WO2022163178A1 - ポリシロキサン多孔体の製造方法、ポリシロキサン多孔体、保温材、及び、保温容器 - Google Patents

ポリシロキサン多孔体の製造方法、ポリシロキサン多孔体、保温材、及び、保温容器 Download PDF

Info

Publication number
WO2022163178A1
WO2022163178A1 PCT/JP2021/045943 JP2021045943W WO2022163178A1 WO 2022163178 A1 WO2022163178 A1 WO 2022163178A1 JP 2021045943 W JP2021045943 W JP 2021045943W WO 2022163178 A1 WO2022163178 A1 WO 2022163178A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
porous body
group
polysiloxane
polysiloxane porous
Prior art date
Application number
PCT/JP2021/045943
Other languages
English (en)
French (fr)
Inventor
元 早瀬
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to JP2022578126A priority Critical patent/JPWO2022163178A1/ja
Publication of WO2022163178A1 publication Critical patent/WO2022163178A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/16Preparation of silica xerogels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a method for producing a polysiloxane porous body, a polysiloxane porous body, a heat insulating material, and a heat insulating container.
  • Patent Document 1 “Both of a bifunctional alkoxysilane and a trifunctional alkoxysilane or a trifunctional or higher alkoxysilane are used as starting materials, these silanes are copolymerized by a sol-gel reaction, Si- A method for producing an airgel or xerogel silicone monolith that forms a network of O bonds and undergoes phase separation and has continuous through channels and a silicone skeleton capable of dissolving chemical species.”
  • the present invention provides a method for producing a polysiloxane porous body that can produce a polysiloxane porous body having a skeleton composed of polysiloxane and having excellent flexibility without using a surfactant.
  • the task is to Another object of the present invention is to provide a polysiloxane porous body, a heat insulating material, and a heat insulating container.
  • the content of the tetraalkoxysilane is A method for producing a polysiloxane porous body, wherein the content is 10.5 to 20.0 mol%, and the content of the dimethyldialkoxysilane is 11.0 to 41.0 mol%.
  • [2] The method for producing a polysiloxane porous material according to [1], wherein the composition does not contain a surfactant.
  • [3] The method for producing a polysiloxane porous body according to [1] or [2], wherein the content of the dimethyldialkoxysilane is 38.0 mol% or less.
  • [4] The polysiloxane porous material according to [3], wherein the content of the methyltrialkoxysilane is 50.0 mol% or more and the content of the tetraalkoxysilane is 17.0 mol% or more. Production method.
  • [5] The method for producing a polysiloxane porous body according to [3], wherein the content of the methyltrialkoxysilane is 67.0 mol % or more.
  • [6] The method for producing a polysiloxane porous body according to any one of [1] to [5], wherein the polysiloxane porous body has a bulk density of 0.300 gcm ⁇ 3 or less.
  • [7] The method for producing a polysiloxane porous material according to any one of [1] to [6], which has a thermal conductivity of 0.0400 W/(m ⁇ K) or less at 20°C.
  • the content of the tetraalkoxysilane is 10.5 to 20.0 mol%.
  • a method for producing a polysiloxane porous body that can produce a polysiloxane porous body having a skeleton composed of polysiloxane and having excellent flexibility without using a surfactant.
  • the present invention can also provide a polysiloxane porous body, a heat insulating material, and a heat insulating container.
  • Fig. 3 is a ternary diagram showing the content of each silicon alkoxide component in the composition.
  • 1 is a perspective view showing the overall configuration of a heat insulating container 1 according to one embodiment of the present invention; FIG. It is a sectional view of a heat insulating container.
  • Fig. 3 is an exploded cross-sectional view of the heat insulating container; It is a perspective view of a heat insulating material.
  • FIG. 4 is a diagram for explaining a method of attaching a heat insulating material to the heat insulating container; It is a modification of the heat insulating container.
  • 1 is a ternary diagram plotted with each composition of the examples.
  • co-continuous structure means that when a cut surface of a member (polysiloxane porous body) is observed with a scanning electron microscope, a skeleton phase containing polysiloxane as a main component and voids are continuous, Also, it means a state in which they are three-dimensionally intertwined with each other.
  • macropores as used herein means pores with a pore diameter (pore diameter) of 50 nm or more according to the proposal by IUPAC.
  • the pore size and average pore size of the pores are determined by image analysis of electron microscopic images.
  • TEAS, MTAS and DMDAS may be collectively simply referred to as "silicon alkoxide”.
  • the present inventor has investigated a method for producing a silicone skeleton monolith having excellent flexibility without using a surfactant. Synthesis of a silicone skeleton monolith proceeds through a so-called sol-gel reaction. Therefore, a composition containing a polyfunctional silicon alkoxide having a hydrolyzable group is prepared, and the polycondensate of the hydrolysis product of the silicon alkoxide in the composition, that is, polysiloxane, which is the skeleton phase of the gel, is sequentially increased. It is manufactured by letting
  • the skeleton phase and the solution phase are each continuous three-dimensional.
  • a co-continuous structure having a mesh structure and being entangled with each other is formed.
  • phase separation control agent phase separation control agent
  • phase separation behavior can be controlled, viscoelastic phase separation can be caused, and a polysiloxane porous body having excellent flexibility can be obtained.
  • the method for producing the polysiloxane porous body will be described in detail below.
  • the tetraalkoxysilane used in this production method is a compound represented by the formula 1: Si—(OR 1 ) 4 where R 1 is an alkyl group (a plurality of R 1s in the molecule may be the same or different). but preferably identical).
  • the alkyl group for R 1 may be linear, branched, or cyclic. Alkyl groups are preferred. Although the number of carbon atoms in R 1 is not particularly limited, it is preferably 1 to 10 because the alcohol produced by hydrolytic condensation has superior hydrophilicity.
  • linear or branched alkyl groups having 1 to 10 carbon atoms include the following groups. methyl group with 1 carbon atom; ethyl group with 2 carbon atoms; propyl group with 3 carbon atoms, isopropyl group; butyl group with 4 carbon atoms, isobutyl group, tert-butyl group, sec-butyl Group; pentyl group having 5 carbon atoms, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1,1-dimethylpropyl group, 2,2-dimethylpropyl group, 1-ethylpropyl group; carbon number is six hexyl groups, 1-methylpentyl groups, 2-methylpentyl groups, 3-methylpentyl groups, 4-methylpentyl groups, 1,1-dimethylbutyl groups, 1,2-dimethylbutyl groups, 1,3 -dimethylbutyl group, 1,4-dimethylbutyl group, 2,3-dimethylbut
  • the cyclic alkyl group includes a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like.
  • the cyclic alkenyl group a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclopentadienyl group, a cyclohexenyl group, a cyclohexadienyl group, a cycloheptenyl group, a cycloheptadienyl group, a cyclooctenyl group, and a cyclo octadienyl group and the like.
  • a cyclic alkynyl group includes a cycloalkenyl group; a cyclooctynyl group, a cyclononynyl group, a cyclodecynyl group, a cyclodecadiynyl group, and the like.
  • TEAS examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetrakis(2-ethylhexyloxy)silane, and the like. From the viewpoint of cost, tetramethoxysilane (TMOS) is preferred.
  • TMOS tetramethoxysilane
  • MTAS Metaltrialkoxysilane
  • the methyltrialkoxysilane used in this production method is a compound represented by the formula 2: CH 3 —Si—(OR 2 ) 3 where R 2 is an alkyl group (a plurality of R 2 in the molecule are the same may be different, but are preferably the same).
  • the alkyl group for R2 has the same meaning as the alkyl group for R1 , and the preferred forms are also the same.
  • MTAS examples include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, and methyltributoxysilane, and methyltrimethoxysilane (MTMS) is preferred.
  • the dimethyldialkoxysilane used in this production method is a compound represented by the formula 3: (CH 3 ) 2 —Si—(OR 3 ) 2 where R 3 is an alkyl group (a plurality of R 3 may be the same or different, but are preferably the same).
  • the alkyl group for R3 has the same definition as the alkyl group for R1 , and the preferred forms are also the same.
  • DMDAS examples include dimethyldimethoxysilane, diethoxydimethylsilane, and the like, with dimethyldimethoxysilane (DMDMS) being preferred.
  • the manufacturing method includes preparing a composition comprising TEAS, MTAS, DMDAS, and water, gelling to form a gel, and drying the resulting gel.
  • the content of TEAS in the composition is 10.5 to 20.0 mol% when the total of TEAS, MTAS and DMDAS is 100 mol% (10.5 mol% ⁇ TEAS ⁇ 20 mol% .0 mol %). If TEAS is less than 10.5 mol % or more than 20.0 mol %, a polysiloxane porous body having excellent flexibility cannot be obtained in a system that does not use a surfactant.
  • the content of DMDAS is 11.0 to 41.0 mol% when the total of TEAS, MTAS and DMDAS is 100 mol% (11.0 mol% ⁇ DMDAS ⁇ 41.0 mol% ). If DMDAS is less than 11.0 mol % or more than 41.0 mol %, a polysiloxane porous body having excellent flexibility cannot be obtained in a system that does not use a surfactant.
  • the content of MTAS is 39.0 to 78.5 mol% when the total of TEAS, MTAS and DMDAS is 100 mol% (39.0 mol% ⁇ MTAS ⁇ 78.5 mol% ).
  • the content of silicon alkoxide in the present composition is 10.5 mol% ⁇ TEAS ⁇ 20.0 mol%, 11.0 mol% ⁇ DMDAS ⁇ 41.0 mol%, and 39.0 mol% ⁇ MTAS ⁇ 78.5 mol%, is.
  • FIG. 1 is a ternary diagram showing the content of each silicon alkoxide component in the composition. Of these, the shaded portion in FIG. 1 satisfies the above numerical range.
  • the content of DMDAS in the composition is preferably 38.0 mol % or less from the viewpoint that the resulting polysiloxane porous body has superior heat insulating properties (lower thermal conductivity). That is, from the viewpoint of obtaining a polysiloxane porous body having superior heat insulating properties, the silicon alkoxide content in the composition is preferably within the following ranges. 10.5 mol% ⁇ TEAS ⁇ 20.0 mol%, 11.0 mol% ⁇ DMDAS ⁇ 38.0 mol%, and 39.0 mol% ⁇ MTAS ⁇ 78.5 mol%
  • the content of DMDAS is 38.0 mol% or less and the content of MTAS is 50.0 mol% or less, Moreover, it is more preferable that the content of TEAS is 17.0 mol % or more. That is, from the viewpoint of obtaining a polysiloxane porous body having even better heat insulating properties, it is more preferable that the content of the silicon alkoxide in the composition is within the following ranges.
  • DMDAS is preferably 30.0 mol % or more. That is, it is preferable that 30.0 mol % ⁇ DMDAS ⁇ 38.0 mol %.
  • a polysiloxane porous body having a further excellent heat insulating property when the content of DMDAS is 38.0 mol% or less and the content of MTAS is 67.0 mol% or more is obtained. 10.5 mol% ⁇ TEAS ⁇ 20.0 mol%, 11.0 mol% ⁇ DMDAS ⁇ 38.0 mol%, and 67.0 mol% ⁇ MTAS ⁇ 78.5 mol%
  • the composition contains water. Although the content of water in the composition is not particularly limited, it is preferably 0.1 to 90% by mass.
  • the composition can be prepared by mixing the ingredients previously described. Among them, the content of the solvent is 50% by mass when the total mass of the composition is 100% by mass, from the viewpoint that the obtained polysiloxane porous body has better heat insulation (lower thermal conductivity). 55% by mass or more is more preferable, and 57% by mass or more is even more preferable.
  • the composition preferably does not contain surfactants.
  • surfactant-free it is meant that the surfactant content is less than 0.001 mol per 1 mol of silicon (total) of TEAS, MTAS and DMDAS. , is preferably 0.0001 mol or less, more preferably 0.00001 mol or less.
  • Surfactants include cationic, anionic, amphoteric, and nonionic.
  • anionic surfactants include hexylbenzenesulfonic acid, octylbenzenesulfonic acid, decylbenzenesulfonic acid, dodecylbenzenesulfonic acid, cetylbenzenesulfonic acid, myristylbenzenesulfonic acid, lauryl sulfate, polyoxyethylene lauryl sulfate, de Decenesulfonic acid, tetradecenesulfonic acid, hexadecenesulfonic acid, hydroxydodecanesulfonic acid, hydroxytetradecanesulfonic acid, hydroxyhexadecanesulfonic acid, and their sodium salts, potassium salts, ammonium salts, and triethanolamine salts. be done.
  • cationic surfactants include octyltrimethylammonium hydroxide, lauryltrimethylammonium hydroxide, stearyltrimethylammonium hydroxide, dioctyldimethylammonium hydroxide, distearyldimethylammonium hydroxide, lauryltrimethylammonium chloride, and stearyltrimethylammonium chloride. , cetyltrimethylammonium chloride, dicocoyldimethylammonium chloride, distearyldimethylammonium chloride, benzalkonium chloride, and stearyldimethylbenzylammonium chloride.
  • nonionic surfactants include polyoxyethylene lauryl ether, polyoxyethylene fatty acid ester, polyoxyethylene sorbitan fatty acid ester, sorbitan fatty acid ester, glycerin fatty acid ester, polyoxyethylene hydrogenated castor oil, and polyoxyethylene sorbitol fatty acid ester. , polyethylene glycol, polypropylene glycol, and diethylene glycol.
