polarizing plates arranged on the viewing side (observer side, front side) of the display cell of the display device unit is one.
  • the polarizing plate when the polarizing plate is arranged on the visible side (observer side, front side) of the display cell of the display device unit, when the display device is displayed in black, , a position inclined by 10° from the display surface to the viewing side in each of the directions rotated +45°, +135°, +225°, and +315° along the display surface with respect to the absorption axis direction of the polarizer of the polarizing plate
  • the average value of the RMS granularity of the display image taken from the display device is preferably 0.30 to 1.34, more preferably 0.30 to 1.30.
  • RMS granularity (RMS granularity at a specific angle) of a display image taken from a position inclined by 10° are preferably 0.30 to 1.34, particularly preferably 0.30 to 1.30. is more particularly preferred.
  • the "directions rotated +45°, +135°, +225°, and +315° along the display surface with respect to the absorption axis direction of the polarizer" of the viewer-side polarizing plate are respectively the display surfaces of the display device.
  • the absorption axis direction of the polarizer of the polarizing plate on the viewing side (observer side, front side) of the display cell is 0 °
  • the counterclockwise direction is positive +45 °, +135 °, +225 ° ( ⁇ 135°), and +315° ( ⁇ 45°) represent orientations on the display surface rotated.
  • FIG. 2 shows a direction rotated +45° along the display surface with respect to the absorption axis direction of the polarizer of the polarizing plate (viewing-side polarizing plate) arranged on the viewing side (observer side, front side) of the display cell.
  • 3 is a schematic diagram for explaining imaging positions for evaluation of RMS granularity in FIG.
  • a reference position O is a position used as a reference for photographing the display surface 1 of the display device.
  • the direction orthogonal to the absorption axis direction a of the polarizer of the polarizing plate arranged on the viewing side of the display cell on the display surface 1 is the X direction
  • the direction of the absorption axis direction a of the polarizer is the Y direction.
  • a direction orthogonal to the X direction and the Y direction and on the viewing side (observer side, front side) with respect to the display surface 1 is defined as the Z direction.
  • the Z direction is the normal direction (vertical direction) of the display surface 1 on the observer side (visible side, front side).
  • the position inclined by 10° from the display surface to the viewing side in the direction rotated +45° along the display surface with respect to the absorption axis direction of the polarizer of the viewing side polarizing plate refers to the following position. show.
  • the plane on which the display surface 1 exists is set to 0°, and the Z direction side, which is the normal direction (perpendicular direction) to the viewer side (viewing side, front side) of the display surface 1
  • the position on the straight line L (45) forming an angle of 10° toward the viewer is "visible from the display surface in a direction rotated +45° along the display surface with respect to the absorption axis direction of the polarizer of the viewing side polarizing plate. position inclined 10° to the side”.
  • positions inclined by 10° from the display surface to the viewing side in directions rotated +135°, +225°, and +315° along the display surface with respect to the absorption axis direction of the polarizer of the viewing side polarizing plate are also considered in the same way as +45° above.
  • other angles of the viewer-side polarizing plate with respect to the absorption axis direction of the polarizer are also considered in the same way.
  • the display device when the polarizing plate is arranged on the viewing side (observer side, front side) of the display cell of the display device unit, the display When the device displays black, 10 degrees from the display surface to the viewing side in the direction rotated at 45° intervals from 0° to +360° along the display surface with respect to the absorption axis direction of the polarizer of the polarizing plate.
  • ° All of the RMS granularity of a display image taken from an oblique position (RMS granularity at a specific angle) is particularly preferably 0.30 to 1.34, more preferably 0.30 to 1.30. More particularly preferred.
  • the RMS granularity is measured by measuring the polarizer of the viewing side polarizing plate located closest to the display cell. may be performed with reference to the absorption axis direction of .
  • the display device unit includes a display cell and at least one polarizing plate is arranged on the viewing side (observer side, front side) of the display cell of the display device unit
  • at least one polarizing plate is arranged on the display cell.
  • the display device unit includes a display cell
  • the polarizing plate is not arranged on the viewing side (observer side, front side) of the display cell of the display device unit
  • At least one polarizing plate may be arranged only on the opposite side (rear side) of the viewing side of the display cell of the display device unit.
  • the RMS granularity may be measured with reference to the absorption axis direction of the polarizer of the polarizing plate arranged on the back side.
  • the absorption axis direction of the polarizer of the back side polarizing plate arranged at the position closest to the display cell is the reference. And it is sufficient.
  • the RMS granularity of the display device and the RMS granularity of the specific angle are not particularly limited as long as they are within the above ranges, but are preferably 0.30 to 1.00, more preferably 0.40 to 0.70. is more preferable, and 0.40 to 0.60 is even more preferable. Within these ranges, display unevenness is further reduced.
  • RMS granularity can be measured as follows.
  • Step 1 Image acquisition ISO 25 using a camera (e.g., Sony ⁇ 7sII) and a lens (e.g., Canon EF 70-200mm F2.8L IS II USM) , 600 and F 2.8, the display surface of the liquid crystal display device is photographed from a position inclined by 10° from the display surface to the viewing side in a dark room. Note that the distance between the camera and the reference position for photographing the display surface is 50 cm. In addition, you may perform imaging
  • a camera e.g., Sony ⁇ 7sII
  • a lens e.g., Canon EF 70-200mm F2.8L IS II USM
  • Step 2 Analysis of Obtained Image
  • RMS granularity is calculated from the photographed image according to the following procedure: 1. Read the obtained photographed image as two-dimensional (planar) data using free software (imageJ); 2. Set a rectangular evaluation area of 2.8 cm x 4 cm in the actual captured image; 3. Grayscale using free software (ImageJ); 4. If necessary, perform background correction of the two-dimensional data read in the evaluation area; 5.
  • RMS granularity is calculated from standard deviation ⁇ of gray values (pixel values) in gray scale.
  • this standard deviation ⁇ be the RMS granularity of the displayed image at this measurement angle (angle along the display surface) (RMS granularity at a specific angle); 6, +45°, +135°, +225° ( -135°) and +315° (-45°), the average of the RMS granularity (RMS granularity at a specific angle) of the display image taken from a position tilted 10° from the display surface to the viewing side
  • a value (arithmetic mean value) is calculated and taken as the RMS granularity of the display device.
  • the free software ImageJ is ImageJ1.32S created by WayneRasband.
  • software such as WinROOF may be used as the software used in 1 above.
  • the background correction is output as different brightness, or it gradually changes from the left to the right of the image. This is done when the image is output as a result of brightening, and the density gradient is approximated by a polynomial to cancel the density gradient mathematically.
  • the standard deviation ⁇ of gray values in grayscale is calculated by the following method: A population of N gray value data x 1 , x 2 , .
  • variance ⁇ 2 is obtained by the following formula (II).
  • the RMS granularity of the display device varies depending on the optical properties such as the refractive index of the cycloolefin resin substrate (substrate containing the cycloolefin resin) described later, the optional functional layer described later, and the polarizer. do.
  • the method for controlling the refractive index of the cycloolefin resin substrate (substrate containing the cycloolefin resin), the optional functional layer, and the optical film containing these will be described later.
  • the RMS granularity of the display device decreases as the difference between the refractive index of the optical film containing the cycloolefin resin substrate (the substrate containing the cycloolefin resin) and the refractive index of the polarizer decreases.
  • the RMS granularity of the display should be in the optimum range.
  • a display device includes one or more polarizing plates. At least one of the polarizing plates included in the display device according to one embodiment of the invention includes a polarizer and one or more optical films. Moreover, it is preferable that all of the polarizing plates included in the display device according to one embodiment of the present invention include a polarizer and one or more optical films.
  • At least one of the polarizing plates included in the display device according to one embodiment of the present invention includes one or more optical films.
  • the number of optical films contained in the polarizing plate is not particularly limited, but is preferably two or more, particularly preferably two.
  • the polarizing plate preferably has at least one optical film on each of both surfaces of the polarizer, and preferably has one optical film on each of both surfaces of the polarizer.
  • At least one of the polarizing plates included in the display device according to one embodiment of the present invention includes an optical film containing a substrate containing a cycloolefin resin.
  • the optical film may be composed only of a substrate containing a cycloolefin resin, or may further have one or more functional layers described later on a substrate containing a cycloolefin resin. .
  • an optical film containing a substrate containing a cycloolefin resin may be arranged on one surface of the polarizer, It may be arranged on both sides.
  • At least one of the optical films included in the polarizing plate includes a base material containing a cycloolefin resin.
  • at least one of the optical films arranged on one surface of the polarizer preferably includes a substrate containing a cycloolefin resin.
  • one or more optical films may be arranged on the other surface of the polarizer, or no optical film may be arranged.
  • one optical film is disposed on one surface of the polarizer of the polarizing plate, and that the optical film includes a base material containing a cycloolefin resin.
  • one or more optical films may be arranged on the other surface of the polarizer, or no optical film may be arranged, but one other optical film described later is arranged. preferably.
  • the base material containing the cycloolefin resin is also simply referred to as the "cycloolefin resin base material".
  • a base material containing a cycloolefin resin includes a cycloolefin resin.
  • the cycloolefin resin is not particularly limited as long as it is a (co)polymer containing a structural unit having an alicyclic structure.
  • a (co)polymer containing a structural unit having an alicyclic structure may have an alicyclic structure in its main chain or may have an alicyclic structure in its side chain.
  • a (co)polymer having an alicyclic structure in the main chain is preferable from the viewpoint of refractive index control.
  • Alicyclic structures include, for example, saturated alicyclic hydrocarbon (cycloalkane) structures, unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structures, and the like. Among them, a cycloalkane structure or a cycloalkene structure is preferable, and a cycloalkane structure is particularly preferable, from the viewpoint of mechanical strength, heat resistance, and the like.
  • the number of carbon atoms constituting the alicyclic structure is not particularly limited, it is preferably 4 or more, more preferably 5 or more per alicyclic structure. If it is the said range, storage stability will become better. In addition, the number of carbon atoms constituting the alicyclic structure is preferably 30 or less, more preferably 20 or less, and even more preferably 15 or less per alicyclic structure. . If it is the said range, the handleability of a film will become more favorable.
  • cycloolefin resin a (co)polymer containing structural units derived from a cycloolefin monomer is preferable.
  • a cycloolefin monomer is a compound having a ring structure formed by carbon atoms and having a polymerizable carbon-carbon double bond in the ring structure.
  • the polymerizable carbon-carbon double bond is not particularly limited, but includes, for example, a polymerizable carbon-carbon double bond such as ring-opening polymerization.
  • the ring structure of the cycloolefin monomer includes, for example, a monocyclic ring, a polycyclic ring, a condensed polycyclic ring, a bridged ring, and a polycyclic ring in which these are combined.
  • polycyclic cycloolefin monomers are preferable from the viewpoint of controlling the refractive index.
  • cycloolefin resin a (co)polymer containing a structural unit derived from a monomer containing a norbornene structure, a (co)polymer containing a structural unit derived from a monomer containing a monocyclic cyclic olefin, a cyclic Examples thereof include (co)polymers containing structural units derived from monomers containing a conjugated diene structure. These (co)polymers may be in a hydrogenated state.
  • cycloolefin resin is not particularly limited, for example, tricyclo[4.3.0.1 2,5 ]dec-3-ene, tricyclo[4.3.0.1 2,5 ]deca-3,7- Diene (common name: dicyclopentadiene), 7,8-benzotricyclo[4.3.0.1 2,5 ]dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo[4.4.0 .1 2 , 5 .
  • these substituents may be the same or different and a plurality of them may be bonded to the ring.
  • the type of polar group is not particularly limited, but examples thereof include heteroatoms, atomic groups having heteroatoms, and the like.
  • heteroatoms include, but are not limited to, oxygen atoms, nitrogen atoms, sulfur atoms, silicon atoms, and halogen atoms.
  • Specific examples of the polar group include, but are not limited to, carboxy group, carbonyl group, oxycarbonyl group, epoxy group, hydroxy group, oxy group, ester group, silanol group, silyl group, amino group, nitrile group, and sulfonic acid group. , groups other than polar groups substituted with these groups, groups other than polar groups linked via these groups, and the like.
  • the cycloolefin resin is not particularly limited, but examples of (co)polymers containing structural units derived from monomers containing monocyclic cyclic olefins include monocyclics such as cyclohexene, cycloheptene, and cyclooctene. (co)polymers containing structural units derived from cyclic olefin monomers having
  • the cycloolefin resin is not particularly limited. Examples include 1,2- or 1,4-addition polymers of cyclic conjugated diene monomers such as pentadiene and cyclohexadiene, and hydrogenated products thereof.
  • a (co)polymer containing structural units derived from a monomer containing a norbornene structure is preferable from the viewpoint of controlling the refractive index.
  • the (co)polymer containing structural units derived from a monomer containing a norbornene structure is not particularly limited, but for example, ring-opening (co)polymers of monomers containing a norbornene structure, and hydrogenated products thereof ; addition (co)polymers of monomers containing a norbornene structure, hydrogenated products thereof, and the like.
  • the ring-opened polymer of a monomer containing a norbornene structure is not particularly limited, but for example, a ring-opened homopolymer of one type of monomer containing a norbornene structure, two or more types of norbornene structure-containing Ring-opening copolymers of monomers, and ring-opening copolymers of a monomer having a norbornene structure and a monomer other than the monomer having a norbornene structure copolymerizable therewith can be mentioned.
  • the addition polymer of a monomer containing a norbornene structure is not particularly limited.
  • a copolymer containing a structural unit derived from a monomer containing a norbornene structure and a structural unit derived from a monomer other than the monomer containing a norbornene structure is preferred, a monomer containing a norbornene structure, a ring-opening copolymer of a monomer other than a monomer containing a norbornene structure copolymerizable therewith, or a monomer containing a norbornene structure, and Addition copolymers with monomers other than monomers containing copolymerizable norbornene structures are more preferred.
  • a preferred example of the cycloolefin resin is not particularly limited, but includes a (co)polymer containing a structural unit derived from a cycloolefin monomer represented by the following general formula (A).
  • the (co)polymer is a type of (co)polymer containing structural units derived from a monomer having a norbornene structure.
  • the (co)polymer is particularly preferred when producing a cycloolefin resin base material by a solution casting method.
  • Each R in general formula (A) independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a polar group. Moreover, a and b in the general formula (A) each independently represent an integer of 0 or more.
  • a preferred example of the cycloolefin resin is not particularly limited, but includes a structural unit derived from a cycloolefin monomer represented by the following general formula (A-1) or general formula (A-2) below ( co) polymers and the like.
  • the (co)polymer is a type of (co)polymer containing structural units derived from a monomer having a norbornene structure.
  • the (co)polymer is particularly preferred when producing a cycloolefin resin base material by a solution casting method.
  • R 1 to R 4 in general formula (A-1) each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a polar group. However, except when all of R 1 to R 4 are hydrogen atoms, there is no case where R 1 and R 2 are hydrogen atoms at the same time, or R 3 and R 4 are hydrogen atoms at the same time.
  • halogen atom is not particularly limited, it is preferably a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • the hydrocarbon group having 1 to 30 carbon atoms is not particularly limited, but is preferably an alkyl group having 1 to 30 carbon atoms.
  • the polar group is not particularly limited, but includes a carboxy group, a hydroxy group, an alkoxycarbonyl group, an allyloxycarbonyl group, an amino group, an amido group, a cyano group, a group in which these groups are bonded via a linking group such as a methylene group, It is preferably a hydrocarbon group to which a polar divalent organic group such as a carbonyl group, an ether group, a silyl ether group, a thioether group, or an imino group is bonded as a linking group.
  • a carboxy group, a hydroxy group, an alkoxycarbonyl group and an allyloxycarbonyl group are more preferable.
  • an alkoxycarbonyl group or an allyloxycarbonyl group is more preferable.
  • At least one of R 1 to R 4 is preferably a polar group from the viewpoint of ensuring the solubility of the cycloolefin resin during solution casting.
  • p in general formula (A-1) represents an integer of 0 to 2. From the viewpoint of enhancing the heat resistance of the film, p is preferably 1-2. This is because when p is 1 to 2, the resulting resin becomes bulky and the glass transition temperature tends to be improved.
  • R 5 in general formula (A-2) represents a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms. Among them, R 5 is preferably a hydrocarbon group having 1 to 3 carbon atoms.
  • R 6 in general formula (A-2) represents a polar group or a halogen atom.
  • the polar group is not particularly limited, it is preferably a carboxy group, a hydroxy group, an alkoxycarbonyl group, an allyloxycarbonyl group, an amino group, an amido group, or a cyano group.
  • a halogen atom is not particularly limited, but is preferably a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • R6 is preferably a polar group, more preferably a carboxy group, a hydroxy group, an alkoxycarbonyl group or an allyloxycarbonyl group.
  • an alkoxycarbonyl group or an allyloxycarbonyl group is more preferable.
  • p represents an integer of 0-2.
  • the refractive index can be further lowered.
  • the cycloolefin monomers constituting the cycloolefin resin can be used singly or in combination of two or more.
  • the cycloolefin resin may be a copolymer of a cycloolefin monomer and a monomer other than the cycloolefin monomer, or a hydrogenated product thereof.
  • a monomer other than the cycloolefin monomer constituting the cycloolefin resin i.e., a monomer other than the cycloolefin monomer for constituting the cycloolefin resin
  • two More than one species can be used together.
  • the cycloolefin resin is a (co)polymer containing structural units derived from a monomer having a norbornene structure (the (co)polymer may be in a hydrogenated state). is preferred.
  • a copolymer containing a structural unit derived from a monomer containing a norbornene structure and a structural unit derived from a monomer other than the monomer containing a norbornene structure (the copolymer may be in a hydrogenated state).
  • the other monomer copolymerizable with the monomer having a norbornene structure may be a cycloolefin monomer or a monomer other than the cycloolefin monomer.
  • Other monomers copolymerizable with a monomer containing a norbornene structure are not particularly limited, for example, a monomer containing a norbornene structure that is capable of ring-opening copolymerization with a monomer containing a norbornene structure and monomers other than monomers having a norbornene structure, which are addition-copolymerizable with monomers having a norbornene structure.
  • the monomer other than the norbornene structure-containing monomer, which is ring-opening copolymerizable with the norbornene structure-containing monomer is not particularly limited. Examples include monomers other than monomers containing a norbornene structure such as cyclopentadiene and derivatives thereof.
  • the monomer other than the norbornene structure-containing monomer, which can be addition-copolymerized with the norbornene structure-containing monomer is not particularly limited, and examples thereof include unsaturated double bond-containing compounds and vinyl-based cyclic hydrocarbons. compounds, (meth)acrylate compounds, and the like.
  • the unsaturated double bond-containing compound (excluding vinyl-based cyclic hydrocarbon compounds and (meth)acrylate compounds described below) is not particularly limited, but examples thereof include ethylene, propylene, 1-butene, and the like having 2 to 20 carbon atoms ( Preferably 2 to 12, more preferably 2 to 8) ⁇ -olefins and derivatives thereof, and non-olefins such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene A conjugated diene and the like can be mentioned. Among these, unsaturated double bond-containing compounds are preferred.
  • an ⁇ -olefin having 2 to 20 carbon atoms preferably 2 to 12, more preferably 2 to 8 carbon atoms
  • ethylene is even more preferred.
  • an unsaturated double bond-containing compound having a hydroxy group is preferable, and a monomer having a structure represented by the following formula (M1) is more preferable.
  • R 11 above is an organic group.
  • the organic group for R 11 is not particularly limited, but examples thereof include electron-donating groups such as alkyl groups and methoxy groups.
  • R 11 is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, and a butyl group. is particularly preferred.
  • the vinyl-based cyclic hydrocarbon compound is not particularly limited, but includes, for example, vinylcyclopentene-based monomers such as 4-vinylcyclopentene, 2-methyl-4-isopropenylcyclopentene, and derivatives thereof.
  • the (meth)acrylate compound is not particularly limited. derivatives and the like. Among these, a (meth)acrylate compound having a hydroxy group is preferable.
  • the (meth)acrylate compound having a hydroxy group is not particularly limited, but examples include 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 3-hydroxy Propane-1,2-diyl di(meth)acrylate, glycerin mono(meth)acrylate, diglycerin mono(meth)acrylate, diglycerin tri(meth)acrylate, trimethylolpropane di(meth)acrylate, pentaerythritol mono(meth)acrylate acrylates, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol di(meth)acrylate, dipentaerythrito
  • a (meth)acrylate compound having a hydroxy group is preferred, 2-hydroxyethyl (meth)acrylate (also known as 2-hydroxyethyl (meth)acrylate) is more preferred, and 2-hydroxyethyl acrylate (also known as acrylic Acid 2-hydroxyethyl) is more preferred.
  • a monomer other than a monomer containing a norbornene structure a monomer other than a monomer containing a norbornene structure
  • the mers can be used singly or in combination of two or more.
  • Preferred cycloolefin resins include, for example, tricyclo[4.3.0.1 2,5 ]dec-3-ene and tetracyclo[4.4.0.1 2,5 . 1 7,10 ]dodeca-3-ene (common name: tetracyclododecene) and hydrogenated copolymer of monomers containing 1,3-dimethyldodecahydrocyclopenta[a]indene, bicyclo [2.2.1] Copolymers of monomers containing hept-2-ene (common name: norbornene) and ethylene, and the like.
  • tricyclo[4.3.0.1 2,5 ]dec-3-ene and tetracyclo[4.4.0.1 2,5 are examples of these, tricyclo[4.3.0.1 2,5 ]dec-3-ene and tetracyclo[4.4.0.1 2,5 .
  • Copolymers of 1 7,10 ]dodeca-3-ene (common name: tetracyclododecene), 1,3-dimethyldodecahydrocyclopenta[a]indene and 2-hydroxyethyl acrylate
  • Preferable examples include a copolymer of a compound, bicyclo[2.2.1]hept-2-ene (common name: norbornene) and ethylene.
  • Ratio of the mass of the monomer having an alicyclic structure to the total mass of the monomer having an alicyclic structure and the monomer having no alicyclic structure for constituting the cycloolefin resin is not particularly limited. However, it is preferred that the proportion is between 30 and 50% by weight. Within this range, the refractive index of the cycloolefin resin base material tends to be an appropriate value. As a result, display unevenness is further reduced.
  • a monomer containing a norbornene structure for constituting a copolymer containing structural units derived from a monomer containing a norbornene structure (the copolymer may be in a hydrogenated state);
  • the ratio of the mass of the monomer containing norbornene structure to the total mass of the monomers other than the monomer containing norbornene structure is not particularly limited. However, it is preferred that the proportion is between 30 and 50% by weight. Within this range, the refractive index of the cycloolefin resin base material tends to be an appropriate value. As a result, display unevenness is further reduced.
  • the weight average molecular weight (Mw) of the cycloolefin resin is not particularly limited, it is preferably 30,000 or more, more preferably 35,000 or more, and even more preferably 40,000 or more. Also, the weight average molecular weight (Mw) of the cycloolefin resin is preferably 300,000 or less, more preferably 250,000 or less, and even more preferably 150,000 or less. Within these ranges, the cycloolefin resin has better heat resistance, water resistance, chemical resistance, mechanical properties, and moldability as a film.
  • the dispersion degree (Mw/Mn) of the cycloolefin resin is not particularly limited, but is preferably 1.2 or more, more preferably 1.5 or more, and further preferably 1.8 or more. preferable. Also, the degree of dispersion (Mw/Mn) of the cycloolefin resin is preferably 3.5 or less, more preferably 3.0 or less, and even more preferably 2.7 or less.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) can be measured in terms of polystyrene by gel permeation chromatography (GPC).
  • the glass transition temperature (Tg) of the cycloolefin resin is not particularly limited, it is preferably 100°C or higher, more preferably 110°C or higher, and even more preferably 120°C or higher. Within these ranges, deformation due to use under high temperature conditions or secondary processing such as coating and printing is less likely to occur. Also, the glass transition temperature (Tg) of the cycloolefin resin is preferably 190° C. or lower, more preferably 180° C. or lower, and even more preferably 170° C. or lower. Within these ranges, molding becomes easier, and the possibility of the resin deteriorating due to heat during molding becomes lower.
  • the Tg of the cycloolefin resin can be measured according to JIS K 7121-1987.
  • a commercially available product or a synthetic product may be used as the cycloolefin resin.
  • Examples of commercially available products include, but are not limited to, ARTON (registered trademark, hereinafter the same) G (eg, ARTON G7810) manufactured by JSR Corporation, ARTON F, ARTON R, and ARTON RX. be done.
  • the method for synthesizing the cycloolefin resin is not particularly limited, and known methods can be used.
  • a ring-opening polymer of a monomer containing a norbornene structure is not particularly limited, but can be produced, for example, by polymerizing or copolymerizing monomers in the presence of a ring-opening polymerization catalyst.
  • the addition polymer of a monomer containing a norbornene structure is not particularly limited, but can be produced, for example, by polymerizing or copolymerizing a monomer in the presence of an addition polymerization catalyst.
  • the hydrogenated product of the ring-opening polymer and the addition polymer described above is not particularly limited, but for example, in the solution of the ring-opening polymer and the addition polymer, a hydrogenation catalyst containing a transition metal such as nickel and palladium In the presence of carbon-carbon unsaturated bonds can be produced by hydrogenation, preferably greater than 90%.
  • a hydrogenation catalyst containing a transition metal such as nickel and palladium In the presence of carbon-carbon unsaturated bonds
  • a hydrogenation catalyst containing a transition metal such as nickel and palladium
  • the type, amount, ratio, etc. of the monomer based on the method described in JP-A-2010-235719 and JP-A-2018-55044, if necessary, the type, amount, ratio, etc. of the monomer.
  • Other methods may be used in which the types, amounts, ratios, etc. of the components used in the synthesis are appropriately changed.
  • the cycloolefin resins can be used singly or in combination of two or more.
  • the content of the cycloolefin resin in the cycloolefin resin base material is not particularly limited, but is preferably 50% by mass or more, more preferably 70% by mass or more, and preferably 90% by mass or more. More preferred. If it is the said range, the handleability of a film will become more favorable.
  • the content of the cycloolefin resin in the cycloolefin resin base material is preferably 100% by mass or less, more preferably 99.9% by mass or less, and 99.5% by mass or less. is more preferred. Within the above range, the amount of components other than the cycloolefin resin added can be increased, making it easier to further improve the effects of the present invention and to impart other desired functions.
  • the cycloolefin resin substrate preferably contains particles. That is, the cycloolefin resin substrate preferably contains at least one kind of particles. The particles act to further reduce display unevenness.
  • the particles contained in the cycloolefin resin substrate are also simply referred to as "substrate particles”.
  • the base particles are not particularly limited, but examples include organic particles, inorganic particles, organic-inorganic composite particles, and the like.
  • inorganic particles include, but are not limited to, silicon dioxide (silica), titanium dioxide, low order titanium oxide, magnesium oxide, tin oxide, indium oxide, antimony oxide, aluminum oxide, zirconium dioxide, antimony, fluorine or phosphorus.
  • Inorganic oxides such as doped tin oxide, antimony, tin or fluorine-doped indium oxide, calcium carbonate, magnesium carbonate, barium sulfate, strontium sulfate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated silicic acid
  • Inorganic substances such as calcium, aluminum silicate, magnesium silicate and calcium phosphate are included.
  • An inorganic material can be used individually by 1 type, or can use 2 or more types together.
  • particles made of the above inorganic materials or combinations thereof are preferable, and aluminum oxide (aluminum oxide particles, particulate aluminum oxide) is more preferable.
  • the organic particles are not particularly limited, but examples include acrylic resins such as poly(meth)acrylate and polymethyl(meth)acrylate, styrene resins such as polystyrene, acrylonitrile resins such as poly(meth)acrylonitrile, cellulose acetate, and cellulose acetate. Examples include cellulose resins such as propionate, silicone resins, fluororesins, and crosslinked products thereof.
  • An organic material can be used individually by 1 type, or can use 2 or more types together. Among these, particles made of the above organic materials, combinations thereof, or crosslinked materials thereof are preferred.
  • the organic-inorganic composite particles are not particularly limited, but include, for example, multi-layered particles including a core layer made of one of the inorganic material and the organic material and a shell layer made of the other of them.
  • An inorganic material or an organic material can be used individually by 1 type, respectively, or can use 2 or more types together.
  • the substrate particles may be surface-treated particles (surface-treated particles).
  • materials used for surface treatment include heterogeneous inorganic oxides such as silicon oxide and zirconium oxide, metal hydroxides such as aluminum hydroxide, organic acids such as stearic acid, and hydrolyzable organic silicon. compounds and the like.
  • Each surface treatment can be used singly or in combination of two or more.
  • the surface-treated particles are not particularly limited, but include, for example, particles obtained by treating the surface of particles made of the above inorganic material with a hydrolyzable organosilicon compound.
  • the surfaces of the particles made of an inorganic material are usually modified with a hydrolyzate of an organosilicon compound.
  • the surface treatment method and the type of surface-treated particles are not particularly limited, and known surface treatment methods and known surface-treated particles can be used.
  • the method of organosilicon compound modification treatment and the organosilicon compound-modified particles described in paragraphs "0105" to "0128" of JP-A-2016-157068 can be used.
  • the average primary particle size of the substrate particles is not particularly limited, it is preferably 1 nm or more. Within the above range, luminance unevenness among display devices is reduced, and display quality variation among display devices is further reduced. Also, the average primary particle size of the substrate particles is not particularly limited, but is preferably 100 nm or less. If it is the said range, the transparency of a film will improve more.
  • the average primary particle size of the substrate particles can be measured using a transmission electron microscope (TEM) (H-7650 manufactured by Hitachi High-Tech Co., Ltd.).
  • the average secondary particle size of the substrate particles is not particularly limited, it is preferably 10 nm or more. Within the above range, luminance unevenness among display devices is reduced, and display quality variation among display devices is further reduced. Also, the average secondary particle size of the substrate particles is not particularly limited, but is preferably 300 nm or less. If it is the said range, the transparency of a film will improve more.
  • the average secondary particle size of the substrate particles can be determined by a method of directly measuring the size of the secondary particles from an electron micrograph of the layer (cycloolefin resin substrate).
  • the particle image is measured with a transmission electron microscope (TEM) (H-7650 manufactured by Hitachi High-Tech Co., Ltd.), and 100 randomly selected secondary particles equivalent to circles of equal area An average value of the diameters is obtained, and this value is defined as the average secondary particle size.
  • TEM transmission electron microscope
  • a commercial product or a synthetic product may be used for the substrate particles.
  • Examples of commercially available products include, but are not limited to, R972V and R812 manufactured by Nippon Aerosil Co., Ltd., aluminum oxide nanoparticles manufactured by EM Japan Co., Ltd., and the like.
  • the substrate particles can be used singly or in combination of two or more.
  • the content of the substrate particles in the cycloolefin resin substrate is not particularly limited, but is preferably 0.1% by mass or more relative to the total mass of the cycloolefin resin substrate. If it is the said range, adjustment of a refractive index will become easier. Moreover, the content of the substrate particles in the cycloolefin resin substrate is preferably 10% by mass or less with respect to the total mass of the cycloolefin resin substrate. If it is the said range, the transparency of a film will improve more.
  • the cycloolefin resin substrate may not contain substrate particles.
  • the cycloolefin resin base material may further contain components other than the components described above as long as the effects of the present invention are not impaired.
  • components include, but are not particularly limited to, components used in the field of known optical films and the field of functional layers for known optical applications.
  • thermoplastic resins other than cycloolefin resins (excluding organic particles that are the base particles described above), retardation modifiers, wavelength dispersion modifiers, plasticizers, ultraviolet absorbers, antioxidants, hydrogen bonds ionic solvents, ionic surfactants and the like, but are not limited to these.
  • the thickness of the cycloolefin resin base material is not particularly limited, but is preferably 10 ⁇ m or more. Within this range, the handleability of the film is good. Moreover, the thickness of the cycloolefin resin substrate is preferably 60 ⁇ m or less. Within this range, it can also be applied to flexible devices.
  • the refractive index of the cycloolefin resin base material is not particularly limited, but is preferably 1.500 or more, more preferably 1.525 or more. Moreover, the refractive index of the cycloolefin resin substrate is preferably 1.535 or less. Within these ranges, it becomes easier for the difference in refractive index between the optical film containing the cycloolefin resin substrate and the polarizer to satisfy formula (1) described below. It is particularly preferred that the refractive index at the nD:D line (589 nm) at 25° C. satisfies the above range.
  • the refractive index can be measured with a multi-wavelength Abbe refractometer (trade name: DR-M2, manufactured by Atago Co., Ltd.).
  • the optical film preferably has a functional layer in addition to the above cycloolefin resin substrate. That is, in at least one of the polarizing plates included in the display device according to one embodiment of the present invention, at least one of the optical films included in the polarizing plate includes, in addition to a base material containing a cycloolefin resin, It preferably contains a functional layer.
  • a functional layer in addition to a substrate, it may be possible to impart desired functions and further reduce display unevenness. The reason for this is that, as described in the presumed mechanism above, the display device of the present invention dares to finely scatter the light emitted from the display device so as to cancel out the light interference between the pixel grids. We believe that the layers act to make this scattering more appropriate.
  • the optical film may have only one functional layer, or may have two or more.
  • the functional layer may be provided on one side or both sides of the substrate containing the cycloolefin resin, but is preferably provided on one side. .
  • At least one of the optical films arranged on one side of the polarizer more preferably contains a functional layer in addition to the substrate containing the cycloolefin resin. Further, it is more preferable that all of the optical films arranged on one surface of the polarizer further include a functional layer in addition to the substrate containing the cycloolefin resin. At this time, one or more optical films may be arranged on the other surface of the polarizer, or no optical film may be arranged.
  • one optical film is arranged on one surface of the polarizer, and the optical film further includes a functional layer in addition to the base material containing the cycloolefin resin. It is particularly preferred to include At this time, one or more optical films may be arranged on the other surface of the polarizer, or no optical film may be arranged. Among these, it is preferable to dispose one other optical film, which will be described later, on the other surface of the polarizer.
  • the functional layer is not particularly limited, and includes functional layers used for optical purposes. Specifically, antiblocking layer, release layer, easy adhesion layer, antistatic layer, hard coat layer, antireflection layer, antiglare layer, antifouling layer, barrier layer, buffer layer, slippery layer, adhesive layer etc., but not limited to these. Among these, it is preferably a functional layer other than the adhesive layer, more preferably an easy-adhesion layer or a hard coat layer, and even more preferably an easy-adhesion layer.
  • the functional layer is preferably a hardening layer.
  • the functional layer is not particularly limited, it preferably contains a base resin such as urethane resin, acrylic resin, epoxy resin, polyvinyl acetal resin, or the like.
  • a base resin such as urethane resin, acrylic resin, epoxy resin, polyvinyl acetal resin, or the like.
  • the functional layer is an easy-adhesion layer
  • the easy-adhesion layer preferably contains a urethane resin.
  • the functional layer is a hard coat layer
  • the hard coat layer preferably contains an acrylic resin.
  • the functional layer containing the urethane resin is not particularly limited, but examples thereof include a layer obtained by curing a layer of a coating liquid containing a polyurethane precursor or polyurethane (coating liquid layer).
  • the urethane resin is not particularly limited, but includes, for example, the polyurethane itself added as a raw material for the coating liquid, the polyurethane product obtained through the curing reaction with isocyanate or its derivative and alcohol or its derivative, and the curing reaction of the urethane prepolymer. Polyurethane products and the like obtained through Therefore, the urethane resin is preferably polyurethane or a crosslinked product thereof.
  • the polyurethane itself, the urethane prepolymer and the polyurethane product are not particularly limited, but for example, a polyol component having an average of 2 or more hydroxyl groups per molecule and an average of 2 or more isocyanate groups per molecule, respectively.
  • examples thereof include polyurethanes obtained by reacting with polyisocyanate components possessed.
  • the polyol component is not particularly limited, but examples include (1) aliphatic polyester polyol, (2) polyether polyol, (3) polycarbonate polyol, (4) polyester ether polyol, and (5) polyethylene terephthalate polyol. be done.
  • the aliphatic polyester polyol is not particularly limited, but examples thereof include a reaction product obtained by reacting an aliphatic polyol with an aliphatic polybasic acid.
  • aliphatic polyols include, but are not limited to, ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, glycerin, trimethylolpropane and the like.
  • An aliphatic polyol can be used individually by 1 type, or can use 2 or more types together by arbitrary ratios.
  • Examples of aliphatic polybasic acids include, but are not limited to, polycarboxylic acids and anhydrides thereof.
  • the polyvalent carboxylic acid is not particularly limited, and examples thereof include dicarboxylic acids such as adipic acid, succinic acid, sebacic acid, glutaric acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid and terephthalic acid, and trimellitic acid. and the like.
  • a polybasic acid can be used individually by 1 type, or can use 2 or more types together by arbitrary ratios.
  • the polyether polyol is not particularly limited, but includes, for example, poly(oxypropylene ether) polyol, poly(oxyethylene-propylene ether) polyol, and the like.
  • Polycarbonate polyols are not particularly limited, but may be, for example, a X represents the number of structural units of the molecule and is usually an integer of 5 to 50).
  • a polycarbonate polyol is not particularly limited, but can be obtained, for example, by a transesterification method in which a saturated aliphatic polyol and a substituted carbonate are reacted under conditions in which hydroxyl groups are excessive.
  • it can be obtained by a method of reacting a saturated aliphatic polyol with phosgene, or, if necessary, further reacting a saturated aliphatic polyol thereafter.
  • the substituted carbonate is not particularly limited, and examples thereof include diethyl carbonate, diphenyl carbonate and the like. Moreover, these can be used individually by 1 type, or can use 2 or more types together by arbitrary ratios.
  • the polyester ether polyol is not particularly limited, but includes, for example, a reaction product obtained by reacting a polyol compound containing an ether group with a polyvalent carboxylic acid or an anhydride thereof.
  • the polyol compound containing an ether group is not particularly limited, and examples thereof include the above-mentioned (2) polyether polyol and diethylene glycol.
  • a polyol compound containing an ether group can be used singly, or two or more of them can be used in combination at any ratio.
  • the polyvalent carboxylic acid or its anhydride is not particularly limited, and includes, for example, the exemplified compounds mentioned in the explanation of (1) Aliphatic polyester polyol. Polyvalent carboxylic acid or its anhydride can be used individually by 1 type, or can use 2 or more types together by arbitrary ratios. Specific examples of polyester ether polyols include polytetramethylene glycol-adipic acid condensates.
  • the polyethylene terephthalate polyol is not particularly limited, and for example, a known polyethylene terephthalate polyol can be used.
  • the polyol component can be used singly, or two or more can be used in combination at any ratio.
  • the polyisocyanate component is not particularly limited, but includes, for example, aliphatic polyisocyanate compounds containing two or more isocyanate groups in one molecule, alicyclic polyisocyanate compounds, and aromatic polyisocyanate compounds.
  • the aliphatic polyisocyanate compound is not particularly limited, and examples thereof include aliphatic diisocyanates having 1 to 12 carbon atoms such as hexamethylene diisocyanate, 2,2,4-trimethylhexane diisocyanate, and hexane diisocyanate (HDI). .
  • the alicyclic polyisocyanate compound is not particularly limited. A cyclic diisocyanate and the like can be mentioned.
  • aromatic polyisocyanate compound is not particularly limited, but examples include aromatic diisocyanates such as tolylene diisocyanate (TDI), 4,4'-diphenylmethane diisocyanate, and xylylene diisocyanate.
  • aromatic diisocyanates such as tolylene diisocyanate (TDI), 4,4'-diphenylmethane diisocyanate, and xylylene diisocyanate.
  • the polyisocyanate component can be used alone, or two or more can be used in combination at any ratio.
  • the polyurethane itself, the urethane prepolymer and the polyurethane product are preferably polycarbonate-based polyurethanes or polyester-ether-based polyurethanes, respectively.
  • a polycarbonate-based polyurethane is a polyurethane having a carbonate skeleton in the molecular structure of the polyurethane. Examples thereof include polyurethanes produced from polycarbonate polyols and polyisocyanate components.
  • a polyester-ether polyurethane is a polyurethane having an ester bond and an ether bond in its molecular structure. Examples thereof include polyurethanes produced from polyester ether polyols and polyisocyanate components.
  • the urethane prepolymer may contain hydroxyl groups that remain unreacted after the reaction between the polyol component and the polyisocyanate component.
  • the hydroxyl group can be used as a polar group capable of undergoing a cross-linking reaction with a functional group in the cross-linking agent.
  • the urethane prepolymer is preferably one that can be crosslinked with a crosslinking agent.
  • the urethane prepolymer preferably contains a polar group in order to allow reaction with the cross-linking agent.
  • Polar groups are not particularly limited, and examples include methylol groups, carboxy groups, carbonyloxycarbonyl groups, epoxy groups, hydroxy groups, oxy groups, ester groups, silanol groups, silyl groups, amino groups, nitrile groups, sulfo groups, and the like. is mentioned. Among these, a methylol group, a hydroxyl group, a carboxy group and an amino group are preferred, a hydroxyl group or a carboxy group is more preferred, and a carboxy group is even more preferred.
  • the amount of polar groups in the polyurethane is not particularly limited, but is preferably 0.0001 equivalent/1 kg or more, more preferably 0.001 equivalent/1 kg or more. Also, the amount of polar groups in the polyurethane is preferably 1 equivalent/1 kg or less.
  • Polyurethane itself, isocyanate or its derivatives, alcohol or its derivatives, urethane prepolymers, and raw materials used to produce urethane prepolymers, which are raw materials for urethane resins, may be commercially available products or synthetic products.
  • Commercially available products are not particularly limited, but for example, water-based emulsions marketed as water-based urethane resins may be used.
  • a water-based urethane resin is a composition containing polyurethane and water, and generally, polyurethane and optionally contained optional components are dispersed in water.
  • the water-based urethane resin is not particularly limited.
  • a cross-linking agent may be used to form the urethane resin.
  • the cross-linking agent is not particularly limited, and known ones can be used. Examples thereof include epoxy compounds, carbodiimide compounds, oxazoline compounds, isocyanate compounds and the like. Specific examples thereof include cross-linking agents described in paragraphs "0075" to "0094" of JP-A-2016-79210.
  • the cross-linking agents can be used singly or in combination of two or more at any ratio.
  • a curing accelerator may be used to form the urethane resin.
  • the curing accelerator is not particularly limited, and known ones can be used. Examples thereof include tertiary amine compounds (excluding compounds having a 2,2,6,6-tetramethylpiperidyl group with a tertiary amine at the 4-position), boron trifluoride complex compounds and the like.
  • a hardening accelerator can be used individually by 1 type, or can use 2 or more types together by arbitrary ratios.
  • a curing aid may be used to form the urethane resin.
  • the curing aid is not particularly limited, and known ones can be used. For example, quinonedioxime, benzoquinonedioxime, p-nitrosophenol and other oxime/nitroso curing agents; N,Nm-phenylenebismaleimide and other maleimide curing agents; diallyl phthalate, triallyl cyanurate, tri allyl-based curing aids such as allyl isocyanurate; methacrylate-based curing aids such as ethylene glycol dimethacrylate and trimethylolpropane trimethacrylate; vinyl-based curing aids such as vinyltoluene, ethylvinylbenzene, and divinylbenzene; . Curing aids can be used singly or in combination of two or more at any ratio.
  • the urethane resin can be used singly or in combination of two or more.
  • Acrylic resin refers to a resin containing a structural unit derived from a (meth)acrylate compound.
  • the acrylic resin is not particularly limited, it is preferably an acrylic resin obtained by active energy ray curing, and more preferably an acrylic resin obtained by ultraviolet curing.
  • Acrylic resin obtained by active energy ray curing is cured by irradiating active energy to an active energy ray curable (meth)acrylate compound or a mixture of this compound and a compound copolymerizable with this compound.
  • the acrylic resin obtained by ultraviolet curing can be obtained by irradiating and curing an ultraviolet curable (meth)acrylate compound or a mixture of this compound and a compound copolymerizable therewith with ultraviolet rays. can.
  • the curable (meth)acrylate compound constituting the acrylic resin is not particularly limited, and known active energy ray-curable (meth)acrylate compounds that can be used as materials for functional layers used in optical applications, and known active energy ray-curable (meth)acrylate compounds.
  • An ultraviolet curable (meth)acrylate compound and the like can be mentioned.
  • known compounds that can be used as functional layer materials, particularly hard coat layer materials are preferred. Examples of such compounds include, but are not particularly limited to, monofunctional (meth)acrylate compounds, polyfunctional (meth)acrylate compounds, combinations thereof, and the like.
  • the monofunctional (meth)acrylate compound is not particularly limited, and known compounds can be used. Examples thereof include (meth)acrylate, methyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyl (meth)acrylate and the like.
  • the polyfunctional (meth)acrylate compound is not particularly limited, and known compounds can be used.
  • a (meth)acrylate compound having an aromatic ring may also be used as the monofunctional (meth)acrylate compound or the polyfunctional (meth)acrylate compound. By using these compounds, the refractive index of the functional layer can be improved.
  • the (meth)acrylate compound having an aromatic ring is not particularly limited, and examples thereof include benzyl acrylate and monofunctional (meth)acrylate compounds represented by any of the following general formulas (i) to (iv). be done. Among these, benzyl acrylate is more preferred.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an aromatic ring
  • n is 0 to 2. represents a positive number.
  • the acrylic resin preferably contains urethane acrylate resin.
  • the reason for this is that the adhesion between the substrate, which is the refractive index surface, and the functional layer is good, and peeling at the interface, that is, the difference in refractive index is less likely to occur even in long-term use.
  • a urethane acrylate resin represents an acrylic resin containing a structural unit derived from a urethane (meth)acrylate compound.
  • the urethane (meth)acrylate compound which is a curable (meth)acrylate compound, is not particularly limited. and the like. Further, the urethane (meth)acrylate compound may be either an aliphatic urethane (meth)acrylate compound or an aromatic urethane (meth)acrylate compound.
  • polyether urethane (meth)acrylate is particularly preferable.
  • the polyether urethane (meth)acrylate is not particularly limited. Examples thereof include those obtained by reaction.
  • the polyol (ua1) has a terminal hydroxyl group for forming a urethane bond with the isocyanate compound (ua2).
  • the polyol (ua1) has one hydroxyl group at each end of the skeleton.
  • polypropylene polyol polypropylene glycol
  • the number average molecular weight of the polypropylene polyol as the polyether polyol (ua1) is preferably 1,000 to 10,000, more preferably 1,500 to 5,000. When the number average molecular weight is within such a range, an adhesive composition having excellent adhesion can be obtained. In addition, a number average molecular weight represents the value measured by the gel permeation chromatography method (GPC method) (polystyrene conversion).
  • GPC method gel permeation chromatography method
  • the isocyanate compound (ua2) When using a bifunctional polyether urethane (meth)acrylate, the isocyanate compound (ua2) has two isocyanate groups.
  • a known compound can be used as the isocyanate compound (ua2).
  • Examples include tolylene diisocyanate, hydrogenated polydiisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, dicyclohexylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, paraphenylene diisocyanate, and other known diisocyanates.
  • These isocyanate compounds (ua2) may be used alone or in combination of two or more.
  • the (meth)acrylic acid ester (ua3) having a hydroxyl group has at least one hydroxyl group to form a urethane bond.
  • Such a (meth)acrylic acid ester (ua3) is not particularly limited, and known compounds can be used without limitation.
  • 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, butanediol mono(meth)acrylate, caprolactone-modified 2-hydroxyethyl (meth)acrylate, glycidol di(meth)acrylate, and penta Erythritol tri(meth)acrylate may be mentioned.
  • These (meth)acrylic acid esters (ua3) may be used alone or in combination of two or more.
  • Polyether urethane (meth)acrylate can be produced by appropriately adopting conventionally known methods.
  • the polyether polyol (ua1) and the isocyanate compound (ua2) are heated at 70 to 80° C. and stirred for 4 to 6 hours.
  • a (meth)acrylic acid ester (ua3) having a hydroxyl group is further added, and the mixture is stirred for 4 to 6 hours while heating at 70 to 80° C., thereby synthesizing a polyether urethane (meth)acrylate.
  • the amount of the polyether polyol (ua1), the isocyanate compound (ua2), and the hydroxyl group-containing (meth)acrylic acid ester (ua3) is not particularly limited. They are preferably 62.0 to 96.9% by mass, 2.5 to 25.2% by mass, and 0.4 to 11.7% by mass, respectively.
  • the number average molecular weight of the polyether urethane (meth)acrylate is not particularly limited, it is preferably from 2,000 to 50,000, more preferably from 3,000 to 15,000.
  • a number average molecular weight represents the value measured by the gel permeation chromatography method (GPC method) (polystyrene conversion).
  • the functionality of the urethane (meth)acrylate compound is not particularly limited. For example, it may be less than trifunctional or trifunctional or more. Here, when it is hexafunctional or more, it is particularly suitable for forming a hard coat layer.
  • a commercially available product or a synthetic product may be used as the curable (meth)acrylate compound.
  • urethane (meth)acrylate compound which is a curable (meth)acrylate compound.
  • bifunctional aliphatic urethane (meth)acrylate compounds include EBECRYL (registered trademark) 230, 270, 280, 284, 4683, 4858, 8307, 8402, 8411, 8413, 8804, and 8807 manufactured by Daicel Allnex Co., Ltd. , 9270 and 8800, and KRM7735, KRM8961 and KRM8191.
  • tri- to tetra-functional aliphatic urethane (meth)acrylate compounds include EBECRYL (registered trademark) 294, 4220, 4513, 4738, 4740, 8311, 9260, 8701, 4265, 4587, and 4666 manufactured by Daicel Allnex Co., Ltd. , 4680, 8210 and 8405, and KRM8667, KRM8296 and KRM8528.
  • Hexafunctional or higher aliphatic urethane (meth)acrylate compounds include, for example, EBECRYL (registered trademark) 1290, 5129 and 8301R manufactured by Daicel Allnex, KRM8200, KRM8200AE, KRM8530, KRM8904, KRM8531BA and KRM8452.
  • aromatic urethane (meth)acrylate compounds include EBECRYL (registered trademark) 210 and 220 manufactured by Daicel Allnex.
  • the curable (meth)acrylate compounds can be used singly or in combination of two or more.
  • the curable (meth)acrylate compound preferably contains a urethane (meth)acrylate compound, and more preferably contains a polyether urethane (meth)acrylate.
  • the content of the urethane (meth)acrylate compound in the curable (meth)acrylate compound is not particularly limited, but is preferably 40 to 100% by mass with respect to the total mass of the curable (meth)acrylate compound. It is more preferably 50 to 100% by mass. Within these ranges, the refractive index of the functional layer tends to be an appropriate value. As a result, display unevenness is further reduced.
  • aromatic urethane (meth)acrylate; polyether urethane (meth)acrylate; monofunctional (meth)acrylate compound; or polyether urethane (meth)acrylate and monofunctional (meth)acrylate Combined use with a compound is preferred.
  • Aromatic urethane (meth)acrylate; polyether urethane (meth)acrylate; benzyl (meth)acrylate; or combined use of polyether urethane (meth)acrylate and benzyl (meth)acrylate is more preferred.
  • Aromatic urethane (meth)acrylate; polyether urethane (meth)acrylate and benzyl (meth)acrylate are more preferably used in combination.
  • a cross-linking agent, a curing agent, or a curing accelerator may be used to form the acrylic resin. These are not particularly limited, and known ones can be used. These can be used individually by 1 type, respectively, or can use 2 or more types together.
  • acrylic resin which is a thermoplastic resin
  • acrylic resins which are thermoplastic resins
  • examples of acrylic resins, which are thermoplastic resins include, but are not limited to, (co)polymers containing structural units derived from the above (meth)acrylate compounds.
  • a (co)polymer containing a structural unit derived from the above monofunctional (meth)acrylate compound is preferred, and polymethyl (meth)acrylate (also known as polymethyl methacrylate, abbreviation: PMMA) is more preferred.
  • the weight average molecular weight (Mw) of the acrylic resin, which is a thermoplastic resin is not particularly limited, but is preferably 100,000 to 300,000. Weight average molecular weight (Mw) can be measured by gel permeation chromatography (GPC) in terms of polystyrene.
  • the acrylic resin which is a thermoplastic resin, can be used alone or in combination of two or more.
  • the functional layer it is preferable to use a curable (meth)acrylate compound and an acrylic resin, which is a thermoplastic resin, together. Moreover, it is more preferable to use polyether urethane (meth)acrylate and polymethyl (meth)acrylate together. That is, as the acrylic resin, it is preferable to use a combination of a curable acrylic resin and an acrylic resin that is a thermoplastic resin. Further, it is more preferable to use a (co)polymer containing a structural unit derived from polyether urethane (meth)acrylate together with polymethyl (meth)acrylate. Further, it is more preferable to use a homopolymer composed of structural units derived from polyether urethane (meth)acrylate together with polymethyl (meth)acrylate.
  • the content of the acrylic resin that is a thermoplastic resin is not particularly limited. It is preferably more than 0% by mass and 60% by mass or less, more preferably more than 0% by mass and 50% by mass or less, relative to the total mass of the acrylate compound and the acrylic resin that is the thermoplastic resin. Within these ranges, the refractive index of the functional layer tends to be an appropriate value. As a result, display unevenness is further reduced.
  • the acrylic resin may be used alone or in combination of two or more.
  • the content of the base resin in the functional layer is not particularly limited, but is preferably 50% by mass or more, more preferably 70% by mass or more, more preferably 90% by mass, relative to the total mass of the functional layer. It is more preferable that it is above. If it is the said range, the function of a functional layer will become more favorable.
  • the content of the base resin in the functional layer is preferably 100% by mass or less, more preferably 99% by mass or less, and 95% by mass or less with respect to the total mass of the functional layer. is more preferred. Within the above range, the amount of components other than the base resin can be increased, making it easier to further improve the effects of the present invention and to impart other desired functions.
  • the functional layer preferably contains particles. That is, the functional layer preferably contains at least one kind of particles.
  • the particles act to further reduce display unevenness, particularly display unevenness recognized as screen roughness and display unevenness recognized as luminance unevenness.
  • the particles contained in the functional layer are also simply referred to as "functional layer particles”.
  • the same particles as those described in the base particles can be used.
  • the types of functional layer particles are also the same as those of the base particles.
  • the functional layer particles are preferably inorganic particles, more preferably silica (silica particles, particulate silica).
  • the average secondary particle size of the functional layer particles is not particularly limited, it is preferably 10 nm or more. If it is the said range, a display nonuniformity will reduce more. Also, the average secondary particle size of the functional layer particles is not particularly limited, but is preferably 300 nm or less. If it is the said range, the transparency of a film will improve more.
  • the average secondary particle diameter of the functional layer particles can be determined by a method of directly measuring the size of the secondary particles from an electron micrograph of the layer (functional layer).
  • the particle image is measured with a transmission electron microscope (TEM) (H-7650 manufactured by Hitachi High-Tech Co., Ltd.), and 100 randomly selected secondary particles equivalent to circles of equal area An average value of the diameters is obtained, and this value is defined as the average secondary particle size.
  • TEM transmission electron microscope
  • the functional layer particles can be used singly or in combination of two or more.
  • the content of the functional layer particles in the functional layer is not particularly limited, it is preferably 0.1% by mass or more with respect to the total mass of the functional layer. If it is the said range, adjustment of a refractive index will become easier. Moreover, the content of the functional layer particles in the functional layer is preferably 10% by mass or less with respect to the total mass of the functional layer. If it is the said range, the transparency of a film will improve more.
  • the functional layer may further contain components other than the components described above as long as the effects of the present invention are not impaired.
  • components include, but are not limited to, components used in the field of known optical films and the field of functional layers for known optical applications. Specifically, heat stabilizers, weather stabilizers, leveling agents, surfactants, antioxidants, antistatic agents, slip agents, antiblocking agents, antifog agents, lubricants, dyes, pigments, natural oils, synthetic oils , wax and the like, but are not limited to these.
  • the thickness of the functional layer is not particularly limited, but is preferably 0.1 ⁇ m or more. Within this range, the refractive index can be adjusted more easily while the function of the functional layer can be satisfactorily exhibited. Moreover, the thickness of the functional layer is preferably 50 ⁇ m or less. Within this range, it becomes easier to adjust the refractive index while maintaining good transparency of the film.
  • An optical film containing a cycloolefin resin substrate preferably has a functional layer, and the functional layer preferably contains acrylic resin or urethane resin and particles.
  • the functional layer preferably contains an acrylic resin, and the acrylic resin preferably contains a urethane acrylate resin.
  • the refractive index of the optical film containing the cycloolefin resin substrate is not particularly limited, but is preferably 1.500 or more, more preferably 1.505 or more. It is more preferably 510 or more. Also, the refractive index of the optical film containing the cycloolefin resin substrate is preferably 1.535 or less, more preferably 1.525 or less, and even more preferably 1.515 or less. Within these ranges, the refractive index of the optical film containing the cycloolefin resin substrate tends to be a moderate value. As a result, display unevenness is further reduced. It is particularly preferred that the refractive index at the nD:D line (589 nm) at 25° C. satisfies the above range.
  • the refractive index can be measured with a multi-wavelength Abbe refractometer (trade name: DR-M2, manufactured by Atago Co., Ltd.). Details of the measuring method are described in Examples.
  • the refractive index of the optical film containing the cycloolefin resin substrate can be adjusted according to the refractive index by forming a functional layer having a refractive index different from that of the cycloolefin resin substrate. can change the refractive index of
  • the refractive index of an optical film containing a cycloolefin resin substrate can be controlled by the formulation and manufacturing method of the cycloolefin resin substrate, and by the formulation and manufacturing method of the functional layer when it has a functional layer.
  • a raw material for the cycloolefin resin of the cycloolefin resin base material or as a raw material for the base resin of the functional layer use of a material having a bulky structure or an increase in its amount, use of a monomer with a low refractive index and its amount increases, the refractive index of optical films containing cycloolefin resin substrates tends to be lower.
  • the refractive index of the optical film containing the cycloolefin resin substrate tends to be lower than when produced by melt casting. be.
  • the refractive index of the optical film containing the cycloolefin resin substrate tends to be lower than when slow drying is performed. In these cases, it is presumed that the refractive index of the optical film containing the cycloolefin resin substrate was lowered due to the decrease in the resin density of the cycloolefin resin substrate and the functional layer. To increase the refractive index, the opposite of the above should be done.
  • the refractive index of the optical film containing the cycloolefin resin substrate is changed according to the refractive index of the particles.
  • the refractive index of the optical film containing the cycloolefin resin substrate can be changed according to the refractive index of the particles.
  • the direction of controlling the refractive index of the optical film containing the cycloolefin resin substrate is not limited to these methods.
  • the refractive index of the functional layer should be 0.002 to 0.002 to 0.002 relative to the refractive index of the base material layer from the viewpoint of optical scattering (display unevenness). 008 low is preferred.
  • the haze (%) of the optical film containing the cycloolefin resin substrate is not particularly limited, but is preferably 0.20% or more, more preferably 0.50% or more. Preferably, it is more preferably 0.55% or more. Further, the haze (%) of the optical film containing the cycloolefin resin substrate is preferably 1.00% or less, more preferably 0.90% or less, and 0.85% or less. More preferred. Within these ranges, display unevenness is further reduced. Haze can be measured according to JIS K 7136:2000 using a haze meter (NDH4000, manufactured by Nippon Denshoku Industries Co., Ltd.). Here, among optical films, in the case of a film having a functional layer (cured layer), it is preferable to use the value measured from the functional layer side. Details of the measuring method are described in Examples.
  • the haze of an optical film containing a cycloolefin resin substrate can be controlled by, for example, the type of particles (particle size, refractive index, etc.), the amount of particles added, and the like. More specifically, for example, by increasing the refractive index of the cycloolefin resin and the particles, or by increasing the amount of particles having a refractive index difference with the cycloolefin resin, the haze of the optical film is reduced. can be increased. In order to reduce the haze of the optical film, the opposite of the above may be performed.
  • variable angle luminosity of the optical film containing the cycloolefin resin substrate is not particularly limited, but is preferably 0.7 to 11. Within this range, display unevenness, particularly display unevenness recognized as screen roughness and display unevenness recognized as luminance unevenness, is further reduced. Variable angle luminosity can be measured as follows. Set the sample (optical film) in a goniophotometer (product number GP-200 manufactured by Murakami Color Research Laboratory Co., Ltd., inclination angle within 0.5 degrees), and measure the position on the sample as a reference.
  • a goniophotometer product number GP-200 manufactured by Murakami Color Research Laboratory Co., Ltd., inclination angle within 0.5 degrees
  • the visible ray is incident on the surface of the sample at an angle of 80 degrees from the normal direction of the sample (i.e., the visible ray is incident on the surface of the sample at a position inclined by 10 degrees to the normal direction with respect to the surface of the sample).
  • the direction of specular reflection of incident light is defined as a reference angle of 0 degrees, and the intensity of reflected light is measured every 0.1 degrees within a range of ⁇ 3.0 degrees around the reference angle.
  • the scale of the light receiving aperture is adjusted to "6" and the scale of the luminous flux aperture is adjusted to "1".
  • the variable angle luminous intensity is calculated by calculating the integrated value of the light amount obtained at ⁇ 3.0 degrees to ⁇ 2.0 degrees centering on the reference angle.
  • the variable angle luminous intensity is 80 degrees from the normal direction of the sample (optical film) with respect to either one of the slow axis directions of the sample (optical film). It is more preferable that the value falls within the above range when the oblique visible light is incident on the surface of the sample and measured.
  • variable angle luminous intensity is measured when a visible ray inclined 80 degrees from the normal direction of the sample (optical film) with respect to both slow axis directions of the sample (optical film) is incident on the surface of the sample. It is more preferable that both values are within the above range.
  • the counterclockwise rotation is positive, and from 0° to less than +360° along the sample surface, in all directions rotated at intervals of 45° It is particularly preferred that all the values measured by illuminating the surface of the sample with visible light inclined 80 degrees from the line direction fall within the above range.
  • a method for producing an optical film containing a cycloolefin resin substrate is not particularly limited, and known methods can be used. Examples thereof include a coating method, a solution film forming method, a melt film forming method (melt film forming method), a vapor phase film forming method, and the like, and these may be used in combination.
  • the cycloolefin resin substrate is not particularly limited, it is preferably produced by a melt film-forming method or a solution film-forming method, more preferably by a melt film-forming method. In these production methods, the film may be stretched during or after film formation, if necessary.
  • the melt film forming method is not particularly limited, but includes, for example, a melt casting method (melt extrusion method), a press molding method, an inflation molding method, an injection molding method, a blow molding method, and a stretch molding method.
  • a melt casting method that is, a resin composition containing a cycloolefin resin and optionally other components, is melted by heating and cast onto a substrate, cooled and solidified to form a film.
  • a method of forming is preferred.
  • the melt film-forming method a known method can be appropriately employed. For example, the method described in paragraphs "0111" to "0116" of Japanese Patent No. 5509515, the method described in paragraphs "0224" to "0230" of JP-A-2016-153839, etc., with appropriate modifications. can be employed on However, applicable melt film-forming methods are not limited to these.
  • the drying temperature is not particularly limited, it can be, for example, 80 to 120°C.
  • the drying time is not particularly limited, but can be, for example, 2 to 12 hours.
  • the melting temperature in the melt casting method is not particularly limited, it is preferably at least the melting temperature of the cycloolefin resin used, preferably at least 220°C. Moreover, the melting temperature in the melt casting is preferably 350° C. or less from the viewpoint of transparency of the film.
  • the production equipment used in the melt casting method is not particularly limited, and known production equipment used in the melt casting method can be used. Examples include, but are not limited to, single-screw extruders, polymer pipes, polymer filters, T-dies, casting drums, and the like.
  • the solution casting method is not particularly limited, but includes, for example, the solution casting method.
  • the solution casting method For example, 1) obtaining a dope containing a cycloolefin resin, other optional ingredients, and a solvent; 2) casting the obtained dope on a metal support and drying; Examples include a method including a step of peeling off from the support to obtain a film-like material, and 3) a step of further drying the peeled film-like material. Note that the method may further include other steps.
  • a dope is prepared by dissolving a cycloolefin resin and other components that may be added as necessary in a solvent. Mixing with the solvent may be carried out at room temperature, in a heated environment, or in a cooled environment.
  • the heating temperature and cooling temperature are not particularly limited as long as they are temperatures capable of dissolving the cycloolefin resin.
  • the solvent used for the dope contains at least an organic solvent (good solvent) capable of dissolving the cycloolefin resin.
  • good solvents include chlorinated organic solvents such as methylene chloride; and non-chlorinated organic solvents such as methyl acetate, ethyl acetate, acetone and tetrahydrofuran.
  • the solvent used for the dope may further contain a poor solvent.
  • poor solvents include straight or branched chain aliphatic alcohols having 1 to 4 carbon atoms. When the ratio of alcohol in the dope becomes high, the film-like material tends to gel and is easily peeled off from the metal support.
  • Linear or branched aliphatic alcohols having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol and tert-butanol. Of these, ethanol is preferred because of its dope stability, relatively low boiling point, and good drying properties. These solvents can be used singly or in combination of two or more at any ratio.
  • the content of the solvent contained in the dope is not particularly limited, it is more preferably 50% by mass or more, more preferably 60% by mass or more, relative to the total mass of the dope.
  • the content of the solvent in the dope is preferably 95% by mass or less, more preferably 85% by mass or less, and particularly preferably 80% by mass or less.
  • the content of the solvent component can be appropriately adjusted from the viewpoint of film production conditions, thickness of the film to be produced, and the like.
  • the obtained dope is cast on a metal support. Casting of the dope can be performed by discharging from a casting die. The solvent in the dope cast on the metal support is then evaporated and dried. The dried dope is peeled off from the metal support to obtain a film.
  • the residual solvent amount of the dope when peeled from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass.
  • the amount of residual solvent in the dope is defined by the following formula.
  • the obtained film-like material is further dried.
  • the drying temperature is not particularly limited. )°C, and more preferably (Tg-30)°C to (Tg+50)°C.
  • a specific example of the drying temperature is not particularly limited, but is preferably 100° C. or higher, more preferably 120° C. or higher.
  • the stretching temperature is preferably 220° C. or lower, more preferably 200° C. or lower, and even more preferably 180° C. or lower.
  • the amount of residual solvent in the film-like material at the start of drying is preferably 2 to 50% by mass.
  • the film-like material may be stretched at the same time as drying.
  • the stretching method and stretching conditions are the same as those described later for the stretching treatment in the production of the optical film containing the cycloolefin resin substrate.
  • the film is stretched in the MD direction (conveyance direction), for example, by giving a plurality of rolls different circumferential speeds, and the rolls having different circumferential speeds between them. It is preferable to carry out by the method to be used (roll method).
  • Stretching of the film in the TD direction (a method perpendicular to the conveying direction) can be performed, for example, by fixing both ends of the film with clips or pins and widening the distance between the clips or pins in the traveling direction (tenter method). is preferred.
  • the method for producing the optical film containing the cycloolefin resin substrate comprises the cycloolefin resin substrate or the The method preferably includes a step of forming a functional layer on the raw film.
  • the "raw film of the cycloolefin resin substrate” refers to the film of the cycloolefin resin substrate obtained after stretching under specific conditions, before the stretching.
  • the original film may be already stretched as long as it is further stretched thereafter.
  • the surface of the cycloolefin resin substrate or raw film thereof on which the functional layer is to be formed is subjected to a surface modification treatment in order to improve the adhesion between the cycloolefin resin substrate and the functional layer.
  • the surface modification treatment is not particularly limited, and known surface modification treatments can be used. Examples include active energy ray irradiation treatment and chemical treatment. Examples of the active energy ray irradiation treatment include corona discharge treatment, plasma treatment, electron beam irradiation treatment, ultraviolet irradiation treatment and the like.
  • the chemical treatment includes, for example, a saponification treatment, a treatment in which the film is immersed in an oxidizing agent aqueous solution such as a potassium dichromate solution and concentrated sulfuric acid, and then washed with water.
  • an oxidizing agent aqueous solution such as a potassium dichromate solution and concentrated sulfuric acid
  • the methods described in paragraphs "0125" to "0139" of Japanese Patent Laid-Open No. 2016-79210 can be employed with appropriate modifications as necessary.
  • applicable surface modification treatment methods are not limited to these.
  • active energy ray irradiation treatment is preferable
  • corona discharge treatment or plasma treatment is more preferable
  • corona discharge treatment is still more preferable, from the viewpoint of treatment efficiency.
  • the output of the corona discharge treatment is not particularly limited, it is preferably 0.02 kW or more, more preferably 0.04 kW or more.
  • the output of the corona discharge treatment is preferably 5 kW or less, more preferably 2 kW or less.
  • the electrode length used for corona discharge treatment is not particularly limited. And it is preferable to carry out the corona discharge treatment while transporting.
  • the conveying speed for corona discharge treatment is not particularly limited.
  • corona discharge treatment device is not particularly limited, for example, a known device can be used.
  • the method for forming the functional layer is not particularly limited, it is preferably formed by a coating method.
  • the coating method is not particularly limited, and known methods can be used. Examples thereof include wire bar coating, dipping, spraying, spin coating, roll coating, gravure coating, air knife coating, curtain coating, slide coating, extrusion coating and die coating.
  • the coating liquid for forming the functional layer may further contain a solvent in addition to the base resin that may be added as required and other components that may be added as required.
  • a solvent for example, water or an organic solvent can be used.
  • organic solvents include, but are not limited to, methanol, ethanol, isopropyl alcohol, acetone, tetrahydrofuran, N-methylpyrrolidone, dimethylsulfoxide, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, dichloromethane, methyl ethyl ketone, cyclohexanone, and the like.
  • Water or an organic solvent can be used singly, or two or more of them can be used in combination at any ratio.
  • the solid content concentration of the functional layer-forming coating liquid is not particularly limited, but is preferably 0.5% by mass or more, and preferably 1% by mass or more, relative to the total mass of the functional layer-forming coating liquid. More preferred.
  • the solid content concentration of the functional layer-forming coating liquid is preferably 15% by mass or less, more preferably 10% by mass or less, relative to the total mass of the functional layer-forming coating liquid. Within these ranges, the handleability and coating properties of the coating liquid are further improved.
  • the method for producing an optical film containing a cycloolefin resin substrate comprises coating a functional layer forming coating liquid on at least one surface of the cycloolefin resin substrate or the original film thereof. and forming a layer of the functional layer coating liquid.
  • the step preferably includes drying the solvent contained in the coating liquid for forming the functional layer.
  • the functional layer is a hardened layer, it is preferable to dry the solvent contained in the coating liquid and allow the hardening reaction to proceed. Also, at this time, drying and curing may proceed at the same time. At this time, in addition to drying and curing, stretching, which will be described later, may proceed at the same time. In addition, it is preferable to heat when drying, curing, or stretching the coating liquid for forming the functional layer.
  • the heating temperature and heating time can be appropriately set within a range in which the desired treatment and reaction can proceed.
  • the heating temperature is not particularly limited, it is preferably 40 to 150°C, more preferably 60 to 130°C.
  • the heating time is not particularly limited as long as the desired drying or effect is possible.
  • the drying conditions for the functional layer are not particularly limited, but from the viewpoint of controlling the refractive index, if it is desired to increase the refractive index, it is preferable to perform slow drying, which is drying at a low drying speed, to decrease the refractive index. If desired, it is preferable to perform rapid drying, which is drying at a high drying speed.
  • slow drying means drying at a drying rate of 0.2 g/m 2 ⁇ s or less.
  • rapid drying means drying at a drying speed of 0.8 to 4.8 g/m 2 ⁇ s.
  • the drying speed is calculated by measuring the film thickness of the coating liquid on the transported support and calculating the volatilization amount of the solvent in the coating liquid from the change in the film thickness (specifically, the formula: ⁇ film Thickness change [ ⁇ m] ⁇ specific gravity [ ⁇ ] ⁇ /Time required for film thickness change (s), 1 ⁇ m thickness is equivalent to 1 g/m 2 at a density of 1000 kg/m 3 ), volatilization of solvent per unit area per unit time It can be obtained by calculating the amount (g/m 2 ⁇ s) and using this value as the drying speed.
  • Drying is not particularly limited, but can be performed using dry air, an electric heater, an infrared heater, a heating roll, or the like. Among these, dry air is preferred.
  • the drying equipment is not particularly limited, it is preferable to have an air supply hole for supplying and exhausting dry air and an exhaust hole.
  • the active energy ray is not particularly limited, but ultraviolet rays are preferable.
  • the output of the ultraviolet irradiation device is not particularly limited, but can be, for example, 100 to 300W.
  • the irradiation amount of ultraviolet rays is not particularly limited. For example, it can be 100 to 2000 mJ/cm 2 .
  • the ultraviolet irradiation device is not particularly limited, and a known device can be used. For example, an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) and the like can be mentioned.
  • the irradiation environment for active energy ray irradiation is not particularly limited, but it is preferably performed under an inert gas purge such as nitrogen, and more preferably under a nitrogen purge.
  • the raw film may be stretched in a single state, or may be stretched in a state where a functional layer-forming coating liquid layer or a functional layer is formed on the raw film.
  • a layer of a coating liquid for forming a functional layer is formed on at least one raw film of a cycloolefin resin substrate.
  • A-2 stretching the raw film to obtain a cycloolefin resin base material;
  • A-3) drying the layer of the coating liquid, (if necessary Further curing as necessary to obtain a functional layer (for example, a cured layer).
  • Either the above step (A-2) or the above step (A-3) may be performed first, or both steps may be performed simultaneously.
  • a functional layer for example, a cured layer
  • the stretching method is not particularly limited.
  • a method of uniaxially stretching in the longitudinal direction using a difference in peripheral speed between rolls (longitudinal uniaxial stretching); a method of uniaxially stretching in the width direction using a tenter (horizontal uniaxial stretching); longitudinal uniaxial stretching and lateral uniaxial stretching. and in order (sequential biaxial stretching); a method of simultaneously performing longitudinal stretching and transverse stretching (simultaneous biaxial stretching); a method of stretching in an oblique direction with respect to the longitudinal direction of the film before stretching (diagonal stretching); mentioned.
  • "diagonal” means a direction that is neither parallel nor perpendicular.
  • the stretching ratio is not particularly limited, but is preferably 1.01 times or more, more preferably 1.5 times or more. It is preferably 1.7 times or more, more preferably 2.0 times or more.
  • the draw ratio is preferably 10.0 times or less, more preferably 7.0 times or less, and even more preferably 5.0 times or less.
  • the stretching ratio is not particularly limited, but is preferably 1.01 times or more, more preferably 1.1 times or more, and 1.2 times. It is more preferable that it is above. In this case, the draw ratio is preferably 1.5 times or less, more preferably 1.4 times or less, and even more preferably 1.3 times or less.
  • the product of the draw ratios in each step is preferably within the above range.
  • the stretching temperature is not particularly limited, but is preferably 100°C or higher, more preferably 120°C or higher.
  • the stretching temperature is preferably 220° C. or lower, more preferably 200° C. or lower, and even more preferably 180° C. or lower.
  • the stretching temperature is preferably 150° C. or lower, more preferably 130° C. or lower.
  • optical film containing a cycloolefin resin substrate it is preferable to produce the optical film as a long film.
  • optical films In at least one of the polarizing plates included in the display device according to an embodiment of the present invention, when an optical film containing a base material containing a cycloolefin resin is arranged only on one surface of the polarizer, Another optical film may be placed on the other side of the polarizer.
  • optical films are not particularly limited, and known optical films can be used.
  • the other optical film preferably contains a resin film.
  • resin films include, but are not limited to, cellulose ester films, acrylic films, and polycarbonate films. Among these, a cellulose ester film is preferred.
  • Commercially available cellulose ester films include, but are not limited to, Konica Minolta Tack KC8UX, KC5UX, KC4UX, KC8UCR3, KC4SR, KC4BR, KC4CR, KC4DR, KC4FR, KC4KR, KC8UY, KC6UY, KC4UY, KC4UE, KC8UE, KC8UY- HA, KC2UA, KC4UA, KC6UAKC, 2UAH, KC4UAH, KC6UAH (manufactured by Konica Minolta Co., Ltd.) and FUJITAC (registered trademark) T40UZ, T60UZ, T80UZ, TD80UL
  • the thickness of the resin film is not particularly limited, it is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 20 ⁇ m or more. Within these ranges, the protective function of the polarizer is further improved. Although the thickness of the resin film is not particularly limited, it is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and even more preferably 60 ⁇ m or less. Within these ranges, the thickness of the polarizing plate can be further reduced.
  • optical films may further include a functional layer in addition to the above resin film.
  • the functional layer is not particularly limited, and includes functional layers used in optical applications.
  • a polarizing plate included in a display device includes a polarizer.
  • a polarizer is an element that passes only light with a plane of polarization in a certain direction.
  • a known polarizer can be used without particular limitation, but a polyvinyl alcohol-based polarizing film is preferred.
  • the polyvinyl alcohol-based polarizing film may be a polyvinyl alcohol-based film dyed with iodine, or may be a polyvinyl alcohol-based film dyed with a dichroic dye.
  • the polyvinyl alcohol-based polarizing film includes a film obtained by uniaxially stretching a polyvinyl alcohol-based film and then dyeing it with iodine or a dichroic dye (preferably a film further subjected to durability treatment with a boron compound).
  • a polyvinyl alcohol polarizing film a polyvinyl alcohol film is dyed with iodine or a dichroic dye and then uniaxially stretched (preferably, a film further subjected to durability treatment with a boron compound). mentioned.
  • a film obtained by dyeing a polyvinyl alcohol-based film with iodine, applying a durability treatment with a boron compound, and then uniaxially stretching the film is particularly preferable.
  • the absorption axis of a polarizer is usually parallel to the direction of maximum stretch.
  • the polyvinyl alcohol-based film used for forming the polyvinyl alcohol-based polarizing film is not particularly limited. Examples include ethylene-modified polyvinyl alcohol having a degree of polymerization of 1 to 4 mol%, a degree of polymerization of 2000 to 4000, and a degree of saponification of 99.0 to 99.99 mol%.
  • the temperature during uniaxial stretching is not particularly limited, it is preferably 30 to 90°C.
  • the ratio of uniaxial stretching is not particularly limited, it is preferably 1.05 to 10 times, more preferably 2 to 8 times, and even more preferably 4 to 6 times.
  • the thickness of the polarizer is not particularly limited, it is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and even more preferably 5 ⁇ m or more. Within these ranges, the polarization performance is further improved. Also, the thickness of the polarizer is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less. Within these ranges, the thickness of the polarizing plate can be further reduced.
  • the refractive index of the polarizer is not particularly limited, it is preferably 1.500 to 1.520.
  • a polarizing plate included in a display device has an optical film containing a cycloolefin resin base material, and the refractive index difference between the optical film containing the cycloolefin resin base material and the polarizer is as follows. satisfies equation (1): Formula (1) 0 ⁇ (refractive index of optical film ⁇ refractive index of polarizer) ⁇ 0.02 When the refractive index difference between the optical film of formula (1) (the optical film containing the cycloolefin resin base material) and the polarizer is less than 0, display unevenness, particularly display unevenness recognized as luminance unevenness, increases. do. Further, when the difference in refractive index between the optical film of formula (1) (the optical film containing the cycloolefin resin base material) and the polarizer is 0.02 or more, display unevenness, particularly screen roughness, is recognized. display unevenness increases.
  • the difference in refractive index between the optical film containing the cycloolefin resin base material and the polarizer preferably satisfies the following formula (2): Formula (2) 0.001 ⁇ (refractive index of optical film - refractive index of polarizer) ⁇ 0.015 Within this range, display unevenness is further reduced. From the same point of view, the upper limit of the refractive index difference between the optical film containing the cycloolefin resin substrate and the polarizer is more preferably 0.008 or less, and even more preferably 0.005 or less.
  • the refractive index difference between the optical film containing at least one cycloolefin resin base material and the polarizer is expressed by the above formula (1) It suffices if the relationship of Further, in the polarizing plate including at least a polarizer having an absorption axis that serves as a reference for the angle along the display surface in the measurement of the RMS granularity of the display device, an optical film including at least one cycloolefin resin substrate; It is preferable that the refractive index difference from the polarizer satisfies the relationship of the above formula (1).
  • the refractive index difference with the polarizer preferably satisfies the relationship of the above formula (1).
  • the refractive index difference between the optical film containing at least one cycloolefin resin substrate and the polarizer satisfies the relationship of the above formula (2).
  • the upper limit of the refractive index difference between the optical film containing at least one cycloolefin resin substrate and the polarizer is more preferably 0.008 or less, more preferably 0.005 or less. More preferred.
  • the difference in refractive index between the optical film containing at least one cycloolefin resin base material and the polarizer is the above formula ( 1) is preferably satisfied.
  • the refractive index difference between the optical film containing at least one cycloolefin resin substrate and the polarizer satisfies the above formula (2).
  • the upper limit of the refractive index difference between the optical film containing at least one cycloolefin resin substrate and the polarizer is more preferably 0.008 or less, more preferably 0.005 or less. More preferred.
  • the difference in refractive index between the optical film containing all the cycloolefin resin substrates and the polarizer is expressed by the above formula (1) is preferably satisfied.
  • the refractive index difference between the optical film containing all the cycloolefin resin substrates and the polarizer satisfies the above formula (2).
  • the upper limit of the refractive index difference between the optical film containing all the cycloolefin resin substrates and the polarizer is more preferably 0.008 or less, more preferably 0.005 or less. preferable.
  • all the polarizing plates included therein have only one optical film containing a cycloolefin resin base material, and the cycloolefin resin base material is
  • the refractive index difference between the optical film containing and the polarizer preferably satisfies the above formula (1).
  • the refractive index difference between the optical film containing the cycloolefin resin base material and the polarizer satisfies the above formula (2).
  • the upper limit of the refractive index difference between the optical film containing the cycloolefin resin base material and the polarizer is more preferably 0.008 or less, and further preferably 0.005 or less. .
  • the optical film containing the cycloolefin resin base material When the refractive index difference between the optical film containing the cycloolefin resin base material and the polarizer satisfies the range of the above formula (2), or when the refractive index difference between the optical film containing the cycloolefin resin base material and the polarizer When the upper limit is 0.008 or less or 0.005 or less, the optical film containing the cycloolefin resin base material has a functional layer, and the functional layer contains an acrylic resin or a urethane resin and particles. preferably.
  • the refractive index at the nD:D line (589 nm) at 25°C satisfies each of the above ranges.
  • the refractive index of the optical film containing the cycloolefin resin substrate and the refractive index of the polarizer can be measured with a multi-wavelength Abbe refractometer (trade name: DR-M2, manufactured by Atago Co., Ltd.). The details of the measuring method are as described in Examples.
  • a method for manufacturing the polarizing plate included in the display device according to one embodiment of the present invention is not particularly limited, and a known method can be used.
  • a polarizing plate can be produced by laminating a polarizer and an optical film containing the cycloolefin resin substrate and/or other optical film via an adhesive (i.e., via an adhesive layer). can be manufactured.
  • the adhesive is not particularly limited, and known ones can be used. Examples thereof include a completely saponified polyvinyl alcohol aqueous solution (water glue) and an active energy ray-curable adhesive.
  • a completely saponified polyvinyl alcohol aqueous solution water glue
  • an active energy ray-curable adhesive an active energy ray-curable adhesive.
  • the polarizer and the optical film and/or other optical film containing the above cycloolefin resin base material are considered to be easy to obtain a polarizing plate having high strength and excellent flatness even in a thin film. , and is preferably bonded with an active energy ray-curable adhesive.
  • the active energy ray-curable adhesive is not particularly limited, for example, a photo-radical polymerizable composition using photo-radical polymerization, a photo-cationic polymerizable composition using photo-cationic polymerization, and photo-radical polymerization and photo-cation
  • a hybrid type composition that uses polymerization in combination and the like can be mentioned.
  • the photoradical polymerizable composition is not particularly limited.
  • a known radical photopolymerizable composition can be used.
  • the radically polymerizable compound contained in the radically photopolymerizable composition is not particularly limited, but is preferably a compound having a radically polymerizable ethylenically unsaturated bond.
  • the compound having a radically polymerizable ethylenically unsaturated bond is not particularly limited, but a compound having a (meth)acryloyl group is preferred.
  • the compound having a (meth)acryloyl group is not particularly limited, examples thereof include N-substituted (meth)acrylamide compounds and (meth)acrylate compounds.
  • the photoradical polymerizable composition is not particularly limited, but for example, a radically polymerizable compound containing a polar group such as a hydroxy group or a carboxyl group and a radical polymerization containing no polar group described in JP-A-2008-009329. and a composition containing a specific proportion of a chemical compound.
  • the photo cationic polymerizable composition is not particularly limited.
  • a known cationic photopolymerizable composition can be used.
  • the cationic polymerizable compound contained in the cationic photopolymerizable composition is not particularly limited, and examples thereof include a curable compound having an epoxy group and a curable compound having an oxetanyl group.
  • the photocationically polymerizable composition is not particularly limited, but for example, ( ⁇ ) a cationic polymerizable compound and ( ⁇ ) a photocationic polymerization initiator, as described in JP-A-2011-028234. , ( ⁇ ) a photosensitizer exhibiting maximum absorption at a wavelength longer than 380 nm, and ( ⁇ ) a naphthalene-based photosensitizing aid.
  • active energy ray-curable adhesives include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate and Epolead (registered trademark) GT-301 (an alicyclic epoxy resin manufactured by Daicel Corporation). ), 1,4-butanediol diglycidyl ether, triarylsulfonium hexafluorophosphate, 9,10-dibutoxyanthracene, and 1,4-diethoxynaphthalene.
  • a method for producing a polarizing plate using an active energy ray-curable adhesive is not particularly limited, but for example, 1) an active energy ray-curable adhesive is applied to at least one of the adhesive surfaces of the polarizer and the optical film. 2) bonding the polarizer and the optical film together via the obtained adhesive layer; and 3) in a state where the polarizer and the optical film are bonded together via the adhesive layer. Examples include a production method including a step of irradiating with an energy beam to cure the adhesive layer to obtain a polarizing plate, and 4) a step of punching (cutting) the obtained polarizing plate into a predetermined shape. Before step 1), if necessary, a step 5) of subjecting the surface of the optical film to which the polarizer is to be adhered to easy-adhesion treatment (for example, corona discharge treatment, plasma treatment, etc.) may be further included.
  • easy-adhesion treatment for example, corona discharge treatment, plasma treatment, etc.
  • the desired thickness of the adhesive layer after curing is not particularly limited.
  • the application of the active energy ray-curable adhesive is preferably carried out so that the thickness of the adhesive layer after curing is 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, and 0.1 ⁇ m or more. 0.5 ⁇ m or more is more preferable. Adhesiveness improves more that it is these ranges.
  • the application of the active energy ray-curable adhesive is preferably performed so that the thickness of the adhesive layer after curing is 10 ⁇ m or less, more preferably 5 ⁇ m or less, and 3 ⁇ m or less. is more preferred. Within these ranges, the thickness of the polarizing plate can be further reduced.
  • the active energy rays to be irradiated are not particularly limited, and examples thereof include visible light, ultraviolet rays, X-rays and electron beams. In general, it is preferable to use ultraviolet light because it is easy to handle and has a sufficient curing speed.
  • the irradiation conditions of the ultraviolet rays may be any conditions as long as the adhesive can be cured.
  • the irradiation amount of ultraviolet rays is preferably 50 to 1500 mJ/cm 2 in terms of integrated light amount, and more preferably 100 to 1000 mJ/cm 2 . It is preferable to carry out the ultraviolet irradiation while transporting.
  • the ultraviolet irradiation device is not particularly limited, for example, a known device can be used.
  • corona discharge treatment is preferable as the easy-adhesion treatment.
  • surface modification treatment can be used individually by 1 type, or can use 2 or more types together.
  • the output of the corona discharge treatment is not particularly limited, but is preferably 0.02 kW or more, more preferably 0.04 kW or more.
  • the output of the corona discharge treatment is preferably 5 kW or less, more preferably 2 kW or less.
  • the conveying speed for corona discharge treatment is not particularly limited.
  • a corona discharge treatment device is not particularly limited, and for example, a known device can be used.
  • another aspect of the present invention is a polarizing plate having a polarizer and an optical film, wherein the optical film has at least a base material, the base material contains at least a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1), Formula (1) 0 ⁇ (refractive index of the optical film ⁇ refractive index of the polarizer) ⁇ 0.02
  • the RMS granularity (RMS granularity of the display device) of a display image taken from a position inclined by 10° from the display surface to the viewing side when the display device displays black is It can also be said that it relates to the polarizing plate, which is 0.30 to 1.34.
  • a preferred embodiment of the present invention is a polarizing plate having a polarizer and an optical film, wherein the optical film has at least a substrate, the substrate contains at least a cycloolefin resin, and the optical film and the refractive index difference between the polarizer satisfies the following formula (1), Formula (1) 0 ⁇ (refractive index of the optical film ⁇ refractive index of the polarizer) ⁇ 0.02
  • the RMS granularity (RMS granularity of the display device) of a display image taken from a position inclined by 10° from the display surface to the viewing side when the display device displays black is It can also be said that it relates to the polarizing plate, which is 0.30 to 1.30.
  • the details and preferred aspects of the polarizing plate according to this aspect and the optical film containing the cycloolefin resin base material contained therein are, respectively, in the polarizing plate included in the display device according to one aspect of the present invention, Similar to these descriptions.
  • the details and preferred aspects of the display device in which the polarizing plate according to this aspect is incorporated and the display device unit combined with the display device are the same as those described below for the display device according to one aspect of the present invention.
  • the polarizing plate according to one embodiment of the present invention is preferably incorporated on the viewing side of the display cell of the display device unit. Further, it is more preferable that the polarizing plate according to one embodiment of the present invention is incorporated in the viewing side of the display cell of the display device unit and on the side opposite to the viewing side. At this time, the absorption axis of the polarizer of the polarizing plate incorporated on the viewing side of the display cell and the absorption axis of the polarizer of the polarizing plate incorporated on the side opposite to the viewing side of the display cell are perpendicular to each other (that is, crossed Nicols ) is preferred.
  • a display device includes a display device unit.
  • the display device unit is a member required for display of the display device or an assembly thereof, other than the polarizing plate described above.
  • the display unit preferably includes a display cell.
  • the display device according to one embodiment of the present invention is not particularly limited, it is preferably a liquid crystal display device or an organic electroluminescence (organic EL) display device, and more preferably a liquid crystal display device. That is, in the display device according to one embodiment of the present invention, the display device unit preferably includes a display cell, and the display cell is a liquid crystal cell or an organic EL cell.
  • the display device unit when the display device is a liquid crystal display device, the display device unit is not particularly limited, but preferably includes a liquid crystal cell as a display cell and a backlight as a light source.
  • the liquid crystal cell and the backlight are not particularly limited, and for example, known ones can be used.
  • the display device unit when the display device is an organic EL display device, the display device unit includes at least an organic EL cell which is a display cell.
  • the organic EL cell is not particularly limited, and for example, known cells can be used.
  • the display device unit may further include a housing, a touch panel, etc., as required. These are also not particularly limited, and for example, known ones can be used.
  • a liquid crystal cell for example, a liquid crystal cell, a first polarizing plate arranged on one surface of the liquid crystal cell, and a second polarizing plate arranged on the other surface of the liquid crystal cell are provided. and a liquid crystal display device containing the liquid crystal display.
  • the first polarizing plate and the second polarizing plate is a polarizing plate containing the optical film containing the above cycloolefin resin base material.
  • Both the first polarizing plate and the second polarizing plate are preferably polarizing plates containing an optical film containing the above cycloolefin resin base material.
  • the optical film containing the cycloolefin resin base material is arranged on the surface of the polarizer on the liquid crystal cell side. Further, it is more preferable that the optical film containing the above cycloolefin resin substrate has the above functional layer in addition to the cycloolefin resin substrate. In this case, it is particularly preferable that an easy-adhesion layer is included as the functional layer, and the easy-adhesion layer is arranged on the polarizer-side surface of the cycloolefin resin base material.
  • the display device unit includes at least a liquid crystal cell. More preferably, the display unit further includes a backlight.
  • the absorption axis of the polarizer of the first polarizing plate and the absorption axis of the polarizer of the second polarizing plate are preferably orthogonal (that is, crossed Nicols).
  • the method of bonding the liquid crystal display device and the polarizing plate is not particularly limited, but they are preferably bonded via an adhesive or pressure-sensitive adhesive (that is, via an adhesive layer or pressure-sensitive adhesive layer), It is more preferable to laminate via an adhesive.
  • the adhesive is not particularly limited, and known ones can be used.
  • the adhesive described in the method for manufacturing the polarizing plate can be used.
  • the adhesive is not particularly limited, and known ones can be used.
  • acrylic pressure-sensitive adhesives, epoxy-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, and the like can be used.
  • the display mode of the liquid crystal cell is not particularly limited. continuous spin wheel alignment (CPA) mode, hybrid alignment nematic (HAN) mode, twisted nematic (TN) mode, super twisted nematic (STN) mode, optically compensated bend (OCB) mode, etc. be able to.
  • the VA mode is preferable from the viewpoint that the effects of the present invention are exhibited more satisfactorily. Therefore, in one preferred embodiment of the present invention, it is preferred that the display unit is a vertically aligned (VA) liquid crystal display unit (ie, a display unit including a vertically aligned (VA) mode liquid crystal cell).
  • VA vertically aligned
  • liquid crystal display device An example of a liquid crystal display device according to a preferred embodiment of the present invention will be described below.
  • the display device according to the present invention is not limited to the one described below.
  • FIG. 3 is a schematic diagram showing an example of the basic configuration of a liquid crystal display device according to one embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing another example of the basic configuration of the liquid crystal display device according to one embodiment of the present invention.
  • the liquid crystal display device 10 according to one embodiment of the present invention includes a liquid crystal cell 30, a first polarizing plate 50 arranged on one surface of the liquid crystal cell 30, and a liquid crystal It includes a second polarizer 70 disposed on the other side of cell 30 and a backlight 90 .
  • the display device unit includes a liquid crystal cell 30 and a backlight 90 .
  • the display mode of the liquid crystal cell 30 is not particularly limited, and various display modes as described above can be exemplified. Among these, the VA mode is preferable.
  • the first polarizing plate 50 consists of a first polarizer 51 arranged on one surface of the liquid crystal cell 30 (on the viewing side surface) and a surface of the first polarizer 51 opposite to the liquid crystal cell 30 ( and an optical film 55 (F2) disposed on the surface of the first polarizer 51 on the liquid crystal cell 30 side.
  • the second polarizing plate 70 is arranged on the second polarizer 71 arranged on the other surface of the liquid crystal cell 30 (on the surface on the backlight 90 side) and on the surface of the second polarizer 71 on the liquid crystal cell 30 side. and an optical film 75 (F4) disposed on the surface of the second polarizer 71 opposite to the liquid crystal cell 30 (on the surface on the backlight 90 side).
  • each optical film can also be said to be a protective film for protecting the polarizer.
  • the absorption axis of the first polarizer 51 and the absorption axis of the second polarizer 71 are orthogonal (that is, crossed Nicols).
  • At least one of the optical films 53 (F1), 55 (F2), 73 (F3) and 75 (F4) is an optical film containing the above cycloolefin resin base material.
  • the optical films 55 (F2) and 73 (F3) are preferably optical films containing the above cycloolefin resin base material. Further, in this case, it is more preferable that each of the optical films 55 (F2) and 73 (F3) further has the above functional layer in addition to the cycloolefin resin base material.
  • the optical films 53 (F1) and 75 (F4) are preferably optical films other than optical films containing cycloolefin resin substrates, and are particularly preferably cellulose ester films.
  • the optical films 55 (F2) and 73 (F3) more preferably have the functional layers 552 and 732 described above in addition to the cycloolefin resin substrates 551 and 731, respectively.
  • the functional layer 552 may be arranged on either surface of the cycloolefin resin substrate 551, or may be arranged on both surfaces. It is particularly preferable to be arranged on the surface of the substrate 551 on the side of the first polarizer 51 .
  • the optical film 73 (F3) and the functional layer 732 may be arranged on either surface of the cycloolefin resin base material 731, and may be arranged on both surfaces. However, it is particularly preferable to arrange it on the surface of the cycloolefin resin base material 731 on the side of the second polarizer 71 .
  • the present invention includes, but is not limited to, the following aspects and forms: [1] In a display device having a polarizing plate and a display device unit,
  • the polarizing plate has a polarizer and an optical film,
  • the optical film has at least a substrate, the substrate contains at least a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1);
  • Formula (1) 0 ⁇ (refractive index of the optical film ⁇ refractive index of the polarizer) ⁇ 0.02
  • a display device wherein the RMS granularity of a display image taken from a position inclined by 10° from the display surface to the viewing side when the display device displays black is 0.30 to 1.34;
  • the display device according to [1] or [2], wherein the optical film further has a functional layer; [4]
  • a polarizing plate having a polarizer and an optical film The optical film has at least a substrate, the substrate contains at least a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1); Formula (1) 0 ⁇ (refractive index of the optical film ⁇ refractive index of the polarizer) ⁇ 0.02 In a state in which the polarizing plate is incorporated in the display device, the RMS granularity of the displayed image taken from a position inclined by 10° from the display surface to the viewing side when the display device displays black is 0.30 to 1.34.
  • a polarizing plate characterized by having; [9] The polarizing plate of [8], wherein the RMS granularity is 0.30 to 1.30; [10] The polarizing plate of [8] or [9], wherein the optical film further comprises a functional layer; [11] The refractive index difference between the optical film and the polarizer satisfies the following formula (2), Formula (2) 0.001 ⁇ (refractive index of the optical film ⁇ refractive index of the polarizer) ⁇ 0.015
  • Polarizer [14] The
  • TCD 1,3-dimethyldodecahydrocyclopenta[a]indene
  • MTHF 1,3-dimethyldodecahydrocyclopenta[a]indene
  • HOA 2-hydroxyethyl acrylate
  • 0.55 parts of tri-iso-butylaluminum, 0.21 parts of isobutyl alcohol, 0.84 parts of diisopropyl ether as a reaction modifier, and 3.24 parts of 1-hexene as a molecular weight modifier were added.
  • the polymerization conversion rate of the monomer measured by gas chromatography was 100% at the end of polymerization.
  • the resulting ring-opening polymerization reaction solution was transferred to a pressure-resistant hydrogenation reactor, and a diatomaceous earth-supported nickel catalyst (manufactured by JGC Chemical Co., Ltd. (currently JGC Catalysts and Chemicals Co., Ltd.), product name “T8400RL”, 1.4 parts of nickel loading rate 57%) and 167 parts of cyclohexane were added and reacted at 180° C. and hydrogen pressure of 4.6 MPa for 6 hours to obtain a reaction solution.
  • a diatomaceous earth-supported nickel catalyst manufactured by JGC Chemical Co., Ltd. (currently JGC Catalysts and Chemicals Co., Ltd.), product name “T8400RL”, 1.4 parts of nickel loading rate 57%) and 167 parts of cyclohexane were added and reacted at 180° C. and hydrogen pressure of 4.6 MPa for 6 hours to obtain a reaction solution.
  • This reaction solution is filtered under pressure at a pressure of 0.25 MPa (manufactured by IHI Co., Ltd., product name "Funda filter”) using Radiolite #500 as a filter bed to remove the hydrogenation catalyst, resulting in a colorless and transparent hydrogenated product. A solution was obtained.
  • antioxidant per 95 parts of the hydrogenated product pentaerythritol tetrakis [3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF Japan Ltd., product name "Irganox ( (registered trademark) 1010") was added to and dissolved in the hydrogenate solution. Then, it is sequentially filtered through a filter (manufactured by 3M, product name “Zeta Plus Filter 30H”, pore size 0.5 to 1 ⁇ m), and further through another metal fiber filter (manufactured by Nichidai Co., Ltd., pore size 0.4 ⁇ m). Filtration removed fine solids to give a filtered solution.
  • this filtered solution was dried using a cylindrical concentration dryer (manufactured by Hitachi, Ltd.) at a temperature of 270°C and a pressure of 1 kPa or less.
  • a cylindrical concentration dryer manufactured by Hitachi, Ltd.
  • the solvent cyclohexane and other volatile components were removed from the filtered solution to obtain a resin solid content.
  • This resin solid content was extruded in a molten state into strands from a die directly connected to the concentration dryer. The extruded resin solid content was cooled and then cut to obtain pellets of the hydrogenated ring-opening polymer (pellets containing the cycloolefin resin a1).
  • the weight average molecular weight (Mw) of cycloolefin resin a1 was 70,000 when measured in terms of polystyrene by gel permeation chromatography (GPC).
  • the weight average molecular weight (Mw) of the cycloolefin resin a2 was 90,000 when measured in terms of polystyrene by gel permeation chromatography (GPC).
  • the weight average molecular weight (Mw) of cycloolefin resin a3 was 60,000 when measured in terms of polystyrene by gel permeation chromatography (GPC).
  • ethylene was passed through the reactor at a feed rate of 25 Nl/hr, and after 10 minutes, a toluene solution of triphenylcarbenium (tetrakispentafluorophenyl)borate was added. (concentration 0.005 mM/ml) was added to the reaction vessel, followed by previously prepared ( ⁇ 5 -C 5 Me 4 SiMe 3 )Sc(CH 2 C 6 H) from the dropping funnel on top of the reaction vessel. 7 ml of a toluene solution of 4 NMe 2 -o) 2 (concentration 0.005 mM/ml) was added to the glass reaction vessel to initiate polymerization.
  • Me indicates a methyl group
  • ⁇ 5 indicates that the haptic number is five .
  • ethylene-norbornene copolymer (a copolymer of ethylene and norbornene) (cycloolefin resin a4).
  • the mass ratio of ethylene and norbornene in the obtained ethylene-norbornene copolymer was 46/54.
  • the obtained cycloolefin resin a4 was pelletized to obtain pellets containing the cycloolefin resin a4.
  • the weight average molecular weight (Mw) of cycloolefin resin a4 was 50,000 when measured in terms of polystyrene by gel permeation chromatography (GPC).
  • the obtained cycloolefin resin a5 was pelletized to obtain pellets containing the cycloolefin resin a5.
  • the weight average molecular weight (Mw) of the cycloolefin resin a5 was 50,000 when measured in terms of polystyrene by gel permeation chromatography (GPC).
  • particle dispersion liquid 1 10 parts by mass of silica particles (Nippon Aerosil Co., Ltd. R972V, average secondary particle diameter 200 nm) and 90 parts by mass of ethanol were stirred and mixed for 30 minutes with a dissolver, and then dispersed using a high-pressure disperser Manton Gaulin. to prepare a dispersion. 65 parts by mass of dichloromethane was added to the resulting dispersion while stirring, and the mixture was stirred and mixed with a dissolver for 30 minutes for dilution. The resulting solution was filtered through a polypropylene wound cartridge filter TCW-PPS-1N manufactured by Advantech Toyo Co., Ltd. to obtain a particle dispersion liquid 1.
  • Preparation of particle dispersion liquid 2 After stirring and mixing 10 parts by mass of silica particles (Nippon Aerosil Co., Ltd. R812, average secondary particle diameter 50 nm) and 90 parts by mass of ethanol with a dissolver for 30 minutes, dispersion is performed using a high-pressure disperser Manton Gaulin. to prepare a dispersion. 65 parts by mass of dichloromethane was added to the resulting dispersion while stirring, and the mixture was stirred and mixed with a dissolver for 30 minutes for dilution. The resulting solution was filtered through a polypropylene wound cartridge filter TCW-PPS-1N manufactured by Advantech Toyo Co., Ltd. to obtain a particle dispersion liquid 2.
  • particle dispersion liquid 3 10 parts by mass of silica particles (Nippon Aerosil Co., Ltd. R972V, average secondary particle diameter 200 nm) and 90 parts by mass of ethanol were stirred and mixed for 30 minutes with a dissolver, and then dispersed using a high-pressure disperser Manton Gaulin. to prepare a dispersion. 65 parts by mass of ethanol was added to the resulting dispersion while stirring, and the mixture was stirred and mixed with a dissolver for 30 minutes for dilution. The resulting solution was filtered through a polypropylene wound cartridge filter TCW-PPS-1N manufactured by Advantech Toyo Co., Ltd. to obtain a particle dispersion liquid 3.
  • a functional layer-forming coating solution b2 was prepared by mixing the following components: Aromatic urethane (meth) acrylate (EBECRYL (registered trademark) 220, manufactured by Daicel Ornex Co., Ltd.): 100.0 parts by mass Particle dispersion liquid 1: 86.0 parts by mass Methyl ethyl ketone (MEK): 3010.0 parts by mass Cyclohexanone: 90.0 parts by mass.
  • EBECRYL registered trademark
  • MEK Methyl ethyl ketone
  • a functional layer-forming coating solution b3 was prepared by mixing the following components: Benzyl acrylate (FA-BZA, manufactured by Showa Denko Materials Co., Ltd., refractive index (25 ° C.) 1.5132): 100.0 parts by mass Particle dispersion liquid 1: 86.0 parts by mass Methyl ethyl ketone (MEK): 3010.0 parts by mass Part Cyclohexanone: 90.0 parts by mass.
  • FFA-BZA Benzyl acrylate
  • MEK Methyl ethyl ketone
  • a functional layer-forming coating liquid b4 was prepared by mixing the following components: Polyether urethane acrylate (U1): 50.0 parts by mass Benzyl acrylate (FA-BZA, manufactured by Showa Denko Materials Co., Ltd., refractive index (25 ° C.) 1.5132): 50.0 parts by mass Particle dispersion liquid 2: 86 .0 parts by mass Methyl ethyl ketone (MEK): 3010.0 parts by mass Cyclohexanone: 90.0 parts by mass.
  • Polyether urethane acrylate U1
  • F-BZA Benzyl acrylate
  • MEK Methyl ethyl ketone
  • a functional layer-forming coating liquid b5 was prepared by mixing the following components: Polyether urethane acrylate (U1): 50.0 parts by mass Polymethyl methacrylate (PMMA) (manufactured by Kaneka Corporation, Mw 150,000, refractive index (25 ° C.) 1.49): 50.0 parts by mass Particle dispersion liquid 1 : 86.0 parts by mass Methyl ethyl ketone (MEK): 3010.0 parts by mass Cyclohexanone: 90.0 parts by mass.
  • PMMA Polymethyl methacrylate
  • MEK Methyl ethyl ketone
  • a functional layer-forming coating liquid b6 was prepared by mixing the following components: Water-based urethane resin (polyurethane water dispersion) (Superflex (registered trademark) 210, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., solid content 35%): 228.6 parts by mass Epoxy compound (Denacol (registered trademark) EX-521, Nagase Chemtex Corporation): 16.0 parts by mass Dihydrazide adipic acid: 4.0 parts by mass Particle dispersion liquid 3: 86.0 parts by mass Ethanol: 3100.0 parts by mass.
  • the pellet containing the cycloolefin resin a1 produced above was dried at 100° C. for 5 hours. Thereafter, the dried pellets were supplied to a single-screw extruder, extruded into a sheet form from a T-die onto a casting drum through a polymer pipe and a polymer filter at a resin temperature of 260°C, and cooled. As a result, a pre-stretched film having a thickness of 80 ⁇ m and a width of 675 mm was obtained.
  • the unstretched film is continuously supplied to a tenter-type transverse stretching machine, and subjected to transverse uniaxial stretching at a stretching temperature of 145° C. and a stretching ratio of 2 times, thereby performing a stretching treatment.
  • the left and right ends in the width direction were cut and removed to produce a cycloolefin resin substrate having a thickness of 60 ⁇ m.
  • the surface of the cycloolefin resin substrate was subjected to discharge treatment under the conditions of an output of 500 W, an electrode length of 1.35 m, and a transport speed of 5 m/min.
  • the functional layer forming coating liquid b1 is applied to the discharge-treated surface of the cycloolefin resin base material by a die coating method at a coating speed of 30 m/min and a wet coating amount of 17.5 ml/m 2 , and dried. Slow drying was carried out under the condition of a wind (90°C) drying speed of 0.1 g/m 2 ⁇ s. After that, under a nitrogen purge, an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 160 W / cm is used to irradiate ultraviolet rays at a dose of 50 mJ / cm 2 to cure the coating layer, and the finished film thickness is 1 ⁇ m. A layer (cured layer) was formed. Thus, an optical film 1 was produced.
  • optical film 2 with functional layer An optical film was produced in the same manner as in the production of the above optical film 1, except that the drying conditions after coating of the coating liquid for forming the functional layer were changed to dry rapidly at a drying rate of 3.0 g/m 2 ⁇ s. 2 was formed.
  • Optical film 3 was produced in the same manner as in the production of optical film 1 above, except that a film obtained by the following solution casting method was used as the film before stretching.
  • a dope 1 having the following composition was prepared. First, methylene chloride and ethanol were added to a pressurized dissolution tank. Next, the pellets of the cycloolefin resin a1 obtained above were charged into a pressurized dissolution tank while being stirred. Then, the mixture was heated to 60° C. and stirred to dissolve the pellets of the cycloolefin resin a1. At this time, the heating temperature was raised from room temperature at a rate of 5° C./min, and after dissolution in 30 minutes, the temperature was lowered at a rate of 3° C./min.
  • the resulting mixture was filtered using SHP150 manufactured by Roki Techno Co., Ltd. at a filtration flow rate of 300 L/m 2 ⁇ h and a filtration pressure of 1.0 ⁇ 10 6 Pa to obtain a dope.
  • the dope 1 was uniformly cast on a stainless steel belt support at a temperature of 31° C. and a width of 1800 mm.
  • the temperature of the stainless steel belt was controlled at 28°C.
  • the conveying speed of the stainless steel belt was 20 m/min.
  • the solvent was evaporated on a stainless steel belt support until the amount of residual solvent in the cast film reached 30%. Then, it was peeled off from the stainless steel belt support with a peeling tension of 128 N/m. While the peeled film was transported by a number of rollers, the obtained film-like material was stretched 1.2 times in the width direction under the condition of 150° C. in a tenter. After that, the film was further dried while being transported by rolls, and the ends sandwiched between the tenter clips were slit with a laser cutter and wound up to produce a cycloolefin resin substrate having a thickness of 60 ⁇ m.
  • optical film 4 was formed in the same manner as in the production of the above optical film 1, except that the type of the functional layer forming coating liquid was changed to the functional layer forming coating liquid b2.
  • optical film 5 was formed in the same manner as in the production of the above optical film 1, except that the type of the functional layer forming coating liquid was changed to the functional layer forming coating liquid b3.
  • optical film 6 was formed in the same manner as in the production of the above optical film 1, except that the type of the functional layer forming coating liquid was changed to the functional layer forming coating liquid b4.
  • Optical film 10 was produced in the same manner as in the production of optical film 7 above, except that the type of pellets used for forming the unstretched film was changed to pellets containing cycloolefin resin a4.
  • a cycloolefin resin substrate was produced in the same manner as in the production of the optical film 1 described above, and the substrate was used as an optical film 11 .
  • Optical film 12 was produced in the same manner as in the production of optical film 11 described above, except that the type of pellets used for forming the unstretched film was changed to pellets containing cycloolefin resin a3.
  • optical film 13 was produced in the same manner as in the production of the above optical film 1, except that the type of the functional layer forming coating liquid was changed to the functional layer forming coating liquid b6.
  • optical film 14 was produced in the same manner as in the production of the optical film 11 described above, except that the type of pellets used for forming the unstretched film was changed to pellets containing the cycloolefin resin a5.
  • the thickness of the cycloolefin resin substrate was 60 ⁇ m.
  • the thickness of the functional layer (cured layer) was 1 ⁇ m.
  • Tables 1 and 2 below show the formulations and manufacturing methods of the optical films obtained above.
  • a cellulose triacetate film (KC4UA, manufactured by Konica Minolta, Inc., film thickness 40 ⁇ m) was prepared, and one surface thereof was subjected to corona treatment in the same manner as described above.
  • the active energy ray-curable adhesive obtained above was applied to the corona discharge-treated surface of KC4UA with a bar coater so that the film thickness after curing was about 3 ⁇ m.
  • the other surface of the polarizer with the optical film 1 prepared above was attached to the obtained adhesive layer to obtain a laminate.
  • the polarizing plate 1 was produced by irradiating and curing the adhesive layer.
  • Polarizing plates 2 to 14 were produced in the same manner as in polarizing plate 1 except that optical film 1 was changed to optical films 2 to 14, respectively.
  • the surfaces of the optical films 2 to 14 to which the corona discharge treatment is applied and the active energy ray-curable adhesive obtained above is applied are those on the functional layer (hardened layer) side of the films having the functional layer (hardened layer). In the case of a film having no functional layer (cured layer), it was taken as either one of the surfaces of the film.
  • Manufacture of liquid crystal display device 1 (Manufacture of liquid crystal display device 1) Attached to the observer side (visible side) surface (front) and the light source side surface (back) of the liquid crystal cell of a 40-inch liquid crystal display (BRAVIA (registered trademark) X1) manufactured by Sony Corporation in VA mode. Each polarizing plate was peeled off. Then, the polarizing plate 1 prepared above is attached to the light source side surface (rear surface) and the observer side (viewing side) surface (front surface) of the obtained liquid crystal cell using a transparent acrylic adhesive. , a liquid crystal display device 1 was produced.
  • BRAVIA registered trademark
  • X1 40-inch liquid crystal display
  • the polarizing plates were bonded so that the transmission axis of the polarizing plate after bonding coincided with the transmission axis of the originally bonded polarizing plate.
  • the polarizing plates were attached so that the optical film 1 was on the liquid crystal cell side with respect to the polarizer. More specifically, in bonding the polarizing plate to the front surface of the liquid crystal cell, the optical film 1 is on the liquid crystal cell side with respect to the polarizer of the polarizing plate, and the cellulose triacetate film, which is another optical film, is the polarizing plate. , so as to be on the viewing side with respect to the polarizer.
  • the optical film 1 is on the liquid crystal cell side with respect to the polarizer of the polarizing plate, and the cellulose triacetate film, which is another optical film, is the polarizer of the polarizing plate. It was arranged so as to be on the light source side.
  • Liquid crystal display devices 2 to 14 were produced in the same manner as the liquid crystal display device 1, except that the polarizing plate 1 was changed to the polarizing plates 2 to 14.
  • the refractive index of the functional layer alone and the refractive index of the cycloolefin resin substrate alone were measured.
  • the refractive index of the functional layer alone a film was formed from the functional layer alone, and the refractive index of the obtained thin film was measured by the method described above.
  • the refractive index of the cycloolefin resin substrate alone was measured by the method described above for the refractive index of the substrate used in the production of the optical film obtained above.
  • the refractive index of the functional layer is preferably 0.002 to 0.008 lower than the refractive index of the base layer from the viewpoint of optical scattering.
  • Step 1 Acquisition of image Camera: Sony Corporation (SONY) ⁇ 7sII, Lens: Canon EF 70-200mm F2.8L IS II USM, using ISO 25,600, F 2.8, under a dark room, from a position inclined 10° from the display surface to the viewing side, the display surface of the liquid crystal display device obtained above was photographed when displaying black. .
  • the display surface was photographed at +45°, +135°, +225 along the display surface with respect to the absorption axis direction of the polarizer of the polarizing plate arranged on the viewing side (observer side, front side) of the liquid crystal display device.
  • the measurement was performed from a position tilted 10° from the display surface to the viewing side in each of the directions rotated by 315° (-135°C) and +315° (-45°).
  • the distance between the position of the display surface of the liquid crystal display device as a reference for photographing and the camera was set at 50 cm.
  • Step 2 Analysis of Obtained Images
  • RMS granularity was calculated from captured images according to the following procedure: 1, The obtained photographed image was read as two-dimensional (planar) data using free software (imageJ); 2. A rectangular evaluation area of 2.8 cm x 4 cm was set in the actual captured image; 3. Grayscaling was performed with free software (ImageJ); 4, background correction was performed on the two-dimensional data read in the evaluation area; 5. RMS granularity was calculated from standard deviation ⁇ of gray values (pixel values) in gray scale.
  • This standard deviation ⁇ was taken as the RMS granularity of the displayed image at this measurement angle (angle along the display surface) (RMS granularity at a specific angle); 6, +45°, +135°, +225° (-135°), and +315° (- 45°)
  • RMS granularity at a specific angle 6 +45°, +135°, +225° (-135°), and +315° (- 45°)
  • the average value of the RMS granularity (RMS granularity at a specific angle) of the display image photographed from a position tilted 10° from the display surface toward the viewing side is calculated, and the RMS granularity of the display device is calculated. degree.
  • the free software ImageJ is ImageJ1.32S created by WayneRasband.
  • Background correction is, for example, outputting different brightness even though the right and left half areas of the image have the same brightness, or Therefore, this correction is performed when an image is output as a result of gradual brightness, and the density gradient is mathematically canceled by approximating the density gradient with a polynomial.
  • the standard deviation ⁇ of gray values in gray scale was calculated by the following method: N pieces of gray value data x 1 , x 2 , .
  • variance ⁇ 2 was obtained by the following formula (II).
  • the high-sensitivity camera is the above-mentioned camera and lens: ⁇ Evaluation Criteria ⁇ A: The image shot by the camera is further subjected to gradation processing, and the image is visually confirmed, and display unevenness cannot be confirmed; B: Slight display unevenness can be confirmed by visually confirming an image that has undergone further gradation processing with respect to the image taken by the camera; C: Slight display unevenness can be visually confirmed; D: Display unevenness can be clearly confirmed visually.
  • FIGS. 5 and 6 Some of the images taken from the position are shown in FIGS. 5 and 6.
  • the display unevenness is significantly reduced compared to the liquid crystal display device 13 having the polarizing plate 13 according to the comparative example. It was confirmed that Similarly, for liquid crystal display devices having other polarizing plates, in the liquid crystal display device having the polarizing plate according to the present invention, the reduction is significantly reduced compared to the liquid crystal display device having the polarizing plate according to the comparative example. It was confirmed that
  • the optical film containing the cycloolefin resin base material and the polarizer have a refractive index difference of 0 or more. .02 and the RMS granularity is in the range of 0.30 to 1.34, preferably in the range of 0.30 to 1.30. confirmed. It was also confirmed that these liquid crystal display devices having these polarizing plates have small variations in luminance unevenness between display devices and are excellent in production stability.
  • the refractive index difference and the RMS granularity between the optical film containing the cycloolefin resin base material and the polarizer were outside the above ranges. At this time, it was confirmed that the occurrence of display unevenness became remarkable.

