WO2022163035A1 - ポリエステル生産システム、ポリエステル生産方法、及びプログラム - Google Patents
ポリエステル生産システム、ポリエステル生産方法、及びプログラム Download PDFInfo
- Publication number
- WO2022163035A1 WO2022163035A1 PCT/JP2021/038463 JP2021038463W WO2022163035A1 WO 2022163035 A1 WO2022163035 A1 WO 2022163035A1 JP 2021038463 W JP2021038463 W JP 2021038463W WO 2022163035 A1 WO2022163035 A1 WO 2022163035A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction
- molecular weight
- information
- polyester production
- production system
- Prior art date
Links
- 229920000728 polyester Polymers 0.000 title claims abstract description 54
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 45
- 238000006243 chemical reaction Methods 0.000 claims abstract description 251
- 238000004364 calculation method Methods 0.000 claims abstract description 35
- 238000003860 storage Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 21
- 239000000126 substance Substances 0.000 claims description 21
- 230000035484 reaction time Effects 0.000 claims description 20
- 230000006870 function Effects 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 8
- 239000007900 aqueous suspension Substances 0.000 claims description 7
- 238000012691 depolymerization reaction Methods 0.000 claims description 5
- 230000007062 hydrolysis Effects 0.000 claims description 5
- 238000006460 hydrolysis reaction Methods 0.000 claims description 5
- 238000010801 machine learning Methods 0.000 claims description 5
- 239000007795 chemical reaction product Substances 0.000 abstract 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 238000012545 processing Methods 0.000 description 17
- 239000000376 reactant Substances 0.000 description 16
- 238000004891 communication Methods 0.000 description 13
- 238000000354 decomposition reaction Methods 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 230000002427 irreversible effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000010238 partial least squares regression Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 229920000229 biodegradable polyester Polymers 0.000 description 1
- 239000004622 biodegradable polyester Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
Definitions
- the present invention relates to a polyester production system, a polyester production method, and a program.
- This application claims priority based on Japanese Patent Application No. 2021-010016 filed in Japan on January 26, 2021, the contents of which are incorporated herein.
- Patent Document 1 presents a production method by hydrolyzing a high-molecular-weight biodegradable polyester in high-temperature, high-pressure water in a molten state, thereby depolymerizing a polyester having a specific molecular weight.
- Patent Document 1 proposes a method of highly controlling the rate of molecular weight reduction in a short reaction time by temperature without using a catalyst. In terms of economic efficiency and stable production, it is difficult to control the molecular weight in the irreversible depolymerization reaction. It is difficult to adopt in industrial production.
- Patent Document 2 presents a method of controlling a polymerization reaction by performing online predictions of molecular weights and molecular weight distributions from plant operation information in which continuous polymerization reactions are performed in a reactor, and utilizing the prediction results. Specifically, in Patent Document 2, the monomer supply amount of the target reaction system, the polymerization pressure and temperature, and the reaction state transition information in the reactor are obtained, the molecular weight and molecular weight distribution are predicted, and the prediction result is obtained. A method for controlling polymerization reactions is presented.
- Patent Document 3 proposes a method of controlling a polymerization reaction in a reactor by predicting the molecular weight of a polymer fluid that continuously flows in a flow path of a plant and utilizing the prediction results.
- the molecular weight of the target polymer fluid and plant operation information such as production rate, pressure, and temperature are acquired, the molecular weight and molecular weight distribution are predicted, and the polymerization reaction is performed using the prediction results. is presented.
- an object of the present invention is to provide a polyester production system, a polyester production method, and a program that can easily predict the molecular weight during an irreversible decomposition reaction of a polymer present in an aqueous suspension. is to provide
- a polyester production system is a polyester production system that produces polyester by a reaction involving a change in molecular weight, wherein the reaction condition information is selected from the reaction condition information, a storage unit that stores related information that associates at least one piece of reaction condition information with molecular weight information that indicates a molecular weight; an acquisition unit for acquiring in-reaction molecular weight information, which is molecular weight information at an arbitrary time during the reaction; and a computing unit that performs
- a polyester production method is a polyester production method for producing polyester by a reaction involving a change in molecular weight, wherein the storage unit contains at least one reaction condition selected from reaction condition information of the reaction.
- a program according to an aspect of the present invention is a program for causing a computer to function as a polyester production system that produces polyester by a reaction involving a change in molecular weight, wherein the computer is selected from reaction condition information of the reaction.
- a storage unit for storing related information in which at least one piece of reaction condition information and molecular weight information indicating a molecular weight are associated; an acquisition unit for acquiring in-reaction molecular weight information, which is molecular weight information at any time during the reaction; It functions as a calculation unit that performs
- FIG. 1 is a block diagram showing an example of a configuration of an arithmetic device according to an embodiment
- FIG. 4 is a flowchart showing the flow of regression model generation processing in the arithmetic device according to the embodiment
- It is a flowchart which shows the flow of the molecular weight prediction process in the arithmetic unit which concerns on this embodiment.
- FIG. 1 is a diagram showing an example of the configuration of a polyester production system 1 according to this embodiment.
- a polyester production system 1 is a system for producing polyester through a reaction involving a change in molecular weight.
- a polyester production system 1 is composed of an arithmetic unit 10, a flow sensor 20, a flow sensor 21, a temperature sensor 22, and a pH sensor 23 shown in FIG.
- the molecular weight of the product 60 produced by the reaction between the reactant 40 and the substance 50 promoting the reaction in the reactor 30 is predicted.
- a reactant 40 is introduced into the reactor 30 via a channel 41 .
- a substance 50 is introduced into the reactor 30 via a channel 51 .
- the prediction regarding the molecular weight is, for example, the prediction of the molecular weight of the product 60 during the reaction time, or the prediction of the reaction time at which the molecular weight of the product 60 becomes the desired molecular weight.
- the reaction time is specifically the reaction end time indicating the time when the reaction between the reactant 40 and the substance 50 ends.
- prediction about molecular weight is not limited to this example.
- reactant 40 is a polymer solution
- substance 50 is sodium hydroxide (NaOH)
- product 60 is polyester. Note that the types of the reactant 40, the substance 50, and the product 60 are not limited to these examples.
- the chemical reaction that occurs in the reaction device 30 is a batch-type depolymerization reaction due to hydrolysis in the aqueous suspension.
- the substance 50 in hydrolysis under acidic conditions functions as a catalyst
- the substance 50 in hydrolysis under alkaline conditions functions as a reaction accelerator.
- the type of chemical reaction that occurs in the reaction device 30 is not limited to this example.
- an example in which the chemical reaction that occurs in the reaction device 30 is performed at a reaction temperature of 100° C. or less will be described.
- the reaction temperature of the chemical reaction that occurs in the reaction device 30 is not limited to this example.
- the computing device 10 is a device for predicting the molecular weight of the product 60 produced by the reaction of the reactant 40 and the substance 50 in the reactor 30 .
- Examples of the computing device 10 include terminal devices such as PCs (Personal Computers), server devices, smartphones, and tablets.
- the computing device 10 is communicably connected to the flow rate sensor 20, the flow rate sensor 21, the temperature sensor 22, and the pH sensor 23.
- the computing device 10 can receive information obtained by the flow rate sensor 20, the flow rate sensor 21, the temperature sensor 22, and the pH sensor 23 through communication.
- the flow rate sensor 20 and the flow rate sensor 21 are sensor devices that measure the target flow rate.
- the flow rate sensor 20 is provided, for example, so as to be able to measure the input amount of the reactant 40 that is input to the reaction device 30 .
- the flow rate sensor 20 is provided in the flow path 41 as shown in FIG. In this case, the flow rate sensor 20 acquires reactant amount information indicating the input amount of the reactant 40 that is input to the reactor 30 .
- the flow rate sensor 21 is provided, for example, so as to be able to measure the input amount of the substance 50 that is input to the reaction device 30 .
- the flow sensor 21 is provided in the flow path 51 as shown in FIG. In this case, the flow rate sensor 21 acquires substance amount information indicating the amount of the substance 50 introduced into the reaction device 30 .
- the temperature sensor 22 is a sensor device that measures the temperature of a target. Temperature sensor 22 is provided, for example, to measure the temperature of product 60 in reactor 30 . As an example, temperature sensor 22 is provided in reactor 30 as shown in FIG. In this case, temperature sensor 22 acquires reaction temperature information indicating the temperature of product 60 in reactor 30 .
- the pH sensor 23 is a sensor device that measures the pH of the object.
- the pH sensor 23 is provided, for example, so as to be able to measure the pH of the product 60 in the reactor 30 .
- the pH sensor 23 is provided in the reactor 30 as shown in FIG. In this case, pH sensor 23 obtains pH information indicative of the pH of product 60 in reactor 30 .
