WO2022163268A1 - 制御装置、制御システム及び制御方法 - Google Patents
制御装置、制御システム及び制御方法 Download PDFInfo
- Publication number
- WO2022163268A1 WO2022163268A1 PCT/JP2021/048294 JP2021048294W WO2022163268A1 WO 2022163268 A1 WO2022163268 A1 WO 2022163268A1 JP 2021048294 W JP2021048294 W JP 2021048294W WO 2022163268 A1 WO2022163268 A1 WO 2022163268A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- implant
- unit
- control device
- imaging
- captured
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 24
- 239000007943 implant Substances 0.000 claims abstract description 191
- 238000003384 imaging method Methods 0.000 claims abstract description 138
- 238000001356 surgical procedure Methods 0.000 claims abstract description 33
- 238000001000 micrograph Methods 0.000 claims abstract description 32
- 238000003780 insertion Methods 0.000 claims description 19
- 230000037431 insertion Effects 0.000 claims description 19
- 210000000744 eyelid Anatomy 0.000 claims description 16
- 210000001508 eye Anatomy 0.000 description 48
- 238000010586 diagram Methods 0.000 description 22
- 230000003287 optical effect Effects 0.000 description 13
- 238000012545 processing Methods 0.000 description 12
- 208000024304 Choroidal Effusions Diseases 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 210000002159 anterior chamber Anatomy 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 208000010412 Glaucoma Diseases 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 210000004087 cornea Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012014 optical coherence tomography Methods 0.000 description 3
- 210000001742 aqueous humor Anatomy 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 210000003786 sclera Anatomy 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000030533 eye disease Diseases 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000004410 intraocular pressure Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 210000001585 trabecular meshwork Anatomy 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/36—Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
- G02B21/365—Control or image processing arrangements for digital or video microscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/13—Ophthalmic microscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/0012—Surgical microscopes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
- G06T7/74—Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10101—Optical tomography; Optical coherence tomography [OCT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30041—Eye; Retina; Ophthalmic
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30052—Implant; Prosthesis
Definitions
- the present disclosure relates to control devices, control systems, and control methods.
- tomographic images are used to confirm implants that are hidden in tissues that do not transmit visible light. Problems remain, such as identifying the imaging location for obtaining a tomographic image that appropriately includes the implant.
- One aspect of the present disclosure provides a control device, control system, and control method that enable imaging of a tomographic image that appropriately includes an implant.
- a control device includes an acquisition unit that acquires a microscope image in surgery for placing an implant in the eye, and an estimation unit that estimates the state of the operative field based on the acquisition result of the acquisition unit. and an imaging control unit that performs imaging control so that a tomographic image including the implant is captured based on the estimation result of the estimating unit.
- a control system includes an imaging unit that captures a microscopic image and a tomographic image in surgery for placing an implant in the eye, and a control device, and the control device is captured by the imaging unit.
- an acquisition unit that acquires the microscope image obtained by the acquisition unit; an estimation unit that estimates the state of the surgical field based on the acquisition result of the acquisition unit; and a tomographic image including the implant based on the estimation result of the estimation unit.
- an imaging control unit that controls the imaging unit.
- a control method includes: a control device acquiring a microscope image in surgery for placing an implant in the eye; and the control device performing imaging control so that a tomographic image including the implant is captured based on the estimation result.
- FIG. 1 is a diagram showing an example of a schematic configuration of a control system according to an embodiment
- FIG. It is a figure which shows the example of a detailed structure of a control system. It is a figure which shows the example of schematic structure of a control apparatus. It is a figure which shows typically the example of the microscope image which an acquisition part acquires. It is a figure which shows typically the example of the microscope image which an acquisition part acquires.
- FIG. 4 is a diagram schematically showing an example of estimating the position of an implant opening;
- FIG. 4 is a diagram schematically showing an example of estimating the position of an implant opening;
- FIG. 4 is a diagram schematically showing an example of estimating the position of an implant opening;
- FIG. 4 is a diagram schematically showing an example of estimating the position of an implant opening;
- FIG. 4 is a diagram schematically showing an example of estimating the position of an implant opening;
- FIG. 4 is a diagram schematically showing an example of estimating the position of an implant opening;
- FIG. 4 is a diagram schematically showing an example of estimating the position of an implant opening;
- FIG. 4 is a diagram schematically showing an example of control of imaging of a tomographic image;
- FIG. 4 is a diagram schematically showing an example of control of imaging of a tomographic image;
- FIG. 4 is a diagram schematically showing an example of control of imaging of a tomographic image;
- FIG. 4 is a diagram schematically showing an example of control of imaging of a tomographic image;
- FIG. 4 is a diagram schematically showing an example of control of imaging of a tomographic image;
- FIG. 4 is a diagram schematically showing an example of a tomographic image;
- FIG. 4 is a diagram schematically showing an example of a tomographic image;
- FIG. 4 is a diagram schematically showing an example of a tomographic image;
- FIG. 4 is a diagram schematically showing an example of a tomographic image;
- FIG. 4 is a diagram schematically showing an example
- FIG. 4 is a diagram schematically showing an example of a tomographic image
- FIG. 4 is a diagram schematically showing an example of a tomographic image
- 4 is a flow chart showing an example of processing executed in a control device
- It is a figure which shows the example of the hardware constitutions of an apparatus.
- the disclosed technology is used in ophthalmic surgery.
- An example of ophthalmic surgery is the treatment of eye diseases.
- Implants are sometimes used in such surgeries. Implants need to be placed in an appropriate position, but for implants that are hidden in tissue that does not transmit visible light, it is necessary to check whether the hidden part is properly placed with the naked eye or a microscope using visible light. It cannot be confirmed by observation. Whether or not the implant is properly placed is confirmed using a tomographic imaging apparatus that can see through many tissues including such a portion.
- the existing method cannot easily and efficiently perform tomographic imaging of the placement status of the implant. This challenge may be addressed by some disclosed techniques.
- imaging may mean including "shooting".
- FIG. 1 is a diagram showing an example of a schematic configuration of a control system according to an embodiment.
- the illustrated control system 1 is a surgical system used for eye surgery on a patient lying on a bed B.
- FIG. Examples of users of the control system 1 are operators such as doctors, and medical staff who support the operators.
- a microscope device is used for surgery.
- the objective lens 31, the eyepiece lens 5, and the UI section 42 (illustrated as a monitor or the like in this example) are denoted by reference numerals.
- the operator looks through the eyepiece 5 and, if necessary, also refers to the information displayed on the UI unit 42, and performs the operation by observing the surgical site in a magnified manner, for example.
- the surgical site in this example, is the patient's eye.
- the UI unit 42 may be a component (for example, a separate entity) separate from the microscope apparatus.
- the control system 1 includes a control device 7 in addition to the above-described microscope devices (objective lens 31, eyepiece lens 5, presentation unit 41, etc.).
- the control device 7 performs overall control of the control system 1 . Details will be described later with reference to FIG. 2 and subsequent drawings.
- FIG. 2 is a diagram showing an example of the detailed configuration of the control system.
- the control system 1 includes the objective lens 31, the eyepiece lens 5, the UI unit 42 (an example of components of the microscope apparatus), and the control device 7, as well as the light source 2, the observation optical system 3, and the presentation unit 41. , a front image capturing unit 61 and a tomographic image capturing unit 62 .
- the light source 2 illuminates the surgical field by irradiating the surgical target area with illumination light. At least part of the light (observation light) from the illuminated surgical field enters the objective lens 31 of the observation optical system 3 .
- the observation optical system 3 includes an objective lens 31 , lenses (not shown), etc., and a half mirror 32 . Part of the observation light incident on the objective lens 31 (for example, approximately half) is transmitted through the half mirror 32 and further through the presentation unit 41 (the reason will be described later), and is incident on the eyepiece lens 5 . The rest of the observation light is reflected by the half mirror 32 and reaches the front image capturing section 61 .
- the eyepiece lens 5 condenses the observation light and forms an optical image of the surgical field.
- the formed optical image of the surgical field is observed by the operator looking through the eyepiece 5 .
- the presentation unit 41 and the UI unit 42 will be explained. These are examples of user interfaces for exchanging information with the user (operator, etc.) of the control system 1 .
- the presentation unit 41 presents information to the operator looking through the observation optical system 3 .
- the presentation unit 41 is a transmissive display device provided between the observation optical system 3 and the eyepiece 5 . Therefore, as described above, the observation light from the half mirror 14 passes through the presentation unit 41 and enters the eyepiece lens 5 .
- Information (images, etc.) that can be used for surgical support is presented (displayed) by the presentation unit 41 .
- the operator observes the operative field and performs surgery, and refers to the information presented by the presentation unit 41 as necessary.
- the UI unit 42 presents information to the user and receives user operations.
- the UI unit 42 includes a monitor as exemplified in FIG. 1, an operation panel (not shown) (controller, remote controller, etc.), and the like.
- the monitor may be a touch panel, in which case some or all of the functions of the control panel may be realized by the monitor.
- the UI section 42 may include various elements for exchanging information with the user, such as a speaker, a microphone, and a lamp (rotating light, indicator light, etc.).
- the front image capturing unit 61 and the tomographic image capturing unit 62 will be described. These are examples of image capturing units that acquire various images related to surgery.
- the front image capturing unit 61 captures a front image.
- the front image is an image obtained by observing the surgical site from the front, for example, an image obtained by imaging the patient's eye from the approximate eye axis direction.
- the frontal image may correspond to the operative field image.
- the front image capturing unit 61 includes, for example, a video camera.
- the tomographic image capturing unit 62 captures a tomographic image.
- a tomographic image is a cross-sectional image of a surgical site, for example, a cross-sectional image of a patient's eye in a direction substantially parallel to the eye axis direction.
- the tomographic imaging unit 62 includes, for example, an optical coherence tomography (OCT), a Scheimpflug camera, and the like.
- OCT optical coherence tomography
- a tomographic image is acquired according to the interference principle.
- the optical path of the infrared light at that time and part of the optical path of the observation light in the observation optical system 3 may be made common.
- the control device 7 controls the operation of the control system 1 as a whole. Information necessary for control is transmitted and received between the control device 7 and other components as appropriate. For example, the control device 7 adjusts the lighting position, brightness, etc. by controlling the light source 2 . The control device 7 adjusts the observation position, magnification, etc. by controlling the observation optical system 3 . By controlling the presentation unit 41, the control device 7 presents information (such as an image) that can be used for surgery support to the operator. By controlling the UI unit 42, the control device 7 receives user operations and presents information (images, etc.) that can be used for surgery support to the operator. The control device 7 captures a front image and a tomographic image by controlling the front image capturing unit 61 and the tomographic image capturing unit 62 .
- control system 1 as described above is applied, for example, to ophthalmic implant placement surgery.
- ophthalmic implant placement surgery As an example, the operation of an implant for MIGS (Minimally Invasive Glaucoma Surgery) placed in the suprachoroidal space will be described below as an example.
- MIGS Minially Invasive Glaucoma Surgery
- the purpose of the implant placed in the suprachoroidal space is to reduce intraocular pressure and suppress the progression of glaucoma by increasing the amount of aqueous humor discharged from the anterior chamber into the suprachoroidal space, which is one of the outflow channels of aqueous humor from the anterior chamber. and
- the implant When the implant is properly placed, it sits in the suprachoroidal space and performs its intended function (see, eg, FIG. 18 below).
- the placement position of the implant is deviated toward the sclera or vitreous cavity, it may not only fail to exhibit its intended function, but may also cause injury. Accordingly, there is a need for confirmation of proper implant placement by the operator.