Abstract

The present invention provides a means that is capable of reducing display unevenness. The present invention relates to a display device which comprises a polarizing plate and a display device unit, wherein: the polarizing plate comprises a polarizer and an optical film; the optical film comprises at least a base material; the base material contains at least a cycloolefin resin; the refractive index difference between the optical film and the polarizer satisfies formula (1); and the RMS granularity of a display image, which is taken from a position that is inclined at 10° to the display screen toward the viewing side when the display device is in a black display state, is from 0.30 to 1.34. Formula (1): 0 ≤ (refractive index of optical film) – (refractive index of polarizer) < 0.02

Description

偏光板および表示装置Polarizing plate and display device
 本発明は、偏光板および表示装置に関する。 The present invention relates to a polarizing plate and a display device.
 近年、表示装置の用途拡大に伴い、表示装置の高画質化、高精細化が求められている。最近では、4Kテレビ(フルハイビジョンテレビの約4倍の画素数を有するテレビ)が市販されている。また、将来的には、8Kテレビなど、さらなる高コントラスト化を可能とする表示装置が求められている。そして、かような表示装置の高画質化、高精細化の手法としては、ピクセルサイズを小さくすること、光量を上げること、または薄膜トランジスターを用いたアクティブ駆動型の応答速度を速めることなどが知られている。 In recent years, with the expansion of the use of display devices, there is a demand for higher image quality and higher definition of display devices. Recently, 4K televisions (televisions having approximately four times the number of pixels of full high-definition televisions) are commercially available. Further, in the future, there is a demand for display devices such as 8K televisions that can achieve even higher contrast. As methods for improving the image quality and definition of such display devices, it is known to reduce the pixel size, increase the amount of light, or increase the response speed of an active drive type using thin film transistors. It is
 かような表示装置の中でも、光源側偏光板、液晶セルおよび視認側偏光板をこの順に備える液晶パネルと、液晶パネルに光を照射する光源とを有する液晶表示装置が一般的に知られている。また、液晶表示装置では、偏光板に含まれる偏光子を保護する目的や、視野角拡大や表示特性の向上等を目的として、種々の光学フィルムが使用されている。かような光学フィルム材料としては、従来、セルロースエステル樹脂やポリカーボネート樹脂が使用されてきた。また、近年、高耐熱性、低吸湿性および光弾性定数の小ささとの観点から、脂環式構造を有する重合体を含む樹脂が注目を浴びている。脂環式構造を有する重合体を含む樹脂を使用した光学フィルムとして、特開2016-79210号公報には、所定の値以上の分子量を有する重合体を含む熱可塑性樹脂からなる延伸フィルム層と、当該延伸フィルム層の少なくとも一方の面に設けられた、ポリウレタン含有塗布液の塗工膜の硬化層とを有する複層フィルムが開示されている。また、特開2016-79210号公報には、当該複層フィルムを有する偏光板や、当該複層フィルムまたはこれを有する偏光板を有する液晶表示装置が開示されている。そして、特開2016-79210号公報には、当該複層フィルムは、偏光板に含まれる偏光子との接着性に優れることも開示されている。 Among such display devices, a liquid crystal display device having a liquid crystal panel in which a light source side polarizing plate, a liquid crystal cell and a viewing side polarizing plate are provided in this order, and a light source for irradiating the liquid crystal panel with light is generally known. . In liquid crystal display devices, various optical films are used for the purpose of protecting polarizers contained in polarizing plates, widening the viewing angle, improving display characteristics, and the like. Conventionally, cellulose ester resins and polycarbonate resins have been used as such optical film materials. In recent years, attention has been focused on resins containing polymers having an alicyclic structure from the viewpoint of high heat resistance, low hygroscopicity, and small photoelastic constant. As an optical film using a resin containing a polymer having an alicyclic structure, JP-A-2016-79210 discloses a stretched film layer made of a thermoplastic resin containing a polymer having a molecular weight of a predetermined value or more, A multilayer film having a cured layer of a coating film of a polyurethane-containing coating liquid provided on at least one surface of the stretched film layer is disclosed. Further, Japanese Patent Application Laid-Open No. 2016-79210 discloses a polarizing plate having the multilayer film and a liquid crystal display device having the multilayer film or a polarizing plate having the same. Further, Japanese Patent Laid-Open No. 2016-79210 also discloses that the multilayer film has excellent adhesion to the polarizer included in the polarizing plate.
 表示装置に関して、本発明者らは、表示装置に使用する光学フィルムの種類によっては、斜め方向から観察した際に、画面のざらつきとして認識される表示ムラが確認されることを発見している。また、近年、表示装置を工業的に生産し、当該表示装置にて表示を行った際に、表示装置間で輝度ムラとして認識される表示ムラの頻度や程度が異なり、表示装置間での表示品質のバラツキが大きくなることが確認されている。そして、上記のような表示ムラは、特開2016-79210号公報に記載された複層フィルムや、これを有する偏光板を使用した表示装置では解消されず、改善の余地があった。 Regarding the display device, the present inventors have discovered that, depending on the type of optical film used in the display device, display unevenness recognized as screen roughness is observed when observed from an oblique direction. In recent years, when a display device is industrially produced and a display is performed on the display device, the frequency and degree of display unevenness that is recognized as luminance unevenness differs between display devices. It is confirmed that the variation in quality becomes large. The display unevenness as described above cannot be solved by the multilayer film described in JP-A-2016-79210 or the display device using the polarizing plate having the same, and there is room for improvement.
 そこで本発明は、表示ムラを低減しうる手段を提供することを目的とする。 Therefore, an object of the present invention is to provide means for reducing display unevenness.
 本発明の上記課題は、以下の手段によって解決されうる:
 偏光板、及び表示装置ユニットを有する表示装置において、
 前記偏光板は偏光子、及び光学フィルムを有し、
 前記光学フィルムは少なくとも基材を有し、
 前記基材は少なくともシクロオレフィン樹脂を含有し、かつ前記光学フィルムと前記偏光子との屈折率差が下記式(1)を満たし、
 式(1) 0≦(前記光学フィルムの屈折率-前記偏光子の屈折率)<0.02
 前記表示装置を黒表示した際に表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度が0.30~1.34である、表示装置。
The above problems of the present invention can be solved by the following means:
In a display device having a polarizing plate and a display device unit,
The polarizing plate has a polarizer and an optical film,
The optical film has at least a substrate,
the substrate contains at least a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1);
Formula (1) 0≦(refractive index of the optical film−refractive index of the polarizer)<0.02
A display device, wherein the RMS granularity of a display image photographed from a position inclined by 10° from the display surface toward the viewing side when the display device displays black is 0.30 to 1.34.
 また、本発明の上記課題は、以下の手段によっても解決されうる:
 偏光板、及び表示装置ユニットを有する表示装置において、
 前記偏光板は偏光子、及び光学フィルムを有し、
 前記光学フィルムは少なくとも基材を有し、
 前記基材は少なくともシクロオレフィン樹脂を含有し、かつ前記光学フィルムと前記偏光子との屈折率差が下記式(1)を満たし、
 式(1) 0≦(前記光学フィルムの屈折率-前記偏光子の屈折率)<0.02
 前記表示装置を黒表示した際に表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度が0.30~1.30である、表示装置。
The above objects of the present invention can also be solved by the following means:
In a display device having a polarizing plate and a display device unit,
The polarizing plate has a polarizer and an optical film,
The optical film has at least a substrate,
the substrate contains at least a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1);
Formula (1) 0≦(refractive index of the optical film−refractive index of the polarizer)<0.02
A display device, wherein the RMS granularity of a display image photographed from a position inclined by 10° from the display surface toward the viewing side when the display device displays black is 0.30 to 1.30.
 また、本発明の上記課題は、以下の手段によっても解決されうる:
 偏光子、及び光学フィルムを有する偏光板であって、
 前記光学フィルムは少なくとも基材を有し、
 前記基材は少なくともシクロオレフィン樹脂を含有し、かつ前記光学フィルムと前記偏光子との屈折率差が下記式(1)を満たし、
 式(1) 0≦(前記光学フィルムの屈折率-前記偏光子の屈折率)<0.02
 前記偏光板を表示装置に組み込んだ状態において、前記表示装置を黒表示した際に表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度が0.30~1.34である、偏光板。
The above objects of the present invention can also be solved by the following means:
A polarizing plate having a polarizer and an optical film,
The optical film has at least a substrate,
the substrate contains at least a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1);
Formula (1) 0≦(refractive index of the optical film−refractive index of the polarizer)<0.02
In a state in which the polarizing plate is incorporated in the display device, the RMS granularity of the displayed image taken from a position inclined by 10° from the display surface to the viewing side when the display device displays black is 0.30 to 1.34. There is a polarizer.
 また、本発明の上記課題は、以下の手段によっても解決されうる:
 偏光子、及び光学フィルムを有する偏光板であって、
 前記光学フィルムは少なくとも基材を有し、
 前記基材は少なくともシクロオレフィン樹脂を含有し、かつ前記光学フィルムと前記偏光子との屈折率差が下記式(1)を満たし、
 式(1) 0≦(前記光学フィルムの屈折率-前記偏光子の屈折率)<0.02
 前記偏光板を表示装置に組み込んだ状態において、前記表示装置を黒表示した際に表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度が0.30~1.30である、偏光板。
The above objects of the present invention can also be solved by the following means:
A polarizing plate having a polarizer and an optical film,
The optical film has at least a substrate,
the substrate contains at least a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1);
Formula (1) 0≦(refractive index of the optical film−refractive index of the polarizer)<0.02
In a state in which the polarizing plate is incorporated in the display device, the RMS granularity of a display image taken from a position inclined by 10° from the display surface to the viewing side when the display device displays black is 0.30 to 1.30. There is a polarizer.
RMS粒状度の評価のための撮影位置を説明するための模式図である。FIG. 4 is a schematic diagram for explaining imaging positions for evaluation of RMS granularity; 表示セルの視認側(観察者側、前面側)に配置される偏光板(視認側偏光板)の偏光子の吸収軸方向に対して、表示面に沿って+45°回転した方向における、RMS粒状度の評価のための撮影位置を説明するための模式図である。RMS granularity in a direction rotated +45° along the display surface with respect to the absorption axis direction of the polarizer of the polarizing plate (viewing side polarizing plate) arranged on the viewing side (observer side, front side) of the display cell FIG. 4 is a schematic diagram for explaining imaging positions for evaluation of degree; 本発明の一実施形態に係る液晶表示装置の基本的な構成の一例を示す模式図である。1 is a schematic diagram showing an example of a basic configuration of a liquid crystal display device according to an embodiment of the present invention; FIG. 本発明の一実施形態に係る液晶表示装置の基本的な構成の他の一例を示す模式図である。FIG. 2 is a schematic diagram showing another example of the basic configuration of the liquid crystal display device according to one embodiment of the present invention; 本発明の実施例に係る液晶表示装置7の表示ムラの撮影画像である。It is a photographed image of display unevenness of the liquid crystal display device 7 according to the embodiment of the present invention. 本発明の比較例に係る液晶表示装置13の表示ムラの撮影画像である。It is the photographed image of the display unevenness of the liquid crystal display device 13 according to the comparative example of the present invention.
 以下、必要に応じて添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings as necessary. In the description of the drawings, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted. Also, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from the actual ratios.
 本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等は、室温(20~25℃)/相対湿度40~50%RHの条件で測定する。 In this specification, the range "X to Y" means "X or more and Y or less". In addition, unless otherwise specified, operations, physical properties, etc. are measured under the conditions of room temperature (20 to 25° C.)/relative humidity of 40 to 50% RH.
 また、本明細書において、(共)重合体とは共重合体および単独重合体を含む総称である。 Also, in this specification, (co)polymer is a generic term including copolymers and homopolymers.
 そして、本明細書において、「(メタ)アクリレート」とは、アクリレートおよびメタクリレートの総称である。(メタ)アクリル酸等の(メタ)を含む化合物等も同様に、名称中に「メタ」を有する化合物と「メタ」を有さない化合物の総称である。 In this specification, "(meth)acrylate" is a generic term for acrylate and methacrylate. Similarly, compounds containing (meth) such as (meth)acrylic acid are collective names for compounds having "meta" in their names and compounds not having "meta" in their names.
 <表示装置>
 本発明の一態様は、偏光板、及び表示装置ユニットを有する表示装置において、前記偏光板は偏光子、及び光学フィルムを有し、前記光学フィルムは少なくとも基材を有し、前記基材は少なくともシクロオレフィン樹脂を含有し、かつ前記光学フィルムと前記偏光子との屈折率差が下記式(1)を満たし、
 式(1) 0≦(前記光学フィルムの屈折率-前記偏光子の屈折率)<0.02
 前記表示装置を黒表示した際に表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度が0.30~1.34である、表示装置に関する。
<Display device>
One aspect of the present invention is a display device comprising a polarizing plate and a display device unit, wherein the polarizing plate comprises a polarizer and an optical film, the optical film comprises at least a substrate, and the substrate comprises at least contains a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1);
Formula (1) 0≦(refractive index of the optical film−refractive index of the polarizer)<0.02
The present invention relates to a display device in which the RMS granularity of a display image photographed from a position inclined by 10° from the display surface toward the viewing side when the display device displays black is 0.30 to 1.34.
 本発明の好ましい一実施態様は、偏光板、及び表示装置ユニットを有する表示装置において、前記偏光板は偏光子、及び光学フィルムを有し、前記光学フィルムは少なくとも基材を有し、前記基材は少なくともシクロオレフィン樹脂を含有し、かつ前記光学フィルムと前記偏光子との屈折率差が下記式(1)を満たし、
 式(1) 0≦(前記光学フィルムの屈折率-前記偏光子の屈折率)<0.02
 前記表示装置を黒表示した際に表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度が0.30~1.30である、表示装置に関する。
A preferred embodiment of the present invention is a display device comprising a polarizing plate and a display device unit, wherein the polarizing plate comprises a polarizer and an optical film, the optical film comprises at least a substrate, and the substrate contains at least a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1),
Formula (1) 0≦(refractive index of the optical film−refractive index of the polarizer)<0.02
The present invention relates to a display device in which the RMS granularity of a display image photographed from a position inclined by 10° from the display surface toward the viewing side when the display device displays black is 0.30 to 1.30.
 本発明によれば、表示ムラを低減しうる手段の提供が可能となる。 According to the present invention, it is possible to provide means for reducing display unevenness.
 本発明者らは、本発明によって課題が解決されるメカニズムを以下のように推定している。 The inventors presume the mechanism by which the present invention solves the problem as follows.
 表示装置においてピクセルサイズを小さくことで高画素化、高精細化を行った際に、光の直線性の制御は向上する。しかしながら、この場合、ピクセル格子間での光の干渉(モアレ)等が生じ易くなる。ピクセルサイズを小さくする場合、そのサイズを完全に均一とすることは難しい。そして、表示装置内の異なる位置におけるピクセルサイズの微細な相違によって、ピクセル格子間での光の干渉の発生頻度や発生程度も相違する。この結果、画面のざらつきが発生する場合がある。画面のざらつきは、特に、斜め方向から観察した際により顕著となる。また、表示装置間のピクセルサイズの微細な相違によっても、ピクセル格子間での光の干渉の発生頻度や発生程度が相違することから、表示装置間で輝度ムラが異なり、表示装置間での表示品質のバラツキも生じる。これらの結果、表示装置において表示ムラが発生することとなる。 By reducing the pixel size in the display device, the control of the linearity of light is improved when the number of pixels is increased and the definition is increased. However, in this case, light interference (moire) or the like is likely to occur between pixel grids. When reducing the pixel size, it is difficult to make the size completely uniform. Further, minute differences in pixel size at different locations within the display device cause differences in the frequency and degree of light interference between pixel grids. As a result, screen roughness may occur. Roughness on the screen is particularly noticeable when viewed from an oblique direction. In addition, even minute differences in pixel size between display devices cause differences in the frequency and degree of occurrence of light interference between pixel grids. Variation in quality also occurs. As a result, display unevenness occurs in the display device.
 RMS粒状度は画像の濃度のバラツキと関連するため、RMS粒状度は0に近い値の方が表示ムラは良好となるようにも思われる一方、本発明者らは、RMS粒状度が所定の値以上である場合に表示ムラが低減されることを見出した。また、光学フィルムと、偏光子との屈折率差が光に与える影響を考慮すると、その正負によらず、その絶対値は0に近い方が表示ムラは良好となるようにも思われる。しかしながら、驚くべきことに、本発明者らは、光学フィルムと、偏光子との屈折率差(光学フィルムの屈折率-偏光子の屈折率)が0以上である場合に表示ムラが低減されることを見出した。そして、本発明者らは、検討を重ねた結果、表示装置の特定の方向から撮影した撮影画像のRMS粒状度を特定の範囲とし、かつ、当該表示装置が有する偏光板における光学フィルムと、偏光子との屈折率差が所定の関係を満たすことによって、表示装置間での表示品質のバラツキとして現れる輝度ムラとして認識される表示ムラを良好に抑えつつ、画面のざらつきとして認識される表示ムラが低減されることを見出した。この理由は、本発明の表示装置は、ピクセル格子間での光の干渉を打ち消すよう、あえて表示装置から出射される光を微小に散乱させるからであると考えられる。詳細は不明であるが、上記のRMS粒状度、および上記の光学フィルムと、偏光子との屈折率差は、ピクセル格子間での光の干渉の解消に特に有利に働くよう光の散乱性を変化させると考えられる。 Since the RMS granularity is related to variations in image density, it is thought that display unevenness is better when the RMS granularity is closer to 0. It was found that the display unevenness is reduced when the value is equal to or more than the value. Also, considering the influence of the refractive index difference between the optical film and the polarizer on the light, it seems that the display unevenness is better when the absolute value is closer to 0 regardless of whether the difference is positive or negative. However, surprisingly, the present inventors found that display unevenness is reduced when the refractive index difference between the optical film and the polarizer (refractive index of the optical film - refractive index of the polarizer) is 0 or more. I found out. As a result of repeated studies, the present inventors have found that the RMS granularity of a photographed image photographed from a specific direction of the display device is set to a specific range, and the optical film in the polarizing plate of the display device and the polarizing By satisfying a predetermined relationship between the difference in refractive index between the two elements, the display unevenness recognized as unevenness in brightness, which appears as the variation in display quality between display devices, can be satisfactorily suppressed, while the display unevenness recognized as roughness of the screen can be suppressed. found to be reduced. It is believed that the reason for this is that the display device of the present invention slightly scatters the light emitted from the display device so as to cancel the interference of light between pixel grids. Although the details are unknown, the above RMS granularity and the above refractive index difference between the optical film and the polarizer influence the scattering properties of the light particularly favorably in eliminating light interference between the pixel gratings. considered to change.
 なお、上記メカニズムは推測に基づくものであり、その正誤が本発明の技術的範囲に影響を及ぼすものではない。 It should be noted that the above mechanism is based on speculation, and its correctness or wrongness does not affect the technical scope of the present invention.
 RMS粒状度とは、粒状性の評価指標のひとつであり、撮影画像の濃度ばらつきを二乗平均平方根(RMS)として表したものとして知られている。 The RMS granularity is one of the graininess evaluation indexes, and is known as the root mean square (RMS) representation of the density variation of a captured image.
 本発明の一実施形態に係る表示装置は、当該表示装置を黒表示した際に表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度(表示装置のRMS粒状度)が0.30~1.34、好ましくは0.30~1.30である。 In a display device according to an embodiment of the present invention, the RMS granularity (RMS granularity of the display device) of a display image taken from a position tilted 10° from the display surface to the viewing side when the display device displays black is 0.30 to 1.34, preferably 0.30 to 1.30.
 上記のRMS粒状度(表示装置のRMS粒状度)は、表示装置を黒表示した際に、偏光板(複数有する場合には注目するいずれかの偏光板、好ましくは視認側偏光板)の偏光子の吸収軸方向に対して、表示面に沿って+45°、+135°、+225°(-135°)、および+315°(-45°)回転した方向のそれぞれにおける、表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度(特定角度のRMS粒状度)の平均値を表す。 The above RMS granularity (RMS granularity of the display device) is the polarizer of the polarizing plate (if there are more than one, one of the polarizing plates to be noticed, preferably the viewing side polarizing plate) when the display device is displayed in black. +45°, +135°, +225° (-135°), and +315° (-45°) along the display surface with respect to the absorption axis direction of 10° from the display surface to the viewing side in each direction It represents the average value of the RMS granularity (RMS granularity at a specific angle) of a display image taken from an oblique position.
 このように、本明細書において、上記の4つの位置から撮影した個々の表示画像のRMS粒状度の平均値を、単に「表示装置のRMS粒状度」とも称する。また、表示面に沿った特定の角度における、表示面から視認側に10°傾斜した位置から撮影した個々の表示画像のRMS粒状度を、単に「特定角度のRMS粒状度」とも称する。 Thus, in this specification, the average value of the RMS granularities of the individual display images photographed from the above four positions is also simply referred to as "the RMS granularity of the display device." In addition, the RMS granularity of each display image taken from a position tilted 10° from the display surface toward the viewing side at a specific angle along the display surface is also simply referred to as "the RMS granularity at a specific angle".
 表示装置のRMS粒状度が0.30未満であると、表示装置間での表示品質のバラツキ、特に輝度ムラとして認識される表示ムラが増大する。また、表示装置のRMS粒状度が1.30超、特に顕著には1.34超であると、表示ムラ、特に画面のざらつきとして認識される表示ムラが増大する。 If the RMS granularity of the display device is less than 0.30, variations in display quality between display devices, particularly display unevenness recognized as luminance unevenness, increase. Further, when the RMS granularity of the display device exceeds 1.30, particularly significantly exceeds 1.34, display unevenness, particularly display unevenness recognized as screen roughness, increases.
 本明細書において、ある部分の「面上」とは、ある部分の「直上」であってもよく、注目する部分とある部分との中間に他の部分を含んでいてもよいことを表す。 In this specification, "on the surface" of a certain part may be "directly above" the certain part, and may include other parts between the part of interest and the certain part.
 本明細書において、「表示面から視認側に10°傾斜した位置」とは、表示装置の表示面が存在する平面を0°として、当該表示面の撮影の基準とする位置について、当該表示面の観察者側(視認側、前面側)の法線方向(垂直方向)側に向けて10°の角度をなす直線上の位置を表す。 In this specification, "a position inclined by 10° from the display surface to the viewing side" means that the plane on which the display surface of the display device exists is 0°, and the position used as a reference for photographing the display surface is represents the position on a straight line forming an angle of 10° toward the normal direction (vertical direction) of the observer side (viewing side, front side).
 以下、図1を用いて、「表示面から視認側に10°傾斜した位置」を説明する。図1は、RMS粒状度の評価のための撮影位置を説明するための模式図である。図1において、表示装置の表示面1の撮影の基準とする位置を基準位置Oとする。基準位置Oについて、表示面1が存在する平面を0°として、表示面1の観察者側(視認側、前面側)の法線方向(垂直方向)であるZ方向側に向けて10°の角度をなす直線L上の位置が、「表示面から視認側に10°傾斜した位置」である。この角度以外の表示面から視認側に傾斜した位置についても同様に考える。 "A position inclined 10 degrees from the display surface toward the viewing side" will be described below with reference to FIG. FIG. 1 is a schematic diagram for explaining imaging positions for evaluating RMS granularity. In FIG. 1, a reference position O is a position used as a reference for photographing the display surface 1 of the display device. Regarding the reference position O, the plane on which the display surface 1 exists is set to 0°, and the normal direction (vertical direction) of the display surface 1 to the observer side (visible side, front side) is 10° toward the Z direction side. The position on the straight line L forming the angle is "the position inclined 10 degrees from the display surface toward the viewing side". A position inclined from the display surface to the viewing side other than this angle is also considered in the same manner.
 本発明の一実施形態に係る表示装置において、表示装置ユニットが表示セルを含み、少なくとも1つの偏光板が表示装置ユニットの表示セルの視認側(観察者側、前面側)に配置されていることが好ましい。また、表示装置ユニットの表示セルの視認側(観察者側、前面側)に配置されている偏光板は1つであることがより好ましい。 In the display device according to one embodiment of the present invention, the display device unit includes a display cell, and at least one polarizing plate is arranged on the visible side (observer side, front side) of the display cell of the display device unit. is preferred. Further, it is more preferable that the number of polarizing plates arranged on the viewing side (observer side, front side) of the display cell of the display device unit is one.
 本発明の一実施形態に係る表示装置において、偏光板が表示装置ユニットの表示セルの視認側(観察者側、前面側)に配置されている場合には、当該表示装置を黒表示した際に、当該偏光板の偏光子の吸収軸方向に対して、表示面に沿って+45°、+135°、+225°、および+315°回転した方向のそれぞれにおける、表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度の平均値(表示装置のRMS粒状度)が0.30~1.34であることが好ましく、0.30~1.30であることがより好ましい。この理由は、視認側偏光板の吸収軸方向に対して、表示面に沿って+45°、+135°、+225°、または+315°回転した方向は、特に表示ムラが表れやすく、この位置から撮影した画像のRMS粒状度が上記範囲内であることで、顕著な表示ムラの低減効果が得られるからである。同様の観点から、上記の偏光板の偏光子の吸収軸方向に対して、表示面に沿って+45°、+135°、+225°、または+315°回転した方向のそれぞれにおける、表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度(特定角度のRMS粒状度)の全てが、0.30~1.34であることが特に好ましく、0.30~1.30であることがさらに特に好ましい。 In the display device according to one embodiment of the present invention, when the polarizing plate is arranged on the visible side (observer side, front side) of the display cell of the display device unit, when the display device is displayed in black, , a position inclined by 10° from the display surface to the viewing side in each of the directions rotated +45°, +135°, +225°, and +315° along the display surface with respect to the absorption axis direction of the polarizer of the polarizing plate The average value of the RMS granularity of the display image taken from the display device (the RMS granularity of the display device) is preferably 0.30 to 1.34, more preferably 0.30 to 1.30. The reason for this is that display unevenness is particularly likely to appear in a direction rotated +45°, +135°, +225°, or +315° along the display surface with respect to the absorption axis direction of the viewing side polarizing plate, and the photograph was taken from this position. This is because when the RMS granularity of the image is within the above range, a remarkable effect of reducing display unevenness can be obtained. From the same point of view, from the display surface to the viewing side in each direction rotated +45°, +135°, +225°, or +315° along the display surface with respect to the absorption axis direction of the polarizer of the polarizing plate All of the RMS granularity (RMS granularity at a specific angle) of a display image taken from a position inclined by 10° are preferably 0.30 to 1.34, particularly preferably 0.30 to 1.30. is more particularly preferred.
 ここで、視認側偏光板の「偏光子の吸収軸方向に対して、表示面に沿って+45°、+135°、+225°、および+315°回転した方向」とは、それぞれ、表示装置の表示面の撮影の基準とする位置について、表示セルの視認側(観察者側、前面側)の偏光板の偏光子の吸収軸方向を0°として、反時計回りを正として+45°、+135°、+225°(-135°)、および+315°(-45°)回転した表示面上の方向を表す。 Here, the "directions rotated +45°, +135°, +225°, and +315° along the display surface with respect to the absorption axis direction of the polarizer" of the viewer-side polarizing plate are respectively the display surfaces of the display device. Regarding the position used as a reference for photographing, the absorption axis direction of the polarizer of the polarizing plate on the viewing side (observer side, front side) of the display cell is 0 °, and the counterclockwise direction is positive +45 °, +135 °, +225 ° (−135°), and +315° (−45°) represent orientations on the display surface rotated.
 以下、図2を用いて、「視認側偏光板の偏光子の吸収軸方向に対して、表示面に沿って+45°回転した方向における、表示面から視認側に10°傾斜した位置」を例として説明する。図2は、表示セルの視認側(観察者側、前面側)に配置される偏光板(視認側偏光板)の偏光子の吸収軸方向に対して、表示面に沿って+45°回転した方向において、RMS粒状度の評価のための撮影位置を説明するための模式図である。図2において、表示装置の表示面1の撮影の基準とする位置を基準位置Oとする。また、表示面1上における、表示セルの視認側に配置される偏光板の偏光子の吸収軸方向aと直交する方向をX方向とし、当該偏光子の吸収軸方向aの方向をY方向とする。そして、X方向およびY方向と直交する方向であって、かつ表示面1に対して視認側(観察者側、前面側)の方向をZ方向とする。ここで、Z方向は、表示面1の観察者側(視認側、前面側)の法線方向(垂直方向)となる。この際、「視認側偏光板の偏光子の吸収軸方向に対して、表示面に沿って+45°回転した方向における、表示面から視認側に10°傾斜した位置」とは、以下の位置を表す。まず、基準位置Oについて、表示面1上の、視認側偏光板の偏光子の吸収軸方向aの方向(Y方向)を0°とした際に表示面に沿って+45°回転した方向を考える。そしてこの方向における、基準位置Oについて、表示面1が存在する平面を0°として、表示面1の観察者側(視認側、前面側)の法線方向(垂直方向)であるZ方向側に向けて10°の角度をなす直線L(45)上の位置が、「視認側偏光板の偏光子の吸収軸方向に対して、表示面に沿って+45°回転した方向における、表示面から視認側に10°傾斜した位置」である。なお、「視認側偏光板の偏光子の吸収軸方向に対して、表示面に沿って+135°、+225°、および+315°回転した方向における、表示面から視認側に10°傾斜した位置」についても、それぞれ、上記の+45°の場合と同様に考える。また、これら以外の視認側偏光板の偏光子の吸収軸方向に対する角度についても同様に考える。 Hereinafter, with reference to FIG. 2, an example of “a position inclined 10° from the display surface to the viewing side in a direction rotated +45° along the display surface with respect to the absorption axis direction of the polarizer of the viewing side polarizing plate”. described as. FIG. 2 shows a direction rotated +45° along the display surface with respect to the absorption axis direction of the polarizer of the polarizing plate (viewing-side polarizing plate) arranged on the viewing side (observer side, front side) of the display cell. 3 is a schematic diagram for explaining imaging positions for evaluation of RMS granularity in FIG. In FIG. 2, a reference position O is a position used as a reference for photographing the display surface 1 of the display device. Further, the direction orthogonal to the absorption axis direction a of the polarizer of the polarizing plate arranged on the viewing side of the display cell on the display surface 1 is the X direction, and the direction of the absorption axis direction a of the polarizer is the Y direction. do. A direction orthogonal to the X direction and the Y direction and on the viewing side (observer side, front side) with respect to the display surface 1 is defined as the Z direction. Here, the Z direction is the normal direction (vertical direction) of the display surface 1 on the observer side (visible side, front side). At this time, "the position inclined by 10° from the display surface to the viewing side in the direction rotated +45° along the display surface with respect to the absorption axis direction of the polarizer of the viewing side polarizing plate" refers to the following position. show. First, regarding the reference position O, consider a direction rotated +45° along the display surface when the direction (Y direction) of the absorption axis direction a of the polarizer of the viewing side polarizing plate on the display surface 1 is set to 0°. . Then, regarding the reference position O in this direction, the plane on which the display surface 1 exists is set to 0°, and the Z direction side, which is the normal direction (perpendicular direction) to the viewer side (viewing side, front side) of the display surface 1 The position on the straight line L (45) forming an angle of 10° toward the viewer is "visible from the display surface in a direction rotated +45° along the display surface with respect to the absorption axis direction of the polarizer of the viewing side polarizing plate. position inclined 10° to the side”. In addition, regarding "positions inclined by 10° from the display surface to the viewing side in directions rotated +135°, +225°, and +315° along the display surface with respect to the absorption axis direction of the polarizer of the viewing side polarizing plate" are also considered in the same way as +45° above. In addition, other angles of the viewer-side polarizing plate with respect to the absorption axis direction of the polarizer are also considered in the same way.
 そして、同様の観点から、本発明の一実施形態に係る表示装置において、偏光板が表示装置ユニットの表示セルの視認側(観察者側、前面側)に配置されている場合には、当該表示装置を黒表示した際に、当該偏光板の偏光子の吸収軸方向に対して、表示面に沿って0°以上+360°未満まで45°おきに回転した方向における、表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度(特定角度のRMS粒状度)の全てが、0.30~1.34であることが特に好ましく、0.30~1.30であることがさらに特に好ましい。 From the same point of view, in the display device according to one embodiment of the present invention, when the polarizing plate is arranged on the viewing side (observer side, front side) of the display cell of the display device unit, the display When the device displays black, 10 degrees from the display surface to the viewing side in the direction rotated at 45° intervals from 0° to +360° along the display surface with respect to the absorption axis direction of the polarizer of the polarizing plate. ° All of the RMS granularity of a display image taken from an oblique position (RMS granularity at a specific angle) is particularly preferably 0.30 to 1.34, more preferably 0.30 to 1.30. More particularly preferred.
 なお、2以上の偏光板が表示装置ユニットの表示セルの視認側に配置されている場合には、RMS粒状度の測定は、最も表示セルに近い位置に配置される視認側偏光板の偏光子の吸収軸方向を基準として行えばよい。 When two or more polarizing plates are arranged on the viewing side of the display cell of the display device unit, the RMS granularity is measured by measuring the polarizer of the viewing side polarizing plate located closest to the display cell. may be performed with reference to the absorption axis direction of .
 また、表示装置ユニットが表示セルを含み、少なくとも1つの偏光板が表示装置ユニットの表示セルの視認側(観察者側、前面側)に配置されている場合、少なくとも1つの偏光板が当該表示セルの視認側(観察者側、前面側)とは反対側にさらに配置されていることが好ましい。また、この際、表示装置ユニットの表示セルの視認側(観察者側、前面側)とは反対側に配置されている偏光板は1つであることがより好ましい。 Further, when the display device unit includes a display cell and at least one polarizing plate is arranged on the viewing side (observer side, front side) of the display cell of the display device unit, at least one polarizing plate is arranged on the display cell. is preferably further arranged on the side opposite to the visual recognition side (observer side, front side). In this case, it is more preferable that only one polarizing plate is arranged on the side opposite to the viewing side (observer side, front side) of the display cell of the display device unit.
 なお、本発明の一実施形態に係る表示装置において、表示装置ユニットが表示セルを含み、偏光板が表示装置ユニットの表示セルの視認側(観察者側、前面側)に配置されておらず、少なくとも1つの偏光板が表示装置ユニットの表示セルの視認側とは反対側(背面側)にのみ配置されていてもよい。この場合、RMS粒状度の測定は、背面側に配置される偏光板の偏光子の吸収軸方向を基準として行えばよい。この際、2以上の偏光板が表示装置ユニットの表示セルの背面側に配置されている場合には、最も表示セルに近い位置に配置される背面側偏光板の偏光子の吸収軸方向を基準とすればよい。 In the display device according to one embodiment of the present invention, the display device unit includes a display cell, the polarizing plate is not arranged on the viewing side (observer side, front side) of the display cell of the display device unit, At least one polarizing plate may be arranged only on the opposite side (rear side) of the viewing side of the display cell of the display device unit. In this case, the RMS granularity may be measured with reference to the absorption axis direction of the polarizer of the polarizing plate arranged on the back side. At this time, when two or more polarizing plates are arranged on the back side of the display cell of the display device unit, the absorption axis direction of the polarizer of the back side polarizing plate arranged at the position closest to the display cell is the reference. And it is sufficient.
 表示装置のRMS粒状度、および特定角度のRMS粒状度は、それぞれ、上記範囲であれば特に制限されないが、0.30~1.00であることが好ましく、0.40~0.70であることがより好ましく、0.40~0.60であることがさらに好ましい。これらの範囲であると、表示ムラがより低減する。 The RMS granularity of the display device and the RMS granularity of the specific angle are not particularly limited as long as they are within the above ranges, but are preferably 0.30 to 1.00, more preferably 0.40 to 0.70. is more preferable, and 0.40 to 0.60 is even more preferable. Within these ranges, display unevenness is further reduced.
 RMS粒状度は、以下のようにして測定することができる。  RMS granularity can be measured as follows.
 (ステップ1)画像の取得
 カメラ(例えば、ソニー株式会社製(SONY) α7sII)、およびレンズ(例えば、キヤノン株式会社製(Canon) EF 70-200mm F2.8L IS II USM)を用いて、ISO 25,600、F 2.8で、暗室下、表示面から視認側に10°傾斜した位置から、液晶表示装置を黒表示した際の表示面を撮影する。なお、表示面の撮影の基準とする位置と、カメラとの距離は、50cmとする。なお、撮影は、汎用的なカメラを用いて行ってもよい。
(Step 1) Image acquisition ISO 25 using a camera (e.g., Sony α7sII) and a lens (e.g., Canon EF 70-200mm F2.8L IS II USM) , 600 and F 2.8, the display surface of the liquid crystal display device is photographed from a position inclined by 10° from the display surface to the viewing side in a dark room. Note that the distance between the camera and the reference position for photographing the display surface is 50 cm. In addition, you may perform imaging|photography using a general-purpose camera.
 表示装置のRMS粒状度の算出では、偏光板(複数有する場合には注目するいずれかの偏光板、好ましくは視認側偏光板)の偏光子の吸収軸方向に対して、表示面に沿って+45°、+135°、+225°(-135°)、および+315°(-45°)回転した方向のそれぞれにおける、表示面から視認側に10°傾斜した位置から撮影を行う。 In the calculation of the RMS granularity of the display device, +45 along the display surface with respect to the absorption axis direction of the polarizer of the polarizer (if there are multiple polarizers, one of the polarizers to be focused on, preferably the viewer side polarizer) , +135°, +225° (-135°), and +315° (-45°).
 (ステップ2)得られた画像に対する解析
 下記の手順に従い、撮影画像からRMS粒状度を算出する:
 1、得られた撮影画像を、フリーソフト(imageJ)を用いて二次元(平面)データで読み込む;
 2、実際の撮影画像において2.8cm×4cmの矩形の評価エリアを設定する;
 3、フリーソフト(ImageJ)によって、グレースケール化を行う;
 4、必要に応じて、前記評価エリアにおいて読み込んだ二次元データのバックグラウンド補正を行う;
 5、グレースケールにおけるグレーバリュー(画素値)の標準偏差σからRMS粒状度を算出する。すなわち、この標準偏差σを、この測定角度(表示面に沿った角度)における表示画像のRMS粒状度(特定角度のRMS粒状度)とする;
 6、偏光板(複数有する場合には注目するいずれかの偏光板、好ましくは視認側偏光板)の偏光子の吸収軸方向に対して、表示面に沿って+45°、+135°、+225°(-135°)、および+315°(-45°)回転した方向のそれぞれにおける、表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度(特定角度のRMS粒状度)の平均値(相加平均値)を算出し、表示装置のRMS粒状度とする。
(Step 2) Analysis of Obtained Image RMS granularity is calculated from the photographed image according to the following procedure:
1. Read the obtained photographed image as two-dimensional (planar) data using free software (imageJ);
2. Set a rectangular evaluation area of 2.8 cm x 4 cm in the actual captured image;
3. Grayscale using free software (ImageJ);
4. If necessary, perform background correction of the two-dimensional data read in the evaluation area;
5. RMS granularity is calculated from standard deviation σ of gray values (pixel values) in gray scale. That is, let this standard deviation σ be the RMS granularity of the displayed image at this measurement angle (angle along the display surface) (RMS granularity at a specific angle);
6, +45°, +135°, +225° ( -135°) and +315° (-45°), the average of the RMS granularity (RMS granularity at a specific angle) of the display image taken from a position tilted 10° from the display surface to the viewing side A value (arithmetic mean value) is calculated and taken as the RMS granularity of the display device.
 ここで、フリーソフトImageJとは、WayneRasband作成のImageJ1.32Sである。一方、上記1にて用いたソフトに関しては、WinROOF等のソフトを用いてもよい。 Here, the free software ImageJ is ImageJ1.32S created by WayneRasband. On the other hand, software such as WinROOF may be used as the software used in 1 above.
 バックグラウンド補正は、例えば、画像の右半分と左半分の領域で同一の明るさを有しているにもかかわらず、異なる明るさとして出力されたり、画像の左側から右側にいくにしたがって徐々に明るくなる結果として出力されたりする場合に行い、濃度勾配を多項式で近似して、数式的に濃度勾配をキャンセルする。 For example, even though the right and left halves of the image have the same brightness, the background correction is output as different brightness, or it gradually changes from the left to the right of the image. This is done when the image is output as a result of brightening, and the density gradient is approximated by a polynomial to cancel the density gradient mathematically.
 グレースケールにおけるグレーバリューの標準偏差σは、下記方法にて算出する:
 グレーバリューのN個のデータx、x、…、xを母集団とし、その母集団の相加平均(母平均)mを下記数式(I)によって求める。
The standard deviation σ of gray values in grayscale is calculated by the following method:
A population of N gray value data x 1 , x 2 , .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 次に、上記で求めた母平均mを使って下記数式(II)で分散σを求める。 Next, using the population mean m obtained above, variance σ 2 is obtained by the following formula (II).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 この分散σの正の平方根を、標準偏差σとする。 Let the positive square root of this variance σ2 be the standard deviation σ.
 なお、RMS粒状度の評価方法の詳細は実施例に記載する。 The details of the evaluation method of RMS granularity are described in Examples.
 表示装置のRMS粒状度は、後述するシクロオレフィン樹脂基材(シクロオレフィン樹脂を含有する基材)、任意に有しうる後述する機能層および偏光子の屈折率等の光学特性に関係して変化する。ここで、シクロオレフィン樹脂基材(シクロオレフィン樹脂を含有する基材)、任意に有しうる機能層、およびこれらを含む光学フィルムの屈折率の制御方法は後述する通りである。表示装置のRMS粒状度は、シクロオレフィン樹脂基材(シクロオレフィン樹脂を含有する基材)を含む光学フィルムの屈折率と、偏光子との屈折率の差が小さくなると減少し、当該屈折率の差が大きくなると増加する傾向がある。ただし、表示装置のRMS粒状度は、前述のように小さすぎても表示ムラが生じるため、本発明では、単にシクロオレフィン樹脂基材(シクロオレフィン樹脂を含有する基材)を含む光学フィルムの屈折率と、偏光子の屈折率との差を小さくするのではなく、表示装置のRMS粒状度が最適な範囲となるようにする必要がある。 The RMS granularity of the display device varies depending on the optical properties such as the refractive index of the cycloolefin resin substrate (substrate containing the cycloolefin resin) described later, the optional functional layer described later, and the polarizer. do. The method for controlling the refractive index of the cycloolefin resin substrate (substrate containing the cycloolefin resin), the optional functional layer, and the optical film containing these will be described later. The RMS granularity of the display device decreases as the difference between the refractive index of the optical film containing the cycloolefin resin substrate (the substrate containing the cycloolefin resin) and the refractive index of the polarizer decreases. It tends to increase as the difference increases. However, display unevenness occurs even if the RMS granularity of the display device is too small as described above. Instead of reducing the difference between the index and the refractive index of the polarizer, the RMS granularity of the display should be in the optimum range.
 以下、本発明の一態様に係る表示装置に含まれる偏光板および表示装置ユニットの詳細を説明する。 Details of the polarizing plate and the display device unit included in the display device according to one embodiment of the present invention will be described below.
 [偏光板]
 本発明の一実施形態に係る表示装置は、1または2以上の偏光板を含む。本発明の一実施形態に係る表示装置に含まれる偏光板の少なくとも1つは、偏光子と、1または2以上の光学フィルムとを含む。また、本発明の一実施形態に係る表示装置に含まれる偏光板の全てが、偏光子と、1または2以上の光学フィルムとを含むことが好ましい。
[Polarizer]
A display device according to an embodiment of the present invention includes one or more polarizing plates. At least one of the polarizing plates included in the display device according to one embodiment of the invention includes a polarizer and one or more optical films. Moreover, it is preferable that all of the polarizing plates included in the display device according to one embodiment of the present invention include a polarizer and one or more optical films.
 本発明の一実施形態に係る表示装置に含まれる偏光板の少なくとも1つは、1または2以上の光学フィルムを含む。偏光板に含まれる光学フィルムの数は、特に制限されないが、2以上であることが好ましく、2であることが特に好ましい。また、偏光板では、偏光子の両方の面上に少なくとも1つずつ、光学フィルムを有することが好ましく、偏光子の両方の面上に1つずつ光学フィルムを有することが好ましい。 At least one of the polarizing plates included in the display device according to one embodiment of the present invention includes one or more optical films. The number of optical films contained in the polarizing plate is not particularly limited, but is preferably two or more, particularly preferably two. Moreover, the polarizing plate preferably has at least one optical film on each of both surfaces of the polarizer, and preferably has one optical film on each of both surfaces of the polarizer.
 (シクロオレフィン樹脂を含有する基材を含有する光学フィルム)
 ・シクロオレフィン樹脂を含有する基材
 本発明の一実施形態に係る表示装置に含まれる偏光板の少なくとも1つは、シクロオレフィン樹脂を含有する基材を含む光学フィルムを含む。光学フィルムは、シクロオレフィン樹脂を含有する基材のみから構成されていてもよいし、シクロオレフィン樹脂を含有する基材上に、1または2以上の後述する機能層をさらに有していてもよい。
(Optical film containing substrate containing cycloolefin resin)
- Substrate containing cycloolefin resin At least one of the polarizing plates included in the display device according to one embodiment of the present invention includes an optical film containing a substrate containing a cycloolefin resin. The optical film may be composed only of a substrate containing a cycloolefin resin, or may further have one or more functional layers described later on a substrate containing a cycloolefin resin. .
 本発明の一実施形態に係る表示装置に含まれる偏光板の少なくとも1つにおいて、シクロオレフィン樹脂を含有する基材を含む光学フィルムは、偏光子の一方の面上に配置されていてもよく、両方の面上に配置されていてもよい。 In at least one of the polarizing plates included in the display device according to one embodiment of the present invention, an optical film containing a substrate containing a cycloolefin resin may be arranged on one surface of the polarizer, It may be arranged on both sides.
 すなわち、本発明の一実施形態に係る表示装置に含まれる偏光板の少なくとも1つにおいて、当該偏光板に含まれる光学フィルムの少なくとも1つは、シクロオレフィン樹脂を含有する基材を含む。当該偏光板に含まれる光学フィルムのうち、偏光子の一方の面上に配置される光学フィルムの少なくとも1つが、シクロオレフィン樹脂を含む基材を含むことが好ましい。この際、偏光子の他方の面上には、1または2以上の光学フィルムが配置されていてもよく、光学フィルムが配置されていなくてもよい。そして、当該偏光板の偏光子の一方の面上に光学フィルムが1つ配置されており、当該光学フィルムがシクロオレフィン樹脂を含む基材を含むことが好ましい。この際、偏光子の他方の面上には、1または2以上の光学フィルムが配置されていてもよく、光学フィルムが配置されていなくてもよいが、後述する他の光学フィルムが1つ配置されることが好ましい。 That is, in at least one of the polarizing plates included in the display device according to one embodiment of the present invention, at least one of the optical films included in the polarizing plate includes a base material containing a cycloolefin resin. Of the optical films included in the polarizing plate, at least one of the optical films arranged on one surface of the polarizer preferably includes a substrate containing a cycloolefin resin. At this time, one or more optical films may be arranged on the other surface of the polarizer, or no optical film may be arranged. It is preferable that one optical film is disposed on one surface of the polarizer of the polarizing plate, and that the optical film includes a base material containing a cycloolefin resin. At this time, one or more optical films may be arranged on the other surface of the polarizer, or no optical film may be arranged, but one other optical film described later is arranged. preferably.
 以下、シクロオレフィン樹脂を含有する基材を、単に、「シクロオレフィン樹脂基材」とも称する。 Hereinafter, the base material containing the cycloolefin resin is also simply referred to as the "cycloolefin resin base material".
 シクロオレフィン樹脂を含有する基材は、シクロオレフィン樹脂を含む。 A base material containing a cycloolefin resin includes a cycloolefin resin.
 シクロオレフィン樹脂としては、脂環式構造を有する構造単位を含む(共)重合体であれば特に制限されない。脂環式構造を有する構成単位を含む(共)重合体は、主鎖に脂環式構造を有していてもよく、側鎖に脂環式構造を有していてもよい。これらの中でも、屈折率制御の観点から、主鎖に脂環式構造を有する(共)重合体が好ましい。 The cycloolefin resin is not particularly limited as long as it is a (co)polymer containing a structural unit having an alicyclic structure. A (co)polymer containing a structural unit having an alicyclic structure may have an alicyclic structure in its main chain or may have an alicyclic structure in its side chain. Among these, a (co)polymer having an alicyclic structure in the main chain is preferable from the viewpoint of refractive index control.
 脂環式構造としては、例えば、飽和脂環式炭化水素(シクロアルカン)構造、不飽和脂環式炭化水素(シクロアルケン、シクロアルキン)構造等が挙げられる。中でも、機械強度、耐熱性などの観点から、シクロアルカン構造またはシクロアルケン構造が好ましく、シクロアルカン構造が特に好ましい。 Alicyclic structures include, for example, saturated alicyclic hydrocarbon (cycloalkane) structures, unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structures, and the like. Among them, a cycloalkane structure or a cycloalkene structure is preferable, and a cycloalkane structure is particularly preferable, from the viewpoint of mechanical strength, heat resistance, and the like.
 脂環式構造を構成する炭素原子数は、特に制限されないが、一つの脂環式構造あたり、4個以上であることが好ましく、5個以上であることがより好ましい。上記範囲であれば、保存安定性がより良好となる。また、脂環式構造を構成する炭素原子数は、一つの脂環式構造あたり、30個以下であることが好ましく、20個以下であることがより好ましく、15個以下であることがさらに好ましい。上記範囲であれば、フィルムの取り扱い性がより良好となる。 Although the number of carbon atoms constituting the alicyclic structure is not particularly limited, it is preferably 4 or more, more preferably 5 or more per alicyclic structure. If it is the said range, storage stability will become better. In addition, the number of carbon atoms constituting the alicyclic structure is preferably 30 or less, more preferably 20 or less, and even more preferably 15 or less per alicyclic structure. . If it is the said range, the handleability of a film will become more favorable.
 シクロオレフィン樹脂としては、シクロオレフィン単量体に由来する構成単位を含む(共)重合体が好ましい。シクロオレフィン単量体は、炭素原子で形成される環構造を有し、かつ該環構造中に重合性の炭素-炭素二重結合を有する化合物である。重合性の炭素-炭素二重結合としては、特に制限されないが、例えば、開環重合等の重合可能な炭素-炭素二重結合が挙げられる。また、シクロオレフィン単量体の環構造としては、例えば、単環、多環、縮合多環、橋かけ環およびこれらを組み合わせた多環等が挙げられる。これらの中でも、屈折率の制御の観点から、多環のシクロオレフィン単量体が好ましい。 As the cycloolefin resin, a (co)polymer containing structural units derived from a cycloolefin monomer is preferable. A cycloolefin monomer is a compound having a ring structure formed by carbon atoms and having a polymerizable carbon-carbon double bond in the ring structure. The polymerizable carbon-carbon double bond is not particularly limited, but includes, for example, a polymerizable carbon-carbon double bond such as ring-opening polymerization. Moreover, the ring structure of the cycloolefin monomer includes, for example, a monocyclic ring, a polycyclic ring, a condensed polycyclic ring, a bridged ring, and a polycyclic ring in which these are combined. Among these, polycyclic cycloolefin monomers are preferable from the viewpoint of controlling the refractive index.
 シクロオレフィン樹脂としては、ノルボルネン構造を含む単量体に由来する構成単位を含む(共)重合体、単環の環状オレフィンを含む単量体に由来する構成単位を含む(共)重合体、環状共役ジエン構造を含む単量体に由来する構成単位を含む(共)重合体等が挙げられる。これらの(共)重合体は、水素添加物の状態であってもよい。 As the cycloolefin resin, a (co)polymer containing a structural unit derived from a monomer containing a norbornene structure, a (co)polymer containing a structural unit derived from a monomer containing a monocyclic cyclic olefin, a cyclic Examples thereof include (co)polymers containing structural units derived from monomers containing a conjugated diene structure. These (co)polymers may be in a hydrogenated state.
 シクロオレフィン樹脂は、特に制限されないが、例えば、トリシクロ[4.3.0.12,5]デカ-3-エン、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、後述する化合物1~34、ならびにこれらの化合物の誘導体(例えば、環に置換基を有するもの)等のノルボルネン構造を含む単量体;1,3-ジメチルドデカヒドロシクロペンタ[a]インデン、およびその誘導体(例えば、環に置換基を有するもの)等の単量体;に由来する構成単位を含む(共)重合体が挙げられる。なお、後述する化合物5は、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)である。ここで、置換基としては、例えばアルキル基、アルキレン基、極性基等を挙げることができる。また、これらの置換基は、同一または相異なって、複数個が環に結合していてもよい。極性基の種類としては、特に制限されないが、例えば、ヘテロ原子、またはヘテロ原子を有する原子団等が挙げられる。ヘテロ原子としては、特に制限されないが、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子、ハロゲン原子等が挙げられる。極性基の具体例としては、特に制限されないが、カルボキシ基、カルボニル基、オキシカルボニル基、エポキシ基、ヒドロキシ基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、スルホン酸基、これらの基で置換された極性基以外の基、これらの基を介して連結された極性基以外の基等が挙げられる。 Although the cycloolefin resin is not particularly limited, for example, tricyclo[4.3.0.1 2,5 ]dec-3-ene, tricyclo[4.3.0.1 2,5 ]deca-3,7- Diene (common name: dicyclopentadiene), 7,8-benzotricyclo[4.3.0.1 2,5 ]dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo[4.4.0 .1 2 , 5 . 1 7,10 ]dodeca-3-ene (common name: tetracyclododecene), compounds 1 to 34 described later, and norbornene structures such as derivatives of these compounds (for example, those having substituents on the ring) monomer; monomers such as 1,3-dimethyldodecahydrocyclopenta[a]indene and derivatives thereof (for example, those having a substituent on the ring); is mentioned. Compound 5, which will be described later, is bicyclo[2.2.1]hept-2-ene (common name: norbornene). Here, examples of substituents include an alkyl group, an alkylene group, and a polar group. In addition, these substituents may be the same or different and a plurality of them may be bonded to the ring. The type of polar group is not particularly limited, but examples thereof include heteroatoms, atomic groups having heteroatoms, and the like. Examples of heteroatoms include, but are not limited to, oxygen atoms, nitrogen atoms, sulfur atoms, silicon atoms, and halogen atoms. Specific examples of the polar group include, but are not limited to, carboxy group, carbonyl group, oxycarbonyl group, epoxy group, hydroxy group, oxy group, ester group, silanol group, silyl group, amino group, nitrile group, and sulfonic acid group. , groups other than polar groups substituted with these groups, groups other than polar groups linked via these groups, and the like.
 また、シクロオレフィン樹脂は、特に制限されないが、単環の環状オレフィンを含む単量体に由来する構成単位を含む(共)重合体としては、例えば、シクロヘキセン、シクロヘプテン、シクロオクテン等の単環を有する環状オレフィン単量体に由来する構成単位を含む(共)重合体が挙げられる。 The cycloolefin resin is not particularly limited, but examples of (co)polymers containing structural units derived from monomers containing monocyclic cyclic olefins include monocyclics such as cyclohexene, cycloheptene, and cyclooctene. (co)polymers containing structural units derived from cyclic olefin monomers having
 そして、シクロオレフィン樹脂は、特に制限されないが、例えば、1,3-ブタジエン、イソプレン、クロロプレン等の共役ジエン単量体の付加重合体を環化反応して得られる(共)重合体や、シクロペンタジエン、シクロヘキサジエン等の環状共役ジエン単量体の1,2-または1,4-付加重合体、およびこれらの水素添加物等が挙げられる。 The cycloolefin resin is not particularly limited. Examples include 1,2- or 1,4-addition polymers of cyclic conjugated diene monomers such as pentadiene and cyclohexadiene, and hydrogenated products thereof.
 これらの中でも、屈折率の制御の観点から、ノルボルネン構造を含む単量体に由来する構成単位を含む(共)重合体が好ましい。ノルボルネン構造を含む単量体に由来する構成単位を含む(共)重合体としては、特に制限されないが、例えば、ノルボルネン構造を含む単量体の開環(共)重合体、およびその水素添加物;ノルボルネン構造を含む単量体の付加(共)重合体、およびその水素添加物等が挙げられる。ここで、ノルボルネン構造を含む単量体の開環重合体としては、特に制限されないが、例えば、ノルボルネン構造を含む1種類の単量体の開環単独重合体、ノルボルネン構造を含む2種類以上の単量体の開環共重合体、ノルボルネン構造を含む単量体と、これと共重合しうるノルボルネン構造を含む単量体以外の単量体との開環共重合体が挙げられる。また、ノルボルネン構造を含む単量体の付加重合体としては、特に制限されないが、例えば、ノルボルネン構造を含む1種類の単量体の付加単独重合体、ノルボルネン構造を含む2種類以上の単量体の付加共重合体、ノルボルネン構造を含む単量体と、これと共重合しうるノルボルネン構造を含む単量体以外の単量体との付加共重合体等が挙げられる。これらの中でも、表面の均一性向上の観点から、ノルボルネン構造を含む単量体に由来する構成単位と、ノルボルネン構造を含む単量体以外の単量体に由来する構成単位とを含む共重合体が好ましく、ノルボルネン構造を含む単量体と、これと共重合しうるノルボルネン構造を含む単量体以外の単量体との開環共重合体、またはノルボルネン構造を含む単量体と、これと共重合しうるノルボルネン構造を含む単量体以外の単量体との付加共重合体がより好ましい。 Among these, a (co)polymer containing structural units derived from a monomer containing a norbornene structure is preferable from the viewpoint of controlling the refractive index. The (co)polymer containing structural units derived from a monomer containing a norbornene structure is not particularly limited, but for example, ring-opening (co)polymers of monomers containing a norbornene structure, and hydrogenated products thereof ; addition (co)polymers of monomers containing a norbornene structure, hydrogenated products thereof, and the like. Here, the ring-opened polymer of a monomer containing a norbornene structure is not particularly limited, but for example, a ring-opened homopolymer of one type of monomer containing a norbornene structure, two or more types of norbornene structure-containing Ring-opening copolymers of monomers, and ring-opening copolymers of a monomer having a norbornene structure and a monomer other than the monomer having a norbornene structure copolymerizable therewith can be mentioned. Further, the addition polymer of a monomer containing a norbornene structure is not particularly limited. and addition copolymers of a monomer containing a norbornene structure and a monomer other than the monomer containing a norbornene structure copolymerizable therewith. Among these, from the viewpoint of improving the uniformity of the surface, a copolymer containing a structural unit derived from a monomer containing a norbornene structure and a structural unit derived from a monomer other than the monomer containing a norbornene structure is preferred, a monomer containing a norbornene structure, a ring-opening copolymer of a monomer other than a monomer containing a norbornene structure copolymerizable therewith, or a monomer containing a norbornene structure, and Addition copolymers with monomers other than monomers containing copolymerizable norbornene structures are more preferred.
 シクロオレフィン樹脂の好ましい一例としては、特に制限されないが、下記一般式(A)で表されるシクロオレフィン単量体に由来する構成単位を含む(共)重合体等が挙げられる。当該(共)重合体は、ノルボルネン構造を含む単量体に由来する構成単位を含む(共)重合体の一種である。当該(共)重合体は、溶液製膜法によってシクロオレフィン樹脂基材を製造する際に特に好ましい。 A preferred example of the cycloolefin resin is not particularly limited, but includes a (co)polymer containing a structural unit derived from a cycloolefin monomer represented by the following general formula (A). The (co)polymer is a type of (co)polymer containing structural units derived from a monomer having a norbornene structure. The (co)polymer is particularly preferred when producing a cycloolefin resin base material by a solution casting method.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(A)の各Rは、それぞれ独立して、水素原子、ハロゲン原子、置換もしくは非置換の炭素原子数1~30の炭化水素基、または極性基を表す。また、一般式(A)のa、bは、それぞれ独立して、0以上の整数を示す。 Each R in general formula (A) independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a polar group. Moreover, a and b in the general formula (A) each independently represent an integer of 0 or more.