  • Amphoteric surfactants include, for example, amino acid-type and betaic acid-type surfactants.
  • composition may contain other ingredients within the scope of the effects of the present invention.
  • Other components include, for example, acids and bases.
  • the composition contains an acid.
  • the acid hydrolyzes the alkoxysilane and catalyzes the curing reaction.
  • alkoxysilane is hydrolyzed in the system to produce hydrolysis products, polycondensation reactions occur one after another in order.
  • Acid hydrolysis proceeds electrophilically with H 3 O + . That is, H 3 O + attacks the oxygen atom of the alkoxy group to generate -Si-OH and alcohol. This reaction has no effect of steric hindrance, hydrolysis and polycondensation proceed successively, and linear polysiloxane is easily synthesized.
  • the acid may be an inorganic acid or an organic acid.
  • inorganic acid hydrochloric acid, sulfuric acid, etc. can be used.
  • organic acid formic acid, acetic acid, propionic acid, oxalic acid, citric acid, and the like can be used, and acetic acid is preferable because the hydrolysis reaction is easier to control.
  • the content of the acid in the composition is not particularly limited, but since the polysiloxane porous body has better shape stability and flexibility, the content of water in the composition is 1 L. is preferably 1 to 100 mmol, more preferably 5 to 10 mmol.
  • the composition contains a base.
  • the base hydrolyzes the alkoxysilane and catalyzes the curing reaction. Hydrolysis with a base proceeds nucleophilically with OH- . That is, OH- directly attacks a silicon atom to generate RO- ( R is an organic group). Although this reaction is initially difficult to proceed due to the effects of steric hindrance and the like, once it proceeds, the steric hindrance is alleviated and the reaction tends to proceed rapidly. As a result, the number of hydroxy groups that contribute to polycondensation increases, so branched polysiloxanes are easily synthesized.
  • the base is not particularly limited, but alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, and lithium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide, strontium hydroxide, and barium hydroxide. substances; alkali metal carbonates such as potassium carbonate and sodium carbonate; ammonia; amines such as monomethylamine, dimethylamine, triethylamine, monoethylamine, diethylamine, ethylenediamine, monoethanolamine, diethanolamine, and triethanolamine mentioned.
  • alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, and lithium hydroxide
  • alkaline earth metal hydroxides such as calcium hydroxide, strontium hydroxide, and barium hydroxide.
  • alkali metal carbonates such as potassium carbonate and sodium carbonate
  • ammonia amines such as monomethylamine, dimethylamine, triethylamine, monoethylamine, diethylamine, ethylenediamine
  • Substances that produce basic substances by decomposition reaction may also be used, and examples of such substances include urea and hexamine. Urea is preferred because it is easy to remove.
  • the content of the base in the composition is not particularly limited, it is preferably from 1 mM to 15M in that the polysiloxane porous body has superior shape stability and flexibility.
  • the polysiloxane porous material is obtained by hydrolyzing silicon alkoxide by a sol-gel method using a composition obtained by mixing the components already described, and hydrolyzing the silicon alkoxide obtained by the hydrolysis.
  • Polycondensation and phase separation of the polycondensate (polysiloxane) obtained by polycondensation and the solution system containing unreacted silicon alkoxide and hydrolysis products are performed in parallel to form a skeleton phase and a solution phase. including a step of forming a gel (gelation step).
  • the skeleton phase of the gel formed in the gelling process is rich in polycondensates of the hydrolysis products of the silicon alkoxides.
  • the solution phase is rich in the solvent of the composition and the content of the polycondensate in the solution phase is relatively low compared to the content in the skeleton phase.
  • Phase separation is phase separation that proceeds simultaneously with hydrolysis of silicon alkoxide and polycondensation of hydrolysis products, typically viscoelastic phase separation.
  • the skeletal phase and solution phase generated through such a phase separation process each have a continuous three-dimensional network structure and are entangled with each other.
  • the gel formed in the gelation process has a co-continuous structure of the skeleton phase and the solution phase.
  • the polymer constituting the skeleton phase is a polysiloxane having a network of siloxane bonds (--Si--O--Si--) formed by polycondensation of the hydrolysis product of the silicon alkoxide by a sol-gel reaction. be. That is, the gel formed in the gelation step is polysiloxane gel.
  • the gelation process proceeds by mixing each component and preparing a composition.
  • the composition may be heated.
  • the heating conditions are not particularly limited, 40 to 100° C. is generally preferred, and the heating time is preferably 2 to 48 hours.
  • the gel obtained by the gelation process is a wet gel of polysiloxane.
  • the drying step is a step of drying the wet gel to obtain a polysiloxane porous body.
  • the drying method is not particularly limited, but includes a method of holding at room temperature to 120° C. for 1 to 24 hours.
  • a silicon alkoxide having a hydrolyzable group in its molecule forms a network of siloxane bonds through polycondensation of hydrolysis products by a sol-gel reaction. Since the present composition uses di-, tri-, and tetra-functional alkoxysilanes in combination, a rigid network generated by tri- and tetra-functional alkoxysilanes and a planar network with a high degree of freedom generated by di-functional alkoxysilanes will result in a flexible connection. As a result, the obtained polysiloxane porous material exhibits flexibility even after drying while having a skeleton composed of polysiloxane.
  • the present production method may have other steps than those described above as long as the effects of the present invention are not impaired.
  • Other steps include, for example, a step of heating and dehydrating the polysiloxane porous body.
  • the heating temperature at this time is not particularly limited, it is preferably higher than 200°C. If silanol (Si—OH) remains in the polysiloxane porous material, it can be dehydrated by heating. Since the polysiloxane porous material has excellent heat resistance, this step does not impair its flexibility.
  • the polysiloxane porous material prepared by the above method has a co-continuous structure of a skeleton composed of polysiloxane and macropores.
  • the polysiloxane constituting the skeleton is polysiloxane formed by hydrolysis of these silicon alkoxides and polycondensation of the hydrolysis products in the composition containing TEAS, MTAS and DMDAS.
  • it is a monolithic macroporous member of a silicone composition whose skeleton is formed by viscoelastic phase separation that accompanies the polycondensation reaction of a given silicon alkoxide in an aqueous solution.
  • the degree of flexibility is, for example, 100 kPa or less in terms of Young's modulus. Due to such high flexibility and light scattering due to the presence of macropores, the polysiloxane porous material was named "marshmallow gel" by the present inventors because it is white in an uncolored state.
  • the above polysiloxane porous material has macropores with a uniform pore size because macropores having a co-continuous structure with the skeleton are formed through a sol-gel reaction combined with a phase separation process.
  • Such a structure is completely different from the structure of a porous body obtained through a foaming process using a foaming agent (in such a porous body, a large number of independent pores are formed by foaming).
  • the average diameter of the skeleton is, for example, preferably 500 nm or more and preferably less than 10 ⁇ m.
  • the average pore size of macropores is, for example, 500 nm to 200 ⁇ m.
  • the average pore diameter of the pores of the polysiloxane porous body is preferably 1 ⁇ m or more, and preferably less than 100 ⁇ m.
  • the skeleton diameter and average pore diameter of the polysiloxane porous material can be determined by image analysis of electron microscope observation images.
  • the porosity of the polysiloxane porous material is preferably, for example, 75 to 98% as measured by a laser confocal microscope.
  • the above-mentioned polysiloxane porous body is stable in a wide temperature range because its skeleton is composed of polysiloxane. For example, it can retain its flexibility from liquid nitrogen temperature ( ⁇ 196° C.) to the temperature at which polysiloxane decomposes (approximately 320° C.).
  • the present polysiloxane porous material has both excellent heat resistance and excellent heat insulating properties, and although there are no particular restrictions on the thermal conductivity, the thermal conductivity at 20° C. (atmospheric pressure, in air) is 0.5. 0400 W/(m ⁇ K) or less is preferable, 0.0350 W/(m ⁇ K) or less is more preferable, and 0.0330 W/(m ⁇ K) or less is even more preferable.
  • the lower limit is not particularly limited, but generally 0.0120 W/(m ⁇ K) or more is preferable.
  • the thermal conductivity is measured by the method described in Examples below.
  • the bulk density of the present polysiloxane porous material is not particularly limited, but is preferably 0.300 gcm -3 (g/cm 3 ) or less, more preferably 0.200 gcm -3 or less, and even more preferably 0.110 gcm -3 or less. . Although the lower limit is not particularly limited, 0.010 gcm ⁇ 3 or more is generally preferred.
  • the present polysiloxane porous body has excellent bending resistance.
  • a polysiloxane porous body having a thickness of 5 mm is prepared and wound around a cylinder (rod) having a diameter of 10 mm, it is preferable that no cracks occur.
  • the present polysiloxane porous body has excellent flexibility, and a flat polysiloxane porous body is prepared and uniaxially compressed to 80% of the total height (to 20% of the original size).
  • the compression set remaining after unloading is preferably 10% or less, more preferably 8% or less, and even more preferably 5% or less.
  • the present polysiloxane porous body undergoes little change in thermal conductivity even when it is deformed by compression from the outside.
  • the rate of change in thermal conductivity is not particularly limited.
  • the rate of change in thermal conductivity compared is preferably 10.0% or less, more preferably 6.0% or less.
  • the rate of change in thermal conductivity is preferably 10.0% or less, more preferably 6.0% or less, over the entire compressibility range of 0 to 60%.
  • the rate of change in thermal conductivity is a value obtained by rounding off to the second decimal place.
  • the present polysiloxane porous body has excellent flexibility, excellent heat resistance, excellent heat insulating properties, etc., and can be used as a heat insulating material and the like.
  • it can be used as a liquid nitrogen adsorbent that adsorbs and retains liquid nitrogen because it retains its flexibility even at the temperature of liquid nitrogen.
  • the present polysiloxane porous body has liquid repellency and antifouling properties, and can be used as a liquid repellent substrate or the like. It can also be used as a water/oil separation medium, liposome preparation, and sound and vibration insulating material. Furthermore, by crushing, it can be used as an additive for cosmetics, a resin filler (filler), a reflective material, and the like.
  • a heat insulating container according to an embodiment of the present invention is a heat insulating container provided with a heat insulating material containing the present polysiloxane porous material.
  • FIG. 2 is a perspective view showing the overall configuration of the heat insulating container 1 according to one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the heat insulating container 1.
  • FIG. 4 is an exploded sectional view of the heat insulating container 1.
  • FIG. 3 and 4 are cross-sectional views taken along a plane parallel to the XY plane at the radial center of the heat insulating container 1.
  • the heat insulating container 1 includes a housing 10, a container body 20, a heat insulating material storage portion 30, a support member 40, a heat insulating material 50 (see FIG. 5), and a container opening/closing portion 60.
  • the heat-retaining container 1 is a heat-retaining container used for transporting goods that require temperature control, such as pharmaceuticals for humans and animals, quasi-drugs, food and drink, and test and research reagents.
  • the heat insulating container 1 is formed in a cylindrical shape as a whole.
  • the housing 10 is the outermost member of the heat insulating container 1, and as shown in FIG. 3, has a concave cross section parallel to the XY plane.
  • the housing 10 is provided with a vacuum heat insulating layer 13 between the outer surface 11 and the inner surface 12 .
