WO2022162904A1 - Series-hybrid type straddled vehicle - Google Patents

Series-hybrid type straddled vehicle Download PDF

Info

Publication number
WO2022162904A1
WO2022162904A1 PCT/JP2021/003364 JP2021003364W WO2022162904A1 WO 2022162904 A1 WO2022162904 A1 WO 2022162904A1 JP 2021003364 W JP2021003364 W JP 2021003364W WO 2022162904 A1 WO2022162904 A1 WO 2022162904A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
power generation
vibration
type vehicle
primary
Prior art date
Application number
PCT/JP2021/003364
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 北村
勉 川口
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2021/003364 priority Critical patent/WO2022162904A1/en
Priority to JP2022577977A priority patent/JP7387921B2/en
Priority to TW111103338A priority patent/TWI815288B/en
Publication of WO2022162904A1 publication Critical patent/WO2022162904A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a series hybrid straddle-type vehicle.
  • the engine-driven power supply unit described in Patent Document 1 is a power supply unit mounted on a range extender EV.
  • a power generation engine is provided with a balancer.
  • the link mechanism suspends the engine drive power supply unit. This suppresses transmission of vibrations of the engine drive power supply unit to the frame of the vehicle.
  • a series hybrid straddle-type vehicle is equipped with an engine drive power supply unit including such a power generation engine.
  • the range extender EV described above is an example of a series hybrid straddle-type vehicle.
  • the series hybrid straddle-type vehicle has a vehicle characteristic that attitude control is performed by shifting the weight of the occupant, and is used in a wide range of applications such as daily foot use and leisure use such as touring. Therefore, the series hybrid straddle-type vehicle is strongly required to be light and convenient.
  • An object of the present invention is to provide a series hybrid saddle-riding vehicle that can efficiently suppress or prevent transmission of vibrations of a power generating engine to the frame while suppressing or preventing an increase in size and complication of the structure. be.
  • the present inventors studied how to efficiently reduce the vibration generated in the power generation engine of the engine-driven power supply unit.
  • the power generation engine is provided with a balancer to reduce the vibration of the power generation engine.
  • the engine drive power supply unit is suspended from the frame by a link mechanism to suppress transmission of vibration generated in the power generation engine to the vehicle frame.
  • the balancer of the power generation engine described in Patent Document 1 is a uniaxial primary balancer.
  • the uniaxial primary balancer suppresses the vibration due to the primary inertial force described in Patent Document 1
  • the link mechanism suppresses the transmission of the vibration such as the primary inertial couple to the frame.
  • the vibration generated in the power generation engine also occurs due to the secondary inertial force. Therefore, the engine-driven power supply unit described in Patent Document 1 may generate vibrations due to the secondary inertial force, which may complicate the vibrations of the power generation engine. In some cases, it may not be possible to suppress the transmission of vibration to the frame.
  • the inventors of the present invention also considered the vibration caused by the secondary inertial force generated in the power generation engine, and studied how to efficiently suppress the transmission of the vibration generated in the engine to the frame.
  • the present inventors have found that the balancer suppresses the vibration caused by the primary inertial force and the primary inertial couple, and as a result, the vibration caused by the remaining secondary inertial force is suppressed from being transmitted to the frame by the support mechanism. As a result, it is possible to suppress or prevent the increase in size and the complication of the structure, and it is possible to suppress the vibration due to the secondary inertial force.
  • a two-shaft primary balancer for suppressing vibrations due to a primary inertial force and a primary inertial couple is provided in a power generating engine of an engine-driven power supply unit of a straddle-type vehicle.
  • the support mechanism for suspending the engine-driving power supply unit is configured to support the engine-driving power supply unit in such a manner as to suppress rotational vibration around the crankshaft while allowing translational vibration in the cylinder direction due to residual secondary inertia force. Attach to frame.
  • the balancer provided in the power generation engine suppresses the primary inertial force and the primary inertia couple generated in the power generation engine.
  • a series hybrid straddle-type vehicle has the following configuration.
  • the series hybrid straddle-type vehicle is body frame and a drive motor; a drive wheel rotatably supported by the vehicle body frame and driven by the drive motor; a power generation engine having one or more cylinders and a biaxial primary balancer that suppresses vibrations caused by a primary inertial force and a primary inertial couple; a generator that is driven to generate power and supplies the generated power to the drive motor via or without a power storage device, the power generated by the generator can be output, and the power generation an engine drive power supply unit configured not to transmit the power output from the engine to the drive wheels; It is attached to the vehicle body frame so as to support the engine drive power supply unit in a manner that suppresses rotational vibration around the crankshaft while allowing translational vibration in the cylinder direction due to the residual secondary inertia force.
  • the translational vibration in the cylinder direction is caused by the secondary inertia force remaining in the power generation engine due to the suppression of the primary inertia force and the primary inertia couple by the two-axis primary balancer, and the power generation engine when viewed in the crank axis direction. and the rotational vibration around the crankshaft is rotational vibration about a line parallel to the crankshaft.
  • the series hybrid straddle-type vehicle of (1) includes a vehicle body frame, an engine drive power supply unit, and a support mechanism.
  • the engine-driven power supply unit has a power generation engine and a generator.
  • a power generation engine has one or more cylinders and a two-axis primary balancer.
  • the biaxial primary balancer suppresses vibration due to the primary inertial force and the primary inertial couple.
  • the generator is attached to the generator engine.
  • the generator is driven by the rotation of the crankshaft of the power generation engine to generate power, and supplies the generated power to the drive motor with or without the power storage device.
  • the engine drive power supply unit is configured to be capable of outputting power generated by the generator and not to transmit the power output from the power generation engine to the driving wheels.
  • the support mechanism is attached to the vehicle body frame so as to support the engine driving power supply unit in such a manner as to suppress rotational vibration around the crankshaft while allowing translational vibration in the cylinder direction due to residual secondary inertial force.
  • the translational vibration in the cylinder direction due to the remaining secondary inertia force is caused by the secondary inertia force remaining in the power generation engine due to the suppression of the primary inertia force and the primary inertia couple by the two-axis primary balancer, and when viewed in the crank axis direction, It is a translational vibration that occurs in the cylinder axis direction of the power generation engine.
  • Rotational vibration about the crankshaft is rotational vibration about a line parallel to the crankshaft.
  • the vibration due to the primary inertial force is the vibration that occurs with the vertical movement of the piston of the power generation engine, and is the vibration that occurs in synchronization with the rotation of the crankshaft of the engine. Vibration due to the primary inertial force mainly occurs in the cylinder axial direction. Vibration due to the primary inertia couple is vibration due to rotational force around the crankshaft of the power generating engine.
  • a dual axis primary balancer has two balancer shafts parallel to the crankshaft that rotate in opposite directions synchronously with the rotation of the crankshaft. The biaxial primary balancer can suppress the vibration of the power generation engine due to the primary inertial force and the primary inertial couple.
  • the secondary inertial force is an inertial force that occurs at twice the frequency of the primary inertial force and occurs in the cylinder axial direction. Being configured to suppress rotational vibration around the crankshaft while allowing translational vibration in the cylinder direction due to the residual secondary inertia force means that the support mechanism is movable so as to move in the amplitude and vibration direction of the vibration due to the residual secondary inertia force. setting the distance and direction.
  • the generating engine of the engine drive power supply unit is provided with a two-shaft primary balancer that suppresses vibrations caused by the primary inertial force and the primary inertial couple.
  • the support mechanism for suspending the engine-driving power supply unit is configured to support the engine-driving power supply unit in such a manner as to suppress rotational vibration around the crankshaft while allowing translational vibration in the cylinder direction due to residual secondary inertia force. Attach to frame.
  • the primary inertial force and the primary inertial couple generated in the power generation engine are suppressed by the two-axis primary balancer provided in the power generation engine.
  • the vibration due to the secondary inertial force remains in the power generation engine, it is possible to suppress transmission of the vibration due to the residual secondary inertial force to the vehicle body frame by the support mechanism.
  • the vibration generated from the power generation engine of the engine-driven power supply unit can be reduced, and the support mechanism can also specialize in suppressing the vibration due to the remaining secondary inertial force.
  • the support mechanism can also specialize in suppressing the vibration due to the remaining secondary inertial force.
  • a series hybrid straddle-type vehicle can employ the following configuration.
  • the series hybrid straddle-type vehicle of (1) The support mechanism is composed of a plurality of pairs of link portions that are a combination of a link mechanism and an elastic body.
  • the support mechanism is composed of a plurality of pairs of link portions that are combinations of link mechanisms and elastic bodies.
  • the support mechanism has a structure that allows vibration due to the secondary inertia force generated in the cylinder axis direction of the engine drive power supply unit when viewed in the crank axis direction. can do.
  • the support mechanism can be configured to suppress vibration in the rotational direction about a line that passes through the center of gravity and is parallel to the axis of the crankshaft. Therefore, in the series hybrid straddle-type vehicle of (2), it is possible to efficiently suppress transmission of vibration generated in the power generation engine to the frame.
  • a series hybrid straddle-type vehicle can employ the following configuration.
  • the link portions constitute a plurality of pairs, each of which is arranged on the left and right, each having a play that allows displacement in a direction intersecting the direction of movement of the link portion, and the link portion
  • the deviation of the distance from each of the paired link portions to the center of the cylinder is the deviation of the distance from each of the paired link portions to the center of gravity of the engine driving power supply unit. and greater than the deviation of the distance from each of the paired link portions to the center of the series hybrid straddle-type vehicle in the vehicle width direction.
  • the deviation of the distance from each of the paired link portions to the center of the cylinder in the vehicle width direction is determined by the engine drive power supply from each of the paired link portions. Greater than the deviation of the distance to the center of gravity of the unit. Further, in the series hybrid saddle type vehicle of (3), the deviation of the distance from each of the paired link portions to the center of the cylinder in the vehicle width direction is equal to It is larger than the deviation of the distance to the center of the vehicle in the vehicle width direction.
  • the engine-driven power supply unit is provided with an engine-driven power supply unit so that the series hybrid straddle-type vehicle rotates in the horizontal direction about the center of gravity of the engine-driven power supply unit and the center of the vehicle. Inertial force acts easily.
  • the inertial force that causes the vehicle body of the series hybrid saddle-ride type vehicle to rotate in the horizontal direction is transmitted from the power generation engine to the frame by the link with play. can be suppressed.
  • a series hybrid straddle-type vehicle can employ the following configuration.
  • the link portions are composed of a first pair, a second pair, and a third pair, each of which is a pair arranged on the left and right, and the first pair and the second pair are the remaining It operates in a direction to allow translational vibration in the cylinder direction due to secondary inertia force, and the third pair suppresses rotational vibration about the crankshaft.
  • the link portions are composed of a first pair, a second pair, and a third pair.
  • the first pair and the second pair operate in a direction that allows translational vibration in the cylinder direction due to residual secondary inertial force.
  • the third pair suppresses rotational vibrations about the crankshaft.
  • the support mechanism has a structure that allows vibration due to the remaining secondary inertia force generated in the cylinder axial direction of the engine drive power supply unit, and suppresses vibration in the rotation direction around the crankshaft. can do. Therefore, in the series hybrid straddle-type vehicle of (4), it is possible to efficiently suppress transmission of vibration generated in the power generation engine to the frame.
  • a series hybrid straddle-type vehicle can employ the following configuration.
  • the power generating engine is a single-cylinder engine, a two-cylinder engine other than a parallel two-cylinder engine with combustion timing crank angles of 90 degrees and 270 degrees, a three-cylinder engine, or a four-cylinder engine other than a crossplane type parallel four-cylinder engine. is.
  • the balancer suppresses the vibration caused by the primary inertial force and the primary inertial couple
  • the support mechanism suppresses the transmission of the vibration caused by the secondary inertial force to the frame. Even in a power generation engine of a series hybrid straddle-type vehicle, transmission of vibration to the frame can be suppressed.
  • a straddled vehicle refers to a vehicle in which the driver sits astride the saddle.
  • Straddle-type vehicles include, for example, moped-type, off-road-type, and on-road-type motorcycles.
  • the straddle-type vehicle is not limited to a motorcycle, and may be, for example, a three-wheeled motor vehicle, an ATV (All-Terrain Vehicle), or the like.
  • a motor tricycle may have two front wheels and one rear wheel, or may have one front wheel and two rear wheels.
  • the driving wheels of the straddle-type vehicle may be the rear wheels or the front wheels.
  • the drive wheels of the straddle-type vehicle may be both the rear wheels and the front wheels.
  • the straddle-type vehicle is configured to be able to turn in a lean posture.
  • a straddle-type vehicle that is configured to turn in a lean posture is configured to turn in a posture that is inclined toward the center of a curve.
  • the straddle-type vehicle configured to be able to turn in a lean posture resists the centrifugal force applied to the vehicle during turning.
  • the body frame forms the skeleton of the saddle-ride type vehicle and supports mounted parts of the saddle-ride type vehicle such as the power storage device, the engine drive power supply unit, and the drive motor.
  • a body frame is composed of a front fork, a frame body, and a swing arm. Examples of the frame body include, but are not limited to, single cradle type, double cradle type, diamond type, and monocoque type.
  • the vehicle body frame is composed of a front fork, a frame body, and a swing arm, and receives loads from the front and rear wheels.
  • the power generation engine is, for example, an engine that has a high load region and a low load region.
  • the power generation engine is, for example, a 4-stroke engine.
  • a four-stroke engine has a high load region and a low load region during the four strokes.
  • a four-stroke engine having a high load region and a low load region is, for example, a single cylinder engine. It also has a high load area and a low load area.
  • a four-stroke engine having a high load region and a low load region includes a continuous non-combustion section of 180 degrees or more during one cycle of 720 degrees. In a four-stroke engine, which has a high load region and a low load region, the rotational fluctuation at low rotational speeds is greater than other types of engines.
  • the high load region refers to a region in one combustion cycle of the engine in which the load torque is higher than the average value of the load torque in one combustion cycle.
  • the low load range refers to a range other than the high load range in one combustion cycle. Considering the rotation angle of the crankshaft as a reference, the low load range of the engine is wider than, for example, the high load range.
  • the compression stroke has a high load region and an overlap. For example, in an engine having a high load region and a low load region, the starting position of the crankshaft is set so that the rotational force of the crankshaft at the time of starting the engine obtains a run-up interval for overcoming the compression reaction force in the high load region. can be adjusted.
  • the generator is, for example, a permanent magnet starter generator.
  • the generator may be, for example, a motor that does not use permanent magnets.
  • a permanent magnet generator is, for example, a brushless motor.
  • a brushless motor is a motor that does not have a commutator.
  • a generator is a motor generator that is driven by a power generation engine to generate power.
  • the generator may function as a starter motor to start the generator engine.
  • a generator is not restricted to this.
  • the permanent magnet generator may be, for example, a brushed DC motor.
  • the brushless motor may be, for example, an outer rotor type or an inner rotor type. Also, the brushless motor may be of the axial gap type instead of the radial gap type.
  • the generator may also be of a type that does not have permanent magnets in the rotor, for example.
  • a support mechanism is, for example, a combination of a link mechanism and an elastic member.
  • the support mechanism may be, for example, either a link mechanism or an elastic member.
  • the elastic member is, for example, a rubber bush.
  • the elastic member may be damper rubber, for example.
  • the elastic member is a member having elasticity.
  • the elastic member includes, for example, a cushioning member, a damping member, a vibration isolating member, and the like.