 そして、シクロオレフィン樹脂の好ましい一例としては、特に制限されないが、下記一般式(A-1)または下記一般式(A-2)で表されるシクロオレフィン単量体に由来する構成単位を含む(共)重合体等が挙げられる。当該(共)重合体は、ノルボルネン構造を含む単量体に由来する構成単位を含む(共)重合体の一種である。当該(共)重合体は、溶液製膜法によってシクロオレフィン樹脂基材を製造する際に特に好ましい。 A preferred example of the cycloolefin resin is not particularly limited, but includes a structural unit derived from a cycloolefin monomer represented by the following general formula (A-1) or general formula (A-2) below ( co) polymers and the like. The (co)polymer is a type of (co)polymer containing structural units derived from a monomer having a norbornene structure. The (co)polymer is particularly preferred when producing a cycloolefin resin base material by a solution casting method.
 まず、一般式(A-1)で表されるシクロオレフィン単量体について説明する。 First, the cycloolefin monomer represented by general formula (A-1) will be described.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(A-1)のR~Rは、それぞれ独立して、水素原子、ハロゲン原子、置換もしくは非置換の炭素原子数1~30の炭化水素基、または極性基を表す。但し、R~Rの全てが水素原子となる場合を除き、RとRが同時に水素原子となるか、またはRとRが同時に水素原子となる場合はないものとする。 R 1 to R 4 in general formula (A-1) each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, or a polar group. However, except when all of R 1 to R 4 are hydrogen atoms, there is no case where R 1 and R 2 are hydrogen atoms at the same time, or R 3 and R 4 are hydrogen atoms at the same time.
 ハロゲン原子は、特に制限されないが、フッ素原子、塩素原子、臭素原子、ヨウ素原子であることが好ましい。炭素原子数1~30の炭化水素基は、特に制限されないが、炭素原子数1~30のアルキル基であることが好ましい。極性基は、特に制限されないが、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリルオキシカルボニル基、アミノ基、アミド基、シアノ基、これらの基がメチレン基などの連結基を介して結合した基、カルボニル基、エーテル基、シリルエーテル基、チオエーテル基、イミノ基など極性を有する2価の有機基が連結基となって結合している炭化水素基であることが好ましい。これらの中でも、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基またはアリルオキシカルボニル基がより好ましい。また、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基またはアリルオキシカルボニル基であることがさらに好ましい。 Although the halogen atom is not particularly limited, it is preferably a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom. The hydrocarbon group having 1 to 30 carbon atoms is not particularly limited, but is preferably an alkyl group having 1 to 30 carbon atoms. The polar group is not particularly limited, but includes a carboxy group, a hydroxy group, an alkoxycarbonyl group, an allyloxycarbonyl group, an amino group, an amido group, a cyano group, a group in which these groups are bonded via a linking group such as a methylene group, It is preferably a hydrocarbon group to which a polar divalent organic group such as a carbonyl group, an ether group, a silyl ether group, a thioether group, or an imino group is bonded as a linking group. Among these, a carboxy group, a hydroxy group, an alkoxycarbonyl group and an allyloxycarbonyl group are more preferable. Moreover, from the viewpoint of ensuring solubility during solution film formation, an alkoxycarbonyl group or an allyloxycarbonyl group is more preferable.
 R~Rのうち少なくとも1つは、シクロオレフィン樹脂の溶液製膜時の溶解性を確保する観点などから、極性基であることが好ましい。 At least one of R 1 to R 4 is preferably a polar group from the viewpoint of ensuring the solubility of the cycloolefin resin during solution casting.
 一般式(A-1)のpは、0~2の整数を示す。フィルムの耐熱性を高める観点では、pは、1~2であることが好ましい。pが1~2であると、得られる樹脂が嵩高くなり、ガラス転移温度が向上しやすいからである。 p in general formula (A-1) represents an integer of 0 to 2. From the viewpoint of enhancing the heat resistance of the film, p is preferably 1-2. This is because when p is 1 to 2, the resulting resin becomes bulky and the glass transition temperature tends to be improved.
 次に、一般式(A-2)で表されるシクロオレフィン単量体について説明する。 Next, the cycloolefin monomer represented by general formula (A-2) will be explained.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(A-2)のRは、水素原子、炭素原子数1~5の炭化水素基、または炭素原子数1~5のアルキル基を有するアルキルシリル基を表す。中でも、Rは、炭素原子数1~3の炭化水素基であることが好ましい。 R 5 in general formula (A-2) represents a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms. Among them, R 5 is preferably a hydrocarbon group having 1 to 3 carbon atoms.
 一般式(A-2)のRは、極性基またはハロゲン原子を表す。極性基は、特に制限されないが、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリルオキシカルボニル基、アミノ基、アミド基、またはシアノ基であることが好ましい。ハロゲン原子は、特に制限されないが、フッ素原子、塩素原子、臭素原子またはヨウ素原子であることが好ましい。これらの中でも、Rは、極性基であることが好ましく、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基またはアリルオキシカルボニル基であることがより好ましい。また、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基またはアリルオキシカルボニル基であることがさらに好ましい。 R 6 in general formula (A-2) represents a polar group or a halogen atom. Although the polar group is not particularly limited, it is preferably a carboxy group, a hydroxy group, an alkoxycarbonyl group, an allyloxycarbonyl group, an amino group, an amido group, or a cyano group. A halogen atom is not particularly limited, but is preferably a fluorine atom, a chlorine atom, a bromine atom or an iodine atom. Among these, R6 is preferably a polar group, more preferably a carboxy group, a hydroxy group, an alkoxycarbonyl group or an allyloxycarbonyl group. Moreover, from the viewpoint of ensuring solubility during solution film formation, an alkoxycarbonyl group or an allyloxycarbonyl group is more preferable.
 一般式(A-2)で表されるようなシクロオレフィン単量体を用いることで、分子の対称性が低くなり、溶媒揮発時の樹脂の拡散運動を促進しやすい。 By using the cycloolefin monomer represented by the general formula (A-2), the symmetry of the molecule is lowered, and the diffusion movement of the resin during solvent volatilization is easily promoted.
 一般式(A-2)において、pは、0~2の整数を表す。 In general formula (A-2), p represents an integer of 0-2.
 以下に、一般式(A-1)および(A-2)の構造の具体例を示す。 Specific examples of the structures of general formulas (A-1) and (A-2) are shown below.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 なお、シクロオレフィン樹脂中の脂環構造が占める割合が増加することで、屈折率をより低下させることができる。 By increasing the ratio of the alicyclic structure in the cycloolefin resin, the refractive index can be further lowered.
 シクロオレフィン樹脂を構成するシクロオレフィン単量体(すなわち、シクロオレフィン樹脂を構成するための、シクロオレフィン単量体)は、1種単独で使用する、または2種以上を併用することができる。 The cycloolefin monomers constituting the cycloolefin resin (that is, the cycloolefin monomers for constituting the cycloolefin resin) can be used singly or in combination of two or more.
 シクロオレフィン樹脂としては、シクロオレフィン単量体と、シクロオレフィン単量体以外の単量体との共重合体、またはその水素添加物であってもよい。シクロオレフィン樹脂を構成するシクロオレフィン単量体以外の単量体(すなわち、シクロオレフィン樹脂を構成するための、シクロオレフィン単量体以外の単量体)は、1種単独で使用する、または2種以上を併用することができる。 The cycloolefin resin may be a copolymer of a cycloolefin monomer and a monomer other than the cycloolefin monomer, or a hydrogenated product thereof. A monomer other than the cycloolefin monomer constituting the cycloolefin resin (i.e., a monomer other than the cycloolefin monomer for constituting the cycloolefin resin) is used alone, or two More than one species can be used together.
 上記のように、シクロオレフィン樹脂としては、ノルボルネン構造を含む単量体に由来する構成単位を含む(共)重合体(当該(共)重合体は、水素添加物の状態であってもよい)が好ましい。そして、シクロオレフィン樹脂としては、ノルボルネン構造を含む単量体に由来する構成単位と、ノルボルネン構造を含む単量体以外の単量体に由来する構成単位とを含む共重合体(当該共重合体は、水素添加物の状態であってもよい)であってもよい。ここで、ノルボルネン構造を含む単量体と共重合可能な他の単量体としては、シクロオレフィン単量体であっても、シクロオレフィン単量体以外の単量体であってもよい。ノルボルネン構造を含む単量体と共重合可能な他の単量体としては、特に制限されないが、例えば、ノルボルネン構造を含む単量体と開環共重合可能である、ノルボルネン構造を含む単量体以外の単量体や、ノルボルネン構造を含む単量体と付加共重合可能である、ノルボルネン構造を含む単量体以外の単量体等が挙げられる。 As described above, the cycloolefin resin is a (co)polymer containing structural units derived from a monomer having a norbornene structure (the (co)polymer may be in a hydrogenated state). is preferred. As the cycloolefin resin, a copolymer containing a structural unit derived from a monomer containing a norbornene structure and a structural unit derived from a monomer other than the monomer containing a norbornene structure (the copolymer may be in a hydrogenated state). Here, the other monomer copolymerizable with the monomer having a norbornene structure may be a cycloolefin monomer or a monomer other than the cycloolefin monomer. Other monomers copolymerizable with a monomer containing a norbornene structure are not particularly limited, for example, a monomer containing a norbornene structure that is capable of ring-opening copolymerization with a monomer containing a norbornene structure and monomers other than monomers having a norbornene structure, which are addition-copolymerizable with monomers having a norbornene structure.
 ノルボルネン構造を含む単量体と開環共重合可能である、ノルボルネン構造を含む単量体以外の単量体としては、特に制限されないが、例えば、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、ジシクロペンタジエン、およびこれらの誘導体等のノルボルネン構造を含む単量体以外の単量体が挙げられる。 The monomer other than the norbornene structure-containing monomer, which is ring-opening copolymerizable with the norbornene structure-containing monomer, is not particularly limited. Examples include monomers other than monomers containing a norbornene structure such as cyclopentadiene and derivatives thereof.
 ノルボルネン構造を含む単量体と付加共重合可能である、ノルボルネン構造を含む単量体以外の単量体としては、特に制限されないが、例えば、不飽和二重結合含有化合物、ビニル系環状炭化水素化合物、(メタ)アクリレート化合物等が挙げられる。 The monomer other than the norbornene structure-containing monomer, which can be addition-copolymerized with the norbornene structure-containing monomer, is not particularly limited, and examples thereof include unsaturated double bond-containing compounds and vinyl-based cyclic hydrocarbons. compounds, (meth)acrylate compounds, and the like.
 不飽和二重結合含有化合物(下記のビニル系環状炭化水素化合物、(メタ)アクリレート化合物を除く)としては、特に制限されないが、例えば、エチレン、プロピレン、1-ブテン等の炭素数2~20(好ましくは2~12、より好ましくは2~8)のα-オレフィンおよびその誘導体や、1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン等の非共役ジエン等が挙げられる。これらの中でも、不飽和二重結合含有化合物が好ましい。不飽和二重結合含有化合物としては、炭素数2~20(好ましくは2~12、より好ましくは2~8)のα-オレフィンがより好ましく、エチレンがさらに好ましい。また、不飽和二重結合含有化合物としては、ヒドロキシ基を有する不飽和二重結合含有化合物が好ましく、下記式(M1)で表される構造の単量体がより好ましい。 The unsaturated double bond-containing compound (excluding vinyl-based cyclic hydrocarbon compounds and (meth)acrylate compounds described below) is not particularly limited, but examples thereof include ethylene, propylene, 1-butene, and the like having 2 to 20 carbon atoms ( Preferably 2 to 12, more preferably 2 to 8) α-olefins and derivatives thereof, and non-olefins such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene A conjugated diene and the like can be mentioned. Among these, unsaturated double bond-containing compounds are preferred. As the unsaturated double bond-containing compound, an α-olefin having 2 to 20 carbon atoms (preferably 2 to 12, more preferably 2 to 8 carbon atoms) is more preferred, and ethylene is even more preferred. As the unsaturated double bond-containing compound, an unsaturated double bond-containing compound having a hydroxy group is preferable, and a monomer having a structure represented by the following formula (M1) is more preferable.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 ここで、上記のR11は有機基である。R11の有機基としては、特に制限されないが、例えば、アルキル基、メトキシ基等の電子供与基等が挙げられる。これらの中でも、上記R11がアルキル基であることが好ましく、炭素数1~12のアルキル基であることがより好ましく、炭素数1~4のアルキル基であることがさらに好ましく、ブチル基であることが特に好ましい。 Here, R 11 above is an organic group. The organic group for R 11 is not particularly limited, but examples thereof include electron-donating groups such as alkyl groups and methoxy groups. Among these, R 11 is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, and a butyl group. is particularly preferred.
 ビニル系環状炭化水素化合物としては、特に制限されないが、例えば、4-ビニルシクロペンテン、2-メチル-4-イソプロペニルシクロペンテンおよびこれらの誘導体等のビニルシクロペンテン系単量体等が挙げられる。 The vinyl-based cyclic hydrocarbon compound is not particularly limited, but includes, for example, vinylcyclopentene-based monomers such as 4-vinylcyclopentene, 2-methyl-4-isopropenylcyclopentene, and derivatives thereof.
 (メタ)アクリレート化合物としては、特に制限されないが、例えば、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の炭素原子数1~20のアルキル(メタ)アクリレートおよびその誘導体等が挙げられる。これらの中でも、ヒドロキシ基を有する(メタ)アクリレート系化合物が好ましい。ヒドロキシ基を有する(メタ)アクリレート系化合物としては、特に制限されないが、例えば、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシプロパン-1,2-ジイルジ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、ジグリセリンモノ(メタ)アクリレート、ジグリセリントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ソルビトールジ(メタ)アクリレート、ソルビトールトリ(メタ)アクリレート、ソルビトールテトラ(メタ)アクリレート、ソルビトールペンタ(メタ)アクリレート、ソルビトールモノ(メタ)アクリレートジグリセリンジ(メタ)アクリレート、イソシアヌル酸EO変性ジアクリレート等が挙げられる。 The (meth)acrylate compound is not particularly limited. derivatives and the like. Among these, a (meth)acrylate compound having a hydroxy group is preferable. The (meth)acrylate compound having a hydroxy group is not particularly limited, but examples include 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 3-hydroxy Propane-1,2-diyl di(meth)acrylate, glycerin mono(meth)acrylate, diglycerin mono(meth)acrylate, diglycerin tri(meth)acrylate, trimethylolpropane di(meth)acrylate, pentaerythritol mono(meth)acrylate acrylates, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol di(meth)acrylate, dipentaerythritol tri(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta( meth)acrylate, sorbitol di(meth)acrylate, sorbitol tri(meth)acrylate, sorbitol tetra(meth)acrylate, sorbitol penta(meth)acrylate, sorbitol mono(meth)acrylate diglycerin di(meth)acrylate, isocyanuric acid EO modified A diacrylate etc. are mentioned.
 これらの中でも、ヒドロキシ基を有する(メタ)アクリレート化合物が好ましく、2-ヒドロキシエチル(メタ)アクリレート(別名:(メタ)アクリル酸2-ヒドロキシエチル)がより好ましく、2-ヒドロキシエチルアクリレート(別名:アクリル酸2-ヒドロキシエチル)がさらに好ましい。 Among these, a (meth)acrylate compound having a hydroxy group is preferred, 2-hydroxyethyl (meth)acrylate (also known as 2-hydroxyethyl (meth)acrylate) is more preferred, and 2-hydroxyethyl acrylate (also known as acrylic Acid 2-hydroxyethyl) is more preferred.
 ノルボルネン構造を含む単量体に由来する構成単位と、ノルボルネン構造を含む単量体以外の単量体に由来する構成単位とを含む共重合体においても、ノルボルネン構造を含む単量体以外の単量体は、1種単独で使用する、または2種以上を併用することができる。 In a copolymer containing a structural unit derived from a monomer containing a norbornene structure and a structural unit derived from a monomer other than a monomer containing a norbornene structure, a monomer other than a monomer containing a norbornene structure The mers can be used singly or in combination of two or more.
 好ましいシクロオレフィン樹脂としては、例えば、トリシクロ[4.3.0.12,5]デカ-3-エンと、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)と、1,3-ジメチルドデカヒドロシクロペンタ[a]インデンとを含む単量体の共重合体の水素添加物、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)と、エチレンとを含む単量体の共重合体等が挙げられる。これらの中でも、トリシクロ[4.3.0.12,5]デカ-3-エンと、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)と、1,3-ジメチルドデカヒドロシクロペンタ[a]インデンと、アクリル酸2-ヒドロキシエチルとの共重合体の水素添加物、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)と、エチレンとの共重合体等が好ましい例として挙げられる。 Preferred cycloolefin resins include, for example, tricyclo[4.3.0.1 2,5 ]dec-3-ene and tetracyclo[4.4.0.1 2,5 . 1 7,10 ]dodeca-3-ene (common name: tetracyclododecene) and hydrogenated copolymer of monomers containing 1,3-dimethyldodecahydrocyclopenta[a]indene, bicyclo [2.2.1] Copolymers of monomers containing hept-2-ene (common name: norbornene) and ethylene, and the like. Among these, tricyclo[4.3.0.1 2,5 ]dec-3-ene and tetracyclo[4.4.0.1 2,5 . Hydrogenation of Copolymers of 1 7,10 ]dodeca-3-ene (common name: tetracyclododecene), 1,3-dimethyldodecahydrocyclopenta[a]indene and 2-hydroxyethyl acrylate Preferable examples include a copolymer of a compound, bicyclo[2.2.1]hept-2-ene (common name: norbornene) and ethylene.
 シクロオレフィン樹脂を構成するための、脂環式構造を有する単量体と、脂環式構造を有さない単量体との合計質量に対する、脂環式構造を有する単量体の質量の割合は、特に制限されない。しかしながら、当該割合は、30~50質量%であることが好ましい。この範囲であると、シクロオレフィン樹脂基材の屈折率が適度な値となり易い。その結果、表示ムラがより低減する。 Ratio of the mass of the monomer having an alicyclic structure to the total mass of the monomer having an alicyclic structure and the monomer having no alicyclic structure for constituting the cycloolefin resin is not particularly limited. However, it is preferred that the proportion is between 30 and 50% by weight. Within this range, the refractive index of the cycloolefin resin base material tends to be an appropriate value. As a result, display unevenness is further reduced.
 ノルボルネン構造を含む単量体に由来する構成単位を含む共重合体(当該共重合体は、水素添加物の状態であってもよい)を構成するための、ノルボルネン構造を含む単量体と、ノルボルネン構造を含む単量体以外の単量体との合計質量に対する、ノルボルネン構造を含む単量体の質量の割合は、特に制限されない。しかしながら、当該割合は、30~50質量%であることが好ましい。この範囲であると、シクロオレフィン樹脂基材の屈折率が適度な値となり易い。その結果、表示ムラがより低減する。 A monomer containing a norbornene structure for constituting a copolymer containing structural units derived from a monomer containing a norbornene structure (the copolymer may be in a hydrogenated state); The ratio of the mass of the monomer containing norbornene structure to the total mass of the monomers other than the monomer containing norbornene structure is not particularly limited. However, it is preferred that the proportion is between 30 and 50% by weight. Within this range, the refractive index of the cycloolefin resin base material tends to be an appropriate value. As a result, display unevenness is further reduced.
 シクロオレフィン樹脂の重量平均分子量(Mw)は、特に制限されないが、30,000以上であることが好ましく、35,000以上であることがより好ましく、40,000以上であることがさらに好ましい。また、シクロオレフィン樹脂の重量平均分子量(Mw)は、300,000以下であることが好ましく、250,000以下であることがより好ましく、150,000以下であることがさらに好ましい。これらの範囲であると、シクロオレフィン樹脂の耐熱性、耐水性、耐薬品性や、機械的特性と、フィルムとしての成形加工性とがより良好となる。 Although the weight average molecular weight (Mw) of the cycloolefin resin is not particularly limited, it is preferably 30,000 or more, more preferably 35,000 or more, and even more preferably 40,000 or more. Also, the weight average molecular weight (Mw) of the cycloolefin resin is preferably 300,000 or less, more preferably 250,000 or less, and even more preferably 150,000 or less. Within these ranges, the cycloolefin resin has better heat resistance, water resistance, chemical resistance, mechanical properties, and moldability as a film.
 また、シクロオレフィン樹脂の分散度(Mw/Mn)は、特に制限されないが、1.2以上であることが好ましく、1.5以上であることがより好ましく、1.8以上であることがさらに好ましい。また、シクロオレフィン樹脂の分散度(Mw/Mn)は、3.5以下であることが好ましく、3.0以下であることがより好ましく、2.7以下であることがさらに好ましい。 In addition, the dispersion degree (Mw/Mn) of the cycloolefin resin is not particularly limited, but is preferably 1.2 or more, more preferably 1.5 or more, and further preferably 1.8 or more. preferable. Also, the degree of dispersion (Mw/Mn) of the cycloolefin resin is preferably 3.5 or less, more preferably 3.0 or less, and even more preferably 2.7 or less.
 数平均分子量(Mn)や重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算にて測定することができる。 The number average molecular weight (Mn) and weight average molecular weight (Mw) can be measured in terms of polystyrene by gel permeation chromatography (GPC).
 シクロオレフィン樹脂のガラス転移温度(Tg)は、特に制限されないが、100℃以上であることが好ましく、110℃以上であることがより好ましく、120℃以上であることがさらに好ましい。これらの範囲であると、高温条件下での使用、またはコーティング、印刷などの二次加工により変形がより生じ難くなる。また、シクロオレフィン樹脂のガラス転移温度(Tg)は、190℃以下であることが好ましく、180℃以下であることがより好ましく、170℃以下であることがさらに好ましい。これらの範囲であると、成形加工がより容易となり、成形加工時の熱によって樹脂が劣化する可能性がより低くなる。シクロオレフィン樹脂のTgは、JIS K 7121-1987により測定することができる。 Although the glass transition temperature (Tg) of the cycloolefin resin is not particularly limited, it is preferably 100°C or higher, more preferably 110°C or higher, and even more preferably 120°C or higher. Within these ranges, deformation due to use under high temperature conditions or secondary processing such as coating and printing is less likely to occur. Also, the glass transition temperature (Tg) of the cycloolefin resin is preferably 190° C. or lower, more preferably 180° C. or lower, and even more preferably 170° C. or lower. Within these ranges, molding becomes easier, and the possibility of the resin deteriorating due to heat during molding becomes lower. The Tg of the cycloolefin resin can be measured according to JIS K 7121-1987.
 シクロオレフィン樹脂は、市販品を用いても、合成品を用いてもよい。市販品の例としては、特に制限されないが、例えば、JSR株式会社製のアートン(ARTON)(登録商標、以下同じ)G(例えば、アートン G7810)、アートンF、アートンR、およびアートンRX等が挙げられる。 A commercially available product or a synthetic product may be used as the cycloolefin resin. Examples of commercially available products include, but are not limited to, ARTON (registered trademark, hereinafter the same) G (eg, ARTON G7810) manufactured by JSR Corporation, ARTON F, ARTON R, and ARTON RX. be done.
 シクロオレフィン樹脂の合成方法は、特に制限されず、公知の方法を使用することができる。例えば、ノルボルネン構造を含む単量体の開環重合体は、特に制限されないが、例えば、単量体を開環重合触媒の存在下に重合または共重合することにより製造することができる。また、ノルボルネン構造を含む単量体の付加重合体は、特に制限されないが、例えば、単量体を付加重合触媒の存在下に重合または共重合することにより製造することができる。そして、上述した開環重合体および付加重合体の水素添加物は、特に制限されないが、例えば、開環重合体および付加重合体の溶液において、ニッケル、パラジウム等の遷移金属を含む水素添加触媒の存在下で、炭素-炭素不飽和結合を、好ましくは90%以上水素添加することによって製造することができる。また、シクロオレフィン樹脂の合成方法としては、特開2010-235719号公報や、特開2018-55044号公報に記載の方法に基づき、必要に応じて単量体の種類、量および比率等や、その他の合成に使用する成分の種類、量および比率等を適宜変更した方法を使用してもよい。 The method for synthesizing the cycloolefin resin is not particularly limited, and known methods can be used. For example, a ring-opening polymer of a monomer containing a norbornene structure is not particularly limited, but can be produced, for example, by polymerizing or copolymerizing monomers in the presence of a ring-opening polymerization catalyst. Moreover, the addition polymer of a monomer containing a norbornene structure is not particularly limited, but can be produced, for example, by polymerizing or copolymerizing a monomer in the presence of an addition polymerization catalyst. The hydrogenated product of the ring-opening polymer and the addition polymer described above is not particularly limited, but for example, in the solution of the ring-opening polymer and the addition polymer, a hydrogenation catalyst containing a transition metal such as nickel and palladium In the presence of carbon-carbon unsaturated bonds can be produced by hydrogenation, preferably greater than 90%. In addition, as a method for synthesizing the cycloolefin resin, based on the method described in JP-A-2010-235719 and JP-A-2018-55044, if necessary, the type, amount, ratio, etc. of the monomer, Other methods may be used in which the types, amounts, ratios, etc. of the components used in the synthesis are appropriately changed.
 シクロオレフィン樹脂は、1種単独で使用する、または2種以上を併用することができる。 The cycloolefin resins can be used singly or in combination of two or more.
 シクロオレフィン樹脂基材中における、シクロオレフィン樹脂の含有量は、特に制限されないが、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。上記範囲であれば、フィルムの取り扱い性がより良好となる。また、シクロオレフィン樹脂基材中における、シクロオレフィン樹脂の含有量は、100質量%以下であることが好ましく、99.9質量%以下であることがより好ましく、99.5質量%以下であることがさらに好ましい。上記範囲であれば、シクロオレフィン樹脂以外の成分の添加量を増加させることができ、本発明の効果をより向上させたり、所望の他の機能をさらに付与することがより容易となる。 The content of the cycloolefin resin in the cycloolefin resin base material is not particularly limited, but is preferably 50% by mass or more, more preferably 70% by mass or more, and preferably 90% by mass or more. More preferred. If it is the said range, the handleability of a film will become more favorable. In addition, the content of the cycloolefin resin in the cycloolefin resin base material is preferably 100% by mass or less, more preferably 99.9% by mass or less, and 99.5% by mass or less. is more preferred. Within the above range, the amount of components other than the cycloolefin resin added can be increased, making it easier to further improve the effects of the present invention and to impart other desired functions.
 シクロオレフィン樹脂基材は、粒子を含むことが好ましい。すなわち、シクロオレフィン樹脂基材は、少なくとも1種の粒子を含むことが好ましい。粒子は、表示ムラをより低減するよう作用する。以下、シクロオレフィン樹脂基材に含まれる粒子を単に「基材粒子」とも称する。 The cycloolefin resin substrate preferably contains particles. That is, the cycloolefin resin substrate preferably contains at least one kind of particles. The particles act to further reduce display unevenness. Hereinafter, the particles contained in the cycloolefin resin substrate are also simply referred to as "substrate particles".
 基材粒子としては、特に制限されないが、例えば、有機粒子、無機粒子、有機無機複合粒子等が挙げられる。 The base particles are not particularly limited, but examples include organic particles, inorganic particles, organic-inorganic composite particles, and the like.
 無機粒子としては、特に制限されないが、例えば、二酸化ケイ素(シリカ)、二酸化チタン、低次酸化チタン、酸化マグネシウム、酸化錫、酸化インジウム、酸化アンチモン、酸化アルミニウム、二酸化ジルコニウム、アンチモン、フッ素またはリンがドーピングされた酸化錫、アンチモン、スズまたはフッ素がドーピングされた酸化インジウム等の無機酸化物や、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸ストロンチウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、燐酸カルシウム等の無機物等が挙げられる。無機材料は、1種単独で使用する、または2種以上を併用することができる。これらの中でも、上記の無機材料またはその組み合わせからなる粒子であることが好ましく、酸化アルミニウム(酸化アルミニウム粒子、粒子状酸化アルミニウム)であることがより好ましい。 Examples of inorganic particles include, but are not limited to, silicon dioxide (silica), titanium dioxide, low order titanium oxide, magnesium oxide, tin oxide, indium oxide, antimony oxide, aluminum oxide, zirconium dioxide, antimony, fluorine or phosphorus. Inorganic oxides such as doped tin oxide, antimony, tin or fluorine-doped indium oxide, calcium carbonate, magnesium carbonate, barium sulfate, strontium sulfate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated silicic acid Inorganic substances such as calcium, aluminum silicate, magnesium silicate and calcium phosphate are included. An inorganic material can be used individually by 1 type, or can use 2 or more types together. Among these, particles made of the above inorganic materials or combinations thereof are preferable, and aluminum oxide (aluminum oxide particles, particulate aluminum oxide) is more preferable.
 有機粒子としては、特に制限されないが、例えば、ポリ(メタ)アクリレート、ポリメチル(メタ)アクリレート等のアクリル樹脂、ポリスチレン等のスチレン樹脂、ポリ(メタ)アクリロニトリル等のアクリロニトリル系樹脂、セルロースアセテート、セルロースアセテートプロピオネート等のセルロース樹脂、シリコーン樹脂、フッ素樹脂、およびにこれらの架橋体等が挙げられる。有機材料は、1種単独で使用する、または2種以上を併用することができる。これらの中でも、上記の有機材料もしくはその組み合わせ、またはこれらの架橋体からなる粒子であることが好ましい。 The organic particles are not particularly limited, but examples include acrylic resins such as poly(meth)acrylate and polymethyl(meth)acrylate, styrene resins such as polystyrene, acrylonitrile resins such as poly(meth)acrylonitrile, cellulose acetate, and cellulose acetate. Examples include cellulose resins such as propionate, silicone resins, fluororesins, and crosslinked products thereof. An organic material can be used individually by 1 type, or can use 2 or more types together. Among these, particles made of the above organic materials, combinations thereof, or crosslinked materials thereof are preferred.
 有機無機複合粒子としては、特に制限されないが、例えば、上記無機材料および上記有機材料の一方からなるコア層と、これらの他方からなるシェル層とを含む多層粒子等が挙げられる。無機材料または有機材料は、それぞれ、1種単独で使用する、または2種以上を併用することができる。 The organic-inorganic composite particles are not particularly limited, but include, for example, multi-layered particles including a core layer made of one of the inorganic material and the organic material and a shell layer made of the other of them. An inorganic material or an organic material can be used individually by 1 type, respectively, or can use 2 or more types together.
 基材粒子としては、表面処理された粒子(表面処理粒子)であってもよい。表面処理を行う場合、表面処理に使用する材料としては、酸化ケイ素や酸化ジルコニウム等の異種無機酸化物、水酸化アルミニウム等の金属水酸化物、ステアリン酸等の有機酸、加水分解性の有機ケイ素化合物等が挙げられる。表面処理は、それぞれ、1種単独で使用する、または2種以上を併用することができる。表面処理された粒子としては、特に制限されないが、例えば、上記無機材料からなる粒子の表面を、加水分解性の有機ケイ素化合物で処理されてなる粒子等が挙げられる。ここで、このような処理を施された粒子は、通常、無機材料からなる粒子の表面が、有機ケイ素化合物の加水分解物によって修飾される。 The substrate particles may be surface-treated particles (surface-treated particles). In the case of surface treatment, materials used for surface treatment include heterogeneous inorganic oxides such as silicon oxide and zirconium oxide, metal hydroxides such as aluminum hydroxide, organic acids such as stearic acid, and hydrolyzable organic silicon. compounds and the like. Each surface treatment can be used singly or in combination of two or more. The surface-treated particles are not particularly limited, but include, for example, particles obtained by treating the surface of particles made of the above inorganic material with a hydrolyzable organosilicon compound. Here, in the particles subjected to such treatment, the surfaces of the particles made of an inorganic material are usually modified with a hydrolyzate of an organosilicon compound.
 表面処理の方法および表面処理粒子の種類としては、特に制限されず、公知の表面処理の方法および公知の表面処理粒子を使用することができる。例えば、特開2016-157068号公報の段落「0105」~「0128」に記載の有機ケイ素化合物修飾処理の方法および有機ケイ素化合物修飾粒子を使用することができる。 The surface treatment method and the type of surface-treated particles are not particularly limited, and known surface treatment methods and known surface-treated particles can be used. For example, the method of organosilicon compound modification treatment and the organosilicon compound-modified particles described in paragraphs "0105" to "0128" of JP-A-2016-157068 can be used.
 基材粒子の平均一次粒子径は、特に制限されないが、1nm以上であることが好ましい。上記範囲であれば、表示装置間で輝度ムラが低減し、表示装置間での表示品質のバラツキがより低減する。また、基材粒子の平均一次粒子径は、特に制限されないが、100nm以下であることが好ましい。上記範囲であれば、フィルムの透明性がより向上する。なお、基材粒子の平均一次粒子径は、透過型電子顕微鏡写真(TEM)(株式会社日立ハイテク製 H-7650)により測定することができる。 Although the average primary particle size of the substrate particles is not particularly limited, it is preferably 1 nm or more. Within the above range, luminance unevenness among display devices is reduced, and display quality variation among display devices is further reduced. Also, the average primary particle size of the substrate particles is not particularly limited, but is preferably 100 nm or less. If it is the said range, the transparency of a film will improve more. The average primary particle size of the substrate particles can be measured using a transmission electron microscope (TEM) (H-7650 manufactured by Hitachi High-Tech Co., Ltd.).
 基材粒子の平均二次粒子径は、特に制限されないが、10nm以上であることが好ましい。上記範囲であれば、表示装置間で輝度ムラが低減し、表示装置間での表示品質のバラツキがより低減する。また、基材粒子の平均二次粒子径は、特に制限されないが、300nm以下であることが好ましい。上記範囲であれば、フィルムの透明性がより向上する。なお、基材粒子の平均二次粒子径は、層(シクロオレフィン樹脂基材)の電子顕微鏡写真から二次粒子の大きさを直接計測する方法で求めることができる。本方法では、具体的には、透過型電子顕微鏡写真(TEM)(株式会社日立ハイテク製 H-7650)にて粒子像を測定し、ランダムに選択した100個の二次粒子の等面積円相当直径の平均値を求め、この値を平均二次粒子径とする。 Although the average secondary particle size of the substrate particles is not particularly limited, it is preferably 10 nm or more. Within the above range, luminance unevenness among display devices is reduced, and display quality variation among display devices is further reduced. Also, the average secondary particle size of the substrate particles is not particularly limited, but is preferably 300 nm or less. If it is the said range, the transparency of a film will improve more. The average secondary particle size of the substrate particles can be determined by a method of directly measuring the size of the secondary particles from an electron micrograph of the layer (cycloolefin resin substrate). Specifically, in this method, the particle image is measured with a transmission electron microscope (TEM) (H-7650 manufactured by Hitachi High-Tech Co., Ltd.), and 100 randomly selected secondary particles equivalent to circles of equal area An average value of the diameters is obtained, and this value is defined as the average secondary particle size.
 基材粒子は、市販品を用いても、合成品を用いてもよい。市販品としては、特に制限されないが、例えば、日本アエロジル株式会社製 R972V、R812、イーエムジャパン株式会社製の酸化アルミニウムナノ粒子等が挙げられる。 A commercial product or a synthetic product may be used for the substrate particles. Examples of commercially available products include, but are not limited to, R972V and R812 manufactured by Nippon Aerosil Co., Ltd., aluminum oxide nanoparticles manufactured by EM Japan Co., Ltd., and the like.
 基材粒子は、1種単独で使用する、または2種以上を併用することができる。 The substrate particles can be used singly or in combination of two or more.
 シクロオレフィン樹脂基材中の基材粒子の含有量は、特に制限されないが、シクロオレフィン樹脂基材の総質量に対して、0.1質量%以上であることが好ましい。上記範囲であれば、屈折率の調整がより容易となる。また、シクロオレフィン樹脂基材中の基材粒子の含有量は、シクロオレフィン樹脂基材の総質量に対して、10質量%以下であることが好ましい。上記範囲であれば、フィルムの透明性がより向上する。 The content of the substrate particles in the cycloolefin resin substrate is not particularly limited, but is preferably 0.1% by mass or more relative to the total mass of the cycloolefin resin substrate. If it is the said range, adjustment of a refractive index will become easier. Moreover, the content of the substrate particles in the cycloolefin resin substrate is preferably 10% by mass or less with respect to the total mass of the cycloolefin resin substrate. If it is the said range, the transparency of a film will improve more.
 本発明の一実施形態において、シクロオレフィン樹脂基材は、基材粒子を含まなくてもよい。 In one embodiment of the present invention, the cycloolefin resin substrate may not contain substrate particles.
 シクロオレフィン樹脂基材は、本発明の効果を損なわない限り、上記説明した成分以外の他の成分をさらに含んでいてもよい。他の成分としては、特に制限されないが、例えば、公知の光学フィルム分野や、公知の光学用途の機能層分野で使用される各成分が挙げられる。具体的には、シクロオレフィン樹脂以外の熱可塑性樹脂(上記の基材粒子である有機粒子を除く)、位相差調整剤、波長分散調整剤、可塑剤、紫外線吸収剤、酸化防止剤、水素結合性溶媒、イオン性界面活性剤等が挙げられるが、これらに限定されるものではない。 The cycloolefin resin base material may further contain components other than the components described above as long as the effects of the present invention are not impaired. Examples of other components include, but are not particularly limited to, components used in the field of known optical films and the field of functional layers for known optical applications. Specifically, thermoplastic resins other than cycloolefin resins (excluding organic particles that are the base particles described above), retardation modifiers, wavelength dispersion modifiers, plasticizers, ultraviolet absorbers, antioxidants, hydrogen bonds ionic solvents, ionic surfactants and the like, but are not limited to these.
 本発明の一実施形態において、シクロオレフィン樹脂基材の厚さは、特に制限されないが、10μm以上であることが好ましい。この範囲であると、フィルムの取り扱い性がよい。また、シクロオレフィン樹脂基材の厚さは、60μm以下であることが好ましい。この範囲であると、フレキシブルデバイスへも適用できる。 In one embodiment of the present invention, the thickness of the cycloolefin resin base material is not particularly limited, but is preferably 10 μm or more. Within this range, the handleability of the film is good. Moreover, the thickness of the cycloolefin resin substrate is preferably 60 μm or less. Within this range, it can also be applied to flexible devices.
 本発明の一実施形態において、シクロオレフィン樹脂基材の屈折率は、特に制限されないが、1.500以上であることが好ましく、1.525以上であることがより好ましい。また、シクロオレフィン樹脂基材の屈折率は、1.535以下であることが好ましい。これらの範囲であると、シクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差が後述する式(1)を満たすことがより容易となる。25℃のnD:D線(589nm)での屈折率が上記範囲を満たすことが特に好ましい。屈折率は、多波長アッベ屈折計(商品名:DR-M2、株式会社アタゴ製)により測定することができる。 In one embodiment of the present invention, the refractive index of the cycloolefin resin base material is not particularly limited, but is preferably 1.500 or more, more preferably 1.525 or more. Moreover, the refractive index of the cycloolefin resin substrate is preferably 1.535 or less. Within these ranges, it becomes easier for the difference in refractive index between the optical film containing the cycloolefin resin substrate and the polarizer to satisfy formula (1) described below. It is particularly preferred that the refractive index at the nD:D line (589 nm) at 25° C. satisfies the above range. The refractive index can be measured with a multi-wavelength Abbe refractometer (trade name: DR-M2, manufactured by Atago Co., Ltd.).
 ・機能層
 光学フィルムは、上記のシクロオレフィン樹脂基材に加えて、さらに機能層を有することが好ましい。すなわち、本発明の一実施形態に係る表示装置に含まれる偏光板の少なくとも1つにおいて、当該偏光板に含まれる光学フィルムの少なくとも1つは、シクロオレフィン樹脂を含有する基材に加えて、さらに機能層を含むことが好ましい。基材に加えて機能層を有する光学フィルムを用いることで所望の機能を付与するとともに、表示ムラをより低減することができる場合がある。この理由は、上記の推定機構にて述べたように、本発明の表示装置は、ピクセル格子間での光の干渉を打ち消すよう、あえて表示装置から出射される光を微小に散乱させるところ、機能層はこの散乱をより適切なものとするよう作用するからであると考えている。
- Functional layer The optical film preferably has a functional layer in addition to the above cycloolefin resin substrate. That is, in at least one of the polarizing plates included in the display device according to one embodiment of the present invention, at least one of the optical films included in the polarizing plate includes, in addition to a base material containing a cycloolefin resin, It preferably contains a functional layer. By using an optical film having a functional layer in addition to a substrate, it may be possible to impart desired functions and further reduce display unevenness. The reason for this is that, as described in the presumed mechanism above, the display device of the present invention dares to finely scatter the light emitted from the display device so as to cancel out the light interference between the pixel grids. We believe that the layers act to make this scattering more appropriate.
 光学フィルムは、機能層を1つのみ有していてもよく、2つ以上有していてもよい。また、機能層は、上記のシクロオレフィン樹脂を含む基材の一方の面上に設けられていても、両方の面上に設けられていてもよいが、一方の面上に設けられることが好ましい。 The optical film may have only one functional layer, or may have two or more. In addition, the functional layer may be provided on one side or both sides of the substrate containing the cycloolefin resin, but is preferably provided on one side. .
 偏光板に含まれる光学フィルムのうち、偏光子の一方の面上に配置される光学フィルムの少なくとも1つが、シクロオレフィン樹脂を含む基材に加えて、さらに機能層を含むことがより好ましい。また、偏光子の一方の面上に配置される光学フィルムの全てが、シクロオレフィン樹脂を含む基材に加えて、さらに機能層を含むことがさらに好ましい。この際、偏光子の他方の面上には、1または2以上の光学フィルムが配置されていてもよく、光学フィルムが配置されていなくてもよい。 Of the optical films contained in the polarizing plate, at least one of the optical films arranged on one side of the polarizer more preferably contains a functional layer in addition to the substrate containing the cycloolefin resin. Further, it is more preferable that all of the optical films arranged on one surface of the polarizer further include a functional layer in addition to the substrate containing the cycloolefin resin. At this time, one or more optical films may be arranged on the other surface of the polarizer, or no optical film may be arranged.
 そして、偏光板に含まれる光学フィルムのうち、偏光子の一方の面上に光学フィルムが1つ配置されており、当該光学フィルムが、シクロオレフィン樹脂を含む基材に加えて、さらに機能層を含むことが特に好ましい。この際、偏光子の他方の面上には、1または2以上の光学フィルムが配置されていてもよく、光学フィルムが配置されていなくてもよい。これらの中でも、偏光子の他方の面上に、後述する他の光学フィルムが1つ配置されることが好ましい。 Among the optical films included in the polarizing plate, one optical film is arranged on one surface of the polarizer, and the optical film further includes a functional layer in addition to the base material containing the cycloolefin resin. It is particularly preferred to include At this time, one or more optical films may be arranged on the other surface of the polarizer, or no optical film may be arranged. Among these, it is preferable to dispose one other optical film, which will be described later, on the other surface of the polarizer.
 機能層としては、特に制限されず、光学用途で使用される機能層が挙げられる。具体的には、アンチブロッキング層、離型層、易接着層、帯電防止層、ハードコート層、反射防止層、防眩層、防汚層、バリアー層、緩衝層、易滑性層、粘着層等が挙げられるが、これらに限定されるものではない。これらの中でも、粘着層以外の機能層であることが好ましく、易接着層またはハードコート層がより好ましく、易接着層がさらに好ましい。 The functional layer is not particularly limited, and includes functional layers used for optical purposes. Specifically, antiblocking layer, release layer, easy adhesion layer, antistatic layer, hard coat layer, antireflection layer, antiglare layer, antifouling layer, barrier layer, buffer layer, slippery layer, adhesive layer etc., but not limited to these. Among these, it is preferably a functional layer other than the adhesive layer, more preferably an easy-adhesion layer or a hard coat layer, and even more preferably an easy-adhesion layer.
 また、機能層は、硬化層であることが好ましい。 Also, the functional layer is preferably a hardening layer.
 機能層は、特に制限されないが、例えば、ウレタン樹脂、アクリル樹脂、エポキシ樹脂、ポリビニルアセタール樹脂等のベース樹脂を含むことが好ましい。例えば、機能層が易接着層である場合、当該易接着層は、ウレタン樹脂を含むことが好ましい。また、例えば、機能層がハードコート層である場合、当該ハードコート層は、アクリル樹脂を含むことが好ましい。 Although the functional layer is not particularly limited, it preferably contains a base resin such as urethane resin, acrylic resin, epoxy resin, polyvinyl acetal resin, or the like. For example, when the functional layer is an easy-adhesion layer, the easy-adhesion layer preferably contains a urethane resin. Further, for example, when the functional layer is a hard coat layer, the hard coat layer preferably contains an acrylic resin.
 ウレタン樹脂を含む機能層は、特に制限されないが、例えば、ポリウレタン前駆体またはポリウレタンを含む塗布液の層(塗工液の層)を硬化させて得られる層等が挙げられる。 The functional layer containing the urethane resin is not particularly limited, but examples thereof include a layer obtained by curing a layer of a coating liquid containing a polyurethane precursor or polyurethane (coating liquid layer).
 ウレタン樹脂としては、特に制限されないが、例えば、塗布液の原料として添加するポリウレタン自体、イソシアネートまたはその誘導体およびアルコールまたはその誘導体との硬化反応を経て得られるポリウレタン生成物、ならびにウレタンプレポリマーの硬化反応を経て得られるポリウレタン生成物等が挙げられる。よって、ウレタン樹脂は、ポリウレタンまたはその架橋体が好ましい。 The urethane resin is not particularly limited, but includes, for example, the polyurethane itself added as a raw material for the coating liquid, the polyurethane product obtained through the curing reaction with isocyanate or its derivative and alcohol or its derivative, and the curing reaction of the urethane prepolymer. Polyurethane products and the like obtained through Therefore, the urethane resin is preferably polyurethane or a crosslinked product thereof.
 ポリウレタン自体、ウレタンプレポリマーおよびポリウレタン生成物としては、特に制限されないが、例えば、それぞれ、1分子中に平均2個以上の水酸基を有するポリオール成分と、1分子中に平均2個以上のイソシアネート基を有するポリイソシアネート成分とを反応させて得られるポリウレタン等が挙げられる。 The polyurethane itself, the urethane prepolymer and the polyurethane product are not particularly limited, but for example, a polyol component having an average of 2 or more hydroxyl groups per molecule and an average of 2 or more isocyanate groups per molecule, respectively. Examples thereof include polyurethanes obtained by reacting with polyisocyanate components possessed.
 ポリオール成分としては、特に制限されないが、例えば、(1)脂肪族ポリエステルポリオール、(2)ポリエーテルポリオール、(3)ポリカーボネートポリオール、(4)ポリエステルエーテルポリオール、および(5)ポリエチレンテレフタレートポリオール等が挙げられる。 The polyol component is not particularly limited, but examples include (1) aliphatic polyester polyol, (2) polyether polyol, (3) polycarbonate polyol, (4) polyester ether polyol, and (5) polyethylene terephthalate polyol. be done.
 (1)脂肪族ポリエステルポリオールとしては、特に制限されないが、例えば、脂肪族ポリオールと、脂肪族の多塩基酸との反応により得られる反応物等が挙げられる。脂肪族ポリオールとしては、特に制限されないが、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン等が挙げられる。脂肪族ポリオールは、1種単独で使用する、または2種以上を任意の比率で併用することができる。脂肪族の多塩基酸としては、特に制限されないが、例えば、多価カルボン酸およびその無水物等が挙げられる。多価カルボン酸としては、特に制限されないが、例えば、アジピン酸、コハク酸、セバシン酸、グルタル酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸等のジカルボン酸や、トリメリット酸等のトリカルボン酸等が挙げられる。多塩基酸は、1種単独で使用する、または2種以上を任意の比率で併用することができる。 (1) The aliphatic polyester polyol is not particularly limited, but examples thereof include a reaction product obtained by reacting an aliphatic polyol with an aliphatic polybasic acid. Examples of aliphatic polyols include, but are not limited to, ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, glycerin, trimethylolpropane and the like. An aliphatic polyol can be used individually by 1 type, or can use 2 or more types together by arbitrary ratios. Examples of aliphatic polybasic acids include, but are not limited to, polycarboxylic acids and anhydrides thereof. The polyvalent carboxylic acid is not particularly limited, and examples thereof include dicarboxylic acids such as adipic acid, succinic acid, sebacic acid, glutaric acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid and terephthalic acid, and trimellitic acid. and the like. A polybasic acid can be used individually by 1 type, or can use 2 or more types together by arbitrary ratios.
 (2)ポリエーテルポリオールとしては、特に制限されないが、例えば、ポリ(オキシプロピレンエーテル)ポリオール、ポリ(オキシエチレン-プロピレンエーテル)ポリオール等が挙げられる。 (2) The polyether polyol is not particularly limited, but includes, for example, poly(oxypropylene ether) polyol, poly(oxyethylene-propylene ether) polyol, and the like.
 (3)ポリカーボネートポリオールとしては、特に制限されないが、例えば、式HO-R-(O-C(O)-O-R)-OH(ただし、式中、Rは炭素原子数1~12の飽和脂肪酸ポリオール残基を示す。また、Xは分子の構造単位数を示し、通常5~50の整数である)で表される化合物等が挙げられる。かようなポリカーボネートポリオールは、特に制限されないが、例えば、飽和脂肪族ポリオールと、置換カーボネートとを、水酸基が過剰の条件で反応させるエステル交換法等によって得ることができる。また、例えば、飽和脂肪族ポリオールとホスゲンとを反応させるか、または必要に応じて、その後さらに飽和脂肪族ポリオールを反応させる方法等により得ることができる。この際、置換カーボネートしては、特に制限されないが、例えば、炭酸ジエチル、ジフェニルカーボネート等が挙げられる。また、これらは、1種単独で使用する、または2種以上を任意の比率で併用することができる。 (3) Polycarbonate polyols are not particularly limited, but may be, for example, a X represents the number of structural units of the molecule and is usually an integer of 5 to 50). Such a polycarbonate polyol is not particularly limited, but can be obtained, for example, by a transesterification method in which a saturated aliphatic polyol and a substituted carbonate are reacted under conditions in which hydroxyl groups are excessive. Alternatively, for example, it can be obtained by a method of reacting a saturated aliphatic polyol with phosgene, or, if necessary, further reacting a saturated aliphatic polyol thereafter. In this case, the substituted carbonate is not particularly limited, and examples thereof include diethyl carbonate, diphenyl carbonate and the like. Moreover, these can be used individually by 1 type, or can use 2 or more types together by arbitrary ratios.
 (4)ポリエステルエーテルポリオールとしては、特に制限されないが、例えば、エーテル基を含むポリオール化合物と、多価カルボン酸またはその無水物とを反応させた反応物等が挙げられる。エーテル基を含むポリオール化合物としては、特に制限されないが、例えば、前記の(2)ポリエーテルポリオール、およびジエチレングリコール等が挙げられる。エーテル基を含むポリオール化合物は、1種単独で使用する、または2種以上を任意の比率で併用することができる。また、多価カルボン酸またはその無水物としては、特に制限されないが、例えば、(1)脂肪族ポリエステルポリオールの説明で挙げた例示化合物等が挙げられる。多価カルボン酸またはその無水物は、1種単独で使用する、または2種以上を任意の比率で併用することができる。ポリエステルエーテルポリオールの具体例としては、ポリテトラメチレングリコール-アジピン酸縮合物等が挙げられる。 (4) The polyester ether polyol is not particularly limited, but includes, for example, a reaction product obtained by reacting a polyol compound containing an ether group with a polyvalent carboxylic acid or an anhydride thereof. The polyol compound containing an ether group is not particularly limited, and examples thereof include the above-mentioned (2) polyether polyol and diethylene glycol. A polyol compound containing an ether group can be used singly, or two or more of them can be used in combination at any ratio. The polyvalent carboxylic acid or its anhydride is not particularly limited, and includes, for example, the exemplified compounds mentioned in the explanation of (1) Aliphatic polyester polyol. Polyvalent carboxylic acid or its anhydride can be used individually by 1 type, or can use 2 or more types together by arbitrary ratios. Specific examples of polyester ether polyols include polytetramethylene glycol-adipic acid condensates.
 (5)ポリエチレンテレフタレートポリオールとしては、特に制限されず、例えば、公知のポリエチレンテレフタレートポリオールを使用することができる。 (5) The polyethylene terephthalate polyol is not particularly limited, and for example, a known polyethylene terephthalate polyol can be used.
 ポリオール成分は、1種単独で使用する、または2種以上を任意の比率で併用することができる。 The polyol component can be used singly, or two or more can be used in combination at any ratio.
 ポリイソシアネート成分としては、特に制限されないが、例えば、1分子中に2個以上のイソシアネート基を含有する脂肪族ポリイソシアネート化合物、脂環族ポリイソシアネート化合物、および芳香族ポリイソシアネート化合物等が挙げられる。 The polyisocyanate component is not particularly limited, but includes, for example, aliphatic polyisocyanate compounds containing two or more isocyanate groups in one molecule, alicyclic polyisocyanate compounds, and aromatic polyisocyanate compounds.
 脂肪族ポリイソシアネート化合物としては、特に制限されないが、例えば、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサンジイソシアネート、ヘキサンジイソシアネート(HDI)等の炭素原子数1~12の脂肪族ジイソシアネート等が挙げられる。 The aliphatic polyisocyanate compound is not particularly limited, and examples thereof include aliphatic diisocyanates having 1 to 12 carbon atoms such as hexamethylene diisocyanate, 2,2,4-trimethylhexane diisocyanate, and hexane diisocyanate (HDI). .
 脂環式ポリイソシアネート化合物としては、特に制限されないが、例えば、1,4-シクロヘキサンジイソシアネート、メチルシクロヘキシレンジイソシアネート、イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタンジイソシアネート(HMDI)等の炭素原子数4~18の脂環式ジイソシアネート等が挙げられる。 The alicyclic polyisocyanate compound is not particularly limited. A cyclic diisocyanate and the like can be mentioned.
 芳香族ポリイソシアネート化合物としては、特に制限されないが、例えば、トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族ジイソシアネート等が挙げられる。 The aromatic polyisocyanate compound is not particularly limited, but examples include aromatic diisocyanates such as tolylene diisocyanate (TDI), 4,4'-diphenylmethane diisocyanate, and xylylene diisocyanate.
 ポリイソシアネート成分は、1種単独で使用する、または2種以上を任意の比率で併用することができる。 The polyisocyanate component can be used alone, or two or more can be used in combination at any ratio.
 これらの中でも、ポリウレタン自体、ウレタンプレポリマーおよびポリウレタン生成物としては、それぞれ、ポリカーボネート系ポリウレタンまたはポリエステル-エーテル系ポリウレタンが好ましい。ポリカーボネート系ポリウレタンとは、当該ポリウレタンの分子構造にカーボネート骨格を有するポリウレタンである。例えば、ポリカーボネートポリオールとポリイソシアネート成分とから製造されるポリウレタン等が挙げられる。また、ポリエステル-エーテル系ポリウレタンとは、当該ポリウレタンの分子構造にエステル結合およびエーテル結合を有するポリウレタンである。例えば、ポリエステルエーテルポリオールとポリイソシアネート成分とから製造されるポリウレタン等が挙げられる。 Among these, the polyurethane itself, the urethane prepolymer and the polyurethane product are preferably polycarbonate-based polyurethanes or polyester-ether-based polyurethanes, respectively. A polycarbonate-based polyurethane is a polyurethane having a carbonate skeleton in the molecular structure of the polyurethane. Examples thereof include polyurethanes produced from polycarbonate polyols and polyisocyanate components. A polyester-ether polyurethane is a polyurethane having an ester bond and an ether bond in its molecular structure. Examples thereof include polyurethanes produced from polyester ether polyols and polyisocyanate components.
 ウレタンプレポリマーとしては、ポリオール成分とポリイソシアネート成分との反応後に反応せず残った水酸基を含むものであってもよい。当該水酸基は、架橋剤における官能基との架橋反応が可能な極性基として利用することができる。 The urethane prepolymer may contain hydroxyl groups that remain unreacted after the reaction between the polyol component and the polyisocyanate component. The hydroxyl group can be used as a polar group capable of undergoing a cross-linking reaction with a functional group in the cross-linking agent.
 ウレタンプレポリマーとしては、架橋剤により架橋されうるものが好ましい。 The urethane prepolymer is preferably one that can be crosslinked with a crosslinking agent.
 ウレタンプレポリマーとしては、架橋剤との反応を可能にするため、極性基を含むことが好ましい。極性基としては、特に制限されないが、例えば、メチロール基、カルボキシ基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシ基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、スルホ基等が挙げられる。これらの中でも、メチロール基、水酸基、カルボキシ基およびアミノ基が好ましく、水酸基またはカルボキシ基がより好ましく、カルボキシ基がさらに好ましい。ポリウレタン中の極性基の量は、特に制限されないが、好ましくは0.0001当量/1kg以上であり、より好ましくは0.001当量/1kg以上である。また、ポリウレタン中の極性基の量は、好ましくは1当量/1kg以下である。 The urethane prepolymer preferably contains a polar group in order to allow reaction with the cross-linking agent. Polar groups are not particularly limited, and examples include methylol groups, carboxy groups, carbonyloxycarbonyl groups, epoxy groups, hydroxy groups, oxy groups, ester groups, silanol groups, silyl groups, amino groups, nitrile groups, sulfo groups, and the like. is mentioned. Among these, a methylol group, a hydroxyl group, a carboxy group and an amino group are preferred, a hydroxyl group or a carboxy group is more preferred, and a carboxy group is even more preferred. The amount of polar groups in the polyurethane is not particularly limited, but is preferably 0.0001 equivalent/1 kg or more, more preferably 0.001 equivalent/1 kg or more. Also, the amount of polar groups in the polyurethane is preferably 1 equivalent/1 kg or less.
 ポリウレタン自体や、ウレタン樹脂の原料となる、イソシアネートまたはその誘導体、アルコールまたはその誘導体、ウレタンプレポリマー、およびウレタンプレポリマーの生成に用いる原料等は、それぞれ、市販品を用いても、合成品を用いてもよい。市販品としては、特に制限されないが、例えば、水系ウレタン樹脂として市販されている水系エマルションを使用してもよい。水系ウレタン樹脂とは、ポリウレタンと水とを含む組成物であり、通常、ポリウレタンおよび必要に応じて含まれる任意の成分が水の中に分散しているものである。水系ウレタン樹脂としては、特に制限されないが、例えば、株式会社ADEKA製の「アデカボンタイター(登録商標)」シリーズ、三井化学株式会社製の「オレスター(登録商標)」シリーズ、DIC株式会社製の「ボンディック(登録商標)」シリーズ、「ハイドラン(登録商標)(WLS201,WLS202など)」シリーズ、バイエル社製の「インプラニール」シリーズ、花王株式会社製の「ポイズ(登録商標)」シリーズ、三洋化成工業株式会社製の「サンプレン(登録商標)」シリーズ、第一工業製薬株式会社製の「スーパーフレックス(登録商標)」シリーズ、楠本化成株式会社製の「NEOREZ(ネオレッズ)」シリーズ、ルーブリゾール社製の「Sancure」シリーズ等が挙げられる。 Polyurethane itself, isocyanate or its derivatives, alcohol or its derivatives, urethane prepolymers, and raw materials used to produce urethane prepolymers, which are raw materials for urethane resins, may be commercially available products or synthetic products. may Commercially available products are not particularly limited, but for example, water-based emulsions marketed as water-based urethane resins may be used. A water-based urethane resin is a composition containing polyurethane and water, and generally, polyurethane and optionally contained optional components are dispersed in water. The water-based urethane resin is not particularly limited. "Bondic (registered trademark)" series, "Hydran (registered trademark) (WLS201, WLS202, etc.)" series, Bayer's "Impranil" series, Kao Corporation's "Poise (registered trademark)" series, Sanyo "Samprene (registered trademark)" series manufactured by Kasei Kogyo Co., Ltd., "Superflex (registered trademark)" series manufactured by Daiichi Kogyo Seiyaku Co., Ltd., "NEOREZ" series manufactured by Kusumoto Kasei Co., Ltd., Lubrizol Co., Ltd. and the "Sancure" series manufactured by Sancure.
 ウレタン樹脂の形成には、架橋剤が使用されてもよい。架橋剤としては、特に制限されず、公知のものを使用することができる。例えば、エポキシ化合物、カルボジイミド化合物、オキサゾリン化合物、イソシアネート化合物等が挙げられる。これらの具体例としては、特開2016-79210号公報の段落「0075」~「0094」に記載される架橋剤等が挙げられる。架橋剤は、1種単独で使用する、または2種以上を任意の比率で併用することができる。 A cross-linking agent may be used to form the urethane resin. The cross-linking agent is not particularly limited, and known ones can be used. Examples thereof include epoxy compounds, carbodiimide compounds, oxazoline compounds, isocyanate compounds and the like. Specific examples thereof include cross-linking agents described in paragraphs "0075" to "0094" of JP-A-2016-79210. The cross-linking agents can be used singly or in combination of two or more at any ratio.
 ウレタン樹脂の形成には、硬化促進剤が使用されてもよい。硬化促進剤としては、特に制限されず、公知のものを使用することができる。例えば、第3級アミン系化合物(4-位に3級アミンを有する2,2,6,6-テトラメチルピペリジル基を有する化合物を除く)、三弗化ホウ素錯化合物等が挙げられる。硬化促進剤は、1種単独で使用する、または2種以上を任意の比率で併用することができる。 A curing accelerator may be used to form the urethane resin. The curing accelerator is not particularly limited, and known ones can be used. Examples thereof include tertiary amine compounds (excluding compounds having a 2,2,6,6-tetramethylpiperidyl group with a tertiary amine at the 4-position), boron trifluoride complex compounds and the like. A hardening accelerator can be used individually by 1 type, or can use 2 or more types together by arbitrary ratios.
 ウレタン樹脂の形成には、硬化助剤が使用されても良い。硬化助剤としては、特に制限されず、公知のものを使用することができる。例えば、キノンジオキシム、ベンゾキノンジオキシム、p-ニトロソフェノール等のオキシム・ニトロソ系硬化助剤;N,N-m-フェニレンビスマレイミド等のマレイミド系硬化助剤;ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート等のアリル系硬化助剤;エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート等のメタクリレート系硬化助剤;ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン等のビニル系硬化助剤;等が挙げられる。硬化助剤は、1種単独で使用する、または2種以上を任意の比率で併用することができる。 A curing aid may be used to form the urethane resin. The curing aid is not particularly limited, and known ones can be used. For example, quinonedioxime, benzoquinonedioxime, p-nitrosophenol and other oxime/nitroso curing agents; N,Nm-phenylenebismaleimide and other maleimide curing agents; diallyl phthalate, triallyl cyanurate, tri allyl-based curing aids such as allyl isocyanurate; methacrylate-based curing aids such as ethylene glycol dimethacrylate and trimethylolpropane trimethacrylate; vinyl-based curing aids such as vinyltoluene, ethylvinylbenzene, and divinylbenzene; . Curing aids can be used singly or in combination of two or more at any ratio.
 ウレタン樹脂は、1種単独で使用する、または2種以上を併用することができる。 The urethane resin can be used singly or in combination of two or more.
 アクリル樹脂とは、(メタ)アクリレート化合物に由来する構成単位を含む樹脂を表す。アクリル樹脂としては、特に制限されないが、活性エネルギー線硬化により得られたアクリル樹脂であることが好ましく、紫外線硬化により得られたアクリル樹脂であることがより好ましい。活性エネルギー線硬化により得られたアクリル樹脂は、活性エネルギー線硬化性(メタ)アクリレート化合物や、この化合物およびこれと共重合可能な化合物の混合物に対して、活性エネルギーを照射して硬化させることで得ることができる。また、紫外線硬化により得られたアクリル樹脂は、紫外線硬化性(メタ)アクリレート化合物や、この化合物およびこれと共重合可能な化合物の混合物に対して、紫外線を照射して硬化させることで得ることができる。 "Acrylic resin" refers to a resin containing a structural unit derived from a (meth)acrylate compound. Although the acrylic resin is not particularly limited, it is preferably an acrylic resin obtained by active energy ray curing, and more preferably an acrylic resin obtained by ultraviolet curing. Acrylic resin obtained by active energy ray curing is cured by irradiating active energy to an active energy ray curable (meth)acrylate compound or a mixture of this compound and a compound copolymerizable with this compound. Obtainable. In addition, the acrylic resin obtained by ultraviolet curing can be obtained by irradiating and curing an ultraviolet curable (meth)acrylate compound or a mixture of this compound and a compound copolymerizable therewith with ultraviolet rays. can.