  • the vacuum heat insulating layer 13 is a layer filled with gas having a pressure lower than atmospheric pressure.
  • the vacuum heat insulating layer 13 communicates with the radial (X direction) side surface of the housing 10 and the lower (Y2 side) bottom surface of the housing 10 . That is, the vacuum heat insulating layer 13 is formed to have a concave shape in the housing 10 except for the container opening/closing part 60 side.
  • the housing 10 is made of, for example, a metal member such as aluminum and stainless steel.
  • the outer surface 11 of the housing 10 is provided with a threaded portion 11s at the end portion on the upper side (Y1 side).
  • the threaded portion 11s is a male screw that engages with a threaded portion 61s of a container opening/closing portion 60 (opening/closing portion main body 61), which will be described later.
  • the container body 20 is a member provided inside the inner surface 12 of the housing 10, and as shown in FIG. 3, is formed so that the cross section parallel to the XY plane has a concave shape. An object to be kept warm (not shown) is accommodated inside the container body 20 .
  • the outer diameter of container body 20 is smaller than the inner diameter of housing 10 , and gap g ⁇ b>1 is formed between inner surface 12 of housing 10 and outer surface 22 of container body 20 .
  • a heat insulating material housing portion 30 (described later) is provided in the space of the gap g1.
  • the heat insulating container 1 does not have to have this container body 20 when a heat insulating material, which will be described later, is used as a cushioning material.
  • the present polysiloxane porous material is characterized in that it does not lose its flexibility even when impregnated with liquid nitrogen, and does not lose its buffering properties even at extremely low temperatures. Therefore, in the form without the container main body 20, the heat insulating material has two functions of heat insulation and cushioning. A heat insulating container of this form will be described later.
  • the container body 20 is made of a metal member such as aluminum or stainless steel.
  • the container body 20 is supported by a support member 40 inside the housing 10 .
  • the support member 40 is a member that connects the bottom surface 14 of the housing 10 and the bottom surface 21 of the container body 20 .
  • a gap g2 is formed between the bottom surface 14 of the housing 10 and the bottom surface 21 of the container body 20 by supporting the container body 20 with the support member 40 .
  • the heat insulating material is not arranged in the space of the gap g2, but when the support member 40 is arranged on the side surface of the container body 20, the heat insulating material 50 can be arranged in the space of the gap g2.
  • FIG. 3 an example in which two support members 40 are provided along the radial direction (X direction) of the housing 10 is shown. is set to
  • the heat insulating material housing portion 30 is a cylindrical space provided between the housing 10 and the container body 20.
  • a heat insulator 50 is detachably stored in the heat insulator storage portion 30 . 2 to 4 do not show the heat insulating material 50.
  • FIG. A configuration of the heat insulating material 50 will be described later.
  • the container opening/closing part 60 is a member that opens or closes the opening 23 of the container body 20 and the opening 31 of the heat insulating material storage part 30, as shown in FIG.
  • the container opening/closing part 60 is composed of an opening/closing part main body 61 .
  • Each part constituting the container opening/closing part 60 may be made of a metal member like the housing 10, or may be made of a resin material such as plastic.
  • the opening/closing unit main body 61 is a member detachably attached to the housing 10, and is formed to have a substantially convex cross section.
  • a screw portion 61s is provided on the inner peripheral surface of the opening/closing portion main body 61 on the Y2 side, which is the rear surface side.
  • the threaded portion 61s is a female thread that engages with the threaded portion 11s provided on the housing 10 .
  • the opening/closing part main body 61 can be attached to the housing 10 by rotating the opening/closing part main body 61 so that the screw part 61s of the opening/closing part main body 61 is engaged with the screw part 11s of the housing 10 .
  • the opening/closing unit main body 61 By attaching the opening/closing unit main body 61 to the housing 10, the opening 23 of the container main body 20 and the opening 31 of the heat insulating material storage unit 30 are closed as shown in FIG. 4, the opening 23 of the container body 20 and the opening 31 of the heat insulating material storage part 30 are opened by removing the opening/closing part main body 61 from the housing 10. As shown in FIG.
  • the heat insulating material contains the present polysiloxane porous body. Since the present polysiloxane porous material has excellent heat insulating properties, the heat insulating container 1 provided with the present polysiloxane porous material has excellent heat retaining performance.
  • the heat insulating material may further contain a liquid medium.
  • This polysiloxane porous material has excellent temperature stability and continuous macropores, and can easily adjust the temperature inside the container by impregnating it with a heated or cooled liquid medium. can be controlled to Examples of liquid media include liquid nitrogen.
  • FIG. 5 is a perspective view showing how the heat insulating material 50 is used.
  • the heat insulating material 50 includes the present polysiloxane porous body and has a cylindrical shape.
  • the outer diameter D1 and the inner diameter D2 of the heat insulating material 50 are set so that the heat insulating material 50 can be accommodated in the gap g1 (see FIG. 3) of the heat insulating material accommodating portion 30.
  • a gap may be formed between the heat insulating material 50 and the heat insulating material housing portion 30 .
  • FIG. 6A and 6B are diagrams for explaining a method of attaching the heat insulating material 50 to the heat insulating container 1.
  • FIG. In order to store the heat insulating material 50 in the heat insulating material housing portion 30 (housing 10), as shown in FIG. do. Then, the heat insulating material 50 is inserted through the opening 31 of the heat insulating material housing portion 30 .
  • the container body 20 is supported by a support member 40 that connects the bottom surface 14 of the housing 10 and the bottom surface 21 of the container body 20 . Therefore, the heat insulating container 1 can more stably hold the container body 20 inside the housing 10 .
  • Fig. 7 is a modification of the heat insulating container.
  • the heat insulating container 2 does not have the container body 20 that the heat insulating container 1 has, but has a cylindrical heat insulating material 50 having a bottom.
  • the heat insulating object is held in direct contact with the heat insulating material 50.
  • the heat insulating material 50 has excellent flexibility and thus functions as a cushioning material.
  • the thickness of the heat insulating material 50 is larger than that of the heat insulating container 1. - ⁇ As a result, not only is the heat retaining property higher, but also the cushioning performance of the heat retaining material 50 is enhanced.
  • the thickness of the heat-retaining container 2 may be determined as appropriate, but may be adjusted, for example, so that the object to be heat-retained fits tightly. That is, if the object to be kept warm is cylindrical, the thickness of the heat insulating material 50 should be adjusted so that the cylinder fits perfectly.
  • the heat insulating material 50 is impregnated with liquid nitrogen or the like, the inside of the heat insulating container 2 can be maintained at a low temperature without losing the buffering function of the heat insulating material 50, which is preferable for transporting medicines and the like that need to be transported at low temperatures. can be used.
  • the present polysiloxane porous body has excellent flexibility and little change in thermal conductivity due to compression. It has the characteristic that excellent heat retention effect (insulation effect) can be obtained even when used in .
  • TMOS tetramethoxysilane
  • MTMS methyltrimethoxysilane
  • DDMS dimethyldimethoxysilane
  • the composition was transferred to an airtight container (gel type) and kept at 80°C for 24 hours for reaction (gelation/aging).
  • the resulting gel was removed from the mold, washed once with 5 or more volumes of pure water and twice with industrial alcohol for at least 6 hours each, and then evaporated to dryness at 60°C to obtain a cured product in a dry state. (Polysiloxane porous body) was obtained.
  • FIG. 8 plots each composition in a ternary diagram. Those for which the above evaluations were all "A” (marshmallow gel) were designated as “ ⁇ (middle black circle)”, and those for which evaluation 1 was “A” and evaluation 2 was “B” were designated as “ ⁇ (middle white) Yen)”, and the evaluation 1 was “B” was designated as “ ⁇ (white triangle)”.
  • the polysiloxane porous material obtained from the composition indicated by " ⁇ ” in FIG. 8 is a monolithic macroporous member ( marshmallow gel). On the other hand, " ⁇ " and “ ⁇ ” were not marshmallow gels.
  • Thermal conductivity was measured by a heat flow meter method (ASTM C518) using "small" of "HFM446 Lambda” from NETZSCH. The temperature of the upper plate was set at 25° C. (high temperature side) and the temperature of the lower plate was set at 15° C. (low temperature side), and the thermal conductivity was measured while the sample was sandwiched between the two plates and a compressive stress was applied. The test was conducted at 20°C, which is the intermediate temperature between the upper and lower plates. The sample was a marshmallow gel panel with a thickness of about 10 mm (size: 110 mm x 110 mm).
  • the content of silicon alkoxide is 10.5 mol% ⁇ TEAS ⁇ 20.0 mol%, and It was found that using the compositions of Examples 1-9, where 11.0 mol % ⁇ DMDAS ⁇ 41.0 mol %, yields homogeneous polysiloxane porous bodies with excellent flexibility. On the other hand, when the compositions of Examples 10 to 25, which are outside the above range, are used, a homogeneous polysiloxane porous body (dry body) cannot be obtained, or even if a polysiloxane porous body is obtained, it is co-continuous. macropores and did not have the desired flexibility (no marshmallow gel was obtained).
  • the content of silicon alkoxide is 10.5 mol% ⁇ TEAS ⁇ 20.0 mol%, 11.0 mol% ⁇ DMDAS ⁇ 38.0 mol%, and 39.0 mol% ⁇ MTAS ⁇ 78.5 mol%
  • the polysiloxane porous body of the composition of Example 2 which is within the above range, has a lower thermal conductivity (higher heat insulation) than the polysiloxane porous body of the composition of Example 1, which is outside the above range.
  • the content of silicon alkoxide is 17.0 mol% ⁇ TEAS ⁇ 20.0 mol%, 11.0 mol% ⁇ DMDAS ⁇ 38.0 mol%, and 39.0 mol% ⁇ MTAS ⁇ 50 mol%
  • the polysiloxane porous body of the composition of Example 2 which is within the range of, has a lower thermal conductivity (higher heat insulation) than the polysiloxane porous body of the composition of Example 4, which is outside the above range. It turns out that
  • the content of silicon alkoxide is 10.5 mol% ⁇ TEAS ⁇ 20.0 mol%, 11.0 mol% ⁇ DMDAS ⁇ 38.0 mol%, and 67.0 mol% ⁇ MTAS ⁇ 78.5 mol%
  • the polysiloxane porous body of the composition of Example 5 which is within the range of, has a lower thermal conductivity (higher heat insulation) than the polysiloxane porous body of the composition of Example 4, which is outside the above range. It turns out that
  • a polysiloxane porous body having excellent flexibility can be obtained without using a surfactant.
  • a surfactant Conventionally, it has been considered essential to use a surfactant in order to obtain a similar polysiloxane porous material, and its removal requires washing with a large amount of organic solvent, which has a large environmental impact.
  • This manufacturing method solves the above problems.
  • the polysiloxane porous material obtained by this production method has excellent flexibility, excellent heat resistance, excellent heat insulating properties, etc., and can be used as a heat insulating material.
  • it can be used as a liquid nitrogen adsorbent that adsorbs and retains liquid nitrogen because it retains its flexibility even at the temperature of liquid nitrogen.
  • the present polysiloxane porous body has liquid repellency and antifouling properties, and can be used as a liquid repellent substrate or the like. It can also be used as a water/oil separation medium, liposome preparation, and sound and vibration insulating material. Furthermore, by crushing, it can be used as an additive for cosmetics, a resin filler (filler), a reflective material, and the like.
  • Thermal insulation container 10 Housing 11: Outer surface 11s: Threaded portion 12: Inner surface 13: Vacuum insulation layer 14: Bottom surface 20: Container main body 21: Bottom surface 22: Outer surface 23: Opening 30: Heat insulating material storage Portion 31: opening 40: support member 50: heat insulating material 60: container opening/closing portion 61: opening/closing portion main body 61s: screw portion