  • the support mechanism is a connection part or a combination of these connection parts for supporting the power generation engine on the vehicle body frame.
  • the support mechanism supports the power generating engine on the vehicle body frame while allowing the power generating engine to vibrate.
  • a connection component that supports the power generation engine on the vehicle body frame while allowing vibration of the power generation engine is, for example, an elastic member that connects the power generation engine and the frame.
  • a combination of connection parts for supporting the power generation engine on the vehicle body frame while allowing vibration of the power generation engine is, for example, a combination of a link mechanism and an elastic member.
  • the elastic member is, for example, a rubber bush.
  • the elastic member may be, for example, an inner/outer sleeve bush, a currant bush, or a damper rubber.
  • the elastic member is a member having elasticity.
  • the elastic member includes, for example, a cushioning member, a damping member, a vibration isolating member, and the like.
  • a link mechanism is, for example, a combination of a link plate and a rotation support.
  • the rotation support is, for example, a bearing support made up of bearings. Instead of the bearing, the rotation support may be supported by an elastic body configured to allow the link mechanism to rotate, for example.
  • an object of the present invention is to provide a series hybrid straddle-type vehicle capable of efficiently suppressing transmission of vibration generated in the power generation engine to the frame.
  • FIG. 4C is an enlarged rear view showing an engine drive power supply unit of the straddle-type vehicle, and FIG.
  • FIG. 4 is an enlarged top view showing an engine drive power supply unit of the straddle-type vehicle;
  • (a) is an enlarged left side view showing an engine drive power supply unit of a series hybrid straddle-type vehicle according to a fourth embodiment of the present invention;
  • (b) to (d) are (a); 2 is an enlarged left side view of a link portion of a support mechanism of an engine drive power supply unit of a series hybrid saddle type vehicle;
  • FIG. 1 is a diagram showing the configuration of a series hybrid straddle-type vehicle 1 according to a first embodiment of the present invention.
  • the series hybrid saddle-ride type vehicle is also simply referred to as a saddle-ride type vehicle.
  • FIG. 1(a) is a left side view showing the configuration of a straddle-type vehicle 1 according to the first embodiment of the invention
  • FIG. 1(b) is a front view of the straddle-type vehicle 1 of FIG. 3 is a left side view showing an enlarged configuration of the engine drive power supply unit 20.
  • F indicates the front direction of the straddle-type vehicle 1 .
  • B indicates the rearward direction of the straddle-type vehicle 1 .
  • FB indicates the front-rear direction of the straddle-type vehicle 1 .
  • U indicates the upward direction in the straddle-type vehicle 1 .
  • D indicates the downward direction in the straddle-type vehicle 1 .
  • UD indicates the vertical direction of the straddle-type vehicle 1 .
  • L indicates the left direction in the straddle-type vehicle 1 .
  • R indicates the right direction in the straddle-type vehicle 1 .
  • LR indicates the left-right direction of the straddle-type vehicle 1 .
  • LR is also the width direction of the straddle-type vehicle 1 . That is, the vehicle width direction LR of the straddle-type vehicle 1 includes both the rightward direction R and the leftward direction L of the straddle-type vehicle 1 .
  • the engine drive power supply unit 20 has a power generation engine 21 and a generator 25 .
  • the power generation engine 21 has one or more cylinders 211 and a two-axis primary balancer 212 .
  • the biaxial primary balancer 212 suppresses vibration due to the primary inertial force and the primary inertial couple.
  • the generator 25 is attached to the power generation engine 21 .
  • the generator 25 is driven by the rotation of the crankshaft 213 of the power generation engine 21 to generate power, and supplies the generated power to the drive motor 16 with or without the power storage device 15 .
  • the engine drive power supply unit 20 is configured to be capable of outputting power generated by the generator 25 and not to transmit power output from the power generation engine 21 to the driving wheels 17 .
  • the support mechanism 30 is attached to the vehicle body frame 10 so as to support the engine driving power supply unit 20 in a manner that allows translational vibration in the cylinder direction due to residual secondary inertial force and suppresses rotational vibration around the crankshaft 213 .
  • the translational vibration in the cylinder direction due to the residual secondary inertial force is caused in the direction of the crank axis S by the secondary inertial force remaining in the power generation engine 21 due to the suppression of the primary inertial force and the primary inertial couple by the two-axis primary balancer 212. As you can see, it is a translational vibration generated in the direction of the cylinder axis T of the power generation engine 21 .
  • the rotational vibration around the crankshaft 213 is rotational vibration about a line parallel to the crank axis S. As shown in FIG.
  • the vibration X1 due to the primary inertial force shown in FIG. 1(b) is a vibration that occurs with the reciprocating motion of the piston 214 of the power generation engine 21, and is a vibration that occurs in synchronization with the rotation of the crankshaft 213 of the power generation engine 21. .
  • the vibration X1 due to the primary inertial force mainly occurs in the direction of the cylinder axis T of the cylinder 211 .
  • the vibration X2 due to the primary inertia couple is vibration due to the rotational force around the crankshaft 213 of the power generation engine 21 .
  • the biaxial primary balancer 212 is a balancer having two balancer shafts 213-1 and 213-2 parallel to the crankshaft 213 that rotate in opposite directions in synchronism with the rotation of the crankshaft 213 to generate electricity by primary inertial force.
  • Vibration X1 of the power generation engine 21 and vibration X2 of the power generation engine 21 due to the primary inertia couple are suppressed.
  • the secondary inertial force is an inertial force that occurs at twice the frequency of the primary inertial force, and occurs in the cylinder axis T direction.
  • the vibration Y1 due to the secondary inertia force has a smaller amplitude than the vibration X1 due to the primary inertia force.
  • the support mechanism Being configured to suppress rotational vibration around the crankshaft 213 while allowing translational vibration in the cylinder direction due to the residual secondary inertia force means that the support mechanism is configured to move in the amplitude and vibration direction of the vibration Y1 due to the residual secondary inertia force. 30 movable distances and directions.
  • the generating engine 21 of the engine drive power supply unit 20 is provided with a two-shaft primary balancer 212 that suppresses vibrations caused by the primary inertial force and the primary inertial couple.
  • the support mechanism 30 that suspends the engine-driving power supply unit 20 supports the engine-driving power supply unit 20 in such a manner as to suppress rotational vibration around the crankshaft 213 while allowing translational vibration in the cylinder direction due to residual secondary inertial force. It is attached to the body frame 10 so that it does.
  • the engine driving power supply unit 20 of this embodiment suppresses the primary inertial force and the primary inertial couple generated in the power generation engine 21 by the biaxial primary balancer 212 provided in the power generation engine 21 .
  • the vibration due to the secondary inertia force remains in the power generation engine, it is possible to suppress the transmission of the vibration due to the residual secondary inertia force to the vehicle body frame 10 by the support mechanism 30 .
  • the vibration generated from the power generation engine 21 of the engine-driven power supply unit 20 can be reduced, and the support mechanism can also specialize in suppressing the vibration due to the remaining secondary inertial force.
  • the series hybrid straddle-type vehicle 1 it is possible to efficiently suppress or prevent transmission of vibration of the power generation engine 21 to the vehicle body frame 10 while suppressing or preventing an increase in size and complication of the structure.
  • FIG. 2(a) is an enlarged left side view showing an engine drive power supply unit 20 of a straddle-type vehicle 2 according to a second embodiment of the present invention
  • FIG. 2(b) is a left side view of FIG. ) is an enlarged rear view of the engine drive power supply unit 20 of the straddle-type vehicle 2 shown in FIG. It is a left side view showing.
  • the straddle-type vehicle 2 is configured as follows.
  • the same reference numerals as in the straddle-type vehicle 1 shown in FIG. 1 are given to the same configurations as in the first embodiment.
  • the support mechanisms 30 form a plurality of pairs. More specifically, the support mechanisms 30 are provided on the left and right sides of the power generation engine 21 at the same positions when viewed in the left-right direction, and are regarded as one pair (see FIGS. 2(a) and 2(b)). In this embodiment, these pairs are provided at a plurality of locations on the power generation engine 21 . Further, as shown in FIG. 2(c), the support mechanism 30 is composed of a link portion 31 which is a combination of a link mechanism and an elastic body.
  • the link portion 31 is formed by a link plate 312 extending in a direction perpendicular to the direction of the crank axis S (lateral direction LR) and a bearing support portion 313 having a rotation axis parallel to the direction of the crank axis S.
  • a mechanism 311 is constructed.
  • the link mechanism 311 is configured such that the link plate 312 can rotate in a direction perpendicular to the crank axis S direction with respect to the vehicle body frame 10 .
  • the link mechanism 311 is supported by the vehicle body frame 10 by means of elastic bodies 314 and supported by the power generation engine 21 by means of elastic bodies 315 .
  • the elastic body 314 suppresses the link plate 312 from rotating greatly, and the elastic body 315 supports the power generation engine 21 so as to vibrate.
  • the support mechanism 30 by configuring the support mechanism 30 as described above, when viewed in the direction of the crank axis S, the support mechanism 30 vibrates due to the secondary inertia force generated in the direction of the cylinder axis T of the engine drive power supply unit 20. can be structured to allow Further, the support mechanism 30 can be configured to suppress rotational vibration around the crankshaft 213 . Therefore, in the straddle-type vehicle 2 of the present embodiment, it is possible to efficiently suppress transmission of vibration generated in the power generation engine 21 to the vehicle body frame 10 .
  • FIG. 3(a) is an enlarged left side view showing an engine drive power supply unit 20 of a straddle-type vehicle 3 according to a third embodiment of the present invention
  • FIG. 3(b) is a left side view of FIG. ) is an enlarged top view showing an engine drive power supply unit 20 of the saddle type vehicle 3.
  • the straddle-type vehicle 3 is configured as follows.
  • the same reference numerals as in the straddle-type vehicle 1 shown in FIG. 1 are given to the same configurations as in the first embodiment.
  • the generator 25 of the straddle-type vehicle 3 has at least a portion that overlaps the power generation engine 21 when viewed in the vehicle width direction LR.
  • the generator 25 is displaced from one or more cylinders 211 of the generator engine 21 in the vehicle width direction LR.
  • the link portions 31 constitute a plurality of pairs, each of which is arranged on the left and right. Each of the link portions 31 has a play q1 that allows displacement in a direction Q that intersects the direction P of movement of the link portion 31 .
  • the deviation of the distance (q21, q22) from each of the paired link portions 31 to the center (cylinder axis T) of the cylinder 211 in the vehicle width direction LR is 31 to the center of gravity G of the engine drive power supply unit 20, and the center C in the vehicle width direction LR of the straddle-type vehicle 1 from each of the paired link portions 31. greater than the deviation of the distance (q41, q42) to
  • the deviation q2 of the distance from each of the paired link portions 31 to the center of the cylinder 211 in the vehicle width direction LR is greater than the distance from each of the paired link portions 31 to the engine. It is larger than the deviation q3 of the distance to the center of gravity G of the drive power supply unit 20 . Further, according to the straddle-type vehicle 3, the deviation q2 of the distance from each of the paired link portions 31 to the center of the cylinder 211 in the vehicle width direction LR is the same as that of the straddle-type vehicle 3. It is larger than the deviation q4 of the distance to the center C of the vehicle in the vehicle width direction LR.
  • an inertial force H acts on the engine-driven power supply unit 20 so that the straddle-type vehicle 3 rotates in the horizontal direction about the center of gravity G of the engine-driven power supply unit. It's easy to do.
  • the link portion 31, which is a link with play generates an inertial force H from the power generation engine 21 that causes the vehicle body of the series hybrid straddle-type vehicle 3 to rotate in the horizontal direction. Transmission to the vehicle body frame 10 can be suppressed.
  • FIG. 4(a) is an enlarged left side view showing an engine drive power supply unit 20 of a straddle-type vehicle 4 according to a fourth embodiment of the present invention
  • FIGS. Fig. 5 is a left side view showing an enlarged view of link portions 32L to 34L of the support mechanism 30 of the engine drive power supply unit 20 of the straddle-type vehicle 4 of Fig. 4(a);
  • the straddle-type vehicle 4 is configured as follows.
  • the same reference numerals as in the straddle-type vehicle 1 shown in FIG. 1 are given to the same configurations as in the first embodiment.
  • the link portions of the straddle-type vehicle 4 shown in FIG. 4(a) include a first pair of link portions 32L and 32R and a second pair of link portions 33L and 33R. and a third pair of link portions 34L and 34R.
  • the first pair of link portions 32L and 32R and the second pair of link portions 33L and 33R operate in a direction to allow translational vibration (vibration Y1) in the cylinder direction due to residual secondary inertia force,
  • the pair of link portions 34L and 34R suppress rotational vibration (vibration X2) around the crankshaft 213. As shown in FIG.
  • the link portion 32 is formed by a link plate 322 extending in a direction perpendicular to the direction of the crank axis S (lateral direction LR) and a bearing support portion 323 having a rotation axis parallel to the direction of the crank axis S.
  • a mechanism 321 is constructed.
  • the link mechanism 321 is configured such that the link plate 322 can rotate in a direction perpendicular to the crank axis S direction with respect to the vehicle body frame 10 .
  • the link mechanism 321 is supported by the vehicle body frame 10 at the elastic body support portion 324 by the elastic body 325 , and is supported by the power generation engine 21 at the vehicle body support portion 326 by the elastic body 327 .
  • the elastic body 325 suppresses the link plate 322 from rotating greatly, and the elastic body 327 supports the power generation engine 21 so as to vibrate.
  • the link portion 33 includes a link plate 332 extending in a direction perpendicular to the direction of the crank axis S (lateral direction LR) and a bearing support portion 333 having a rotation shaft parallel to the direction of the crank axis S to form a link mechanism 331. do.
  • the link mechanism 331 is configured so that the link plate 332 can rotate in a direction perpendicular to the crank axis S direction with respect to the vehicle body frame 10 .
  • the link mechanism 331 is supported by the vehicle body frame 10 at the elastic body support portion 334 by the elastic body 335 , and is supported by the power generation engine 21 at the vehicle body support portion 336 by the elastic body 337 .
  • the elastic body 335 suppresses the link plate 332 from rotating greatly, and the elastic body 337 supports the power generating engine 21 so as to vibrate.
  • the link portion 34 comprises a link mechanism 341 with a link plate 342 extending in a direction perpendicular to the crank axis S direction (lateral direction LR) and a bearing support portion 343 having a rotation shaft parallel to the crank axis S direction. do.
  • the link mechanism 341 is configured so that the link plate 342 can rotate in a direction perpendicular to the crank axis S direction with respect to the vehicle body frame 10 .
  • the link mechanism 341 is supported by the power generation engine 21 by means of elastic bodies 347 at the vehicle body support portion 346 .
  • the elastic body 347 supports the power generation engine 21 so as to vibrate.
  • the link portions are composed of a first pair of link portions 32, a second pair of link portions 33, and a third pair of link portions 34.
  • the first pair of link portions 32 rotate around the bearing support portion 323, and the second pair of link portions 33 rotate around the bearing support portion 333, so that the power generation engine 21 is translated in the cylinder direction. It operates in a direction that allows vibration and in a direction that allows rotational vibration around the crankshaft.
  • the link portion 34 which is the third pair, suppresses rotational vibration of the power generating engine 21 around the crankshaft.
  • the power generation engine of the first to fourth embodiments is, for example, a single-cylinder engine, a two-cylinder engine other than a parallel two-cylinder engine with combustion timing crank angles of 90 degrees and 270 degrees, a three-cylinder engine, or a cross It is a four-cylinder engine other than a plane type parallel four-cylinder engine.
  • the power generation engine described above, other than the single-cylinder engine may be a parallel engine or a V-type engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Provided is a series-hybrid type straddled vehicle that makes it possible to efficiently suppress or prevent transmission of the vibration of an engine for electric power generation to a frame while suppressing or preventing an increase in size and complication of the structure. The series-hybrid type straddled vehicle according to the present invention comprises: an engine drive power supply unit which has a biaxial primary balancer for suppressing vibration due to a primary inertia force and a primary inertia couple, an engine for electric power generation, and a generator and which is capable of outputting electric power generated by the generator; and a support mechanism mounted to a vehicle body frame so as to support the engine drive power supply unit in such a manner that suppresses rotational vibration about a crankshaft while allowing cylinder-direction translational vibration due to a residual secondary inertia force. The cylinder-direction translational vibration due to the residual secondary inertia force is translational vibration generated in the cylinder axis direction of the engine for electric power generation as viewed from the crankshaft axis direction by a secondary inertia force remaining in the engine for electric power generation caused by the primary inertia force and the primary inertia couple suppressed by the biaxial primary balancer. The rotational vibration about the crankshaft is rotational vibration about a line parallel to the crankshaft axis.