 アクリル樹脂を構成する硬化性(メタ)アクリレート化合物としては、特に制限されず、光学用途で使用される機能層の材料として使用しうる公知の活性エネルギー線硬化性(メタ)アクリレート化合物や、公知の紫外線硬化性(メタ)アクリレート化合物等が挙げられる。これらの中でも、機能層の材料、特にハードコート層の材料として使用しうる公知の化合物が好ましい。かような化合物としては、特に制限されないが、例えば、単官能(メタ)アクリレート化合物や、多官能(メタ)アクリレート化合物、およびこれらの組み合わせ等が挙げられる。 The curable (meth)acrylate compound constituting the acrylic resin is not particularly limited, and known active energy ray-curable (meth)acrylate compounds that can be used as materials for functional layers used in optical applications, and known active energy ray-curable (meth)acrylate compounds. An ultraviolet curable (meth)acrylate compound and the like can be mentioned. Among these, known compounds that can be used as functional layer materials, particularly hard coat layer materials, are preferred. Examples of such compounds include, but are not particularly limited to, monofunctional (meth)acrylate compounds, polyfunctional (meth)acrylate compounds, combinations thereof, and the like.
 単官能(メタ)アクリレート化合物としては、特に制限されず、公知のものを使用することができる。例えば、(メタ)アクリレート、メチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等が挙げられる。 The monofunctional (meth)acrylate compound is not particularly limited, and known compounds can be used. Examples thereof include (meth)acrylate, methyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyl (meth)acrylate and the like.
 多官能(メタ)アクリレート化合物としては、特に制限されず、公知のものを使用することができる。例えば、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、イソシアヌルEO変性トリアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリストールヘキサアクリレートのエチレンオキサイド付加物、当該付加物のエチレンオキサイドのHをフッ素置換したもの、ペンタエリスリトールテトラアクリレート、ペンタエリストールテトラアクリレートのエチレンオキサイド付加物、当該付加物のエチレンオキサイドのHをフッ素置換したもの等を用いることができる。 The polyfunctional (meth)acrylate compound is not particularly limited, and known compounds can be used. For example, trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, isocyanuric EO-modified triacrylate, pentaerythritol triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, di Ethylene oxide adduct of pentaerythritol hexaacrylate, fluorine-substituted H in ethylene oxide of the adduct, pentaerythritol tetraacrylate, ethylene oxide adduct of pentaerythritol tetraacrylate, H of ethylene oxide of the adduct A fluorine-substituted one or the like can be used.
 また、単官能(メタ)アクリレート化合物または多官能(メタ)アクリレート化合物としては、芳香環を有する(メタ)アクリレート化合物を使用してもよい。これらの化合物を使用することで、機能層の屈折率を向上させることができる。芳香環を有する(メタ)アクリレート化合物としては、特に制限されないが、例えば、ベンジルアクリレートや、下記一般式(i)~(iv)のいずれかで表される単官能(メタ)アクリレート化合物等が挙げられる。これらの中でも、ベンジルアクリレートがより好ましい。 A (meth)acrylate compound having an aromatic ring may also be used as the monofunctional (meth)acrylate compound or the polyfunctional (meth)acrylate compound. By using these compounds, the refractive index of the functional layer can be improved. The (meth)acrylate compound having an aromatic ring is not particularly limited, and examples thereof include benzyl acrylate and monofunctional (meth)acrylate compounds represented by any of the following general formulas (i) to (iv). be done. Among these, benzyl acrylate is more preferred.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記一般式(i)~(iv)中、Rは、水素原子またはメチル基を表し、Rは、水素原子または炭素数1~3のアルキル基または芳香環を表し、nは0~2の正の数字を表す。 In general formulas (i) to (iv) above, R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an aromatic ring, and n is 0 to 2. represents a positive number.
 アクリル樹脂は、ウレタンアクリレート樹脂を含むことが好ましい。その理由としては、屈折率面である基材と機能層の接着性が良好であり、耐久での使用においても界面での剥離、即ち屈折率の差異が生じにくいため好ましい。ウレタンアクリレート樹脂とは、ウレタン(メタ)アクリレート化合物に由来する構成単位を含むアクリル樹脂を表す。 The acrylic resin preferably contains urethane acrylate resin. The reason for this is that the adhesion between the substrate, which is the refractive index surface, and the functional layer is good, and peeling at the interface, that is, the difference in refractive index is less likely to occur even in long-term use. A urethane acrylate resin represents an acrylic resin containing a structural unit derived from a urethane (meth)acrylate compound.
 硬化性(メタ)アクリレート化合物であるウレタン(メタ)アクリレート化合物としては、特に制限されないが、例えば、上記のウレタン樹脂で説明したポリウレタンプレポリマーの骨格構造と、(メタ)アクリロイルオキシ基とを分子内に有する化合物等が挙げられる。また、ウレタン(メタ)アクリレート化合物としては、脂肪族ウレタン(メタ)アクリレート化合物であっても、芳香族ウレタン(メタ)アクリレート化合物であってもよい。 The urethane (meth)acrylate compound, which is a curable (meth)acrylate compound, is not particularly limited. and the like. Further, the urethane (meth)acrylate compound may be either an aliphatic urethane (meth)acrylate compound or an aromatic urethane (meth)acrylate compound.
 硬化性ウレタン(メタ)アクリレート化合物の中でも、ポリエーテルウレタン(メタ)アクリレートが特に好ましい。 Among curable urethane (meth)acrylate compounds, polyether urethane (meth)acrylate is particularly preferable.
 ポリエーテルウレタン(メタ)アクリレートとしては、特に制限されないが、例えば、(ua1)ポリエーテルポリオール骨格を有するポリオールと、(ua2)イソシアネート化合物と、(ua3)水酸基を有する(メタ)アクリル酸エステルとの反応により得られるもの等が挙げられる。 The polyether urethane (meth)acrylate is not particularly limited. Examples thereof include those obtained by reaction.
 ポリオール(ua1)は、イソシアネート化合物(ua2)とウレタン結合を形成するための末端水酸基を有する。二官能性のウレタン(メタ)アクリレートとする場合には、ポリオール(ua1)は骨格の両末端にそれぞれ1つずつ水酸基を有する。さらに、ポリオール(ua1)として、ポリエーテルポリオール骨格を有することを必須とする。このうち、接着性を向上させる観点から、ポリプロピレンポリオール(ポリプロピレングリコール)を有することが好ましい。 The polyol (ua1) has a terminal hydroxyl group for forming a urethane bond with the isocyanate compound (ua2). When a bifunctional urethane (meth)acrylate is used, the polyol (ua1) has one hydroxyl group at each end of the skeleton. Furthermore, it is essential that the polyol (ua1) has a polyether polyol skeleton. Among these, from the viewpoint of improving adhesiveness, it is preferable to have polypropylene polyol (polypropylene glycol).
 ポリエーテルポリオール(ua1)としてのポリプロピレンポリオールの数平均分子量は、1,000~10,000であることが好ましく、1,500~5,000であることがより好ましい。数平均分子量がこのような範囲にあると、接着性に優れた接着剤組成物とすることができる。なお、数平均分子量はゲルパーミエーションクロマトグラフィー法(GPC法)(ポリスチレン換算)により測定した値を表す。 The number average molecular weight of the polypropylene polyol as the polyether polyol (ua1) is preferably 1,000 to 10,000, more preferably 1,500 to 5,000. When the number average molecular weight is within such a range, an adhesive composition having excellent adhesion can be obtained. In addition, a number average molecular weight represents the value measured by the gel permeation chromatography method (GPC method) (polystyrene conversion).
 二官能性のポリエーテルウレタン(メタ)アクリレートとする場合には、イソシアネート化合物(ua2)はイソシアネート基を2つ有する。 When using a bifunctional polyether urethane (meth)acrylate, the isocyanate compound (ua2) has two isocyanate groups.
 イソシアネート化合物(ua2)としては、公知の化合物を用いることができる。例えば、トリレンジイソシアネート、水添ポリレンジイソシアネート、ジフェニルメタンジイソシアネート、水添ジフェニルメタンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、パラフェニレンジイソシアネートなどの公知のものが挙げられる。これらのイソシアネート化合物(ua2)は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。 A known compound can be used as the isocyanate compound (ua2). Examples include tolylene diisocyanate, hydrogenated polydiisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, dicyclohexylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, paraphenylene diisocyanate, and other known diisocyanates. These isocyanate compounds (ua2) may be used alone or in combination of two or more.
 水酸基を有する(メタ)アクリル酸エステル(ua3)は、ウレタン結合を形成するために、水酸基を少なくとも1つ有する。 The (meth)acrylic acid ester (ua3) having a hydroxyl group has at least one hydroxyl group to form a urethane bond.
 このような(メタ)アクリル酸エステル(ua3)としては、特に制限はなく、公知の化合物を制限なく用いることができる。例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレートのカプロラクトン変性物、グリシドールジ(メタ)アクリレート、およびペンタエリスリトールトリ(メタ)アクリレートが挙げられる。これらの(メタ)アクリル酸エステル(ua3)は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。 Such a (meth)acrylic acid ester (ua3) is not particularly limited, and known compounds can be used without limitation. For example, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, butanediol mono(meth)acrylate, caprolactone-modified 2-hydroxyethyl (meth)acrylate, glycidol di(meth)acrylate, and penta Erythritol tri(meth)acrylate may be mentioned. These (meth)acrylic acid esters (ua3) may be used alone or in combination of two or more.
 ポリエーテルウレタン(メタ)アクリレートは、従来公知の方法を適宜採用して製造することができる。一般的な製造方法としては、ポリエーテルポリオール(ua1)およびイソシアネート化合物(ua2)を70~80℃で加熱しながら4~6時間攪拌する。その後、さらに水酸基を有する(メタ)アクリル酸エステル(ua3)を添加して70~80℃で加熱しながら4~6時間攪拌することによって、ポリエーテルウレタン(メタ)アクリレートを合成することができる。この際、ポリエーテルポリオール(ua1)、イソシアネート化合物(ua2)、水酸基を有する(メタ)アクリル酸エステル(ua3)の仕込み量は、特に制限されないが、これらの総質量を100質量%とした場合、それぞれ、62.0~96.9質量%、2.5~25.2質量%、0.4~11.7質量%であることが好ましい。 Polyether urethane (meth)acrylate can be produced by appropriately adopting conventionally known methods. As a general production method, the polyether polyol (ua1) and the isocyanate compound (ua2) are heated at 70 to 80° C. and stirred for 4 to 6 hours. Thereafter, a (meth)acrylic acid ester (ua3) having a hydroxyl group is further added, and the mixture is stirred for 4 to 6 hours while heating at 70 to 80° C., thereby synthesizing a polyether urethane (meth)acrylate. At this time, the amount of the polyether polyol (ua1), the isocyanate compound (ua2), and the hydroxyl group-containing (meth)acrylic acid ester (ua3) is not particularly limited. They are preferably 62.0 to 96.9% by mass, 2.5 to 25.2% by mass, and 0.4 to 11.7% by mass, respectively.
 また、ポリエーテルウレタン(メタ)アクリレートの数平均分子量は、特に制限されないが、2,000~50,000であることが好ましく、3,000~15,000であることがより好ましい。なお、数平均分子量はゲルパーミエーションクロマトグラフィー法(GPC法)(ポリスチレン換算)により測定した値を表す。 Although the number average molecular weight of the polyether urethane (meth)acrylate is not particularly limited, it is preferably from 2,000 to 50,000, more preferably from 3,000 to 15,000. In addition, a number average molecular weight represents the value measured by the gel permeation chromatography method (GPC method) (polystyrene conversion).
 ウレタン(メタ)アクリレート化合物の官能数は、特に制限されない。例えば、3官能未満以下であってもよく、3官能以上であってもよい。ここで、6官能以上の場合、ハードコート層の形成に特に適する。 The functionality of the urethane (meth)acrylate compound is not particularly limited. For example, it may be less than trifunctional or trifunctional or more. Here, when it is hexafunctional or more, it is particularly suitable for forming a hard coat layer.
 硬化性(メタ)アクリレート化合物は、市販品を用いても合成品を用いてもよい。例えば、昭和電工マテリアルズ株式会社製のファンクリルシリーズFA-511AS、FA-512AS、FA-513AS、FA-BZA、FA-314A、FA-318AS、FA-129AS、FA-P240A、FA-P270A、FA-324A、FA-731A、FA-512M、FA-512MT、FA-513M、FA-711MM、FA-712HM、FA-400M(100)、FA-BZM、FA-124M、FA-125M、FA-220M、FA-321MおよびFA-023M等が挙げられる。また、硬化性(メタ)アクリレート化合物であるウレタン(メタ)アクリレート化合物の市販品としても、特に制限されない。2官能の脂肪族ウレタン(メタ)アクリレート化合物としては、例えば、ダイセル・オルネクス社製のEBECRYL(登録商標)230、270、280、284、4683、4858、8307、8402、8411、8413、8804、8807、9270および8800、ならびにKRM7735、KRM8961およびKRM8191等が挙げられる。3~4官能の脂肪族ウレタン(メタ)アクリレート化合物としては、例えば、ダイセル・オルネクス社製のEBECRYL(登録商標)294、4220、4513、4738、4740、8311、9260、8701、4265、4587、4666、4680、8210および8405、ならびにKRM8667、KRM8296およびKRM8528等が挙げられる。6官能以上の脂肪族ウレタン(メタ)アクリレート化合物としては、例えば、ダイセル・オルネクス社製のEBECRYL(登録商標)1290、5129および8301R、ならびにKRM8200、KRM8200AE、KRM8530、KRM8904、KRM8531BAおよびKRM8452等が挙げられる。芳香族ウレタン(メタ)アクリレート化合物としては、例えば、ダイセル・オルネクス社製のEBECRYL(登録商標)210および220等が挙げられる。 A commercially available product or a synthetic product may be used as the curable (meth)acrylate compound. For example, Showa Denko Materials Co., Ltd. Fancryl series FA-511AS, FA-512AS, FA-513AS, FA-BZA, FA-314A, FA-318AS, FA-129AS, FA-P240A, FA-P270A, FA -324A, FA-731A, FA-512M, FA-512MT, FA-513M, FA-711MM, FA-712HM, FA-400M (100), FA-BZM, FA-124M, FA-125M, FA-220M, Examples include FA-321M and FA-023M. In addition, there are no particular restrictions on the commercially available urethane (meth)acrylate compound, which is a curable (meth)acrylate compound. Examples of bifunctional aliphatic urethane (meth)acrylate compounds include EBECRYL (registered trademark) 230, 270, 280, 284, 4683, 4858, 8307, 8402, 8411, 8413, 8804, and 8807 manufactured by Daicel Allnex Co., Ltd. , 9270 and 8800, and KRM7735, KRM8961 and KRM8191. Examples of tri- to tetra-functional aliphatic urethane (meth)acrylate compounds include EBECRYL (registered trademark) 294, 4220, 4513, 4738, 4740, 8311, 9260, 8701, 4265, 4587, and 4666 manufactured by Daicel Allnex Co., Ltd. , 4680, 8210 and 8405, and KRM8667, KRM8296 and KRM8528. Hexafunctional or higher aliphatic urethane (meth)acrylate compounds include, for example, EBECRYL (registered trademark) 1290, 5129 and 8301R manufactured by Daicel Allnex, KRM8200, KRM8200AE, KRM8530, KRM8904, KRM8531BA and KRM8452. . Examples of aromatic urethane (meth)acrylate compounds include EBECRYL (registered trademark) 210 and 220 manufactured by Daicel Allnex.
 硬化性(メタ)アクリレート化合物は、1種単独で使用する、または2種以上を併用することができる。 The curable (meth)acrylate compounds can be used singly or in combination of two or more.
 硬化性(メタ)アクリレート化合物としては、ウレタン(メタ)アクリレート化合物を含むことが好ましく、ポリエーテルウレタン(メタ)アクリレートを含むことがより好ましい。硬化性(メタ)アクリレート化合物中のウレタン(メタ)アクリレート化合物の含有割合は、特に制限されないが、硬化性(メタ)アクリレート化合物の総質量に対して、40~100質量%であることが好ましく、50~100質量%であることがより好ましい。これらの範囲であると、機能層の屈折率が適度な値となり易い。その結果、表示ムラがより低減する。 The curable (meth)acrylate compound preferably contains a urethane (meth)acrylate compound, and more preferably contains a polyether urethane (meth)acrylate. The content of the urethane (meth)acrylate compound in the curable (meth)acrylate compound is not particularly limited, but is preferably 40 to 100% by mass with respect to the total mass of the curable (meth)acrylate compound. It is more preferably 50 to 100% by mass. Within these ranges, the refractive index of the functional layer tends to be an appropriate value. As a result, display unevenness is further reduced.
 硬化性(メタ)アクリレート化合物としては、芳香族ウレタン(メタ)アクリレート;ポリエーテルウレタン(メタ)アクリレート;単官能(メタ)アクリレート化合物;またはポリエーテルウレタン(メタ)アクリレートと、単官能(メタ)アクリレート化合物との併用が好ましい。また、芳香族ウレタン(メタ)アクリレート;ポリエーテルウレタン(メタ)アクリレート;ベンジル(メタ)アクリレート;またはポリエーテルウレタン(メタ)アクリレートと、ベンジル(メタ)アクリレートとの併用がより好ましい。そして、芳香族ウレタン(メタ)アクリレート;ポリエーテルウレタン(メタ)アクリレートと、ベンジル(メタ)アクリレートとの併用がさらに好ましい。 As the curable (meth)acrylate compound, aromatic urethane (meth)acrylate; polyether urethane (meth)acrylate; monofunctional (meth)acrylate compound; or polyether urethane (meth)acrylate and monofunctional (meth)acrylate Combined use with a compound is preferred. Aromatic urethane (meth)acrylate; polyether urethane (meth)acrylate; benzyl (meth)acrylate; or combined use of polyether urethane (meth)acrylate and benzyl (meth)acrylate is more preferred. Aromatic urethane (meth)acrylate; polyether urethane (meth)acrylate and benzyl (meth)acrylate are more preferably used in combination.
 アクリル樹脂の形成には、架橋剤、硬化剤または硬化促進剤が使用されてもよい。これらは、特に制限されず、それぞれ公知のものを使用することができる。これらは、それぞれ、1種単独で使用する、または2種以上を併用することができる。 A cross-linking agent, a curing agent, or a curing accelerator may be used to form the acrylic resin. These are not particularly limited, and known ones can be used. These can be used individually by 1 type, respectively, or can use 2 or more types together.
 アクリル樹脂としては、熱可塑性樹脂であるアクリル樹脂を使用してもよい。熱可塑性樹脂であるアクリル樹脂としては、特に制限されないが、例えば、上記の(メタ)アクリレート化合物に由来する構成単位を含む(共)重合体が挙げられる。これらの中でも、上記の単官能(メタ)アクリレート化合物に由来する構成単位を含む(共)重合体が好ましく、ポリメチル(メタ)アクリレート(別名:ポリメタクリル酸メチル、略称:PMMA)がより好ましい。 As the acrylic resin, acrylic resin, which is a thermoplastic resin, may be used. Examples of acrylic resins, which are thermoplastic resins, include, but are not limited to, (co)polymers containing structural units derived from the above (meth)acrylate compounds. Among these, a (co)polymer containing a structural unit derived from the above monofunctional (meth)acrylate compound is preferred, and polymethyl (meth)acrylate (also known as polymethyl methacrylate, abbreviation: PMMA) is more preferred.
 熱可塑性樹脂であるアクリル樹脂の重量平均分子量(Mw)は、特に制限されないが、100,000~300,000であることが好ましい。重量平均分子量(Mw)ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算にて測定することができる。 The weight average molecular weight (Mw) of the acrylic resin, which is a thermoplastic resin, is not particularly limited, but is preferably 100,000 to 300,000. Weight average molecular weight (Mw) can be measured by gel permeation chromatography (GPC) in terms of polystyrene.
 熱可塑性樹脂であるアクリル樹脂は、1種単独で使用する、または2種以上を併用することができる。 The acrylic resin, which is a thermoplastic resin, can be used alone or in combination of two or more.
 機能層の形成において、硬化性(メタ)アクリレート化合物と、熱可塑性樹脂であるアクリル樹脂とを併用することが好ましい。また、ポリエーテルウレタン(メタ)アクリレートと、ポリメチル(メタ)アクリレートとを併用することがより好ましい。すなわち、アクリル樹脂としては、硬化性アクリル樹脂と、熱可塑性樹脂であるアクリル樹脂との併用が好ましい。また、ポリエーテルウレタン(メタ)アクリレートに由来する構成単位を含む(共)重合体と、ポリメチル(メタ)アクリレートとを併用することがより好ましい。そして、ポリエーテルウレタン(メタ)アクリレートに由来する構成単位からなる単独重合体と、ポリメチル(メタ)アクリレートとを併用することがさらに好ましい。 In forming the functional layer, it is preferable to use a curable (meth)acrylate compound and an acrylic resin, which is a thermoplastic resin, together. Moreover, it is more preferable to use polyether urethane (meth)acrylate and polymethyl (meth)acrylate together. That is, as the acrylic resin, it is preferable to use a combination of a curable acrylic resin and an acrylic resin that is a thermoplastic resin. Further, it is more preferable to use a (co)polymer containing a structural unit derived from polyether urethane (meth)acrylate together with polymethyl (meth)acrylate. Further, it is more preferable to use a homopolymer composed of structural units derived from polyether urethane (meth)acrylate together with polymethyl (meth)acrylate.
 機能層の形成において、硬化性(メタ)アクリレート化合物と、熱可塑性樹脂であるアクリル樹脂とを併用する場合、熱可塑性樹脂であるアクリル樹脂の含有割合は、特に制限されないが、硬化性(メタ)アクリレート化合物および熱可塑性樹脂であるアクリル樹脂の総質量に対して、0質量%超60質量%以下であることが好ましく、0質量%超50質量%以下であることがより好ましい。これらの範囲であると、機能層の屈折率が適度な値となり易い。その結果、表示ムラがより低減する。 In the formation of the functional layer, when a curable (meth)acrylate compound and an acrylic resin that is a thermoplastic resin are used in combination, the content of the acrylic resin that is a thermoplastic resin is not particularly limited. It is preferably more than 0% by mass and 60% by mass or less, more preferably more than 0% by mass and 50% by mass or less, relative to the total mass of the acrylate compound and the acrylic resin that is the thermoplastic resin. Within these ranges, the refractive index of the functional layer tends to be an appropriate value. As a result, display unevenness is further reduced.
 アクリル樹脂およびその原料である(メタ)アクリレート化合物は、それぞれ、市販品を用いても合成品を用いてもよい。 Commercially available products or synthetic products may be used for the acrylic resin and its raw material (meth)acrylate compound.
 アクリル樹脂は、1種を単独で用いても良く、2種以上を併用しても良い。 The acrylic resin may be used alone or in combination of two or more.
 機能層中における、ベース樹脂の含有量は、特に制限されないが、機能層の総質量に対して、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。上記範囲であれば、機能層の機能がより良好となる。また、機能層中における、ベース樹脂の含有量は、機能層の総質量に対して、100質量%以下であることが好ましく、99質量%以下であることがより好ましく、95質量%以下であることがさらに好ましい。上記範囲であれば、ベース樹脂以外の成分の添加量を増加させることができ、本発明の効果をより向上させたり、所望の他の機能をさらに付与することがより容易となる。 The content of the base resin in the functional layer is not particularly limited, but is preferably 50% by mass or more, more preferably 70% by mass or more, more preferably 90% by mass, relative to the total mass of the functional layer. It is more preferable that it is above. If it is the said range, the function of a functional layer will become more favorable. In addition, the content of the base resin in the functional layer is preferably 100% by mass or less, more preferably 99% by mass or less, and 95% by mass or less with respect to the total mass of the functional layer. is more preferred. Within the above range, the amount of components other than the base resin can be increased, making it easier to further improve the effects of the present invention and to impart other desired functions.
 機能層は、粒子を含むことが好ましい。すなわち、機能層は、少なくとも1種の粒子を含むことが好ましい。粒子は、表示ムラ、特に画面のざらつきとして認識される表示ムラおよび輝度ムラとして認識される表示ムラがより低減するよう作用する。以下、機能層に含まれる粒子を単に「機能層粒子」とも称する。 The functional layer preferably contains particles. That is, the functional layer preferably contains at least one kind of particles. The particles act to further reduce display unevenness, particularly display unevenness recognized as screen roughness and display unevenness recognized as luminance unevenness. Hereinafter, the particles contained in the functional layer are also simply referred to as "functional layer particles".
 機能層粒子は、上記の基材粒子で説明したものと同様のものを使用することができる。機能層粒子の種類もまた、基材粒子と同様である。 As the functional layer particles, the same particles as those described in the base particles can be used. The types of functional layer particles are also the same as those of the base particles.
 機能層粒子は、無機粒子が好ましく、シリカ(シリカ粒子、粒子状シリカ)がより好ましい。 The functional layer particles are preferably inorganic particles, more preferably silica (silica particles, particulate silica).
 機能層粒子の平均二次粒子径は、特に制限されないが、10nm以上であることが好ましい。上記範囲であれば、表示ムラがより低減する。また、機能層粒子の平均二次粒子径としては、特に制限されないが、300nm以下であることが好ましい。上記範囲であれば、フィルムの透明性がより向上する。なお、機能層粒子の平均二次粒子径は、層(機能層)の電子顕微鏡写真から二次粒子の大きさを直接計測する方法で求めることができる。本方法では、具体的には、透過型電子顕微鏡写真(TEM)(株式会社日立ハイテク製 H-7650)にて粒子像を測定し、ランダムに選択した100個の二次粒子の等面積円相当直径の平均値を求め、この値を平均二次粒子径とする。 Although the average secondary particle size of the functional layer particles is not particularly limited, it is preferably 10 nm or more. If it is the said range, a display nonuniformity will reduce more. Also, the average secondary particle size of the functional layer particles is not particularly limited, but is preferably 300 nm or less. If it is the said range, the transparency of a film will improve more. The average secondary particle diameter of the functional layer particles can be determined by a method of directly measuring the size of the secondary particles from an electron micrograph of the layer (functional layer). Specifically, in this method, the particle image is measured with a transmission electron microscope (TEM) (H-7650 manufactured by Hitachi High-Tech Co., Ltd.), and 100 randomly selected secondary particles equivalent to circles of equal area An average value of the diameters is obtained, and this value is defined as the average secondary particle size.
 機能層粒子は、1種単独で使用する、または2種以上を併用することができる。 The functional layer particles can be used singly or in combination of two or more.
 機能層中の機能層粒子の含有量は、特に制限されないが、機能層の総質量に対して、0.1質量%以上であることが好ましい。上記範囲であれば、屈折率の調整がより容易となる。また、機能層中の機能層粒子の含有量は、機能層の総質量に対して、10質量%以下であることが好ましい。上記範囲であれば、フィルムの透明性がより向上する。 Although the content of the functional layer particles in the functional layer is not particularly limited, it is preferably 0.1% by mass or more with respect to the total mass of the functional layer. If it is the said range, adjustment of a refractive index will become easier. Moreover, the content of the functional layer particles in the functional layer is preferably 10% by mass or less with respect to the total mass of the functional layer. If it is the said range, the transparency of a film will improve more.
 機能層は、本発明の効果を損なわない限り、上記説明した成分以外の他の成分をさらに含んでいてもよい。他の成分としては、特に制限されないが、例えば、公知の光学フィルム分野や、公知の光学用途の機能層分野で使用される各成分が挙げられる。具体的には、耐熱安定剤、耐候安定剤、レベリング剤、界面活性剤、酸化防止剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、染料、顔料、天然油、合成油、ワックス等が挙げられるが、これらに限定されるものではない。 The functional layer may further contain components other than the components described above as long as the effects of the present invention are not impaired. Examples of other components include, but are not limited to, components used in the field of known optical films and the field of functional layers for known optical applications. Specifically, heat stabilizers, weather stabilizers, leveling agents, surfactants, antioxidants, antistatic agents, slip agents, antiblocking agents, antifog agents, lubricants, dyes, pigments, natural oils, synthetic oils , wax and the like, but are not limited to these.
 本発明の一実施形態において、機能層の厚さは、特に制限されないが、0.1μm以上であることが好ましい。この範囲であると、機能層の機能を良好に発現しつつ、屈折率の調製がより容易となる。また、機能層の厚さとしては、50μm以下であることが好ましい。この範囲であると、フィルムの透明性を良好としつつ、屈折率の調製がより容易となる。 In one embodiment of the present invention, the thickness of the functional layer is not particularly limited, but is preferably 0.1 μm or more. Within this range, the refractive index can be adjusted more easily while the function of the functional layer can be satisfactorily exhibited. Moreover, the thickness of the functional layer is preferably 50 μm or less. Within this range, it becomes easier to adjust the refractive index while maintaining good transparency of the film.
 シクロオレフィン樹脂基材を含む光学フィルムは、機能層を有し、機能層は、アクリル樹脂又はウレタン樹脂、及び粒子を含有することが好ましい。また、この際、機能層は、アクリル樹脂を含み、アクリル樹脂は、ウレタンアクリレート樹脂を含むことが好ましい。 An optical film containing a cycloolefin resin substrate preferably has a functional layer, and the functional layer preferably contains acrylic resin or urethane resin and particles. In this case, the functional layer preferably contains an acrylic resin, and the acrylic resin preferably contains a urethane acrylate resin.
 本発明の一実施形態において、シクロオレフィン樹脂基材を含む光学フィルムの屈折率は、特に制限されないが、1.500以上であることが好ましく、1.505以上であることがより好ましく、1.510以上であることがさらに好ましい。また、シクロオレフィン樹脂基材を含む光学フィルムの屈折率は、1.535以下であることが好ましく、1.525以下であることがより好ましく、1.515以下であることがさらに好ましい。これらの範囲であると、シクロオレフィン樹脂基材を含む光学フィルムの屈折率が適度な値となり易い。その結果、表示ムラがより低減する。25℃のnD:D線(589nm)での屈折率が上記範囲を満たすことが特に好ましい。屈折率は、多波長アッベ屈折計(商品名:DR-M2、株式会社アタゴ製)により測定することができる。なお、測定方法の詳細は実施例に記載する。 In one embodiment of the present invention, the refractive index of the optical film containing the cycloolefin resin substrate is not particularly limited, but is preferably 1.500 or more, more preferably 1.505 or more. It is more preferably 510 or more. Also, the refractive index of the optical film containing the cycloolefin resin substrate is preferably 1.535 or less, more preferably 1.525 or less, and even more preferably 1.515 or less. Within these ranges, the refractive index of the optical film containing the cycloolefin resin substrate tends to be a moderate value. As a result, display unevenness is further reduced. It is particularly preferred that the refractive index at the nD:D line (589 nm) at 25° C. satisfies the above range. The refractive index can be measured with a multi-wavelength Abbe refractometer (trade name: DR-M2, manufactured by Atago Co., Ltd.). Details of the measuring method are described in Examples.
 シクロオレフィン樹脂基材を含む光学フィルムの屈折率は、シクロオレフィン樹脂基材とは異なる屈折率を有する機能層を形成することで、その屈折率に応じて、シクロオレフィン樹脂基材を含む光学フィルムの屈折率を変化させることができる。 The refractive index of the optical film containing the cycloolefin resin substrate can be adjusted according to the refractive index by forming a functional layer having a refractive index different from that of the cycloolefin resin substrate. can change the refractive index of
 また、シクロオレフィン樹脂基材を含む光学フィルムの屈折率は、シクロオレフィン樹脂基材の処方、製造方法や、機能層を有する場合には機能層の処方や製造方法等によって制御することができる。例えば、シクロオレフィン樹脂基材のシクロオレフィン樹脂の原料や、機能層のベース樹脂の原料として、嵩高い構造を有する材料の使用またはその量の増加、屈折率の低い単量体の使用およびその量の増加によって、シクロオレフィン樹脂基材を含む光学フィルムの屈折率がより低くなる傾向がある。また、例えば、シクロオレフィン樹脂基材を溶液製膜で製造する場合には、溶融製膜で製造する場合と比較して、シクロオレフィン樹脂基材を含む光学フィルムの屈折率がより低くなる傾向がある。また、例えば、機能層の製造にて急速乾燥を行う場合には、緩慢乾燥を行う場合と比較して、シクロオレフィン樹脂基材を含む光学フィルムの屈折率がより低くなる傾向がある。これらの場合、シクロオレフィン樹脂基材や、機能層の樹脂密度が低下することで、シクロオレフィン樹脂基材を含む光学フィルムの屈折率がより低くなったと推測される。なお、屈折率をより高くする場合には、上記と反対のことを行えばよい。また、例えば、シクロオレフィン樹脂基材に、シクロオレフィン樹脂とは屈折率の異なる粒子を添加することで、その粒子の屈折率に応じて、シクロオレフィン樹脂基材を含む光学フィルムの屈折率を変化させることができる。また、例えば、機能層に、ベース樹脂とは屈折率の異なる粒子を添加することで、その粒子の屈折率に応じて、シクロオレフィン樹脂基材を含む光学フィルムの屈折率を変化させることができる。 In addition, the refractive index of an optical film containing a cycloolefin resin substrate can be controlled by the formulation and manufacturing method of the cycloolefin resin substrate, and by the formulation and manufacturing method of the functional layer when it has a functional layer. For example, as a raw material for the cycloolefin resin of the cycloolefin resin base material or as a raw material for the base resin of the functional layer, use of a material having a bulky structure or an increase in its amount, use of a monomer with a low refractive index and its amount increases, the refractive index of optical films containing cycloolefin resin substrates tends to be lower. Further, for example, when a cycloolefin resin substrate is produced by solution casting, the refractive index of the optical film containing the cycloolefin resin substrate tends to be lower than when produced by melt casting. be. Further, for example, when rapid drying is performed in the production of the functional layer, the refractive index of the optical film containing the cycloolefin resin substrate tends to be lower than when slow drying is performed. In these cases, it is presumed that the refractive index of the optical film containing the cycloolefin resin substrate was lowered due to the decrease in the resin density of the cycloolefin resin substrate and the functional layer. To increase the refractive index, the opposite of the above should be done. Further, for example, by adding particles having a refractive index different from that of the cycloolefin resin to the cycloolefin resin substrate, the refractive index of the optical film containing the cycloolefin resin substrate is changed according to the refractive index of the particles. can be made Further, for example, by adding particles having a refractive index different from that of the base resin to the functional layer, the refractive index of the optical film containing the cycloolefin resin substrate can be changed according to the refractive index of the particles. .
 ただし、シクロオレフィン樹脂基材を含む光学フィルムの屈折率の制御方向は、これらの方法に限定されるものではない。 However, the direction of controlling the refractive index of the optical film containing the cycloolefin resin substrate is not limited to these methods.
 なお、シクロオレフィン樹脂基材を含む光学フィルムが機能層を有する場合、光学散乱(表示ムラ)の観点から、機能層の屈折率は、基材層の屈折率に対して0.002~0.008低いことが好ましい。 When the optical film containing the cycloolefin resin base material has a functional layer, the refractive index of the functional layer should be 0.002 to 0.002 to 0.002 relative to the refractive index of the base material layer from the viewpoint of optical scattering (display unevenness). 008 low is preferred.
 本発明の一実施形態において、シクロオレフィン樹脂基材を含む光学フィルムのヘーズ(%)は、特に制限されないが、0.20%以上であることが好ましく、0.50%以上であることがより好ましく、0.55%以上であることがさらに好ましい。また、シクロオレフィン樹脂基材を含む光学フィルムのヘーズ(%)は、1.00%以下であることが好ましく、0.90%以下であることがより好ましく、0.85%以下であることがさらに好ましい。これらの範囲であると、表示ムラがより低減する。ヘーズは、ヘーズメーター(NDH4000、日本電色工業株式会社製)を用いて、JIS K 7136:2000に従い測定することができる。ここで、光学フィルムのうち、機能層(硬化層)を有するフィルムでは機能層側から測定した値を使用することが好ましい。なお、測定方法の詳細は実施例に記載する。 In one embodiment of the present invention, the haze (%) of the optical film containing the cycloolefin resin substrate is not particularly limited, but is preferably 0.20% or more, more preferably 0.50% or more. Preferably, it is more preferably 0.55% or more. Further, the haze (%) of the optical film containing the cycloolefin resin substrate is preferably 1.00% or less, more preferably 0.90% or less, and 0.85% or less. More preferred. Within these ranges, display unevenness is further reduced. Haze can be measured according to JIS K 7136:2000 using a haze meter (NDH4000, manufactured by Nippon Denshoku Industries Co., Ltd.). Here, among optical films, in the case of a film having a functional layer (cured layer), it is preferable to use the value measured from the functional layer side. Details of the measuring method are described in Examples.
 シクロオレフィン樹脂基材を含む光学フィルムのヘーズは、例えば、粒子の種類(粒子のサイズ、屈折率等)、粒子の添加量等によって制御することができる。より詳細には、例えば、シクロオレフィン樹脂と、粒子との屈折率を大きくすることや、シクロオレフィン樹脂との間で屈折率差のある粒子の添加量を増加させること等によって、光学フィルムのヘーズを増加させることができる。なお、光学フィルムのヘーズを低減させる場合には、上記と反対のことを行えばよい。 The haze of an optical film containing a cycloolefin resin substrate can be controlled by, for example, the type of particles (particle size, refractive index, etc.), the amount of particles added, and the like. More specifically, for example, by increasing the refractive index of the cycloolefin resin and the particles, or by increasing the amount of particles having a refractive index difference with the cycloolefin resin, the haze of the optical film is reduced. can be increased. In order to reduce the haze of the optical film, the opposite of the above may be performed.
 本発明の一実施形態において、シクロオレフィン樹脂基材を含む光学フィルムの変角光度は、特に制限されないが、0.7~11であることが好ましい。この範囲であると、表示ムラ、特に画面のざらつきとして認識される表示ムラおよび輝度ムラとして認識される表示ムラがより低減する。変角光度は、以下のように測定することができる。変角光度計(村上色彩技術研究所社製の品番GP-200、光束内傾斜角0.5度以内)に、サンプル(光学フィルム)をセットして、サンプル上の測定の基準とする位置について、サンプルの法線方向から80度傾いた可視光線をサンプルの表面に入射し(すなわち、サンプルの表面に対して法線方向側に10°傾斜した位置から可視光線をサンプルの表面に入射し)、入射光の正反射方向を基準角度の0度として、前記基準角度を中心とした±3.0度の範囲において、0.1度ごとに反射光の強度を測定する。なお、測定時において、受光絞りの目盛りは「6」、光束絞りの目盛りは「1」に合わせる。前記基準角度を中心とした-3.0度~-2.0度で得られた光量の積分値を算出し、変角光度を算出する。 In one embodiment of the present invention, the variable angle luminosity of the optical film containing the cycloolefin resin substrate is not particularly limited, but is preferably 0.7 to 11. Within this range, display unevenness, particularly display unevenness recognized as screen roughness and display unevenness recognized as luminance unevenness, is further reduced. Variable angle luminosity can be measured as follows. Set the sample (optical film) in a goniophotometer (product number GP-200 manufactured by Murakami Color Research Laboratory Co., Ltd., inclination angle within 0.5 degrees), and measure the position on the sample as a reference. , the visible ray is incident on the surface of the sample at an angle of 80 degrees from the normal direction of the sample (i.e., the visible ray is incident on the surface of the sample at a position inclined by 10 degrees to the normal direction with respect to the surface of the sample). The direction of specular reflection of incident light is defined as a reference angle of 0 degrees, and the intensity of reflected light is measured every 0.1 degrees within a range of ±3.0 degrees around the reference angle. At the time of measurement, the scale of the light receiving aperture is adjusted to "6" and the scale of the luminous flux aperture is adjusted to "1". The variable angle luminous intensity is calculated by calculating the integrated value of the light amount obtained at −3.0 degrees to −2.0 degrees centering on the reference angle.
 フィルムが遅相軸を有する場合、サンプル上の測定の基準とする位置について、遅相軸方向は2通りの方向が考えられる(反時計回りを正としたときに、遅相軸に対する0°方向および+180°方向)。ここで、シクロオレフィン樹脂基材を含む光学フィルムが遅相軸を有する場合、変角光度は、サンプル(光学フィルム)の遅相軸方向のいずれか一方に対して、サンプルの法線方向から80度傾いた可視光線をサンプルの表面に入射して測定した際に上記範囲内の値となることがより好ましい。また、変角光度は、サンプル(光学フィルム)の遅相軸方向の両方に対して、サンプルの法線方向から80度傾いた可視光線をサンプルの表面に入射して測定した際に、これらの値が共に上記範囲内の値となることがさらに好ましい。また、サンプル(光学フィルム)の遅相軸方向に対して、反時計回りを正として、サンプル面に沿って0°から+360°未満まで、45°おきに回転した方向の全てにおいて、サンプルの法線方向から80度傾いた可視光線をサンプルの表面に入射して測定した全ての値が上記範囲内の値となることが特に好ましい。 When the film has a slow axis, there are two possible slow axis directions for the position on the sample as a reference for measurement (when the counterclockwise direction is positive, the direction of 0° with respect to the slow axis and +180° directions). Here, when the optical film containing the cycloolefin resin substrate has a slow axis, the variable angle luminous intensity is 80 degrees from the normal direction of the sample (optical film) with respect to either one of the slow axis directions of the sample (optical film). It is more preferable that the value falls within the above range when the oblique visible light is incident on the surface of the sample and measured. In addition, the variable angle luminous intensity is measured when a visible ray inclined 80 degrees from the normal direction of the sample (optical film) with respect to both slow axis directions of the sample (optical film) is incident on the surface of the sample. It is more preferable that both values are within the above range. In addition, with respect to the slow axis direction of the sample (optical film), the counterclockwise rotation is positive, and from 0° to less than +360° along the sample surface, in all directions rotated at intervals of 45° It is particularly preferred that all the values measured by illuminating the surface of the sample with visible light inclined 80 degrees from the line direction fall within the above range.
 (シクロオレフィン樹脂基材を含む光学フィルムの製造方法)
 本発明の一実施形態において、シクロオレフィン樹脂基材を含む光学フィルムの製造方法は、特に制限されず、公知の方法を使用することができる。例えば、塗布法、溶液製膜法、メルト製膜法(溶融製膜法)、気相成膜法等が挙げられ、これらを組み合わせて用いてもよい。
(Method for producing optical film containing cycloolefin resin substrate)
In one embodiment of the present invention, a method for producing an optical film containing a cycloolefin resin substrate is not particularly limited, and known methods can be used. Examples thereof include a coating method, a solution film forming method, a melt film forming method (melt film forming method), a vapor phase film forming method, and the like, and these may be used in combination.
 シクロオレフィン樹脂基材は、特に制限されないが、メルト製膜法または溶液製膜法によって製造されることが好ましく、メルト製膜法によって製造されることがより好ましい。これらの製造方法においては、製膜中または製膜後に、必要に応じて延伸を行ってもよい。 Although the cycloolefin resin substrate is not particularly limited, it is preferably produced by a melt film-forming method or a solution film-forming method, more preferably by a melt film-forming method. In these production methods, the film may be stretched during or after film formation, if necessary.
 メルト製膜法としては、特に制限されないが、例えば、溶融流延法(溶融押出法)、プレス成型法、インフレーション成型法、射出成型法、ブロー成型法、延伸成型法等が挙げられる。これらの中でも、溶融流延法、すなわちシクロオレフィン樹脂と、必要に応じて添加されうる他の成分とを含む樹脂組成物を、加熱溶融して基体上に流延し、冷却固化してフィルムを形成する方法が好ましい。メルト製膜法については、公知の方法を適宜採用することができる。例えば、特許第5509515号公報の段落「0111」~「0116」に記載の方法や、特開2016-153839号公報の段落「0224」~「0230」等に記載の方法等を、適宜変更を加えて上で採用することができる。ただし、適用しうるメルト製膜法はこれらに限定されるものではない。 The melt film forming method is not particularly limited, but includes, for example, a melt casting method (melt extrusion method), a press molding method, an inflation molding method, an injection molding method, a blow molding method, and a stretch molding method. Among these, a melt casting method, that is, a resin composition containing a cycloolefin resin and optionally other components, is melted by heating and cast onto a substrate, cooled and solidified to form a film. A method of forming is preferred. As for the melt film-forming method, a known method can be appropriately employed. For example, the method described in paragraphs "0111" to "0116" of Japanese Patent No. 5509515, the method described in paragraphs "0224" to "0230" of JP-A-2016-153839, etc., with appropriate modifications. can be employed on However, applicable melt film-forming methods are not limited to these.
 本発明の一実施形態において、溶融流延法では、溶融前のペレットを乾燥することが好ましい。乾燥温度としては、特に制限されないが、例えば、80~120℃とすることができる。また、乾燥時間としては、特に制限されないが、例えば、2~12時間とすることができる。 In one embodiment of the present invention, it is preferable to dry the pellets before melting in the melt casting method. Although the drying temperature is not particularly limited, it can be, for example, 80 to 120°C. Also, the drying time is not particularly limited, but can be, for example, 2 to 12 hours.
 溶融流延法における溶融温度は、特に制限されないが、使用するシクロオレフィン樹脂の溶融温度以上であることが好ましく、220℃以上であることが好ましい。また、溶融流延における溶融温度は、フィルムの透明性の観点から、350℃以下であることが好ましい。 Although the melting temperature in the melt casting method is not particularly limited, it is preferably at least the melting temperature of the cycloolefin resin used, preferably at least 220°C. Moreover, the melting temperature in the melt casting is preferably 350° C. or less from the viewpoint of transparency of the film.
 本発明の一実施形態において、溶融流延法で使用する製造装置は、特に制限されず、公知の溶融流延法に使用される製造装置を使用することができる。例えば、単軸の押出し機、ポリマーパイプ、ポリマーフィルター、Tダイ、キャスティングドラム等が挙げられるが、これらに限定されるものではない。 In one embodiment of the present invention, the production equipment used in the melt casting method is not particularly limited, and known production equipment used in the melt casting method can be used. Examples include, but are not limited to, single-screw extruders, polymer pipes, polymer filters, T-dies, casting drums, and the like.
 溶液製膜法としては、特に制限されないが、例えば、溶液流延法が挙げられる。例えば、1)シクロオレフィン樹脂と、必要に応じて添加されうる他の成分と、溶媒とを含むドープを得る工程と、2)得られたドープを金属支持体上に流延し、乾燥し、当該支持体上から剥離して膜状物を得る工程と、3)剥離後の膜状物をさらに乾燥する工程とを含む方法等が挙げられる。なお、前記方法では、他の工程をさらに有していてもよい。 The solution casting method is not particularly limited, but includes, for example, the solution casting method. For example, 1) obtaining a dope containing a cycloolefin resin, other optional ingredients, and a solvent; 2) casting the obtained dope on a metal support and drying; Examples include a method including a step of peeling off from the support to obtain a film-like material, and 3) a step of further drying the peeled film-like material. Note that the method may further include other steps.
 1)の工程について
 シクロオレフィン樹脂と、必要に応じて添加されうる他の成分とを溶媒に溶解させて、ドープを調製する。溶媒との混合は、常温で行っていてもよく、加熱環境下で行っていてもよく、冷却環境下でおこなっていてもよい。加熱温度や冷却温度は、シクロオレフィン樹脂を溶解することができる温度であれば特に制限されない。ドープに用いられる溶媒は、少なくとも、シクロオレフィン樹脂を溶解させうる有機溶媒(良溶媒)を含む。良溶媒の例には、メチレンクロライドなどの塩素系有機溶媒;酢酸メチル、酢酸エチル、アセトン、テトラヒドロフランなどの非塩素系有機溶媒が含まれる。中でも、メチレンクロライドが好ましい。ドープに用いられる溶媒は、貧溶媒をさらに含んでいてもよい。貧溶媒の例には、炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールが含まれる。ドープ中のアルコールの比率が高くなると、膜状物がゲル化しやすく、金属支持体からの剥離が容易になりやすい。炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらのうちドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。これらの溶媒は、1種単独で使用する、または2種以上を任意の比率で併用することができる。
Regarding Step 1) A dope is prepared by dissolving a cycloolefin resin and other components that may be added as necessary in a solvent. Mixing with the solvent may be carried out at room temperature, in a heated environment, or in a cooled environment. The heating temperature and cooling temperature are not particularly limited as long as they are temperatures capable of dissolving the cycloolefin resin. The solvent used for the dope contains at least an organic solvent (good solvent) capable of dissolving the cycloolefin resin. Examples of good solvents include chlorinated organic solvents such as methylene chloride; and non-chlorinated organic solvents such as methyl acetate, ethyl acetate, acetone and tetrahydrofuran. Among them, methylene chloride is preferred. The solvent used for the dope may further contain a poor solvent. Examples of poor solvents include straight or branched chain aliphatic alcohols having 1 to 4 carbon atoms. When the ratio of alcohol in the dope becomes high, the film-like material tends to gel and is easily peeled off from the metal support. Linear or branched aliphatic alcohols having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol and tert-butanol. Of these, ethanol is preferred because of its dope stability, relatively low boiling point, and good drying properties. These solvents can be used singly or in combination of two or more at any ratio.
 ドープ中に含まれる溶媒の含有割合は、特に制限されないが、ドープの総質量に対して50質量%以上であることがより好ましく、60質量%以上であることがさらに好ましい。また、ドープ中に含まれる溶媒の含有割合は、95質量%以下であることが好ましく、85質量%以下であることがさらに好ましく、80質量%以下であることが特に好ましい。溶媒成分の含有割合は、フィルムの生産条件、作製するフィルムの膜厚等の観点から適宜調整可能である。 Although the content of the solvent contained in the dope is not particularly limited, it is more preferably 50% by mass or more, more preferably 60% by mass or more, relative to the total mass of the dope. The content of the solvent in the dope is preferably 95% by mass or less, more preferably 85% by mass or less, and particularly preferably 80% by mass or less. The content of the solvent component can be appropriately adjusted from the viewpoint of film production conditions, thickness of the film to be produced, and the like.
 ドープの調製後、濾過を行うことが好ましい。 It is preferable to perform filtration after preparing the dope.
 2)の工程について
 得られたドープを、金属支持体上に流延する。ドープの流延は、流延ダイから吐出させて行うことができる。次いで、金属支持体上に流延されたドープ中の溶媒を蒸発させ、乾燥させる。乾燥されたドープを金属支持体から剥離して、膜状物を得る。金属支持体から剥離する際のドープの残留溶媒量(剥離時の残留溶媒量)は、10~150質量%であることが好ましく、20~40質量%であることがより好ましい。ドープの残留溶媒量は、下記式で定義される。以下においても同様である:
 ドープの残留溶媒量(質量%)=(ドープの加熱処理前質量-ドープの加熱処理後質量)/ドープの加熱処理後質量×100
 なお、残留溶媒量を測定する際の加熱処理とは、120℃60分の加熱処理をいう。
About the process of 2) The obtained dope is cast on a metal support. Casting of the dope can be performed by discharging from a casting die. The solvent in the dope cast on the metal support is then evaporated and dried. The dried dope is peeled off from the metal support to obtain a film. The residual solvent amount of the dope when peeled from the metal support (residual solvent amount at peeling) is preferably 10 to 150% by mass, more preferably 20 to 40% by mass. The amount of residual solvent in the dope is defined by the following formula. Similarly for:
Amount of residual solvent in dope (% by mass)=(mass of dope before heat treatment−mass of dope after heat treatment)/mass of dope after heat treatment×100
Note that the heat treatment for measuring the amount of residual solvent means heat treatment at 120° C. for 60 minutes.
 3)の工程について
 得られた膜状物をさらに乾燥する。乾燥温度は、特に制限されないが、例えば、シクロオレフィン樹脂のガラス転移温度をTgとしたとき、(Tg-65)℃~(Tg+60)℃であることが好ましく、(Tg-50)℃~(Tg+50)℃であることがより好ましく、(Tg-30)℃~(Tg+50)℃であることがさらに好ましい。乾燥温度の具体例としては、特に制限されないが、例えば、100℃以上であることが好ましく、120℃以上であることがより好ましい。また、延伸温度としては、220℃以下であることが好ましく、200℃以下であることがより好ましく、180℃以下であることがさらに好ましい。乾燥開始時の膜状物中の残留溶媒量は、2~50質量%であることが好ましい。
About the process of 3) The obtained film-like material is further dried. The drying temperature is not particularly limited. )°C, and more preferably (Tg-30)°C to (Tg+50)°C. A specific example of the drying temperature is not particularly limited, but is preferably 100° C. or higher, more preferably 120° C. or higher. The stretching temperature is preferably 220° C. or lower, more preferably 200° C. or lower, and even more preferably 180° C. or lower. The amount of residual solvent in the film-like material at the start of drying is preferably 2 to 50% by mass.
 膜状物は、搬送しながら乾燥することが好ましい。乾燥と同時に膜状物の延伸を行ってもよい。延伸方法および延伸条件については、後述するシクロオレフィン樹脂基材を含む光学フィルムの製造における延伸処理の説明と同様である。溶液流延法において、乾燥と同時に膜状物の延伸を行う場合、膜状物のMD方向(搬送方向)の延伸は、例えば複数のロールに周速差をつけ、その間でロール周速差を利用する方法(ロール法)で行うことが好ましい。膜状物のTD方向(搬送方向と直交する方法)の延伸は、例えば膜状物の両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げる方法(テンター法)で行うことが好ましい。 It is preferable to dry the film while transporting it. The film-like material may be stretched at the same time as drying. The stretching method and stretching conditions are the same as those described later for the stretching treatment in the production of the optical film containing the cycloolefin resin substrate. In the solution casting method, when the film is stretched at the same time as the drying, the film is stretched in the MD direction (conveyance direction), for example, by giving a plurality of rolls different circumferential speeds, and the rolls having different circumferential speeds between them. It is preferable to carry out by the method to be used (roll method). Stretching of the film in the TD direction (a method perpendicular to the conveying direction) can be performed, for example, by fixing both ends of the film with clips or pins and widening the distance between the clips or pins in the traveling direction (tenter method). is preferred.
 本発明の一実施形態において、光学フィルムが上記のシクロオレフィン樹脂基材に加えて、さらに機能層を有する場合、シクロオレフィン樹脂基材を含む光学フィルムの製造方法は、シクロオレフィン樹脂基材またはその原反フィルム上に機能層を形成する工程を含む方法であることが好ましい。 In one embodiment of the present invention, when the optical film has a functional layer in addition to the above cycloolefin resin substrate, the method for producing the optical film containing the cycloolefin resin substrate comprises the cycloolefin resin substrate or the The method preferably includes a step of forming a functional layer on the raw film.
 なお、「シクロオレフィン樹脂基材の原反フィルム」とは、特定条件での延伸後に得られるシクロオレフィン樹脂基材の、当該延伸前の状態のフィルムを表す。なお、原反フィルムは、その後さらに延伸が行われるものであれば、既に延伸されたものであってもよい。 The "raw film of the cycloolefin resin substrate" refers to the film of the cycloolefin resin substrate obtained after stretching under specific conditions, before the stretching. The original film may be already stretched as long as it is further stretched thereafter.
 シクロオレフィン樹脂基材またはその原反フィルムの機能層が形成される面には、シクロオレフィン樹脂基材と、機能層との接着性を向上させるため、表面改質処理が施されることが好ましい。表面改質処理としては、特に制限されず、公知の表面改質処理を使用することができる。例えば、活性エネルギー線照射処理および薬品処理等が挙げられる。活性エネルギー線照射処理としては、例えば、コロナ放電処理、プラズマ処理、電子線照射処理、紫外線照射処理等が挙げられる。また、薬品処理としては、例えば、ケン化処理や、重クロム酸カリウム溶液および濃硫酸等の酸化剤水溶液中にフィルムを浸漬し、その後、水で洗浄する処理等が挙げられる。これらの表面改質処理方法としては、特開2016-79210号公報の段落「0125」~「0139」に記載の方法等を、必要に応じて適宜変更を加えて上で採用することができる。ただし、適用しうる表面改質処理方法はこれらに限定されるものではない。これらの中でも、処理効率の点等から、活性エネルギー線照射処理が好ましく、コロナ放電処理またはプラズマ処理がより好ましく、コロナ放電処理がさらに好ましい。これらの表面改質処理は、1種単独で使用する、または2種以上を併用することができる。 It is preferable that the surface of the cycloolefin resin substrate or raw film thereof on which the functional layer is to be formed is subjected to a surface modification treatment in order to improve the adhesion between the cycloolefin resin substrate and the functional layer. . The surface modification treatment is not particularly limited, and known surface modification treatments can be used. Examples include active energy ray irradiation treatment and chemical treatment. Examples of the active energy ray irradiation treatment include corona discharge treatment, plasma treatment, electron beam irradiation treatment, ultraviolet irradiation treatment and the like. The chemical treatment includes, for example, a saponification treatment, a treatment in which the film is immersed in an oxidizing agent aqueous solution such as a potassium dichromate solution and concentrated sulfuric acid, and then washed with water. As these surface modification treatment methods, the methods described in paragraphs "0125" to "0139" of Japanese Patent Laid-Open No. 2016-79210 can be employed with appropriate modifications as necessary. However, applicable surface modification treatment methods are not limited to these. Among these, active energy ray irradiation treatment is preferable, corona discharge treatment or plasma treatment is more preferable, and corona discharge treatment is still more preferable, from the viewpoint of treatment efficiency. These surface modification treatments can be used singly or in combination of two or more.
 コロナ放電処理の出力は、特に制限されないが、0.02kW以上であることが好ましく、0.04kW以上であることがより好ましい。また、コロナ放電処理の出力は、5kW以下であることが好ましく、2kW以下であることがより好ましい。また、コロナ放電処理に用いる電極長は、特に制限されない。そして、コロナ放電処理は搬送しながら行うことが好ましい。コロナ放電処理の搬送速度は、特に制限されない。 Although the output of the corona discharge treatment is not particularly limited, it is preferably 0.02 kW or more, more preferably 0.04 kW or more. The output of the corona discharge treatment is preferably 5 kW or less, more preferably 2 kW or less. Moreover, the electrode length used for corona discharge treatment is not particularly limited. And it is preferable to carry out the corona discharge treatment while transporting. The conveying speed for corona discharge treatment is not particularly limited.
 コロナ放電処理装置(コロナ処理装置)は、特に制限されないが、例えば、公知のものを使用することができる。 Although the corona discharge treatment device (corona treatment device) is not particularly limited, for example, a known device can be used.
 機能層の形成方法は、特に制限されないが、塗布法によって形成されることが好ましい。塗布法としては、特に制限されず公知の方法を使用することができる。例えば、ワイヤーバーコート法、ディップ法、スプレー法、スピンコート法、ロールコート法、グラビアコート法、エアーナイフコート法、カーテンコート法、スライドコート法、エクストルージョンコート法、ダイコート法等が挙げられる。 Although the method for forming the functional layer is not particularly limited, it is preferably formed by a coating method. The coating method is not particularly limited, and known methods can be used. Examples thereof include wire bar coating, dipping, spraying, spin coating, roll coating, gravure coating, air knife coating, curtain coating, slide coating, extrusion coating and die coating.
 機能層形成用塗布液は、必要に応じて添加されうるベース樹脂や、必要に応じて添加されうるその他の成分に加えて、溶媒をさらに含んでいてもよい。溶媒としては、例えば、水または有機溶剤を用いることができる。有機溶剤としては、特に制限されないが、例えば、メタノール、エタノール、イソプロピルアルコール、アセトン、テトラヒドロフラン、N-メチルピロリドン、ジメチルスルホキシド、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジクロロメタン、メチルエチルケトン、シクロヘキサノン等が挙げられる。水または有機溶剤溶媒は、1種単独で使用する、または2種以上を任意の比率で併用することができる。 The coating liquid for forming the functional layer may further contain a solvent in addition to the base resin that may be added as required and other components that may be added as required. As a solvent, for example, water or an organic solvent can be used. Examples of organic solvents include, but are not limited to, methanol, ethanol, isopropyl alcohol, acetone, tetrahydrofuran, N-methylpyrrolidone, dimethylsulfoxide, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, dichloromethane, methyl ethyl ketone, cyclohexanone, and the like. . Water or an organic solvent can be used singly, or two or more of them can be used in combination at any ratio.
 機能層形成用塗布液の固形分濃度は、特に制限されないが、機能層形成用塗布液の総質量に対して、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましい。また、機能層形成用塗布液の固形分濃度は、機能層形成用塗布液の総質量に対して、15質量%以下であることが好ましく、10質量%以下であることがより好ましい。これらの範囲であると、塗布液の取り扱い性および塗布性がより向上する。 The solid content concentration of the functional layer-forming coating liquid is not particularly limited, but is preferably 0.5% by mass or more, and preferably 1% by mass or more, relative to the total mass of the functional layer-forming coating liquid. more preferred. The solid content concentration of the functional layer-forming coating liquid is preferably 15% by mass or less, more preferably 10% by mass or less, relative to the total mass of the functional layer-forming coating liquid. Within these ranges, the handleability and coating properties of the coating liquid are further improved.
 機能層を塗布法で形成する場合、シクロオレフィン樹脂基材を含む光学フィルムの製造方法は、シクロオレフィン樹脂基材またはその原反フィルムの少なくとも一方の面上に、機能層形成塗布液を塗布して、機能層塗布液の層を形成する工程を含むことが好ましい。当該工程は、機能層形成用塗布液に含まれる溶媒を乾燥させることを含むことが好ましい。なお、機能層が硬化層である場合には、塗布液に含まれる溶媒を乾燥させ、硬化反応を進行させることが好ましい。また、この際、乾燥と硬化とを同時に進行させてもよい。そして、この際、乾燥および硬化に加えて、後述する延伸を同時に進行させてもよい。なお、機能層形成用塗布液の乾燥、硬化または延伸の際に、加熱を行うことが好ましい。 When the functional layer is formed by a coating method, the method for producing an optical film containing a cycloolefin resin substrate comprises coating a functional layer forming coating liquid on at least one surface of the cycloolefin resin substrate or the original film thereof. and forming a layer of the functional layer coating liquid. The step preferably includes drying the solvent contained in the coating liquid for forming the functional layer. When the functional layer is a hardened layer, it is preferable to dry the solvent contained in the coating liquid and allow the hardening reaction to proceed. Also, at this time, drying and curing may proceed at the same time. At this time, in addition to drying and curing, stretching, which will be described later, may proceed at the same time. In addition, it is preferable to heat when drying, curing, or stretching the coating liquid for forming the functional layer.
 加熱温度および加熱時間は、所望の処理や反応が進行しうる範囲を適切に設定しうる。加熱温度としては、特に制限されないが、例えば、40~150℃であることが好ましく、60℃~130℃であることがより好ましい。加熱時間は、目的とする乾燥または効果が可能な時間であれば特に制限されない。 The heating temperature and heating time can be appropriately set within a range in which the desired treatment and reaction can proceed. Although the heating temperature is not particularly limited, it is preferably 40 to 150°C, more preferably 60 to 130°C. The heating time is not particularly limited as long as the desired drying or effect is possible.
 機能層の乾燥条件は、特に制限されないが、屈折率の制御の観点から、屈折率を増加させたい場合には、低い乾燥速度での乾燥である緩慢乾燥を行うことが好ましく、屈折率を減少させたい場合には、高い乾燥速度での乾燥である急速乾燥を行うことが好ましい。本明細書において、「緩慢乾燥」とは0.2g/m・s以下の乾燥速度で乾燥することを表す。また、「急速乾燥」とは、0.8~4.8g/m・sの乾燥速度で乾燥することを表す。 The drying conditions for the functional layer are not particularly limited, but from the viewpoint of controlling the refractive index, if it is desired to increase the refractive index, it is preferable to perform slow drying, which is drying at a low drying speed, to decrease the refractive index. If desired, it is preferable to perform rapid drying, which is drying at a high drying speed. As used herein, “slow drying” means drying at a drying rate of 0.2 g/m 2 ·s or less. Also, "rapid drying" means drying at a drying speed of 0.8 to 4.8 g/m 2 ·s.