Abstract

本発明は、優れた柔軟性を有するポリシロキサン多孔体を製造できる、ポリシロキサン多孔体の製造方法を提供する。本発明の製造方法は、テトラアルコキシシランと、メチルトリアルコキシシランと、ジメチルジアルコキシシランと、水とを含む組成物を調製し、ゲル化させてゲルを形成することと、上記ゲルを乾燥させてポリシロキサン多孔体を得ることと、を含み、上記組成物中におけるテトラアルコキシシランと、メチルトリアルコキシシランと、ジメチルジアルコキシシランの含有量の合計を100モル%としたとき、上記テトラアルコキシシランの含有量が、10.5~20.0モル%であり、上記ジメチルジアルコキシシランの含有量が11.0~41.0モル%である。

Description

ポリシロキサン多孔体の製造方法、ポリシロキサン多孔体、保温材、及び、保温容器
 本発明は、ポリシロキサン多孔体の製造方法、ポリシロキサン多孔体、保温材、及び、保温容器に関する。
 ポリシロキサンから構成される骨格を有しながら、柔軟性を有するマクロ多孔体が知られている。特許文献1には、「二官能基のアルコキシシランと、三官能基のアルコキシシラン又は三官能以上のアルコキシシラン類との両方を出発原料とし、ゾルゲル反応によりこれらのシランを共重合させ、Si-O結合のネットワークを形成させると共に相分離を行い、連続貫通流路と化学種を溶解できるシリコーン骨格とを有するエアロゲル又はキセロゲルのシリコーン製モノリス体の製造方法。」が記載されている。
特開2014-61457号公報
 特許文献1に記載された製造方法によれば、優れた柔軟性を有するシリコーン製モノリスが製造できるものの、「Si-O結合のネットワークを形成させると共に相分離を行い、連続貫通流路と化学種を溶解できるシリコーン骨格」を形成させるには、相分離を制御するための界面活性剤(相分離制御剤)が必要であった。
 合成されたモノリス体から界面活性剤を除去するには、通常は多量の溶媒を用いて洗浄しなければならず、コスト、及び、環境負荷等の観点で改善の余地があった。
 そこで、本発明は、ポリシロキサンから構成される骨格を有しながら、優れた柔軟性を有するポリシロキサン多孔体を、界面活性剤を用いなくても製造できる、ポリシロキサン多孔体の製造方法を提供することを課題とする。また、本発明は、ポリシロキサン多孔体、保温材、及び、保温容器を提供することも課題とする。
 本発明者らは、上記課題を達成すべく鋭意検討した結果、以下の構成により上記課題を達成することができることを見出した。
[1] テトラアルコキシシランと、メチルトリアルコキシシランと、ジメチルジアルコキシシランと、水とを含む組成物を調製し、ゲル化させてゲルを形成することと、上記ゲルを乾燥させてポリシロキサン多孔体を得ることと、を含み、上記組成物中における上記テトラアルコキシシランと、上記メチルトリアルコキシシランと、上記ジメチルジアルコキシシランの含有量の合計を100モル%としたとき、上記テトラアルコキシシランの含有量が、10.5~20.0モル%であり、上記ジメチルジアルコキシシランの含有量が11.0~41.0モル%である、ポリシロキサン多孔体の製造方法。
[2] 上記組成物が、界面活性剤を含まない、[1]に記載のポリシロキサン多孔体の製造方法。
[3] 上記ジメチルジアルコキシシランの含有量が38.0モル%以下である、[1]又は[2]に記載のポリシロキサン多孔体の製造方法。
[4] 上記メチルトリアルコキシシランの含有量が50.0モル%以上であって、上記テトラアルコキシシランの含有量が17.0モル%以上である、[3]に記載のポリシロキサン多孔体の製造方法。
[5] 上記メチルトリアルコキシシランの含有量が67.0モル%以上である、[3]に記載のポリシロキサン多孔体の製造方法。
 [6] 上記ポリシロキサン多孔体のかさ密度が0.300gcm-3以下である、[1]~[5]のいずれかに記載のポリシロキサン多孔体の製造方法。
 [7] 20℃における熱伝導率が0.0400W/(m・K)以下である、[1]~[6]のいずれかに記載のポリシロキサン多孔体の製造方法。
[8] テトラアルコキシシランと、メチルトリアルコキシシランと、ジメチルジアルコキシシランと、水とを含む組成物を加水分解縮合させて得られるポリシロキサン多孔体であって、上記組成物中における上記テトラアルコキシシランと、上記メチルトリアルコキシシランと、上記ジメチルジアルコキシシランの含有量の合計を100モル%としたとき、上記テトラアルコキシシランの含有量が、10.5~20.0モル%であり、上記ジメチルジアルコキシシランの含有量が11.0~41.0モル%である、ポリシロキサン多孔体。
[9] 上記組成物中における上記ジメチルジアルコキシシランの含有量が38.0モル%以下である、[8]に記載のポリシロキサン多孔体。
[10] 上記組成物中における、上記メチルトリアルコキシシランの含有量が50.0モル%以上であって、上記テトラアルコキシシランの含有量が17.0モル%以上である、[9]に記載のポリシロキサン多孔体。
[11] 上記組成物中における、上記メチルトリアルコキシシランの含有量が67.0モル%以上である、[9]に記載のポリシロキサン多孔体。
[12] かさ密度が0.300gcm-3以下である、[8]~[11]のいずれかに記載のポリシロキサン多孔体。
 [13] 20℃における熱伝導率が0.0400W/(m・K)以下である、[8]~[12]のいずれかに記載のポリシロキサン多孔体。
[14] [8]~[13]のいずれかに記載のポリシロキサン多孔体を含む保温材。
[15] [14]に記載の保温材を備える保温容器。
 本発明によれば、ポリシロキサンから構成される骨格を有しながら、優れた柔軟性を有するポリシロキサン多孔体を、界面活性剤を用いなくても製造できる、ポリシロキサン多孔体の製造方法が提供できる。また、本発明は、ポリシロキサン多孔体、保温材、及び、保温容器も提供できる。
組成物中における各ケイ素アルコキシドの成分の含有量を表す三角図である。 本発明の一実施形態に係る保温容器1の全体構成を示す斜視図である。 保温容器の断面図である。 保温容器の分解断面図である。 保温材の斜視図である。 保温容器における保温材の装着方法を説明する図である。 保温容器の変形例である。 三角図に実施例の各組成物をプロットしたものである。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施形態に制限されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
(用語の定義)
 本明細書において、「共連続構造」とは、部材(ポリシロキサン多孔体)の切断面を走査型電子顕微鏡で観察したとき、ポリシロキサンを主成分とする骨格相と空隙とがそれぞれ連続し、かつ、互いに三次元的に入り組んでいる状態を意味する。
 また、本明細書において「マクロ孔」とは、IUPACによる提唱に従い、孔径(細孔径)が50nm以上の細孔を意味する。細孔の孔径、及び、平均孔径は、電子顕微鏡観察像の画像解析により求められる。
[ポリシロキサン多孔体の製造方法]
 本発明のポリシロキサン多孔体の製造方法(以下「本製造方法」ともいう。)は、テトラアルコキシシラン(TEAS)と、メチルトリアルコキシシラン(MTAS)と、ジメチルジアルコキシシラン(DMDAS)と、水とを含む組成物を調製し、ゲル化させてゲルを形成することと、上記ゲルを乾燥させてポリシロキサン多孔体を得る、ポリシロキサン多孔体の製造方法であって、組成物中のTEAS+MTAS+DMDAS=100モル%としたとき、10.5≦TEAS≦20.0、かつ、11.0≦DMDAS≦41.0が成り立つ、ポリシロキサン多孔体の製造方法である。なお、以下の説明では、TEAS、MTAS、及び、DMDASをあわせて単に「ケイ素アルコキシド」ということがある。
 本発明者は、優れた柔軟性を有するシリコーン骨格モノリス体を、界面活性剤を用いなくても製造できる方法を検討してきた。
 シリコーン骨格モノリス体の合成は、いわゆるゾル-ゲル反応で進行する。従って、加水分解性基を有する多官能ケイ素アルコキシドを含む組成物を準備し、その組成物中でケイ素アルコキシドの加水分解生成物の重縮合体、すなわち、ゲルの骨格相であるポリシロキサンを順次増加させることで製造される。
 このとき、上記骨格相と未反応のケイ素アルコキシド等を含む溶液相との間で起こる相分離を粘弾性相分離となるよう調整することで骨格相、及び、溶液相がそれぞれ連続した3次元の網目構造を有すると共に互いに絡み合った共連続構造を形成させる。
 この共連続構造は、ポリシロキサン多孔体に優れた柔軟性を与える要因の一つである。そのため、優れた柔軟性を有するシリコーン骨格モノリス体の製造には、相分離を制御するための界面活性剤(相分離制御剤)が不可欠だと考えられてきた。
 本発明者は上記の技術常識にとらわれず、鋭意検討を続けた結果、モノマーとして、TEAS、MTAS、及び、DMDASを併用し、更に、モノマーと水とを含む組成物中における各モノマーの含有量を所定の範囲とれば、相分離挙動を制御し、粘弾性相分離を起こさせ、優れた柔軟性を有するポリシロキサン多孔体を得られることを、膨大な組成を試した末に遂に発見し、本発明を完成させた。以下では、そのポリシロキサン多孔体の製造方法について詳述する。
(テトラアルコキシシラン:TEAS)
 まず、本製造方法に用いる各モノマー成分について説明する。
 本製造方法に用いるテトラアルコキシシランは、Rをアルキル基としたとき、式1:Si-(ORで表される化合物である(分子中に複数あるRは同一でも異なってもよいが、同一であることが好ましい。)。
 Rのアルキル基は、直鎖状、分岐鎖状、及び、環状のいずれであってもよいが、より優れた本発明の効果が得られる点で、直鎖状、又は、分岐鎖状のアルキル基が好ましい。
 Rの炭素数としては特に制限されないが、加水分解縮合により生ずるアルコールがより優れた親水性を有することから、1~10個が好ましい。
 炭素数が1~10個の直鎖状、又は、分岐鎖状のアルキル基としては、以下の基が挙げられる。炭素数が1個のメチル基;炭素数が2個のエチル基;炭素数が3個のプロピル基、イソプロピル基;炭素数が4個のブチル基、イソブチル基、tert-ブチル基、sec-ブチル基;炭素数が5個のペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1,1-ジメチルプロピル基、2,2-ジメチルプロピル基、1-エチルプロピル基;炭素数が6個のヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、1,4-ジメチルブチル基、2,3-ジメチルブチル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、1-エチル-2-メチル-プロピル基、1,1,2-トリメチルプロピル基;炭素数が7個のヘプチル基、1-メチルヘキシル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、1,1-ジメチルペンチル基、2,2-ジメチルペンチル基、3,3-ジメチルペンチル基、4,4-ジメチルペンチル基、1,2-ジメチルペンチル基、1,3-ジメチルペンチル基、1,4-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,4-ジメチルペンチル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、1,2,2-トリメチルブチル基、1,1,2-トリメチルブチル基、1,3,3-トリメチルブチル基、1,1,3-トリメチルブチル基、2,2,3-トリメチルブチル基、2,3,3-トリメチルブチル基;炭素数が8個のオクチル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、4-メチルヘプチル基、5-メチルヘプチル基、6-メチルヘプチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、1-プロピルペンチル基、2-プロピルペンチル基、1,1-ジメチルヘキシル基、2,2-ジメチルヘキシル基、3,3-ジメチルヘキシル基、4,4-ジメチルヘキシル基、5,5-ジメチルヘキシル基、3-エチル-3-メチルペンチル基、1,1-ジエチルブチル基、2,2-ジエチルブチル基、1,1,2,2-テトラメチルブチル基、1,1,3,3-テトラメチルブチル基、2,2,3,3-テトラメチルブチル基、1,1-ジメチル-2-エチルブチル基;炭素数が9個のノニル基、2-メチルオクチル基、3-メチルオクチル基、4-メチルオクチル基、2,2-ジメチルヘプチル基、2,3-ジメチルヘプチル基、2,4ジメチルヘプチル基、2,6ジメチルヘプチル基、3,3ジメチルヘプチル基、3,4ジメチルヘプチル基、3,5ジメチルヘプチル基、4,4ジメチルヘプチル基、3-エチルヘプチル基、4-エチルヘプチル基、2,2,3-トリメチルヘキシル基、2,2,4-トリメチルヘキシル基、2,2,5-トリメチルヘキシル基、2,3,3-トリメチルヘキシル基、2,3,4-トリメチルヘキシル基、2,3,5-トリメチルヘキシル基、2,4,4-トリメチルヘキシル基、3,3,4-トリメチルヘキシル基、2メチル-3-エチルヘキシル基、3-メチル-3-エチルヘキシル基、3-エチル-4-メチルヘキシル基、3-エチル-5-メチルヘキシル基、2,2,3,3-テトラメチルペンチル基、2,2,3,4-テトラメチルペンチル基、2,2,4,4-テトラメチルペンチル基、2,3,3,4-テトラメチルペンチル基、2,2-ジメチル-3-エチルペンチル基、2,3-ジメチル-3-エチルペンチル基、2,4-ジメチル-3-エチルペンチル基、3,3-ジエチルペンチル基;炭素数が10個のデシル基、イソデシル基;等が挙げられる。