- a tomographic image suitable for the operator to confirm placement of the implant for example, a tomographic image along the longitudinal direction of the implant (for example, FIG. 18 described later) may be captured and presented.
- a tomographic image along the lateral direction of the implant for example, FIG. 16 described later
- Any tomographic image can be captured by estimating the placement position of the implant by the control system 1 (more specifically, the estimating unit 72 of the control device 7 described later).
- FIG. 3 is a diagram showing an example of the schematic configuration of the control device.
- the control device 7 includes an acquisition section 71 , an estimation section 72 and an imaging control section 73 .
- the acquisition unit 71 acquires a microscope image.
- the microscopic image is a microscopic image (operative field image) in surgery for placing an implant in the eye.
- the implant is inserted into, for example, the corneal area and left in place.
- the implant is placed in such a manner as to be hidden by the tissue that does not transmit visible light.
- the microscope image may be an image captured by the front image capturing section 61 .
- FIG. 4 and 5 are diagrams schematically showing examples of microscope images acquired by the acquisition unit.
- the microscope image illustrated in FIG. 4 shows the surgical field in which the surgical tool T is inserted into the incision C. As shown in FIG. The incision C is made with a knife or the like for inserting the implant into the eye.
- the microscopic image illustrated in FIG. 5 shows the operative field with the implant inserted into the angle region.
- a gonioscope placed on the eye permits visualization of the gonio-region, and the opening O of the inserted implant is observed.
- the edge of the gonio-mirror is illustrated as edge ME.
- the opening O is an opening at the rear end of the implant in the insertion direction.
- the acquisition unit 71 also acquires a tomographic image.
- the tomographic image may be an image captured by the tomographic image capturing unit 62 . Acquisition of a tomographic image will be explained later.
- the estimating unit 72 estimates the state of the operative field based on the acquisition result of the acquiring unit 71 (microscopic image and, if necessary, tomographic image). For the estimation, processing such as image recognition is used as necessary. For image recognition, various known image recognition engines, image recognition models (learned models, etc.), etc. may be used.
- the estimator 72 estimates the position of the implant. For example, the estimator 72 estimates the position of the implant by estimating the position of the opening O of the implant in the angle region.
- Various estimation methods which will be described later, can be adopted.
- the degree of difficulty of estimation changes depending on the type of implant, the surgical style of the operator, and the like, and there are estimation methods suitable for it. Therefore, an estimation method that can easily obtain high estimation accuracy may be appropriately selected and employed. Some examples of specific estimation methods will be described.
- FIG. 6 to 9 are diagrams schematically showing examples of estimating the position of the opening of the implant.
- the exemplified microscopic image shows the operative field in which the eye is fixed in an open state by the eyelid organ E. As shown in FIG.
- the estimating unit 72 estimates, as the position of the opening O, the angle region R located on the opposite side of the corneal center from the incision, among the angle regions. This is because the implant insertion region is often located on the opposite side of the incision C across the center of the cornea.
- a line passing through the center of the cornea is indicated by a one-dot chain line.
- the estimating unit 72 is located on an extension line of the advancing direction of the implant I when the implant I is inserted into the eye (at the time of insertion) in the angle area (illustrated by the dashed-dotted line). ) is assumed to be the position of the opening O. This is because the implant I is often inserted toward the implant insertion region.
- the estimating unit 72 estimates, as the position of the opening O, the corner area with which the implant I (for example, the front end in the insertion direction) is in contact during insertion. . This is because the corneal region in contact with the implant I is highly likely to be the implant insertion region.
- the estimating unit 72 estimates, as the position of the opening O, the corner region R determined according to the arrangement of the eyelid speculum E among the corner regions. This is because there is often a certain relationship between the placement of the eyelid speculum and the area where the implant is to be inserted. For example, of the angle regions estimated from the orientation of the eyelid speculum, the angle region located in the nasal direction, the angle region located in the nasal direction, etc. may be the implant insertion region.
- the eyelid speculum E is fixed at four fixing points E1 to E4 so as to maintain the eyelid open state.
- the fixation point E1 corresponds to the upper left corner of the eyelid when the eye is viewed from the front.
- the fixing point E2 corresponds to the upper right corner of the eyelid.
- the fixing point E3 corresponds to the lower left corner of the eyelid.
- the fixing point E4 corresponds to the lower right corner of the eyelid.
- the position corresponding to between the fixation point E1 and the fixation point E3 is the implant insertion region, and therefore the estimator 72 estimates that position as the position of the opening O.
- FIG. Note that the relationship between the placement of the eyelid speculum E and the implant insertion region may differ depending on whether the eye is the right eye or the left eye, the surgical style of the operator, and the like.
- the estimating unit 72 may estimate a corner region positioned in a specific direction in the microscope image as the position of the opening. This is because there is often a certain relationship between the orientation of the microscope image (operative field image) and the implant insertion region. For example, the upper corner region in the microscope image is estimated as the location of the aperture. Note that the relationship between the arrangement of the eyelid speculum E and the implant insertion region may vary depending on the surgical style of the operator.
- the estimator 72 compares the opening to the opening of the implant. It may be estimated (in this case, it can also be said to be detected) as the position of the part.
- the state of the operative field observed as a microscope image, etc. changes in various ways during surgery.
- the position, posture (orientation), etc. of the eye change, and accordingly the state of the observed surgical field also changes.
- a specific eye region may or may not be visible, and the state of the observed operative field changes accordingly.
- the estimating unit 72 estimates the state of the operative field based on a plurality of microscope images captured under different observation conditions. For example, the estimating unit 72 performs pattern matching of eye parts shown in each of the plurality of microscope images. An example of pattern matching is matching between eyes shown in microscope images taken at different times using patterns of blood vessels, iris, etc. Based on such pattern matching, the estimating unit 72 estimates the position and posture of the eye (in each observation state) at each time, and estimates the relative positional relationship of the surgical tool, implant, etc. with respect to the eye. May be managed in a consistent coordinate system. The estimating unit 72 may estimate the condition of the surgical field based on the estimated eye position and orientation managed in a consistent coordinate system. This enables estimation adapted to changes in observation conditions.
- Insertion and placement of the implant in the gonioscopy is performed using a gonioscope. Initially, it is started without a gonioscope, then a gonioscope is placed and the implant is inserted and placed while viewing the gonioscope. After that, the placement position of the implant is often checked. Detention position confirmation is performed by (1) the state in which the gonioscope is installed, (2) the state in which the eye's posture relative to the microscope lens barrel has not changed after the gonioscope has been removed, and (3) the eye relative to the microscope lens barrel. It is performed in a state where the posture has changed. By grasping the eye posture in each case using pattern matching as described above, appropriate surgical field situation estimation for all states (1) to (3), and further based on the estimation results Tomographic imaging (described later) can now be performed.
- a gonioscope For example, many operators create an incision with a knife or the like before installing a gonioscope, and insert an implant insertion surgical instrument through the incision with the implant attached. After that, a gonioscope is placed at an intermediate position while passing through the anterior chamber. This is because, if a gonioscope is not installed, no light will come out from the interface between the cornea and the air, making it impossible to observe the angle. Finally, the lower part of the cape sclera in the implant placement area (angle area) is reached, and the implant is inserted and left in the suprachoroidal space from this position.
- the accuracy of estimating the position of the opening O is the highest if the visibility of the opening O in the microscope image can be realized in the state of high visibility of the blood vessel and iris for pattern matching (positioning) described above. expected to be higher.
- the appearance of the surgical field changes greatly depending on the surgical method of the operator, etc., it is desirable to prepare various methods as described in the present disclosure for estimating the position of the opening O. .
- the estimating unit 72 may estimate the state of the operative field at a timing specified by a user's operation. Estimating the situation of the surgical field requires a lot of processing cost, and the degree of difficulty of estimating the situation of the surgical field changes depending on various conditions of the surgical field. If the operator can obtain an instruction to perform estimation by means of a foot switch, voice, etc. at a timing when information that is effective for subsequent tomographic imaging can be obtained, the processing cost can be reduced and other processes (such as image quality) can be reduced. (improvement), it is possible to confirm (detect) the position of the implant with high accuracy based on the highly accurate estimation result.
- Examples of the timing at which effective information can be obtained are the timing when the eye is viewed from the front when the blood vessels and iris are in focus, the timing when the eye is tilted to install a gonioscope, and the gonioscope. is the timing of installation.
- User operations are accepted by the UI unit 42, for example.
- the imaging control unit 73 controls imaging based on the estimation result of the estimating unit 72 so that a tomographic image is captured. Specifically, the imaging control unit 73 controls the tomographic image capturing unit 62 so that the tomographic image including the implant is captured by the tomographic image capturing unit 62 .
- the acquisition unit 71 acquires the captured tomographic image. Since the position of the opening O of the implant is estimated, a tomographic image is taken so as to include the implant assumed from that position. As described above, the tomographic image of the implant is used for detecting and confirming that the implant is properly inserted and placed (detecting the position of the implant). Since the detection efficiency of the implant may change depending on the tomographic direction of the tomographic image according to the type of the implant and the like, an imaging method that easily increases the detection efficiency may be appropriately selected and adopted. Some examples of specific imaging techniques will be described.
- FIGS. 6 to 9 are diagrams schematically showing an example of control of tomographic imaging.
- the exemplified microscopic images show the operative field when the eye is fixed in an open state by the eyelid speculum E, as in FIGS. 6 to 9 described above.
- the control exemplified in FIGS. 10 and 11 aims at imaging a tomographic image with the layer direction intersecting with the extending direction of the implant.
- the imaging control unit 73 performs imaging control so that a tomographic image is captured with the layer direction perpendicular to the expected extension direction of the implant I (illustrated by the dashed line).
- a layer direction of a tomographic image captured in such a manner is referred to as a layer direction F1 and illustrated.
- the extending direction of the implant for example, the advancing direction of the implant I when it is inserted into the eye (at the time of insertion), the direction connecting the incision and the estimated opening O, and the like can be used.
- scanning is performed in a direction orthogonal to the layer direction F1 so that a plurality of tomographic images in the layer direction F1 are captured.
- the imaging control unit 73 performs imaging control so that a tomographic image having the tangential direction of the corner area as the layer direction is captured.
- a layer direction of a tomographic image captured in such a manner is referred to as a layer direction F2 and illustrated.
- scanning is performed in a direction orthogonal to the layer direction F2 so that a plurality of tomographic images in the layer direction F2 are captured.
- the control exemplified in FIGS. 12 and 13 aims at imaging a tomographic image with the extending direction of the implant as the layer direction.
- the imaging control unit 73 performs imaging control so that a tomographic image is captured in which the layer direction is the extension direction of the assumed implant I (illustrated by the dashed line).
- a layer direction of a tomographic image captured in such a manner is referred to as a layer direction F3 and illustrated.
- the extending direction of the implant for example, the advancing direction of the implant I when it is inserted into the eye (at the time of insertion), the direction connecting the incision and the estimated opening O, and the like can be used.
- scanning is performed in a direction orthogonal to the layer direction F3 so that a plurality of tomographic images in the layer direction F3 are captured.
- the imaging control unit 73 controls imaging so that a tomographic image is captured with the layer direction perpendicular to the tangent line of the corner area.
- the layer direction of the tomographic image captured in such a manner is referred to as a layer direction F4 and illustrated.
- scanning is performed in a direction orthogonal to the layer direction F4 so that a plurality of tomographic images in the layer direction F4 are captured.