 乾燥速度の算出は、搬送される支持体上の塗工液の膜厚を測定し、その膜厚の変化から塗工液中の溶剤の揮発量を算出し(具体的には式:{膜厚変化[μm]×比重[-]}/膜厚変化所要時間(s),1μm厚みは密度1000kg/mの場合に1g/mに相当)、単位時間における単位面積あたりの溶剤の揮発量(g/m・s)を算出し、この値を乾燥速度とすることで求めることができる。 The drying speed is calculated by measuring the film thickness of the coating liquid on the transported support and calculating the volatilization amount of the solvent in the coating liquid from the change in the film thickness (specifically, the formula: {film Thickness change [μm]×specific gravity [−]}/Time required for film thickness change (s), 1 μm thickness is equivalent to 1 g/m 2 at a density of 1000 kg/m 3 ), volatilization of solvent per unit area per unit time It can be obtained by calculating the amount (g/m 2 ·s) and using this value as the drying speed.
 乾燥は、特に限定されないが、乾燥風、電熱ヒーター、赤外ヒーター、加熱ロール等を用いて行うことができる。これらの中でも乾燥風が好ましい。また、乾燥設備は、特に制限されないが、乾燥風の給排気のための給気孔と、排気孔とを有していることが好ましい。 Drying is not particularly limited, but can be performed using dry air, an electric heater, an infrared heater, a heating roll, or the like. Among these, dry air is preferred. In addition, although the drying equipment is not particularly limited, it is preferable to have an air supply hole for supplying and exhausting dry air and an exhaust hole.
 機能層が硬化層である場合、機能層の硬化は活性エネルギー線照射によって行うことが好ましい。活性エネルギー線としては、特に制限されないが、紫外線が好ましい。紫外線照射装置の出力は、特に制限されないが、例えば、100~300Wとすることができる。また、紫外線の照射量は、特に制限されない。例えば、100~2000mJ/cmとすることもできる。紫外線照射装置としては、特に制限されず公知の装置を使用することができる。例えば、空冷メタルハライドランプ(アイグラフィックス株式会社製)等が挙げられる。また、活性エネルギー線照射(好ましくは紫外線照射)の照射環境は、特に制限されないが、窒素等の不活性ガスパージ下で行うことが好ましく、窒素パージ下であることがより好ましい。 When the functional layer is a cured layer, it is preferable to cure the functional layer by irradiation with active energy rays. The active energy ray is not particularly limited, but ultraviolet rays are preferable. The output of the ultraviolet irradiation device is not particularly limited, but can be, for example, 100 to 300W. Moreover, the irradiation amount of ultraviolet rays is not particularly limited. For example, it can be 100 to 2000 mJ/cm 2 . The ultraviolet irradiation device is not particularly limited, and a known device can be used. For example, an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) and the like can be mentioned. The irradiation environment for active energy ray irradiation (preferably ultraviolet irradiation) is not particularly limited, but it is preferably performed under an inert gas purge such as nitrogen, and more preferably under a nitrogen purge.
 シクロオレフィン樹脂基材を含む光学フィルムの製造において、原反フィルムを延伸して、シクロオレフィン樹脂基材を得る工程を設けることが好ましい。延伸は、原反フィルム単体の状態で行っていてもよく、原反フィルム上に機能層形成用塗布液の層、または機能層が形成された状態で行っていてもよい。 In the production of an optical film containing a cycloolefin resin substrate, it is preferable to provide a step of stretching the original film to obtain the cycloolefin resin substrate. The raw film may be stretched in a single state, or may be stretched in a state where a functional layer-forming coating liquid layer or a functional layer is formed on the raw film.
 シクロオレフィン樹脂基材を含む光学フィルムの製造方法の好ましい一実施形態としては、(A):(A-1)機能層形成用塗布液の層をシクロオレフィン樹脂基材の原反フィルムの少なくとも一方の面に形成する工程と、(A-2)前記原反フィルムを延伸して、シクロオレフィン樹脂基材を得る工程と、(A-3)前記塗布液の層を乾燥させて、(必要に応じてさらに硬化させて、)機能層(例えば、硬化層)を得る工程とを含む、製造方法等が挙げられる。上記の(A-2)の工程と、上記の(A-3)の工程とは、いずれの工程を先に行ってもよく、両工程を同時に行ってもよい。 As a preferred embodiment of the method for producing an optical film containing a cycloolefin resin substrate, (A): (A-1) a layer of a coating liquid for forming a functional layer is formed on at least one raw film of a cycloolefin resin substrate. (A-2) stretching the raw film to obtain a cycloolefin resin base material; (A-3) drying the layer of the coating liquid, (if necessary Further curing as necessary to obtain a functional layer (for example, a cured layer). Either the above step (A-2) or the above step (A-3) may be performed first, or both steps may be performed simultaneously.
 また、シクロオレフィン樹脂基材を含む光学フィルムの製造方法の他の好ましい一実施形態としては、(B):(B-1)原反フィルムを延伸して、シクロオレフィン樹脂基材を得る工程と、(B-2)機能層形成用塗布液の層をシクロオレフィン樹脂基材の少なくとも一方の面に形成する工程と、(B-3)前記塗布液の層を乾燥させて、(必要に応じてさらに硬化させて、)機能層(例えば、硬化層)を得る工程とを含む、製造方法等が挙げられる。 Further, as another preferred embodiment of the method for producing an optical film containing a cycloolefin resin substrate, (B): (B-1) a step of stretching a raw film to obtain a cycloolefin resin substrate; , (B-2) forming a layer of the coating liquid for forming the functional layer on at least one surface of the cycloolefin resin substrate; and (B-3) drying the layer of the coating liquid, (if necessary and a step of obtaining a functional layer (for example, a cured layer) by further curing with a heat source.
 シクロオレフィン樹脂基材を含む光学フィルムの製造において、延伸処理を行う場合、延伸方法としては、特に制限されない。例えば、ロール間の周速の差を利用して長手方向に一軸延伸する方法(縦一軸延伸);テンターを用いて幅方向に一軸延伸する方法(横一軸延伸);縦一軸延伸と横一軸延伸とを順に行う方法(逐次二軸延伸);縦延伸と横延伸を同時に行う方法(同時二軸延伸);延伸前フィルムの長手方向に対して斜め方向に延伸する方法(斜め延伸);等が挙げられる。ここで「斜め方向」とは、平行でもなく、垂直でもない方向を意味する。 In the production of an optical film containing a cycloolefin resin base material, when stretching is performed, the stretching method is not particularly limited. For example, a method of uniaxially stretching in the longitudinal direction using a difference in peripheral speed between rolls (longitudinal uniaxial stretching); a method of uniaxially stretching in the width direction using a tenter (horizontal uniaxial stretching); longitudinal uniaxial stretching and lateral uniaxial stretching. and in order (sequential biaxial stretching); a method of simultaneously performing longitudinal stretching and transverse stretching (simultaneous biaxial stretching); a method of stretching in an oblique direction with respect to the longitudinal direction of the film before stretching (diagonal stretching); mentioned. As used herein, "diagonal" means a direction that is neither parallel nor perpendicular.
 シクロオレフィン樹脂基材を含む光学フィルムの製造において、延伸処理を行う場合、延伸倍率としては、特に制限されないが、1.01倍以上であることが好ましく、1.5倍以上であることがより好ましく、1.7倍以上であることがさらに好ましく、2.0倍以上であることが特に好ましい。また、延伸倍率としては、10.0倍以下であることが好ましく、7.0倍以下であることがより好ましく、5.0倍以下であることがさらに好ましい。なお、膜状物を乾燥しながら延伸する場合、延伸倍率としては、特に制限されないが、1.01倍以上であることが好ましく、1.1倍以上であることがより好ましく、1.2倍以上であることがさらに好ましい。また、この場合、延伸倍率としては、1.5倍以下であることが好ましく、1.4倍以下であることがより好ましく、1.3倍以下であることがさらに好ましい。ここで、延伸を2回以上の工程で行う場合には、各工程における延伸倍率の積が、前記の範囲に収まることが好ましい。 In the production of an optical film containing a cycloolefin resin base material, when stretching is performed, the stretching ratio is not particularly limited, but is preferably 1.01 times or more, more preferably 1.5 times or more. It is preferably 1.7 times or more, more preferably 2.0 times or more. The draw ratio is preferably 10.0 times or less, more preferably 7.0 times or less, and even more preferably 5.0 times or less. When stretching the film while drying, the stretching ratio is not particularly limited, but is preferably 1.01 times or more, more preferably 1.1 times or more, and 1.2 times. It is more preferable that it is above. In this case, the draw ratio is preferably 1.5 times or less, more preferably 1.4 times or less, and even more preferably 1.3 times or less. Here, when stretching is performed in two or more steps, the product of the draw ratios in each step is preferably within the above range.
 シクロオレフィン樹脂基材を含む光学フィルムの製造において、延伸処理を行う場合、延伸温度としては、特に制限されないが、例えば、100℃以上であることが好ましく、120℃以上であることがより好ましい。また、延伸温度としては、220℃以下であることが好ましく、200℃以下であることがより好ましく、180℃以下であることがさらに好ましい。また、上記の乾燥、硬化と、延伸とを同時に行う場合には、延伸温度としては、150℃以下であることが好ましく、130℃以下であることがより好ましい。 In the production of an optical film containing a cycloolefin resin base material, when stretching is performed, the stretching temperature is not particularly limited, but is preferably 100°C or higher, more preferably 120°C or higher. The stretching temperature is preferably 220° C. or lower, more preferably 200° C. or lower, and even more preferably 180° C. or lower. When drying, curing, and stretching are performed simultaneously, the stretching temperature is preferably 150° C. or lower, more preferably 130° C. or lower.
 シクロオレフィン樹脂基材を含む光学フィルムの製造効率を高める観点では、当該光学フィルムを長尺のフィルムとして製造することが好ましい。 From the viewpoint of increasing the production efficiency of an optical film containing a cycloolefin resin substrate, it is preferable to produce the optical film as a long film.
 (他の光学フィルム)
 本発明の一実施形態に係る表示装置に含まれる偏光板の少なくとも1つにおいて、シクロオレフィン樹脂を含有する基材を含む光学フィルムが偏光子の一方の面上にのみに配置されている場合、偏光子の他方の面上には、他の光学フィルムが配置されてもよい。
(Other optical films)
In at least one of the polarizing plates included in the display device according to an embodiment of the present invention, when an optical film containing a base material containing a cycloolefin resin is arranged only on one surface of the polarizer, Another optical film may be placed on the other side of the polarizer.
 また、本発明の一実施形態に係る表示装置において、シクロオレフィン樹脂を含有する基材を含む光学フィルムを有さない偏光板をさらに使用する場合、当該偏光板の一方または両方の面上には、他の光学フィルムが配置されてもよい。他の光学フィルムとしては、特に制限されず、公知の光学フィルムを使用することができる。 In addition, in the display device according to one embodiment of the present invention, when a polarizing plate that does not have an optical film containing a substrate containing a cycloolefin resin is further used, one or both surfaces of the polarizing plate have , other optical films may be placed. Other optical films are not particularly limited, and known optical films can be used.
 他の光学フィルムは、樹脂フィルムを含むことが好ましい。樹脂フィルムとしては、特に制限されないが、例えば、セルロースエステルフィルム、アクリルフィルム、ポリカーボネートフィルム等が挙げられる。これらの中でも、セルロースエステルフィルムであることが好ましい。市販のセルロースエステルフィルムとしては、特に制限されないが、例えば、コニカミノルタタックKC8UX、KC5UX、KC4UX、KC8UCR3、KC4SR、KC4BR、KC4CR、KC4DR、KC4FR、KC4KR、KC8UY、KC6UY、KC4UY、KC4UE、KC8UE、KC8UY-HA、KC2UA、KC4UA、KC6UAKC、2UAH、KC4UAH、KC6UAH(以上、コニカミノルタ株式会社製)やFUJITAC(フジタック)(登録商標)T40UZ、T60UZ、T80UZ、TD80UL、TD60UL、TD40UL、R02、R06(以上、富士フイルム株式会社製)等が挙げられる。 The other optical film preferably contains a resin film. Examples of resin films include, but are not limited to, cellulose ester films, acrylic films, and polycarbonate films. Among these, a cellulose ester film is preferred. Commercially available cellulose ester films include, but are not limited to, Konica Minolta Tack KC8UX, KC5UX, KC4UX, KC8UCR3, KC4SR, KC4BR, KC4CR, KC4DR, KC4FR, KC4KR, KC8UY, KC6UY, KC4UY, KC4UE, KC8UE, KC8UY- HA, KC2UA, KC4UA, KC6UAKC, 2UAH, KC4UAH, KC6UAH (manufactured by Konica Minolta Co., Ltd.) and FUJITAC (registered trademark) T40UZ, T60UZ, T80UZ, TD80UL, TD60UL, TD40UL, R02, R06 (Fuji Film Co., Ltd.) and the like.
 樹脂フィルムの厚さは、特に制限されないが、5μm以上であることが好ましく、10μm以上であることがより好ましく、20μm以上であることがさらに好ましい。これらの範囲であると、偏光子の保護機能がより向上する。また、樹脂フィルムの厚さは、特に制限されないが、100μm以下であることが好ましく、80μm以下であることがより好ましく、60μm以下であることがさらに好ましい。これらの範囲であると、偏光板のさらなる薄膜化が可能となる。 Although the thickness of the resin film is not particularly limited, it is preferably 5 μm or more, more preferably 10 μm or more, and even more preferably 20 μm or more. Within these ranges, the protective function of the polarizer is further improved. Although the thickness of the resin film is not particularly limited, it is preferably 100 μm or less, more preferably 80 μm or less, and even more preferably 60 μm or less. Within these ranges, the thickness of the polarizing plate can be further reduced.
 他の光学フィルムは、上記の樹脂フィルムに加えて、機能層をさらに含んでいてもよい。機能層としては、特に制限されず、光学用途で使用される機能層が挙げられる。 Other optical films may further include a functional layer in addition to the above resin film. The functional layer is not particularly limited, and includes functional layers used in optical applications.
 (偏光子)
 本発明の一実施形態に係る表示装置に含まれる偏光板は、偏光子を含む。偏光子は、一定方向の偏波面の光だけを通す素子である。
(Polarizer)
A polarizing plate included in a display device according to an embodiment of the present invention includes a polarizer. A polarizer is an element that passes only light with a plane of polarization in a certain direction.
 偏光子としては、特に制限されず公知のものを使用することができるが、ポリビニルアルコール系偏光フィルムが好ましい。ポリビニルアルコール系偏光フィルムとしては、ポリビニルアルコール系フィルムにヨウ素を染色させたものであってもよく、ポリビニルアルコール系フィルムに二色性染料を染色させたものであってもよい。例えば、ポリビニルアルコール系偏光フィルムとしては、ポリビニルアルコール系フィルムを一軸延伸した後、ヨウ素または二色性染料で染色したフィルム(好ましくはさらにホウ素化合物で耐久性処理を施したフィルム)等が挙げられる。また、例えば、ポリビニルアルコール系偏光フィルムとしては、ポリビニルアルコール系フィルムをヨウ素または二色性染料で染色した後、一軸延伸したフィルム(好ましくは、さらにホウ素化合物で耐久性処理を施したフィルム)等が挙げられる。これらの中でも、ポリビニルアルコール系フィルムをヨウ素で染色し、ホウ素化合物で耐久性処理を施した後、一軸延伸したフィルムが特に好ましい。偏光子の吸収軸は、通常、最大延伸方向と平行である。 A known polarizer can be used without particular limitation, but a polyvinyl alcohol-based polarizing film is preferred. The polyvinyl alcohol-based polarizing film may be a polyvinyl alcohol-based film dyed with iodine, or may be a polyvinyl alcohol-based film dyed with a dichroic dye. For example, the polyvinyl alcohol-based polarizing film includes a film obtained by uniaxially stretching a polyvinyl alcohol-based film and then dyeing it with iodine or a dichroic dye (preferably a film further subjected to durability treatment with a boron compound). Further, for example, as a polyvinyl alcohol polarizing film, a polyvinyl alcohol film is dyed with iodine or a dichroic dye and then uniaxially stretched (preferably, a film further subjected to durability treatment with a boron compound). mentioned. Among these, a film obtained by dyeing a polyvinyl alcohol-based film with iodine, applying a durability treatment with a boron compound, and then uniaxially stretching the film is particularly preferable. The absorption axis of a polarizer is usually parallel to the direction of maximum stretch.
 ポリビニルアルコール系偏光フィルムの形成に使用されるポリビニルアルコール系フィルムとしては、特に制限されないが、例えば、特開2003-248123号公報、特開2003-342322号公報等に記載の、エチレン単位の含有量1~4モル%、重合度2000~4000、けん化度99.0~99.99モル%のエチレン変性ポリビニルアルコール等が挙げられる。 The polyvinyl alcohol-based film used for forming the polyvinyl alcohol-based polarizing film is not particularly limited. Examples include ethylene-modified polyvinyl alcohol having a degree of polymerization of 1 to 4 mol%, a degree of polymerization of 2000 to 4000, and a degree of saponification of 99.0 to 99.99 mol%.
 一軸延伸の際の温度としては、特に制限されないが、30~90℃であることが好ましい。一軸延伸の倍率としては、特に制限されないが、1.05~10倍であることが好ましく、2~8倍であることがより好ましく、4~6倍であることがさらに好ましい。 Although the temperature during uniaxial stretching is not particularly limited, it is preferably 30 to 90°C. Although the ratio of uniaxial stretching is not particularly limited, it is preferably 1.05 to 10 times, more preferably 2 to 8 times, and even more preferably 4 to 6 times.
 偏光子の厚さとしては、特に制限されないが、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、5μm以上であることがさらに好ましい。これらの範囲であると、偏光性能がより向上する。また、偏光子の厚さとしては、40μm以下であることが好ましく、30μm以下であることがより好ましく、20μm以下であることがさらに好ましい。これらの範囲であると、偏光板のさらなる薄膜化が可能となる。 Although the thickness of the polarizer is not particularly limited, it is preferably 0.1 μm or more, more preferably 1 μm or more, and even more preferably 5 μm or more. Within these ranges, the polarization performance is further improved. Also, the thickness of the polarizer is preferably 40 μm or less, more preferably 30 μm or less, and even more preferably 20 μm or less. Within these ranges, the thickness of the polarizing plate can be further reduced.
 偏光子の屈折率は、特に制限されないが、1.500~1.520であることが好ましい。 Although the refractive index of the polarizer is not particularly limited, it is preferably 1.500 to 1.520.
 本発明の一実施形態に係る表示装置に含まれる偏光板は、シクロオレフィン樹脂基材を含む光学フィルムを有し、シクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差が下記式(1)を満たす:
 式(1) 0≦(光学フィルムの屈折率-偏光子の屈折率)<0.02
 上記式(1)の光学フィルム(前記シクロオレフィン樹脂基材を含む光学フィルム)と、偏光子との屈折率差が0未満であると、表示ムラ、特に輝度ムラとして認識される表示ムラが増大する。また、上記式(1)の光学フィルム(前記シクロオレフィン樹脂基材を含む光学フィルム)と、偏光子との屈折率差が0.02以上であると、表示ムラ、特に画面のざらつきとして認識される表示ムラがより増大する。
A polarizing plate included in a display device according to an embodiment of the present invention has an optical film containing a cycloolefin resin base material, and the refractive index difference between the optical film containing the cycloolefin resin base material and the polarizer is as follows. satisfies equation (1):
Formula (1) 0≦(refractive index of optical film−refractive index of polarizer)<0.02
When the refractive index difference between the optical film of formula (1) (the optical film containing the cycloolefin resin base material) and the polarizer is less than 0, display unevenness, particularly display unevenness recognized as luminance unevenness, increases. do. Further, when the difference in refractive index between the optical film of formula (1) (the optical film containing the cycloolefin resin base material) and the polarizer is 0.02 or more, display unevenness, particularly screen roughness, is recognized. display unevenness increases.
 また、本発明の一実施形態に係る表示装置に含まれる偏光板は、シクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差が下記式(2)を満たすことが好ましい:
 式(2) 0.001≦(光学フィルムの屈折率-偏光子の屈折率)≦0.015
 この範囲であると、表示ムラがより低減する。同様の観点から、シクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差の上限値は、0.008以下であることがより好ましく、0.005以下であることがさらに好ましい。
Further, in the polarizing plate included in the display device according to one embodiment of the present invention, the difference in refractive index between the optical film containing the cycloolefin resin base material and the polarizer preferably satisfies the following formula (2):
Formula (2) 0.001 ≤ (refractive index of optical film - refractive index of polarizer) ≤ 0.015
Within this range, display unevenness is further reduced. From the same point of view, the upper limit of the refractive index difference between the optical film containing the cycloolefin resin substrate and the polarizer is more preferably 0.008 or less, and even more preferably 0.005 or less.
 本発明の一実施形態に係る表示装置では、これに含まれる少なくとも1つの偏光板において、少なくとも1つのシクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差が上記式(1)の関係を満たしていればよい。また、少なくとも上記の表示装置のRMS粒状度の測定における表示面に沿った角度の基準となる吸収軸を有する偏光子を含む偏光板において、少なくとも1つのシクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差が上記式(1)の関係を満たすことが好ましい。そして、上記の表示装置のRMS粒状度の測定における表示面に沿った角度の基準となる吸収軸を有する偏光子を含む視認側偏光板において、少なくとも1つのシクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差が上記式(1)の関係を満たすことが好ましい。これらの場合、少なくとも1つのシクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差が上記式(2)の関係を満たすことが好ましい。また、この際、少なくとも1つのシクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差の上限値は、0.008以下であることがより好ましく、0.005以下であることがさらに好ましい。 In the display device according to one embodiment of the present invention, in at least one polarizing plate included therein, the refractive index difference between the optical film containing at least one cycloolefin resin base material and the polarizer is expressed by the above formula (1) It suffices if the relationship of Further, in the polarizing plate including at least a polarizer having an absorption axis that serves as a reference for the angle along the display surface in the measurement of the RMS granularity of the display device, an optical film including at least one cycloolefin resin substrate; It is preferable that the refractive index difference from the polarizer satisfies the relationship of the above formula (1). and an optical film containing at least one cycloolefin resin substrate in the viewer-side polarizing plate containing a polarizer having an absorption axis that serves as a reference for the angle along the display surface in the measurement of the RMS granularity of the display device; , the refractive index difference with the polarizer preferably satisfies the relationship of the above formula (1). In these cases, it is preferable that the refractive index difference between the optical film containing at least one cycloolefin resin substrate and the polarizer satisfies the relationship of the above formula (2). In this case, the upper limit of the refractive index difference between the optical film containing at least one cycloolefin resin substrate and the polarizer is more preferably 0.008 or less, more preferably 0.005 or less. More preferred.
 ここで、本発明の一実施形態に係る表示装置では、これに含まれる偏光板の全てにおいて、少なくとも1つのシクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差が上記式(1)を満たすことが好ましい。この際、少なくとも1つのシクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差が上記式(2)を満たすことがより好ましい。そして、この際、少なくとも1つのシクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差の上限値は、0.008以下であることがより好ましく、0.005以下であることがさらに好ましい。 Here, in the display device according to one embodiment of the present invention, in all of the polarizing plates included therein, the difference in refractive index between the optical film containing at least one cycloolefin resin base material and the polarizer is the above formula ( 1) is preferably satisfied. In this case, it is more preferable that the refractive index difference between the optical film containing at least one cycloolefin resin substrate and the polarizer satisfies the above formula (2). In this case, the upper limit of the refractive index difference between the optical film containing at least one cycloolefin resin substrate and the polarizer is more preferably 0.008 or less, more preferably 0.005 or less. More preferred.
 そして、本発明の一実施形態に係る表示装置では、これに含まれる偏光板の全てにおいて、全てのシクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差が上記式(1)を満たすことが好ましい。この際、全てのシクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差が上記式(2)を満たすことがより好ましい。そして、この際、全てのシクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差の上限値は、0.008以下であることがより好ましく、0.005以下であることがさらに好ましい。 Then, in the display device according to one embodiment of the present invention, in all of the polarizing plates included therein, the difference in refractive index between the optical film containing all the cycloolefin resin substrates and the polarizer is expressed by the above formula (1) is preferably satisfied. At this time, it is more preferable that the refractive index difference between the optical film containing all the cycloolefin resin substrates and the polarizer satisfies the above formula (2). In this case, the upper limit of the refractive index difference between the optical film containing all the cycloolefin resin substrates and the polarizer is more preferably 0.008 or less, more preferably 0.005 or less. preferable.
 さらに、本発明の一実施形態に係る表示装置では、これに含まれる偏光板の全てにおいて、偏光板がシクロオレフィン樹脂基材を含む光学フィルムを1つのみ有し、かつ当該シクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差が上記式(1)を満たすことが好ましい。この際、当該シクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差が上記式(2)を満たすことがより好ましい。そして、この際、当該シクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差の上限値は、0.008以下であることがより好ましく、0.005以下であることがさらに好ましい。 Furthermore, in a display device according to an embodiment of the present invention, all the polarizing plates included therein have only one optical film containing a cycloolefin resin base material, and the cycloolefin resin base material is The refractive index difference between the optical film containing and the polarizer preferably satisfies the above formula (1). In this case, it is more preferable that the refractive index difference between the optical film containing the cycloolefin resin base material and the polarizer satisfies the above formula (2). In this case, the upper limit of the refractive index difference between the optical film containing the cycloolefin resin base material and the polarizer is more preferably 0.008 or less, and further preferably 0.005 or less. .
 シクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差が上記式(2)の範囲を満たす場合や、シクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差の上限値が0.008以下または0.005以下を満たす場合、当該シクロオレフィン樹脂基材を含む光学フィルムは、機能層を有し、当該前記機能層は、アクリル樹脂又はウレタン樹脂、及び粒子を含有することが好ましい。 When the refractive index difference between the optical film containing the cycloolefin resin base material and the polarizer satisfies the range of the above formula (2), or when the refractive index difference between the optical film containing the cycloolefin resin base material and the polarizer When the upper limit is 0.008 or less or 0.005 or less, the optical film containing the cycloolefin resin base material has a functional layer, and the functional layer contains an acrylic resin or a urethane resin and particles. preferably.
 25℃のnD:D線(589nm)での屈折率が上記のそれぞれの範囲を満たすことが特に好ましい。なお、シクロオレフィン樹脂基材を含む光学フィルムの屈折率、および偏光子の屈折率は、多波長アッベ屈折計(商品名:DR-M2、株式会社アタゴ製)により測定することができる。なお、測定方法の詳細は実施例に記載の通りである。 It is particularly preferred that the refractive index at the nD:D line (589 nm) at 25°C satisfies each of the above ranges. The refractive index of the optical film containing the cycloolefin resin substrate and the refractive index of the polarizer can be measured with a multi-wavelength Abbe refractometer (trade name: DR-M2, manufactured by Atago Co., Ltd.). The details of the measuring method are as described in Examples.
 (偏光板の製造方法)
 本発明の一実施形態に係る表示装置に含まれる偏光板の製造方法は、特に制限されず、公知の方法を使用することができる。例えば、偏光板は、偏光子と、上記のシクロオレフィン樹脂基材を含む光学フィルムおよび/または他の光学フィルムとを、接着剤を介して(すなわち、接着剤層を介して)貼り合わせることで製造することができる。
(Manufacturing method of polarizing plate)
A method for manufacturing the polarizing plate included in the display device according to one embodiment of the present invention is not particularly limited, and a known method can be used. For example, a polarizing plate can be produced by laminating a polarizer and an optical film containing the cycloolefin resin substrate and/or other optical film via an adhesive (i.e., via an adhesive layer). can be manufactured.
 接着剤としては、特に制限されず、公知のものを使用することができる。例えば、完全ケン化型ポリビニルアルコール水溶液(水糊)や、活性エネルギー線硬化性接着剤等が挙げられる。これらの中でも、薄膜でも強度が高く、平面性に優れた偏光板が得られやすいとの観点から、偏光子と、上記のシクロオレフィン樹脂基材を含む光学フィルムおよび/または他の光学フィルムとは、活性エネルギー線硬化性接着剤により貼合されていることが好ましい。 The adhesive is not particularly limited, and known ones can be used. Examples thereof include a completely saponified polyvinyl alcohol aqueous solution (water glue) and an active energy ray-curable adhesive. Among these, the polarizer and the optical film and/or other optical film containing the above cycloolefin resin base material are considered to be easy to obtain a polarizing plate having high strength and excellent flatness even in a thin film. , and is preferably bonded with an active energy ray-curable adhesive.
 活性エネルギー線硬化性接着剤としては、特に制限されないが、例えば、光ラジカル重合を利用した光ラジカル重合型組成物、光カチオン重合を利用した光カチオン重合型組成物、ならびに光ラジカル重合および光カチオン重合を併用したハイブリッド型組成物等が挙げられる。 Although the active energy ray-curable adhesive is not particularly limited, for example, a photo-radical polymerizable composition using photo-radical polymerization, a photo-cationic polymerizable composition using photo-cationic polymerization, and photo-radical polymerization and photo-cation A hybrid type composition that uses polymerization in combination and the like can be mentioned.
 光ラジカル重合型組成物は、特に制限されない。例えば、公知の光ラジカル重合型組成物を使用することができる。特に、光ラジカル重合型組成物に含まれるラジカル重合性化合物としては、特に制限されないが、ラジカル重合可能なエチレン性不飽和結合を有する化合物であることが好ましい。ラジカル重合可能なエチレン性不飽和結合を有する化合物としては、特に制限されないが、(メタ)アクリロイル基を有する化合物が好ましい。(メタ)アクリロイル基を有する化合物としては、特に制限されないが、例えば、N置換(メタ)アクリルアミド系化合物、(メタ)アクリレート系化合物等が挙げられる。光ラジカル重合型組成物としては、特に制限されないが、例えば、特開2008-009329号公報に記載のヒドロキシ基やカルボキシ基等の極性基を含有するラジカル重合性化合物および極性基を含有しないラジカル重合性化合物を特定割合で含む組成物等が挙げられる。 The photoradical polymerizable composition is not particularly limited. For example, a known radical photopolymerizable composition can be used. In particular, the radically polymerizable compound contained in the radically photopolymerizable composition is not particularly limited, but is preferably a compound having a radically polymerizable ethylenically unsaturated bond. The compound having a radically polymerizable ethylenically unsaturated bond is not particularly limited, but a compound having a (meth)acryloyl group is preferred. Although the compound having a (meth)acryloyl group is not particularly limited, examples thereof include N-substituted (meth)acrylamide compounds and (meth)acrylate compounds. The photoradical polymerizable composition is not particularly limited, but for example, a radically polymerizable compound containing a polar group such as a hydroxy group or a carboxyl group and a radical polymerization containing no polar group described in JP-A-2008-009329. and a composition containing a specific proportion of a chemical compound.
 光カチオン重合型組成物は、特に制限されない。例えば、公知の光カチオン重合型組成物を使用することができる。光カチオン重合型組成物に含まれるカチオン重合性化合物としては、特に制限されないが、例えば、エポキシ基を有する硬化性化合物、オキセタニル基を有する硬化性化合物等が挙げられる。光カチオン重合型組成物はとしては、特に制限されないが、例えば、特開2011-028234号公報に記載されているような、(α)カチオン重合性化合物と、(β)光カチオン重合開始剤と、(γ)380nmより長い波長の光に極大吸収を示す光増感剤と、(δ)ナフタレン系光増感助剤とを含む組成物等が挙げられる。 The photo cationic polymerizable composition is not particularly limited. For example, a known cationic photopolymerizable composition can be used. The cationic polymerizable compound contained in the cationic photopolymerizable composition is not particularly limited, and examples thereof include a curable compound having an epoxy group and a curable compound having an oxetanyl group. The photocationically polymerizable composition is not particularly limited, but for example, (α) a cationic polymerizable compound and (β) a photocationic polymerization initiator, as described in JP-A-2011-028234. , (γ) a photosensitizer exhibiting maximum absorption at a wavelength longer than 380 nm, and (δ) a naphthalene-based photosensitizing aid.
 活性エネルギー線硬化性接着剤の好ましい一例としては、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレートと、エポリード(登録商標)GT-301(株式会社ダイセル製の脂環式エポキシ樹脂)と、1,4-ブタンジオールジグリシジルエーテルと、トリアリールスルホニウムヘキサフルオロホスフェートと、9,10-ジブトキシアントラセンと、1,4-ジエトキシナフタレンとを含む組成物等が挙げられる。 Preferred examples of active energy ray-curable adhesives include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate and Epolead (registered trademark) GT-301 (an alicyclic epoxy resin manufactured by Daicel Corporation). ), 1,4-butanediol diglycidyl ether, triarylsulfonium hexafluorophosphate, 9,10-dibutoxyanthracene, and 1,4-diethoxynaphthalene.
 活性エネルギー線硬化性接着剤を用いた偏光板の製造方法としては、特に制限されないが、例えば、1)偏光子と光学フィルムとの接着面のうち少なくとも一方に、活性エネルギー線硬化性接着剤を塗布する工程と、2)得られた接着剤層を介して偏光子と光学フィルムとを貼り合せる工程と、3)接着剤層を介して偏光子と光学フィルムとが貼り合わされた状態で、活性エネルギー線を照射して、接着剤層を硬化させて偏光板を得る工程と、4)得られた偏光板を所定の形状に打ち抜く(切断する)工程とを含む製造方法等が挙げられる。1)の工程の前に、必要に応じて、5)光学フィルムの偏光子を接着する面を、易接着処理(例えば、コロナ放電処理やプラズマ処理等)する工程をさらに含んでいてもよい。 A method for producing a polarizing plate using an active energy ray-curable adhesive is not particularly limited, but for example, 1) an active energy ray-curable adhesive is applied to at least one of the adhesive surfaces of the polarizer and the optical film. 2) bonding the polarizer and the optical film together via the obtained adhesive layer; and 3) in a state where the polarizer and the optical film are bonded together via the adhesive layer. Examples include a production method including a step of irradiating with an energy beam to cure the adhesive layer to obtain a polarizing plate, and 4) a step of punching (cutting) the obtained polarizing plate into a predetermined shape. Before step 1), if necessary, a step 5) of subjecting the surface of the optical film to which the polarizer is to be adhered to easy-adhesion treatment (for example, corona discharge treatment, plasma treatment, etc.) may be further included.
 1)の工程での活性エネルギー線硬化性接着剤の塗布では、目的とする硬化後の接着剤層の厚さは特に制限されない。しかしながら、活性エネルギー線硬化性接着剤の塗布としては、硬化後の接着剤層の厚さを0.01μm以上となるよう行うことが好ましく、0.1μm以上となるよう行うことがより好ましく、0.5μm以上となるよう行うことがさらに好ましい。これらの範囲であると、接着性がより向上する。また、活性エネルギー線硬化性接着剤の塗布は、硬化後の接着剤層の厚さを10μm以下となるよう行うことが好ましく、5μm以下となるよう行うことがより好ましく、3μm以下となるよう行うことがさらに好ましい。これらの範囲であると、偏光板のさらなる薄膜化が可能となる。 In the application of the active energy ray-curable adhesive in step 1), the desired thickness of the adhesive layer after curing is not particularly limited. However, the application of the active energy ray-curable adhesive is preferably carried out so that the thickness of the adhesive layer after curing is 0.01 μm or more, more preferably 0.1 μm or more, and 0.1 μm or more. 0.5 μm or more is more preferable. Adhesiveness improves more that it is these ranges. In addition, the application of the active energy ray-curable adhesive is preferably performed so that the thickness of the adhesive layer after curing is 10 μm or less, more preferably 5 μm or less, and 3 μm or less. is more preferred. Within these ranges, the thickness of the polarizing plate can be further reduced.
 3)の工程では、照射する活性エネルギー線としては、特に制限されないが、例えば、可視光線、紫外線、X線および電子線等が挙げられる。取扱いが容易で硬化速度も十分であることから、一般的には、紫外線を用いることが好ましい。紫外線の照射条件は、接着剤を硬化しうる条件であればよい。例えば、紫外線の照射量は積算光量で50~1500mJ/cmであることが好ましく、100~1000mJ/cmであることがより好ましい。紫外線照射は搬送しながら行うことが好ましい。紫外線照射装置としては、特に制限されないが、例えば、公知ものを使用することができる。 In the step 3), the active energy rays to be irradiated are not particularly limited, and examples thereof include visible light, ultraviolet rays, X-rays and electron beams. In general, it is preferable to use ultraviolet light because it is easy to handle and has a sufficient curing speed. The irradiation conditions of the ultraviolet rays may be any conditions as long as the adhesive can be cured. For example, the irradiation amount of ultraviolet rays is preferably 50 to 1500 mJ/cm 2 in terms of integrated light amount, and more preferably 100 to 1000 mJ/cm 2 . It is preferable to carry out the ultraviolet irradiation while transporting. Although the ultraviolet irradiation device is not particularly limited, for example, a known device can be used.
 5)の工程では、易接着処理としては、コロナ放電処理が好ましい。ただし、表面改質処理は、1種単独で使用する、または2種以上を併用することができる。コロナ放電処理の出力は、特に制限されないが、0.02kW以上であることが好ましく、0.04kW以上であることがより好ましい。また、コロナ放電処理の出力は、5kW以下であることが好ましく、2kW以下であることがより好ましい。また、コロナ放電処理は搬送しながら行うことが好ましい。コロナ放電処理の搬送速度は、特に制限されない。コロナ放電処理装置(コロナ処理装置)は、特に制限されないが、例えば、公知のものを使用することができる。 In step 5), corona discharge treatment is preferable as the easy-adhesion treatment. However, surface modification treatment can be used individually by 1 type, or can use 2 or more types together. The output of the corona discharge treatment is not particularly limited, but is preferably 0.02 kW or more, more preferably 0.04 kW or more. The output of the corona discharge treatment is preferably 5 kW or less, more preferably 2 kW or less. Moreover, it is preferable to carry out the corona discharge treatment while transporting. The conveying speed for corona discharge treatment is not particularly limited. A corona discharge treatment device (corona treatment device) is not particularly limited, and for example, a known device can be used.
 なお、本発明の効果は、本説明に係る偏光板を、表示装置ユニットに適用することによって奏されるともいえる。このことから、本発明の他の一態様は、偏光子、及び光学フィルムを有する偏光板であって、前記光学フィルムは少なくとも基材を有し、前記基材は少なくともシクロオレフィン樹脂を含有し、かつ前記光学フィルムと前記偏光子との屈折率差が下記式(1)を満たし、
 式(1) 0≦(前記光学フィルムの屈折率-前記偏光子の屈折率)<0.02
 前記偏光板を表示装置に組み込んだ状態において、前記表示装置を黒表示した際に表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度(表示装置のRMS粒状度)が0.30~1.34である、偏光板に関するともいえる。本発明の好ましい一実施態様は、偏光子、及び光学フィルムを有する偏光板であって、前記光学フィルムは少なくとも基材を有し、前記基材は少なくともシクロオレフィン樹脂を含有し、かつ前記光学フィルムと前記偏光子との屈折率差が下記式(1)を満たし、
 式(1) 0≦(前記光学フィルムの屈折率-前記偏光子の屈折率)<0.02
 前記偏光板を表示装置に組み込んだ状態において、前記表示装置を黒表示した際に表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度(表示装置のRMS粒状度)が0.30~1.30である、偏光板に関するともいえる。
In addition, it can be said that the effect of the present invention is exhibited by applying the polarizing plate according to the present description to a display device unit. From this, another aspect of the present invention is a polarizing plate having a polarizer and an optical film, wherein the optical film has at least a base material, the base material contains at least a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1),
Formula (1) 0≦(refractive index of the optical film−refractive index of the polarizer)<0.02
In a state in which the polarizing plate is incorporated in the display device, the RMS granularity (RMS granularity of the display device) of a display image taken from a position inclined by 10° from the display surface to the viewing side when the display device displays black is It can also be said that it relates to the polarizing plate, which is 0.30 to 1.34. A preferred embodiment of the present invention is a polarizing plate having a polarizer and an optical film, wherein the optical film has at least a substrate, the substrate contains at least a cycloolefin resin, and the optical film and the refractive index difference between the polarizer satisfies the following formula (1),
Formula (1) 0≦(refractive index of the optical film−refractive index of the polarizer)<0.02
In a state in which the polarizing plate is incorporated in the display device, the RMS granularity (RMS granularity of the display device) of a display image taken from a position inclined by 10° from the display surface to the viewing side when the display device displays black is It can also be said that it relates to the polarizing plate, which is 0.30 to 1.30.
 なお、当該態様に係る偏光板や、これに含まれるシクロオレフィン樹脂基材を含む光学フィルムの詳細や好ましい態様は、それぞれ、上記の本発明の一態様に係る表示装置に含まれる偏光板における、これらの説明と同様である。また、当該態様に係る偏光板が組み込まれる表示装置やこれと組み合わせる表示装置ユニットの詳細や好ましい態様は、それぞれ、後述する本発明の一態様に係る表示装置におけるこれらの説明と同様である。 The details and preferred aspects of the polarizing plate according to this aspect and the optical film containing the cycloolefin resin base material contained therein are, respectively, in the polarizing plate included in the display device according to one aspect of the present invention, Similar to these descriptions. In addition, the details and preferred aspects of the display device in which the polarizing plate according to this aspect is incorporated and the display device unit combined with the display device are the same as those described below for the display device according to one aspect of the present invention.
 本発明の一実施形態に係る偏光板は、前記表示装置ユニットの表示セルの視認側に組み込むことが好ましい。また、本発明の一実施形態に係る偏光板は、前記表示装置ユニットの表示セルの視認側と、視認側とは反対側とに組み込むことがより好ましい。この際、表示セルの視認側に組み込む偏光板の偏光子の吸収軸と、当該表示セルの視認側とは反対側に組み込む偏光板の偏光子の吸収軸とは、直交する(すなわち、クロスニコルとなっている)ことが好ましい。 The polarizing plate according to one embodiment of the present invention is preferably incorporated on the viewing side of the display cell of the display device unit. Further, it is more preferable that the polarizing plate according to one embodiment of the present invention is incorporated in the viewing side of the display cell of the display device unit and on the side opposite to the viewing side. At this time, the absorption axis of the polarizer of the polarizing plate incorporated on the viewing side of the display cell and the absorption axis of the polarizer of the polarizing plate incorporated on the side opposite to the viewing side of the display cell are perpendicular to each other (that is, crossed Nicols ) is preferred.
 [表示装置ユニット]
 本発明の一実施形態に係る表示装置は、表示装置ユニットを含む。本明細書において、表示装置ユニットとは、表示装置の表示のために必要とされる部材またはその集合体であって、上記の偏光板以外のものを表す。表示装置ユニットは、表示セルを含むことが好ましい。
[Display unit]
A display device according to an embodiment of the present invention includes a display device unit. In the present specification, the display device unit is a member required for display of the display device or an assembly thereof, other than the polarizing plate described above. The display unit preferably includes a display cell.
 本発明の一実施形態に係る表示装置としては、特に制限されないが、液晶表示装置または有機エレクトロルミネッセンス(有機EL)表示装置であることが好ましく、液晶表示装置であることがより好ましい。すなわち、本発明の一実施形態に係る表示装置において、表示装置ユニットは表示セルを含み、当該表示セルは、液晶セルまたは有機ELセルであることが好ましい。 Although the display device according to one embodiment of the present invention is not particularly limited, it is preferably a liquid crystal display device or an organic electroluminescence (organic EL) display device, and more preferably a liquid crystal display device. That is, in the display device according to one embodiment of the present invention, the display device unit preferably includes a display cell, and the display cell is a liquid crystal cell or an organic EL cell.
 本発明の一実施形態において、表示装置が液晶表示装置である場合、表示装置ユニットは、特に制限されないが、表示セルである液晶セルと、光源であるバックライトとを含むことが好ましい。液晶セル、バックライトとしては、特に制限されず、例えば、それぞれ公知のものを使用することができる。また、本発明の一実施形態において、表示装置が有機EL表示装置である場合、表示装置ユニットは、少なくとも表示セルである有機ELセルを含む。有機ELセルとしては、特に制限されず、例えば、公知のものを使用することができる。表示装置ユニットは、必要に応じて、筐体、タッチパネル等をさらに含んでいてもよい。これらもまた、特に制限されず、例えば、それぞれ公知のものを使用することができる。 In one embodiment of the present invention, when the display device is a liquid crystal display device, the display device unit is not particularly limited, but preferably includes a liquid crystal cell as a display cell and a backlight as a light source. The liquid crystal cell and the backlight are not particularly limited, and for example, known ones can be used. Moreover, in one embodiment of the present invention, when the display device is an organic EL display device, the display device unit includes at least an organic EL cell which is a display cell. The organic EL cell is not particularly limited, and for example, known cells can be used. The display device unit may further include a housing, a touch panel, etc., as required. These are also not particularly limited, and for example, known ones can be used.
 [好ましい表示装置の構成例]
 本発明の好ましい一実施形態としては、例えば、液晶セルと、液晶セルの一方の面上に配置された第1偏光板と、液晶セルの他方の面上に配置された第2偏光板とを含む液晶表示装置等が挙げられる。ここで、第1偏光板および第2偏光板のうちの少なくとも一方は、上記のシクロオレフィン樹脂基材を含む光学フィルムを含む偏光板である。第1偏光板および第2偏光板の両方が、上記のシクロオレフィン樹脂基材を含む光学フィルムを含む偏光板であることが好ましい。この際、第1偏光板および第2偏光板において、それぞれ、偏光子の液晶セル側の面上に上記のシクロオレフィン樹脂基材を含む光学フィルムが配置されることがより好ましい。また、上記のシクロオレフィン樹脂基材を含む光学フィルムは、シクロオレフィン樹脂基材に加えて、上記の機能層を有することがさらに好ましい。そして、この際、上記の機能層として易接着層を含み、当該易接着層は、シクロオレフィン樹脂基材の偏光子側の面上に配置されることが特に好ましい。また、第1偏光板および第2偏光板において、それぞれ、偏光子の液晶セルとは反対側の面上に、他の光学フィルムが配置されることがさらに好ましい。また、表示装置ユニットは、少なくとも液晶セルを含む。表示装置ユニットは、バックライトをさらに含むことがより好ましい。
[Configuration example of preferable display device]
As a preferred embodiment of the present invention, for example, a liquid crystal cell, a first polarizing plate arranged on one surface of the liquid crystal cell, and a second polarizing plate arranged on the other surface of the liquid crystal cell are provided. and a liquid crystal display device containing the liquid crystal display. Here, at least one of the first polarizing plate and the second polarizing plate is a polarizing plate containing the optical film containing the above cycloolefin resin base material. Both the first polarizing plate and the second polarizing plate are preferably polarizing plates containing an optical film containing the above cycloolefin resin base material. In this case, in each of the first polarizing plate and the second polarizing plate, it is more preferable that the optical film containing the cycloolefin resin base material is arranged on the surface of the polarizer on the liquid crystal cell side. Further, it is more preferable that the optical film containing the above cycloolefin resin substrate has the above functional layer in addition to the cycloolefin resin substrate. In this case, it is particularly preferable that an easy-adhesion layer is included as the functional layer, and the easy-adhesion layer is arranged on the polarizer-side surface of the cycloolefin resin base material. Further, in each of the first polarizing plate and the second polarizing plate, it is more preferable that another optical film is arranged on the surface of the polarizer opposite to the liquid crystal cell. Also, the display device unit includes at least a liquid crystal cell. More preferably, the display unit further includes a backlight.
 第1偏光板の偏光子の吸収軸と、第2偏光板の偏光子の吸収軸とは、直交する(すなわち、クロスニコルとなっている)ことが好ましい。 The absorption axis of the polarizer of the first polarizing plate and the absorption axis of the polarizer of the second polarizing plate are preferably orthogonal (that is, crossed Nicols).
 液晶表示装置と、偏光板との貼合方法は、特に制限されないが、これらは接着剤または粘着剤を介して(すなわち、接着剤層または粘着層を介して)貼合されることが好ましく、粘着剤を介して貼合させることがより好ましい。接着剤としては、特に制限されず、公知のものを使用することができる。例えば、上記の偏光板の製造方法で説明した接着剤が挙げられる。粘着剤としては、特に制限されず、公知のものを使用することができる。例えば、アクリル系粘着剤、エポキシ系粘着剤、ウレタン系粘着剤等が挙げられる。 The method of bonding the liquid crystal display device and the polarizing plate is not particularly limited, but they are preferably bonded via an adhesive or pressure-sensitive adhesive (that is, via an adhesive layer or pressure-sensitive adhesive layer), It is more preferable to laminate via an adhesive. The adhesive is not particularly limited, and known ones can be used. For example, the adhesive described in the method for manufacturing the polarizing plate can be used. The adhesive is not particularly limited, and known ones can be used. For example, acrylic pressure-sensitive adhesives, epoxy-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, and the like can be used.
 液晶セルの表示モードとしては、特に制限されないが、例えば、インプレーンスイッチング(IPS)モード、バーチカルアラインメント(VA)モード(垂直配向モード:マルチドメインバーチカルアラインメント(MVA)モード、パターンドバーチカルアラインメント(PVA)モードを含む)、コンティニュアスピンホイールアラインメント(CPA)モード、ハイブリッドアラインメントネマチック(HAN)モード、ツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モード、オプチカルコンペンセイテッドベンド(OCB)モードなどが挙げることができる。これらの中でも、本発明の効果がより良好に奏されるとの観点から、VAモードが好ましい。したがって、本発明の好ましい一実施形態において、表示装置ユニットが垂直配向(VA)液晶表示装置ユニット(すなわち、垂直配向(VA)モードの液晶セルを含む表示装置ユニット)であることが好ましい。 The display mode of the liquid crystal cell is not particularly limited. continuous spin wheel alignment (CPA) mode, hybrid alignment nematic (HAN) mode, twisted nematic (TN) mode, super twisted nematic (STN) mode, optically compensated bend (OCB) mode, etc. be able to. Among these, the VA mode is preferable from the viewpoint that the effects of the present invention are exhibited more satisfactorily. Therefore, in one preferred embodiment of the present invention, it is preferred that the display unit is a vertically aligned (VA) liquid crystal display unit (ie, a display unit including a vertically aligned (VA) mode liquid crystal cell).
 以下、本発明の好ましい一実施形態に係る液晶表示装置の一例について説明する。ただし、本発明に係る表示装置は、以下で説明するものに限定されるものではない。 An example of a liquid crystal display device according to a preferred embodiment of the present invention will be described below. However, the display device according to the present invention is not limited to the one described below.
 図3は、本発明の一実施形態に係る液晶表示装置の基本的な構成の一例を示す模式図である。図4は、本発明の一実施形態に係る液晶表示装置の基本的な構成の他の一例を示す模式図である。図3および図4に示されるように、本発明の一実施形態に係る液晶表示装置10は、液晶セル30と、液晶セル30の一方の面上に配置された第1偏光板50と、液晶セル30の他方の面上に配置された第2偏光板70と、バックライト90とを含む。ここで、表示装置ユニットは、液晶セル30と、バックライト90とを含む。 FIG. 3 is a schematic diagram showing an example of the basic configuration of a liquid crystal display device according to one embodiment of the present invention. FIG. 4 is a schematic diagram showing another example of the basic configuration of the liquid crystal display device according to one embodiment of the present invention. As shown in FIGS. 3 and 4, the liquid crystal display device 10 according to one embodiment of the present invention includes a liquid crystal cell 30, a first polarizing plate 50 arranged on one surface of the liquid crystal cell 30, and a liquid crystal It includes a second polarizer 70 disposed on the other side of cell 30 and a backlight 90 . Here, the display device unit includes a liquid crystal cell 30 and a backlight 90 .
 液晶セル30の表示モードとしては、特に制限されず、上記のような種々の表示モードが例示されうるが、これらの中でもVAモードが好ましい。 The display mode of the liquid crystal cell 30 is not particularly limited, and various display modes as described above can be exemplified. Among these, the VA mode is preferable.
 第1偏光板50は、液晶セル30の一方の面上(視認側の面上)に配置された第1偏光子51と、第1偏光子51の液晶セル30とは反対側の面上(視認側の面上)に配置された光学フィルム53(F1)と、第1偏光子51の液晶セル30側の面に配置された光学フィルム55(F2)とを含む。 The first polarizing plate 50 consists of a first polarizer 51 arranged on one surface of the liquid crystal cell 30 (on the viewing side surface) and a surface of the first polarizer 51 opposite to the liquid crystal cell 30 ( and an optical film 55 (F2) disposed on the surface of the first polarizer 51 on the liquid crystal cell 30 side.
 第2偏光板70は、液晶セル30の他方の面上(バックライト90側の面上)に配置された第2偏光子71と、第2偏光子71の液晶セル30側の面上に配置された光学フィルム73(F3)と、第2偏光子71の液晶セル30とは反対側の面上(バックライト90側の面上)に配置された光学フィルム75(F4)とを含む。 The second polarizing plate 70 is arranged on the second polarizer 71 arranged on the other surface of the liquid crystal cell 30 (on the surface on the backlight 90 side) and on the surface of the second polarizer 71 on the liquid crystal cell 30 side. and an optical film 75 (F4) disposed on the surface of the second polarizer 71 opposite to the liquid crystal cell 30 (on the surface on the backlight 90 side).
 第1偏光板50および第2偏光板70において、各光学フィルムは、偏光子を保護するための保護フィルムであるともいえる。また、第1偏光子51の吸収軸と第2偏光子71の吸収軸とは直交している(すなわち、クロスニコルとなっている)ことが好ましい。 In the first polarizing plate 50 and the second polarizing plate 70, each optical film can also be said to be a protective film for protecting the polarizer. Moreover, it is preferable that the absorption axis of the first polarizer 51 and the absorption axis of the second polarizer 71 are orthogonal (that is, crossed Nicols).
 光学フィルム53(F1)、55(F2)、73(F3)および75(F4)の少なくとも1つは、上記のシクロオレフィン樹脂基材を含む光学フィルムである。これらの中でも、光学フィルム55(F2)および73(F3)が上記のシクロオレフィン樹脂基材を含む光学フィルムであることが好ましい。また、この際、光学フィルム55(F2)および73(F3)は、それぞれ、シクロオレフィン樹脂基材に加えて、上記の機能層をさらに有することがさらに好ましい。 At least one of the optical films 53 (F1), 55 (F2), 73 (F3) and 75 (F4) is an optical film containing the above cycloolefin resin base material. Among these, the optical films 55 (F2) and 73 (F3) are preferably optical films containing the above cycloolefin resin base material. Further, in this case, it is more preferable that each of the optical films 55 (F2) and 73 (F3) further has the above functional layer in addition to the cycloolefin resin base material.
 光学フィルム53(F1)および75(F4)は、シクロオレフィン樹脂基材を含む光学フィルム以外の他の光学フィルムであることが好ましく、セルロースエステルフィルムであることが特に好ましい。 The optical films 53 (F1) and 75 (F4) are preferably optical films other than optical films containing cycloolefin resin substrates, and are particularly preferably cellulose ester films.
 図4に示すように、光学フィルム55(F2)および73(F3)は、それぞれ、シクロオレフィン樹脂基材551、731に加えて、上記の機能層552、732を有することがさらに好ましい。この際、第1偏光板50において、機能層552は、シクロオレフィン樹脂基材551のいずれの面上に配置されていてもよく、両方の面上に配置されていてもよいが、シクロオレフィン樹脂基材551の第1偏光子51側の面上に配置されることが特に好ましい。また、第2偏光板70において、光学フィルム73(F3)は、機能層732は、シクロオレフィン樹脂基材731のいずれの面上に配置されていてもよく、両方の面上に配置されていてもよいが、シクロオレフィン樹脂基材731の第2偏光子71側の面上に配置されることが特に好ましい。 As shown in FIG. 4, the optical films 55 (F2) and 73 (F3) more preferably have the functional layers 552 and 732 described above in addition to the cycloolefin resin substrates 551 and 731, respectively. At this time, in the first polarizing plate 50, the functional layer 552 may be arranged on either surface of the cycloolefin resin substrate 551, or may be arranged on both surfaces. It is particularly preferable to be arranged on the surface of the substrate 551 on the side of the first polarizer 51 . In the second polarizing plate 70, the optical film 73 (F3) and the functional layer 732 may be arranged on either surface of the cycloolefin resin base material 731, and may be arranged on both surfaces. However, it is particularly preferable to arrange it on the surface of the cycloolefin resin base material 731 on the side of the second polarizer 71 .
 本発明は、下記態様および形態を包含するが、これらに限定されるものではない:
 [1]偏光板、及び表示装置ユニットを有する表示装置において、
 前記偏光板は偏光子、及び光学フィルムを有し、
 前記光学フィルムは少なくとも基材を有し、
 前記基材は少なくともシクロオレフィン樹脂を含有し、かつ前記光学フィルムと前記偏光子との屈折率差が下記式(1)を満たし、
 式(1) 0≦(前記光学フィルムの屈折率-前記偏光子の屈折率)<0.02
 前記表示装置を黒表示した際に表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度が0.30~1.34であることを特徴とする、表示装置;
 [2]前記RMS粒状度が0.30~1.30であることを特徴とする、[1]に記載の表示装置;
 [3]前記光学フィルムは、機能層をさらに有することを特徴とする、[1]または[2]に記載の表示装置;
 [4]前記光学フィルムと前記偏光子との屈折率差が下記式(2)を満たし、
 式(2) 0.001≦(前記光学フィルムの屈折率-前記偏光子の屈折率)≦0.015
 前記機能層は、アクリル樹脂又はウレタン樹脂、及び粒子を含有することを特徴とする、[3]に記載の表示装置;
 [5]前記機能層は、アクリル樹脂を含み、前記アクリル樹脂は、ウレタンアクリレート樹脂を含むことを特徴とする、[3]または[4]に記載の表示装置;
 [6]前記表示装置ユニットは、垂直配向(VA)液晶表示装置ユニットであることを特徴とする、[1]~[5]のいずれかに記載の表示装置;
 [7]前記偏光板のうちの少なくとも1つは、前記表示装置ユニットの表示セルの視認側に配置されていることを特徴とする、[1]~[6]のいずれかに記載の表示装置;
 [8]偏光子、及び光学フィルムを有する偏光板であって、
 前記光学フィルムは少なくとも基材を有し、
 前記基材は少なくともシクロオレフィン樹脂を含有し、かつ前記光学フィルムと前記偏光子との屈折率差が下記式(1)を満たし、
 式(1) 0≦(前記光学フィルムの屈折率-前記偏光子の屈折率)<0.02
 前記偏光板を表示装置に組み込んだ状態において、前記表示装置を黒表示した際に表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度が0.30~1.34であることを特徴とする、偏光板;
 [9]前記RMS粒状度が0.30~1.30であることを特徴とする、[8]に記載の偏光板;
 [10]前記光学フィルムは、機能層をさらに有することを特徴とする、[8]または[9]に記載の偏光板;
 [11]前記光学フィルムと前記偏光子との屈折率差が下記式(2)を満たし、
 式(2) 0.001≦(前記光学フィルムの屈折率-前記偏光子の屈折率)≦0.015
 前記機能層は、アクリル樹脂又はウレタン樹脂、及び粒子を含有することを特徴とする、[10]に記載の偏光板;
 [12]前記機能層は、アクリル樹脂を含み、前記アクリル樹脂は、ウレタンアクリレート樹脂を含むことを特徴とする、[10]または[11]に記載の偏光板;
 [13]前記表示装置は表示装置ユニットを有し、前記表示装置ユニットは、垂直配向(VA)液晶表示装置ユニットであることを特徴とする、[8]~[12]のいずれかに記載の偏光板;
 [14]前記表示装置は表示装置ユニットを有し、前記表示装置ユニットの表示セルの視認側に組み込むことを特徴とする、[8]~[13]のいずれかに記載の偏光板。
The present invention includes, but is not limited to, the following aspects and forms:
[1] In a display device having a polarizing plate and a display device unit,
The polarizing plate has a polarizer and an optical film,
The optical film has at least a substrate,
the substrate contains at least a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1);
Formula (1) 0≦(refractive index of the optical film−refractive index of the polarizer)<0.02
A display device, wherein the RMS granularity of a display image taken from a position inclined by 10° from the display surface to the viewing side when the display device displays black is 0.30 to 1.34;
[2] The display device according to [1], wherein the RMS granularity is 0.30 to 1.30;
[3] The display device according to [1] or [2], wherein the optical film further has a functional layer;
[4] The refractive index difference between the optical film and the polarizer satisfies the following formula (2),
Formula (2) 0.001≦(refractive index of the optical film−refractive index of the polarizer)≦0.015
The display device according to [3], wherein the functional layer contains an acrylic resin or a urethane resin, and particles;
[5] The display device according to [3] or [4], wherein the functional layer contains an acrylic resin, and the acrylic resin contains a urethane acrylate resin;
[6] The display device according to any one of [1] to [5], wherein the display device unit is a vertical alignment (VA) liquid crystal display device unit;
[7] The display device according to any one of [1] to [6], wherein at least one of the polarizing plates is arranged on the viewing side of the display cell of the display device unit. ;
[8] A polarizing plate having a polarizer and an optical film,
The optical film has at least a substrate,
the substrate contains at least a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1);
Formula (1) 0≦(refractive index of the optical film−refractive index of the polarizer)<0.02
In a state in which the polarizing plate is incorporated in the display device, the RMS granularity of the displayed image taken from a position inclined by 10° from the display surface to the viewing side when the display device displays black is 0.30 to 1.34. A polarizing plate, characterized by having;
[9] The polarizing plate of [8], wherein the RMS granularity is 0.30 to 1.30;
[10] The polarizing plate of [8] or [9], wherein the optical film further comprises a functional layer;
[11] The refractive index difference between the optical film and the polarizer satisfies the following formula (2),
Formula (2) 0.001≦(refractive index of the optical film−refractive index of the polarizer)≦0.015
The polarizing plate of [10], wherein the functional layer contains an acrylic resin or a urethane resin, and particles;
[12] The polarizing plate of [10] or [11], wherein the functional layer contains an acrylic resin, and the acrylic resin contains a urethane acrylate resin;
[13] The display device according to any one of [8] to [12], wherein the display device has a display device unit, and the display device unit is a vertical alignment (VA) liquid crystal display device unit. Polarizer;