 また、環状のアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、及び、シクロヘキシル基等が挙げられる。また、環状のアルケニル基としては、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基、シクロヘキサジエニル基、シクロヘプテニル基、シクロヘプタジエニル基、シクロオクテニル基、及び、シクロオクタジエニル基等が挙げられる。また、環状のアルキニル基としては、シクロアルケニル基;シクロオクチニル基、シクロノニニル基、シクロデシニル基、及び、シクロデカジイニル基等が挙げられる。
 TEASとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、及び、テトラキス(2-エチルヘキシルオキシ)シラン等が挙げられ、反応の制御のしやすさ、コストの点からはテトラメトキシシラン(TMOS)が好ましい。
(メチルトリアルコキシシラン:MTAS)
 本製造方法に用いるメチルトリアルコキシシランは、Rをアルキル基としたとき、式2:CH-Si-(ORで表される化合物である(分子中に複数あるRは同一でも異なってもよいが、同一であることが好ましい。)。
 なお、Rのアルキル基は、Rのアルキル基と同義であり、好適形態も同様である。
 MTASとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、及び、メチルトリブトキシシラン等が挙げられ、メチルトリメトキシシラン(MTMS)が好ましい。
(ジメチルジアルコキシシラン:DMDAS)
 本製造方法に用いるジメチルジアルコキシシランは、Rをアルキル基としたとき、式3:(CH-Si-(ORで表される化合物である(分子中に複数あるR同一でも異なってもよいが、同一であることが好ましい。)。
 なお、Rのアルキル基は、Rのアルキル基と同義であり、好適形態も同様である。
 DMDASとしては、例えば、ジメチルジメトキシシラン、及び、ジエトキシジメチルシラン等が挙げられ、ジメチルジメトキシシラン(DMDMS)が好ましい。
 次に、上記各モノマーを用いる本製造方法の製造工程について説明する。
 本製造方法は、TEAS、MTAS、及び、DMDAS、並びに、水を含む組成物を調製し、ゲル化させてゲルを形成することと、得られたゲルを乾燥させることを含む。
 上記組成物中における、TEASの含有量は、TEAS、MTAS、及び、DMDASの合計を100モル%としたとき、10.5~20.0モル%である(10.5モル%≦TEAS≦20.0モル%)。
 TEASが10.5モル%未満であったり、20.0モル%を超えたりすると、界面活性剤を用いない系では、優れた柔軟性を有するポリシロキサン多孔体が得られない。
 また、DMDASの含有量は、TEAS、MTAS、及び、DMDASの合計を100モル%としたとき、11.0~41.0モル%である(11.0モル%≦DMDAS≦41.0モル%)。
 DMDASが11.0モル%未満であったり、41.0モル%を超えたりすると、界面活性剤を用いない系では、優れた柔軟性を有するポリシロキサン多孔体が得られない。
 また、MTASの含有量は、TEAS、MTAS、及び、DMDASの合計を100モル%としたとき、39.0~78.5モル%である(39.0モル%≦MTAS≦78.5モル%)。
 以上をまとめると、本組成物中におけるケイ素アルコキシドの含有量は、
10.5モル%≦TEAS ≦20.0モル%、
11.0モル%≦DMDAS≦41.0モル%、かつ、
39.0モル%≦MTAS ≦78.5モル%、
である。
 図1は、組成物中における上記各ケイ素アルコキシドの成分の含有量を表す三角図である。このうち上記数値範囲を満たすのは、図1中の網掛けの部分である。
 なかでも、得られるポリシロキサン多孔体がより優れた断熱性(より低い熱伝導率)を有する観点からは、組成物中におけるDMDASの含有量は、38.0モル%以下が好ましい。
 すなわち、より優れた断熱性を有するポリシロキサン多孔体が得られる観点では、組成物中におけるケイ素アルコキシドの含有量が、それぞれ以下の範囲であることが好ましい。
10.5モル%≦TEAS ≦20.0モル%、
11.0モル%≦DMDAS≦38.0モル%、かつ、
39.0モル%≦MTAS ≦78.5モル%
 また、更に優れた断熱性を有するポリシロキサン多孔体が得られる観点からは、DMDASの含有量が38.0モル%以下であって、MTASの含有量が50.0モル%以下であって、かつ、TEASの含有量が17.0モル%以上であることがより好ましい。すなわち、更に優れた断熱性を有するポリシロキサン多孔体が得られる観点では、組成物中におけるケイ素アルコキシドの含有量が、それぞれ以下の範囲であることがより好ましい。
17.0モル%≦TEAS ≦20.0モル%、
11.0モル%≦DMDAS≦38.0モル%、かつ、
39.0モル%≦MTAS ≦50モル%
 なお、この場合、DMDASは、30.0モル%以上であることが好ましい。
 すなわち、30.0モル%≦DMDAS≦38.0モル%であることが好ましい。
 また、他の形態として、DMDASの含有量が38.0モル%以下であって、かつ、MTASの含有量が67.0モル%以上であると、更に優れた断熱性を有するポリシロキサン多孔体が得られる。
10.5モル%≦TEAS ≦20.0モル%、
11.0モル%≦DMDAS≦38.0モル%、かつ、
67.0モル%≦MTAS ≦78.5モル%
 組成物は、水を含有する。組成物中における水の含有量としては特に制限されないが、0.1~90質量%が好ましい。組成物は、すでに説明した各成分を混合することによって調製できる。
 なかでも、得られるポリシロキサン多孔体が、より優れた断熱性(より小さな熱伝導率)を有する観点で、溶媒の含有量は、組成物の全質量を100質量%としたとき、50質量%以上が好ましく、55質量%以上がより好ましく、57質量%以上が更に好ましい。
 組成物は、界面活性剤を含まないことが好ましい。組成物が界面活性剤を含有しないとは、TEAS、MTAS、及び、DMDASのケイ素(合計)の1モルに対して、界面活性剤の含有量が、0.001モル未満であることを意味し、0.0001モル以下が好ましく、0.00001モル以下がより好ましい。
 界面活性剤は、カチオン性、アニオン性、両性、及び、非イオン(ノニオン)性が挙げられる。
 アニオン性界面活性剤としては、例えば、ヘキシルベンゼンスルホン酸、オクチルベンゼンスルホン酸、デシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、セチルベンゼンスルホン酸、ミリスチルベンゼンスルホン酸、ラウリル硫酸、ポリオキシエチレンラウリル硫酸、ドデセンスルホン酸、テトラデセンスルホン酸、ヘキサデセンスルホン酸、ヒドロキシドデカンスルホン酸、ヒドロキシテトラデカンスルホン酸、ヒドロキシヘキサデカンスルホン酸、並びに、これらのナトリウム塩、カリウム塩、アンモニウム塩、及び、トリエタノールアミン塩等が挙げられる。
 カチオン性界面活性剤としては、例えば、水酸化オクチルトリメチルアンモニウム、水酸化ラウリルトリメチルアンモニウム、水酸化ステアリルトリメチルアンモニウム、水酸化ジオクチルジメチルアンモニウム、水酸化ジステアリルジメチルアンモニウム、塩化ラウリルトリメチルアンモニウム、塩化ステアリルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム、塩化ジココイルジメチルアンモニウム、塩化ジステアリルジメチルアンモニウム、塩化ベンザルコニウム、及び、塩化ステアリルジメチルベンジルアンモニウム等が挙げられる。
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレンソルビトール脂肪酸エステル、ポリエチレングリコール、ポリプロピレングリコール、及び、ジエチレングリコール等が挙げられる。
 両性界面活性剤としては、例えば、アミノ酸型、及び、ベタイン酸型界面活性剤等が挙げられる。
 組成物は、本発明の効果を奏する範囲内において、その他の成分を含有していてもよい。その他の成分としては、例えば、酸、及び、塩基等が挙げられる。
(酸)
 組成物は酸を含むことが好ましい。酸は、アルコキシシランを加水分解させ、硬化反応を触媒する。系中においてアルコキシシランが加水分解し、加水分解生成物が生じると、重縮合反応が順をおって次々と起こる。
 酸による加水分解は、Hによって求電子的に進行する。すなわち、Hはアルコキシ基の酸素原子を攻撃し、-Si-OHとアルコールとが生成する。この反応には立体障害の影響がなく、加水分解、重縮合が逐次進み、直鎖状のポリシロキサンが合成されやすい特徴がある。
 酸は、無機酸であっても有機酸であってもよく、無機酸としては、塩酸、及び、硫酸等が使用できる。また、有機酸としては、ギ酸、酢酸、プロピオン酸、シュウ酸、及び、クエン酸等が使用でき、加水分解反応の制御がより容易である点で、酢酸が好ましい。
 組成物中における酸の含有量としては特に制限されないが、ポリシロキサン多孔体がより優れた形状安定性と、より優れた柔軟性を有する点で、組成物中における水の含有量の1Lに対して1~100mmolであることが好ましく、5~10mmolがより好ましい。
(塩基)
 組成物は塩基を含むことが好ましい。塩基は、アルコキシシランを加水分解させ、硬化反応を触媒する。塩基による加水分解ではOHによる求核的に進行する。すなわち、OHはケイ素原子を直接攻撃し、ROを生成させる(Rは有機基である。)。
 この反応は立体障害等の影響により当初は進みにくいものの、一旦進行すると立体障害が軽減されて反応が急速に進行しやすい。その結果、重縮合に寄与するヒドロキシ基が増えるために、分枝状のポリシロキサンが合成されやすい。
 塩基としては特に制限されないが、水酸化カリウム、水酸化ナトリウム、及び、水酸化リチウム等のアルカリ金属水酸化物;水酸化カルシウム、水酸化ストロンチウム、及び、水酸化バリウム等のアルカリ土類金属水酸化物;炭酸カリウム、及び、炭酸ナトリウム等のアルカリ金属炭酸塩;アンモニア;モノメチルアミン、ジメチルアミン、トリエチルアミン、モノエチルアミン、ジエチルアミン、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、及び、トリエタノールアミン等のアミン類等が挙げられる。