- the imaging control unit 73 performs imaging control so that a plurality of tomographic images with different layer directions are captured by scanning in a direction that rotates the layer direction.
- a layer direction of a tomographic image captured in such a manner is referred to as a layer direction F5 and illustrated.
- the position of the estimated opening O may be used as the center of rotation.
- tomographic images in various tomographic directions are captured so that the implant can be included.
- Some examples of tomographic images will be described with reference to FIGS. 15 to 18.
- FIG. 15 to 18 Some examples of tomographic images will be described with reference to FIGS. 15 to 18.
- 15 to 18 are diagrams schematically showing examples of tomographic images.
- imaging is performed with the direction intersecting with the extending direction of the implant I as the layer direction of the tomographic image.
- the part where the implant I is present in the tomogram is illustrated with a thick line.
- a tomographic image in the layer direction F at the tomographic position ⁇ in the layer direction F is illustrated in FIG.
- imaging is performed with the extending direction of the implant I as the layer direction of the tomographic image.
- a tomographic image in the layer direction F at the tomographic position ⁇ is illustrated in FIG.
- the placement position of the implant I can be detected. Detection (confirmation) of the placement position of the implant I in the tomographic image may be performed by a known surgical image recognition process or the like, or may be performed by the user confirming the tomographic image displayed on the monitor of the UI unit 42. may be done.
- Further imaging control may be performed by the imaging control unit 73 based on the captured tomographic image in order to further improve the detection accuracy of the placement position of the implant using the tomographic image.
- the imaging control unit 73 performs imaging control so that a further tomographic image is captured. For example, when an implant is not detected by image recognition processing on a captured tomographic image, or when an implant is detected but is not properly imaged, it is estimated that the captured tomographic image does not include an implant. This estimation judgment may be made automatically or may be made through a user's operation.
- the imaging control unit 73 may perform imaging control so that a tomographic image at a position adjacent to the imaging target position of the captured tomographic image is captured.
- the estimation unit 72 may estimate the position of the opening O by another estimation method, and the imaging control unit 73 may perform imaging control based on the estimation result. Such processing may be performed repeatedly until the position of the implant is properly detected.
- the position of the implant cannot be detected if the estimation is incorrect.
- the position of the implant can be reliably detected.
- the imaging control unit 73 may perform imaging control so that the scanning interval of a plurality of tomographic images becomes narrower as the extent to which the implant is included in the tomographic image increases. By finely performing sequential scanning, the position of the implant can be detected efficiently and accurately.
- the estimating unit 72 of the control device 7 estimates the position of the opening O of the implant (especially the MIGS implant) based on the microscopic images from the start of the operation to the confirmation of the implant placement result, for example. do.
- a tomographic image is captured by scanning the tomographic position in the vicinity of the estimated position of the opening O.
- the acquisition unit 71 acquires the captured tomographic image.
- the imaging control unit 73 detects the placement position of the implant by image recognition of the tomographic image or the like. If necessary, further control is performed so that a tomographic image relating to the indwelling position detected by the imaging control unit 73 is captured. In this way, it becomes possible to easily and efficiently confirm whether or not the implant has been properly placed.
- FIG. 19 is a flowchart showing an example of processing (control method, method of operating the control device) executed by the control device. Since the specific processing is as described above, the description will not be repeated.
- step S1 the control device 7 acquires a microscope image.
- the acquisition unit 71 of the control device 7 acquires the microscope image as described above.
- step S2 the control device 7 estimates the situation of the surgical field.
- the estimation unit 72 of the control device 7 estimates the state of the surgical field (for example, the position of the opening O of the implant) based on the result (for example, the microscope image) acquired in step S1.
- step S3 the control device 7 controls imaging based on the estimation result.
- the imaging control unit 73 of the control device 7 controls the tomographic image capturing unit 62 so that a tomographic image including the implant is captured based on the estimation result in the previous step S3.
- FIG. 20 is a diagram showing an example of the hardware configuration of the device.
- the control device 7 described so far may be implemented by software (a program) that causes a computer to function as the control device 7, for example.
- a CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- An input/output interface 305 is further connected to the bus 304 .
- An input unit 306 , an output unit 307 , a recording unit 308 , a communication unit 309 and a drive 310 are connected to the input/output interface 305 .
- the input unit 306 consists of a keyboard, mouse, microphone, imaging device, and the like.
- the output unit 307 includes a display, a speaker, and the like.
- a recording unit 308 is composed of a hard disk, a nonvolatile memory, or the like.
- a communication unit 309 includes a network interface and the like.
- a drive 310 drives a removable recording medium 311 such as a magnetic disk, optical disk, magneto-optical disk, or semiconductor memory.
- the CPU 301 loads, for example, a program recorded in the recording unit 308 into the RAM 303 via the input/output interface 305 and the bus 304, and executes it.
- the control of the controller 7 is executed.
- the program executed by the computer (CPU 301) can be provided by being recorded on the removable recording medium 311 as package media, for example. Also, the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or a digital satellite broadcast.
- the program can be installed in the recording unit 308 via the input/output interface 305 by loading the removable recording medium 311 into the drive 310 . Also, the program can be received by the communication unit 309 via a wired or wireless transmission medium and installed in the recording unit 308 . In addition, the program can be installed in the ROM 302 or the recording unit 308 in advance.
- the MIGS implant placed in the suprachoroidal space was mainly described, but the implant may be various other MIGS implants.
- other MIGS implants are implants that connect the anterior chamber and subconjunctiva, implants that bypass the trabecular meshwork, implants that dilate Schlemm's canal, and the like.
- the implant is an MIGS (minimally invasive glaucoma surgery) implant.
- the implant may be a variety of other ophthalmic surgical implants. Examples of other surgeries include vitreoretinal surgery.
- the components of the control system 1, the components of the control device 7, etc. may be housed in separate housings and connected via a network.
- a cloud computing configuration may be employed in which one function is shared by a plurality of devices via a network and processed jointly.
- control device 7 includes an acquisition section 71, an estimation section 72, and an imaging control section 73.
- FIG. Acquisition unit 71 acquires a microscope image in surgery for placing an implant in the eye.
- the estimation unit 72 estimates the condition of the surgical field based on the acquisition result of the acquisition unit 71 .
- the imaging control unit 73 performs imaging control so that a tomographic image including the implant is captured based on the estimation result of the estimating unit 72 .
- the state of the operative field is estimated based on the microscope image, and a tomographic image including the implant is captured based on the estimation result. Therefore, it is possible to capture a tomographic image that appropriately includes the implant.
- the surgery is surgery (for example, MIGS) for inserting and detaining the implant in the angle region, and the estimating unit 72 determines whether the implant is in the angle region.
- the position of the opening O at the rear end in the insertion direction may be estimated. This makes it possible to capture a tomographic image including an implant that is hidden in a tissue that does not transmit visible light.
- the estimating unit 72 determines the angle region located on the opposite side of the incision across the corneal center from among the angle regions to the position of the opening O of the implant. can be estimated as As described with reference to FIG. 7 and the like, the estimating unit 72 calculates the angle region located on the extension line of the implant I in the advancing direction when the implant I is inserted into the eye. may be estimated as the position of the opening O of the implant I. As described with reference to FIG. 8 and the like, the estimating unit 72 determines, of the angle region, the angle region that the implant I came into contact with when the implant I was inserted into the eye as the opening of the implant I. It may be estimated as the position of part O. As described with reference to FIG.
- the estimating unit 72 estimates the angle region determined according to the arrangement of the eyelid speculum E among the angle regions as the position of the opening O of the implant. good.
- the estimating unit 72 may estimate, as the position of the opening O of the implant, a corner region located in a specific direction in the microscopic image among the corner regions. For example, the position of the opening O can be estimated using such various estimation techniques.
- the imaging control unit 73 generates a tomographic image in which the layer direction (for example, the layer direction F1) is perpendicular to the assumed extending direction of the implant I. Imaging control may be performed so that is imaged. As described with reference to FIGS. 11, 15, and 16, the imaging control unit 73 performs Imaging control may be performed. As described with reference to FIGS. 12, 17, and 18, the imaging control unit 73 captures a tomographic image in which the expected extension direction of the implant I is the layer direction (for example, the layer direction F3).
- the imaging may be controlled as follows. As described with reference to FIGS.
- the imaging control unit 73 captures a tomographic image in which the layer direction (for example, the layer direction F4) is perpendicular to the tangent line of the corner area.
- the imaging may be controlled as follows. These imagings may be controlled such that a plurality of tomographic images in the same layer direction are captured by scanning in a direction perpendicular to the layer direction.
- the imaging control unit 73 performs imaging control so that a plurality of tomographic images with different layer directions are captured by scanning in a direction that rotates the layer direction (for example, the layer direction F5). You can For example, using such various imaging techniques, a tomographic image including an implant can be captured.
- the imaging control unit 73 When it is estimated that the captured tomographic image does not include an implant, the imaging control unit 73 performs imaging control so that a tomographic image at a position adjacent to the imaging target position in the captured tomographic image is captured. you can Thereby, the position of the implant can be reliably detected (confirmed).
- the imaging control unit 73 may perform imaging control so that the scanning interval of a plurality of tomographic images becomes narrower as the extent to which the implant is included in the tomographic image increases. As a result, the position of the implant can be detected efficiently and accurately.
- the estimating unit 72 estimates the state of the operative field based on the position and orientation of the eye in each observation state estimated based on pattern matching of the parts of the eye shown in each of a plurality of microscope images captured in different observation states. can be estimated. This enables estimation adapted to changes in observation conditions.
- the estimating unit 72 may estimate the state of the surgical field at a timing designated by a user operation. As a result, for example, while reducing processing costs and allocating processing resources to other processing (for example, image quality improvement), highly accurate detection of the implant position based on highly accurate estimation results is possible.
- the control system 1 described with reference to FIGS. 1 to 3 is also one aspect of the present disclosure.
- the control system 1 includes an imaging unit (for example, a front image capturing unit 61 and a tomographic image capturing unit 62) that captures microscopic images and tomographic images in surgery for placing an implant in the eye, and a control device 7.
- the control device 7 includes an acquisition unit 71 that acquires a microscope image captured by the imaging unit, an estimation unit 72 that estimates the state of the operative field based on the acquisition result of the acquisition unit 71, and an estimation result of the estimation unit 72. and an imaging control unit 73 that controls the imaging unit so that a tomographic image including the implant is captured based on the above.
- an imaging control unit 73 that controls the imaging unit so that a tomographic image including the implant is captured based on the above.
- such a control system 1 also makes it possible to capture a tomographic image that appropriately includes the implant.
- control device 7 acquires a microscope image in surgery for placing an implant in the eye (step S1), and the control device 7 estimates the situation of the surgical field based on the acquisition result. (step S2), and the control device 7 controls imaging so that a tomographic image including the implant is captured based on the estimation result (step S3). Even with such a control method, as described above, it is possible to capture a tomographic image that appropriately includes the implant.
- the present technology can also take the following configuration.
- an acquisition unit that acquires a microscope image in surgery for placing an implant in the eye; an estimating unit for estimating the state of the surgical field based on the acquisition result of the acquiring unit; an imaging control unit that performs imaging control so that a tomographic image including the implant is captured based on the estimation result of the estimating unit; comprising Control device.
- the surgery is a surgery for inserting and detaining the implant in the angle region,
- the estimating unit estimates the position of the opening at the rear end of the implant in the insertion direction in the angle region.