[14] The polarizing plate according to any one of [8] to [13], wherein the display device has a display device unit, and the display device unit is incorporated on the viewing side of the display cell.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」または「%」の表示を用いるが、特に断りがない限り「質量部」または「質量%」を表す。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these. In the examples, "parts" or "%" are used, but "mass parts" or "mass%" are indicated unless otherwise specified.
 <光学フィルムの製造>
 (シクロオレフィン樹脂a1の製造)
 ・開環重合
 窒素で置換した反応器に、トリシクロ[4.3.0.12,5]デカ-3-エン(以下、「DCP」とも称する)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(以下、「TCD」とも称する)、1,3-ジメチルドデカヒドロシクロペンタ[a]インデン(以下、「MTHF」とも称する)、およびアクリル酸2-ヒドロキシエチル(以下、「HEA」とも称する)の混合物(質量比18/18/4/60)7部(重合に使用するモノマー(単量体)全量に対して1質量%)と、シクロヘキサン1600部とを加え、さらにトリ-iso-ブチルアルミニウム0.55部、イソブチルアルコール0.21部、反応調整剤としてジイソプロピルエーテル0.84部、および分子量調節剤として1-ヘキセン3.24部を添加した。
<Manufacture of optical film>
(Production of cycloolefin resin a1)
Ring-opening polymerization In a nitrogen-substituted reactor, tricyclo[4.3.0.1 2,5 ]dec-3-ene (hereinafter also referred to as “DCP”), tetracyclo[4.4.0.1 2 , 5 . 1 7,10 ]dodeca-3-ene (hereinafter also referred to as “TCD”), 1,3-dimethyldodecahydrocyclopenta[a]indene (hereinafter also referred to as “MTHF”), and 2-hydroxyethyl acrylate (hereinafter also referred to as "HEA") mixture (mass ratio 18/18/4/60) 7 parts (1% by mass based on the total amount of monomers used for polymerization) and 1600 parts of cyclohexane In addition, 0.55 parts of tri-iso-butylaluminum, 0.21 parts of isobutyl alcohol, 0.84 parts of diisopropyl ether as a reaction modifier, and 3.24 parts of 1-hexene as a molecular weight modifier were added.
 ここに、シクロヘキサンに溶解させた濃度0.65%の六塩化タングステン溶液24.1部を添加して、55℃で10分間攪拌した。 To this, 24.1 parts of a 0.65% concentration tungsten hexachloride solution dissolved in cyclohexane was added and stirred at 55°C for 10 minutes.
 次いで、反応系を55℃に保持しながら、DCP、TCD、MTHF、およびHEA(質量比18/18/4/60)の混合物を693部と、シクロヘキサンに溶解させた濃度0.65%の六塩化タングステン溶液48.9部とをそれぞれ系内に150分かけて連続的に滴下した。その後、30分間反応を継続し重合を終了して、開環重合体を含む開環重合反応液を得た。 Then, while maintaining the reaction system at 55° C., 693 parts of a mixture of DCP, TCD, MTHF, and HEA (mass ratio 18/18/4/60) and 0.65% hexadecimate dissolved in cyclohexane. 48.9 parts of the tungsten chloride solution was continuously dropped into the system over 150 minutes. After that, the reaction was continued for 30 minutes to complete the polymerization to obtain a ring-opening polymerization reaction liquid containing a ring-opening polymer.
 重合終了後、ガスクロマトグラフィーにより測定したモノマーの重合転化率は重合終了時で100%であった。 After completion of polymerization, the polymerization conversion rate of the monomer measured by gas chromatography was 100% at the end of polymerization.
 ・水素添加
 得られた開環重合反応液を耐圧性の水素化反応器に移送し、ケイソウ土担持ニッケル触媒(日揮化学株式会社(現、日揮触媒化成株式会社)製、製品名「T8400RL」、ニッケル担持率57%)1.4部およびシクロヘキサン167部を加え、180℃、水素圧4.6MPaで6時間反応させて反応溶液を得た。この反応溶液を、ラジオライト#500を濾過床として、圧力0.25MPaで加圧濾過(株式会社IHI製、製品名「フンダフィルター」)して水素化触媒を除去し、無色透明な水素添加物溶液を得た。
Hydrogenation The resulting ring-opening polymerization reaction solution was transferred to a pressure-resistant hydrogenation reactor, and a diatomaceous earth-supported nickel catalyst (manufactured by JGC Chemical Co., Ltd. (currently JGC Catalysts and Chemicals Co., Ltd.), product name “T8400RL”, 1.4 parts of nickel loading rate 57%) and 167 parts of cyclohexane were added and reacted at 180° C. and hydrogen pressure of 4.6 MPa for 6 hours to obtain a reaction solution. This reaction solution is filtered under pressure at a pressure of 0.25 MPa (manufactured by IHI Co., Ltd., product name "Funda filter") using Radiolite #500 as a filter bed to remove the hydrogenation catalyst, resulting in a colorless and transparent hydrogenated product. A solution was obtained.
 次いで、前記水素添加物95部あたり酸化防止剤:ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](BASFジャパン株式会社製、製品名「イルガノックス(登録商標)1010」)0.5部を、水素添加物溶液に添加して溶解させた。次いで、フィルター(3M社製、製品名「ゼータープラスフィルター30H」、孔径0.5~1μm)にて順次濾過し、さらに別の金属ファイバー製フィルター(ニチダイ株式会社製、孔径0.4μm)にて濾過して微小な固形分を除去し、濾過溶液を得た。 Then, antioxidant per 95 parts of the hydrogenated product: pentaerythritol tetrakis [3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF Japan Ltd., product name "Irganox ( (registered trademark) 1010") was added to and dissolved in the hydrogenate solution. Then, it is sequentially filtered through a filter (manufactured by 3M, product name “Zeta Plus Filter 30H”, pore size 0.5 to 1 μm), and further through another metal fiber filter (manufactured by Nichidai Co., Ltd., pore size 0.4 μm). Filtration removed fine solids to give a filtered solution.
 次いで、この濾過溶液を、円筒型濃縮乾燥器(株式会社日立製作所製)を用いて、温度270℃、圧力1kPa以下で乾燥した。これにより、濾過溶液から、溶媒であるシクロヘキサンおよびその他の揮発成分を除去して、樹脂固形分を得た。この樹脂固形分を、前記濃縮乾燥機に直結したダイから溶融状態でストランド状に押し出した。押し出された樹脂固形分を冷却後カットして、開環重合体の水素添加物のペレット(シクロオレフィン樹脂a1を含むペレット)を得た。 Next, this filtered solution was dried using a cylindrical concentration dryer (manufactured by Hitachi, Ltd.) at a temperature of 270°C and a pressure of 1 kPa or less. As a result, the solvent cyclohexane and other volatile components were removed from the filtered solution to obtain a resin solid content. This resin solid content was extruded in a molten state into strands from a die directly connected to the concentration dryer. The extruded resin solid content was cooled and then cut to obtain pellets of the hydrogenated ring-opening polymer (pellets containing the cycloolefin resin a1).
 なお、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算にて測定したところ、シクロオレフィン樹脂a1の重量平均分子量(Mw)は、70,000であった。 The weight average molecular weight (Mw) of cycloolefin resin a1 was 70,000 when measured in terms of polystyrene by gel permeation chromatography (GPC).
 (シクロオレフィン樹脂a2の製造)
 シクロオレフィン樹脂a1の製造において、7部(重合に使用するモノマー(単量体)全量に対して1質量%)および693部のDCP、TCD、MTHF、およびHEAの混合物の添加において、DCP、TCD、MTHF、およびHEAの質量比を、質量比10/20/10/60に変更した以外は同様にして、開環重合体の水素添加物のペレット(シクロオレフィン樹脂a2を含むペレット)を得た。
(Production of cycloolefin resin a2)
In the production of cycloolefin resin a1, DCP, TCD in the addition of 7 parts (1% by mass relative to the total amount of monomers (monomers) used for polymerization) and 693 parts of DCP, TCD, MTHF, and a mixture of HEA , MTHF, and HEA in the same manner, except that the mass ratio was changed to 10/20/10/60, to obtain pellets of the hydrogenated ring-opening polymer (pellets containing cycloolefin resin a2). .
 なお、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算にて測定したところ、シクロオレフィン樹脂a2の重量平均分子量(Mw)は、90,000であった。 The weight average molecular weight (Mw) of the cycloolefin resin a2 was 90,000 when measured in terms of polystyrene by gel permeation chromatography (GPC).
 (シクロオレフィン樹脂a3の製造)
 シクロオレフィン樹脂a1の製造において、7部(重合に使用するモノマー(単量体)全量に対して1質量%)および693部のDCP、TCD、MTHF、およびHEAの混合物の添加において、DCP、TCD、MTHF、およびHEAの質量比を、質量比25/25/10/40に変更した以外は同様にして、開環重合体の水素添加物のペレット(シクロオレフィン樹脂a3を含むペレット)を得た。
(Production of cycloolefin resin a3)
In the production of cycloolefin resin a1, DCP, TCD in the addition of 7 parts (1% by mass relative to the total amount of monomers (monomers) used for polymerization) and 693 parts of DCP, TCD, MTHF, and a mixture of HEA , MTHF, and HEA in the same manner, except that the mass ratio was changed to 25/25/10/40, to obtain pellets of the hydrogenated ring-opening polymer (pellets containing cycloolefin resin a3). .
 なお、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算にて測定したところ、シクロオレフィン樹脂a3の重量平均分子量(Mw)は、60,000であった。 The weight average molecular weight (Mw) of cycloolefin resin a3 was 60,000 when measured in terms of polystyrene by gel permeation chromatography (GPC).
 (シクロオレフィン樹脂a4の製造)
 エチレンと、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)との共重合反応を以下のように行った。
(Production of cycloolefin resin a4)
A copolymerization reaction between ethylene and bicyclo[2.2.1]hept-2-ene (common name: norbornene) was carried out as follows.
 攪拌装置を備えた容積500mlのガラス製反応容器に不活性ガスとして窒素を50Nl/hrの流量で30分間流通させた後、トルエンを200ml、ノルボルネンを15g加えた後に、トリイソブチルアルミニウムのデカン溶液(濃度1.000mM/ml)を0.30ml加えた。次いで、回転数1200rpmで重合溶媒を攪拌しながら溶媒温度を40℃になるよう調節した。溶媒温度が40℃に達した後、窒素の他にさらにエチレンを25Nl/hrの供給速度で反応容器に流通させ、10分経過した後に、トリフェニルカルベニウム(テトラキスペンタフルオロフェニル)ボレートのトルエン溶液(濃度0.005mM/ml)7mlを反応容器に添加し、次いで、反応容器上部の滴下ロートから、予め調製しておいた(η-CMeSiMe)Sc(CHNMe-o)のトルエン溶液(濃度0.005mM/ml)7mlをガラス製反応容器に添加し、重合を開始させた。ここで、Meはメチル基を示し、ηはハプト数が5であることを示す。 After circulating nitrogen as an inert gas in a 500 ml glass reaction vessel equipped with a stirrer at a flow rate of 50 Nl/hr for 30 minutes, 200 ml of toluene and 15 g of norbornene were added, and then a decane solution of triisobutylaluminum ( concentration of 1.000 mM/ml) was added. Then, the solvent temperature was adjusted to 40° C. while stirring the polymerization solvent at a rotation speed of 1200 rpm. After the solvent temperature reached 40° C., in addition to nitrogen, ethylene was passed through the reactor at a feed rate of 25 Nl/hr, and after 10 minutes, a toluene solution of triphenylcarbenium (tetrakispentafluorophenyl)borate was added. (concentration 0.005 mM/ml) was added to the reaction vessel, followed by previously prepared (η 5 -C 5 Me 4 SiMe 3 )Sc(CH 2 C 6 H) from the dropping funnel on top of the reaction vessel. 7 ml of a toluene solution of 4 NMe 2 -o) 2 (concentration 0.005 mM/ml) was added to the glass reaction vessel to initiate polymerization. Here, Me indicates a methyl group, and η5 indicates that the haptic number is five .
 15分間経過した後、メタノールを5ml添加して重合を停止させ、エチレンと、ノルボルネンとの共重合体を含む重合溶液を得た。その後、重合溶液を別に用意した容積1Lのビーカーに移液し、さらに濃塩酸5mlと攪拌子を加え、強攪拌下で2時間接触させ脱灰操作を行った。この重合液に対して体積で約3倍のアセトンを入れたビーカーに脱灰後の重合溶液を攪拌下加えて共重合体を析出させ、さらに析出した共重合体を濾過により濾液と分離した。得られた溶媒を含む重合体を130℃で12時間減圧乾燥を行い、エチレン-ノルボルネン共重合体(エチレンと、ノルボルネンとの共重合体)(シクロオレフィン樹脂a4)を得た。得られたエチレン-ノルボルネン共重合体における、エチレンと、ノルボルネンとの質量比は、質量比46/54であった。 After 15 minutes had passed, 5 ml of methanol was added to terminate the polymerization to obtain a polymerization solution containing a copolymer of ethylene and norbornene. After that, the polymerization solution was transferred to a separately prepared 1-liter beaker, 5 ml of concentrated hydrochloric acid and a stirrer were added, and the mixture was brought into contact with the mixture for 2 hours under strong stirring for demineralization. The deashed polymerization solution was added to a beaker containing acetone about three times the volume of the polymerization solution with stirring to precipitate a copolymer, and the precipitated copolymer was separated from the filtrate by filtration. The resulting solvent-containing polymer was dried under reduced pressure at 130° C. for 12 hours to obtain an ethylene-norbornene copolymer (a copolymer of ethylene and norbornene) (cycloolefin resin a4). The mass ratio of ethylene and norbornene in the obtained ethylene-norbornene copolymer was 46/54.
 その後、得られたシクロオレフィン樹脂a4をペレット状として、シクロオレフィン樹脂a4を含むペレットを得た。 After that, the obtained cycloolefin resin a4 was pelletized to obtain pellets containing the cycloolefin resin a4.
 なお、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算にて測定したところ、シクロオレフィン樹脂a4の重量平均分子量(Mw)は、50,000であった。 The weight average molecular weight (Mw) of cycloolefin resin a4 was 50,000 when measured in terms of polystyrene by gel permeation chromatography (GPC).
 (シクロオレフィン樹脂a5を含むペレットの製造)
 下記の化学式(C1)で表される化合物C1と、HEAとを80/20(質量比)で共重合して得られた共重合体を、シクロオレフィン樹脂a5として準備した。
(Production of pellets containing cycloolefin resin a5)
A copolymer obtained by copolymerizing a compound C1 represented by the following chemical formula (C1) and HEA at a ratio of 80/20 (mass ratio) was prepared as a cycloolefin resin a5.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 その後、得られたシクロオレフィン樹脂a5をペレット状として、シクロオレフィン樹脂a5を含むペレットを得た。 After that, the obtained cycloolefin resin a5 was pelletized to obtain pellets containing the cycloolefin resin a5.
 なお、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算にて測定したところ、シクロオレフィン樹脂a5の重量平均分子量(Mw)は、50,000であった。 The weight average molecular weight (Mw) of the cycloolefin resin a5 was 50,000 when measured in terms of polystyrene by gel permeation chromatography (GPC).
 (ポリエーテルウレタンアクリレートU1の合成)
 攪拌器、温度計、還流冷却器、および窒素導入管を装備したフラスコに、(ua1)成分としてポリエーテルポリオール(サンニックス(登録商標)ジオールPP-2000、数平均分子量2,000、三洋化成工業株式会社製)400質量部を仕込んだ。次に、窒素ガスを吹き込みながら、系内を60℃まで昇温し、均一に溶解した後、(ua2)成分としてトリレンジイソシアネート54質量部を加え、さらに100℃まで昇温し、6時間保温した。そして、90℃に降温し、窒素ガスの吹き込みを中止した後、(ua3)成分として2-ヒドロキシエチルアクリレート10質量部、重合禁止剤としてハイドロキノンモノメチルエーテル0.5質量部を加え、7時間保温した。反応液中にイソシアネート基が消失したことをIR測定により確認した後反応を終了し、数平均分子量が11,000であるポリエーテルウレタンアクリレート(U1)を得た。
(Synthesis of polyether urethane acrylate U1)
A flask equipped with a stirrer, thermometer, reflux condenser, and nitrogen inlet tube was charged with polyether polyol (Sannics (registered trademark) diol PP-2000, number average molecular weight 2,000, Sanyo Chemical Industries, Ltd.) as the (ua1) component. Co., Ltd.) 400 parts by mass were charged. Next, while blowing nitrogen gas, the inside of the system is heated to 60° C. and dissolved uniformly, then 54 parts by mass of tolylene diisocyanate is added as the component (ua2), the temperature is further raised to 100° C., and the temperature is maintained for 6 hours. did. Then, after the temperature was lowered to 90° C. and the blowing of nitrogen gas was stopped, 10 parts by mass of 2-hydroxyethyl acrylate as the (ua3) component and 0.5 parts by mass of hydroquinone monomethyl ether as a polymerization inhibitor were added, and the temperature was maintained for 7 hours. . After confirming by IR measurement that the isocyanate group disappeared in the reaction solution, the reaction was terminated to obtain polyether urethane acrylate (U1) having a number average molecular weight of 11,000.
 (粒子分散液1の調製)
 10質量部のシリカ粒子(日本アエロジル株式会社製 R972V、平均二次粒子径200nm)と、90質量部のエタノールとをディゾルバーで30分間撹拌混合した後、高圧分散機であるマントンゴーリンを用いて分散させて、分散液を調製した。得られた分散液に、65質量部のジクロロメタンを撹拌しながら投入し、ディゾルバーで30分間撹拌混合して、希釈した。得られた溶液をアドバンテック東洋株式会社製ポリプロピレンワインドカートリッジフィルターTCW-PPS-1Nで濾過して、粒子分散液1を得た。
(Preparation of particle dispersion liquid 1)
10 parts by mass of silica particles (Nippon Aerosil Co., Ltd. R972V, average secondary particle diameter 200 nm) and 90 parts by mass of ethanol were stirred and mixed for 30 minutes with a dissolver, and then dispersed using a high-pressure disperser Manton Gaulin. to prepare a dispersion. 65 parts by mass of dichloromethane was added to the resulting dispersion while stirring, and the mixture was stirred and mixed with a dissolver for 30 minutes for dilution. The resulting solution was filtered through a polypropylene wound cartridge filter TCW-PPS-1N manufactured by Advantech Toyo Co., Ltd. to obtain a particle dispersion liquid 1.
 (粒子分散液2の調製)
 10質量部のシリカ粒子(日本アエロジル株式会社製 R812、平均二次粒子径50nm)と、90質量部のエタノールとをディゾルバーで30分間撹拌混合した後、高圧分散機であるマントンゴーリンを用いて分散させて、分散液を調製した。得られた分散液に、65質量部のジクロロメタンを撹拌しながら投入し、ディゾルバーで30分間撹拌混合して、希釈した。得られた溶液をアドバンテック東洋株式会社製ポリプロピレンワインドカートリッジフィルターTCW-PPS-1Nで濾過して、粒子分散液2を得た。
(Preparation of particle dispersion liquid 2)
After stirring and mixing 10 parts by mass of silica particles (Nippon Aerosil Co., Ltd. R812, average secondary particle diameter 50 nm) and 90 parts by mass of ethanol with a dissolver for 30 minutes, dispersion is performed using a high-pressure disperser Manton Gaulin. to prepare a dispersion. 65 parts by mass of dichloromethane was added to the resulting dispersion while stirring, and the mixture was stirred and mixed with a dissolver for 30 minutes for dilution. The resulting solution was filtered through a polypropylene wound cartridge filter TCW-PPS-1N manufactured by Advantech Toyo Co., Ltd. to obtain a particle dispersion liquid 2.
 (粒子分散液3の調製)
 10質量部のシリカ粒子(日本アエロジル株式会社製 R972V、平均二次粒子径200nm)と、90質量部のエタノールとをディゾルバーで30分間撹拌混合した後、高圧分散機であるマントンゴーリンを用いて分散させて、分散液を調製した。得られた分散液に、65質量部のエタノールを撹拌しながら投入し、ディゾルバーで30分間撹拌混合して、希釈した。得られた溶液をアドバンテック東洋株式会社製ポリプロピレンワインドカートリッジフィルターTCW-PPS-1Nで濾過して、粒子分散液3を得た。
(Preparation of particle dispersion liquid 3)
10 parts by mass of silica particles (Nippon Aerosil Co., Ltd. R972V, average secondary particle diameter 200 nm) and 90 parts by mass of ethanol were stirred and mixed for 30 minutes with a dissolver, and then dispersed using a high-pressure disperser Manton Gaulin. to prepare a dispersion. 65 parts by mass of ethanol was added to the resulting dispersion while stirring, and the mixture was stirred and mixed with a dissolver for 30 minutes for dilution. The resulting solution was filtered through a polypropylene wound cartridge filter TCW-PPS-1N manufactured by Advantech Toyo Co., Ltd. to obtain a particle dispersion liquid 3.
 (機能層形成用塗布液b1の調製)
 下記の各成分を混合して、機能層形成用塗布液b1の調製を60℃で行った:
 ポリエーテルウレタンアクリレート(U1):50.0質量部
 ベンジルアクリレート(FA-BZA、昭和電工マテリアルズ株式会社製、屈折率(25℃)1.5132):50.0質量部
 粒子分散液1:86.0質量部
 メチルエチルケトン(MEK):3010.0質量部
 シクロヘキサノン:90.0質量部。
(Preparation of coating liquid b1 for forming functional layer)
The following components were mixed to prepare functional layer forming coating solution b1 at 60°C:
Polyether urethane acrylate (U1): 50.0 parts by mass Benzyl acrylate (FA-BZA, manufactured by Showa Denko Materials Co., Ltd., refractive index (25 ° C.) 1.5132): 50.0 parts by mass Particle dispersion liquid 1: 86 .0 parts by mass Methyl ethyl ketone (MEK): 3010.0 parts by mass Cyclohexanone: 90.0 parts by mass.
 (機能層形成用塗布液b2の調製)
 下記の各成分を混合して、機能層形成用塗布液b2の調製を行った:
 芳香族ウレタン(メタ)アクリレート(EBECRYL(登録商標)220、ダイセル・オルネクス株式会社製):100.0質量部
 粒子分散液1:86.0質量部
 メチルエチルケトン(MEK):3010.0質量部
 シクロヘキサノン:90.0質量部。
(Preparation of functional layer forming coating liquid b2)
A functional layer-forming coating solution b2 was prepared by mixing the following components:
Aromatic urethane (meth) acrylate (EBECRYL (registered trademark) 220, manufactured by Daicel Ornex Co., Ltd.): 100.0 parts by mass Particle dispersion liquid 1: 86.0 parts by mass Methyl ethyl ketone (MEK): 3010.0 parts by mass Cyclohexanone: 90.0 parts by mass.
 (機能層形成用塗布液b3の調製)
 下記の各成分を混合して、機能層形成用塗布液b3の調製を行った:
 ベンジルアクリレート(FA-BZA、昭和電工マテリアルズ株式会社製、屈折率(25℃)1.5132):100.0質量部
 粒子分散液1:86.0質量部
 メチルエチルケトン(MEK):3010.0質量部
 シクロヘキサノン:90.0質量部。
(Preparation of functional layer forming coating liquid b3)
A functional layer-forming coating solution b3 was prepared by mixing the following components:
Benzyl acrylate (FA-BZA, manufactured by Showa Denko Materials Co., Ltd., refractive index (25 ° C.) 1.5132): 100.0 parts by mass Particle dispersion liquid 1: 86.0 parts by mass Methyl ethyl ketone (MEK): 3010.0 parts by mass Part Cyclohexanone: 90.0 parts by mass.
 (機能層形成用塗布液b4の調製)
 下記の各成分を混合して、機能層形成用塗布液b4の調製を行った:
 ポリエーテルウレタンアクリレート(U1):50.0質量部
 ベンジルアクリレート(FA-BZA、昭和電工マテリアルズ株式会社製、屈折率(25℃)1.5132):50.0質量部
 粒子分散液2:86.0質量部
 メチルエチルケトン(MEK):3010.0質量部
 シクロヘキサノン:90.0質量部。
(Preparation of functional layer forming coating liquid b4)
A functional layer-forming coating liquid b4 was prepared by mixing the following components:
Polyether urethane acrylate (U1): 50.0 parts by mass Benzyl acrylate (FA-BZA, manufactured by Showa Denko Materials Co., Ltd., refractive index (25 ° C.) 1.5132): 50.0 parts by mass Particle dispersion liquid 2: 86 .0 parts by mass Methyl ethyl ketone (MEK): 3010.0 parts by mass Cyclohexanone: 90.0 parts by mass.
 (機能層形成用塗布液b5の調製)
 下記の各成分を混合して、機能層形成用塗布液b5の調製を行った:
 ポリエーテルウレタンアクリレート(U1):50.0質量部
 ポリメタクリル酸メチル(PMMA)(株式会社カネカ製、Mw150,000、屈折率(25℃)1.49):50.0質量部 粒子分散液1:86.0質量部
 メチルエチルケトン(MEK):3010.0質量部
 シクロヘキサノン:90.0質量部。
(Preparation of functional layer forming coating liquid b5)
A functional layer-forming coating liquid b5 was prepared by mixing the following components:
Polyether urethane acrylate (U1): 50.0 parts by mass Polymethyl methacrylate (PMMA) (manufactured by Kaneka Corporation, Mw 150,000, refractive index (25 ° C.) 1.49): 50.0 parts by mass Particle dispersion liquid 1 : 86.0 parts by mass Methyl ethyl ketone (MEK): 3010.0 parts by mass Cyclohexanone: 90.0 parts by mass.
 (機能層形成用塗布液b6の調製)
 下記の各成分を混合して、機能層形成用塗布液b6の調製を行った:
 水系ウレタン樹脂(ポリウレタン水分散体)(スーパーフレックス(登録商標)210、第一工業製薬株式会社製、固形分35%):228.6質量部
 エポキシ化合物(デナコール(登録商標)EX-521、ナガセケムテックス社製):16.0質量部
 アジピン酸ジヒドラジド:4.0質量部
 粒子分散液3:86.0質量部
 エタノール:3100.0質量部。
(Preparation of functional layer forming coating liquid b6)
A functional layer-forming coating liquid b6 was prepared by mixing the following components:
Water-based urethane resin (polyurethane water dispersion) (Superflex (registered trademark) 210, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., solid content 35%): 228.6 parts by mass Epoxy compound (Denacol (registered trademark) EX-521, Nagase Chemtex Corporation): 16.0 parts by mass Dihydrazide adipic acid: 4.0 parts by mass Particle dispersion liquid 3: 86.0 parts by mass Ethanol: 3100.0 parts by mass.
 (機能層付き光学フィルム1の製造)
 上記で製造したシクロオレフィン樹脂a1を含むペレットを100℃で5時間乾燥した。その後、乾燥したペレットを、単軸の押出し機に供給し、樹脂温度260℃でポリマーパイプおよびポリマーフィルターを経てTダイからキャスティングドラム上にシート状に押出し、冷却した。これにより、厚み80μm、幅675mmの延伸前フィルムを得た。
(Production of optical film 1 with functional layer)
The pellet containing the cycloolefin resin a1 produced above was dried at 100° C. for 5 hours. Thereafter, the dried pellets were supplied to a single-screw extruder, extruded into a sheet form from a T-die onto a casting drum through a polymer pipe and a polymer filter at a resin temperature of 260°C, and cooled. As a result, a pre-stretched film having a thickness of 80 μm and a width of 675 mm was obtained.
 次いで、延伸前フィルムを、そのまま連続してテンター式横延伸機に供給し、延伸温度145℃、延伸倍率2倍の条件で横一軸延伸処理をすることで、延伸処理を行い、延伸後のフィルムの幅方向の左右両端の部分を裁断して除去して、60μmの厚さのシクロオレフィン樹脂基材を製造した。 Next, the unstretched film is continuously supplied to a tenter-type transverse stretching machine, and subjected to transverse uniaxial stretching at a stretching temperature of 145° C. and a stretching ratio of 2 times, thereby performing a stretching treatment. The left and right ends in the width direction were cut and removed to produce a cycloolefin resin substrate having a thickness of 60 μm.
 続いて、コロナ処理装置(春日電機株式会社製)を用いて、出力500W、電極長1.35m、搬送速度5m/minの条件で、シクロオレフィン樹脂基材の表面に放電処理を施した。 Subsequently, using a corona treatment device (manufactured by Kasuga Denki Co., Ltd.), the surface of the cycloolefin resin substrate was subjected to discharge treatment under the conditions of an output of 500 W, an electrode length of 1.35 m, and a transport speed of 5 m/min.
 そして、シクロオレフィン樹脂基材の放電処理を施した表面に、ダイコート法によって、機能層形成用塗布液b1を塗布速度=30m/分、ウエット塗布量=17.5ml/mで塗布し、乾燥風(90℃)を乾燥速度0.1g/m・sの条件下で緩慢乾燥させた。その後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス株式会社製)を用いて、照射量50mJ/cmの紫外線を照射して塗布層を硬化させ、仕上がり膜厚1μmの機能層(硬化層)を形成した。このようにして、光学フィルム1を製造した。 Then, the functional layer forming coating liquid b1 is applied to the discharge-treated surface of the cycloolefin resin base material by a die coating method at a coating speed of 30 m/min and a wet coating amount of 17.5 ml/m 2 , and dried. Slow drying was carried out under the condition of a wind (90°C) drying speed of 0.1 g/m 2 ·s. After that, under a nitrogen purge, an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 160 W / cm is used to irradiate ultraviolet rays at a dose of 50 mJ / cm 2 to cure the coating layer, and the finished film thickness is 1 μm. A layer (cured layer) was formed. Thus, an optical film 1 was produced.
 (機能層付き光学フィルム2の製造)
 上記の光学フィルム1の製造において、機能層形成用塗布液の塗布後の乾燥条件を乾燥速度3.0g/m・sの条件下で急速乾燥するよう変更した以外は同様にして、光学フィルム2を形成した。
(Production of optical film 2 with functional layer)
An optical film was produced in the same manner as in the production of the above optical film 1, except that the drying conditions after coating of the coating liquid for forming the functional layer were changed to dry rapidly at a drying rate of 3.0 g/m 2 ·s. 2 was formed.
 (機能層付き光学フィルム3の製造)
 上記の光学フィルム1の製造において、延伸前フィルムとして下記の溶液流延法にて得られたフィルムを用いたこと以外は同様にして、光学フィルム3を製造した。
(Production of optical film 3 with functional layer)
Optical film 3 was produced in the same manner as in the production of optical film 1 above, except that a film obtained by the following solution casting method was used as the film before stretching.
 [溶液流延法]
 [ドープ1の調製]
 下記組成のドープ1を調製した。まず、加圧溶解タンクにメチレンクロライド、およびエタノールを添加した。次いで、加圧溶解タンクに、上記で得らえたシクロオレフィン樹脂a1のペレットを撹拌しながら投入した。そして、この混合物を60℃に加熱し、撹拌しながら、シクロオレフィン樹脂a1のペレットを溶解した。この際、加熱温度は、室温から5℃/minで昇温し、30分間で溶解した後、3℃/minで降温した。
[Solution casting method]
[Preparation of Dope 1]
A dope 1 having the following composition was prepared. First, methylene chloride and ethanol were added to a pressurized dissolution tank. Next, the pellets of the cycloolefin resin a1 obtained above were charged into a pressurized dissolution tank while being stirred. Then, the mixture was heated to 60° C. and stirred to dissolve the pellets of the cycloolefin resin a1. At this time, the heating temperature was raised from room temperature at a rate of 5° C./min, and after dissolution in 30 minutes, the temperature was lowered at a rate of 3° C./min.
 得られた混合物を、(株)ロキテクノ製のSHP150を使用して、濾過流量300L/m・h、濾圧1.0×10Paにて濾過し、ドープを得た。 The resulting mixture was filtered using SHP150 manufactured by Roki Techno Co., Ltd. at a filtration flow rate of 300 L/m 2 ·h and a filtration pressure of 1.0×10 6 Pa to obtain a dope.
 (ドープ1の組成)
 シクロオレフィン樹脂a1:100質量部
 メチレンクロライド:235質量部
 エタノール:15質量部。
(Composition of Dope 1)
Cycloolefin resin a1: 100 parts by mass Methylene chloride: 235 parts by mass Ethanol: 15 parts by mass.
 [製膜]
 次いで、無端ベルト流延装置を用い、ドープ1を温度31℃、1800mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は28℃に制御した。ステンレスベルトの搬送速度は20m/minとした。
[Film formation]
Then, using an endless belt casting apparatus, the dope 1 was uniformly cast on a stainless steel belt support at a temperature of 31° C. and a width of 1800 mm. The temperature of the stainless steel belt was controlled at 28°C. The conveying speed of the stainless steel belt was 20 m/min.
 ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶剤量が30%になるまで溶剤を蒸発させた。次いで、剥離張力128N/mで、ステンレスベルト支持体上から剥離した。剥離したフィルムを多数のローラーで搬送させながら、得られた膜状物を、テンターにて150℃の条件下で幅方向に1.2倍延伸した。その後、ロールで搬送しながらさらに乾燥させ、テンタークリップで挟んだ端部をレーザーカッターでスリットして巻き取り、60μmの厚さのシクロオレフィン樹脂基材を製造した。 The solvent was evaporated on a stainless steel belt support until the amount of residual solvent in the cast film reached 30%. Then, it was peeled off from the stainless steel belt support with a peeling tension of 128 N/m. While the peeled film was transported by a number of rollers, the obtained film-like material was stretched 1.2 times in the width direction under the condition of 150° C. in a tenter. After that, the film was further dried while being transported by rolls, and the ends sandwiched between the tenter clips were slit with a laser cutter and wound up to produce a cycloolefin resin substrate having a thickness of 60 μm.
 (機能層付き光学フィルム4の製造)
 上記の光学フィルム1の製造において、機能層形成用塗布液の種類を機能層形成用塗布液b2に変更した以外は同様にして、光学フィルム4を形成した。
(Production of optical film 4 with functional layer)
An optical film 4 was formed in the same manner as in the production of the above optical film 1, except that the type of the functional layer forming coating liquid was changed to the functional layer forming coating liquid b2.
 (機能層付き光学フィルム5の製造)
 上記の光学フィルム1の製造において、機能層形成用塗布液の種類を機能層形成用塗布液b3に変更した以外は同様にして、光学フィルム5を形成した。
(Production of optical film 5 with functional layer)
An optical film 5 was formed in the same manner as in the production of the above optical film 1, except that the type of the functional layer forming coating liquid was changed to the functional layer forming coating liquid b3.
 (機能層付き光学フィルム6の製造)
 上記の光学フィルム1の製造において、機能層形成用塗布液の種類を機能層形成用塗布液b4に変更した以外は同様にして、光学フィルム6を形成した。
(Production of optical film 6 with functional layer)
An optical film 6 was formed in the same manner as in the production of the above optical film 1, except that the type of the functional layer forming coating liquid was changed to the functional layer forming coating liquid b4.
 (機能層付き光学フィルム7の製造)
 上記の光学フィルム1の製造において、延伸前フィルムの形成に用いるペレットの種類を、シクロオレフィン樹脂a2を含むペレットに変更し、機能層形成用塗布液の種類を機能層形成用塗布液b5に変更した以外は同様にして、光学フィルム7を形成した。
(Production of optical film 7 with functional layer)
In the production of the optical film 1 described above, the type of pellets used for forming the unstretched film is changed to pellets containing cycloolefin resin a2, and the type of functional layer forming coating liquid is changed to functional layer forming coating liquid b5. An optical film 7 was formed in the same manner except that
 (光学フィルム8の製造)
 上記の光学フィルム7の製造と同様にしてシクロオレフィン樹脂基材を製造し、当該基材を光学フィルム8とした。
(Manufacture of optical film 8)
A cycloolefin resin substrate was produced in the same manner as the optical film 7 described above, and the substrate was used as an optical film 8 .
 (機能層付き光学フィルム9の製造)
 上記の光学フィルム7の製造において、延伸前フィルムの形成にて、シクロオレフィン樹脂a2を含むペレットに加えて、酸化アルミニウムナノ粒子(イーエムジャパン株式会社製、平均一次粒子径80nm)を、当該ペレットおよび酸化アルミニウムナノ粒子の合計質量に対して0.7質量%の量となるよう単軸の押出し機に供給した以外は同様にして、光学フィルム9を製造した。
(Production of optical film 9 with functional layer)
In the production of the above optical film 7, in the formation of the film before stretching, in addition to the pellets containing the cycloolefin resin a2, aluminum oxide nanoparticles (manufactured by EM Japan Co., Ltd., average primary particle size 80 nm) are added to the pellets and An optical film 9 was produced in the same manner, except that the aluminum oxide nanoparticles were supplied to the single-screw extruder in an amount of 0.7% by mass relative to the total mass of the aluminum oxide nanoparticles.
 (機能層付き光学フィルム10の製造)
 上記の光学フィルム7の製造において、延伸前フィルムの形成に用いるペレットの種類を、シクロオレフィン樹脂a4を含むペレットに変更した以外は同様にして、光学フィルム10を製造した。
(Production of optical film 10 with functional layer)
Optical film 10 was produced in the same manner as in the production of optical film 7 above, except that the type of pellets used for forming the unstretched film was changed to pellets containing cycloolefin resin a4.
 (光学フィルム11の製造)
 上記の光学フィルム1の製造と同様にしてシクロオレフィン樹脂基材を製造し、当該基材を光学フィルム11とした。
(Manufacture of optical film 11)
A cycloolefin resin substrate was produced in the same manner as in the production of the optical film 1 described above, and the substrate was used as an optical film 11 .
 (光学フィルム12の製造)
 上記の光学フィルム11の製造において、延伸前フィルムの形成に用いるペレットの種類を、シクロオレフィン樹脂a3を含むペレットに変更した以外は同様にして、光学フィルム12を製造した。
(Manufacture of optical film 12)
Optical film 12 was produced in the same manner as in the production of optical film 11 described above, except that the type of pellets used for forming the unstretched film was changed to pellets containing cycloolefin resin a3.
 (機能層付き光学フィルム13の製造)
 上記の光学フィルム1の製造において、機能層形成用塗布液の種類を機能層形成用塗布液b6に変更した以外は同様にして、光学フィルム13を製造した。
(Production of optical film 13 with functional layer)
An optical film 13 was produced in the same manner as in the production of the above optical film 1, except that the type of the functional layer forming coating liquid was changed to the functional layer forming coating liquid b6.
 (光学フィルム14の製造)
 上記の光学フィルム11の製造において、延伸前フィルムの形成に用いるペレットの種類を、シクロオレフィン樹脂a5を含むペレットに変更した以外は同様にして、光学フィルム14を製造した。
(Manufacture of optical film 14)
An optical film 14 was produced in the same manner as in the production of the optical film 11 described above, except that the type of pellets used for forming the unstretched film was changed to pellets containing the cycloolefin resin a5.
 なお、得られた光学フィルム1~14において、シクロオレフィン樹脂基材の厚さは60μmであった。また、得られた光学フィルム1~7、9、10、13において、機能層(硬化層)の厚さは1μmであった。 In the obtained optical films 1 to 14, the thickness of the cycloolefin resin substrate was 60 μm. In the obtained optical films 1 to 7, 9, 10 and 13, the thickness of the functional layer (cured layer) was 1 μm.
 なお、上記で得られた光学フィルムの処方および製造方法を下記表1および下記表2に示す。 Tables 1 and 2 below show the formulations and manufacturing methods of the optical films obtained above.
 <偏光板の製造>
 [偏光子の製造]
 厚さ70μmのポリビニルアルコールフィルムを、35℃の水で膨潤させた。得られたフィルムを、ヨウ素0.075g、ヨウ化カリウム5gおよび水100gからなる水溶液に60秒間浸漬し、さらにヨウ化カリウム3g、ホウ酸7.5gおよび水100gからなる45℃の水溶液に浸漬した。得られたフィルムを、延伸温度55℃、延伸倍率5倍の条件で一軸延伸した。この一軸延伸フィルムを、水洗した後、乾燥させて、厚さ20μmの偏光子を得た。
<Production of polarizing plate>
[Production of polarizer]
A polyvinyl alcohol film with a thickness of 70 μm was swollen with water at 35°C. The resulting film was immersed in an aqueous solution of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and further immersed in an aqueous solution of 3 g of potassium iodide, 7.5 g of boric acid and 100 g of water at 45°C. . The obtained film was uniaxially stretched under conditions of a stretching temperature of 55° C. and a stretching ratio of 5 times. This uniaxially stretched film was washed with water and then dried to obtain a polarizer having a thickness of 20 μm.
 [活性エネルギー線硬化性接着剤の調製]
 下記の各成分を混合した後、脱泡して、活性エネルギー線硬化性接着剤を調製した。なお、トリアリールスルホニウムヘキサフルオロホスフェートは、50%プロピレンカーボネート溶液として配合し、下記にはトリアリールスルホニウムヘキサフルオロホスフェートの固形分量を表示した:
 3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート:45質量部
 エポリード(登録商標)GT-301(株域会社ダイセル製の脂環式エポキシ樹脂):40質量部
 1,4-ブタンジオールジグリシジルエーテル:15質量部
 トリアリールスルホニウムヘキサフルオロホスフェート:2.3質量部
 9,10-ジブトキシアントラセン:0.1質量部
 1,4-ジエトキシナフタレン:2.0質量部。
[Preparation of active energy ray-curable adhesive]
After mixing each of the following components, defoaming was performed to prepare an active energy ray-curable adhesive. The triarylsulfonium hexafluorophosphate was formulated as a 50% propylene carbonate solution, and the solid content of the triarylsulfonium hexafluorophosphate is shown below:
3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate: 45 parts by mass Epolead (registered trademark) GT-301 (alicyclic epoxy resin manufactured by Daicel Corporation): 40 parts by mass 1,4-butane Diol diglycidyl ether: 15 parts by mass Triarylsulfonium hexafluorophosphate: 2.3 parts by mass 9,10-dibutoxyanthracene: 0.1 parts by mass 1,4-diethoxynaphthalene: 2.0 parts by mass.
 [偏光板の製造]
 (偏光板1の製造)
 上記作製した光学フィルム1を準備し、その機能層(硬化層)側の表面にコロナ放電処理を施した。なお、コロナ放電処理の条件は、コロナ出力強度2.0kW、ライン速度18m/分とした。次いで、光学フィルムのコロナ放電処理面に、上記で得られた活性エネルギー線硬化性接着剤を、硬化後の膜厚が約3μmとなるようにバーコーターで塗布した。得られた接着剤層に、上記作製した偏光子の一方の面を貼合した。
[Manufacture of polarizing plate]
(Manufacture of polarizing plate 1)
The optical film 1 produced above was prepared, and the surface on the functional layer (cured layer) side was subjected to a corona discharge treatment. The conditions for the corona discharge treatment were a corona output intensity of 2.0 kW and a line speed of 18 m/min. Next, the active energy ray-curable adhesive obtained above was applied to the corona discharge-treated surface of the optical film with a bar coater so that the film thickness after curing was about 3 μm. One surface of the polarizer produced above was bonded to the obtained adhesive layer.
 一方、他の光学フィルムとして、セルローストリアセテートフィルム(KC4UA、コニカミノルタ株式会社製、膜厚40μm)を準備し、前述と同様にしてその一方の表面にコロナ処理を施した。次いで、KC4UAのコロナ放電処理面に、上記で得られた活性エネルギー線硬化性接着剤を、硬化後の膜厚が約3μmとなるようにバーコーターで塗布した。得られた接着層に、上記作製した、光学フィルム1付きの偏光子の他方の面を貼り合わせて、積層物を得た。 On the other hand, as another optical film, a cellulose triacetate film (KC4UA, manufactured by Konica Minolta, Inc., film thickness 40 μm) was prepared, and one surface thereof was subjected to corona treatment in the same manner as described above. Next, the active energy ray-curable adhesive obtained above was applied to the corona discharge-treated surface of KC4UA with a bar coater so that the film thickness after curing was about 3 μm. The other surface of the polarizer with the optical film 1 prepared above was attached to the obtained adhesive layer to obtain a laminate.
 次いで、貼り合わせた積層物の両面上から、ベルトコンベヤー付き紫外線照射装置(ランプは、フュージョンUVシステムズ社製のDバルブを使用)を用いて、積算光量が750mJ/cmとなるように紫外線を照射し、接着剤層を硬化させて、偏光板1を作製した。 Then, from both sides of the laminated laminate, using an ultraviolet irradiation device with a belt conveyor (the lamp uses a D bulb manufactured by Fusion UV Systems Co., Ltd.), ultraviolet light is applied so that the integrated light amount is 750 mJ / cm 2 . The polarizing plate 1 was produced by irradiating and curing the adhesive layer.
 (偏光板2~14の作製)
 光学フィルム1を、光学フィルム2~14に変更した以外は偏光板1と同様にして、偏光板2~14をそれぞれ作製した。
(Preparation of polarizing plates 2 to 14)
Polarizing plates 2 to 14 were produced in the same manner as in polarizing plate 1 except that optical film 1 was changed to optical films 2 to 14, respectively.
 なお、光学フィルム2~14のコロナ放電処理を施し、上記で得られた活性エネルギー線硬化性接着剤を塗布する面は、機能層(硬化層)を有するフィルムでは機能層(硬化層)側の表面とし、機能層(硬化層)を有さないフィルムではフィルムのいずれか一方の面とした。 The surfaces of the optical films 2 to 14 to which the corona discharge treatment is applied and the active energy ray-curable adhesive obtained above is applied are those on the functional layer (hardened layer) side of the films having the functional layer (hardened layer). In the case of a film having no functional layer (cured layer), it was taken as either one of the surfaces of the film.
 <液晶表示装置の製造>
 (液晶表示装置1の製造)
 VAモードのソニー株式会社製40型の液晶ディスプレイ(BRAVIA(登録商標) X1)の液晶セルの観察者側(視認側)の面(前面)と光源側の面(背面)とに貼付している偏光板をそれぞれ剥がした。そして、得られた液晶セルの光源側の面(背面)と観察者側(視認側)の面(前面)に、それぞれ上記作製した偏光板1を、アクリル系透明粘着剤を用いて貼り合わせて、液晶表示装置1を作製した。偏光板の貼り合わせは、貼り合わせ後の偏光板の透過軸が、元々貼り合わせされていた偏光板の透過軸と一致するように行った。また、偏光板の貼り合わせは、光学フィルム1が偏光子に対して液晶セル側となるように行った。より具体的には、液晶セルの前面への偏光板の貼り合わせは、光学フィルム1が当該偏光板の偏光子に対して液晶セル側となり、他の光学フィルムであるセルローストリアセテートフィルムが当該偏光板の偏光子に対して視認側となるように行った。また、液晶セルの背面への偏光板の貼り合わせは、光学フィルム1が当該偏光板の偏光子に対して液晶セル側となり、他の光学フィルムであるセルローストリアセテートフィルムが当該偏光板の偏光子に対して光源側となるように行った。
<Manufacture of liquid crystal display device>
(Manufacture of liquid crystal display device 1)
Attached to the observer side (visible side) surface (front) and the light source side surface (back) of the liquid crystal cell of a 40-inch liquid crystal display (BRAVIA (registered trademark) X1) manufactured by Sony Corporation in VA mode. Each polarizing plate was peeled off. Then, the polarizing plate 1 prepared above is attached to the light source side surface (rear surface) and the observer side (viewing side) surface (front surface) of the obtained liquid crystal cell using a transparent acrylic adhesive. , a liquid crystal display device 1 was produced. The polarizing plates were bonded so that the transmission axis of the polarizing plate after bonding coincided with the transmission axis of the originally bonded polarizing plate. The polarizing plates were attached so that the optical film 1 was on the liquid crystal cell side with respect to the polarizer. More specifically, in bonding the polarizing plate to the front surface of the liquid crystal cell, the optical film 1 is on the liquid crystal cell side with respect to the polarizer of the polarizing plate, and the cellulose triacetate film, which is another optical film, is the polarizing plate. , so as to be on the viewing side with respect to the polarizer. In addition, when the polarizing plate is attached to the back surface of the liquid crystal cell, the optical film 1 is on the liquid crystal cell side with respect to the polarizer of the polarizing plate, and the cellulose triacetate film, which is another optical film, is the polarizer of the polarizing plate. It was arranged so as to be on the light source side.
 (液晶表示装置2~14の製造)
 偏光板1を、偏光板2~14に変更した以外は液晶表示装置1と同様にして、液晶表示装置2~14を作製した。
(Manufacture of liquid crystal display devices 2 to 14)
Liquid crystal display devices 2 to 14 were produced in the same manner as the liquid crystal display device 1, except that the polarizing plate 1 was changed to the polarizing plates 2 to 14.
 <評価>
 [光学フィルムおよび偏光子の屈折率]
 JIS K0062-1992に基づき、多波長アッベ屈折計(商品名:DR-M2、株式会社アタゴ製)を用いて、25℃のnD:D線(589nm)での屈折率について、上記で得られた光学フィルム1~14および上記で得られた偏光子の屈折率を測定した。なお、測定中間液として、1-ブロモナフタレンを用いた。そして、偏光板1~14について、光学フィルム1~14と、偏光子との屈折率の差(光学フィルムの屈折率-偏光子の屈折率)を算出した。この結果を下記表3に示す。なお、機能層付き光学フィルムについては、全体を1枚のフィルムとして測定を行った。
<Evaluation>
[Refractive Index of Optical Film and Polarizer]
Based on JIS K0062-1992, using a multi-wavelength Abbe refractometer (trade name: DR-M2, manufactured by Atago Co., Ltd.), the refractive index at nD:D line (589 nm) at 25 ° C. was obtained above. The refractive indices of the optical films 1 to 14 and the polarizer obtained above were measured. 1-bromonaphthalene was used as an intermediate solution for measurement. Then, for the polarizing plates 1 to 14, the difference in refractive index between the optical films 1 to 14 and the polarizer (refractive index of the optical film−refractive index of the polarizer) was calculated. The results are shown in Table 3 below. In addition, about the optical film with a functional layer, the whole was measured as one film.
 また、機能層付き光学フィルムについては、機能層単独の屈折率およびシクロオレフィン樹脂基材単独の屈折率を測定した。機能層単独の屈折率は、機能層単独にてフィルムを製膜して、得られた薄膜フィルムの屈折率を上記の方法で測定した。また、シクロオレフィン樹脂基材単独の屈折率は、上記で得られた光学フィルムの製造に用いた基材の屈折率を上記の方法で測定した。なお、上記で説明したように、機能層の屈折率は、基材層の屈折率に対して0.002~0.008低いことが光学散乱の観点から好ましい。 In addition, for the optical film with the functional layer, the refractive index of the functional layer alone and the refractive index of the cycloolefin resin substrate alone were measured. For the refractive index of the functional layer alone, a film was formed from the functional layer alone, and the refractive index of the obtained thin film was measured by the method described above. In addition, the refractive index of the cycloolefin resin substrate alone was measured by the method described above for the refractive index of the substrate used in the production of the optical film obtained above. As described above, the refractive index of the functional layer is preferably 0.002 to 0.008 lower than the refractive index of the base layer from the viewpoint of optical scattering.
 [光学フィルムのヘーズ]
 上記で得られた光学フィルム1~14のヘーズ(%)を測定した。ヘーズは、ヘーズメーター(NDH4000、日本電色工業株式会社製)を用いて、JIS K 7136:2000に従い測定した。ここで、光学フィルムのうち、機能層(硬化層)を有するフィルムでは機能層側から測定した値を使用した。この結果を下記表3に示す。
[Optical Film Haze]
The haze (%) of the optical films 1 to 14 obtained above was measured. Haze was measured according to JIS K 7136:2000 using a haze meter (NDH4000, manufactured by Nippon Denshoku Industries Co., Ltd.). Here, for optical films having a functional layer (cured layer), values measured from the functional layer side were used. The results are shown in Table 3 below.
 [RMS粒状度]
 上記で得られた液晶表示装置1~14について、下記のように表示装置のRMS粒状度を算出した。この結果を下記表3に示す。
[RMS Granularity]
For the liquid crystal display devices 1 to 14 obtained above, the RMS granularity of the display device was calculated as follows. The results are shown in Table 3 below.
 (ステップ1)画像の取得
 カメラ:ソニー株式会社製(SONY) α7sII、
 レンズ:キヤノン株式会社製(Canon) EF 70-200mm F2.8L IS II USM、
を用いて、ISO 25,600、F 2.8で、暗室下、表示面から視認側に10°傾斜した位置から、上記で得られた液晶表示装置を黒表示した際の表示面を撮影した。
(Step 1) Acquisition of image Camera: Sony Corporation (SONY) α7sII,
Lens: Canon EF 70-200mm F2.8L IS II USM,
using ISO 25,600, F 2.8, under a dark room, from a position inclined 10° from the display surface to the viewing side, the display surface of the liquid crystal display device obtained above was photographed when displaying black. .
 表示面の撮影は、液晶表示装置の視認側(観察者側、前面側)に配置されている偏光板の偏光子の吸収軸方向に対して、表示面に沿って+45°、+135°、+225°(-135℃)、および+315°(-45°)回転した方向のそれぞれにおける、表示面から視認側に10°傾斜した位置から行った。この際、液晶表示装置の表示面の撮影の基準とする位置と、カメラとの距離は、50cmとした。 The display surface was photographed at +45°, +135°, +225 along the display surface with respect to the absorption axis direction of the polarizer of the polarizing plate arranged on the viewing side (observer side, front side) of the liquid crystal display device. The measurement was performed from a position tilted 10° from the display surface to the viewing side in each of the directions rotated by 315° (-135°C) and +315° (-45°). At this time, the distance between the position of the display surface of the liquid crystal display device as a reference for photographing and the camera was set at 50 cm.
 (ステップ2)得られた画像に対する解析
 下記の手順に従い、撮影画像からRMS粒状度を算出した:
 1、得られた撮影画像を、フリーソフト(imageJ)を用いて二次元(平面)データで読み込んだ;
 2、実際の撮影画像において2.8cm×4cmの矩形の評価エリアを設定した;
 3、フリーソフト(ImageJ)によって、グレースケール化を行った;
 4、前記評価エリアにおいて読み込んだ二次元データのバックグラウンド補正を行った;
 5、グレースケールにおけるグレーバリュー(画素値)の標準偏差σからRMS粒状度を算出した。この標準偏差σを、この測定角度(表示面に沿った角度)における表示画像のRMS粒状度(特定角度のRMS粒状度)とした;
 6、液晶表示装置の視認側に配置されている偏光板の偏光子の吸収軸方向に対して、表示面に沿って+45°、+135°、+225°(-135°)、および+315°(-45°)回転した方向のそれぞれにおける、表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度(特定角度のRMS粒状度)の平均値を算出し、表示装置のRMS粒状度とした。
(Step 2) Analysis of Obtained Images RMS granularity was calculated from captured images according to the following procedure:
1, The obtained photographed image was read as two-dimensional (planar) data using free software (imageJ);
2. A rectangular evaluation area of 2.8 cm x 4 cm was set in the actual captured image;
3. Grayscaling was performed with free software (ImageJ);
4, background correction was performed on the two-dimensional data read in the evaluation area;
5. RMS granularity was calculated from standard deviation σ of gray values (pixel values) in gray scale. This standard deviation σ was taken as the RMS granularity of the displayed image at this measurement angle (angle along the display surface) (RMS granularity at a specific angle);
6, +45°, +135°, +225° (-135°), and +315° (- 45°) In each of the rotated directions, the average value of the RMS granularity (RMS granularity at a specific angle) of the display image photographed from a position tilted 10° from the display surface toward the viewing side is calculated, and the RMS granularity of the display device is calculated. degree.
 ここで、フリーソフトImageJとは、WayneRasband作成のImageJ1.32Sである。 Here, the free software ImageJ is ImageJ1.32S created by WayneRasband.
 また、バックグラウンド補正とは、例えば、画像の右半分と左半分の領域で同一の明るさを有しているにもかかわらず、異なる明るさとして出力されたり、画像の左側から右側にいくにしたがって徐々に明るくなる結果として出力されたりする場合に行う補正であり、濃度勾配を多項式で近似して、数式的に濃度勾配をキャンセルする。 Background correction is, for example, outputting different brightness even though the right and left half areas of the image have the same brightness, or Therefore, this correction is performed when an image is output as a result of gradual brightness, and the density gradient is mathematically canceled by approximating the density gradient with a polynomial.
 グレースケールにおけるグレーバリューの標準偏差σは、下記方法にて算出した:
 グレーバリューのN個のデータx、x、…、xを母集団とし、その母集団の相加平均(母平均)mを下記数式(I)によって求めた。
The standard deviation σ of gray values in gray scale was calculated by the following method:
N pieces of gray value data x 1 , x 2 , .
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 次に、上記で求めた母平均mを使って下記数式(II)で分散σを求めた。 Next, using the population mean m obtained above, variance σ 2 was obtained by the following formula (II).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 この分散σの正の平方根を、標準偏差σとした。 The positive square root of this variance σ2 was taken as the standard deviation σ.
 (表示ムラ)
 カメラ:ソニー株式会社製(SONY) α7sII、
 レンズ:キヤノン株式会社製(Canon) EF 70-200mm F2.8L IS II USM、
を用いて、ISO 25,600、F 2.8で、暗室下、表示装置を黒表示した際の表示面の観察および撮影を行った。表示面の撮影は、液晶表示装置の視認側(観察者側、前面側)に配置されている偏光板の偏光子の吸収軸方向に対して、表示面に沿って+45°回転した方向における、表示面から視認側に10°傾斜した位置から行った。この際、液晶表示装置の表示面の撮影の基準とする位置と、カメラとの距離は、50cmとした。そして、下記基準に従い、目視もしくは表示画像上でのムラ(ざらつき)の有無およびその程度を確認した。なお、下記の評価結果がA~Cである場合、表示ムラは実用上許容されうるレベルであると判断した。この結果を下記表3に示す。なお、高感度カメラとは上述のカメラおよびレンズのことである:
 ≪評価基準≫
 A:カメラで撮影した画像に対し、さらに階調処理をした画像を目視確認し、表示ムラが確認できない;
 B:カメラで撮影した画像に対し、さらに階調処理をした画像を目視確認し、表示ムラがわずかに確認できる;
 C:目視でわずかに表示ムラが確認できる;
 D:目視で明らかに表示ムラが確認できる。
(Uneven display)
Camera: Sony Corporation (SONY) α7sII,
Lens: Canon EF 70-200mm F2.8L IS II USM,
was used to observe and photograph the display surface when the display device displayed black in a dark room at ISO 25,600 and F 2.8. The display surface was photographed in a direction rotated +45° along the display surface with respect to the absorption axis direction of the polarizer of the polarizing plate arranged on the viewing side (observer side, front side) of the liquid crystal display device. The measurement was performed from a position inclined by 10° from the display surface to the viewing side. At this time, the distance between the position of the display surface of the liquid crystal display device as a reference for photographing and the camera was set at 50 cm. Then, according to the following criteria, the presence or absence of unevenness (roughness) on the displayed image and its degree were confirmed by visual observation or on the displayed image. When the following evaluation results were A to C, it was determined that the display unevenness was at a practically acceptable level. The results are shown in Table 3 below. Note that the high-sensitivity camera is the above-mentioned camera and lens:
≪Evaluation Criteria≫
A: The image shot by the camera is further subjected to gradation processing, and the image is visually confirmed, and display unevenness cannot be confirmed;
B: Slight display unevenness can be confirmed by visually confirming an image that has undergone further gradation processing with respect to the image taken by the camera;
C: Slight display unevenness can be visually confirmed;
D: Display unevenness can be clearly confirmed visually.
 なお、本測定時に撮影した、視認側に配置されている偏光板の偏光子の吸収軸方向に対して、表示面に沿って+45°回転した方向における、表示面から視認側に10°傾斜した位置からの撮影画像の一部を図5および図6に記載する。具体的には、液晶表示装置7についての撮影画像を図5に、液晶表示装置13についての撮影画像を図6に示す。 It should be noted that, with respect to the absorption axis direction of the polarizer of the polarizing plate arranged on the viewing side, which was photographed during this measurement, it was tilted 10° from the display surface to the viewing side in the direction rotated +45° along the display surface. Some of the images taken from the position are shown in FIGS. 5 and 6. FIG. Specifically, a photographed image of the liquid crystal display device 7 is shown in FIG. 5, and a photographed image of the liquid crystal display device 13 is shown in FIG.
 (生産安定性)
 上記得られた液晶表示装置を複数製造し、その輝度ムラを評価することで、生産安定性を評価した。具体的には、暗室、黒表示で観察した。液晶表示装置の視認側(観察者側、前面側)に配置されている偏光板の偏光子の吸収軸方向に対して、表示面に沿って+45°回転した方向における、表示面から視認側に45°傾斜した位置より目視にて観察を行い、輝度ムラの有無を確認した。評価は2000台中、観察ムラが確認された台数で行うこととし、評価基準は以下に示す。下記の評価結果がAまたはBである場合、生産安定性は実用上許容されうるレベルであると判断した。この結果を下記表3に示す:
 ≪評価基準≫
 A:目視にて輝度ムラが確認された液晶表示装置の台数が10台未満/2000台
 B:目視にて輝度ムラが確認された液晶表示装置の台数が10台以上~19台未満/2000台
 C:目視にて輝度ムラが確認された液晶表示装置の台数が20台以上/2000台。
(Production stability)
A plurality of liquid crystal display devices obtained above were manufactured, and the production stability was evaluated by evaluating the luminance unevenness. Specifically, it was observed in a dark room with black display. From the display surface to the viewing side in a direction rotated +45° along the display surface with respect to the absorption axis direction of the polarizer of the polarizing plate arranged on the viewing side (observer side, front side) of the liquid crystal display device Observation was performed visually from a position inclined at 45° to confirm the presence or absence of luminance unevenness. The evaluation is performed on the number of 2,000 units for which observed unevenness is confirmed, and the evaluation criteria are shown below. When the following evaluation result was A or B, it was determined that the production stability was at a practically acceptable level. The results are shown in Table 3 below:
≪Evaluation Criteria≫
A: The number of liquid crystal display devices visually confirmed to have uneven brightness is less than 10/2000 B: The number of liquid crystal display devices visually confirmed to have uneven brightness is 10 or more to less than 19/2000 C: 20 or more/2000 liquid crystal display devices in which luminance unevenness was visually confirmed.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 また、図5および図6の結果より、本発明に係る偏光板7を有する液晶表示装置7では、比較例に係る偏光板13を有する液晶表示装置13と比較して、表示ムラが顕著に低減されることが確認された。また、他の偏光板を有する液晶表示装置についても、同様に、本発明に係る偏光板を有する液晶表示装置では、比較例に係る偏光板を有する液晶表示装置と比較して、顕著に低減されることが確認された。 Further, from the results of FIGS. 5 and 6, in the liquid crystal display device 7 having the polarizing plate 7 according to the present invention, the display unevenness is significantly reduced compared to the liquid crystal display device 13 having the polarizing plate 13 according to the comparative example. It was confirmed that Similarly, for liquid crystal display devices having other polarizing plates, in the liquid crystal display device having the polarizing plate according to the present invention, the reduction is significantly reduced compared to the liquid crystal display device having the polarizing plate according to the comparative example. It was confirmed that
 そして、上記表3の結果より、本発明に係る偏光板1~10を有する液晶表示装置1~10では、シクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差が0以上0.02未満の範囲内であり、かつ、RMS粒状度が0.30~1.34、好ましくは0.30~1.30の範囲内であって、この際、表示ムラが低減されることが確認された。また、これらの偏光板を有するこれらの液晶表示装置は、表示装置間での輝度ムラのバラツキが小さく、生産安定性に優れることも確認された。一方、比較例に係る偏光板11~14に係る液晶表示装置11~14では、シクロオレフィン樹脂基材を含む光学フィルムと、偏光子との屈折率差およびRMS粒状度がそれぞれ上記の範囲外であって、この際、表示ムラの発生が顕著となることが確認された。 From the results in Table 3 above, in the liquid crystal display devices 1 to 10 having the polarizing plates 1 to 10 according to the present invention, the optical film containing the cycloolefin resin base material and the polarizer have a refractive index difference of 0 or more. .02 and the RMS granularity is in the range of 0.30 to 1.34, preferably in the range of 0.30 to 1.30. confirmed. It was also confirmed that these liquid crystal display devices having these polarizing plates have small variations in luminance unevenness between display devices and are excellent in production stability. On the other hand, in the liquid crystal display devices 11 to 14 according to the polarizing plates 11 to 14 according to the comparative examples, the refractive index difference and the RMS granularity between the optical film containing the cycloolefin resin base material and the polarizer were outside the above ranges. At this time, it was confirmed that the occurrence of display unevenness became remarkable.
 本出願は、2021年1月28日に出願された日本特許出願番号2021-011903号に基づいており、その開示内容は、参照により全体として組み入れられている。 This application is based on Japanese Patent Application No. 2021-011903 filed on January 28, 2021, the disclosure of which is incorporated by reference in its entirety.
 1     表示面
 O     基準位置(撮影の基準とする位置)
 X     X方向(視認側偏光板の偏光子の吸収軸と直交する方向)
 Y     Y方向(視認側偏光板の偏光子の吸収軸方向)
 Z     Z方向(表示面の法線方向)
 a     視認側偏光板の偏光子の吸収軸方向
 L     「表示面から視認側に10°傾斜した位置」を示す方向の直線
 L(45) 「視認側偏光板の偏光子の吸収軸方向に対して、表示面に沿って+45°回転した方向における、表示面から視認側に10°傾斜した位置」を示す方向の直線
 10    液晶表示装置
 30    液晶セル
 50    第1偏光板
 51    第1偏光子
 53    光学フィルム(F1)
 55    光学フィルム(F2)
 551   シクロオレフィン樹脂基材
 552   機能層
 70    第2偏光板
 71    第2偏光子
 73    光学フィルム(F3)
 731   シクロオレフィン樹脂基材
 732   機能層
 75    光学フィルム(F4)
 90    光源(バックライト)。
1 Display surface O Reference position (position used as a reference for shooting)
X X direction (direction perpendicular to the absorption axis of the polarizer of the viewing side polarizing plate)
Y Y direction (absorption axis direction of the polarizer of the viewing side polarizing plate)
ZZ direction (normal direction of display surface)
a Direction of the absorption axis of the polarizer of the viewing-side polarizing plate L Straight line in the direction indicating “the position inclined by 10° from the display surface toward the viewing side” L (45) “With respect to the absorption axis direction of the polarizer of the viewing-side polarizing plate , in a direction rotated +45° along the display surface, a straight line in a direction indicating a position inclined by 10° from the display surface to the viewing side 10 liquid crystal display device 30 liquid crystal cell 50 first polarizing plate 51 first polarizer 53 optical film (F1)
55 optical film (F2)
551 cycloolefin resin substrate 552 functional layer 70 second polarizing plate 71 second polarizer 73 optical film (F3)
731 cycloolefin resin substrate 732 functional layer 75 optical film (F4)
90 Light source (backlight).