Description

シリーズハイブリッド式ストラドルドビークルSeries hybrid straddled vehicle
 本発明は、シリーズハイブリッド式鞍乗型車両に関する。 The present invention relates to a series hybrid straddle-type vehicle.
 発電用エンジンにより発電機を駆動して電力を出力するエンジン駆動電力供給ユニットがある(例えば特許文献1)。特許文献1に記載のエンジン駆動電力供給ユニットは、レンジエクステンダEVに搭載される電力供給ユニットである。発電用エンジンにはバランサが設けられる。リンク機構でエンジン駆動電力供給ユニットが懸架される。これにより、エンジン駆動電力供給ユニットの振動が、車両のフレームに伝達することが抑制されている。 There is an engine-driven power supply unit that outputs electric power by driving a generator with a power generation engine (for example, Patent Document 1). The engine-driven power supply unit described in Patent Document 1 is a power supply unit mounted on a range extender EV. A power generation engine is provided with a balancer. The link mechanism suspends the engine drive power supply unit. This suppresses transmission of vibrations of the engine drive power supply unit to the frame of the vehicle.
国際公開第2012/069201号明細書International Publication No. 2012/069201
 発電用エンジンが駆動されることにより、発電用エンジンには、様々な振動が発生する。シリーズハイブリッド式鞍乗型車両には、このような発電用エンジンを含むエンジン駆動電力供給ユニットが搭載される。上述のレンジエクステンダEVは、シリーズハイブリッド鞍乗型車両の一例である。シリーズハイブリッド式鞍乗型車両については、振動が抑制されることが強く求められる傾向がある。加えて、シリーズハイブリッド式鞍乗型車両は、乗員の体重移動により姿勢制御が行われるという車両特性を有し、日常の足としての用途やツーリング等のレジャー用途のように幅広い用途で用いられる。そのため、シリーズハイブリッド式鞍乗型車両にとっては軽快性及び簡便性が強く求められる。従って、シリーズハイブリッド式鞍乗型車両では、大型化や構造の複雑化を抑制又は防止しつつ、フレームへの発電用エンジンの振動の伝達を効率的に抑制又は防止できることが好ましい。
 本発明の目的は、大型化や構造の複雑化を抑制又は防止しつつ、フレームへの発電用エンジンの振動の伝達を効率的に抑制又は防止できるシリーズハイブリッド式鞍乗型車両を提供することである。
Various vibrations occur in the power generation engine when the power generation engine is driven. A series hybrid straddle-type vehicle is equipped with an engine drive power supply unit including such a power generation engine. The range extender EV described above is an example of a series hybrid straddle-type vehicle. For series hybrid saddle-riding vehicles, there is a strong tendency to demand suppression of vibrations. In addition, the series hybrid straddle-type vehicle has a vehicle characteristic that attitude control is performed by shifting the weight of the occupant, and is used in a wide range of applications such as daily foot use and leisure use such as touring. Therefore, the series hybrid straddle-type vehicle is strongly required to be light and convenient. Therefore, in a series hybrid straddle-type vehicle, it is preferable to be able to efficiently suppress or prevent transmission of vibration of the power generation engine to the frame while suppressing or preventing an increase in size and complication of the structure.
An object of the present invention is to provide a series hybrid saddle-riding vehicle that can efficiently suppress or prevent transmission of vibrations of a power generating engine to the frame while suppressing or preventing an increase in size and complication of the structure. be.
 本発明者らは、エンジン駆動電力供給ユニットの発電用エンジンにおいて発生する振動を効率的に低減することについて検討した。特許文献1に記載のエンジン駆動電力供給ユニットは、発電用エンジンにバランサを設けて発電用エンジンの振動を軽減する。また、フレームからエンジン駆動電力供給ユニットをリンク機構により懸架して、発電用エンジンに発生する振動が、車両のフレームに伝達することを抑制する。
 ここで、特許文献1に記載の発電用エンジンのバランサは、一軸一次バランサである。この場合、特許文献1に記載の一次慣性力による振動を一軸一次バランサで抑制し、リンク機構は、一次慣性偶力等の振動がフレームに伝達するのを抑制している。しかし、発電用エンジンにおいて発生する振動は、一次慣性力及び一次慣性偶力による振動の他に、二次慣性力による振動も発生する。従って、特許文献1に記載のエンジン駆動電力供給ユニットは、二次慣性力による振動が発生し、発電用エンジンの振動が複雑になる可能性があり、単純なエンジン駆動電力供給ユニットの支持機構だけではフレームに振動が伝達するのを抑制しきれない場合がある。
The present inventors studied how to efficiently reduce the vibration generated in the power generation engine of the engine-driven power supply unit. In the engine-driven power supply unit disclosed in Patent Document 1, the power generation engine is provided with a balancer to reduce the vibration of the power generation engine. Further, the engine drive power supply unit is suspended from the frame by a link mechanism to suppress transmission of vibration generated in the power generation engine to the vehicle frame.
Here, the balancer of the power generation engine described in Patent Document 1 is a uniaxial primary balancer. In this case, the uniaxial primary balancer suppresses the vibration due to the primary inertial force described in Patent Document 1, and the link mechanism suppresses the transmission of the vibration such as the primary inertial couple to the frame. However, in addition to the primary inertial force and the primary inertial couple, the vibration generated in the power generation engine also occurs due to the secondary inertial force. Therefore, the engine-driven power supply unit described in Patent Document 1 may generate vibrations due to the secondary inertial force, which may complicate the vibrations of the power generation engine. In some cases, it may not be possible to suppress the transmission of vibration to the frame.
 本発明者らは、発電用エンジンにおいて発生する二次慣性力による振動にも考慮して、エンジンに発生する振動がフレームに伝達することを効率的に抑制することについて検討した。この検討の中で、本発明者は、一次慣性力及び一次慣性偶力による振動をバランサにより抑制し、その結果、残存する二次慣性力による振動がフレームに伝達することを支持機構により抑制することにより、大型化や構造の複雑化を抑制又は防止しつつ、二次慣性力による振動も抑制が可能になるという知見を得た。
 詳細には、鞍乗型車両のエンジン駆動電力供給ユニットの発電用エンジンに一次慣性力及び一次慣性偶力による振動を抑制する二軸一次バランサを設ける。また、エンジン駆動電力供給ユニットを懸架する支持機構を、残存二次慣性力によるシリンダ方向並進振動を許容しつつクランク軸周り回転振動を抑制する態様で、エンジン駆動電力供給ユニットを支持するように車体フレームに取り付ける。
 これにより、発電用エンジンに設けられたバランサにより発電用エンジンにおいて発生する一次慣性力及び一次慣性偶力を抑制する。この時、発電用エンジンには二次慣性力による振動が残存するため、残存二次慣性力による振動が支持機構によりフレームに伝達することを抑制することが可能となる。そうすると、エンジン駆動電力供給ユニットの発電用エンジンから生じる振動を低減することができ、支持機構も、残りの二次慣性力による振動の抑制に特化することができる。これにより、シリーズハイブリッド式鞍乗型車両において、大型化や構造の複雑化を抑制又は防止しつつ、発電用エンジンに発生する振動が、フレームに伝達することを効率的に抑制することができる。
The inventors of the present invention also considered the vibration caused by the secondary inertial force generated in the power generation engine, and studied how to efficiently suppress the transmission of the vibration generated in the engine to the frame. In this study, the present inventors have found that the balancer suppresses the vibration caused by the primary inertial force and the primary inertial couple, and as a result, the vibration caused by the remaining secondary inertial force is suppressed from being transmitted to the frame by the support mechanism. As a result, it is possible to suppress or prevent the increase in size and the complication of the structure, and it is possible to suppress the vibration due to the secondary inertial force.
Specifically, a two-shaft primary balancer for suppressing vibrations due to a primary inertial force and a primary inertial couple is provided in a power generating engine of an engine-driven power supply unit of a straddle-type vehicle. Further, the support mechanism for suspending the engine-driving power supply unit is configured to support the engine-driving power supply unit in such a manner as to suppress rotational vibration around the crankshaft while allowing translational vibration in the cylinder direction due to residual secondary inertia force. Attach to frame.
As a result, the balancer provided in the power generation engine suppresses the primary inertial force and the primary inertia couple generated in the power generation engine. At this time, since vibration due to the secondary inertial force remains in the power generation engine, it is possible to suppress transmission of the vibration due to the residual secondary inertial force to the frame by the support mechanism. Then, the vibration generated from the power generation engine of the engine-driven power supply unit can be reduced, and the support mechanism can also specialize in suppressing the vibration due to the remaining secondary inertial force. As a result, in the series hybrid straddle-type vehicle, it is possible to suppress or prevent an increase in size and complication of the structure while efficiently suppressing transmission of vibration generated in the power generation engine to the frame.
 以上の目的を達成するために、本発明の一つの観点によれば、シリーズハイブリッド式鞍乗型車両は、次の構成を備える。
 (1) シリーズハイブリッド式鞍乗型車両であって、
 前記シリーズハイブリッド式鞍乗型車両は、
 車体フレームと、
 駆動モータと、
 前記車体フレームに回転可能に支持され、前記駆動モータにより駆動される駆動輪と、
 一つ又は複数のシリンダ、並びに一次慣性力及び一次慣性偶力による振動を抑制する二軸一次バランサを有する発電用エンジンと、前記発電用エンジンに取付けられ、前記発電用エンジンのクランク軸の回転によって駆動され発電し、発電された電力を、蓄電装置を介して又は介さずに前記駆動モータに供給する発電機とを有し、前記発電機により生成された電力を出力可能であり、且つ前記発電用エンジンから出力される動力を前記駆動輪へ伝達しないように構成されているエンジン駆動電力供給ユニットと、
 残存二次慣性力によるシリンダ方向並進振動を許容しつつクランク軸周り回転振動を抑制する態様で、前記エンジン駆動電力供給ユニットを支持するように前記車体フレームに取り付けられ、前記残存二次慣性力によるシリンダ方向並進振動は、前記二軸一次バランサによって一次慣性力及び一次慣性偶力が抑制されることにより前記発電用エンジンに残存する二次慣性力によって、クランク軸線方向に見て、前記発電用エンジンのシリンダ軸線方向に発生する並進振動であり、前記クランク軸周り回転振動は、クランク軸線と平行な線を中心とする回転振動である、支持機構と
 を備える。
In order to achieve the above objects, according to one aspect of the present invention, a series hybrid straddle-type vehicle has the following configuration.
(1) A series hybrid straddle-type vehicle,
The series hybrid straddle-type vehicle is
body frame and
a drive motor;
a drive wheel rotatably supported by the vehicle body frame and driven by the drive motor;
a power generation engine having one or more cylinders and a biaxial primary balancer that suppresses vibrations caused by a primary inertial force and a primary inertial couple; a generator that is driven to generate power and supplies the generated power to the drive motor via or without a power storage device, the power generated by the generator can be output, and the power generation an engine drive power supply unit configured not to transmit the power output from the engine to the drive wheels;
It is attached to the vehicle body frame so as to support the engine drive power supply unit in a manner that suppresses rotational vibration around the crankshaft while allowing translational vibration in the cylinder direction due to the residual secondary inertia force. The translational vibration in the cylinder direction is caused by the secondary inertia force remaining in the power generation engine due to the suppression of the primary inertia force and the primary inertia couple by the two-axis primary balancer, and the power generation engine when viewed in the crank axis direction. and the rotational vibration around the crankshaft is rotational vibration about a line parallel to the crankshaft.
 (1)のシリーズハイブリッド式鞍乗型車両は、車体フレームと、エンジン駆動電力供給ユニットと、支持機構とを備える。
 エンジン駆動電力供給ユニットは、発電用エンジンと、発電機とを有する。発電用エンジンは、一つ又は複数のシリンダと、二軸一次バランサとを有する。二軸一次バランサは、一次慣性力及び一次慣性偶力による振動を抑制する。発電機は、発電用エンジンに取付けられる。発電機は、発電用エンジンのクランク軸の回転によって駆動され発電し、発電された電力を、蓄電装置を介して又は介さずに前記駆動モータに供給する。エンジン駆動電力供給ユニットは、発電機により生成された電力を出力可能であり、且つ発電用エンジンから出力される動力を駆動輪へ伝達しないように構成されている。
 支持機構は、残存二次慣性力によるシリンダ方向並進振動を許容しつつクランク軸周り回転振動を抑制する態様で、エンジン駆動電力供給ユニットを支持するように車体フレームに取り付けられる。残存二次慣性力によるシリンダ方向並進振動は、二軸一次バランサによって一次慣性力及び一次慣性偶力が抑制されることにより発電用エンジンに残存する二次慣性力によって、クランク軸線方向に見て、発電用エンジンのシリンダ軸線方向に発生する並進振動である。クランク軸周り回転振動は、クランク軸線と平行な線を中心とする回転振動である。
The series hybrid straddle-type vehicle of (1) includes a vehicle body frame, an engine drive power supply unit, and a support mechanism.
The engine-driven power supply unit has a power generation engine and a generator. A power generation engine has one or more cylinders and a two-axis primary balancer. The biaxial primary balancer suppresses vibration due to the primary inertial force and the primary inertial couple. The generator is attached to the generator engine. The generator is driven by the rotation of the crankshaft of the power generation engine to generate power, and supplies the generated power to the drive motor with or without the power storage device. The engine drive power supply unit is configured to be capable of outputting power generated by the generator and not to transmit the power output from the power generation engine to the driving wheels.
The support mechanism is attached to the vehicle body frame so as to support the engine driving power supply unit in such a manner as to suppress rotational vibration around the crankshaft while allowing translational vibration in the cylinder direction due to residual secondary inertial force. The translational vibration in the cylinder direction due to the remaining secondary inertia force is caused by the secondary inertia force remaining in the power generation engine due to the suppression of the primary inertia force and the primary inertia couple by the two-axis primary balancer, and when viewed in the crank axis direction, It is a translational vibration that occurs in the cylinder axis direction of the power generation engine. Rotational vibration about the crankshaft is rotational vibration about a line parallel to the crankshaft.
 一次慣性力による振動は、発電用エンジンのピストンの上下運動に伴って生じる振動で、エンジンのクランク軸の回転と同期して生じる振動である。一次慣性力による振動は、主にシリンダ軸線方向に振動が生じる。一次慣性偶力による振動は、発電用エンジンのクランク軸周りの回転力による振動である。二軸一次バランサは、クランク軸の回転と同期してそれぞれ反対方向に回転する、クランク軸に平行な二つのバランサシャフトを有する。二軸一次バランサにより、一次慣性力及び一次慣性偶力による発電用エンジンの振動を抑制できる。二次慣性力は、一次慣性力の倍の周波数で生じる慣性力で、シリンダ軸線方向に生じる。残存二次慣性力によるシリンダ方向並進振動を許容しつつクランク軸周り回転振動を抑制するように構成されるとは、残存二次慣性力による振動の振幅及び振動方向に動くように支持機構の可動距離及び方向を設定することである。  The vibration due to the primary inertial force is the vibration that occurs with the vertical movement of the piston of the power generation engine, and is the vibration that occurs in synchronization with the rotation of the crankshaft of the engine. Vibration due to the primary inertial force mainly occurs in the cylinder axial direction. Vibration due to the primary inertia couple is vibration due to rotational force around the crankshaft of the power generating engine. A dual axis primary balancer has two balancer shafts parallel to the crankshaft that rotate in opposite directions synchronously with the rotation of the crankshaft. The biaxial primary balancer can suppress the vibration of the power generation engine due to the primary inertial force and the primary inertial couple. The secondary inertial force is an inertial force that occurs at twice the frequency of the primary inertial force and occurs in the cylinder axial direction. Being configured to suppress rotational vibration around the crankshaft while allowing translational vibration in the cylinder direction due to the residual secondary inertia force means that the support mechanism is movable so as to move in the amplitude and vibration direction of the vibration due to the residual secondary inertia force. setting the distance and direction.
 (1)のシリーズハイブリッド式鞍乗型車両では、エンジン駆動電力供給ユニットの発電用エンジンに一次慣性力及び一次慣性偶力による振動を抑制する二軸一次バランサを設ける。また、エンジン駆動電力供給ユニットを懸架する支持機構を、残存二次慣性力によるシリンダ方向並進振動を許容しつつクランク軸周り回転振動を抑制する態様で、エンジン駆動電力供給ユニットを支持するように車体フレームに取り付ける。 In the series hybrid straddle-type vehicle of (1), the generating engine of the engine drive power supply unit is provided with a two-shaft primary balancer that suppresses vibrations caused by the primary inertial force and the primary inertial couple. Further, the support mechanism for suspending the engine-driving power supply unit is configured to support the engine-driving power supply unit in such a manner as to suppress rotational vibration around the crankshaft while allowing translational vibration in the cylinder direction due to residual secondary inertia force. Attach to frame.
 これにより、発電用エンジンに設けられた二軸一次バランサにより発電用エンジンにおいて発生する一次慣性力及び一次慣性偶力を抑制する。この時、発電用エンジンには二次慣性力による振動が残存するため、残存二次慣性力による振動が支持機構により車体フレームに伝達することを抑制することが可能となる。そうすると、エンジン駆動電力供給ユニットの発電用エンジンから生じる振動を低減することができ、支持機構も、残りの二次慣性力による振動の抑制に特化することができる。これにより、シリーズハイブリッド式鞍乗型車両において、大型化や構造の複雑化を抑制又は防止しつつ、フレームへの発電用エンジンの振動の伝達を効率的に抑制又は防止できる。 As a result, the primary inertial force and the primary inertial couple generated in the power generation engine are suppressed by the two-axis primary balancer provided in the power generation engine. At this time, since vibration due to the secondary inertial force remains in the power generation engine, it is possible to suppress transmission of the vibration due to the residual secondary inertial force to the vehicle body frame by the support mechanism. Then, the vibration generated from the power generation engine of the engine-driven power supply unit can be reduced, and the support mechanism can also specialize in suppressing the vibration due to the remaining secondary inertial force. As a result, in the series hybrid straddle-type vehicle, it is possible to efficiently suppress or prevent transmission of the vibration of the power generation engine to the frame while suppressing or preventing an increase in size and structural complication.