- the estimating unit estimates, of the angle regions, the angle region located on the opposite side of the incision across the corneal center as the position of the opening of the implant.
- the control device according to the above. (4) The estimating unit estimates, as the position of the opening of the implant, the angle region located on the extension line of the implant in the direction of advancement when the implant is inserted into the eye. do, The control device according to (2) or (3).
- the estimating unit estimates, from among the angle regions, the angle region with which the implant comes into contact when the implant is inserted into the eye as the position of the opening of the implant.
- the control device according to any one of (2) to (4).
- the estimating unit estimates, of the angle area, the angle area determined according to the arrangement of the eyelid speculum as the position of the opening of the implant.
- the control device according to any one of (2) to (5).
- the estimating unit estimates a corner region located in a specific direction in the microscopic image among the corner regions as the position of the opening of the implant.
- the control device according to any one of (2) to (6).
- the imaging control unit performs imaging control so that a tomographic image having a layer direction perpendicular to the expected extending direction of the implant is captured.
- the control device according to any one of (1) to (7).
- the imaging control unit performs imaging control so that a tomographic image having a layer direction tangential to the angle region is captured.
- the control device according to any one of (1) to (7).
- the imaging control unit performs imaging control so that a tomographic image having a layer direction in the expected extension direction of the implant is captured.
- the control device according to any one of (1) to (7).
- the imaging control unit controls imaging so that a tomographic image having a layer direction in a direction orthogonal to a tangent to the corner area is captured.
- the control device according to any one of (1) to (7).
- the imaging control unit controls imaging so that a plurality of tomographic images in the same layer direction are captured by scanning in a direction perpendicular to the layer direction.
- the control device according to any one of (1) to (11).
- the imaging control unit controls imaging so that a plurality of tomographic images with different layer directions are captured by scanning in a direction that rotates the layer direction.
- the control device according to any one of (1) to (11).
- the imaging control unit performs imaging such that a tomographic image at a position adjacent to an imaging target position in the captured tomographic image is captured.
- Control The control device according to any one of (1) to (13).
- the imaging control unit performs imaging control such that the interval between scans of a plurality of tomographic images becomes narrower as the extent to which the implant is included in the tomographic image increases.
- the control device according to any one of (1) to (14).
- the estimating unit estimates the condition of the operative field based on the position and orientation of the eye in each observation state estimated based on pattern matching of the eye part shown in each of a plurality of microscope images captured in different observation states. to estimate The control device according to any one of (1) to (15).
- the estimating unit estimates the state of the operative field at a timing specified by a user operation. The control device according to any one of (1) to (16).
- an imaging unit that captures microscopic images and tomographic images in surgery for placing an implant in the eye; a controller; with The control device is an acquisition unit that acquires a microscope image captured by the imaging unit; an estimating unit for estimating the state of the surgical field based on the acquisition result of the acquiring unit; an imaging control unit that controls the imaging unit so that a tomographic image including the implant is captured based on the estimation result of the estimating unit; including, control system.
- a controller acquiring a microscopic image of an operation for placing an implant in the eye; the control device estimating the situation of the surgical field based on the acquisition result; The control device performs imaging control so that a tomographic image including the implant is captured based on the estimation result; including, control method.
- control system 2 light source 3 observation optical system 41 presentation unit 42 UI unit 5 eyepiece 61 front image imaging unit 62 tomographic image imaging unit 7 control device 71 acquisition unit 72 estimation unit 73 imaging control unit 301
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Ophthalmology & Optometry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Analytical Chemistry (AREA)
- Multimedia (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Theoretical Computer Science (AREA)
- Vascular Medicine (AREA)
- Biophysics (AREA)
- Robotics (AREA)
- Prostheses (AREA)
- Eye Examination Apparatus (AREA)
Abstract
制御装置(7)は、眼内にインプラントを留置するための手術における顕微鏡画像を取得する取得部(71)と、取得部(71)の取得結果に基づいて、術野の状況を推定する推定部(72)と、推定部(72)の推定結果に基づいて、インプラントを含む断層画像が撮像されるように撮像制御する撮像制御部(73)と、を備える。
Description
本開示は、制御装置、制御システム及び制御方法に関する。
眼科疾患の治療等にインプラントが用いられることが知られている(例えば特許文献1を参照)。
可視光の透過しない組織に隠れる形で留置されるインプラントの確認には、例えば断層画像が用いられる。インプラントを適切に含む断層画像を得るための撮像箇所の特定等に課題が残る。
本開示の一側面は、インプラントを適切に含む断層画像の撮像を可能にする制御装置、制御システム及び制御方法を提供する。
本開示の一側面に係る制御装置は、眼内にインプラントを留置するための手術における顕微鏡画像を取得する取得部と、取得部の取得結果に基づいて、術野の状況を推定する推定部と、推定部の推定結果に基づいて、インプラントを含む断層画像が撮像されるように撮像制御する撮像制御部と、を備える。
本開示の一側面に係る制御システムは、眼内にインプラントを留置するための手術における顕微鏡画像及び断層画像を撮像する撮像部と、制御装置と、を備え、制御装置は、撮像部によって撮像された顕微鏡画像を取得する取得部と、取得部の取得結果に基づいて、術野の状況を推定する推定部と、推定部の推定結果に基づいて、インプラントを含む断層画像が撮像されるように撮像部を制御する撮像制御部と、を含む。
本開示の一側面に係る制御方法は、制御装置が、眼内にインプラントを留置するための手術における顕微鏡画像を取得することと、制御装置が、取得結果に基づいて、術野の状況を推定することと、制御装置が、推定結果に基づいて、インプラントを含む断層画像が撮像されるように撮像制御することと、を含む。
以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の要素には同一の符号を付することにより重複する説明を省略する。