- pH information is an example of physical information.
- the reactor 30 is a device for chemically reacting a reactant 40 introduced into the reactor.
- a chemical reaction using the reactor 30 produces a product 60 from a reactant 40 .
- a stirrer 31 is provided inside the reactor 30 .
- the stirrer 31 is a device for stirring the reactant 40 inside the reactor 30 .
- the stirrer 31 is rotated by driving the motor 32 .
- the reaction device 30 may have a configuration capable of heating or cooling the substance inside the reaction device 30 .
- the exterior of the reactor 30 may be provided with a jacket.
- a jacket is a device for heating or cooling the material inside the reactor 30 .
- the jacket can cool or heat the substances in the reactor 30 by allowing cooling water, hot water, steam, heat medium, refrigerant, or the like to flow into the jacket.
- the heating or slow-heating of the substance in the reaction device 30 may be performed by an internal circulation system capable of heating or slow-heating the reactant 40 inside the reaction device 30 by using a jacket.
- An external circulation system may be used in which the substances in 30 are transferred to the outside of the reactor 30 and heat exchanged by an external heat exchanger.
- FIG. 2 is a block diagram showing an example of the configuration of the arithmetic device 10 according to this embodiment.
- the computing device 10 includes a communication section 100, a control section 110, a storage section 120, and an output section .
- the communication unit 100 has a function of transmitting and receiving various information.
- the communication unit 100 receives reactant amount information from the flow sensor 20, substance amount information from the flow sensor 21, reaction temperature information from the temperature sensor 22, and pH information from the pH sensor 23, respectively.
- the communication unit 100 outputs each received information to the control unit 110 .
- the communication unit 100 may use either a wired communication method or a wireless communication method.
- Control unit 110 has a function of controlling the overall operation of the computing device 10 .
- the function is realized by, for example, causing a CPU (Central Processing Unit) provided as hardware in the arithmetic unit 10 to execute a program.
- a CPU Central Processing Unit
- control unit 110 includes an acquisition unit 111, a learning unit 112, a calculation unit 113, a reaction control unit 114, and an output processing unit 115.
- (2-1) Acquisition unit 111 has a function of acquiring various types of information.
- the acquisition unit 111 acquires at least one piece of reaction condition information indicating the conditions of the chemical reaction from the reactor 30 in which the chemical reaction is performed.
- the reaction condition information includes, for example, reactant amount information, substance amount information, reaction temperature information, and pH information.
- the acquisition unit 111 acquires reaction condition information from various sensor devices provided in the reaction device 30 via the communication unit 100 .
- the acquisition unit 111 acquires at least one of reaction temperature information, pH information (that is, physical information), and substance amount information among the reaction condition information.
- the acquisition unit 111 acquires in-reaction molecular weight information, which is molecular weight information at an arbitrary time during the chemical reaction being performed in the reaction device 30 .
- the acquisition unit 111 predicts the molecular weight at time t using Mw t-1 , k t-1 , [OH ⁇ ] t , and W NaOH ⁇ t as explanatory variables, and uses the predicted molecular weight as the in-reaction molecular weight information. to get as Mw t-1 is the molecular weight measured 1 hour ago. k t-1 is the actual value of the decomposition rate constant one hour ago.
- [OH ⁇ ] t is the average [OH ⁇ ] value from 1 hour ago to t hours ago.
- W NaOH ⁇ t is the integrated value of NaOH input from 1 hour ago to t hours ago.
- the acquiring unit 111 predicts the reaction rate constant up to time t from the most recent measured value of the decomposition reaction rate constant, the process time, and the temperature.
- the obtaining unit 111 corrects the predicted reaction rate constant with the NaOH consumption.
- the obtaining unit 111 predicts the molecular weight at time t from the latest measured molecular weight, the hydroxide ion concentration (pH) in the reaction system, and the reaction rate constant up to time t.
- the chemical reaction occurring in the reactor 30 is a batch type depolymerization reaction by hydrolysis in the aqueous suspension. That is, it is a process that should be considered as a slurry state, a batch process, and a reversible decomposition reaction, and the factors affecting the reaction rate are complicated, so the molecular weight is highly difficult to predict.
- the time-series change in the crystallinity of the polymer particles has a particularly strong effect because the rate of decomposition decreases due to the progress of crystallization during the process.
- fluctuations in particle size distribution between batches, pH meter calibration errors, and the like are also thought to have an effect, making the process difficult to predict due to large variations between processing batches.
- the amount of alkali consumed as a reaction substrate is used as an explanatory variable in molecular weight prediction in a process with large variations in decomposition rate. As a result, it is possible to perform regression prediction that takes into account variations in the decomposition speed, thereby improving the prediction accuracy.
- the learning unit 112 has a function of generating the regression model 121 .
- the regression model 121 according to this embodiment is a model in which at least one piece of reaction condition information and molecular weight information indicating a molecular weight are associated, and is an example of related information.
- the molecular weight information is, for example, information indicating the molecular weight for each reaction time of the chemical reaction that occurs within the reactor 30 .
- the learning unit 112 causes the storage unit 120 to store the generated regression model 121 .
- the learning unit 112 generates, for example, a regression model 121 representing the relationship between the reaction condition information and the molecular weight information based on the reaction condition information and the molecular weight information. Specifically, the learning unit 112 generates a regression model 121 that outputs molecular weight information according to the reaction condition information when the reaction condition information is input. Further, the learning unit 112 may generate a regression model 121 that outputs reaction condition information according to molecular weight information when molecular weight information is input. In the case of this embodiment, the learning unit 112 generates a regression model 121 that indicates the relationship between at least one piece of reaction condition information and molecular weight information that indicates the molecular weight for each reaction time of the chemical reaction occurring in the reaction device 30. .
- the regression model 121 when the reaction condition information is input, the regression model 121 outputs molecular weight information indicating the molecular weight of the product 60 generated by the chemical reaction based on the reaction condition information for each reaction time. Further, when the molecular weight information is input, the regression model 121 outputs at least one piece of reaction condition information indicating chemical reaction conditions for producing the product 60 of the molecular weight information.
- the learning unit 112 generates the regression model 121 by, for example, a statistical method.
- statistical techniques include techniques such as PLS regression (Partial Least Squares Regression), generalized linear models, generalized linear mixed models, and hierarchical Bayesian models.
- the learning unit 112 performs regression based on reaction condition information when a chemical reaction is actually performed in the reaction device 30 and molecular weight information indicating the molecular weight of the product 60 generated by the chemical reaction.
- Generate model 121 In this embodiment, the learning unit 112 generates a model for calculating molecular weight information based on reaction condition information.
- the calculation unit 113 has a function of predicting the molecular weight. For example, the calculation unit 113 predicts the molecular weight of the product 60 during reaction based on the reaction condition information, the molecular weight information, and the regression model 121 . In this embodiment, the calculation unit 113 predicts the molecular weight of polyester as an example.
- the reaction condition information and the molecular weight information used by the calculation unit 113 to predict the molecular weight may be information acquired by the acquisition unit 111 or information input by the user.
- the calculation unit 113 predicts the molecular weight of the product 60 produced under the reaction conditions indicated by the reaction condition information based on the reaction condition information of the chemical reaction occurring in the reaction device 30 and the regression model 121 .
- the regression model 121 of this embodiment shows the relationship between the reaction condition information and the molecular weight information as described above. Therefore, the calculation unit 113 can predict the molecular weight of the product 60 produced by the chemical reaction occurring in the reaction device 30 based on the molecular weight information output by inputting the reaction condition information to the regression model 121. .
- the calculation unit 113 predicts the molecular weight of the product 60 produced during the reaction time.
- the calculation unit 113 generates the product 60 corresponding to the input molecular weight information by the chemical reaction occurring in the reaction device 30 based on the reaction condition information output by inputting the molecular weight information to the regression model 121. can predict the reaction conditions for Specifically, the calculation unit 113 predicts the reaction time of the product 60 during reaction based on the in-reaction molecular weight information and the regression model 121 . Further, the calculation unit 113 predicts the reaction time at which the desired molecular weight is obtained based on the desired molecular weight indicating the desired molecular weight and the regression model 121 . Note that the calculation unit 113 may combine the molecular weight information with the reaction condition information to predict the molecular weight information.
- reaction conditions are predicted temperature and predicted pH.
- the predicted temperature is the predicted temperature of the product 60 at the end of the reaction at the predicted molecular weight.
- the predicted pH is the predicted pH of the product 60 at the end of the reaction at the predicted molecular weight.
- the reaction control section 114 has a function of controlling chemical reactions in the reaction device 30 .
- the reaction control unit 114 performs processing for suppressing the chemical reaction based on the reaction completion time predicted by the calculation unit 113 and the generated reaction conditions.