 本発明の一つの観点によれば、シリーズハイブリッド式鞍乗型車両は、以下の構成を採用できる。
 (2) (1)のシリーズハイブリッド式鞍乗型車両であって、
 前記支持機構は、リンク機構と弾性体との組み合わせである複数の対をなすリンク部で構成される。
According to one aspect of the present invention, a series hybrid straddle-type vehicle can employ the following configuration.
(2) The series hybrid straddle-type vehicle of (1),
The support mechanism is composed of a plurality of pairs of link portions that are a combination of a link mechanism and an elastic body.
 (2)のシリーズハイブリッド式鞍乗型車両では、支持機構が、リンク機構と弾性体との組み合わせである複数の対をなすリンク部で構成される。これにより、(2)のシリーズハイブリッド式鞍乗型車両では、クランク軸線方向に見て、支持機構を、エンジン駆動電力供給ユニットのシリンダ軸線方向に発生する二次慣性力による振動を許容する構造にすることができる。また、支持機構を、重心を通り、クランク軸の軸線と平行な線を中心とする回転方向の振動を抑制する構造にすることができる。従って、(2)のシリーズハイブリッド式鞍乗型車両では、発電用エンジンに発生する振動が、フレームに伝達することを効率的に抑制することができる。 In the series hybrid straddle-type vehicle of (2), the support mechanism is composed of a plurality of pairs of link portions that are combinations of link mechanisms and elastic bodies. As a result, in the series hybrid straddle-type vehicle of (2), the support mechanism has a structure that allows vibration due to the secondary inertia force generated in the cylinder axis direction of the engine drive power supply unit when viewed in the crank axis direction. can do. In addition, the support mechanism can be configured to suppress vibration in the rotational direction about a line that passes through the center of gravity and is parallel to the axis of the crankshaft. Therefore, in the series hybrid straddle-type vehicle of (2), it is possible to efficiently suppress transmission of vibration generated in the power generation engine to the frame.
 本発明の一つの観点によれば、シリーズハイブリッド式鞍乗型車両は、以下の構成を採用できる。
 (3) (2)のシリーズハイブリッド式鞍乗型車両であって、
 前記発電機は、車幅方向に見て、少なくとも一部が前記発電用エンジンと重なりを有し、前記発電用エンジンの1つ又は複数のシリンダと車幅方向にずれ、
 前記リンク部は、各々が左右に配置された対からなる複数の対を構成し、各々が前記リンク部の動作の方向と交わる方向への変位を許容する遊びを有し、前記リンク部がなす各対について、車幅方向において、対をなす前記リンク部の各々から前記シリンダの中央までの距離の偏差が、対をなすリンク部の各々から前記エンジン駆動電力供給ユニットの重心までの距離の偏差よりも大きく、且つ対をなす前記リンク部の各々から前記シリーズハイブリッド式鞍乗型車両の前記車幅方向における中心までの距離の偏差よりも大きい。
According to one aspect of the present invention, a series hybrid straddle-type vehicle can employ the following configuration.
(3) The series hybrid straddle-type vehicle of (2),
At least a portion of the generator overlaps the power generation engine when viewed in the vehicle width direction, and the power generation engine is offset in the vehicle width direction from one or more cylinders of the power generation engine,
The link portions constitute a plurality of pairs, each of which is arranged on the left and right, each having a play that allows displacement in a direction intersecting the direction of movement of the link portion, and the link portion For each pair, in the vehicle width direction, the deviation of the distance from each of the paired link portions to the center of the cylinder is the deviation of the distance from each of the paired link portions to the center of gravity of the engine driving power supply unit. and greater than the deviation of the distance from each of the paired link portions to the center of the series hybrid straddle-type vehicle in the vehicle width direction.
 (3)のシリーズハイブリッド式鞍乗型車両によれば、車幅方向において、対をなすリンク部の各々からシリンダの中央までの距離の偏差が、対をなすリンク部の各々からエンジン駆動電力供給ユニットの重心までの距離の偏差よりも大きい。また、(3)のシリーズハイブリッド式鞍乗型車両は、車幅方向において、対をなすリンク部の各々からシリンダの中央までの距離の偏差が、対をなすリンク部の各々からシリーズハイブリッド式鞍乗型車両の車幅方向における中心までの距離の偏差よりも大きい。
 従って、(3)のシリーズハイブリッド式鞍乗型車両は、エンジン駆動電力供給ユニットに、エンジン駆動電力供給ユニットの重心及び車両中心を中心としてシリーズハイブリッド式鞍乗型車両が水平方向に回転するような慣性力が作用しやすい。しかし、(3)のシリーズハイブリッド式鞍乗型車両は、遊びつきリンク部によって、シリーズハイブリッド式鞍乗型車両の車体が水平方向に回転するような慣性力が発電用エンジンからフレームに伝わることを抑制できる。
According to the series hybrid straddle-type vehicle of (3), the deviation of the distance from each of the paired link portions to the center of the cylinder in the vehicle width direction is determined by the engine drive power supply from each of the paired link portions. Greater than the deviation of the distance to the center of gravity of the unit. Further, in the series hybrid saddle type vehicle of (3), the deviation of the distance from each of the paired link portions to the center of the cylinder in the vehicle width direction is equal to It is larger than the deviation of the distance to the center of the vehicle in the vehicle width direction.
Therefore, in the series hybrid straddle-type vehicle of (3), the engine-driven power supply unit is provided with an engine-driven power supply unit so that the series hybrid straddle-type vehicle rotates in the horizontal direction about the center of gravity of the engine-driven power supply unit and the center of the vehicle. Inertial force acts easily. However, in the series hybrid saddle-ride type vehicle of (3), the inertial force that causes the vehicle body of the series hybrid saddle-ride type vehicle to rotate in the horizontal direction is transmitted from the power generation engine to the frame by the link with play. can be suppressed.
 本発明の一つの観点によれば、シリーズハイブリッド式鞍乗型車両は、以下の構成を採用できる。
 (4) (2)又は(3)のシリーズハイブリッド式鞍乗型車両であって、
 前記リンク部は、各々が左右に配置された対からなる第一の対と、第二の対と、第三の対とから構成され、前記第一の対及び第二の対は、前記残存二次慣性力によるシリンダ方向並進振動を許容する方向に動作し、前記第三の対は、前記クランク軸周り回転振動を抑制する。
According to one aspect of the present invention, a series hybrid straddle-type vehicle can employ the following configuration.
(4) The series hybrid straddle-type vehicle of (2) or (3),
The link portions are composed of a first pair, a second pair, and a third pair, each of which is a pair arranged on the left and right, and the first pair and the second pair are the remaining It operates in a direction to allow translational vibration in the cylinder direction due to secondary inertia force, and the third pair suppresses rotational vibration about the crankshaft.
 (4)のシリーズハイブリッド式鞍乗型車両では、リンク部が、第一の対と、第二の対と、第三の対とから構成される。第一の対及び第二の対は、残存二次慣性力によるシリンダ方向並進振動を許容する方向に動作する。第三の対は、クランク軸周り回転振動を抑制する。これにより、クランク軸線方向に見て、支持機構を、エンジン駆動電力供給ユニットのシリンダ軸線方向に発生する残存二次慣性力による振動を許容し、クランク軸周りの回転方向の振動を抑制する構造にすることができる。従って、(4)のシリーズハイブリッド式鞍乗型車両では、発電用エンジンに発生する振動が、フレームに伝達することを効率的に抑制することができる。 In the series hybrid saddle-riding vehicle of (4), the link portions are composed of a first pair, a second pair, and a third pair. The first pair and the second pair operate in a direction that allows translational vibration in the cylinder direction due to residual secondary inertial force. The third pair suppresses rotational vibrations about the crankshaft. As a result, when viewed in the direction of the crankshaft, the support mechanism has a structure that allows vibration due to the remaining secondary inertia force generated in the cylinder axial direction of the engine drive power supply unit, and suppresses vibration in the rotation direction around the crankshaft. can do. Therefore, in the series hybrid straddle-type vehicle of (4), it is possible to efficiently suppress transmission of vibration generated in the power generation engine to the frame.
 本発明の一つの観点によれば、シリーズハイブリッド式鞍乗型車両は、以下の構成を採用できる。
 (5) (1)から(4)の何れか1つのシリーズハイブリッド式鞍乗型車両であって、
 前記発電用エンジンは、単気筒エンジン、燃焼タイミングのクランク角度が90度及び270度の並列2気筒エンジン以外の2気筒エンジン、3気筒エンジン、又はクロスプレーン型の並列4気筒エンジン以外の4気筒エンジンである。
According to one aspect of the present invention, a series hybrid straddle-type vehicle can employ the following configuration.
(5) A series hybrid straddle-type vehicle according to any one of (1) to (4),
The power generating engine is a single-cylinder engine, a two-cylinder engine other than a parallel two-cylinder engine with combustion timing crank angles of 90 degrees and 270 degrees, a three-cylinder engine, or a four-cylinder engine other than a crossplane type parallel four-cylinder engine. is.
 シリーズハイブリッド式鞍乗型車両において、一次慣性力及び一次慣性偶力による振動をバランサにより抑制し、支持機構により二次慣性力による振動がフレームに伝達することを抑制することにより、(5)のシリーズハイブリッド式鞍乗型車両の発電用エンジンであっても、振動がフレームに伝達することを抑制できる。 In a series hybrid straddle-type vehicle, the balancer suppresses the vibration caused by the primary inertial force and the primary inertial couple, and the support mechanism suppresses the transmission of the vibration caused by the secondary inertial force to the frame. Even in a power generation engine of a series hybrid straddle-type vehicle, transmission of vibration to the frame can be suppressed.
 本明細書にて使用される専門用語は特定の実施例のみを定義する目的であって発明を制限する意図を有しない。本明細書にて使用される用語「及び/又は」は一つの、又は複数の関連した列挙された構成物のあらゆる又は全ての組み合わせを含む。本明細書中で使用される場合、用語「含む、備える(including)」「含む、備える(comprising)」又は「有する(having)」及びその変形の使用は、記載された特徴、工程、操作、要素、成分及び/又はそれらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、及び/又はそれらのグループのうちの1つ又は複数を含むことができる。本明細書中で使用される場合、用語「取り付けられた」、「接続された」、「結合された」及び/又はそれらの等価物は広く使用され、直接的及び間接的な取り付け、接続及び結合の両方を包含する。更に、「接続された」及び「結合された」は、物理的又は機械的な接続又は結合に限定されず、直接的又は間接的な電気的接続又は結合を含むことができる。他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術及び本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的又は過度に形式的な意味で解釈されることはない。本発明の説明においては、多数の技術及び工程が開示されていると理解される。これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、又は、場合によっては全てと共に使用することもできる。従って、明確にするために、この説明は、不要に個々のステップの可能な組み合わせを全て繰り返すことを控える。それにもかかわらず、明細書及び特許請求の範囲は、そのような組み合わせが全て本発明及び請求項の範囲内にあることを理解して読まれるべきである。 The terminology used in this specification is for the purpose of defining specific examples only and is not intended to limit the invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed constructs. As used herein, the use of the terms "including," "comprising," or "having," and variations thereof, refers to the described features, steps, operations, While identifying the presence of elements, components and/or their equivalents, may include one or more of steps, actions, elements, components and/or groups thereof. As used herein, the terms "attached", "connected", "coupled" and/or their equivalents are used broadly to refer to direct and indirect attachment, connection and includes both bindings. Furthermore, "connected" and "coupled" are not limited to physical or mechanical connections or couplings, but can include direct or indirect electrical connections or couplings. Unless defined otherwise, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries are to be construed to have a meaning consistent with their meaning in the context of the relevant art and this disclosure, and are not expressly defined herein. not be interpreted in an idealized or overly formal sense unless explicitly stated. In describing the present invention, it is understood that numerous techniques and processes are disclosed. Each of these has individual benefits, and each can also be used with one or more, or possibly all, of the other disclosed techniques. Thus, for the sake of clarity, this description refrains from unnecessarily repeating all possible combinations of individual steps. Nevertheless, the specification and claims should be read with the understanding that all such combinations are within the scope of the invention and claims.
 本明細書では、新しいエンジン駆動電力供給ユニットについて説明する。以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細を述べる。しかしながら、当業者には、これらの特定の詳細無しに本発明を実施できることが明らかである。本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。 This specification describes a new engine-driven power supply unit. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be obvious to those skilled in the art that the present invention may be practiced without these specific details. The present disclosure should be considered exemplary of the invention and is not intended to limit the invention to the specific embodiments illustrated by the following drawings or description.
 シリーズハイブリッド式鞍乗型車両に関して、鞍乗型車両(straddled vehicle)とは、運転者がサドルに跨って着座する形式のビークルをいう。鞍乗型車両としては、例えば、モペット型、オフロード型、オンロード型の自動二輪車が挙げられる。また、鞍乗型車両としては、自動二輪車に限定されず、例えば、自動三輪車、ATV(All-Terrain Vehicle)等であってもよい。自動三輪車は、2つの前輪と1つの後輪とを備えていてもよく、1つの前輪と2つの後輪とを備えていてもよい。鞍乗型車両の駆動輪は、後輪であってもよく、前輪であってもよい。また、鞍乗型車両の駆動輪は、後輪及び前輪の双方であってもよい。また、鞍乗型車両は、リーン姿勢で旋回可能に構成されていることが好ましい。リーン姿勢で旋回可能に構成された鞍乗型車両は、カーブの中心に傾いた姿勢で旋回するように構成される。これにより、リーン姿勢で旋回可能に構成された鞍乗型車両は、旋回時にビークルに加わる遠心力に対抗する。 Regarding the series hybrid straddled vehicle, a straddled vehicle refers to a vehicle in which the driver sits astride the saddle. Straddle-type vehicles include, for example, moped-type, off-road-type, and on-road-type motorcycles. Moreover, the straddle-type vehicle is not limited to a motorcycle, and may be, for example, a three-wheeled motor vehicle, an ATV (All-Terrain Vehicle), or the like. A motor tricycle may have two front wheels and one rear wheel, or may have one front wheel and two rear wheels. The driving wheels of the straddle-type vehicle may be the rear wheels or the front wheels. Also, the drive wheels of the straddle-type vehicle may be both the rear wheels and the front wheels. Moreover, it is preferable that the straddle-type vehicle is configured to be able to turn in a lean posture. A straddle-type vehicle that is configured to turn in a lean posture is configured to turn in a posture that is inclined toward the center of a curve. As a result, the straddle-type vehicle configured to be able to turn in a lean posture resists the centrifugal force applied to the vehicle during turning.
 車体フレームは、鞍乗型車両の骨格をなし、蓄電装置、エンジン駆動電力供給ユニット及び駆動モータ等の鞍乗型車両の搭載部品等を支持する。車体フレームは、フロントフォークと、フレーム本体と、スイングアームとから構成される。フレーム本体は、例えば、シングルクレードル型、ダブルクレードル型、ダイヤモンド型、及びモノコック型等が挙げられるが、これらに限定されない。車体フレームは、フロントフォークと、フレーム本体と、スイングアームとが一体となって、前輪及び後輪からの荷重を受ける。 The body frame forms the skeleton of the saddle-ride type vehicle and supports mounted parts of the saddle-ride type vehicle such as the power storage device, the engine drive power supply unit, and the drive motor. A body frame is composed of a front fork, a frame body, and a swing arm. Examples of the frame body include, but are not limited to, single cradle type, double cradle type, diamond type, and monocoque type. The vehicle body frame is composed of a front fork, a frame body, and a swing arm, and receives loads from the front and rear wheels.
 発電用エンジンは、例えば、高負荷領域と低負荷領域とを有するエンジンである。発電用エンジンは、例えば、4ストロークエンジンである。4ストロークエンジンは、4ストロークの間に、高負荷領域と低負荷領域とを有する。高負荷領域と低負荷領域とを有する4ストロークエンジンは、例えば、単気筒エンジンである。また、高負荷領域と低負荷領域とを有する。高負荷領域と低負荷領域とを有する4ストロークエンジンは、1サイクル720度の間に180度以上の連続不燃焼区間を含む。
 高負荷領域と低負荷領域とを有する4ストロークエンジンでは、低い回転速度における回転の変動が、他のタイプのエンジンと比べ大きい。高負荷領域とは、エンジンの1燃焼サイクルのうち、負荷トルクが1燃焼サイクルにおける負荷トルクの平均値よりも高い領域をいう。低負荷領域とは、1燃焼サイクルにおける高負荷領域以外の領域をいう。クランク軸の回転角度を基準として見ると、エンジンでの低負荷領域は、例えば、高負荷領域より広い。圧縮行程は、高負荷領域と重なりを有する。
 例えば、高負荷領域と低負荷領域とを有するエンジンにおいて、エンジンの始動時にクランク軸の回転力が高負荷領域の圧縮反力を乗り越えるための助走区間を得るように、クランク軸の始動開始位置を調整することができる。
The power generation engine is, for example, an engine that has a high load region and a low load region. The power generation engine is, for example, a 4-stroke engine. A four-stroke engine has a high load region and a low load region during the four strokes. A four-stroke engine having a high load region and a low load region is, for example, a single cylinder engine. It also has a high load area and a low load area. A four-stroke engine having a high load region and a low load region includes a continuous non-combustion section of 180 degrees or more during one cycle of 720 degrees.
In a four-stroke engine, which has a high load region and a low load region, the rotational fluctuation at low rotational speeds is greater than other types of engines. The high load region refers to a region in one combustion cycle of the engine in which the load torque is higher than the average value of the load torque in one combustion cycle. The low load range refers to a range other than the high load range in one combustion cycle. Considering the rotation angle of the crankshaft as a reference, the low load range of the engine is wider than, for example, the high load range. The compression stroke has a high load region and an overlap.
For example, in an engine having a high load region and a low load region, the starting position of the crankshaft is set so that the rotational force of the crankshaft at the time of starting the engine obtains a run-up interval for overcoming the compression reaction force in the high load region. can be adjusted.