以下に示す項目順序に従って本開示を説明する。
1.序
2.実施形態
3.ハードウェア構成の例
4.変形例
5.効果の例
1.序
2.実施形態
3.ハードウェア構成の例
4.変形例
5.効果の例
1.序
開示される技術は、眼科手術に用いられる。眼科手術の例は、眼科疾患の治療である。そのような手術には、インプラントが用いられることがある。インプラントは適切な位置に留置する必要があるが、可視光の透過しない組織に隠れる形で留置されるインプラントに関しては、隠れている部分が適切な形で留置されているかを肉眼や可視光による顕微鏡観察で確かめることがでない。そのような部分も含め多くの組織を透視することのできる断層撮像装置を用いて、インプラントが適切に留置されているか否かが確認される。しかしながら、既存の手法では、インプラントの留置状況を簡便かつ効率よく断層撮像することができない。この課題は、開示されるいくつかの技術によって対処されうる。なお、本開示において、「撮像」は、「撮影」を含む意味であってよい。
開示される技術は、眼科手術に用いられる。眼科手術の例は、眼科疾患の治療である。そのような手術には、インプラントが用いられることがある。インプラントは適切な位置に留置する必要があるが、可視光の透過しない組織に隠れる形で留置されるインプラントに関しては、隠れている部分が適切な形で留置されているかを肉眼や可視光による顕微鏡観察で確かめることがでない。そのような部分も含め多くの組織を透視することのできる断層撮像装置を用いて、インプラントが適切に留置されているか否かが確認される。しかしながら、既存の手法では、インプラントの留置状況を簡便かつ効率よく断層撮像することができない。この課題は、開示されるいくつかの技術によって対処されうる。なお、本開示において、「撮像」は、「撮影」を含む意味であってよい。
2.実施形態
図1は、実施形態に係る制御システムの概略構成の例を示す図である。例示される制御システム1は、ベッドBに横たわっている患者の眼の手術に用いられる手術システムである。制御システム1のユーザの例は、医師等の術者、術者をサポート等する医療スタッフである。
図1は、実施形態に係る制御システムの概略構成の例を示す図である。例示される制御システム1は、ベッドBに横たわっている患者の眼の手術に用いられる手術システムである。制御システム1のユーザの例は、医師等の術者、術者をサポート等する医療スタッフである。
手術には、顕微鏡装置が用いられる。顕微鏡装置の構成要素のうち、図1には、対物レンズ31、接眼レンズ5及びUI部42(この例ではモニタ等として描かれている)に符号が付されている。術者は、接眼レンズ5を覗き、また、必要に応じてUI部42に表示される情報も参照しながら、手術部位を例えば拡大観察して手術を行う。手術部位は、この例では、患者の眼である。なお、UI部42は、顕微鏡装置とは別の構成要素(例えば別体)であってもよい。
制御システム1は、上述の顕微鏡装置(対物レンズ31、接眼レンズ5及び提示部41等)の他に、制御装置7を含む。制御装置7は、制御システム1の全体制御を行う。詳細は後に図2以降を参照して説明する。
図2は、制御システムの詳細構成の例を示す図である。制御システム1は、これまで説明した対物レンズ31、接眼レンズ5、UI部42(顕微鏡装置の構成要素の例)及び制御装置7の他に、光源2と、観察光学系3と、提示部41と、正面画像撮像部61と、断層画像撮像部62とを含む。
光源2は、手術対象の領域に照明光を照射し、術野を照明する。照明された術野からの光の少なくとも一部(観察光)が、観察光学系3の対物レンズ31に入射する。この例では、観察光学系3は、対物レンズ31及び図示しないレンズ等、並びにハーフミラー32を含む。対物レンズ31に入射した観察光の一部(例えば略半分)はハーフミラー32を透過し、さらに提示部41も透過して(理由は後述する)、接眼レンズ5に入射する。観察光の残部は、ハーフミラー32で反射し、正面画像撮像部61に到達する。
接眼レンズ5は、観察光を集光し、術野の光学像を結像させる。結像された術野の光学像が、接眼レンズ5を覗く術者によって観察される。
提示部41及びUI部42について説明する。これらは、制御システム1のユーザ(術者等)との間で情報のやり取りを行うユーザインタフェースの例である。
提示部41は、観察光学系3を覗いている術者に情報を提示する。この例では、提示部41は、観察光学系3と接眼レンズ5との間に設けられる透過型の表示デバイスである。したがって、上述のように、ハーフミラー14からの観察光が、提示部41を透過して接眼レンズ5に入射する。手術サポートに供することのできる情報(画像等)が、提示部41によって提示(表示)される。術者は、術野を観察して手術を行うとともに、必要に応じて、提示部41によって提示される情報を参照する。
UI部42は、ユーザに情報を提示したり、ユーザ操作を受け付けたりする。UI部42は、先の図1に例示されるようなモニタ、図示しない操作盤(コントローラ、リモートコントローラ等)等を含んで構成される。モニタはタッチパネルであってよく、その場合、操作盤の機能の一部又は全部がモニタによって実現されうる。他にも、スピーカ、マイク、ランプ(回転灯、表示灯等)等、ユーザとの間で情報のやり取りを行うためのさまざまな要素がUI部42に含まれてよい。
正面画像撮像部61及び断層画像撮像部62について説明する。これらは、手術に関するさまざまな画像を取得する画像撮像部の例である。
正面画像撮像部61は、正面画像を撮像する。正面画像は、手術部位を正面から観察した画像であり、例えば患者の眼を略眼軸方向から撮像した画像である。正面画像は、術野画像に相当し得る。正面画像撮像部61は、例えばビデオカメラ等を含んで構成される。
断層画像撮像部62は、断層画像を撮像する。断層画像は、手術部位の断面画像、例えば患者の眼における眼軸方向と略平行な方向の断面の画像である。断層画像撮像部62は、例えば光干渉断層計(OCT:Optical Coherence Tomography)、シャインプルークカメラ等を含んで構成される。例えば、赤外光を用いて、干渉原理により、断層画像が取得される。その際の赤外光の光路と、観察光学系3内の観察光の光路の一部とが共通化されてよい。
制御装置7は、制御システム1全体の動作を制御する。制御に必要な情報は、制御装置7と他の構成要素との間で適宜送受信される。例えば、制御装置7は、光源2を制御することによって、照明の位置、輝度等を調節する。制御装置7は、観察光学系3を制御することによって、観察の位置、倍率等を調節する。制御装置7は、提示部41を制御することによって、手術サポートに供することのできる情報(画像等)を術者に提示する。制御装置7は、UI部42を制御することによって、ユーザ操作を受け付けたり、手術サポートに供することのできる情報(画像等)を術者等に提示したりする。制御装置7は、正面画像撮像部61及び断層画像撮像部62を制御することによって、正面画像及び断層画像を撮像する。
以上説明したような制御システム1は、例えば眼科インプラントの留置手術に適用される。一例として、以下では、脈絡膜上腔に留置するMIGS(低侵襲緑内障手術)用インプラントの手術を例に挙げて説明する。
脈絡膜上腔に留置するインプラントは、前房からの房水の流出路の1つである脈絡膜上腔への房水排出量を増やすことにより眼圧を下げ、緑内障の進行を抑制することを目的とする。インプラントが適切に留置されれば、脈絡膜上腔におさまって目的の機能を発揮する(例えば後述の図18を参照)。一方で、インプラントの留置位置が強膜側や硝子体腔側にずれると、目的の機能を発揮しないのみならず、傷害の原因となりうる。したがって、術者によるインプラントの留置が適切に行われたことの確認に関する需要がある。
これまでは、OCT等の断層撮像を行う際に目的とするような断層画像を簡便かつ効率的に取得する方法が存在しなかった。この課題が、開示される技術によって対処されうる。術者がインプラントの留置を確認するのに好適な断層画像として、例えばインプラント長手方向に沿った断層画像(例えば後述の図18)が撮像され提示されてよい。ただし、術者の嗜好等に応じて、インプラント短手方向に沿った断層画像(例えば後述の図16)が撮像されてもよいし、他のさまざまな方向に沿った断層画像が撮像されてもよい。いずれの断層画像も、制御システム1(より具体的には後述の制御装置7の推定部72)によってインプラントの留置位置が推定されることで撮像可能になる。
図3は、制御装置の概略構成の例を示す図である。制御装置7は、取得部71と、推定部72と、撮像制御部73とを含む。
取得部71は、顕微鏡画像を取得する。顕微鏡画像は、この例では、眼内にインプラントを留置するための手術における顕微鏡画像(術野画像)である。インプラントは、例えば隅角領域に挿入され、留置される。この場合、インプラントは、可視光の透過しない組織に隠れる形で留置されることになる。顕微鏡画像は、正面画像撮像部61の撮像画像であってよい。
図4及び図5は、取得部が取得する顕微鏡画像の例を模式的に示す図である。図4に例示される顕微鏡画像には、切開創Cに術具Tが挿入されている状態の術野が示される。切開創Cは、インプラントを眼内に刺し入れるために、ナイフ等によって形成される。図5に例示される顕微鏡画像には、インプラントが隅角領域に挿入されている状態の術野が示される。眼上に配置された隅角鏡によって隅角領域が視認できるようになっており、挿入されたインプラントの開口部Oが観察される。隅角鏡の縁が、縁MEとして図示される。開口部Oは、インプラントの挿入方向後側端の開口部である。
図3に戻り、取得部71は、断層画像も取得する。断層画像は、断層画像撮像部62の撮像画像であってよい。断層画像の取得については後に改めて説明する。
推定部72は、取得部71の取得結果(顕微鏡画像、さらには必要に応じて断層画像)に基づいて、術野の状況を推定する。推定には、必要に応じて画像認識等の処理が用いられる。画像認識には、種々の公知の画像認識エンジン、画像認識モデル(学習済みモデル等)等が用いられてよい。
一実施形態において、推定部72は、インプラントの位置を推定する。例えば、推定部72は、隅角領域におけるインプラントの開口部Oの位置を推定することによって、インプラントの位置を推定する。後述するさまざまな推定手法が採用可能である。インプラントの種類、術者の手術スタイル等に応じて推定の難易度が変化したり、それに適した推定手法が存在したりする。したがって、高い推定精度が得られやすい推定手法が、適宜選択され、採用されてよい。具体的な推定手法のいくつかの例について述べる。
図6~図9は、インプラントの開口部の位置の推定の例を模式的に示す図である。例示される顕微鏡画像には、開瞼器Eによって眼が開かれた状態に固定されている状態の術野が示される。
図6に示される例では、推定部72は、隅角領域のうち、角膜中心を挟んで切開創とは反対側の位置にある隅角領域Rを、開口部Oの位置として推定する。インプラント挿入領域が、切開創Cとは、角膜中心を挟んで反対側に位置する場合が少なくないからである。なお、図6において、角膜中心を通る線が、一点鎖線で示される。
図7に示される例では、推定部72は、隅角領域のうち、インプラントIが眼内に刺し入れられているとき(刺入時)のインプラントIの進行方向の延長線上(一点鎖線で図示)に位置する隅角領域Rを、開口部Oの位置として推定する。インプラント挿入領域に向かってインプラントIが刺し入れられる場合が少なくないからである。
図8に示される例では、推定部72は、隅角領域のうち、刺入時にインプラントI(の例えば刺入方向前側端部)が接触した隅角領域を、開口部Oの位置として推定する。インプラントIが接触した角膜領域が、インプラント挿入領域となる可能性が高いからである。
図9に示される例では、推定部72は、隅角領域のうち、開瞼器Eの配置に応じて定められる隅角領域Rを、開口部Oの位置として推定する。開瞼器の配置と、インプラント挿入領域との間に一定の関係がある場合が少なくないからである。例えば、開瞼器の向きから推定される隅角領域のうちの鼻側方向に位置する隅角領域、鼻下側方向に位置する隅角領域等が、インプラント挿入領域であってよい。
この例では、開瞼器Eは、開瞼状態を維持するように、固定箇所E1~固定箇所E4の4箇所で固定する。眼を正面視したときに、固定箇所E1は、瞼の左上に対応する。固定箇所E2は、瞼の右上に対応する。固定箇所E3は、瞼の左下に対応する。固定箇所E4は、瞼の右下に対応する。この例では、固定箇所E1と固定箇所E3との間に対応する位置が、インプラント挿入領域であり、したがって、推定部72は、その位置を、開口部Oの位置として推定する。なお、開瞼器Eの配置とインプラント挿入領域との関係は、眼が右眼及び左眼のいずれであるか、術者の手術スタイル等によって異なり得る。
図示しないが、推定部72は、隅角領域のうち、顕微鏡画像中の特定の方向に位置する隅角領域を、開口部の位置として推定してよい。顕微鏡画像(術野画像)の向きと、インプラント挿入領域との間に一定の関係がある場合が少なくないからである。例えば、顕微鏡画像中の上方に位置する隅角領域が、開口部の位置として推定される。なお、開瞼器Eの配置とインプラント挿入領域との関係は、術者の手術スタイル等によって異なり得る。
図示しないが、インプラントの開口部が顕微鏡画像に示されている場合(例えば図5に示されるような顕微鏡画像の場合)には、当然ながら、推定部72は、その開口部を、インプラントの開口部の位置として推定(この場合は検出ともいえる)してよい。
ところで、顕微鏡画像等として観察される術野の状態は、手術中にさまざまに変化する。例えば、眼の位置、姿勢(向き)等が変化し、それに応じて、観察される術野の状態も変化する。また、特定の眼の部位が視認できたり視認できなかったりし、それに応じて、観察される術野の状態も変化する。