- the reaction control unit 114 performs automatic control by transmitting the reaction conditions to the output unit. Thereby, the reaction control unit 114 can control the chemical reaction to end at the reaction end time predicted by the calculation unit 113 .
- Output processing unit 115 has a function of controlling the output of the prediction result by the calculation unit 113 .
- the output processing unit 115 inputs the molecular weight information or the reaction condition information predicted by the calculation unit 113 to the output unit 130 for display. Thereby, the user can confirm the prediction result by the calculation unit 113 .
- the storage unit 120 has a function of storing various information.
- the storage unit 120 includes storage media such as HDD (Hard Disk Drive), SSD (Solid State Drive), flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access read/write, ROM (Memory) Only Memory), or any combination of these storage media.
- the storage unit 120 stores a regression model 121.
- FIG. The regression model 121 is an example of related information that associates at least one piece of reaction condition information selected from reaction condition information of chemical reactions occurring in the reactor 30 with molecular weight information.
- the storage unit 120 stores, as the molecular weight information, molecular weight information indicating the molecular weight for each reaction time of the chemical reaction.
- the output unit 130 has a function of performing various outputs. For example, the output unit 130 outputs control signals for controlling chemical reactions in the reaction device 30 based on the reaction conditions input from the reaction control unit 114 . In addition, the output unit 130 displays molecular weight information or reaction condition information (prediction results) input from the output processing unit 115 .
- FIG. 3 is a flowchart showing the flow of regression model generation processing in the arithmetic device 10 according to the present embodiment.
- the acquisition unit 111 of the arithmetic device 10 acquires reaction condition information (step S100).
- the obtaining unit 111 obtains molecular weight information (step S101).
- the reaction condition information and molecular weight information acquired by the acquisition unit 111 may be information detected by various sensor devices, information acquired based on the detected information, or information input by the user. good.
- the learning unit 112 generates the regression model 121 based on the reaction condition information and the molecular weight information acquired by the acquisition unit 111 (step S102). Then, the learning unit 112 stores the generated regression model 121 in the storage unit 120 (step S103).
- FIG. 4 is a flow chart showing the flow of molecular weight prediction processing in the arithmetic device 10 according to the present embodiment.
- the acquisition unit 111 acquires reaction condition information or molecular weight information (step S200).
- the reaction condition information and molecular weight information acquired by the acquisition unit 111 may be information detected by various sensor devices, information acquired based on the detected information, or information input by the user. good.
- the calculation unit 113 inputs the information acquired by the acquisition unit 111 in step S200 to the regression model 121 stored in the storage unit 120 (step S201).
- the regression model 121 outputs information according to input information.
- the calculation unit 113 predicts the molecular weight based on the information output by the regression model 121 (step S202).
- the reaction control unit 114 or the output processing unit 115 outputs information corresponding to the prediction result predicted by the calculation unit 113 to the output unit 130 to perform output processing (step S203).
- the polyester production system 1 includes at least the storage unit 120, the acquisition unit 111, and the calculation unit 113.
- the storage unit 120 stores a regression model 121 that associates at least one piece of reaction condition information selected from reaction condition information of chemical reactions with molecular weight information.
- the acquisition unit 111 acquires at least one piece of reaction condition information from the reaction device 30 in which a chemical reaction is taking place, and acquires in-reaction molecular weight information, which is molecular weight information at an arbitrary time during the chemical reaction.
- the calculation unit 113 predicts the molecular weight of the product 60 during the reaction based on the reaction condition information, the molecular weight information during the reaction, and the regression model 121 .
- the polyester production system 1 provides the reaction condition information or molecular weight information of the chemical reaction in the reaction device 30 with respect to the regression model 121 in which the reaction condition information and molecular weight information in the chemical reaction are associated.
- a prediction about the molecular weight of the product 60 being reacted in the reactor 30 can be made by simply entering it.
- the polyester production system 1 makes it possible to easily predict the molecular weight during the irreversible decomposition reaction of the polymer present in the aqueous suspension.