 発電機は、例えば永久磁石式の始動発電機である。発電機は、例えば永久磁石を使用しないモータであってもよい。永久磁石式の発電機は、例えば、ブラシレスモータである。ブラシレスモータは、整流子を有さないモータである。発電機は、発電用エンジンによって駆動され発電するモータジェネレータである。発電機は、発電用エンジンを始動する始動モータとして機能してもよい。発電機は、これに限られない。永久磁石式の発電機は、例えば、ブラシ付き直流モータでもよい。ブラシレスモータは、例えば、アウターロータ型でもよく、また、インナーロータ型でもよい。また、ブラシレスモータは、ラジアルギャップ型でなく、アキシャルギャップ型でもよい。また、発電機は、例えばロータに永久磁石を有さないタイプでもよい。 The generator is, for example, a permanent magnet starter generator. The generator may be, for example, a motor that does not use permanent magnets. A permanent magnet generator is, for example, a brushless motor. A brushless motor is a motor that does not have a commutator. A generator is a motor generator that is driven by a power generation engine to generate power. The generator may function as a starter motor to start the generator engine. A generator is not restricted to this. The permanent magnet generator may be, for example, a brushed DC motor. The brushless motor may be, for example, an outer rotor type or an inner rotor type. Also, the brushless motor may be of the axial gap type instead of the radial gap type. The generator may also be of a type that does not have permanent magnets in the rotor, for example.
 支持機構とは、例えばリンク機構と弾性部材との組み合わせである。支持機構は、例えばリンク機構及び弾性部材の何れかであってもよい。弾性部材は、例えばゴムブッシュである。弾性部材は、例えばダンパーゴムであってもよい。弾性部材は、弾性を有する部材である。弾性部材は、例えば、緩衝部材、制振部材、防振部材等を含む。支持機構は、車体フレームに発電用エンジンに支持するための接続部品又はこれらの接続部品の組み合わせである。支持機構は、発電用エンジンの振動を許容しつつ車体フレームに発電用エンジンを支持する。発電用エンジンの振動を許容しつつ発電用エンジンを車体フレームに支持する接続部品は、例えば発電用エンジンとフレームとを接続する弾性部材である。発電用エンジンの振動を許容しつつ発電用エンジンを車体フレームに支持する接続部品の組み合わせは、例えばリンク機構と弾性部材との組み合わせである。弾性部材は、例えばゴムブッシュである。弾性部材は、例えば内外筒ブッシュ、スグリブッシュ又はダンパーゴムであってもよい。弾性部材は、弾性を有する部材である。弾性部材は、例えば、緩衝部材、制振部材、防振部材等を含む。リンク機構は、例えばリンク板と回転支持部との組み合わせである。回転支持部は、例えばベアリングにより構成されたベアリング支持部である。回転支持部は、ベアリングに替えて、例えばリンク機構が回転可能に構成された弾性体による支持であってもよい。 A support mechanism is, for example, a combination of a link mechanism and an elastic member. The support mechanism may be, for example, either a link mechanism or an elastic member. The elastic member is, for example, a rubber bush. The elastic member may be damper rubber, for example. The elastic member is a member having elasticity. The elastic member includes, for example, a cushioning member, a damping member, a vibration isolating member, and the like. The support mechanism is a connection part or a combination of these connection parts for supporting the power generation engine on the vehicle body frame. The support mechanism supports the power generating engine on the vehicle body frame while allowing the power generating engine to vibrate. A connection component that supports the power generation engine on the vehicle body frame while allowing vibration of the power generation engine is, for example, an elastic member that connects the power generation engine and the frame. A combination of connection parts for supporting the power generation engine on the vehicle body frame while allowing vibration of the power generation engine is, for example, a combination of a link mechanism and an elastic member. The elastic member is, for example, a rubber bush. The elastic member may be, for example, an inner/outer sleeve bush, a currant bush, or a damper rubber. The elastic member is a member having elasticity. The elastic member includes, for example, a cushioning member, a damping member, a vibration isolating member, and the like. A link mechanism is, for example, a combination of a link plate and a rotation support. The rotation support is, for example, a bearing support made up of bearings. Instead of the bearing, the rotation support may be supported by an elastic body configured to allow the link mechanism to rotate, for example.
 本発明によれば、本発明の目的は、発電用エンジンに発生する振動が、フレームに伝達することを効率的に抑制することができるシリーズハイブリッド式鞍乗型車両を提供することができる。 According to the present invention, an object of the present invention is to provide a series hybrid straddle-type vehicle capable of efficiently suppressing transmission of vibration generated in the power generation engine to the frame.
(a)は、本発明の第1実施形態に係るシリーズハイブリッド式鞍乗型車両の構成を示す左側面図であり、(b)は、(a)の鞍乗型車両1のエンジン駆動電力供給ユニットの構成を拡大して示す左側面図である。(a) is a left side view showing the configuration of the series hybrid straddle-type vehicle according to the first embodiment of the present invention, and (b) is an engine drive power supply of the straddle-type vehicle 1 of (a). It is a left view which expands and shows the structure of a unit. (a)は、本発明の第2実施形態に係るシリーズハイブリッド式鞍乗型車両のエンジン駆動電力供給ユニットを拡大して示す左側面図であり、(b)は、(a)のシリーズハイブリッド式鞍乗型車両のエンジン駆動電力供給ユニットを拡大して示す背面図であり、(c)は、(a)のシリーズハイブリッド式鞍乗型車両の支持機構を拡大して示す左側面図である。(a) is an enlarged left side view showing an engine drive power supply unit of a series hybrid straddle-type vehicle according to a second embodiment of the present invention; (b) is a series hybrid type of (a); FIG. 4C is an enlarged rear view showing an engine drive power supply unit of the straddle-type vehicle, and FIG. (a)は、本発明の第3実施形態に係るシリーズハイブリッド式鞍乗型車両のエンジン駆動電力供給ユニットを拡大して示す左側面図であり、(b)は、(a)のシリーズハイブリッド式鞍乗型車両のエンジン駆動電力供給ユニットを拡大して示す上面図である。(a) is an enlarged left side view showing an engine drive power supply unit of a series hybrid straddle-type vehicle according to a third embodiment of the present invention; (b) is a series hybrid type of (a); FIG. 4 is an enlarged top view showing an engine drive power supply unit of the straddle-type vehicle; (a)は、本発明の第4実施形態に係るシリーズハイブリッド式鞍乗型車両のエンジン駆動電力供給ユニットを拡大して示す左側面図であり、(b)から(d)は、(a)のシリーズハイブリッド式鞍乗型車両のエンジン駆動電力供給ユニットの支持機構のリンク部を拡大して示す左側面図である。(a) is an enlarged left side view showing an engine drive power supply unit of a series hybrid straddle-type vehicle according to a fourth embodiment of the present invention; (b) to (d) are (a); 2 is an enlarged left side view of a link portion of a support mechanism of an engine drive power supply unit of a series hybrid saddle type vehicle; FIG.
 以下、本発明を、図面を参照しつつ説明する。 The present invention will be described below with reference to the drawings.
 [第1実施形態]
 図1は、本発明の第1実施形態に係るシリーズハイブリッド式鞍乗型車両1の構成を示す図である。なお、以下においては、シリーズハイブリッド式鞍乗型車両を、単に、鞍乗型車両ともいう。図1(a)は、本発明の第1実施形態に係る鞍乗型車両1の構成を示す左側面図であり、図1(b)は、図1(a)の鞍乗型車両1のエンジン駆動電力供給ユニット20の構成を拡大して示す左側面図である。
 本明細書及び図面で、Fは、鞍乗型車両1における前方向を示す。Bは、鞍乗型車両1における後方向を示す。FBは、鞍乗型車両1における前後方向を示す。Uは、鞍乗型車両1における上方向を示す。Dは、鞍乗型車両1における下方向を示す。UDは、鞍乗型車両1における上下方向を示す。Lは、鞍乗型車両1における左方向を示す。Rは、鞍乗型車両1における右方向を示す。LRは、鞍乗型車両1における左右方向を示す。LRは、鞍乗型車両1における車幅方向でもある。即ち、鞍乗型車両1における車幅方向LRは、鞍乗型車両1における右方向R、及び左方向Lの双方を含んでいる。
[First embodiment]
FIG. 1 is a diagram showing the configuration of a series hybrid straddle-type vehicle 1 according to a first embodiment of the present invention. Note that, hereinafter, the series hybrid saddle-ride type vehicle is also simply referred to as a saddle-ride type vehicle. FIG. 1(a) is a left side view showing the configuration of a straddle-type vehicle 1 according to the first embodiment of the invention, and FIG. 1(b) is a front view of the straddle-type vehicle 1 of FIG. 3 is a left side view showing an enlarged configuration of the engine drive power supply unit 20. FIG.
In this specification and drawings, F indicates the front direction of the straddle-type vehicle 1 . B indicates the rearward direction of the straddle-type vehicle 1 . FB indicates the front-rear direction of the straddle-type vehicle 1 . U indicates the upward direction in the straddle-type vehicle 1 . D indicates the downward direction in the straddle-type vehicle 1 . UD indicates the vertical direction of the straddle-type vehicle 1 . L indicates the left direction in the straddle-type vehicle 1 . R indicates the right direction in the straddle-type vehicle 1 . LR indicates the left-right direction of the straddle-type vehicle 1 . LR is also the width direction of the straddle-type vehicle 1 . That is, the vehicle width direction LR of the straddle-type vehicle 1 includes both the rightward direction R and the leftward direction L of the straddle-type vehicle 1 .
 図1(a)の鞍乗型車両1は、車体フレーム10と、エンジン駆動電力供給ユニット20と、支持機構30とを備える。
 エンジン駆動電力供給ユニット20は、発電用エンジン21と、発電機25とを有する。発電用エンジン21は、一つ又は複数のシリンダ211と、二軸一次バランサ212とを有する。二軸一次バランサ212は、一次慣性力及び一次慣性偶力による振動を抑制する。発電機25は、発電用エンジン21に取付けられる。発電機25は、発電用エンジン21のクランク軸213の回転によって駆動され発電し、発電された電力を、蓄電装置15を介して又は介さずに駆動モータ16に供給する。エンジン駆動電力供給ユニット20は、発電機25により生成された電力を出力可能であり、且つ発電用エンジン21から出力される動力を駆動輪17へ伝達しないように構成されている。
 支持機構30は、残存二次慣性力によるシリンダ方向並進振動を許容しつつクランク軸213周り回転振動を抑制する態様で、エンジン駆動電力供給ユニット20を支持するように車体フレーム10に取り付けられる。残存二次慣性力によるシリンダ方向並進振動は、二軸一次バランサ212によって一次慣性力及び一次慣性偶力が抑制されることにより発電用エンジン21に残存する二次慣性力によって、クランク軸線S方向に見て、発電用エンジン21のシリンダ軸線T方向に発生する並進振動である。クランク軸213周り回転振動は、クランク軸線Sと平行な線を中心とする回転振動である。
A straddle-type vehicle 1 shown in FIG.
The engine drive power supply unit 20 has a power generation engine 21 and a generator 25 . The power generation engine 21 has one or more cylinders 211 and a two-axis primary balancer 212 . The biaxial primary balancer 212 suppresses vibration due to the primary inertial force and the primary inertial couple. The generator 25 is attached to the power generation engine 21 . The generator 25 is driven by the rotation of the crankshaft 213 of the power generation engine 21 to generate power, and supplies the generated power to the drive motor 16 with or without the power storage device 15 . The engine drive power supply unit 20 is configured to be capable of outputting power generated by the generator 25 and not to transmit power output from the power generation engine 21 to the driving wheels 17 .
The support mechanism 30 is attached to the vehicle body frame 10 so as to support the engine driving power supply unit 20 in a manner that allows translational vibration in the cylinder direction due to residual secondary inertial force and suppresses rotational vibration around the crankshaft 213 . The translational vibration in the cylinder direction due to the residual secondary inertial force is caused in the direction of the crank axis S by the secondary inertial force remaining in the power generation engine 21 due to the suppression of the primary inertial force and the primary inertial couple by the two-axis primary balancer 212. As you can see, it is a translational vibration generated in the direction of the cylinder axis T of the power generation engine 21 . The rotational vibration around the crankshaft 213 is rotational vibration about a line parallel to the crank axis S. As shown in FIG.
 図1(b)に示す一次慣性力による振動X1は、発電用エンジン21のピストン214の往復運動に伴って生じる振動で、発電用エンジン21のクランク軸213の回転と同期して生じる振動である。一次慣性力による振動X1は、主にシリンダ211のシリンダ軸線T方向に振動が生じる。一次慣性偶力による振動X2は、発電用エンジン21のクランク軸213周りの回転力による振動である。二軸一次バランサ212は、クランク軸213の回転と同期してそれぞれ反対方向に回転する、クランク軸213に平行な二つのバランサシャフト213-1及び213-2を有するバランサにより、一次慣性力による発電用エンジン21の振動X1及び一次慣性偶力による発電用エンジン21の振動X2を抑制する。二次慣性力は、一次慣性力の倍の周波数で生じる慣性力で、シリンダ軸線T方向に生じる。二次慣性力による振動Y1は、一次慣性力による振動X1よりも振幅が小さい。残存二次慣性力によるシリンダ方向並進振動を許容しつつクランク軸213周り回転振動を抑制するように構成されるとは、残存二次慣性力による振動Y1の振幅及び振動方向に動くように支持機構30の可動距離及び方向を設定することである。 The vibration X1 due to the primary inertial force shown in FIG. 1(b) is a vibration that occurs with the reciprocating motion of the piston 214 of the power generation engine 21, and is a vibration that occurs in synchronization with the rotation of the crankshaft 213 of the power generation engine 21. . The vibration X1 due to the primary inertial force mainly occurs in the direction of the cylinder axis T of the cylinder 211 . The vibration X2 due to the primary inertia couple is vibration due to the rotational force around the crankshaft 213 of the power generation engine 21 . The biaxial primary balancer 212 is a balancer having two balancer shafts 213-1 and 213-2 parallel to the crankshaft 213 that rotate in opposite directions in synchronism with the rotation of the crankshaft 213 to generate electricity by primary inertial force. Vibration X1 of the power generation engine 21 and vibration X2 of the power generation engine 21 due to the primary inertia couple are suppressed. The secondary inertial force is an inertial force that occurs at twice the frequency of the primary inertial force, and occurs in the cylinder axis T direction. The vibration Y1 due to the secondary inertia force has a smaller amplitude than the vibration X1 due to the primary inertia force. Being configured to suppress rotational vibration around the crankshaft 213 while allowing translational vibration in the cylinder direction due to the residual secondary inertia force means that the support mechanism is configured to move in the amplitude and vibration direction of the vibration Y1 due to the residual secondary inertia force. 30 movable distances and directions.
 本実施形態の鞍乗型車両1では、エンジン駆動電力供給ユニット20の発電用エンジン21に一次慣性力及び一次慣性偶力による振動を抑制する二軸一次バランサ212を設ける。また、エンジン駆動電力供給ユニット20を懸架する支持機構30を、残存二次慣性力によるシリンダ方向並進振動を許容しつつクランク軸213周り回転振動を抑制する態様で、エンジン駆動電力供給ユニット20を支持するように車体フレーム10に取り付ける。 In the straddle-type vehicle 1 of the present embodiment, the generating engine 21 of the engine drive power supply unit 20 is provided with a two-shaft primary balancer 212 that suppresses vibrations caused by the primary inertial force and the primary inertial couple. In addition, the support mechanism 30 that suspends the engine-driving power supply unit 20 supports the engine-driving power supply unit 20 in such a manner as to suppress rotational vibration around the crankshaft 213 while allowing translational vibration in the cylinder direction due to residual secondary inertial force. It is attached to the body frame 10 so that it does.
 本実施形態のエンジン駆動電力供給ユニット20は、発電用エンジン21に設けられた二軸一次バランサ212により発電用エンジン21において発生する一次慣性力及び一次慣性偶力を抑制する。この時、発電用エンジンには二次慣性力による振動が残存するため、残存二次慣性力による振動が支持機構30により車体フレーム10に伝達することを抑制することが可能となる。そうすると、エンジン駆動電力供給ユニット20の発電用エンジン21から生じる振動を低減することができ、支持機構も、残りの二次慣性力による振動の抑制に特化することができる。これにより、シリーズハイブリッド式鞍乗型車両1において、大型化や構造の複雑化を抑制又は防止しつつ、車体フレーム10への発電用エンジン21の振動の伝達を効率的に抑制又は防止できる。 The engine driving power supply unit 20 of this embodiment suppresses the primary inertial force and the primary inertial couple generated in the power generation engine 21 by the biaxial primary balancer 212 provided in the power generation engine 21 . At this time, since the vibration due to the secondary inertia force remains in the power generation engine, it is possible to suppress the transmission of the vibration due to the residual secondary inertia force to the vehicle body frame 10 by the support mechanism 30 . Then, the vibration generated from the power generation engine 21 of the engine-driven power supply unit 20 can be reduced, and the support mechanism can also specialize in suppressing the vibration due to the remaining secondary inertial force. As a result, in the series hybrid straddle-type vehicle 1, it is possible to efficiently suppress or prevent transmission of vibration of the power generation engine 21 to the vehicle body frame 10 while suppressing or preventing an increase in size and complication of the structure.
 [第2実施形態]
 本発明の第2実施形態について説明する。図2(a)は、本発明の第2実施形態に係る鞍乗型車両2のエンジン駆動電力供給ユニット20を拡大して示す左側面図であり、図2(b)は、図2(a)の鞍乗型車両2のエンジン駆動電力供給ユニット20を拡大して示す背面図であり、図2(c)は、図2(a)の鞍乗型車両2の支持機構30を拡大して示す左側面図である。本実施形態では、鞍乗型車両2が、下記のように構成される。本実施形態において第1実施形態と同一の構成には、図1に示す鞍乗型車両1と同じ符号を付する。
[Second embodiment]
A second embodiment of the present invention will be described. FIG. 2(a) is an enlarged left side view showing an engine drive power supply unit 20 of a straddle-type vehicle 2 according to a second embodiment of the present invention, and FIG. 2(b) is a left side view of FIG. ) is an enlarged rear view of the engine drive power supply unit 20 of the straddle-type vehicle 2 shown in FIG. It is a left side view showing. In this embodiment, the straddle-type vehicle 2 is configured as follows. In this embodiment, the same reference numerals as in the straddle-type vehicle 1 shown in FIG. 1 are given to the same configurations as in the first embodiment.