Claims (14)

  1.  偏光板、及び表示装置ユニットを有する表示装置において、
     前記偏光板は偏光子、及び光学フィルムを有し、
     前記光学フィルムは少なくとも基材を有し、
     前記基材は少なくともシクロオレフィン樹脂を含有し、かつ前記光学フィルムと前記偏光子との屈折率差が下記式(1)を満たし、
     式(1) 0≦(前記光学フィルムの屈折率-前記偏光子の屈折率)<0.02
     前記表示装置を黒表示した際に表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度が0.30~1.34である、表示装置。
    In a display device having a polarizing plate and a display device unit,
    The polarizing plate has a polarizer and an optical film,
    The optical film has at least a substrate,
    the substrate contains at least a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1);
    Formula (1) 0≦(refractive index of the optical film−refractive index of the polarizer)<0.02
    A display device, wherein the RMS granularity of a display image photographed from a position inclined by 10° from the display surface toward the viewing side when the display device displays black is 0.30 to 1.34.
  2.  前記RMS粒状度が0.30~1.30である、請求項1に記載の表示装置。 The display device according to claim 1, wherein the RMS granularity is 0.30 to 1.30.
  3.  前記光学フィルムは、機能層をさらに有する、請求項1または2に記載の表示装置。 The display device according to claim 1 or 2, wherein the optical film further has a functional layer.
  4.  前記光学フィルムと前記偏光子との屈折率差が下記式(2)を満たし、
     式(2) 0.001≦(前記光学フィルムの屈折率-前記偏光子の屈折率)≦0.015
     前記機能層は、アクリル樹脂又はウレタン樹脂、及び粒子を含有する、請求項3に記載の表示装置。
    a refractive index difference between the optical film and the polarizer satisfies the following formula (2),
    Formula (2) 0.001≦(refractive index of the optical film−refractive index of the polarizer)≦0.015
    4. The display device according to claim 3, wherein the functional layer contains acrylic resin or urethane resin, and particles.
  5.  前記機能層は、アクリル樹脂を含み、前記アクリル樹脂は、ウレタンアクリレート樹脂を含む、請求項3または4に記載の表示装置。 The display device according to claim 3 or 4, wherein the functional layer contains an acrylic resin, and the acrylic resin contains a urethane acrylate resin.
  6.  前記表示装置ユニットは、垂直配向(VA)液晶表示装置ユニットである、請求項1~5のいずれか1項に記載の表示装置。 The display device according to any one of claims 1 to 5, wherein the display device unit is a vertical alignment (VA) liquid crystal display device unit.
  7.  前記偏光板のうちの少なくとも1つは、前記表示装置ユニットの表示セルの視認側に配置されている、請求項1~6のいずれか1項に記載の表示装置。 The display device according to any one of claims 1 to 6, wherein at least one of the polarizing plates is arranged on the viewing side of the display cell of the display device unit.
  8.  偏光子、及び光学フィルムを有する偏光板であって、
     前記光学フィルムは少なくとも基材を有し、
     前記基材は少なくともシクロオレフィン樹脂を含有し、かつ前記光学フィルムと前記偏光子との屈折率差が下記式(1)を満たし、
     式(1) 0≦(前記光学フィルムの屈折率-前記偏光子の屈折率)<0.02
     前記偏光板を表示装置に組み込んだ状態において、前記表示装置を黒表示した際に表示面から視認側に10°傾斜した位置から撮影した表示画像のRMS粒状度が0.30~1.34である、偏光板。
    A polarizing plate having a polarizer and an optical film,
    The optical film has at least a substrate,
    the substrate contains at least a cycloolefin resin, and the refractive index difference between the optical film and the polarizer satisfies the following formula (1);
    Formula (1) 0≦(refractive index of the optical film−refractive index of the polarizer)<0.02
    In a state in which the polarizing plate is incorporated in the display device, the RMS granularity of the displayed image taken from a position inclined by 10° from the display surface to the viewing side when the display device displays black is 0.30 to 1.34. There is a polarizer.
  9.  前記RMS粒状度が0.30~1.30である、請求項8に記載の偏光板。 The polarizing plate according to claim 8, wherein the RMS granularity is 0.30 to 1.30.
  10.  前記光学フィルムは、機能層をさらに有する、請求項8または9に記載の偏光板。 The polarizing plate according to claim 8 or 9, wherein the optical film further has a functional layer.
  11.  前記光学フィルムと前記偏光子との屈折率差が下記式(2)を満たし、
     式(2) 0.001≦(前記光学フィルムの屈折率-前記偏光子の屈折率)≦0.015
     前記機能層は、アクリル樹脂又はウレタン樹脂、及び粒子を含有する、請求項10に記載の偏光板。
    a refractive index difference between the optical film and the polarizer satisfies the following formula (2),
    Formula (2) 0.001≦(refractive index of the optical film−refractive index of the polarizer)≦0.015
    11. The polarizing plate according to claim 10, wherein the functional layer contains acrylic resin or urethane resin, and particles.
  12.  前記機能層は、アクリル樹脂を含み、前記アクリル樹脂は、ウレタンアクリレート樹脂を含む、請求項10または11に記載の偏光板。 The polarizing plate according to claim 10 or 11, wherein the functional layer contains an acrylic resin, and the acrylic resin contains a urethane acrylate resin.
  13.  前記表示装置は表示装置ユニットを有し、前記表示装置ユニットは、垂直配向(VA)液晶表示装置ユニットである、請求項8~12のいずれか1項に記載の偏光板。 The polarizer according to any one of claims 8 to 12, wherein the display device has a display device unit, and the display device unit is a vertically aligned (VA) liquid crystal display device unit.
  14.  前記表示装置は表示装置ユニットを有し、前記表示装置ユニットの表示セルの視認側に組み込む、請求項8~13のいずれか1項に記載の偏光板。 The polarizing plate according to any one of claims 8 to 13, wherein the display device has a display device unit, and the display device unit is incorporated on the viewing side of the display cell.
PCT/JP2022/001999 2021-01-28 2022-01-20 Polarizing plate and display device WO2022163492A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022578303A JPWO2022163492A1 (en) 2021-01-28 2022-01-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021011903 2021-01-28
JP2021-011903 2021-01-28