一実施形態において、推定部72は、異なる観察状態で撮像された複数の顕微鏡画像に基づいて、術野の状況を推定する。例えば、推定部72は、複数の顕微鏡画像それぞれに示される眼の部位のパターンマッチングを行う。パターンマッチングの例は、血管、虹彩等のパターンを用いて、異なる時間に撮像された顕微鏡画像に示される眼同士のマッチングである。推定部72は、そのようなパターンマッチングに基づいて、それぞれの時間での(各観察状態での)眼の位置及び姿勢を推定し、眼に対する術具、インプラント等の相対位置関係の推定結果を一貫した座標系で管理してよい。推定部72は、一貫した座標系で管理され推定された眼の位置及び姿勢に基づいて、術野の状況を推定してよい。これにより、観察状態の変化に適応した推定が可能になる。
観察状態の変化の具体例について述べる。隅角領域へのインプラントの挿入及び留置は、隅角鏡を用いて行われる。最初は、隅角鏡なしで開始され、その後、隅角鏡が設置され、隅角を観察しながらインプラントが挿入され、留置される。その後、インプラントの留置位置確認を行うことが多い。留置位置確認は、(1)隅角鏡が設置された状態、(2)隅角鏡が撤去され眼の顕微鏡鏡筒に対する姿勢が変化していない状態、(3)さらに眼の顕微鏡鏡筒に対する姿勢が変化した状態等で行われる。それぞれにおける眼の姿勢を、上述のようなパターンマッチングを用いて把握することにより、(1)~(3)の全ての状態に対して、適切な術野状況推定、さらにはその推定結果に基づく断層の撮像(後述)が行えるようになる。
例えば、多くの術者は、隅角鏡を設置する前に、ナイフ等で切開創を作成し、その切開創から、インプラント挿入用術具をインプラントの装着された状態で挿入する。その後、前房を通過しながら、途中位置で隅角鏡を設置する。隅角鏡を設置しないと、角膜と空気の界面から光が出て来ないために、隅角の観察ができないからである。最終的に、インプラント留置領域(隅角領域)における強膜岬の下部に到達し、この位置から脈絡膜上腔にインプラントを挿入して留置する。最終的な留置の後で、開口部Oの顕微鏡画像における視認が上述のパターンマッチング(位置合わせ)用の血管や虹彩の視認性の高い状態で実現できれば、開口部Oの位置の推定精度が最も高くなると想定される。ただし、術者の手術の方法等により、術野の見え方が大きく変化するため、開口部Oの位置の推定に、本開示で説明されるようなさまざまな方法を準備しておくことが望ましい。
図示しないが、推定部72は、ユーザ操作によって指定されたタイミングで、術野の状況を推定してよい。術野の状況推定には、多くの処理コストがかかり、また、術野の状況推定は、術野の種々の状態によってその難易度が変化する。術者が、状況推定が容易でかつ後の断層撮像にとって有効な情報の得られるタイミングで、フットスイッチや音声等で推定実施指示が得られれば、処理コストを低減して他の処理(例えば画質改善)に処理リソースを割り当てながら、高精度な推定結果に基づく高精度なインプラントの位置の確認(検出)が可能になる。有効な情報の得られるタイミングの例は、血管や虹彩にフォーカスのあっている状態での、眼を正面から捉えているタイミング、隅角鏡設置のために眼を傾けているタイミング、隅角鏡を設置したタイミング等である。ユーザ操作は、例えばUI部42によって受け付けられる。
図3に戻り、撮像制御部73は、推定部72の推定結果に基づいて、断層画像が撮像されるように撮像を制御する。具体的に、撮像制御部73は、インプラントが含まれる断層画像が断層画像撮像部62によって撮像されるように、断層画像撮像部62を制御する。取得部71が、撮像された断層画像を取得する。インプラントの開口部Oの位置が推定されているので、その位置から想定されるインプラントを含むように、断層画像が撮像される。インプラントの断層画像は、先に述べたように、インプラントが適切に挿入、留置されていることの検出、確認等(インプラントの位置の検出)に用いられる。インプラントの種類等に応じて、断層画像の断層方向によってインプラントの検出効率が変化しうるので、検出効率を上げやすい撮像手法が適宜選択され採用されてよい。具体的な撮像手法のいくつかの例について述べる。
図10~図14は、断層画像の撮像の制御の例を模式的に示す図である。例示される顕微鏡画像には、先に説明した図6~図9と同様に、開瞼器Eによって眼が開かれた状態に固定されているときの術野が示される。
図10及び図11に例示される制御は、インプラントの延在方向と交差する方向を層方向とする断層画像の撮像を目的とする。図10に示される例では、撮像制御部73は、想定されるインプラントI(破線で図示)の延在方向と直交する方向を層方向とする断層画像が撮像されるように、撮像制御する。そのように撮像される断層画像の層方向を、層方向F1と称し図示する。インプラントの延在方向には例えばインプラントIが眼内に刺し入れられているとき(刺入時)のインプラントIの進行方向や切開創と推定開口部Oを結ぶ方向等を用いることができる。この例では、層方向F1の複数の断層画像が撮像されるように、層方向F1と直交する方向に走査が行われる。
図11に示される例では、撮像制御部73は、隅角領域の接線方向を層方向とする断層画像が撮像されるように、撮像制御する。そのように撮像される断層画像の層方向を、層方向F2と称し図示する。この例では、層方向F2の複数の断層画像が撮像されるように、層方向F2と直交する方向に走査が行われる。
図12及び図13に例示される制御は、インプラントの延在方向を層方向とする断層画像の撮像を目的とする。図12に示される例では、撮像制御部73は、想定されるインプラントI(破線で図示)の延在方向を層方向とする断層画像が撮像されるように、撮像制御する。そのように撮像される断層画像の層方向を、層方向F3と称し図示する。インプラントの延在方向には例えばインプラントIが眼内に刺し入れられているとき(刺入時)のインプラントIの進行方向や切開創と推定開口部Oを結ぶ方向等を用いることができる。この例では、層方向F3の複数の断層画像が撮像されるように、層方向F3と直交する方向に走査が行われる。
図13に示される例では、撮像制御部73は、隅角領域の接線と直交する方向を層方向とする断層画像が撮像されるように、撮像制御する。そのように撮像される断層画像の層方向を、層方向F4と称し図示する。この例では、層方向F4の複数の断層画像が撮像されるように、層方向F4と直交する方向に走査が行われる。
図14に示される例では、撮像制御部73は、層方向の異なる複数の断層画像が層方向を回転させる方向の走査によって撮像されるように、撮像制御する。そのように撮像される断層画像の層方向を、層方向F5と称し図示する。回転の中心には例えば推定開口部Oの位置を用いてもよい。
例えば以上のようにして、インプラントを含みうるように、さまざまな断層方向の断層画像が撮像される。断層画像のいくつかの例について、図15~図18を参照して説明する。
図15~図18は、断層画像の例を模式的に示す図である。図15に示される例では、インプラントIの延在方向と交差する方向を断層画像の層方向とする撮像が行われる。理解を容易にするために、断層においてインプラントIが存在する部分が太線で図示される。層方向Fのうち、断層位置αにおける層方向Fの断層画像が、図16に例示される。図17に示される例では、インプラントIの延在方向を断層画像の層方向とする撮像が行われる。例えば、層方向Fのうち、断層位置βにおける層方向Fの断層画像が、図18に例示される。これらの断層画像中のインプラントIの位置を検出することで、インプラントIの留置位置を検出することがきる。断層画像中のインプラントIの留置位置の検出(確認)は、手術の公知の画像認識処理等によって行われてもよいし、UI部42のモニタに表示された断層画像をユーザが確認することによって行われてもよい。
断層画像によるインプラントの留置位置の検出精度をさらに向上させるために、撮像済み断層画像に基づいて、さらなる撮像制御が撮像制御部73によって行われてよい。撮像制御部73は、撮像済み断層画像にインプラントが含まれていないと推定される場合には、さらなる断層画像が撮像されるように、撮像制御する。例えば、撮像済み断層画像に対する画像認識処理によってインプラントが検出されなかったり、検出されるものの適切に撮像されていなかったりする場合に、撮像済み断層画像にインプラントが含まれていないと推定される。この推定判断は、自動で行われてもよいし、ユーザ操作を介して行われてもよい。
さらなる断層画像を撮像する場合、撮像制御部73は、撮像済み断層画像の撮像対象位置に隣接する位置の断層画像が撮像されるように、撮像制御してよい。或いは、推定部72が別の推定手法によって開口部Oの位置を推定し、撮像制御部73がその推定結果に基づいて撮像制御を行ってもよい。このような処理は、インプラントの位置が適切に検出されるまで繰り返し実行されてよい。
開口部Oの推定位置が1つしかないと、推定が外れた場合にインプラントの位置が検出できないが、上述のように隣接する位置の断層画像を撮像したり、別の推定結果に基づいて断層画像を撮像したり(複数の推定を組み合わせたり)することで、インプラントの位置を確実に検出することができる。
撮像制御部73は、断層画像にインプラントが含まれる程度が大きくなるにつれて、複数の断層画像の走査の間隔が狭くなるように、撮像制御してよい。順次走査を細かくすることにより、効率的にかつ精度良くインプラントの位置を検出することができる。
以上説明した制御システム1によれば、制御装置7の推定部72が、例えば術開始時からインプラント留置結果確認時までの顕微鏡画像に基づき、インプラント(特にMIGSインプラント)の開口部Oの位置を推定する。撮像制御部73の制御によって、推定された開口部Oの位置の近傍において、断層位置を走査して断層画像が撮像される。取得部71が、撮像された断層画像を取得する。撮像制御部73が、断層画像に関する画像認識等により、インプラントの留置位置を検出する。必要に応じて、撮像制御部73が検出した留置位置に関する断層画像が撮像されるようにさらに制御する。このようにして、インプラントが適切に留置されたか否かを簡便かつ効率的に確認できるようになる。
図19は、制御装置において実行される処理(制御方法、制御装置の作動方法)の例を示すフローチャートである。具体的な処理はこれまで説明したとおりであるので、説明は繰り返さない。
ステップS1において、制御装置7が、顕微鏡画像を取得する。制御装置7の取得部71が、これまで説明したように、顕微鏡画像を取得する。
ステップS2において、制御装置7が、術野の状況を推定する。制御装置7の推定部72が、先のステップS1での取得結果(例えば顕微鏡画像)に基づいて、術野の状況(例えばインプラントの開口部Oの位置)を推定する。
ステップS3において、制御装置7が、推定結果に基づいて、撮像制御する。制御装置7の撮像制御部73が、先のステップS3での推定結果に基づいて、インプラントを含む断層画像が撮像されるように、断層画像撮像部62を制御する。
3.ハードウェア構成の例
図20は、装置のハードウェア構成の例を示す図である。これまで説明した制御装置7は、例えば、コンピュータを制御装置7として機能させるソフ卜ウェア(プログラム)によって実現されてよい。
図20は、装置のハードウェア構成の例を示す図である。これまで説明した制御装置7は、例えば、コンピュータを制御装置7として機能させるソフ卜ウェア(プログラム)によって実現されてよい。
コンピュータにおいて、CPU(Central Processing Unit)301、ROM(Read Only Memory)302、RAM(Random Access Memory)303は、バス304により相互に接続されている。
バス304には、さらに、入出力インタフェース305が接続されている。入出力インタフェース305には、入力部306、出力部307、記録部308、通信部309及びドライブ310が接続されている。
入力部306は、キーボード、マウス、マイクロフォン、撮像素子等よりなる。出力部307は、ディスプレイ、スピーカ等よりなる。記録部308は、ハードディスクや不揮発性のメモリ等よりなる。通信部309は、ネッ卜ワークインタフェース等よりなる。ドライブ310は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリ等のリムーバブル記録媒体311を駆動する。
以上のように構成されるコンピュータでは、CPU301が、例えば、記録部308に記録されているプログラムを、入出力インタフェース305及びバス304を介して、RAM303にロードして実行することにより、これまで説明した制御装置7の制御が実行される。
コンピュータ(CPU301)が実行するプログラムは、例えば、パッケージメディア等としてリムーバブル記録媒体311に記録して提供することができる。また、プログラムは、口一カルエリアネットワーク、インタ一ネッ卜、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
コンピュータでは、プログラムは、リムーバブル記録媒体311をドライブ310に装着することにより、入出力インタフェース305を介して、記録部308にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部309で受信し、記録部308にインストールすることができる。その他、プログラムは、ROM302や記録部308に、あらかじめインストールしておくことができる。
4.変形例
開示される技術は上記実施形態に限定されない。いくつかの変形例について説明する。
開示される技術は上記実施形態に限定されない。いくつかの変形例について説明する。
上記実施形態では脈絡膜上腔に留置するMIGS用インプラントについて主に説明を行ったが、インプラントは他のさまざまなMIGS用インプラントであってもよい。他のMIGS用インプラントの例は、前房と結膜下をつなぐインプラント、線維柱帯をバイパスするインプラント、シュレム菅を拡げるインプラント等である。
また、上記実施形態では、インプラントが、MIGS(低侵襲緑内障手術)用インプラントである例について説明した。ただし、インプラントは、他のさまざまな眼科手術用のインプラントであってもよい。他の手術の例は、網膜硝子体手術等である。
制御システム1の構成要素、制御装置7の構成要素等は、別個の筐体に収納され、ネットワークを介して接続されていてもよい。例えば、1つの機能をネットワークを介して複数の装置で分担、共同して処理するような、クラウドコンピューティング構成が採用されてもよい。