 図2(b)に示す通り、支持機構30は、複数の対をなしている。詳細には支持機構30を発電用エンジン21の左右1か所ずつ、左右方向に見て同一の位置に設け、これを1つの対とする(図2(a)及び(b)参照)。本実施形態では、この対を、発電用エンジン21の複数個所に設ける。また、図2(c)に示す通り、支持機構30はリンク機構と弾性体との組み合わせであるリンク部31で構成される。詳細には、リンク部31は、クランク軸線S方向(左右方向LR)に垂直な方向に延在するリンク板312と、クランク軸線S方向に平行な回転軸を有するベアリング支持部313とにより、リンク機構311を構成する。リンク機構311は、リンク板312が車体フレーム10に対して、クランク軸線S方向に垂直な方向に回転可能に構成される。リンク機構311は、弾性体314により車体フレーム10に支持され、弾性体315により発電用エンジン21に支持される。リンク機構311は、弾性体314によりリンク板312が大きく回転することを抑制し、弾性体315により発電用エンジン21を振動可能に支持する。 As shown in FIG. 2(b), the support mechanisms 30 form a plurality of pairs. More specifically, the support mechanisms 30 are provided on the left and right sides of the power generation engine 21 at the same positions when viewed in the left-right direction, and are regarded as one pair (see FIGS. 2(a) and 2(b)). In this embodiment, these pairs are provided at a plurality of locations on the power generation engine 21 . Further, as shown in FIG. 2(c), the support mechanism 30 is composed of a link portion 31 which is a combination of a link mechanism and an elastic body. Specifically, the link portion 31 is formed by a link plate 312 extending in a direction perpendicular to the direction of the crank axis S (lateral direction LR) and a bearing support portion 313 having a rotation axis parallel to the direction of the crank axis S. A mechanism 311 is constructed. The link mechanism 311 is configured such that the link plate 312 can rotate in a direction perpendicular to the crank axis S direction with respect to the vehicle body frame 10 . The link mechanism 311 is supported by the vehicle body frame 10 by means of elastic bodies 314 and supported by the power generation engine 21 by means of elastic bodies 315 . In the link mechanism 311 , the elastic body 314 suppresses the link plate 312 from rotating greatly, and the elastic body 315 supports the power generation engine 21 so as to vibrate.
 本実施形態において、支持機構30を上述の通り構成することで、クランク軸線S方向に見て、支持機構30を、エンジン駆動電力供給ユニット20のシリンダ軸線T方向に発生する二次慣性力による振動を許容する構造にすることができる。また、支持機構30を、クランク軸213周りの回転振動を抑制する構造にすることができる。従って、本実施形態の鞍乗型車両2では、発電用エンジン21に発生する振動が、車体フレーム10に伝達することを効率的に抑制することができる。 In this embodiment, by configuring the support mechanism 30 as described above, when viewed in the direction of the crank axis S, the support mechanism 30 vibrates due to the secondary inertia force generated in the direction of the cylinder axis T of the engine drive power supply unit 20. can be structured to allow Further, the support mechanism 30 can be configured to suppress rotational vibration around the crankshaft 213 . Therefore, in the straddle-type vehicle 2 of the present embodiment, it is possible to efficiently suppress transmission of vibration generated in the power generation engine 21 to the vehicle body frame 10 .
 [第3実施形態]
 本発明の第3実施形態について説明する。図3(a)は、本発明の第3実施形態に係る鞍乗型車両3のエンジン駆動電力供給ユニット20を拡大して示す左側面図であり、図3(b)は、図3(a)の鞍乗型車両3のエンジン駆動電力供給ユニット20を拡大して示す上面図である。本実施形態では、鞍乗型車両3が、下記のように構成される。本実施形態において第1実施形態と同一の構成には、図1に示す鞍乗型車両1と同じ符号を付する。
[Third embodiment]
A third embodiment of the present invention will be described. FIG. 3(a) is an enlarged left side view showing an engine drive power supply unit 20 of a straddle-type vehicle 3 according to a third embodiment of the present invention, and FIG. 3(b) is a left side view of FIG. ) is an enlarged top view showing an engine drive power supply unit 20 of the saddle type vehicle 3. FIG. In this embodiment, the straddle-type vehicle 3 is configured as follows. In this embodiment, the same reference numerals as in the straddle-type vehicle 1 shown in FIG. 1 are given to the same configurations as in the first embodiment.
 図3(a)に示す通り、鞍乗型車両3の発電機25は、車幅方向LRに見て、少なくとも一部が発電用エンジン21と重なりを有する。図3(b)に示す通り、発電機25は、発電用エンジン21の1つ又は複数のシリンダ211と車幅方向LRにずれる。リンク部31は、各々が左右に配置された対からなる複数の対を構成する。リンク部31は、各々がリンク部31の動作の方向Pと交わる方向Qへの変位を許容する遊びq1を有する。リンク部31がなす各対について、車幅方向LRにおいて、対をなすリンク部31の各々からシリンダ211の中央(シリンダ軸線T)までの距離(q21、q22)の偏差が、対をなすリンク部31の各々からエンジン駆動電力供給ユニット20の重心Gまでの距離(q31、q32)の偏差よりも大きく、且つ対をなすリンク部31の各々から鞍乗型車両1の車幅方向LRにおける中心Cまでの距離(q41、q42)の偏差よりも大きい。 As shown in FIG. 3(a), the generator 25 of the straddle-type vehicle 3 has at least a portion that overlaps the power generation engine 21 when viewed in the vehicle width direction LR. As shown in FIG. 3(b), the generator 25 is displaced from one or more cylinders 211 of the generator engine 21 in the vehicle width direction LR. The link portions 31 constitute a plurality of pairs, each of which is arranged on the left and right. Each of the link portions 31 has a play q1 that allows displacement in a direction Q that intersects the direction P of movement of the link portion 31 . For each pair formed by the link portions 31, the deviation of the distance (q21, q22) from each of the paired link portions 31 to the center (cylinder axis T) of the cylinder 211 in the vehicle width direction LR is 31 to the center of gravity G of the engine drive power supply unit 20, and the center C in the vehicle width direction LR of the straddle-type vehicle 1 from each of the paired link portions 31. greater than the deviation of the distance (q41, q42) to
 本実施形態の鞍乗型車両3によれば、車幅方向LRにおいて、対をなすリンク部31の各々からシリンダ211の中央までの距離の偏差q2が、対をなすリンク部31の各々からエンジン駆動電力供給ユニット20の重心Gまでの距離の偏差q3よりも大きい。また、鞍乗型車両3によれば、車幅方向LRにおいて、対をなすリンク部31の各々からシリンダ211の中央までの距離の偏差q2が、対をなすリンク部31の各々から鞍乗型車両の車幅方向LRにおける中心Cまでの距離の偏差q4よりも大きい。
 従って、本実施形態の鞍乗型車両3は、エンジン駆動電力供給ユニット20に、エンジン駆動電力供給ユニットの重心Gを中心として鞍乗型車両3が水平方向に回転するような慣性力Hが作用しやすい。しかし、本実施形態の鞍乗型車両3は、遊びつきリンクであるリンク部31によって、シリーズハイブリッド式鞍乗型車両3の車体が水平方向に回転するような慣性力Hが発電用エンジン21から車体フレーム10に伝わることを抑制できる。
According to the straddle-type vehicle 3 of the present embodiment, the deviation q2 of the distance from each of the paired link portions 31 to the center of the cylinder 211 in the vehicle width direction LR is greater than the distance from each of the paired link portions 31 to the engine. It is larger than the deviation q3 of the distance to the center of gravity G of the drive power supply unit 20 . Further, according to the straddle-type vehicle 3, the deviation q2 of the distance from each of the paired link portions 31 to the center of the cylinder 211 in the vehicle width direction LR is the same as that of the straddle-type vehicle 3. It is larger than the deviation q4 of the distance to the center C of the vehicle in the vehicle width direction LR.
Therefore, in the straddle-type vehicle 3 of the present embodiment, an inertial force H acts on the engine-driven power supply unit 20 so that the straddle-type vehicle 3 rotates in the horizontal direction about the center of gravity G of the engine-driven power supply unit. It's easy to do. However, in the straddle-type vehicle 3 of the present embodiment, the link portion 31, which is a link with play, generates an inertial force H from the power generation engine 21 that causes the vehicle body of the series hybrid straddle-type vehicle 3 to rotate in the horizontal direction. Transmission to the vehicle body frame 10 can be suppressed.
 [第4実施形態]
 本発明の第4実施形態について説明する。図4(a)は、本発明の第4実施形態に係る鞍乗型車両4のエンジン駆動電力供給ユニット20を拡大して示す左側面図であり、図4(b)から(d)は、図4(a)の鞍乗型車両4のエンジン駆動電力供給ユニット20の支持機構30のリンク部32L~34Lを拡大して示す左側面図である。本実施形態では、鞍乗型車両4が、下記のように構成される。本実施形態において第1実施形態と同一の構成には、図1に示す鞍乗型車両1と同じ符号を付する。
[Fourth embodiment]
A fourth embodiment of the present invention will be described. FIG. 4(a) is an enlarged left side view showing an engine drive power supply unit 20 of a straddle-type vehicle 4 according to a fourth embodiment of the present invention, and FIGS. Fig. 5 is a left side view showing an enlarged view of link portions 32L to 34L of the support mechanism 30 of the engine drive power supply unit 20 of the straddle-type vehicle 4 of Fig. 4(a); In this embodiment, the straddle-type vehicle 4 is configured as follows. In this embodiment, the same reference numerals as in the straddle-type vehicle 1 shown in FIG. 1 are given to the same configurations as in the first embodiment.
 図4(a)の鞍乗型車両4のリンク部は、各々が左右に配置された対からなる第一の対であるリンク部32L及び32Rと、第二の対であるリンク部33L及び33Rと、第三の対であるリンク部34L及び34Rとから構成される。第一の対であるリンク部32L及び32R及び第二の対であるリンク部33L及び33Rは、残存二次慣性力によるシリンダ方向並進振動(振動Y1)を許容する方向に動作し、第三の対であるリンク部34L及び34Rは、クランク軸213周りの回転振動(振動X2)を抑制する。なお、図4(a)から(d)において、鞍乗型車両4の左右方向LRにおける左方向Lのリンク部であるリンク部32L~34Lのみ図示し、鞍乗型車両4の左右方向LRにおける右方向Rのリンク部であるリンク部32R~34Rは図示しない。 The link portions of the straddle-type vehicle 4 shown in FIG. 4(a) include a first pair of link portions 32L and 32R and a second pair of link portions 33L and 33R. and a third pair of link portions 34L and 34R. The first pair of link portions 32L and 32R and the second pair of link portions 33L and 33R operate in a direction to allow translational vibration (vibration Y1) in the cylinder direction due to residual secondary inertia force, The pair of link portions 34L and 34R suppress rotational vibration (vibration X2) around the crankshaft 213. As shown in FIG. 4A to 4D, only the link portions 32L to 34L, which are the link portions in the left direction L in the left-right direction LR of the straddle-type vehicle 4, are shown. The link portions 32R to 34R, which are the link portions in the right direction R, are not shown.
 詳細には、リンク部32は、クランク軸線S方向(左右方向LR)に垂直な方向に延在するリンク板322と、クランク軸線S方向に平行な回転軸を有するベアリング支持部323とにより、リンク機構321を構成する。リンク機構321は、リンク板322が車体フレーム10に対して、クランク軸線S方向に垂直な方向に回転可能に構成される。リンク機構321は、弾性体支持部324で弾性体325により車体フレーム10に支持され、車体支持部326で弾性体327により発電用エンジン21に支持される。弾性体325はリンク板322が大きく回転することを抑制し、弾性体327は発電用エンジン21を振動可能に支持する。
 リンク部33は、クランク軸線S方向(左右方向LR)に垂直な方向に延在するリンク板332と、クランク軸線S方向に平行な回転軸を有するベアリング支持部333とにより、リンク機構331を構成する。リンク機構331は、リンク板332が車体フレーム10に対して、クランク軸線S方向に垂直な方向に回転可能に構成される。リンク機構331は、弾性体支持部334で弾性体335により車体フレーム10に支持され、車体支持部336で弾性体337により発電用エンジン21に支持される。弾性体335はリンク板332が大きく回転することを抑制し、弾性体337は発電用エンジン21を振動可能に支持する。
 リンク部34は、クランク軸線S方向(左右方向LR)に垂直な方向に延在するリンク板342と、クランク軸線S方向に平行な回転軸を有するベアリング支持部343とにより、リンク機構341を構成する。リンク機構341は、リンク板342が車体フレーム10に対して、クランク軸線S方向に垂直な方向に回転可能に構成される。リンク機構341は、車体支持部346で弾性体347により発電用エンジン21に支持される。弾性体347は発電用エンジン21を振動可能に支持する。
Specifically, the link portion 32 is formed by a link plate 322 extending in a direction perpendicular to the direction of the crank axis S (lateral direction LR) and a bearing support portion 323 having a rotation axis parallel to the direction of the crank axis S. A mechanism 321 is constructed. The link mechanism 321 is configured such that the link plate 322 can rotate in a direction perpendicular to the crank axis S direction with respect to the vehicle body frame 10 . The link mechanism 321 is supported by the vehicle body frame 10 at the elastic body support portion 324 by the elastic body 325 , and is supported by the power generation engine 21 at the vehicle body support portion 326 by the elastic body 327 . The elastic body 325 suppresses the link plate 322 from rotating greatly, and the elastic body 327 supports the power generation engine 21 so as to vibrate.
The link portion 33 includes a link plate 332 extending in a direction perpendicular to the direction of the crank axis S (lateral direction LR) and a bearing support portion 333 having a rotation shaft parallel to the direction of the crank axis S to form a link mechanism 331. do. The link mechanism 331 is configured so that the link plate 332 can rotate in a direction perpendicular to the crank axis S direction with respect to the vehicle body frame 10 . The link mechanism 331 is supported by the vehicle body frame 10 at the elastic body support portion 334 by the elastic body 335 , and is supported by the power generation engine 21 at the vehicle body support portion 336 by the elastic body 337 . The elastic body 335 suppresses the link plate 332 from rotating greatly, and the elastic body 337 supports the power generating engine 21 so as to vibrate.
The link portion 34 comprises a link mechanism 341 with a link plate 342 extending in a direction perpendicular to the crank axis S direction (lateral direction LR) and a bearing support portion 343 having a rotation shaft parallel to the crank axis S direction. do. The link mechanism 341 is configured so that the link plate 342 can rotate in a direction perpendicular to the crank axis S direction with respect to the vehicle body frame 10 . The link mechanism 341 is supported by the power generation engine 21 by means of elastic bodies 347 at the vehicle body support portion 346 . The elastic body 347 supports the power generation engine 21 so as to vibrate.
 本実施形態の鞍乗型車両4では、リンク部が、第一の対であるリンク部32と、第二の対であるリンク部33と、第三の対であるリンク部34とから構成される。第一の対であるリンク部32がベアリング支持部323を中心に回転し、第二の対であるリンク部33がベアリング支持部333を中心に回転することにより、発電用エンジン21がシリンダ方向並進振動を許容する方向及びクランク軸周りの回転振動を許容する方向に動作する。ここで、第三の対であるリンク部34は、発電用エンジン21のクランク軸周り回転振動を抑制する。発電用エンジン21がクランク軸周りに回転すると、リンク部34のベアリング支持部343と車体支持部346とを結ぶ線Z上に力が働く。この時、発電用エンジン21が線Zの方向に弾性体347の伸縮範囲以上に動くことを抑制することで、発電用エンジン21のクランク軸周り回転振動を抑制する。これにより、クランク軸線S方向に見て、支持機構30を、エンジン駆動電力供給ユニット20のシリンダ軸線T方向に発生する残存二次慣性力による振動を許容し、クランク軸周りの回転方向の振動を抑制する構造にすることができる。従って、本実施形態のシリーズハイブリッド式鞍乗型車両4では、発電用エンジン21に発生する振動が、車体フレーム10に伝達することを効率的に抑制することができる。 In the straddle-type vehicle 4 of the present embodiment, the link portions are composed of a first pair of link portions 32, a second pair of link portions 33, and a third pair of link portions 34. be. The first pair of link portions 32 rotate around the bearing support portion 323, and the second pair of link portions 33 rotate around the bearing support portion 333, so that the power generation engine 21 is translated in the cylinder direction. It operates in a direction that allows vibration and in a direction that allows rotational vibration around the crankshaft. Here, the link portion 34, which is the third pair, suppresses rotational vibration of the power generating engine 21 around the crankshaft. When the power generation engine 21 rotates around the crankshaft, a force acts on the line Z connecting the bearing support portion 343 of the link portion 34 and the vehicle body support portion 346 . At this time, by suppressing the movement of the power generation engine 21 in the direction of the line Z beyond the expansion and contraction range of the elastic body 347, the rotational vibration of the power generation engine 21 around the crankshaft is suppressed. As a result, when viewed in the direction of the crank axis S, the support mechanism 30 is allowed to vibrate due to the residual secondary inertia force generated in the direction of the cylinder axis T of the engine drive power supply unit 20, and vibration in the rotational direction around the crank shaft is allowed. It can be structured to suppress. Therefore, in the series hybrid straddle-type vehicle 4 of the present embodiment, it is possible to efficiently suppress transmission of vibration generated in the power generation engine 21 to the vehicle body frame 10 .
 (適用例)
 上記第1実施形態から第4実施形態の発電用エンジンは、例えば、単気筒エンジン、燃焼タイミングのクランク角度が90度及び270度の並列2気筒エンジン以外の2気筒エンジン、3気筒エンジン、又はクロスプレーン型の並列4気筒エンジン以外の4気筒エンジンである。単気筒エンジン以外の上述の発電用エンジンは、並列型エンジンでもV型エンジンでもよい。第1実施形態から第4実施形態の発電用エンジンがこれらのエンジンである場合、一次慣性力及び一次慣性偶力による振動をバランサにより抑制し、支持機構により二次慣性力による振動がフレームに伝達することを抑制することにより、振動がフレームに伝達することを抑制できる。
(Application example)
The power generation engine of the first to fourth embodiments is, for example, a single-cylinder engine, a two-cylinder engine other than a parallel two-cylinder engine with combustion timing crank angles of 90 degrees and 270 degrees, a three-cylinder engine, or a cross It is a four-cylinder engine other than a plane type parallel four-cylinder engine. The power generation engine described above, other than the single-cylinder engine, may be a parallel engine or a V-type engine. When the generator engines of the first to fourth embodiments are these engines, the balancer suppresses the vibration due to the primary inertial force and the primary inertial couple, and the support mechanism transmits the vibration due to the secondary inertial force to the frame. It is possible to suppress the transmission of vibration to the frame by suppressing the vibration.
 1~5 シリーズハイブリッド式鞍乗型車両
 10 車体フレーム
 16 駆動モータ
 17 駆動輪
 20 エンジン駆動電力供給ユニット
 21 発電用エンジン
 25 発電機
 30 支持機構
 211 シリンダ
 212 二軸一次バランサ
 213 クランク軸
1 to 5 series hybrid saddle type vehicle 10 body frame 16 drive motor 17 drive wheel 20 engine drive power supply unit 21 power generation engine 25 generator 30 support mechanism 211 cylinder 212 biaxial primary balancer 213 crankshaft