Publications (1)

Publication Number Publication Date
WO2022163492A1 true WO2022163492A1 (en) 2022-08-04

Family

ID=82654506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001999 WO2022163492A1 (en) 2021-01-28 2022-01-20 Polarizing plate and display device

Country Status (3)

Country Link
JP (1) JPWO2022163492A1 (en)
TW (1) TWI826911B (en)
WO (1) WO2022163492A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134396A (en) * 2006-11-28 2008-06-12 Kyoritsu Kagaku Sangyo Kk Polarizing plate and liquid crystal display apparatus
JP2011028251A (en) * 2009-06-26 2011-02-10 Fujifilm Corp Phase difference film, polarizing plate, and liquid crystal display device
JP2016157068A (en) * 2015-02-26 2016-09-01 日本ゼオン株式会社 Optical laminate, hard coat laminate, polarizing plate, and liquid crystal display device
US20190220113A1 (en) * 2018-01-12 2019-07-18 Boe Technology Group Co., Ltd. Touch panel and touch device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003177A1 (en) * 1998-07-09 2000-01-20 Research Frontiers Incorporated Light-polarizing particles of improved particle size distribution
TWI388876B (en) * 2003-12-26 2013-03-11 Fujifilm Corp Antireflection film, polarizing plate, method for producing them, liquid crystal display element, liquid crystal display device, and image display device
TWI353461B (en) * 2004-05-18 2011-12-01 Fujifilm Corp Optical film, optical compensation film, polarizin
CN101248116B (en) * 2005-08-26 2011-09-21 富士胶片株式会社 Polymer film, cyclic polyolefin film, method for manufacturing the same, optical compensation film, polarizer and liquid crystal display device
KR102194998B1 (en) * 2018-06-26 2020-12-24 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134396A (en) * 2006-11-28 2008-06-12 Kyoritsu Kagaku Sangyo Kk Polarizing plate and liquid crystal display apparatus
JP2011028251A (en) * 2009-06-26 2011-02-10 Fujifilm Corp Phase difference film, polarizing plate, and liquid crystal display device
JP2016157068A (en) * 2015-02-26 2016-09-01 日本ゼオン株式会社 Optical laminate, hard coat laminate, polarizing plate, and liquid crystal display device
US20190220113A1 (en) * 2018-01-12 2019-07-18 Boe Technology Group Co., Ltd. Touch panel and touch device

Also Published As

Publication number Publication date
JPWO2022163492A1 (en) 2022-08-04
TWI826911B (en) 2023-12-21
TW202235916A (en) 2022-09-16

Similar Documents

Publication Publication Date Title
US9885907B2 (en) Optical film, polarizing plate and liquid crystal display device
US20160209548A1 (en) Method for manufacturing polarizing plate
JP2008163107A (en) Optical member
JP2014225015A (en) Optical film, polarizing plate, and liquid crystal display device
JP2014219429A (en) Optical film, polarizing plate, and liquid crystal display
JP2009163216A (en) Set of polarizing plate, and liquid crystal panel and liquid crystal display using the same
JP6930544B2 (en) Multilayer film, polarizing plate, and liquid crystal display
TW201730594A (en) Convex side polarizing plate for curved surface image display panel
JP2024045312A (en) Circularly polarizing plate with antireflection layer and image display device using the circularly polarizing plate with antireflection layer
CN112105971A (en) Polarizing plate and display device
JP2011242582A (en) Polarizing plate set, liquid crystal panel using polarizing plate set and liquid crystal display device using polarizing plate set
TWI453123B (en) A set of polarizer, and a liquid crystal panel and an apparatus of liquid crystal display used thereof
WO2018168306A1 (en) Polarizing plate and display device having same
JP6081244B2 (en) Polarizing plate and liquid crystal display device
KR20170137016A (en) A set of polarizer, and a liquid crystal panel and a liquid display apparatus using the set of polarizer
WO2022163492A1 (en) Polarizing plate and display device
CN108693586B (en) Polarizing plate
JP6324947B2 (en) Image display device
JP2023011782A (en) optical laminate
JP7348807B2 (en) Shaped film and optical laminate including shaped film
WO2023132148A1 (en) Polarizing plate and organic electroluminescent display device
JP2018018096A (en) Optical film, polarizing plate, and liquid crystal display
WO2022244301A1 (en) Circular polarizing plate and image display device using same
TWI692652B (en) Optical laminate and reflection-type liquid crystal display apparatus
JP2024027295A (en) Polarizing plate and image display device using the polarizing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745713

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578303

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745713

Country of ref document: EP

Kind code of ref document: A1