- the learning unit 112 generates the regression model 121 using a statistical method.
- the computation unit 113 can use the learned model as the regression model 121 to predict the molecular weight of the product 60 during the reaction.
- machine learning methods include SVR (Support Vector Regression), random forests, and deep learning using neural networks.
- the learning unit 112 performs machine learning based on reaction condition information when a chemical reaction is actually performed in the reaction device 30 and molecular weight information indicating the molecular weight of the product 60 generated by the chemical reaction. Generate a trained model by performing learning.
- the learning unit 112 generates a trained model by, for example, supervised learning.
- supervised learning a learning model is made to learn using a training data set.
- a data set is a set of explanatory variables that are input during learning and objective variables that indicate the correct answer of data that is output based on the input data.
- explanatory variables are reaction condition information.
- the objective variable is molecular weight information.
- the learning unit 112 generates a trained model in which correspondence between reaction conditions and molecular weights is learned using the explanatory variables and the objective variables.
- the learning unit 112 may generate a learned model in which the reaction rate of the reaction is updated by performing machine learning based on the reaction condition information and the molecular weight information for each reaction time of the reaction.
- the calculation unit 113 can use the reaction rate to make predictions about the molecular weight of the product during the reaction.
- the modified example of the present invention has been described above.
- a part or all of the configurations of the polyester production system 1 and the arithmetic device 10 in the above-described embodiment may be realized by a computer.
- a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed.
- the "computer system” referred to here includes hardware such as an OS and peripheral devices.
- the term "computer-readable recording medium” refers to portable media such as flexible discs, magneto-optical discs, ROMs and CD-ROMs, and storage devices such as hard discs incorporated in computer systems.
- “computer-readable recording medium” means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case. Further, the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system, It may be implemented using a programmable logic device such as an FPGA (Field Programmable Gate Array) or a PLC (Programmable Logic Controller).
- FPGA Field Programmable Gate Array
- PLC Programmable Logic Controller
- Polyester Production System 10 Arithmetic Device 20, 21 Flow Sensor 22 Temperature Sensor 23 pH Sensor 30 Reactor 31 Stirrer 32 Motor 40 Reactant 41 Channel 50 Substance 51 Channel 60 Product 100 Communication Unit 110 Control Unit 111 Acquisition Unit 112 Learning unit 113 Calculation unit 114 Reaction control unit 115 Output processing unit 120 Storage unit 121 Regression model 130 Output unit
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Polymers & Plastics (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
分子量変化を伴う反応によってポリエステルを生産するポリエステル生産システムであって、前記反応の反応条件情報の中から選ばれる、少なくとも1つの反応条件情報と、分子量を示す分子量情報とを関連付けた関連情報を記憶する記憶部と、前記反応が行われている反応装置から、前記反応条件情報を少なくとも1つ取得し、前記反応の反応中の任意時間における分子量情報である反応中分子量情報を取得する取得部と、前記反応条件情報、前記反応中分子量情報、および前記関連情報に基づき、反応中の生成物の分子量に関する予測を行う演算部と、を備える、ポリエステル生産システム。
Description
本発明は、ポリエステル生産システム、ポリエステル生産方法、及びプログラムに関する。
本願は、2021年1月26日に、日本に出願された特願2021-010016号に基づき優先権を主張し、その内容をここに援用する。
本願は、2021年1月26日に、日本に出願された特願2021-010016号に基づき優先権を主張し、その内容をここに援用する。
従来、高分子の分子量を予測するための技術が各種提案されている。
例えば、下記特許文献1には、高分子量の生分解性ポリエステルを、高温高圧水中・溶融状態で加水分解を行うことによる、特定の分子量を有するポリエステルの解重合による製造方法が提示されている。具体的に、特許文献1では、触媒を用いることなく温度により、短時間の反応で、分子量の低下速度を高度に制御される手法を提示されているが、大量生産においては、解重合反応槽に耐圧性能が求められ、反応槽の昇温・降温過程でも分解が進行することと、非可逆な解重合反応における分子量の工程管理が困難であることなどから、経済性・安定生産の面から工業生産においては採用し難い。
また、下記特許文献2には、反応装置内で連続重合反応を行うプラント運転情報から、分子量および分子量分布に関するオンライン予測を行い、予測結果を活用した重合反応の制御方法が提示されている。具体的に、特許文献2では、対象としている反応系の単量体供給量、重合圧力・温度、反応装置内における反応状態推移情報を取得し、分子量および分子量分布に関する予測を行い、予測結果を活用した重合反応の制御方法が提示されている。
また、下記特許文献3には、プラントの流路内を連続的に流れる高分子流体の分子量を予測し、予測結果を活用した反応装置内における重合反応制御方法が提示されている。具体的に、特許文献3では、対象としている高分子流体の分子量と、生産レート・圧力・温度などのプラント運転情報を取得し、分子量および分子量分布に関する予測を行い、予測結果を活用した重合反応の制御方法が提示されている。
上記の各特許文献の事例では、分子量との間に良好な相関関係がある為、過去に蓄積された取得済みデータから比較的容易に回帰モデルを構築することが可能である。しかしながら、水系懸濁液中に存在する高分子粒子の非可逆な解重合反応における分子量予測においては、結晶化度が分解速度に影響し、工程の温度や進行に伴い結晶化度が変化するため分解速度が低下したり、粒子径分布やpH計の較正誤差など複雑に影響したりするため、同様の手法は適用しにくい。
上述の課題を鑑み、本発明の目的は、水系懸濁液中に存在する高分子の非可逆な分解反応中の分子量を容易に予測することが可能なポリエステル生産システム、ポリエステル生産方法、及びプログラムを提供することにある。
上述の課題を解決するために、本発明の一態様に係るポリエステル生産システムは、分子量変化を伴う反応によってポリエステルを生産するポリエステル生産システムであって、前記反応の反応条件情報の中から選ばれる、少なくとも1つの反応条件情報と、分子量を示す分子量情報とを関連付けた関連情報を記憶する記憶部と、前記反応が行われている反応装置から、前記反応条件情報を少なくとも1つ取得し、前記反応の反応中の任意時間における分子量情報である反応中分子量情報を取得する取得部と、前記反応条件情報、前記反応中分子量情報、および前記関連情報に基づき、反応中の生成物の分子量に関する予測を行う演算部と、を備える。
本発明の一態様に係るポリエステル生産方法は、分子量変化を伴う反応によってポリエステルを生産するポリエステル生産方法であって、記憶部が、前記反応の反応条件情報の中から選ばれる、少なくとも1つの反応条件情報と、分子量を示す分子量情報とを関連付けた関連情報を記憶する記憶過程と、取得部が、前記反応が行われている反応装置から、前記反応条件情報を少なくとも1つ取得し、前記反応の反応中の任意時間における分子量情報である反応中分子量情報を取得する取得過程と、演算部が、前記反応条件情報、前記反応中分子量情報、および前記関連情報に基づき、反応中の生成物の分子量に関する予測を行う演算過程と、を含む。