5.効果の例
以上説明した制御装置7は、例えば次のように特定される。図1~図3等を参照して説明したように、制御装置7は、取得部71と、推定部72と、撮像制御部73と、を備える。取得部71は、眼内にインプラントを留置するための手術における顕微鏡画像を取得する。推定部72は、取得部71の取得結果に基づいて、術野の状況を推定する。撮像制御部73は、推定部72の推定結果に基づいて、インプラントを含む断層画像が撮像されるように撮像制御する。
以上説明した制御装置7は、例えば次のように特定される。図1~図3等を参照して説明したように、制御装置7は、取得部71と、推定部72と、撮像制御部73と、を備える。取得部71は、眼内にインプラントを留置するための手術における顕微鏡画像を取得する。推定部72は、取得部71の取得結果に基づいて、術野の状況を推定する。撮像制御部73は、推定部72の推定結果に基づいて、インプラントを含む断層画像が撮像されるように撮像制御する。
上記の制御装置7によれば、例えば顕微鏡画像に基づいて術野の状況が推定され、その推定結果に基づいて、インプラントを含む断層画像が撮像される。したがって、インプラントを適切に含む断層画像の撮像が可能になる。
図4及び図5等を参照して説明したように、手術は、インプラントを隅角領域に挿入して留置するための手術(例えばMIGS)であり、推定部72は、隅角領域におけるインプラントの挿入方向後側端の開口部Oの位置を推定してよい。これにより、可視光の透過しない組織に隠れる形で留置されるインプラントを含む断層画像を撮像することができる。
図6等を参照して説明したように、推定部72は、隅角領域のうち、角膜中心を挟んで切開創とは反対側の位置にある隅角領域を、インプラントの開口部Oの位置として推定してよい。図7等を参照して説明したように、推定部72は、隅角領域のうち、インプラントIが眼内に刺し入れられているときのインプラントIの進行方向の延長線上に位置する隅角領域を、インプラントIの開口部Oの位置として推定してよい。図8等を参照して説明したように、推定部72は、隅角領域のうち、インプラントIが眼内に刺し入れられているときにインプラントIが接触した隅角領域を、インプラントIの開口部Oの位置として推定してよい。図9等を参照して説明したように、推定部72は、隅角領域のうち、開瞼器Eの配置に応じて定められる隅角領域を、インプラントの開口部Oの位置として推定してよい。推定部72は、隅角領域のうち、顕微鏡画像中の特定の方向に位置する隅角領域を、インプラントの開口部Oの位置として推定してよい。例えばこのようなさまざまな推定手法を用いて、開口部Oの位置を推定することができる。
図10、図15及び図16等を参照して説明したように、撮像制御部73は、想定されるインプラントIの延在方向と直交する方向を層方向(例えば層方向F1)とする断層画像が撮像されるように、撮像制御してよい。図11、図15及び図16等を参照して説明したように、撮像制御部73は、隅角領域の接線方向を層方向(例えば層方向F2)とする断層画像が撮像されるように、撮像制御してよい。図12、図17及び図18等を参照して説明したように、撮像制御部73は、想定されるインプラントIの延在方向を層方向(例えば層方向F3)とする断層画像が撮像されるように、撮像制御してよい。図13、図17及び図18等を参照して説明したように、撮像制御部73は、隅角領域の接線と直交する方向を層方向(例えば層方向F4)とする断層画像が撮像されるように、撮像制御してよい。これらの撮像は、同じ層方向の複数の断層画像が層方向と直交する方向の走査によって撮像されるように、撮像制御されてよい。図14等を参照して説明したように、撮像制御部73は、層方向の異なる複数の断層画像が層方向(例えば層方向F5)を回転させる方向の走査によって撮像されるように、撮像制御してよい。例えばこのようなさまざまな撮像手法を用いて、インプラントを含む断層画像を撮像することができる。
撮像制御部73は、撮像済み断層画像にインプラントが含まれていないと推定される場合には、撮像済み断層画像の撮像対象位置に隣接する位置の断層画像が撮像されるように、撮像制御してよい。これにより、インプラントの位置を確実に検出(確認)することができる。
撮像制御部73は、断層画像にインプラントが含まれる程度が大きくなるにつれて、複数の断層画像の走査の間隔が狭くなるように、撮像制御してよい。これにより、効率的にかつ精度良くインプラントの位置を検出することができる。
推定部72は、異なる観察状態で撮像された複数の顕微鏡画像それぞれに示される眼の部位のパターンマッチングに基づいて推定される各観察状態での眼の位置及び姿勢に基づいて、術野の状況を推定してよい。これにより、観察状態の変化に適応した推定が可能になる。
推定部72は、ユーザ操作によって指定されたタイミングで、前記術野の状況を推定してよい。これにより、例えば、処理コストを低減して他の処理(例えば画質改善)に処理リソースを割り当てながら、高精度の推定結果に基づく高精度なインプラントの位置の検出が可能になる。
図1~図3等を参照して説明した制御システム1も、本開示の一態様である。制御システム1は、眼内にインプラントを留置するための手術における顕微鏡画像及び断層画像を撮像する撮像部(例えば正面画像撮像部61及び断層画像撮像部62)と、制御装置7と、を備える。制御装置7は、撮像部によって撮像された顕微鏡画像を取得する取得部71と、取得部71の取得結果に基づいて、術野の状況を推定する推定部72と、推定部72の推定結果に基づいて、インプラントを含む断層画像が撮像されるように撮像部を制御する撮像制御部73と、を含む。このような制御システム1によっても、これまで説明したように、インプラントを適切に含む断層画像の撮像が可能になる。
図19等を参照して説明した制御方法も、本開示の一態様である。制御方法は、制御装置7が、眼内にインプラントを留置するための手術における顕微鏡画像を取得すること(ステップS1)と、制御装置7が、取得結果に基づいて、術野の状況を推定すること(ステップS2)と、制御装置7が、推定結果に基づいて、インプラントを含む断層画像が撮像されるように撮像制御すること(ステップS3)と、を含む。このような制御方法によっても、これまで説明したように、インプラントを適切に含む断層画像の撮像が可能になる。
なお、本開示に記載された効果は、あくまで例示であって、開示された内容に限定されない。他の効果があってもよい。
以上、本開示の実施形態について説明したが、本開示の技術的範囲は、上述の実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。
なお、本技術は以下のような構成も取ることができる。
(1)
眼内にインプラントを留置するための手術における顕微鏡画像を取得する取得部と、
前記取得部の取得結果に基づいて、術野の状況を推定する推定部と、
前記推定部の推定結果に基づいて、前記インプラントを含む断層画像が撮像されるように撮像制御する撮像制御部と、
を備える、
制御装置。
(2)
前記手術は、前記インプラントを隅角領域に挿入して留置するための手術であり、
前記推定部は、隅角領域における前記インプラントの挿入方向後側端の開口部の位置を推定する、
(1)に記載の制御装置。
(3)
前記推定部は、隅角領域のうち、角膜中心を挟んで切開創とは反対側の位置にある隅角領域を、前記インプラントの前記開口部の位置として推定する、
(2)に記載の制御装置。
(4)
前記推定部は、隅角領域のうち、前記インプラントが眼内に刺し入れられているときの前記インプラントの進行方向の延長線上に位置する隅角領域を、前記インプラントの前記開口部の位置として推定する、
(2)又は(3)に記載の制御装置。
(5)
前記推定部は、隅角領域のうち、前記インプラントが眼内に刺し入れられているときに前記インプラントが接触した隅角領域を、前記インプラントの前記開口部の位置として推定する、
(2)~(4)のいずれかに記載の制御装置。
(6)
前記推定部は、隅角領域のうち、開瞼器の配置に応じて定められる隅角領域を、前記インプラントの前記開口部の位置として推定する、
(2)~(5)のいずれかに記載の制御装置。
(7)
前記推定部は、隅角領域のうち、前記顕微鏡画像中の特定の方向に位置する隅角領域を、前記インプラントの前記開口部の位置として推定する、
(2)~(6)のいずれかに記載の制御装置。
(8)
前記撮像制御部は、想定される前記インプラントの延在方向と直交する方向を層方向とする断層画像が撮像されるように、撮像制御する、
(1)~(7)のいずれかに記載の制御装置。
(9)
前記撮像制御部は、隅角領域の接線方向を層方向とする断層画像が撮像されるように、撮像制御する、
(1)~(7)のいずれかに記載の制御装置。
(10)
前記撮像制御部は、想定される前記インプラントの延在方向を層方向とする断層画像が撮像されるように、撮像制御する、
(1)~(7)のいずれかに記載の制御装置。
(11)
前記撮像制御部は、隅角領域の接線と直交する方向を層方向とする断層画像が撮像されるように、撮像制御する、
(1)~(7)のいずれかに記載の制御装置。
(12)
前記撮像制御部は、同じ層方向の複数の断層画像が層方向と直交する方向の走査によって撮像されるように、撮像制御する、
(1)~(11)のいずれかに記載の制御装置。
(13)
前記撮像制御部は、層方向の異なる複数の断層画像が層方向を回転させる方向の走査によって撮像されるように、撮像制御する、
(1)~(11)のいずれかに記載の制御装置。
(14)
前記撮像制御部は、撮像済み断層画像に前記インプラントが含まれていないと推定される場合には、前記撮像済み断層画像の撮像対象位置に隣接する位置の断層画像が撮像されるように、撮像制御する、
(1)~(13)のいずれかに記載の制御装置。
(15)
前記撮像制御部は、断層画像に前記インプラントが含まれる程度が大きくなるにつれて、複数の断層画像の走査の間隔が狭くなるように、撮像制御する、
(1)~(14)のいずれかに記載の制御装置。
(16)
前記推定部は、異なる観察状態で撮像された複数の顕微鏡画像それぞれに示される眼の部位のパターンマッチングに基づいて推定される各観察状態での眼の位置及び姿勢に基づいて、術野の状況を推定する、
(1)~(15)のいずれかに記載の制御装置。
(17)
前記推定部は、ユーザ操作によって指定されたタイミングで、前記術野の状況を推定する、
(1)~(16)のいずれかに記載の制御装置。
(18)
眼内にインプラントを留置するための手術における顕微鏡画像及び断層画像を撮像する撮像部と、
制御装置と、
を備え、
前記制御装置は、
前記撮像部によって撮像された顕微鏡画像を取得する取得部と、
前記取得部の取得結果に基づいて、術野の状況を推定する推定部と、
前記推定部の推定結果に基づいて、前記インプラントを含む断層画像が撮像されるように前記撮像部を制御する撮像制御部と、
を含む、
制御システム。
(19)
制御装置が、眼内にインプラントを留置するための手術における顕微鏡画像を取得することと、
前記制御装置が、取得結果に基づいて、術野の状況を推定することと、
前記制御装置が、推定結果に基づいて、前記インプラントを含む断層画像が撮像されるように撮像制御することと、
を含む、
制御方法。
(1)
眼内にインプラントを留置するための手術における顕微鏡画像を取得する取得部と、
前記取得部の取得結果に基づいて、術野の状況を推定する推定部と、
前記推定部の推定結果に基づいて、前記インプラントを含む断層画像が撮像されるように撮像制御する撮像制御部と、
を備える、
制御装置。
(2)
前記手術は、前記インプラントを隅角領域に挿入して留置するための手術であり、
前記推定部は、隅角領域における前記インプラントの挿入方向後側端の開口部の位置を推定する、
(1)に記載の制御装置。
(3)
前記推定部は、隅角領域のうち、角膜中心を挟んで切開創とは反対側の位置にある隅角領域を、前記インプラントの前記開口部の位置として推定する、
(2)に記載の制御装置。
(4)
前記推定部は、隅角領域のうち、前記インプラントが眼内に刺し入れられているときの前記インプラントの進行方向の延長線上に位置する隅角領域を、前記インプラントの前記開口部の位置として推定する、
(2)又は(3)に記載の制御装置。
(5)
前記推定部は、隅角領域のうち、前記インプラントが眼内に刺し入れられているときに前記インプラントが接触した隅角領域を、前記インプラントの前記開口部の位置として推定する、
(2)~(4)のいずれかに記載の制御装置。
(6)
前記推定部は、隅角領域のうち、開瞼器の配置に応じて定められる隅角領域を、前記インプラントの前記開口部の位置として推定する、
(2)~(5)のいずれかに記載の制御装置。
(7)
前記推定部は、隅角領域のうち、前記顕微鏡画像中の特定の方向に位置する隅角領域を、前記インプラントの前記開口部の位置として推定する、
(2)~(6)のいずれかに記載の制御装置。
(8)
前記撮像制御部は、想定される前記インプラントの延在方向と直交する方向を層方向とする断層画像が撮像されるように、撮像制御する、
(1)~(7)のいずれかに記載の制御装置。
(9)
前記撮像制御部は、隅角領域の接線方向を層方向とする断層画像が撮像されるように、撮像制御する、
(1)~(7)のいずれかに記載の制御装置。
(10)
前記撮像制御部は、想定される前記インプラントの延在方向を層方向とする断層画像が撮像されるように、撮像制御する、
(1)~(7)のいずれかに記載の制御装置。
(11)
前記撮像制御部は、隅角領域の接線と直交する方向を層方向とする断層画像が撮像されるように、撮像制御する、
(1)~(7)のいずれかに記載の制御装置。
(12)
前記撮像制御部は、同じ層方向の複数の断層画像が層方向と直交する方向の走査によって撮像されるように、撮像制御する、
(1)~(11)のいずれかに記載の制御装置。
(13)
前記撮像制御部は、層方向の異なる複数の断層画像が層方向を回転させる方向の走査によって撮像されるように、撮像制御する、
(1)~(11)のいずれかに記載の制御装置。