 また、分解反応により塩基性物質を生じさせる物質でもよく、このような物質としては、例えば、尿素、及び、ヘキサミン等が挙げられるが、これらのうちでは、水への溶解性や揮発性が高く除去が容易という点から、尿素が好ましい。
 組成物中における塩基の含有量としては特に制限されないが、ポリシロキサン多孔体がより優れた形状安定性と、より優れた柔軟性を有する点で、1mM~15Mが好ましい。
 ポリシロキサン多孔体は、すでに説明した各成分を混合して得られた組成物を用いて、ゾル-ゲル法によるケイ素アルコキシドの加水分解と、その加水分解により得られるケイ素アルコキシドの加水分解生成物の重縮合と、重縮合により得られる重縮合体(ポリシロキサン)と未反応のケイ素アルコキシドや加水分解生成物を含む溶液系との相分離を並行することによって、骨格相と溶液相とから構成されるゲルを形成する工程(ゲル化工程)を含む。
 ゲル化工程において形成されるゲルの骨格相は、上記ケイ素アルコキシドの加水分解生成物の重縮合体に富んでいる。溶液相は上記組成物の溶媒に富んでおり、溶液相における上記重縮合体の含有量は骨格相における含有量に比べて相対的に少ない。
 相分離は、ケイ素アルコキシドの加水分解、及び、加水分解生成物の重縮合と同時に進行する相分離であり、典型的には粘弾性相分離である。このような相分離過程を経て生じた骨格相および溶液相は、それぞれ連続した3次元の網目構造を有すると共に互いに絡み合っている。
 ゲル化工程において形成するゲルは骨格相および溶液相の共連続構造を有する。また、骨格相を構成する上記重合体は、ゾル-ゲル反応による上記ケイ素アルコキシドの加水分解生成物の重縮合により形成されたシロキサン結合(-Si-O-Si-)のネットワークを有するポリシロキサンである。すなわち、ゲル化工程において形成するゲルは、ポリシロキサンゲルである。
 ゲル化工程は、各成分を混合し、組成物を調製することで進行する。このとき組成物を加熱してもよい。加熱条件は特に制限されないが、一般に40~100℃が好ましく、加熱時間は2~48時間が好ましい。
 ゲル化工程により得られるゲルは、ポリシロキサンの湿潤ゲルである。乾燥工程は、この湿潤ゲルを乾燥させてポリシロキサン多孔体を得る工程である。乾燥の方法としては特に制限されないが、室温~120℃で1~24時間保持する方法等が挙げられる。
 加水分解性基を分子内に有するケイ素アルコキシドは、ゾル-ゲル反応による加水分解生成物の重縮合を経て、シロキサン結合のネットワークを形成する。本組成物は、2、3、及び、4官能のアルコキシシランを併用しているため、3、4官能のアルコキシシランか生ずる剛直なネットワークと、2官能のアルコキシシランから生ずる自由度が高い平面的で柔軟な結合が生じることになる。
 これにより、得られるポリシロキサン多孔体は、乾燥後においても、ポリシロキサンから構成される骨格を有しながら柔軟性を示す。
 本製造方法は本発明の効果を損なわない範囲内で上記以外の他の工程を有していてもよい。他の工程としては例えば、ポリシロキサン多孔体を加熱して脱水する工程が挙げられる。
 この時の加熱の温度としては特に制限されないが、200℃を超えることが好ましい。ポリシロキサン多孔体中にシラノール(Si-OH)が残留する場合、加熱により脱水することができる。なお、ポリシロキサン多孔体は優れた耐熱性を有しており、この工程により柔軟性が損なわれることはない。
(ポリシロキサン多孔体)
 上記方法により調製されるポリシロキサン多孔体は、ポリシロキサンから構成された骨格と、マクロ孔との共連続構造を有する。当該骨格を構成するポリシロキサンは、TEAS、MTAS、及び、DMDASを含む組成物において、これらケイ素アルコキシドの加水分解、加水分解生成物の重縮合により形成されたポリシロキサンである。すなわち、水溶液中において所定のケイ素アルコキシドの重縮合反応に伴う粘弾性相分離により骨格形成されるシリコーン組成のモノリス型マクロ多孔性部材である。
 柔軟性の程度は、例えば、ヤング率にして100kPa以下である。このような高い柔軟性と、マクロ孔の存在による光の散乱のため無着色の状態で白色であることから、上記ポリシロキサン多孔体は、本発明者によって「マシュマロゲル」と名付けられた。
 上記ポリシロキサン多孔体は相分離過程を併用するゾル-ゲル反応を経て、骨格との共連続構造を有するマクロ孔が形成されるため、均一な孔径のマクロ孔を有する。このような構造は、発泡剤による発泡過程を経て得た多孔体の構造(このような多孔体では、発泡による独立した空孔が多数形成される)とは全く異なる。
 骨格の平均径は、例えば500nm以上が好ましく、10μm未満が好ましい。マクロ孔の平均孔径は、例えば500nm~200μmである。
 ポリシロキサン多孔体が有する細孔の平均細孔径は、1μm以上が好ましく、100μm未満が好ましい。なお、ポリシロキサン多孔体の骨格径、及び、平均細孔径は、電子顕微鏡観察像の画像解析により求められる。
 上記ポリシロキサン多孔体の空孔率は、レーザー共焦点顕微鏡による測定値にして、例えば75~98%が好ましい。
 上記ポリシロキサン多孔体は、骨格がポリシロキサンから構成されることに由来して、幅広い温度領域において安定である。例えば、液体窒素温度(-196℃)から、ポリシロキサンが分解される温度(およそ320℃)に至るまで、その柔軟性を保つことができる。
 また、本ポリシロキサン多孔体は、優れた耐熱性と、優れた断熱性とを併せ持ち、熱伝導率としては特に制限されないが、20℃(大気圧、空気中)の熱伝導率が、0.0400W/(m・K)以下が好ましく、0.0350W/(m・K)以下がより好ましく、0.0330W/(m・K)以下が更に好ましい。下限は特に制限されないが、一般に、0.0120W/(m・K)以上が好ましい。
 なお、上記熱伝導率は、後述する実施例に記載の方法により測定される。
 また、本ポリシロキサン多孔体のかさ密度は特に制限されないが、0.300gcm-3(g/cm)以下が好ましく、0.200gcm-3以下がより好ましく、0.110gcm-3以下が更に好ましい。下限は特に制限されないが、一般に、0.010gcm-3以上が好ましい。
 また、本ポリシロキサン多孔体は、優れた耐屈曲性を有している。5mmの厚みのポリシロキサン多孔体を調製し、直径10mmの円柱(棒)に巻き付けた際、クラックが生じないことが好ましい。
 また、本ポリシロキサン多孔体は優れた柔軟性を有しており、平板状のポリシロキサン多孔体を調製し、全高に対する80%(元の20%の大きさになるように)の一軸圧縮を行い、除荷後に残る圧縮永久ひずみが10%以下であることが好ましく、8%以下であることがより好ましく、5%以下であることが更に好ましい。
 また、本ポリシロキサン多孔体は外部からの圧縮による変形をうけた際も熱伝導率の変化がより小さいことが好ましい。熱伝導率の変化率としては特に制限されないが、一軸圧縮による圧縮率が60%(全高が100%から40%になる)のとき、無圧縮(圧縮率0%)の際の熱伝導率と比較した熱伝導率の変化率が、10.0%以下であることが好ましく、6.0%以下であることがより好ましい。
 なお、熱伝導率の変化率は、圧縮前の熱伝導率に対する、圧縮後の熱伝導率と圧縮前の熱伝導率の差の絶対値の比を百分率で表したものである。すなわち、式:熱伝導率の変化率=|圧縮後の熱伝導率-圧縮前の熱伝導率|/圧縮前の熱伝導率×100で表される数である。
 また、上記熱伝導率の変化率は、圧縮率が0~60%の範囲全体にわたって10.0%以下であることが好ましく、6.0%以下であることがより好ましい。なお、熱伝導率の変化率は、小数第2位を四捨五入して求められる値とする。
(用途)
 本ポリシロキサン多孔体は優れた柔軟性、優れた耐熱性、及び、優れた断熱性等を有し、断熱材等として利用できる。
 また、液体窒素温度でも柔軟性を保つという特徴から、液体窒素を吸着させ、保持させる、液体窒素吸着材としても使用できる。
 また、本ポリシロキサン多孔体は撥液性、及び、防汚性を有しており撥液基板等としても利用できる。また、水・油分離媒体、リポソーム作製、及び、防音防振材としても利用できる。
 更に、破砕することで、化粧料の添加物、樹脂充填剤(フィラー)、及び、反射材等としても利用できる。
[保温容器]
 本発明の実施形態に係る保温容器は、本ポリシロキサン多孔体を含む保温材を備える保温容器である。
 以下では、本発明の実施形態に係る保温容器について図面を参照して説明する。以下に示す実施形態は、本発明の技術的思想を具体化した一例であって、本発明の技術的思想は、構成部品の材質、形状、構造、及び、配置等を下記の実施形態に特定するものではない。また、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なる場合があり、また、図面相互間においても互いの寸法の関係や比率が異なることがある。
 図2は、本発明の一実施形態に係る保温容器1の全体構成を示す斜視図である。図3は、保温容器1の断面図である。図4は、保温容器1の分解断面図である。図3及び図4は、保温容器1の径方向の中心をX-Y面と平行な面で切断したときの断面図である。
 図2及び図3に示すように、保温容器1は、筐体10、容器本体20、保温材収納部30、支持部材40、保温材50(図5参照)及び容器開閉部60を備える。
 保温容器1は、ヒト及び動物用の医薬品、医薬部外品、飲食品、並びに、試験研究用試薬等の温度管理を必要とする物品の運搬に用いられる保温容器である。保温容器1は、全体が円筒形となるように形成されている。
(筐体10)
 筐体10は、保温容器1の最も外側に配置される部材であり、図3に示すように、X-Y面と平行な断面が凹形状に形成されている。
 筐体10は、外表面11と内表面12との間に、真空断熱層13が設けられている。真空断熱層13は、大気圧よりも低い圧力の気体で満たされた層である。真空断熱層13は、筐体10の径方向(X方向)の側面及び筐体10の下側(Y2側)の底面において連通している。すなわち、真空断熱層13は、筐体10において、容器開閉部60側を除いて凹形状となるように形成されている。筐体10は、例えば、アルミニウム、及び、ステンレス鋼等の金属部材により形成されている。
 また、図4に示すように、筐体10の外表面11において、上側(Y1側)の端部には、ネジ部11sが設けられている。ネジ部11sは、後述する容器開閉部60(開閉部本体61)のネジ部61sと係合する雄ネジである。
(容器本体20)
 容器本体20は、筐体10の内表面12の内側に設けられる部材であり、図3に示すように、X-Y面と平行な断面が凹形状となるように形成されている。容器本体20の内部には、図示しない保温対象物が収容される。容器本体20の外径は、筐体10の内径よりも小さく、筐体10の内表面12と容器本体20の外表面22との間に隙間g1が形成される。この隙間g1の空間には、保温材収納部30(後述)が設けられる。
 なお、後述する保温材を緩衝材として使用する場合、保温容器1は、この容器本体20を有していなくてもよい。本ポリシロキサン多孔体は液体窒素を含浸した状態でもその柔軟性を失わないという特徴があり、極低温でも緩衝性を失わない。そのため、容器本体20を有しない形態では、保温と緩衝との2つの機能を保温材が担う。この形態の保温容器については後述する。
 容器本体20は、筐体10と同じく、例えば、アルミニウム、及び、ステンレス鋼等の金属部材により形成されている。
 容器本体20は、筐体10の内部において、支持部材40により支持されている。支持部材40は、筐体10の底面14と容器本体20の底面21との間を連結する部材である。容器本体20を、支持部材40で支持することにより、筐体10の底面14と容器本体20の底面21との間に隙間g2が形成される。本実施形態の保温容器1において、隙間g2の空間には保温材は配置されないが、支持部材40を容器本体20の側面に配置した場合、隙間g2の空間に保温材50を配置できる。なお、本実施形態では、図3に示すように、筐体10の径方向(X方向)に沿って2つの支持部材40を設けた例を示すが、支持部材40の位置、個数は、適宜に設定される。