本発明の一態様に係るプログラムは、分子量変化を伴う反応によってポリエステルを生産するポリエステル生産システムとしてコンピュータを機能させるためのプログラムであって、前記コンピュータを、前記反応の反応条件情報の中から選ばれる、少なくとも1つの反応条件情報と、分子量を示す分子量情報とを関連付けた関連情報を記憶する記憶部と、前記反応が行われている反応装置から、前記反応条件情報を少なくとも1つ取得し、前記反応の反応中の任意時間における分子量情報である反応中分子量情報を取得する取得部と、前記反応条件情報、前記反応中分子量情報、および前記関連情報に基づき、反応中の生成物の分子量に関する予測を行う演算部と、として機能させる。
本発明によれば、水系懸濁液中に存在する高分子の非可逆な分解反応中の分子量を容易に予測することができる。
以下、図面を参照しながら本発明の実施形態について詳しく説明する。
<1.ポリエステル生産システムの構成>
図1を参照して、本実施形態に係るポリエステル生産システムの構成について説明する。図1は、本実施形態に係るポリエステル生産システム1の構成の一例を示す図である。ポリエステル生産システム1は、分子量変化を伴う反応によってポリエステルを生産するシステムである。ポリエステル生産システム1は、図1に示す演算装置10、流量センサ20、流量センサ21、温度センサ22、及びpHセンサ23で構成される。本実施形態に係るポリエステル生産システム1では、反応装置30において反応物40と反応を促進させる物質50との反応によって生成される生成物60の分子量に関する予測が行われる。反応物40は、流路41を介して反応装置30へ投入される。物質50は、流路51を介して、反応装置30へ投入される。
図1を参照して、本実施形態に係るポリエステル生産システムの構成について説明する。図1は、本実施形態に係るポリエステル生産システム1の構成の一例を示す図である。ポリエステル生産システム1は、分子量変化を伴う反応によってポリエステルを生産するシステムである。ポリエステル生産システム1は、図1に示す演算装置10、流量センサ20、流量センサ21、温度センサ22、及びpHセンサ23で構成される。本実施形態に係るポリエステル生産システム1では、反応装置30において反応物40と反応を促進させる物質50との反応によって生成される生成物60の分子量に関する予測が行われる。反応物40は、流路41を介して反応装置30へ投入される。物質50は、流路51を介して、反応装置30へ投入される。
分子量に関する予測は、例えば、反応時間における生成物60の分子量の予測や、生成物60の分子量が所望の分子量となる反応時間の予測である。反応時間は、具体的に、反応物40と物質50の反応が終了する時間を示す反応終了時間である。なお、分子量に関する予測は、かかる例に限定されない。
本実施形態では、一例として、反応物40がポリマー溶液、物質50が水酸化ナトリウム(NaOH)、生成物60がポリエステルである例について説明する。なお、反応物40、物質50、及び生成物60の種類は、かかる例に限定されない。また、本実施形態では、一例として、反応装置30内にて起こる化学反応が水系懸濁液中の加水分解によるバッチ式の解重合反応である例について説明する。なお、酸性条件下での加水分解における物質50は触媒として機能し、アルカリ性条件下での加水分解における物質50は反応促進剤として機能する。
なお、反応装置30内にて起こる化学反応の種類は、かかる例に限定されない。また、本実施形態では、一例として、反応装置30内にて起こる化学反応が100℃以下の反応温度で行われる例について説明する。なお、反応装置30内にて起こる化学反応の反応温度は、かかる例に限定されない。
本実施形態では、一例として、反応物40がポリマー溶液、物質50が水酸化ナトリウム(NaOH)、生成物60がポリエステルである例について説明する。なお、反応物40、物質50、及び生成物60の種類は、かかる例に限定されない。また、本実施形態では、一例として、反応装置30内にて起こる化学反応が水系懸濁液中の加水分解によるバッチ式の解重合反応である例について説明する。なお、酸性条件下での加水分解における物質50は触媒として機能し、アルカリ性条件下での加水分解における物質50は反応促進剤として機能する。
なお、反応装置30内にて起こる化学反応の種類は、かかる例に限定されない。また、本実施形態では、一例として、反応装置30内にて起こる化学反応が100℃以下の反応温度で行われる例について説明する。なお、反応装置30内にて起こる化学反応の反応温度は、かかる例に限定されない。
演算装置10は、反応装置30において反応物40と物質50の反応によって生成される生成物60の分子量に関する予測を行う装置である。演算装置10の一例として、PC(Personal Computer)、サーバ装置、スマートフォン、及びタブレット等の端末装置が挙げられる。
演算装置10は、流量センサ20、流量センサ21、温度センサ22、及びpHセンサ23と通信可能に接続されている。演算装置10は、流量センサ20、流量センサ21、温度センサ22、及びpHセンサ23が取得した情報を通信によって受信することができる。
流量センサ20及び流量センサ21は、対象の流量を測定するセンサ装置である。
流量センサ20は、例えば、反応装置30へ投入される反応物40の投入量を測定可能に設けられる。一例として、流量センサ20は、図1に示すように流路41に設けられる。この場合、流量センサ20は、反応装置30へ投入される反応物40の投入量を示す反応物量情報を取得する。
流量センサ21は、例えば、反応装置30へ投入される物質50の投入量を測定可能に設けられる。一例として、流量センサ21は、図1に示すように流路51に設けられる。この場合、流量センサ21は、反応装置30へ投入される物質50の投入量を示す物質量情報を取得する。
流量センサ20は、例えば、反応装置30へ投入される反応物40の投入量を測定可能に設けられる。一例として、流量センサ20は、図1に示すように流路41に設けられる。この場合、流量センサ20は、反応装置30へ投入される反応物40の投入量を示す反応物量情報を取得する。
流量センサ21は、例えば、反応装置30へ投入される物質50の投入量を測定可能に設けられる。一例として、流量センサ21は、図1に示すように流路51に設けられる。この場合、流量センサ21は、反応装置30へ投入される物質50の投入量を示す物質量情報を取得する。
温度センサ22は、対象の温度を測定するセンサ装置である。温度センサ22は、例えば、反応装置30内の生成物60の温度を測定可能に設けられる。一例として、温度センサ22は、図1に示すように反応装置30に設けられる。この場合、温度センサ22は、反応装置30内の生成物60の温度を示す反応温度情報を取得する。
pHセンサ23は、対象のpHを測定するセンサ装置である。pHセンサ23は、例えば、反応装置30内の生成物60のpHを測定可能に設けられる。一例として、pHセンサ23は、図1に示すように反応装置30に設けられる。この場合、pHセンサ23は、反応装置30内の生成物60のpHを示すpH情報を取得する。pH情報は、物理情報の一例である。
反応装置30は、反応装置内に投入された反応物40に化学反応を行わせるための装置である。本実施形態では、当該反応装置30を用いた化学反応によって、反応物40から生成物60を生成する。
反応装置30の内部には、撹拌機31が設けられている。撹拌機31は、反応装置30の内部の反応物40を攪拌するための装置である。撹拌機31は、モータ32の駆動によって回転する。
反応装置30の内部には、撹拌機31が設けられている。撹拌機31は、反応装置30の内部の反応物40を攪拌するための装置である。撹拌機31は、モータ32の駆動によって回転する。
なお、反応装置30は、反応装置30の内部の物質を加熱又は冷却可能な構成を有してもよい。例えば、反応装置30の外部には、ジャケットが設けられてもよい。ジャケットは、反応装置30の内部の物質を加熱又は冷却するための装置である。ジャケットは、内部に冷却水、温水、蒸気、熱媒、冷媒等を流入させることで、反応装置30内の物質を冷却又は加熱することができる。なお、反応装置30内の物質の加熱又は徐熱は、ジャケットを用いることで反応装置30の内部で反応物40の加熱又は徐熱が可能な内部循環方式によって行われてもよいし、反応装置30内の物質を反応装置30の外部へ移送して外部の熱交換器によって熱交換を行う外部循環方式が用いられてもよい。
<2.演算装置の構成>
図2を参照して、本実施形態に係る演算装置10の構成について説明する。図2は、本実施形態に係る演算装置10の構成の一例を示すブロック図である。
図2に示すように、演算装置10は、通信部100、制御部110、記憶部120、及び出力部130を備える。
図2を参照して、本実施形態に係る演算装置10の構成について説明する。図2は、本実施形態に係る演算装置10の構成の一例を示すブロック図である。
図2に示すように、演算装置10は、通信部100、制御部110、記憶部120、及び出力部130を備える。
(1)通信部100
通信部100は、各種情報を送受信する機能を有する。例えば、通信部100は、流量センサ20から反応物量情報、流量センサ21から物質量情報、温度センサ22から反応温度情報、pHセンサ23からpH情報をそれぞれ受信する。通信部100は、受信した各情報を制御部110へ出力する。
なお、通信部100は、有線通信あるいは無線通信のいずれの通信方式を用いてもよい。
通信部100は、各種情報を送受信する機能を有する。例えば、通信部100は、流量センサ20から反応物量情報、流量センサ21から物質量情報、温度センサ22から反応温度情報、pHセンサ23からpH情報をそれぞれ受信する。通信部100は、受信した各情報を制御部110へ出力する。
なお、通信部100は、有線通信あるいは無線通信のいずれの通信方式を用いてもよい。
(2)制御部110
制御部110は、演算装置10の動作全般を制御する機能を有する。当該機能は、例えば、演算装置10がハードウェアとして備えるCPU(Central Processing Unit)にプログラムを実行させることによって実現される。
制御部110は、演算装置10の動作全般を制御する機能を有する。当該機能は、例えば、演算装置10がハードウェアとして備えるCPU(Central Processing Unit)にプログラムを実行させることによって実現される。
図2に示すように制御部110は、取得部111、学習部112、演算部113、反応制御部114、及び出力処理部115を備える。
(2-1)取得部111
取得部111は、各種情報を取得する機能を有する。例えば、取得部111は、化学反応が行われている反応装置30から、当該化学反応の条件を示す反応条件情報を少なくとも1つ取得する。反応条件情報には、例えば、反応物量情報、物質量情報、反応温度情報、pH情報が含まれる。具体的には、取得部111は、通信部100を介して、反応装置30に設けられた各種センサ装置から反応条件情報を取得する。本実施形態では、取得部111は、反応条件情報の内、反応温度情報、pH情報(即ち物理情報)、及び物質量情報の少なくともいずれか1つを取得する。
取得部111は、各種情報を取得する機能を有する。例えば、取得部111は、化学反応が行われている反応装置30から、当該化学反応の条件を示す反応条件情報を少なくとも1つ取得する。反応条件情報には、例えば、反応物量情報、物質量情報、反応温度情報、pH情報が含まれる。具体的には、取得部111は、通信部100を介して、反応装置30に設けられた各種センサ装置から反応条件情報を取得する。本実施形態では、取得部111は、反応条件情報の内、反応温度情報、pH情報(即ち物理情報)、及び物質量情報の少なくともいずれか1つを取得する。
取得部111は、取得した反応条件情報に基づき、反応装置30で行われている化学反応の反応中の任意時間における分子量情報である反応中分子量情報を取得する。
例えば、取得部111は、時刻tにおける分子量を、Mwt-1、kt-1、[OH-]t、WNaOH・tを説明変数として用いて予測し、予測した分子量を反応中分子量情報として取得する。Mwt-1は、1時間前の分子量実測値である。kt-1は、1時間前の分解速度定数実績値である。[OH-]tは、1時間前からt時間前までの[OH-]平均値である。WNaOH・tは、1時間前からt時間前までのNaOH投入積算値である。