Claims (5)

  1. シリーズハイブリッド式鞍乗型車両であって、
     前記シリーズハイブリッド式鞍乗型車両は、
     車体フレームと、
     駆動モータと、
     前記車体フレームに回転可能に支持され、前記駆動モータにより駆動される駆動輪と、
     一つ又は複数のシリンダ、並びに一次慣性力及び一次慣性偶力による振動を抑制する二軸一次バランサを有する発電用エンジンと、前記発電用エンジンに取付けられ、前記発電用エンジンのクランク軸の回転によって駆動され発電し、発電された電力を、蓄電装置を介して又は介さずに前記駆動モータに供給する発電機とを有し、前記発電機により生成された電力を出力可能であり、且つ前記発電用エンジンから出力される動力を前記駆動輪へ伝達しないように構成されているエンジン駆動電力供給ユニットと、
     残存二次慣性力によるシリンダ方向並進振動を許容しつつクランク軸周り回転振動を抑制する態様で、前記エンジン駆動電力供給ユニットを支持するように前記車体フレームに取り付けられ、前記残存二次慣性力によるシリンダ方向並進振動は、前記二軸一次バランサによって一次慣性力及び一次慣性偶力が抑制されることにより前記発電用エンジンに残存する二次慣性力によって、クランク軸線方向に見て、前記発電用エンジンのシリンダ軸線方向に発生する並進振動であり、前記クランク軸周り回転振動は、クランク軸線と平行な線を中心とする回転振動である、支持機構と
     を備える。
    A series hybrid straddle-type vehicle,
    The series hybrid straddle-type vehicle is
    body frame and
    a drive motor;
    a drive wheel rotatably supported by the vehicle body frame and driven by the drive motor;
    a power generation engine having one or more cylinders and a biaxial primary balancer that suppresses vibrations caused by a primary inertial force and a primary inertial couple; a generator that is driven to generate power and supplies the generated power to the drive motor via or without a power storage device, the power generated by the generator can be output, and the power generation an engine drive power supply unit configured not to transmit the power output from the engine to the drive wheels;
    It is attached to the vehicle body frame so as to support the engine drive power supply unit in a manner that suppresses rotational vibration around the crankshaft while allowing translational vibration in the cylinder direction due to the residual secondary inertia force. The translational vibration in the cylinder direction is caused by the secondary inertia force remaining in the power generation engine due to the suppression of the primary inertia force and the primary inertia couple by the two-axis primary balancer, and the power generation engine when viewed in the crank axis direction. and the rotational vibration around the crankshaft is rotational vibration about a line parallel to the crankshaft.
  2.  請求項1に記載のシリーズハイブリッド式鞍乗型車両であって、
     前記支持機構は、リンク機構と弾性体との組み合わせである複数の対をなすリンク部で構成される。
    A series hybrid straddle-type vehicle according to claim 1,
    The support mechanism is composed of a plurality of pairs of link portions that are a combination of a link mechanism and an elastic body.
  3.  請求項2に記載のシリーズハイブリッド式鞍乗型車両であって、
     前記発電機は、車幅方向に見て、少なくとも一部が前記発電用エンジンと重なりを有し、前記発電用エンジンの1つ又は複数のシリンダと車幅方向にずれ、
     前記リンク部は、各々が左右に配置された対からなる複数の対を構成し、各々が前記リンク部の動作の方向と交わる方向への変位を許容する遊びを有し、前記リンク部がなす各対について、車幅方向において、対をなす前記リンク部の各々から前記シリンダの中央までの距離の偏差が、対をなすリンク部の各々から前記エンジン駆動電力供給ユニットの重心までの距離の偏差よりも大きく、且つ対をなす前記リンク部の各々から前記シリーズハイブリッド式鞍乗型車両の前記車幅方向における中心までの距離の偏差よりも大きい。
    A series hybrid straddle-type vehicle according to claim 2,
    At least a portion of the generator overlaps the power generation engine when viewed in the vehicle width direction, and the power generation engine is offset in the vehicle width direction from one or more cylinders of the power generation engine,
    The link portions constitute a plurality of pairs, each of which is arranged on the left and right, each having a play that allows displacement in a direction intersecting the direction of movement of the link portion, and the link portion For each pair, in the vehicle width direction, the deviation of the distance from each of the paired link portions to the center of the cylinder is the deviation of the distance from each of the paired link portions to the center of gravity of the engine driving power supply unit. and greater than the deviation of the distance from each of the paired link portions to the center of the series hybrid straddle-type vehicle in the vehicle width direction.
  4.  請求項2又は3に記載のシリーズハイブリッド式鞍乗型車両であって、
     前記リンク部は、各々が左右に配置された対からなる第一の対と、第二の対と、第三の対とから構成され、前記第一の対及び第二の対は、前記残存二次慣性力によるシリンダ方向並進振動を許容する方向に動作し、前記第三の対は、前記クランク軸周り回転振動を抑制する。
    A series hybrid straddle-type vehicle according to claim 2 or 3,
    The link portions are composed of a first pair, a second pair, and a third pair, each of which is a pair arranged on the left and right, and the first pair and the second pair are the remaining It operates in a direction to allow translational vibration in the cylinder direction due to secondary inertia force, and the third pair suppresses rotational vibration about the crankshaft.
  5.  請求項1から4の何れか1項に記載のシリーズハイブリッド式鞍乗型車両であって、
     前記発電用エンジンは、単気筒エンジン、燃焼タイミングのクランク角度が90度及び270度の並列2気筒エンジン以外の2気筒エンジン、3気筒エンジン、又はロスプレーン型の並列4気筒エンジン以外の4気筒エンジンである。
    A series hybrid straddle-type vehicle according to any one of claims 1 to 4,
    The power generation engine is a single-cylinder engine, a two-cylinder engine other than a parallel two-cylinder engine with combustion timing crank angles of 90 degrees and 270 degrees, a three-cylinder engine, or a four-cylinder engine other than a loss plane type parallel four-cylinder engine. is.
PCT/JP2021/003364 2021-01-29 2021-01-29 Series-hybrid type straddled vehicle WO2022162904A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/003364 WO2022162904A1 (en) 2021-01-29 2021-01-29 Series-hybrid type straddled vehicle
JP2022577977A JP7387921B2 (en) 2021-01-29 2021-01-29 Series hybrid straddle vehicle
TW111103338A TWI815288B (en) 2021-01-29 2022-01-26 Series hybrid straddle-type vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003364 WO2022162904A1 (en) 2021-01-29 2021-01-29 Series-hybrid type straddled vehicle