(14)
前記撮像制御部は、撮像済み断層画像に前記インプラントが含まれていないと推定される場合には、前記撮像済み断層画像の撮像対象位置に隣接する位置の断層画像が撮像されるように、撮像制御する、
(1)~(13)のいずれかに記載の制御装置。
(15)
前記撮像制御部は、断層画像に前記インプラントが含まれる程度が大きくなるにつれて、複数の断層画像の走査の間隔が狭くなるように、撮像制御する、
(1)~(14)のいずれかに記載の制御装置。
(16)
前記推定部は、異なる観察状態で撮像された複数の顕微鏡画像それぞれに示される眼の部位のパターンマッチングに基づいて推定される各観察状態での眼の位置及び姿勢に基づいて、術野の状況を推定する、
(1)~(15)のいずれかに記載の制御装置。
(17)
前記推定部は、ユーザ操作によって指定されたタイミングで、前記術野の状況を推定する、
(1)~(16)のいずれかに記載の制御装置。
(18)
眼内にインプラントを留置するための手術における顕微鏡画像及び断層画像を撮像する撮像部と、
制御装置と、
を備え、
前記制御装置は、
前記撮像部によって撮像された顕微鏡画像を取得する取得部と、
前記取得部の取得結果に基づいて、術野の状況を推定する推定部と、
前記推定部の推定結果に基づいて、前記インプラントを含む断層画像が撮像されるように前記撮像部を制御する撮像制御部と、
を含む、
制御システム。
(19)
制御装置が、眼内にインプラントを留置するための手術における顕微鏡画像を取得することと、
前記制御装置が、取得結果に基づいて、術野の状況を推定することと、
前記制御装置が、推定結果に基づいて、前記インプラントを含む断層画像が撮像されるように撮像制御することと、
を含む、
制御方法。
1 制御システム
2 光源
3 観察光学系
41 提示部
42 UI部
5 接眼レンズ
61 正面画像撮像部
62 断層画像撮像部
7 制御装置
71 取得部
72 推定部
73 撮像制御部
301 CPU
302 ROM
303 RAM
304 バス
305 入出力インタフェース
306 入力部
307 出力部
308 記録部
309 通信部
310 ドライブ
311 リムーバブル記録媒体
2 光源
3 観察光学系
41 提示部
42 UI部
5 接眼レンズ
61 正面画像撮像部
62 断層画像撮像部
7 制御装置
71 取得部
72 推定部
73 撮像制御部
301 CPU
302 ROM
303 RAM
304 バス
305 入出力インタフェース
306 入力部
307 出力部
308 記録部
309 通信部
310 ドライブ
311 リムーバブル記録媒体
Claims (19)
- 眼内にインプラントを留置するための手術における顕微鏡画像を取得する取得部と、
前記取得部の取得結果に基づいて、術野の状況を推定する推定部と、
前記推定部の推定結果に基づいて、前記インプラントを含む断層画像が撮像されるように撮像制御する撮像制御部と、
を備える、
制御装置。 - 前記手術は、前記インプラントを隅角領域に挿入して留置するための手術であり、
前記推定部は、隅角領域における前記インプラントの挿入方向後側端の開口部の位置を推定する、
請求項1に記載の制御装置。 - 前記推定部は、隅角領域のうち、角膜中心を挟んで切開創とは反対側の位置にある隅角領域を、前記インプラントの前記開口部の位置として推定する、
請求項2に記載の制御装置。 - 前記推定部は、隅角領域のうち、前記インプラントが眼内に刺し入れられているときの前記インプラントの進行方向の延長線上に位置する隅角領域を、前記インプラントの前記開口部の位置として推定する、
請求項2に記載の制御装置。 - 前記推定部は、隅角領域のうち、前記インプラントが眼内に刺し入れられているときに前記インプラントが接触した隅角領域を、前記インプラントの前記開口部の位置として推定する、
請求項2に記載の制御装置。 - 前記推定部は、隅角領域のうち、開瞼器の配置に応じて定められる隅角領域を、前記インプラントの前記開口部の位置として推定する、
請求項2に記載の制御装置。 - 前記推定部は、隅角領域のうち、前記顕微鏡画像中の特定の方向に位置する隅角領域を、前記インプラントの前記開口部の位置として推定する、
請求項2に記載の制御装置。 - 前記撮像制御部は、想定される前記インプラントの延在方向と直交する方向を層方向とする断層画像が撮像されるように、撮像制御する、
請求項1に記載の制御装置。 - 前記撮像制御部は、隅角領域の接線方向を層方向とする断層画像が撮像されるように、撮像制御する、
請求項1に記載の制御装置。 - 前記撮像制御部は、想定される前記インプラントの延在方向を層方向とする断層画像が撮像されるように、撮像制御する、
請求項1に記載の制御装置。 - 前記撮像制御部は、隅角領域の接線と直交する方向を層方向とする断層画像が撮像されるように、撮像制御する、
請求項1に記載の制御装置。 - 前記撮像制御部は、同じ層方向の複数の断層画像が層方向と直交する方向の走査によって撮像されるように、撮像制御する、
請求項1に記載の制御装置。 - 前記撮像制御部は、層方向の異なる複数の断層画像が層方向を回転させる方向の走査によって撮像されるように、撮像制御する、
請求項1に記載の制御装置。 - 前記撮像制御部は、撮像済み断層画像に前記インプラントが含まれていないと推定される場合には、前記撮像済み断層画像の撮像対象位置に隣接する位置の断層画像が撮像されるように、撮像制御する、
請求項1に記載の制御装置。 - 前記撮像制御部は、断層画像に前記インプラントが含まれる程度が大きくなるにつれて、複数の断層画像の走査の間隔が狭くなるように、撮像制御する、
請求項1に記載の制御装置。 - 前記推定部は、異なる観察状態で撮像された複数の顕微鏡画像それぞれに示される眼の部位のパターンマッチングに基づいて推定される各観察状態での眼の位置及び姿勢に基づいて、術野の状況を推定する、
請求項1に記載の制御装置。 - 前記推定部は、ユーザ操作によって指定されたタイミングで、前記術野の状況を推定する、
請求項1に記載の制御装置。 - 眼内にインプラントを留置するための手術における顕微鏡画像及び断層画像を撮像する撮像部と、
制御装置と、
を備え、
前記制御装置は、
前記撮像部によって撮像された顕微鏡画像を取得する取得部と、
前記取得部の取得結果に基づいて、術野の状況を推定する推定部と、
前記推定部の推定結果に基づいて、前記インプラントを含む断層画像が撮像されるように前記撮像部を制御する撮像制御部と、
を含む、
制御システム。 - 制御装置が、眼内にインプラントを留置するための手術における顕微鏡画像を取得することと、
前記制御装置が、取得結果に基づいて、術野の状況を推定することと、
前記制御装置が、推定結果に基づいて、前記インプラントを含む断層画像が撮像されるように撮像制御することと、
を含む、
制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/262,450 US20240103260A1 (en) | 2021-01-29 | 2021-12-24 | Control device, control system, and control method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021012602A JP2022116438A (ja) | 2021-01-29 | 2021-01-29 | 制御装置、制御システム及び制御方法 |
JP2021-012602 | 2021-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022163268A1 true WO2022163268A1 (ja) | 2022-08-04 |
Family
ID=82654520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/048294 WO2022163268A1 (ja) | 2021-01-29 | 2021-12-24 | 制御装置、制御システム及び制御方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240103260A1 (ja) |
JP (1) | JP2022116438A (ja) |
WO (1) | WO2022163268A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230211506A1 (en) * | 2021-12-30 | 2023-07-06 | Francis Joseph Osebold, III | Light for teach pendant and/or robot |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017065018A1 (ja) * | 2015-10-15 | 2017-04-20 | ソニー株式会社 | 画像処理装置、画像処理方法、および手術顕微鏡 |
WO2018207466A1 (ja) * | 2017-05-09 | 2018-11-15 | ソニー株式会社 | 画像処理装置、画像処理方法及び画像処理プログラム |
-
2021
- 2021-01-29 JP JP2021012602A patent/JP2022116438A/ja active Pending
- 2021-12-24 US US18/262,450 patent/US20240103260A1/en active Pending
- 2021-12-24 WO PCT/JP2021/048294 patent/WO2022163268A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017065018A1 (ja) * | 2015-10-15 | 2017-04-20 | ソニー株式会社 | 画像処理装置、画像処理方法、および手術顕微鏡 |
WO2018207466A1 (ja) * | 2017-05-09 | 2018-11-15 | ソニー株式会社 | 画像処理装置、画像処理方法及び画像処理プログラム |
Also Published As
Publication number | Publication date |
---|---|
JP2022116438A (ja) | 2022-08-10 |
US20240103260A1 (en) | 2024-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101552297B1 (ko) | 레이저-보조 눈-수술 치료 시스템을 위한 장치 및 방법 | |
US10702145B2 (en) | Ophthalmologic apparatus | |
KR20190096986A (ko) | 안과 수술을 위한 적응적 영상 정합 | |
US20150077705A1 (en) | Integrated OCT-Refractometer System for Ocular Biometry | |
US20220115122A1 (en) | Control device, ophthalmic microscope system, ophthalmic microscope, and image processing apparatus | |
JP7343331B2 (ja) | 眼科装置、その制御方法、プログラム、及び、記録媒体 | |
JP2000333905A (ja) | 眼科装置 | |
JP6436888B2 (ja) | 眼内レンズ度数決定装置 | |
JP6819223B2 (ja) | 眼科情報処理装置、眼科情報処理プログラム、および眼科手術システム | |
WO2022163268A1 (ja) | 制御装置、制御システム及び制御方法 | |
JP5172216B2 (ja) | 眼科測定装置 | |
US20230397810A1 (en) | Ophthalmic observation apparatus, method of controlling the same, and recording medium | |
JP2004024470A (ja) | 眼科撮影装置 | |
US20140268040A1 (en) | Multimodal Ocular Imager | |
JP2001017459A (ja) | 手術用顕微鏡 | |
US11089956B2 (en) | Ophthalmologic apparatus and method of controlling the same | |
JP7184077B2 (ja) | 制御装置および方法、並びに手術顕微鏡システム | |
US20200175656A1 (en) | Image processing apparatus, ophthalmic observation apparatus, and ophthalmic observation system | |
JP2019048161A (ja) | レーザ治療装置 | |
JP2019154993A (ja) | 眼科装置、その制御方法、プログラム、及び記録媒体 | |
JP2022051943A (ja) | 眼科装置、その制御方法、プログラム、及び記録媒体 | |
JP2019154992A (ja) | 眼科装置、その制御方法、プログラム、及び記録媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21923271 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18262450 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21923271 Country of ref document: EP Kind code of ref document: A1 |