具体的に、まず、取得部111は、直近の分解反応速度定数の実測値と工程時間と温度とから、時刻tまでの反応速度定数を予測する。次いで、取得部111は、予測した反応速度定数をNaOH消費量で補正する。そして、取得部111は、直近の実測分子量と反応系中の水酸化物イオン濃度(pH)と時刻tまでの反応速度定数とから、時刻tにおける分子量を予測する。
なお、本実施形態は、反応装置30内にて起こる化学反応が水系懸濁液中の加水分解によるバッチ式の解重合反応である。即ち、スラリー状態、バッチプロセス、及び可逆的な分解反応であることを考慮すべきプロセスであり、反応速度に影響する因子が複雑なため分子量の予測の難易度が高い。特に、高分子粒子の結晶化度の時系列変化では、工程中における結晶化の進行により分解速度が低下することから、特に強く影響することが分かっている。その他、粒子径分布のバッチ間での揺らぎ、pH計較正誤差なども影響すると考えられており、処理バッチ毎のばらつきが大きく予測が難しいプロセスとなっている。
そこで、本実施形態では、分解速度のばらつきが大きいプロセスにおける分子量予測において、反応基質となるアルカリの消費量を説明変数に採用している。これにより、分解速度のばらつきを取り込んだ回帰予測が可能となり、予測精度を向上することができる。
例えば、取得部111は、時刻tにおける分子量を、Mwt-1、kt-1、[OH-]t、WNaOH・tを説明変数として用いて予測し、予測した分子量を反応中分子量情報として取得する。Mwt-1は、1時間前の分子量実測値である。kt-1は、1時間前の分解速度定数実績値である。[OH-]tは、1時間前からt時間前までの[OH-]平均値である。WNaOH・tは、1時間前からt時間前までのNaOH投入積算値である。
具体的に、まず、取得部111は、直近の分解反応速度定数の実測値と工程時間と温度とから、時刻tまでの反応速度定数を予測する。次いで、取得部111は、予測した反応速度定数をNaOH消費量で補正する。そして、取得部111は、直近の実測分子量と反応系中の水酸化物イオン濃度(pH)と時刻tまでの反応速度定数とから、時刻tにおける分子量を予測する。
なお、本実施形態は、反応装置30内にて起こる化学反応が水系懸濁液中の加水分解によるバッチ式の解重合反応である。即ち、スラリー状態、バッチプロセス、及び可逆的な分解反応であることを考慮すべきプロセスであり、反応速度に影響する因子が複雑なため分子量の予測の難易度が高い。特に、高分子粒子の結晶化度の時系列変化では、工程中における結晶化の進行により分解速度が低下することから、特に強く影響することが分かっている。その他、粒子径分布のバッチ間での揺らぎ、pH計較正誤差なども影響すると考えられており、処理バッチ毎のばらつきが大きく予測が難しいプロセスとなっている。
そこで、本実施形態では、分解速度のばらつきが大きいプロセスにおける分子量予測において、反応基質となるアルカリの消費量を説明変数に採用している。これにより、分解速度のばらつきを取り込んだ回帰予測が可能となり、予測精度を向上することができる。
(2-2)学習部112
学習部112は、回帰モデル121を生成する機能を有する。本実施形態に係る回帰モデル121は、少なくとも1つの反応条件情報と分子量を示す分子量情報とが関連付けられたモデルであり、関連情報の一例である。分子量情報は、例えば、反応装置30内にて起こる化学反応の反応時間ごとの分子量を示す情報である。学習部112は、生成した回帰モデル121を記憶部120に記憶させる。
学習部112は、回帰モデル121を生成する機能を有する。本実施形態に係る回帰モデル121は、少なくとも1つの反応条件情報と分子量を示す分子量情報とが関連付けられたモデルであり、関連情報の一例である。分子量情報は、例えば、反応装置30内にて起こる化学反応の反応時間ごとの分子量を示す情報である。学習部112は、生成した回帰モデル121を記憶部120に記憶させる。
学習部112は、例えば、反応条件情報と分子量情報とに基づいて、反応条件情報と分子量情報との関係性を示す回帰モデル121を生成する。具体的に、学習部112は、反応条件情報を入力された際に当該反応条件情報に応じた分子量情報を出力する回帰モデル121を生成する。また、学習部112は、分子量情報を入力された際に当該分子量情報に応じた反応条件情報を出力する回帰モデル121を生成してもよい。
本実施形態の場合、学習部112は、少なくとも1つの反応条件情報と、反応装置30内にて起こる化学反応の反応時間ごとの分子量を示す分子量情報との関係性を示す回帰モデル121を生成する。これにより、回帰モデル121は、反応条件情報が入力されると、当該反応条件情報による化学反応によって生成される生成物60の反応時間ごとの分子量を示す分子量情報を出力する。また、回帰モデル121は、分子量情報が入力されると、当該分子量情報の生成物60を生成するための化学反応の条件を示す反応条件情報を少なくとも1つ出力する。
本実施形態の場合、学習部112は、少なくとも1つの反応条件情報と、反応装置30内にて起こる化学反応の反応時間ごとの分子量を示す分子量情報との関係性を示す回帰モデル121を生成する。これにより、回帰モデル121は、反応条件情報が入力されると、当該反応条件情報による化学反応によって生成される生成物60の反応時間ごとの分子量を示す分子量情報を出力する。また、回帰モデル121は、分子量情報が入力されると、当該分子量情報の生成物60を生成するための化学反応の条件を示す反応条件情報を少なくとも1つ出力する。
学習部112は、例えば、統計的手法により回帰モデル121を生成する。統計的手法の一例として、PLS回帰(Partial Least Squares Regression)、一般化線形モデル、一般化線形混合モデル、階層ベイズモデルなどの手法が挙げられる。具体的に、学習部112は、実際に反応装置30にて化学反応が行われた際の反応条件情報と、当該化学反応によって生成された生成物60の分子量を示す分子量情報とに基づき、回帰モデル121を生成する。本実施形態では、学習部112は、反応条件情報に基づき分子量情報を算出するモデルを生成する。
(2-3)演算部113
演算部113は、分子量に関する予測を行う機能を有する。例えば、演算部113は、反応条件情報、分子量情報、及び回帰モデル121に基づき、反応中の生成物60の分子量に関する予測を行う。本実施形態では、演算部113は、一例としてポリエステルの分子量を予測するものとする。なお、演算部113が分子量に関する予測に用いる反応条件情報と分子量情報は、取得部111によって取得される情報であってもよいし、ユーザによって入力される情報であってもよい。
演算部113は、分子量に関する予測を行う機能を有する。例えば、演算部113は、反応条件情報、分子量情報、及び回帰モデル121に基づき、反応中の生成物60の分子量に関する予測を行う。本実施形態では、演算部113は、一例としてポリエステルの分子量を予測するものとする。なお、演算部113が分子量に関する予測に用いる反応条件情報と分子量情報は、取得部111によって取得される情報であってもよいし、ユーザによって入力される情報であってもよい。
例えば、演算部113は、反応装置30で起こる化学反応の反応条件情報及び回帰モデル121に基づき、当該反応条件情報が示す反応条件において生成される生成物60の分子量を予測する。本実施形態の回帰モデル121は、上述したように反応条件情報と分子量情報の関係性を示す。そのため、演算部113は、反応条件情報を回帰モデル121へ入力することで出力される分子量情報に基づき、反応装置30内で起こる化学反応で生成される生成物60の分子量を予測することができる。
具体的に、演算部113は、反応装置30で起こる化学反応の反応時間及び回帰モデル121に基づき、当該反応時間において生成される生成物60の分子量を予測する。
具体的に、演算部113は、反応装置30で起こる化学反応の反応時間及び回帰モデル121に基づき、当該反応時間において生成される生成物60の分子量を予測する。
また、演算部113は、分子量情報を回帰モデル121へ入力することで出力される反応条件情報に基づき、入力した分子量情報に対応する生成物60を反応装置30内で起こる化学反応にて生成するための反応条件を予測することができる。
具体的に、演算部113は、反応中分子量情報及び回帰モデル121に基づき、反応中の生成物60の反応時間を予測する。また、演算部113は、所望の分子量を示す所望分子量及び回帰モデル121に基づき、所望の分子量となる反応時間を予測する。なお、演算部113は、分子量情報に反応条件情報を組み合わせて、分子量情報の予測を行ってもよい。
具体的に、演算部113は、反応中分子量情報及び回帰モデル121に基づき、反応中の生成物60の反応時間を予測する。また、演算部113は、所望の分子量を示す所望分子量及び回帰モデル121に基づき、所望の分子量となる反応時間を予測する。なお、演算部113は、分子量情報に反応条件情報を組み合わせて、分子量情報の予測を行ってもよい。
演算部113は、予測した結果に基づき、反応終了時間となる反応条件を少なくとも1つ生成する。例えば、反応条件は、予測温度や予測pHである。予測温度は、予測した分子量となる反応終了時間における生成物60の温度を予測したものである。予測pHは、予測した分子量となる反応終了時間における生成物60のpHを予測したものである。
(2-4)反応制御部114
反応制御部114は、反応装置30における化学反応を制御する機能を有する。例えば、反応制御部114は、演算部113によって予測された反応終了時間と生成された反応条件に基づき、化学反応を抑制させる処理を行う。具体的に、反応制御部114は、反応条件を出力部へ送信して自動制御を行う。これにより、反応制御部114は、演算部113によって予測された反応終了時間で化学反応が終了するよう制御することができる。
反応制御部114は、反応装置30における化学反応を制御する機能を有する。例えば、反応制御部114は、演算部113によって予測された反応終了時間と生成された反応条件に基づき、化学反応を抑制させる処理を行う。具体的に、反応制御部114は、反応条件を出力部へ送信して自動制御を行う。これにより、反応制御部114は、演算部113によって予測された反応終了時間で化学反応が終了するよう制御することができる。
(2-5)出力処理部115
出力処理部115は、演算部113による予測結果の出力を制御する機能を有する。例えば、出力処理部115は、演算部113が予測した分子量情報又は反応条件情報を出力部130へ入力し、表示させる。これにより、ユーザは、演算部113による予測結果を確認することができる。
出力処理部115は、演算部113による予測結果の出力を制御する機能を有する。例えば、出力処理部115は、演算部113が予測した分子量情報又は反応条件情報を出力部130へ入力し、表示させる。これにより、ユーザは、演算部113による予測結果を確認することができる。
(3)記憶部120
記憶部120は、各種情報を記憶する機能を有する。記憶部120は、記憶媒体、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access read/write Memory)、ROM(Read Only Memory)、またはこれらの記憶媒体の任意の組み合わせによって構成される。
図2に示すように、記憶部120は、回帰モデル121を記憶する。当該回帰モデル121は、反応装置30で起こる化学反応の反応条件情報の中から選ばれる、少なくとも1つの反応条件情報と、分子量情報とを関連付けた関連情報の一例である。記憶部120は、当該分子量情報として、化学反応の反応時間ごとの分子量を示す分子量情報を記憶する。
記憶部120は、各種情報を記憶する機能を有する。記憶部120は、記憶媒体、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access read/write Memory)、ROM(Read Only Memory)、またはこれらの記憶媒体の任意の組み合わせによって構成される。
図2に示すように、記憶部120は、回帰モデル121を記憶する。当該回帰モデル121は、反応装置30で起こる化学反応の反応条件情報の中から選ばれる、少なくとも1つの反応条件情報と、分子量情報とを関連付けた関連情報の一例である。記憶部120は、当該分子量情報として、化学反応の反応時間ごとの分子量を示す分子量情報を記憶する。