Publications (1)

Publication Number Publication Date
WO2022162904A1 true WO2022162904A1 (en) 2022-08-04

Family

ID=82654368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003364 WO2022162904A1 (en) 2021-01-29 2021-01-29 Series-hybrid type straddled vehicle

Country Status (3)

Country Link
JP (1) JP7387921B2 (en)
TW (1) TWI815288B (en)
WO (1) WO2022162904A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106159A (en) * 1999-10-08 2001-04-17 Yamaha Motor Co Ltd Series hybrid type electric two wheeler
JP2003237674A (en) * 2002-02-20 2003-08-27 Yamaha Motor Co Ltd Scooter type motorcycle
WO2005063559A1 (en) * 2003-12-25 2005-07-14 Yamaha Hatsudoki Kabushiki Kaisha Motor-driven vehicle
JP2017044169A (en) * 2015-08-27 2017-03-02 ヤマハ発動機株式会社 Engine and saddle riding type vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58170953A (en) * 1982-04-01 1983-10-07 Honda Motor Co Ltd Drum-type changing device of speed change gear
TW587592U (en) * 1998-09-28 2004-05-11 Honda Motor Co Ltd Motorcycle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106159A (en) * 1999-10-08 2001-04-17 Yamaha Motor Co Ltd Series hybrid type electric two wheeler
JP2003237674A (en) * 2002-02-20 2003-08-27 Yamaha Motor Co Ltd Scooter type motorcycle
WO2005063559A1 (en) * 2003-12-25 2005-07-14 Yamaha Hatsudoki Kabushiki Kaisha Motor-driven vehicle
JP2017044169A (en) * 2015-08-27 2017-03-02 ヤマハ発動機株式会社 Engine and saddle riding type vehicle

Also Published As

Publication number Publication date
TW202306804A (en) 2023-02-16
TWI815288B (en) 2023-09-11
JPWO2022162904A1 (en) 2022-08-04
JP7387921B2 (en) 2023-11-28

Similar Documents

Publication Publication Date Title
JP4667090B2 (en) Hybrid vehicle drive unit, hybrid vehicle and motorcycle
AU2013207652B2 (en) Balancer device for parallel twin cylinder internal combustion engine
WO2022162904A1 (en) Series-hybrid type straddled vehicle
JP2012236467A (en) Motorcycle
JP2008179302A (en) Saddle type vehicle
JP4093520B2 (en) Outboard motor
KR100503259B1 (en) Odd-cylinder v-type internal combustion engine
JP7258126B2 (en) Series hybrid straddled vehicle
US20220033034A1 (en) Straddled vehicle
JP2001099232A (en) Balancer device for engine
JP2020175822A (en) Series hybrid system saddle-riding type vehicle
WO2018180014A1 (en) Internal combustion engine
JP7334240B2 (en) straddled vehicle
WO2022162903A1 (en) Series-hybrid-type straddled vehicle
JP5908452B2 (en) Balancer structure of internal combustion engine
JP5036329B2 (en) Saddle riding vehicle
WO2023119354A1 (en) Engine generator unit exclusively for electric power generation
JPS61187533A (en) Engine structure of motorcycle
CN101920760B (en) Load driving device for manual riding vehicle
JP2005076738A (en) Crank shaft of internal combustion engine
JPH08332996A (en) Outboard motor
CN103161878A (en) Balance shaft group and vehicle with balance shaft group
JP2012149533A (en) Engine vibration suppressing mechanism
JP2014081028A (en) Multi-cylinder engine
TH122247A (en) Three-cylinder engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577977

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922919

Country of ref document: EP

Kind code of ref document: A1