(保温材収納部30)
 保温材収納部30は、図3又は図4に示すように、筐体10と容器本体20との間に設けられた、円筒形の空間である。保温材収納部30には、保温材50が取り外し可能に収納される。図2~図4では、保温材50を図示していない。保温材50の構成については、後述する。
(容器開閉部60)
 容器開閉部60は、図4に示すように、容器本体20の開口部23及び保温材収納部30の開口部31を開放又は閉鎖する部材である。容器開閉部60は、開閉部本体61からなる。容器開閉部60を構成する各部は、筐体10と同じく金属部材により形成されてもよいし、プラスチック等の樹脂材料により形成されてもよい。
 開閉部本体61は、筐体10に着脱自在に取り付けられる部材であり、断面が略凸形状となるように形成されている。開閉部本体61において、裏面側となるY2側の内周面には、ネジ部61sが設けられている。ネジ部61sは、筐体10に設けられたネジ部11sと係合する雌ネジである。
 筐体10のネジ部11sに対して、開閉部本体61のネジ部61sが係合するように開閉部本体61を回転させることにより、開閉部本体61を筐体10に取り付けることができる。開閉部本体61を筐体10に取り付けることにより、図3に示すように、容器本体20の開口部23及び保温材収納部30の開口部31は、閉鎖される。また、開閉部本体61を筐体10から取り外すことにより、図4に示すように、容器本体20の開口部23及び保温材収納部30の開口部31は、開放される。
(保温材)
 保温材は、本ポリシロキサン多孔体を含む。本ポリシロキサン多孔体は優れた断熱性を有するため、本ポリシロキサン多孔体を備える保温容器1は優れた保温性能を有する。
 保温材は、更に、液体媒体を含んでいてもよい。本ポリシロキサン多孔体は優れた温度安定性と、連通したマクロ孔とを有しており、加温された液体媒体、又は、冷却された液体媒体を含浸させることで、容器内の温度を容易に制御できる。液体媒体としては、例えば、液体窒素等が挙げられる。
 図5は、保温材50の使用形態を示す斜視図である。図5では、保温材50の長手方向を上下方向(Y方向)として説明する。
 保温材50は、本ポリシロキサン多孔体を含み、円筒形に構成されている。保温材50の外径D1及び内径D2は、保温材50を、保温材収納部30の隙間g1(図3参照)に収納可能な寸法に設定される。なお、保温材50と保温材収納部30との間には、隙間が生じていてもよい。
 図6は、保温容器1における保温材50の装着方法を説明する図である。
 保温材50を保温材収納部30(筐体10)に収納するには、図6に示すように、筐体10から容器開閉部60を取り外して、保温材収納部30の開口部31を開放する。そして、保温材50を、保温材収納部30の開口部31から挿入する。
 次に、筐体10のネジ部11sと、開閉部本体61(容器開閉部60)のネジ部61sとを係合させ、開閉部本体61を回転させることにより、容器開閉部60を筐体10に取り付けることができる。
 保温容器1において、容器本体20は、筐体10の底面14と容器本体20の底面21との間を連結する支持部材40により支持されている。そのため、保温容器1は、筐体10の内部において、容器本体20をより安定して保持できる。
 図7は、保温容器の変形例である。保温容器2は、保温容器1が有していた容器本体20を有さず、底部を有する円筒状の保温材50を有している。保温容器2では、保温対象物は保温材50に直接触れる状態で保持される。すでに説明したとおり、保温材50は優れた柔軟性を有しているため緩衝材としても機能する。
 保温容器2は、保温容器1と比較して保温材50の厚みが大きくなっている。これにより、保温性がより高くなることはもとより、保温材50による緩衝性能が高められている。
 保温容器2の厚みは適宜定められればよいが、例えば、保温対象物が、ぴったりと嵌め合わされるような形態になるよう、調整されてもよい。すなわち、保温対象物が筒状であれば、その筒がぴったり収まるよう、保温材50の厚みを調整すればよい。
 また、保温材50に液体窒素等を含浸させれば、保温容器2の内部を低温に保持しつつ、保温材50による緩衝機能は失われず、低温での運搬が必要な医薬品等の運搬に好ましく用いることができる。
 また、本ポリシロキサン多孔体は、優れた柔軟性を有しつつ、圧縮による熱伝導率の変化も小さいため、保温材50のような成形品でなくても、隙間を埋めるような形態で押し込んで使用した場合でも、優れた保温効果(断熱効果)が得られるという特徴を有している。
 以下、実施例により、本発明をさらに詳細に説明する。本発明は、以下に示す実施例に限定されない。
(ポリシロキサン多孔体の作製)
 5mM酢酸15mLに尿素5gを溶かし、表1に記載した組成となるよう、テトラメトキシシラン(TMOS)、メチルトリメトキシシラン(MTMS)、ジメチルジメトキシシラン(DMDMS)を滴下して15分間攪拌し、組成物を調製した。
 組成物を密閉容器(ゲル型)に移し80℃で24時間保温し、反応(ゲル化・エージング)を行なった。
 得られたゲルを型から外し、5倍量以上の純水で1回、工業アルコールで2回、それぞれ6時間以上の浸漬洗浄を行なった後、60℃で蒸発乾燥し、乾燥状態の硬化物(ポリシロキサン多孔体)を得た。
(評価1:硬化物の均質性)
 上記の手順により、均質な硬化物が得られた組成物については、表1の「評価1」欄に「A」が記載されている。一方、均質な硬化物が得られなかった組成物については、「評価1」欄に「B」が記載されている。
(評価2:硬化物の耐屈曲性)
 次に、得られた硬化物(厚み:5mm)を直径10mmの円柱(棒)に巻き付け、クラックが生じるかを観察した。得られた硬化物にクラックが生じなかった組成物については、得られた硬化物は、「ポリシロキサン多孔体(マシュマロゲル)」と認められ、「評価2」欄に「A」が記載されている。一方、クラックが生じ、得られた硬化物が所望の耐屈曲性を有していなかった組成物は、「評価2」欄に「B」が記載されている。
 なお、均質な硬化物が得られなかった組成物については、上記試験を実施することができなかったので、「-」が記載されている。
 図8は、三角図に各組成物をプロットしたものである。上記評価がいずれも「A」であったもの(マシュマロゲル)を「●(中黒円)」とし、評価1が「A」で評価2が「B」であったものを「〇(中白円)」とし、評価1が「B」であったものを「△(中白三角)」とした。
 なお、図8中「●」の組成物により得られたポリシロキサン多孔体は、ポリシロキサンから構成された骨格と、マクロ孔との共連続構造とを有するシリコーン組成のモノリス型マクロ多孔性部材(マシュマロゲル)であった。一方、「〇」及び「△」はマシュマロゲルではなかった。
 評価1、及び、評価2がいずれも「A」であったポリシロキサン多孔体については、上記の各原料を5倍量としたことを除いては上記と同様の方法で再度合成を行い、約110mm×110mm×10mmのパネルを作成して、以下の方法により、熱伝導率を測定した。表2はその結果である。
(熱伝導率測定)
 熱伝導率は、NETZSCH(ネッチ)社の「HFM446Lambda」の「small」を用いて熱流計法(ASTM C518)で実施した。上板の温度を25℃(高温側)、下板の温度を15℃(低温側)として、この2枚の板の間に試料を挟持して圧縮応力を印加しながら熱伝導率を測定した。なお、試験は上下の板の中間温度である20℃で実施した。
 試料は、マシュマロゲルの厚み約10mmのパネル(大きさ110mm×110mm)とした。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、ケイ素アルコキシドの含有量が、
10.5モル%≦TEAS ≦20.0モル%、かつ、
11.0モル%≦DMDAS≦41.0モル%である、例1~9の組成物を用いると、優れた柔軟性を有する均質なポリシロキサン多孔体が得られることがわかった。
 一方、上記範囲外である、例10~例25の組成物を用いると、均質なポリシロキサン多孔体(乾燥体)が得られないか、又は、ポリシロキサン多孔体が得られたとしても共連続のマクロ孔を有さず、所望の柔軟性を有していなかった(マシュマロゲルは得られなかった)。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、ケイ素アルコキシドの含有量が、
10.5モル%≦TEAS ≦20.0モル%、
11.0モル%≦DMDAS≦38.0モル%、かつ、
39.0モル%≦MTAS ≦78.5モル%、
の範囲内である、例2の組成物のポリシロキサン多孔体は、上記範囲外である例1の組成物のポリシロキサン多孔体よりも、より低い熱伝導率(より高い断熱性)を有していることがわかった。
 また、ケイ素アルコキシドの含有量が、
17.0モル%≦TEAS ≦20.0モル%、
11.0モル%≦DMDAS≦38.0モル%、かつ、
39.0モル%≦MTAS ≦50モル%
の範囲内である、例2の組成物のポリシロキサン多孔体は、上記範囲外である例4の組成物のポリシロキサン多孔体よりも、更に低い熱伝導率(更に高い断熱性)を有していることがわかった。
 また、ケイ素アルコキシドの含有量が、
10.5モル%≦TEAS ≦20.0モル%、
11.0モル%≦DMDAS≦38.0モル%、かつ、
67.0モル%≦MTAS ≦78.5モル%
の範囲内である、例5の組成物のポリシロキサン多孔体は、上記範囲外である例4の組成物のポリシロキサン多孔体よりも、更に低い熱伝導率(更に高い断熱性)を有していることがわかった。
(ポリシロキサン多孔体の作製2)
 組成物中における5mM酢酸、及び、尿素の含有量を以下の表3に記載したとおりとしたことを除いては表1の例3と同様にしてポリシロキサン多孔体を作製した。その結果、いずれも優れた柔軟性(耐屈曲性評価「A」)を有するポリシロキサン多孔体(マシュマロゲル)が得られた。また、上記と同様の方法で熱伝導率、及び、かさ密度を測定した。表3はその結果である。
Figure JPOXMLDOC01-appb-T000003
 次に、例3-Cのマシュマロゲルについて、一軸圧縮を加えて圧縮率を変化させながら、上記と同様にして、熱伝導率を測定した。表4はその結果である。
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、本ポリシロキサン多孔体は、圧縮による熱伝導率の変化が小さいことが分かった。
 また、無圧縮(例3-C)の熱伝導率と比較したとき、圧縮率が61.0%のときの熱伝導率の変化率は3.3%以下であった。また、圧縮率0~61.0%の範囲にわたって、熱伝導率の変化率は10.0%以下であり、6.0%以下であった。
 本製造方法によれば、優れた柔軟性を有するポリシロキサン多孔体を、界面活性剤を用いなくても得ることができる。従来、同様のポリシロキサン多孔体を得るためには界面活性剤の使用が必須と考えられており、この除去には多量の有機溶剤による洗浄が必要であり、環境負荷が大きかった。本製造方法は上記の課題を解決するものである。
 また本製造方法により得られるポリシロキサン多孔体は優れた柔軟性、優れた耐熱性、及び、優れた断熱性等を有し、断熱材等として利用できる。
 また、液体窒素温度でも柔軟性を保つという特徴から、液体窒素を吸着させ、保持させる、液体窒素吸着材としても使用できる。
 また、本ポリシロキサン多孔体は撥液性、及び、防汚性を有しており撥液基板等としても利用できる。また、水・油分離媒体、リポソーム作製、及び、防音防振材としても利用できる。
 更に、破砕することで、化粧料の添加物、樹脂充填剤(フィラー)、及び、反射材等としても利用できる。
1、2   :保温容器
10  :筐体
11  :外表面
11s :ネジ部
12  :内表面
13  :真空断熱層
14  :底面
20  :容器本体
21  :底面
22  :外表面
23  :開口部
30  :保温材収納部
31  :開口部
40  :支持部材
50  :保温材
60  :容器開閉部
61  :開閉部本体
61s :ネジ部