(4)出力部130
出力部130は、各種出力を行う機能を有する。例えば、出力部130は、反応制御部114から入力される反応条件に基づき、反応装置30における化学反応を制御するための制御信号を出力する。また、出力部130は、出力処理部115から入力される分子量情報又は反応条件情報(予測結果)を表示する。
出力部130は、各種出力を行う機能を有する。例えば、出力部130は、反応制御部114から入力される反応条件に基づき、反応装置30における化学反応を制御するための制御信号を出力する。また、出力部130は、出力処理部115から入力される分子量情報又は反応条件情報(予測結果)を表示する。
<3.処理の流れ>
図3及び図4を参照して、本実施形態に係る演算装置10における処理の流れについて説明する。
図3及び図4を参照して、本実施形態に係る演算装置10における処理の流れについて説明する。
(1)回帰モデル生成処理
図3は、本実施形態に係る演算装置10における回帰モデル生成処理の流れを示すフローチャートである。
図3に示すように、まず、演算装置10の取得部111は、反応条件情報を取得する(ステップS100)。
次いで、取得部111は、分子量情報を取得する(ステップS101)。
なお、取得部111が取得する反応条件情報及び分子量情報は、各種センサ装置によって検出された情報、当該検出された情報に基づき取得される情報、又はユーザによって入力される情報にいずれであってもよい。
図3は、本実施形態に係る演算装置10における回帰モデル生成処理の流れを示すフローチャートである。
図3に示すように、まず、演算装置10の取得部111は、反応条件情報を取得する(ステップS100)。
次いで、取得部111は、分子量情報を取得する(ステップS101)。
なお、取得部111が取得する反応条件情報及び分子量情報は、各種センサ装置によって検出された情報、当該検出された情報に基づき取得される情報、又はユーザによって入力される情報にいずれであってもよい。
次いで、学習部112は、取得部111が取得した反応条件情報及び分子量情報に基づき、回帰モデル121を生成する(ステップS102)。
そして、学習部112は、生成した回帰モデル121を記憶部120に記憶させる(ステップS103)。
そして、学習部112は、生成した回帰モデル121を記憶部120に記憶させる(ステップS103)。
(2)反応進行状況予測処理
図4は、本実施形態に係る演算装置10における分子量予測処理の流れを示すフローチャートである。
図4は、本実施形態に係る演算装置10における分子量予測処理の流れを示すフローチャートである。
取得部111は、反応条件情報又は分子量情報を取得する(ステップS200)。
なお、取得部111が取得する反応条件情報及び分子量情報は、各種センサ装置によって検出された情報、当該検出された情報に基づき取得される情報、又はユーザによって入力される情報にいずれであってもよい。
なお、取得部111が取得する反応条件情報及び分子量情報は、各種センサ装置によって検出された情報、当該検出された情報に基づき取得される情報、又はユーザによって入力される情報にいずれであってもよい。
次いで、演算部113は、ステップS200にて取得部111によって取得された情報を記憶部120に記憶された回帰モデル121へ入力する(ステップS201)。回帰モデル121は、入力された情報に応じた情報を出力する。
演算部113は、回帰モデル121が出力した情報に基づき、分子量に関する予測を行う(ステップS202)。反応制御部114又は出力処理部115は、演算部113が予測した予測結果に応じた情報を出力部130へ出力し、出力処理を行わせる(ステップS203)。
以上説明したように、本実施形態に係るポリエステル生産システム1は、記憶部120、取得部111、及び演算部113を少なくとも備える。
記憶部120は、化学反応の反応条件情報の中から選ばれる、少なくとも1つの反応条件情報と分子量情報とを関連付けた回帰モデル121を記憶する。
取得部111は、化学反応が行われている反応装置30から、反応条件情報を少なくとも1つ取得し、化学反応の反応中の任意時間における分子量情報である反応中分子量情報を取得する。
演算部113は、反応条件情報、反応中分子量情報、及び回帰モデル121に基づき、反応中の生成物60の分子量に関する予測を行う。
記憶部120は、化学反応の反応条件情報の中から選ばれる、少なくとも1つの反応条件情報と分子量情報とを関連付けた回帰モデル121を記憶する。
取得部111は、化学反応が行われている反応装置30から、反応条件情報を少なくとも1つ取得し、化学反応の反応中の任意時間における分子量情報である反応中分子量情報を取得する。
演算部113は、反応条件情報、反応中分子量情報、及び回帰モデル121に基づき、反応中の生成物60の分子量に関する予測を行う。
かかる構成により、本実施形態に係るポリエステル生産システム1は、化学反応における反応条件情報と分子量情報とが関連付けられた回帰モデル121に対して、反応装置30における化学反応の反応条件情報又は分子量情報を入力するだけで、反応装置30において反応中の生成物60の分子量に関する予測を行うことができる。
よって、本実施形態に係るポリエステル生産システム1は、水系懸濁液中に存在する高分子の非可逆な分解反応中の分子量を容易に予測することを可能とする。
<4.変形例>
以上、本発明の実施形態について説明した。続いて、本発明の実施形態の変形例について説明する。なお、以下に説明する各変形例は、単独で本発明の実施形態に適用されてもよいし、組み合わせで本発明の実施形態に適用されてもよい。また、各変形例は、本発明の実施形態で説明した構成に代えて適用されてもよいし、本発明の実施形態で説明した構成に対して追加的に適用されてもよい。
以上、本発明の実施形態について説明した。続いて、本発明の実施形態の変形例について説明する。なお、以下に説明する各変形例は、単独で本発明の実施形態に適用されてもよいし、組み合わせで本発明の実施形態に適用されてもよい。また、各変形例は、本発明の実施形態で説明した構成に代えて適用されてもよいし、本発明の実施形態で説明した構成に対して追加的に適用されてもよい。
上述の実施形態では、学習部112が統計的手法によって回帰モデル121を生成する例について説明したが、かかる例に限定されない、学習部112は、機械学習により回帰モデル121(学習済みモデル)を生成してもよい。演算部113は、回帰モデル121として学習済みモデルを用いて、反応中の生成物60の分子量に関する予測を行うことができる。
機械学習の手法の一例として、SVR(サポートベクター回帰)、ランダムフォレスト、ニューラルネットワークによるディープラーニング等が挙げられる。具体的に、学習部112は、実際に反応装置30にて化学反応が行われた際の反応条件情報と、当該化学反応によって生成された生成物60の分子量を示す分子量情報とに基づいて機械学習を行うことで、学習済みモデルを生成する。
機械学習の手法の一例として、SVR(サポートベクター回帰)、ランダムフォレスト、ニューラルネットワークによるディープラーニング等が挙げられる。具体的に、学習部112は、実際に反応装置30にて化学反応が行われた際の反応条件情報と、当該化学反応によって生成された生成物60の分子量を示す分子量情報とに基づいて機械学習を行うことで、学習済みモデルを生成する。
学習部112は、例えば、教師あり学習によって学習済みモデルを生成する。教師あり学習では、学習モデルに学習用のデータセットを用いた学習を行わせる。データセットは、学習時の入力となる説明変数と、当該入力データに基づき出力されるデータの正解を示す目的変数のセットである。本実施形態の場合、説明変数は、反応条件情報である。目的変数は、分子量情報である。学習部112は、当該説明変数と当該目的変数を用いて、反応条件と分子量の対応を学習した学習済みモデルを生成する。
また、学習部112は、反応条件情報と反応の反応時間ごとの分子量情報とに基づいて機械学習を行うことで、反応の反応速度が更新された学習済みモデルを生成してもよい。演算部113は、反応速度を用いて、反応中の生成物の分子量に関する予測を行うことができる。
以上、本発明の変形例について説明した。なお、上述した実施形態におけるポリエステル生産システム1及び演算装置10が備える構成の一部又は全部をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスやPLC(Programmable Logic Controller)を用いて実現されるものであってもよい。
以上、図面を参照してこの発明の実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
1 ポリエステル生産システム
10 演算装置
20、21 流量センサ
22 温度センサ
23 pHセンサ
30 反応装置
31 撹拌機
32 モータ
40 反応物
41 流路
50 物質
51 流路
60 生成物
100 通信部
110 制御部
111 取得部
112 学習部
113 演算部
114 反応制御部
115 出力処理部
120 記憶部
121 回帰モデル
130 出力部
10 演算装置
20、21 流量センサ
22 温度センサ
23 pHセンサ
30 反応装置
31 撹拌機
32 モータ
40 反応物
41 流路
50 物質
51 流路
60 生成物
100 通信部
110 制御部
111 取得部
112 学習部
113 演算部
114 反応制御部
115 出力処理部
120 記憶部
121 回帰モデル
130 出力部
Claims (16)
- 分子量変化を伴う反応によってポリエステルを生産するポリエステル生産システムであって、
前記反応の反応条件情報の中から選ばれる、少なくとも1つの反応条件情報と、分子量を示す分子量情報とを関連付けた関連情報を記憶する記憶部と、
前記反応が行われている反応装置から、前記反応条件情報を少なくとも1つ取得し、前記反応の反応中の任意時間における分子量情報である反応中分子量情報を取得する取得部と、
前記反応条件情報、前記反応中分子量情報、および前記関連情報に基づき、反応中の生成物の分子量に関する予測を行う演算部と、
を備える、ポリエステル生産システム。 - 前記反応は、水系懸濁液中の加水分解による、バッチ式の解重合反応である、
請求項1に記載のポリエステル生産システム。 - 前記取得部は、反応温度情報、pHを示す物理情報、または前記反応を促進させる物質の投入量を示す物質量情報のうち、少なくともいずれか1つを前記反応条件情報として取得する、
請求項1または2に記載のポリエステル生産システム。 - 前記反応は、100℃以下の反応温度で行われる、
請求項1から請求項3のいずれか1項に記載のポリエステル生産システム。 - 前記演算部は、ポリエステルの分子量を予測する、
請求項1から請求項4のいずれか1項に記載のポリエステル生産システム。 - 前記記憶部は、前記反応の反応時間ごとの分子量を示す前記分子量情報を記憶し、
前記演算部は、前記反応装置での前記反応の反応時間、前記反応条件情報、及び前記関連情報に基づき、前記反応時間における前記分子量を予測する、
請求項1に記載のポリエステル生産システム。 - 前記記憶部は、前記反応の反応時間ごとの前記分子量を示す前記分子量情報を記憶し、
前記演算部は、所望の分子量を示す所望分子量、前記反応条件情報、及び前記関連情報に基づき、所望の分子量となる前記反応時間を予測する、
請求項1に記載のポリエステル生産システム。 - 前記反応時間は、前記反応が終了する時間を示す反応終了時間であり、
前記演算部は、予測した結果に基づき、前記反応終了時間となる反応条件を少なくとも1つ生成する、
請求項7に記載のポリエステル生産システム。 - 前記反応条件は、予測温度である、
請求項8に記載のポリエステル生産システム。 - 前記反応条件は、予測pHである、
請求項8に記載のポリエステル生産システム。 - 前記反応終了時間と前記反応条件に基づき、前記反応を抑制させる処理を行う反応制御部、
をさらに備える、請求項8に記載のポリエステル生産システム。 - 前記反応制御部は、前記反応条件を出力部へ送信して自動制御を行う、