Claims (15)

  1.  テトラアルコキシシランと、メチルトリアルコキシシランと、ジメチルジアルコキシシランと、水とを含む組成物を調製し、ゲル化させてゲルを形成することと、
     前記ゲルを乾燥させてポリシロキサン多孔体を得ることと、を含み、
     前記組成物中における前記テトラアルコキシシランと、前記メチルトリアルコキシシランと、前記ジメチルジアルコキシシランの含有量の合計を100モル%としたとき、前記テトラアルコキシシランの含有量が、10.5~20.0モル%であり、前記ジメチルジアルコキシシランの含有量が11.0~41.0モル%である、ポリシロキサン多孔体の製造方法。
  2.  前記組成物が、界面活性剤を含まない、請求項1に記載のポリシロキサン多孔体の製造方法。
  3.  前記ジメチルジアルコキシシランの含有量が38.0モル%以下である、請求項1又は2に記載のポリシロキサン多孔体の製造方法。
  4.  前記メチルトリアルコキシシランの含有量が50.0モル%以上であって、前記テトラアルコキシシランの含有量が17.0モル%以上である、請求項3に記載のポリシロキサン多孔体の製造方法。
  5.  前記メチルトリアルコキシシランの含有量が67.0モル%以上である、請求項3に記載のポリシロキサン多孔体の製造方法。
  6.  前記ポリシロキサン多孔体のかさ密度が0.300gcm-3以下である、請求項1~5のいずれか1項に記載のポリシロキサン多孔体の製造方法。
  7.  20℃における熱伝導率が0.0400W/(m・K)以下である、請求項1~6のいずれか1項に記載のポリシロキサン多孔体の製造方法。
  8.  テトラアルコキシシランと、メチルトリアルコキシシランと、ジメチルジアルコキシシランと、水とを含む組成物を加水分解縮合させて得られるポリシロキサン多孔体であって、前記組成物中における前記テトラアルコキシシランと、前記メチルトリアルコキシシランと、前記ジメチルジアルコキシシランの含有量の合計を100モル%としたとき、前記テトラアルコキシシランの含有量が、10.5~20.0モル%であり、前記ジメチルジアルコキシシランの含有量が11.0~41.0モル%である、ポリシロキサン多孔体。
  9.  前記組成物中における前記ジメチルジアルコキシシランの含有量が38.0モル%以下である、請求項8に記載のポリシロキサン多孔体。
  10.  前記組成物中における、前記メチルトリアルコキシシランの含有量が50.0モル%以上であって、前記テトラアルコキシシランの含有量が17.0モル%以上である、請求項9に記載のポリシロキサン多孔体。
  11.  前記組成物中における、前記メチルトリアルコキシシランの含有量が67.0モル%以上である、請求項9に記載のポリシロキサン多孔体。
  12.  かさ密度が0.300gcm-3以下である、請求項8~11のいずれか1項に記載のポリシロキサン多孔体。
  13.  20℃における熱伝導率が0.0400W/(m・K)以下である、請求項8~12のいずれか1項に記載のポリシロキサン多孔体。
  14.  請求項8~13のいずれか1項に記載のポリシロキサン多孔体を含む保温材。
  15.  請求項14に記載の保温材を備える保温容器。
PCT/JP2021/045943 2021-01-26 2021-12-14 ポリシロキサン多孔体の製造方法、ポリシロキサン多孔体、保温材、及び、保温容器 WO2022163178A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022578126A JPWO2022163178A1 (ja) 2021-01-26 2021-12-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021009939 2021-01-26
JP2021-009939 2021-01-26

Publications (1)

Publication Number Publication Date
WO2022163178A1 true WO2022163178A1 (ja) 2022-08-04

Family

ID=82653310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045943 WO2022163178A1 (ja) 2021-01-26 2021-12-14 ポリシロキサン多孔体の製造方法、ポリシロキサン多孔体、保温材、及び、保温容器

Country Status (2)

Country Link
JP (1) JPWO2022163178A1 (ja)
WO (1) WO2022163178A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165114A (ja) * 1994-12-13 1996-06-25 Yamamura Glass Co Ltd メチル基含有透明シリカゲルバルク体の製造方法
CN104194028A (zh) * 2014-08-15 2014-12-10 中国科学院新疆理化技术研究所 一种三元硅氧烷海绵的制备方法及用途
WO2018062504A1 (ja) * 2016-09-30 2018-04-05 国立研究開発法人科学技術振興機構 複合材料及びガス吸着材並びに複合材料の製造方法
JP2020193316A (ja) * 2019-05-27 2020-12-03 ティエムファクトリ株式会社 エアロゲル複合体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165114A (ja) * 1994-12-13 1996-06-25 Yamamura Glass Co Ltd メチル基含有透明シリカゲルバルク体の製造方法
CN104194028A (zh) * 2014-08-15 2014-12-10 中国科学院新疆理化技术研究所 一种三元硅氧烷海绵的制备方法及用途
WO2018062504A1 (ja) * 2016-09-30 2018-04-05 国立研究開発法人科学技術振興機構 複合材料及びガス吸着材並びに複合材料の製造方法
JP2020193316A (ja) * 2019-05-27 2020-12-03 ティエムファクトリ株式会社 エアロゲル複合体

Also Published As

Publication number Publication date
JPWO2022163178A1 (ja) 2022-08-04

Similar Documents

Publication Publication Date Title
US9828251B2 (en) Silica aerogels and their preparation
CN204578941U (zh) 复合片及包含该复合片的安装结构体和电子设备
US20110240907A1 (en) Hydropohobic aerogels
US10295108B2 (en) Modified hybrid silica aerogels
JP7375841B2 (ja) エアロゲル複合体パウダーの製造方法
KR102583729B1 (ko) 도액, 도막의 제조 방법 및 도막
CN106457749A (zh) 一种绝热片、使用其的电子设备及绝热片的制造方法
JP7024121B2 (ja) 前加水分解されたポリシリケートの合成方法
US20110245359A1 (en) Methods of preparing hybrid aerogels
JP2008208019A (ja) 多孔質材及びその調製方法
WO2017164184A1 (ja) ゾル組成物、エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
KR102638656B1 (ko) 도액, 도막의 제조 방법 및 도막
PT107101A (pt) Painéis flexíveis de aerogel hidrofóbico reforçado com feltro de fibras
Hayase et al. Boehmite nanofiber–polymethylsilsesquioxane core–shell porous monoliths for a thermal insulator under low vacuum conditions
JP2013060309A (ja) 疎水性に優れるナノ構造多孔質体
WO2017168847A1 (ja) エアロゲル層付き部材
WO2016178560A1 (en) Hydrophobic silica aerogel and method for the preparation thereof
KR20200064084A (ko) 에어로겔 및 그의 제조 방법
WO2022163178A1 (ja) ポリシロキサン多孔体の製造方法、ポリシロキサン多孔体、保温材、及び、保温容器
TW201806862A (zh) 氣凝膠複合體、帶氣凝膠複合體的支撐構件及絕熱材料
US10773964B2 (en) Aerogel precursor, method for preparing the same, aerogel prepared therewith, and method for preparing aerogel using the same
WO2019070035A1 (ja) エアロゲル複合体パウダー及び撥水材
JP6750626B2 (ja) エアロゲル複合体
KR102604538B1 (ko) 실리카 에어로겔 블랭킷의 제조방법
Shajesh et al. Effect of 3-glycidoxypropyltrimethoxysilane precursor on the properties of ambient pressure dried silica aerogels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578126

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923183

Country of ref document: EP

Kind code of ref document: A1