請求項11に記載のポリエステル生産システム。 - 前記反応条件情報と前記分子量情報に基づいて機械学習を行うことで学習済みモデルを生成する学習部を備え、
前記演算部は、前記関連情報として前記学習済みモデルを用いて、前記反応中の生成物の分子量に関する予測を行う、
請求項1から請求項12のいずれか1項に記載のポリエステル生産システム。 - 前記学習部は、前記反応条件情報と前記反応の反応時間ごとの前記分子量情報とに基づいて機械学習を行うことで、前記反応の反応速度が更新された前記学習済みモデルを生成し、
前記演算部は、前記反応速度を用いて、前記反応中の生成物の分子量に関する予測を行う、
請求項13に記載のポリエステル生産システム。 - 分子量変化を伴う反応によってポリエステルを生産するポリエステル生産方法であって、
記憶部が、前記反応の反応条件情報の中から選ばれる、少なくとも1つの反応条件情報と、分子量を示す分子量情報とを関連付けた関連情報を記憶する記憶過程と、
取得部が、前記反応が行われている反応装置から、前記反応条件情報を少なくとも1つ取得し、前記反応の反応中の任意時間における分子量情報である反応中分子量情報を取得する取得過程と、
演算部が、前記反応条件情報、前記反応中分子量情報、および前記関連情報に基づき、反応中の生成物の分子量に関する予測を行う演算過程と、
を含む、ポリエステル生産方法。 - 分子量変化を伴う反応によってポリエステルを生産するポリエステル生産システムとしてコンピュータを機能させるためのプログラムであって、
前記コンピュータを、
前記反応の反応条件情報の中から選ばれる、少なくとも1つの反応条件情報と、分子量を示す分子量情報とを関連付けた関連情報を記憶する記憶部と、
前記反応が行われている反応装置から、前記反応条件情報を少なくとも1つ取得し、前記反応の反応中の任意時間における分子量情報である反応中分子量情報を取得する取得部と、
前記反応条件情報、前記反応中分子量情報、および前記関連情報に基づき、反応中の生成物の分子量に関する予測を行う演算部と、
として機能させる、プログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021010016 | 2021-01-26 | ||
JP2021-010016 | 2021-01-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022163035A1 true WO2022163035A1 (ja) | 2022-08-04 |
Family
ID=82654332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/038463 WO2022163035A1 (ja) | 2021-01-26 | 2021-10-18 | ポリエステル生産システム、ポリエステル生産方法、及びプログラム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022163035A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024176478A1 (ja) * | 2023-02-24 | 2024-08-29 | Dic株式会社 | 重縮合反応に係る予測を行う方法、情報処理装置、及びプログラム |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62252421A (ja) * | 1986-04-18 | 1987-11-04 | ゼネカ リミテッド | ポリエステルの製造法 |
JP2003076934A (ja) * | 2001-09-03 | 2003-03-14 | Tosoh Corp | ポリマーの物性予測方法及びそれを用いたプラントの運転制御方法 |
JP2003313283A (ja) * | 2002-04-25 | 2003-11-06 | Japan Science & Technology Corp | ポリエステルの製法 |
JP2017531076A (ja) * | 2014-10-01 | 2017-10-19 | アドヴァンスド ポリマー モニタリング テクノロジーズ インコーポレイテッドAdvanced Polymer Monitoring Technologies, Inc. | 重合化反応の制御のための装置及び方法 |
-
2021
- 2021-10-18 WO PCT/JP2021/038463 patent/WO2022163035A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62252421A (ja) * | 1986-04-18 | 1987-11-04 | ゼネカ リミテッド | ポリエステルの製造法 |
JP2003076934A (ja) * | 2001-09-03 | 2003-03-14 | Tosoh Corp | ポリマーの物性予測方法及びそれを用いたプラントの運転制御方法 |
JP2003313283A (ja) * | 2002-04-25 | 2003-11-06 | Japan Science & Technology Corp | ポリエステルの製法 |
JP2017531076A (ja) * | 2014-10-01 | 2017-10-19 | アドヴァンスド ポリマー モニタリング テクノロジーズ インコーポレイテッドAdvanced Polymer Monitoring Technologies, Inc. | 重合化反応の制御のための装置及び方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024176478A1 (ja) * | 2023-02-24 | 2024-08-29 | Dic株式会社 | 重縮合反応に係る予測を行う方法、情報処理装置、及びプログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yoo et al. | Reinforcement learning based optimal control of batch processes using Monte-Carlo deep deterministic policy gradient with phase segmentation | |
Sharma et al. | A hybrid science‐guided machine learning approach for modeling chemical processes: A review | |
Zhu et al. | Scalable reinforcement learning for plant-wide control of vinyl acetate monomer process | |
CN111679636B (zh) | 生产工艺参数处理的系统、方法和计算机设备 | |
Jin et al. | Adaptive soft sensor development based on online ensemble Gaussian process regression for nonlinear time-varying batch processes | |
Kaneko et al. | Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship | |
Liu et al. | Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor | |
WO2022163035A1 (ja) | ポリエステル生産システム、ポリエステル生産方法、及びプログラム | |
Kaneko et al. | Novel soft sensor method for detecting completion of transition in industrial polymer processes | |
Bogojeski et al. | Forecasting industrial aging processes with machine learning methods | |
Yu et al. | An alternative formulation of PCA for process monitoring using distance correlation | |
Wang et al. | Towards machine learning approaches for predicting the self-healing efficiency of materials | |
He et al. | Quality-related locally weighted non-Gaussian regression based soft sensing for multimode processes | |
Kačur et al. | Prediction of temperature and carbon concentration in oxygen steelmaking by machine learning: A comparative study | |
Du et al. | Fault detection and classification for nonlinear chemical processes using lasso and Gaussian process | |
Himmel et al. | Machine learning for process control of (bio) chemical processes | |
Huang et al. | A novel distributed fault detection approach based on the variational autoencoder model | |
Zhu et al. | Dynamic data reconciliation for improving the prediction performance of the data-driven model on distributed product outputs | |
Lawrence et al. | Machine learning for industrial sensing and control: A survey and practical perspective | |
CN118217778A (zh) | 控制气体浓度的方法、装置、设备和存储介质 | |
Huang et al. | Mixture discriminant monitoring: A hybrid method for statistical process monitoring and fault diagnosis/isolation | |
Teng et al. | Machine-learned digital phase switch for sustainable chemical production | |
CN118350262A (zh) | 基于机器学习的碳酸锂制备设备参数优化方法及系统 | |
Murakami et al. | Reaction engineering with recurrent neural network: Kinetic study of Dushman reaction | |
Peterson et al. | Challenges in data-based reactor modeling: A critical analysis of purely data-driven and hybrid models for a CSTR case study |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21923041 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21923041 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |