WO2023119354A1 - Engine generator unit exclusively for electric power generation - Google Patents

Engine generator unit exclusively for electric power generation Download PDF

Info

Publication number
WO2023119354A1
WO2023119354A1 PCT/JP2021/046969 JP2021046969W WO2023119354A1 WO 2023119354 A1 WO2023119354 A1 WO 2023119354A1 JP 2021046969 W JP2021046969 W JP 2021046969W WO 2023119354 A1 WO2023119354 A1 WO 2023119354A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
generator unit
power generation
crankshaft
axis
Prior art date
Application number
PCT/JP2021/046969
Other languages
French (fr)
Japanese (ja)
Inventor
純 野口
京輔 塩見
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2021/046969 priority Critical patent/WO2023119354A1/en
Priority to JP2022548453A priority patent/JPWO2023119354A1/ja
Publication of WO2023119354A1 publication Critical patent/WO2023119354A1/en

Links

Images

Classifications

    • B64D27/40
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/24Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type

Definitions

  • the present invention relates to an engine generator unit dedicated to power generation.
  • the industrial unmanned helicopter disclosed in Patent Document 1 is equipped with a two-cylinder horizontally opposed engine as a power source.
  • a crankshaft of the horizontally opposed engine is connected to a power transmission device via a clutch.
  • a main rotor mast that rotates the main rotor is connected to the power transmission device.
  • the industrial unmanned helicopter transmits the driving force of the horizontally opposed engine to the main rotor mast through the power transmission device by connecting the clutch.
  • the horizontally opposed engine of the industrial unmanned helicopter disclosed in Patent Document 1 is mounted on the body frame with the rotation axis of the crankshaft facing forward and backward of the body.
  • a power transmission device is connected to the rear end of the crankshaft through the clutch.
  • the horizontally opposed engine is configured integrally with the clutch and the power transmission device.
  • the horizontally opposed engine is supported by a clutch housing and a vibration isolating member, which is a mount member provided in the vicinity of the main rotor mast of the power transmission device.
  • the vibration isolating member of the clutch housing damps vibrations caused by a couple of forces around the center of inertia of the horizontally opposed engine.
  • the vibration isolating member of the power transmission device attenuates vibration caused by fluctuations in the drive reaction force of the main rotor.
  • an internal combustion engine is supported from the vehicle body in vibration isolation in order to improve the ride comfort and quietness of the vehicle by appropriately variably controlling a vibration isolation rubber device (mount member) capable of changing the dynamic spring constant.
  • An anti-vibration support method is disclosed.
  • an assembly in which a transmission is directly connected to a rotating shaft of the vehicle internal combustion engine is supported by a plurality of anti-vibration rubber devices.
  • the axial ends of the center-of-gravity inertia main axis in rolling motion and the axial ends of the center-of-gravity inertia main axis in pitching motion are respectively supported by a pair of anti-vibration rubber devices.
  • One pair of anti-vibration rubber devices has a center of elasticity when regarded as one elastic body located on the center-of-gravity inertia principal axis in the rolling motion of the assembly.
  • the other pair of anti-vibration rubber devices has a center of elasticity when regarded as one elastic body located on the center-of-gravity inertia principal axis in pitching motion.
  • the assembly is connected to the drive wheels of the vehicle.
  • the drive reaction force from outside such as the wheels is transmitted to the assembly.
  • the one pair of anti-vibration rubber devices suppresses vibrations due to the drive reaction force and vibrations of the assembly itself based on an elastic principal axis based on an arbitrary position on the principal axis of inertia in rolling motion.
  • the other pair of anti-vibration rubber devices suppresses vibrations due to the drive reaction force and vibrations of the assembly itself based on an elastic principal axis with an arbitrary position on the inertial principal axis in pitching motion as a reference.
  • the center of elasticity of one pair of rubber vibration isolators and the center of elasticity of the other pair of rubber vibration isolators do not coincide with the center of inertia of the assembly.
  • One pair of rubber vibration isolators and the other pair of rubber vibration isolators have elasticity in different directions at different positions in order to suppress the vibration of the assembly itself and the vibration due to the drive reaction force from the outside.
  • a spindle isolates the assembly from vibrations.
  • the horizontally opposed engine rotates the generator for generating electric power at a constant rotation speed. Vibration due to fluctuations in driving reaction force is less likely to occur as in the assembly of .
  • the arrangement of mount members capable of damping vibrations without coupling them was studied.
  • An object of the present invention is to realize a configuration of an engine-generator unit that can attenuate the vibration of a horizontally opposed engine without coupling it.
  • At least two cylinders are arranged in a first direction and a second direction opposite to the first direction when viewed from the axial direction of the crankshaft.
  • a machine externally provided with a horizontally opposed engine positioned so that the axis of a cylinder extends, a plurality of mounting members supporting the horizontally opposed engine, and a generator connected to a crankshaft of the horizontally opposed engine. It is an engine-generator unit dedicated to power generation that does not have a power take-off mechanism that transmits the actual power.
  • the plurality of mount members are positioned so that the center of elasticity when all the mount members are regarded as one elastic body coincides with the center of inertia of the engine generator unit dedicated to power generation.
  • the engine generator unit dedicated to power generation does not have a power take-off mechanism that transmits mechanical power to the outside, such as a transmission that directly transmits an external load like an automobile engine.
  • the mechanical load which is the source of the drive reaction force, is not connected to the engine generator unit dedicated to power generation.
  • the horizontally opposed engine has a substantially equal weight distribution on the right and left sides with the axis of the crankshaft as the center line, and reciprocates in opposite directions with the two cylinders being 180 degrees reversed.
  • the center of elasticity when all the mount members are regarded as one elastic body can easily be the center of inertia of the engine-generator unit dedicated to power generation. can be matched.
  • the reaction force from all the mount members supporting the engine generator unit dedicated to power generation is applied to the center of inertia of the engine generator unit dedicated to power generation. Therefore, the generation-dedicated engine-generator unit is prevented from generating a force couple due to the reaction force from the mount member.
  • the engine generator unit dedicated to power generation suppresses vibrations by all the mounting members. As a result, the engine-generator unit dedicated to power generation can attenuate the vibration of the horizontally opposed engine by all the mount members without coupling the vibration.
  • the engine generator unit dedicated to power generation of the present invention preferably includes the following configuration.
  • the elastic main axis in the direction in which the rotation axis of the crankshaft extends is the inertia main axis of the engine generator unit dedicated to power generation. It is located so as to coincide with the principal axis of inertia in the direction in which the rotational axis of the crankshaft extends.
  • the elastic principal axis in the direction in which the rotation axis of the crankshaft extends is the elastic principal axis dedicated to power generation. of the main inertia axes of the engine generator unit in the direction in which the rotation axis of the crankshaft extends. That is, in the engine generator unit dedicated to power generation, the reaction force from the direction in which the rotation axis of the crankshaft extends by all the mount members coincides with the direction of the principal axis of inertia of the engine generator unit dedicated to power generation.
  • the engine-generator unit dedicated to power generation can attenuate vibrations of the horizontally opposed engine by the plurality of mount members without coupling the vibrations.
  • the engine generator unit dedicated to power generation of the present invention preferably includes the following configuration.
  • the plurality of mounting members are symmetrical about the center of inertia of the engine-generator unit dedicated to power generation when viewed from a direction perpendicular to the rotation axis of the crankshaft and a direction perpendicular to the moving direction of the cylinder. It is located so that
  • the plurality of mount members have a symmetrical point about the center of inertia of the horizontally opposed engine when viewed from a direction perpendicular to the rotation axis of the crankshaft and a direction perpendicular to the movement direction of the cylinder. positioned symmetrically. That is, the plurality of mount members are positioned so as to surround the center of inertia of the horizontally opposed engine. Therefore, the horizontally opposed engine is stably supported by the plurality of mount members, and vibrations caused by the rotational moment about the crankshaft can be received by the plurality of mount members.
  • the engine-generator unit dedicated to power generation can attenuate vibrations of the horizontally opposed engine by the plurality of mount members without coupling the vibrations.
  • the engine generator unit dedicated to power generation of the present invention preferably includes the following configuration.
  • Generators are connected to both ends of the crankshaft of the horizontally opposed engine, respectively, and the plurality of mount members are mounted in a direction perpendicular to the direction in which the rotation axis of the crankshaft extends and in a direction perpendicular to the direction of movement of the cylinder.
  • at least one is located in each of four regions defined by the rotation axis of the crankshaft and a straight line passing through the center of inertia of the engine-generator unit dedicated to power generation and extending in the moving direction of the cylinder.
  • the plurality of mount members are arranged in four quadrants around the center of inertia of the horizontally opposed engine when viewed from a direction perpendicular to the rotation axis of the crankshaft and a direction perpendicular to the movement direction of the cylinder. At least one is located in each divided area. That is, the horizontally opposed engine is supported so as to surround the center of inertia by at least four of the mount members. Therefore, the horizontally opposed engine is more stably supported by the plurality of mount members, and can evenly receive the rotational moment about the crankshaft.
  • the engine-generator unit dedicated to power generation can attenuate vibrations of the horizontally opposed engine by the plurality of mount members without coupling the vibrations.
  • the engine generator unit dedicated to power generation of the present invention preferably includes the following configuration.
  • Generators are connected to both ends of the crankshaft of the horizontally opposed engine, and the plurality of mount members are positioned at the ends of the respective generators in the direction in which the rotation axis of the crankshaft extends. and when the plurality of mount members are regarded as one elastic body, the elastic main axis in the direction in which the rotation axis of the crankshaft extends is the inertia main axis of the engine-generator unit dedicated to power generation. It is located so as to coincide with the principal axis of inertia in the direction in which the rotation axis of the crankshaft extends.
  • the engine generator unit dedicated to power generation is located at both end portions in the direction in which the rotation axis of the crankshaft extends, and is the engine generator dedicated to power generation when viewed from the direction in which the rotation axis of the crankshaft extends. It is supported by the mount member at a position overlapping the center of inertia of the unit. Therefore, in the engine generator unit dedicated to power generation, the rotational moment about the rotation axis of the crankshaft is received by the mount members provided at both ends in the direction in which the rotation axis of the crankshaft extends.
  • the engine-generator unit dedicated to power generation will not be affected by the reaction force from the plurality of mount members and the deviation of the center of inertia. The generation of a couple of forces due to is suppressed.
  • the engine-generator unit dedicated to power generation can attenuate vibrations of the horizontally opposed engine by the plurality of mount members without coupling the vibrations.
  • the engine generator unit dedicated to power generation of the present invention preferably includes the following configuration.
  • the plurality of mount members have a smaller modulus of elasticity in a direction of force acting by a rotational moment about the rotational axis of the crankshaft than in other directions of force.
  • the plurality of mount members support the horizontally opposed engine, and receive the force exerted by the rotational moment about the rotation axis of the crankshaft while being elastically deformed. That is, the plurality of mount members are configured such that the elastic modulus in the direction required to absorb vibration is smaller than the elastic modulus in the direction required to support the weight of the horizontally opposed engine.
  • the engine-generator unit dedicated to power generation can attenuate vibrations of the horizontally opposed engine by the plurality of mount members without coupling the vibrations.
  • attachment As used herein, “attached,” “connected,” “coupled,” and/or equivalents thereof are used broadly and include “direct and indirect” attachment, It includes both connection and coupling. Furthermore, “connected” and “coupled” are not limited to physical or mechanical connections or couplings, but can include direct or indirect electrical connections or couplings.
  • This specification describes an embodiment of an engine generator unit dedicated to power generation according to the present invention.
  • an engine-generator unit dedicated to power generation is a device that generates power by driving a generator composed of a dynamo or the like with various reciprocating engines such as a diesel engine and a gasoline engine.
  • the engine generator unit dedicated to power generation controls the rotation speed of the engine to generate power in response to a power generation request from the outside.
  • the engine generator unit dedicated to power generation does not have a power take-off mechanism for transmitting mechanical power to the outside. That is, the engine-generator unit dedicated to power generation does not supply the driving force of the engine to anything other than the generator.
  • the engine-generator unit dedicated to power generation that supplies electric power to the multicopter does not output power to rotate the propeller of the multicopter.
  • the engine generator unit dedicated to power generation comprises a horizontally opposed engine.
  • horizontal opposed engine refers to an engine in which at least two cylinders extend in a first direction and a second direction opposite to the first direction when viewed from the axial direction of the crankshaft.
  • the engine is located in
  • the horizontally opposed engine is a reciprocating engine in which pistons positioned in the cylinder move toward or away from each other.
  • a horizontally opposed engine is positioned so that the axis of the crankshaft and the axis of the piston are horizontal.
  • the first direction is the right direction or the left direction when the axial direction of the crankshaft of the horizontally opposed engine is defined as the front-rear direction.
  • the mount member supports the engine-generator unit dedicated to power generation and attenuates kinetic energy (vibration) transmitted from the generator engine supported by the mount member to the outside. .
  • the term “elastic principal axis” refers to an axis such that when a force is applied along a certain axis, the direction of the force and the direction of elastic displacement are the same and no angular displacement occurs.
  • a compression spring compresses in the direction of the axis and does not undergo angular displacement when a force is applied in the direction of the axis. Therefore, the axis of the compression spring is one of the principal elastic axes of the compression spring.
  • An elastic body has three elastic main axes that are perpendicular to each other.
  • elastic center refers to an intersection point at which three elastic principal axes intersect each other at right angles in an elastic body.
  • the elastic modulus is a physical property value representing the difficulty of deformation of an elastic body. The smaller the elastic modulus, the easier the deformation.
  • the principal axis of inertia is an axis that, when a rigid body is rotated around a certain axis, does not generate a couple of forces that would change the direction of the rotation axis when viewed from a coordinate system that rotates together with the rigid body.
  • the principal axes of inertia of a rigid body are calculated from the moment of inertia and the product of inertia with the three orthogonal axes as coordinates.
  • center of inertia is the center of weight mass (center of gravity) or the center of inertia mass.
  • Gravitational mass is the mass defined based on the strength with which an object is pulled by gravity.
  • Inertial mass is mass defined based on the acceleration of an object. Gravimetric mass and inertial mass are equivalent.
  • the center of inertia can be regarded as the center of mass where the mass of each part of the object is concentrated at the center of gravity.
  • coincidence of the principal axis of inertia and the principal axis of elasticity refers to a positional relationship in which the deviation of the direction of the center of elasticity from the center of inertia is within 25 degrees, preferably within 5 degrees. The same applies to the coincidence of the rotation axis of the crankshaft and the elastic main axis.
  • an engine-generator unit dedicated to power generation that can attenuate the vibration of a horizontally opposed engine without coupling it.
  • FIG. 1 shows a plan view of an engine generator unit dedicated to power generation according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing the elastic main axis and the elastic center of the mount member that supports the engine generator unit dedicated to power generation according to the first embodiment of the present invention.
  • FIG. 3 shows a front view of an engine generator unit dedicated to power generation according to Embodiment 1 of the present invention.
  • FIG. 4 shows a side view of an engine generator unit dedicated to power generation according to Embodiment 1 of the present invention.
  • FIG. 5 shows a plan view of an engine generator unit dedicated to power generation according to Embodiment 2 of the present invention.
  • FIG. 6 shows a schematic diagram showing the elastic principal axis and the elastic center of the mount member that supports the engine generator unit dedicated to power generation according to Embodiment 2 of the present invention.
  • FIG. 7 shows a side view of an engine generator unit dedicated to power generation according to Embodiment 2 of the present invention.
  • FIG. 1 is a plan view of the engine generator unit 1.
  • FIG. 2 is a schematic diagram of the mount member 16 that supports the engine generator unit 1. As shown in FIG.
  • the engine generator unit 1 is a device dedicated to power generation that generates power by driving the generator 15 with the driving force of the engine.
  • the engine generator unit 1 includes a horizontally opposed engine 2 , a generator 15 configured by a dynamo, and a plurality of mount members 16 .
  • the direction in which the rotation axis C of the crankshaft 8 of the horizontally opposed engine 2 extends is defined as the front-rear direction.
  • the moving direction of the piston is defined as the left-right direction when viewed from a direction perpendicular to the rotation axis C of the crankshaft 8 and perpendicular to the moving direction of the cylinder.
  • a vertical direction is defined as a direction perpendicular to the rotation axis C of the crankshaft 8 and the moving direction of the cylinder.
  • the horizontally opposed engine 2 is a horizontally opposed 2-cylinder engine.
  • two cylinders are arranged so that the axes of the first cylinder 4 and the second cylinder 7 extend in the right direction and the left direction, which is the opposite direction to the right direction, when viewed from the direction of the rotation axis C of the crankshaft 8. It is the engine that is located. That is, the horizontally opposed engine 2 has cylinders on the left and right sides of the crankshaft 8 when viewed from a direction perpendicular to the rotation axis C of the crankshaft 8 and perpendicular to the moving direction of the cylinders (the first cylinder 4 and the second cylinder 7). engine located.
  • the horizontally opposed engine 2 includes a first cylinder block 3, a second cylinder block 6, a first cylinder head 11, a second cylinder head 14, a crankshaft 8, a first connecting rod 10, a second connecting rod 13, a first piston 9, a second It has 2 pistons 12 .
  • the first cylinder block 3 is a member that forms part of the first cylinder 4 and the crankcase 5 .
  • the first cylinder block 3 is made of, for example, an aluminum alloy.
  • a first cylinder 4 accommodating a first piston 9 is formed in the first cylinder block 3 .
  • a portion of a crankcase 5 that accommodates a crankshaft 8 is formed at the base end of the first cylinder 4 .
  • a part of a bearing for supporting the crankshaft 8 is formed in the crankcase 5 .
  • the axis of the first cylinder 4 is perpendicular to the axis of the bearing portion of the crankcase 5 .
  • the axis of the first cylinder 4 extends in the first direction viewed from the rotation axis C direction of the crankshaft 8 . In this embodiment, the first direction is the right direction.
  • a base end of the first cylinder 4 communicates with the inside of the crankcase 5 .
  • the second cylinder block 6 is a member that forms part of the second cylinder 7 and the crankcase 5 .
  • the second cylinder block 6 is made of, for example, an aluminum alloy.
  • a second cylinder 7 accommodating a second piston 12 is formed in the second cylinder block 6 .
  • a portion of a crankcase 5 that accommodates a crankshaft 8 is formed at the base end of the second cylinder 7 .
  • a part of a bearing for supporting the crankshaft 8 is formed in the crankcase 5 .
  • the axis of the second cylinder 7 is perpendicular to the axis of the bearing portion of the crankcase 5 . Further, the axis of the second cylinder 7 extends in the second direction opposite to the first direction when viewed from the rotation axis C direction of the crankshaft 8 . In this embodiment, the second direction is the left direction.
  • a proximal end of the second cylinder 7 communicates with the inside of the crankcase 5 .
  • the first cylinder block 3 and the second cylinder block 6 are connected to each other with parts of the crankcases 5 facing each other. Thereby, the first cylinder block 3 and the second cylinder block 6 constitute a crankcase 5 . That is, the crankcase 5 is constructed between the first cylinder 4 and the second cylinder 7 .
  • a bearing (not shown) that supports the crankshaft 8 is formed in the crankcase 5 .
  • the axis of the bearing portion coincides with the rotational axis C of the crankshaft 8 .
  • the first cylinder 4 and the second cylinder 7 are positioned substantially parallel in the left-right direction with the rotation axis C of the crankshaft 8 as the center line.
  • the first cylinder 4 is positioned to the right of the rotation axis C of the crankshaft 8 .
  • the second cylinder 7 is positioned to the left of the rotation axis C of the crankshaft 8 .
  • the first cylinder 4 and the second cylinder 7 are offset in the direction of the rotation axis C of the crankshaft 8 so that the first connecting rod 10 and the second connecting rod 13 connected to the crankshaft 8 do not interfere with each other.
  • the crankshaft 8 is a shaft that converts the reciprocating motion of the first piston 9 and the second piston 12 into rotary motion.
  • the crankshaft 8 is rotatably supported by bearings of the crankcase 5 .
  • a rotation axis C of the crankshaft 8 is perpendicular to the axes of the first cylinder 4 and the second cylinder 7 . Both ends of the crankshaft 8 extend outside from the crankcase 5 as output shafts.
  • the first piston 9 is a component that transmits energy generated by combustion of fuel generated in the first cylinder 4 to the crankshaft 8 .
  • the first piston 9 is formed in a cylindrical shape having an outer diameter that allows it to slide inside the first cylinder 4 .
  • a first piston 9 is housed in the first cylinder 4 .
  • One end of a first connecting rod 10 is oscillatably connected to the first piston 9 .
  • a crankshaft 8 is pivotably connected to the other end of the first connecting rod 10 . That is, the first piston 9 is oscillatably connected to the crankshaft 8 via the first connecting rod 10 .
  • a first cylinder head 11 is connected to the tip of the first cylinder 4 . Thereby, a combustion chamber surrounded by the first cylinder head 11 and the first piston 9 is formed inside the first cylinder 4 .
  • the second piston 12 is a component that transmits energy generated by combustion of fuel generated in the second cylinder 7 to the crankshaft 8 .
  • the second piston 12 is formed in a cylindrical shape having an outer diameter that allows it to slide inside the second cylinder 7 .
  • the second piston 12 is housed in the second cylinder 7 .
  • One end of a second connecting rod 13 is oscillatably connected to the second piston 12 .
  • the crankshaft 8 is connected to the other end of the second connecting rod 13 so as to be able to swing. That is, the second piston 12 is oscillatably connected to the crankshaft 8 via the second connecting rod 13 .
  • a second cylinder head 14 is connected to the tip of the second cylinder 7 . Thereby, a combustion chamber surrounded by the second cylinder head 14 and the second piston 12 is formed inside the second cylinder 7 .
  • the first piston 9 and the second piston 12 are positioned on the left and right sides of the crankshaft 8 positioned so that the rotation axis C extends in the longitudinal direction.
  • the axis of the first piston 9 and the axis of the second piston 12 extend substantially horizontally and are perpendicular to the rotation axis C of the crankshaft 8 .
  • the horizontally opposed engine 2 rotates the crankshaft 8 by reciprocating in opposite directions with the first piston 9 and the second piston 12 being reversed by 180 degrees.
  • the generator 15 is a device that generates electric power.
  • the generator 15 is composed of a dynamo or the like.
  • the generators 15 are fixed one by one to both ends of the crankcase 5 of the horizontally opposed engine 2 in the direction in which the rotation axis C of the crankshaft 8 extends through flanges. That is, the engine generator unit 1 has two generators 15 .
  • the two generators 15 are connected to both ends of the crankshaft 8, respectively.
  • the two generators 15 are configured to simultaneously generate electric power by the rotation of the crankshaft 8 .
  • the engine generator unit 1 powers two generators 15 . That is, the engine generator unit 1 does not supply power to external devices unrelated to the operation of the engine generator unit 1 . Naturally, the engine-generator unit 1 does not have a transmission for powering external devices.
  • the engine-generator unit 1 is configured as an engine-generator unit dedicated to power generation without a power take-off mechanism for transmitting mechanical power to the outside.
  • a plurality of mounting members 16 support the engine generator unit 1 and attenuate the vibration of the engine generator unit 1 .
  • the plurality of mount members 16 are composed of rubber mounts using rubber, for example.
  • Rubber mounts are composed of rubber such as natural rubber, butyl rubber or chloroprene rubber.
  • the plurality of mount members 16 are, for example, cylindrical rubber mounts in which metal mounting portions 16b are fixed to both ends of a cylindrical rubber member 16a.
  • the cylindrical rubber mount supports the external force applied to the mounting portion 16b by the rubber member 16a, and attenuates vibration input from one mounting portion 16b by elastic deformation of the rubber member 16a.
  • the cylindrical rubber mount changes its load capacity and vibration characteristics depending on the size, shape, attitude, hardness, etc. of the rubber member 16a.
  • the plurality of mounting members 16 are such that the axes of the first cylinder 4 and the second cylinder 7 of the horizontally opposed engine 2 are aligned by four mounting members 16 having the same load resistance and vibration characteristics. It supports the engine generator unit 1 so as to be in a substantially horizontal state.
  • One attachment portion 16 b (see FIG. 2 ) of the plurality of mount members 16 is connected to the crankcase 5 via a bracket 17 .
  • the other mounting portions 16b (see FIG. 2) of the plurality of mounting members 16 are connected to a fixing frame (not shown) that fixes the engine generator unit 1.
  • the four mounting members 16 support the horizontally opposed engine 2 in the engine generator unit 1 .
  • the engine-generator unit 1 configured in this way drives two generators 15 with the horizontally opposed engine 2 .
  • the engine generator unit 1 supplies electric power to the outside from two generators 15 .
  • the first cylinder 4 and the second cylinder 7 are positioned substantially horizontally on the left and right sides of the crankshaft 8, and the generators 15 are positioned on the front and rear sides of the crankshaft 8, respectively. That is, the engine-generator unit 1 is configured so that the weight distribution in the left-right direction, the front-rear direction, and the vertical direction is substantially uniform.
  • the engine generator unit 1 is supported from a fixed frame (not shown) by a plurality of mounting members 16 .
  • FIG. 3 is a front view of the engine generator unit 1.
  • FIG. 4 is a side view of the engine generator unit 1.
  • the mount member 16 composed of a cylindrical rubber mount has three elastic principal axes E1, E2, and E3 perpendicular to each other.
  • the three elastic main axes E1, E2, E3 are determined based on the elastic modulus of the rubber member 16a.
  • the mount member 16 also has an elastic center E0 at which the three elastic main axes E1, E2, and E3 intersect perpendicularly.
  • the main elastic axis in the direction in which the mounting portions 16b are brought closer (separated) from each other is defined as the main elastic axis E1 in the compression direction.
  • Two elastic main axes orthogonal to the compression direction elastic main axis E1 are defined as a first shear direction elastic main axis E2 and a second shear direction elastic main axis E3.
  • the four mounting members 16 that support the engine generator unit 1 can be regarded as one elastic body that supports the engine generator unit 1.
  • a synthetic mount member that is regarded as one elastic body by synthesizing the four mount members 16 is an elastic principal axis obtained by synthesizing the elastic principal axes E1, E2, and E3 (see FIG. 2) of the four mount members 16. It has three synthetic principal elastic axes Ex, Ey, and Ez. The three synthetic principal elastic axes Ex, Ey, and Ez are calculated in consideration of the directions of the principal elastic axes E1, E2, and E3 of the four mount members 16, respectively.
  • the synthetic mount member also has a synthetic elastic center Ec, which is an elastic center at which the three synthetic elastic principal axes Ex, Ey, and Ez are perpendicular to each other. That is, the directions of the synthetic elastic principal axes Ex, Ey, Ez and the position of the synthetic elastic center Ec change depending on the elastic moduli and attitudes of the four mount members 16 .
  • the four mount members 16 are positioned so that the composite elastic center Ec when regarded as a composite mount member coincides with the inertia center Ic of the engine generator unit 1 .
  • the compression direction elastic main axis E1 of the mounting members 16 arranged in the left-right direction among the four mounting members 16 is the inertia of the engine generator unit 1 when viewed from the direction in which the rotation axis C of the crankshaft 8 extends. They intersect on a vertical line passing through the center Ic (see FIG. 4).
  • the compression direction elastic principal axis E1 of the mounting members 16 arranged in the front-rear direction among the four mounting members 16 is the same as the engine generator unit 1 when viewed from the direction in which the axis of the first cylinder 4 or the second cylinder 7 extends. intersect on a vertical line passing through the center of inertia Ic (see FIG. 3).
  • the four mount members 16 are composed of synthetic elastic principal axes Ex, Ey, and Ez when the four mount members 16 are regarded as synthetic mount members.
  • the main inertia axes Ix, Iy, and Iz the main inertia axis Ix of the crankshaft 8 in the direction of the rotation axis C is positioned so as to coincide with the main inertia axis Ix.
  • the engine-generator unit 1 to which the mechanical load, which is the source of the drive reaction force, is not connected is mainly affected by the rotational moment around the rotational axis C of the crankshaft 8 of the horizontally opposed engine 2. It is the cause of the vibration. Furthermore, the engine-generator unit 1 has a horizontally opposed engine 2 configured so that the weight distribution in the left-right direction, the front-rear direction, and the vertical direction is substantially uniform. Therefore, the engine generator unit 1 can easily match the combined elastic center Ec of the plurality of mount members 16 with the inertia center Ic of the engine generator unit 1 . Therefore, in the engine generator unit 1, since the reaction force from the plurality of mount members 16 is applied to the center of inertia Ic of the engine generator unit 1, the vibration of the horizontally opposed engine 2 can be received evenly by the plurality of mount members 16. can.
  • the reaction force from the direction in which the rotational axis C of the crankshaft 8 extends (the direction of the synthetic elastic principal axis Ex) by the plurality of mount members 16 coincides with the direction of the inertia principal axis Ix of the engine-generator unit 1. ing. Therefore, in the engine-generator unit 1, a torque couple that rotates the engine-generator unit 1 due to the rotational moment generated about the rotation axis C of the crankshaft 8 is not generated. That is, in the engine-generator unit 1, coupled vibration caused by the rotational moment generated about the rotational axis C of the crankshaft 8 is less likely to occur. As a result, the engine generator unit 1 can attenuate the vibration of the horizontally opposed engine 2 by the plurality of mount members 16 without coupling the vibration.
  • the four mounting members 16 having the same load resistance and vibration characteristics are mounted in a direction perpendicular to the direction in which the rotation axis C of the crankshaft 8 extends and perpendicular to the moving directions of the first cylinder 4 and the second cylinder 7 .
  • they When viewed from the direction, they are positioned symmetrically about the center of inertia Ic of the engine generator unit 1 as a point of symmetry.
  • the plurality of mount members 16 are mounted on the horizontally opposed engine 2 when viewed in a direction perpendicular to the direction in which the rotation axis C of the crankshaft 8 extends and in a direction perpendicular to the movement direction of the first cylinder 4 and the second cylinder 7 . is located so as to surround the center of inertia Ic.
  • the engine-generator unit 1 is stably supported by the plurality of mount members 16, and the vibration caused by the rotational moment of the crankshaft 8 about the rotation axis C can be evenly received by the plurality of mount members 16. .
  • the engine generator unit 1 can attenuate the vibration of the horizontally opposed engine 2 by the plurality of mount members 16 without coupling the vibration.
  • the plurality of mount members 16 are arranged in a direction perpendicular to the direction in which the rotation axis C of the crankshaft 8 extends and and in the moving direction of the first cylinder 4 and the second cylinder 7 passing through the rotation axis C of the crankshaft 8 and the center of inertia Ic of the engine-generator unit 1 when viewed from a direction perpendicular to the moving direction of the second cylinder 7. At least one is located in each of the four regions separated by the extending straight lines.
  • the engine generator unit 1 is mounted by at least four mounting members 16 when viewed in a direction perpendicular to the direction in which the rotation axis C of the crankshaft 8 extends and in a direction perpendicular to the moving direction of the first cylinder 4 and the second cylinder 7 . It is supported so as to surround the center of inertia Ic. Accordingly, the horizontally opposed engine 2 is more stably supported by the plurality of mount members 16 and can evenly receive the rotational moment around the crankshaft 8 . As a result, the engine generator unit 1 can attenuate the vibration of the horizontally opposed engine 2 by the plurality of mount members 16 without coupling the vibration.
  • the engine generator unit 1 does not have any mount members for damping vibration other than the four mount members 16 .
  • the engine generator unit 1 absorbs vibrations of the horizontally opposed engine 2 by means of four mounting members 16 positioned so that the center of elasticity when regarded as one elastic body coincides with the center of inertia of the engine generator unit 1. It can be attenuated without coupling.
  • FIG. 5 is a plan view of an engine generator unit 1A according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram showing a mount member according to Embodiment 2 of the present invention.
  • the engine generator unit 1A according to Embodiment 2 of the present invention is supported by two mount members 18 as a plurality of mount members 18. As shown in FIG. 5, the engine generator unit 1A according to Embodiment 2 of the present invention is supported by two mount members 18 as a plurality of mount members 18. As shown in FIG. 5, the engine generator unit 1A according to Embodiment 2 of the present invention is supported by two mount members 18 as a plurality of mount members 18. As shown in FIG.
  • the plurality of mounting members 18 support the engine generator unit 1A and attenuate the vibration of the engine generator unit 1A.
  • the plurality of mount members 18 are configured by rubber mounts using rubber.
  • the plurality of mount members 18 are, for example, a cylindrical rubber member 18a with a metal outer cylinder 18b fixed to the outer peripheral surface of the rubber member 18a and a metal inner cylinder 18c fixed to the inner peripheral surface of the rubber member 18a. It consists of mounts.
  • the cylindrical rubber mount supports the external force applied to the outer cylinder 18b or the inner cylinder 18c by the rubber member 18a, and attenuates the vibration input from the outer cylinder 18b or the inner cylinder 18c by elastic deformation of the rubber member 18a.
  • the load capacity and vibration characteristics of the cylindrical rubber mount vary depending on the size, shape, attitude, hardness, etc. of the rubber member 18a.
  • the plurality of mount members 18 are arranged so that the axes of the first cylinder 4 and the second cylinder 7 of the horizontally opposed engine 2 are substantially horizontal by two mount members 18 having the same load resistance and vibration characteristics. supports the engine generator unit 1A.
  • One attachment portion 16b of the plurality of mount members 18 is connected to the generator 15 via a bracket.
  • the other mounting portions 16b of the plurality of mounting members 18 are connected to a fixed frame that fixes the engine generator unit 1A.
  • FIG. 7 is a side view of an engine generator unit 1A according to Embodiment 2 of the present invention.
  • the mount member 18 which is a cylindrical rubber mount, has three elastic main axes E1, E2, and E3 perpendicular to each other.
  • the three elastic main axes E1, E2, E3 are determined based on the elastic modulus of the rubber member 18a.
  • the mount member 18 also has an elastic center E0 at which the three elastic main axes E1, E2, and E3 intersect perpendicularly.
  • the main elastic axes in the two orthogonal radial directions are defined as a first elastic main axis E1 and a second elastic main axis E2.
  • the principal elastic axis in the axial direction is assumed to be the principal elastic axis in the shear direction E3.
  • the two mount members 18 are positioned so that the composite elastic center Ec when regarded as a composite mount member coincides with the inertia center Ic of the engine generator unit 1A.
  • the two mounting members 18 support the two generators 15 of the engine generator unit 1A.
  • the two mounting members 18 are connected to the ends of the crankshaft 8 in the direction of the rotational axis C of the respective generators 15 .
  • the synthetic elastic principal axis Ex of the synthetic elastic principal axes Ex, Ey, and Ez in the direction in which the rotation axis C of the crankshaft 8 extends corresponds to the engine generator unit 1A. of the main inertia axes Ix, Iy, and Iz of the crankshaft 8 in the direction in which the rotation axis C of the crankshaft 8 extends.
  • the two mount members 18 are configured so that the elastic modulus in the direction of force acting by the rotational moment about the rotation axis C of the crankshaft 8 is smaller than the elastic modulus in other force directions. there is That is, the two mount members 18 have the greatest characteristic of damping vibration caused by the force acting by the rotational moment about the rotation axis C of the crankshaft 8 by elastic deformation.
  • the composite elastic center Ec when the two mount members 18 are regarded as a composite mount member coincides with the inertia center Ic of the engine generator unit 1A.
  • the generation of a force couple due to the deviation between the reaction force from the center of inertia Ic and the center of inertia Ic is suppressed.
  • the two mount members 18 support the engine-generator unit 1A, and receive the force exerted by the rotational moment about the rotational axis C of the crankshaft 8 while being elastically deformed.
  • the engine generator unit 1A can attenuate the vibration of the horizontally opposed engine 2 by the plurality of mount members 18 without coupling the vibration.
  • the engine generator units 1 and 1A have two generators 15 connected to both ends of the crankshaft 8 .
  • the engine generator unit is not limited to the configuration of the above embodiments.
  • the engine generator unit may be configured with only one generator at the end of the crankshaft.
  • the engine-generator units 1 and 1A have the two-cylinder horizontally opposed engine 2 .
  • the horizontally opposed engine is not limited to the configurations of the above-described embodiments.
  • the engine generator unit may have a horizontally opposed engine with multiple cylinders.
  • the engine generator unit 1 is supported by four mounting members, and the engine generator unit 1A is supported by two mounting members.
  • the configuration of the engine generator unit is not limited to the configuration of the above-described embodiment.
  • the engine generator unit may be configured to be supported by two or more mounting members.
  • the engine generator units 1, 1A are supported by rubber mounts.
  • the configuration of the engine generator unit is not limited to the configuration of the above-described embodiment.
  • the engine-generator unit may be supported by hydraulic, hydraulic, electromagnetic, vacuum, or piezo mounts.
  • the engine generator units 1 and 1A are supported by columnar rubber mounts or cylindrical rubber mounts.
  • the engine generator unit is not limited to the configuration of the above embodiments.
  • the engine-generator unit may be configured to be supported by rubber mounts of other shapes, such as V-shaped rubber mounts and O-shaped rubber mounts.
  • the two mount members 18 are connected to the ends of the respective generators 15 in the direction in which the rotation axis C of the crankshaft 8 extends.
  • the engine generator unit is not limited to the configuration of the above embodiments.
  • the engine generator unit may have a configuration in which the auxiliary mount member is connected in a direction perpendicular to the rotation axis of the crankshaft.
  • the auxiliary mount member is a mount member that suppresses rotation of the crankshaft of the horizontally opposed engine about the rotation axis.
  • the engine-generator unit does not couple vibrations of the horizontally opposed engine 2 by aligning the combined elastic center of the composite mount member of the two mount members and the auxiliary mount member with the inertia center of the engine-generator unit. can be attenuated.

Abstract

Provided is an engine generator unit which is exclusively for electric power generation and is capable of dampening the vibration of a horizontally-opposed engine without coupling the vibration. An engine generator unit 1, which is exclusively for electric power generation and does not have a motive power extraction mechanism for transmitting mechanical motive power to the outside, comprises: a horizontally-opposed engine 2 having at least two first cylinders 4 and second cylinders 7 arranged to the left and right of the rotation axis line C, of a crank shaft 8, serving as the center line; and a power generator 15 that couples a plurality of mounting members 16 for supporting the horizontally-opposed engine 2 to the crank shaft 8 of the horizontally-opposed engine 2. The plurality of mounting members 16 are arranged such that a composite elastic center Ec when all of the mounting members 16 are considered to be one elastic body matches the inertial center Ic of the engine generator unit 1 exclusively for electric power generation.

Description

発電専用のエンジン発電機ユニットEngine generator unit dedicated to power generation
 本発明は、発電専用のエンジン発電機ユニットに関する。 The present invention relates to an engine generator unit dedicated to power generation.
 従来、水平対向エンジンは、シリンダの往復運動によるクランク軸回りの回転モーメントと負荷に駆動力を伝達した際に受ける駆動反力とによって振動が発生する。このような前記水平対向エンジンにおいて、エンジンの形式、設置状態、用途等に応じた適切な位置をマウント部材によって支持することで前記水平対向エンジンの振動を効率的に減衰させることができる。特許文献1に開示されている産業用無人ヘリコプターは、2気筒の水平対向エンジンを動力源として搭載している。前記水平対向エンジンのクランク軸は、クラッチを介して動力伝達装置に連結されている。前記動力伝達装置には、メインロータを回転させるメインロータマストが連結されている。前記産業用無人ヘリコプターは、前記クラッチを接続することにより前記水平対向エンジンの駆動力を、前記動力伝達装置を経て前記メインロータマストに伝達する。 Conventionally, horizontally opposed engines generate vibration due to the rotational moment around the crankshaft due to the reciprocating motion of the cylinder and the driving reaction force received when the driving force is transmitted to the load. In such a horizontally-opposed engine, the vibration of the horizontally-opposed engine can be efficiently damped by supporting the mount member at an appropriate position according to the engine type, installation state, application, and the like. The industrial unmanned helicopter disclosed in Patent Document 1 is equipped with a two-cylinder horizontally opposed engine as a power source. A crankshaft of the horizontally opposed engine is connected to a power transmission device via a clutch. A main rotor mast that rotates the main rotor is connected to the power transmission device. The industrial unmanned helicopter transmits the driving force of the horizontally opposed engine to the main rotor mast through the power transmission device by connecting the clutch.
 特許文献1に開示される産業用無人ヘリコプターの水平対向エンジンは、前記クランク軸の回転軸線を機体の前後に向けて機体フレームに搭載されている。前記クランク軸の機体後方の端部には、前記クラッチを介して動力伝達装置が連結されている。このように、前記水平対向エンジンは、前記クラッチ及び前記動力伝達装置と一体に構成されている。前記水平対向エンジンは、クラッチハウジングと前記動力伝達装置のメインロータマスト近傍に設けられているマウント部材である防振部材によって支持されている。前記クラッチハウジングの防振部材は、前記水平対向エンジンの慣性中心まわりの偶力による振動を減衰させている。一方、前記動力伝達装置の防振部材は、前記メインロータの駆動反力の変動による振動を減衰させている。 The horizontally opposed engine of the industrial unmanned helicopter disclosed in Patent Document 1 is mounted on the body frame with the rotation axis of the crankshaft facing forward and backward of the body. A power transmission device is connected to the rear end of the crankshaft through the clutch. Thus, the horizontally opposed engine is configured integrally with the clutch and the power transmission device. The horizontally opposed engine is supported by a clutch housing and a vibration isolating member, which is a mount member provided in the vicinity of the main rotor mast of the power transmission device. The vibration isolating member of the clutch housing damps vibrations caused by a couple of forces around the center of inertia of the horizontally opposed engine. On the other hand, the vibration isolating member of the power transmission device attenuates vibration caused by fluctuations in the drive reaction force of the main rotor.
 また、特許文献2には、動ばね定数を変更可能な防振ゴム装置(マウント部材)を適切に可変制御して車両の乗り心地及び静粛性を改善するため内燃機関を車体から防振支持する防振支持方法が開示されている。特許文献2に開示されている車両用内燃機関の防振支持方法では、前記車両用内燃機関の回転軸に変速機が直結された組立体は、複数の防振ゴム装置によって支持されている。前記組立体は、ローリング運動における重心慣性主軸の軸方向端部、及びピッチング運動における重心慣性主軸の軸方向端部をそれぞれ一対の防振ゴム装置によって支持されている。一方の一対の防振ゴム装置は、1つの弾性体とみなしたときの弾性中心が前記組立体におけるローリング運動における重心慣性主軸上に位置している。他方の一対の防振ゴム装置は、1つの弾性体とみなしたときの弾性中心がピッチング運動における重心慣性主軸上に位置している。 In addition, in Patent Document 2, an internal combustion engine is supported from the vehicle body in vibration isolation in order to improve the ride comfort and quietness of the vehicle by appropriately variably controlling a vibration isolation rubber device (mount member) capable of changing the dynamic spring constant. An anti-vibration support method is disclosed. In the anti-vibration support method for a vehicle internal combustion engine disclosed in Patent Document 2, an assembly in which a transmission is directly connected to a rotating shaft of the vehicle internal combustion engine is supported by a plurality of anti-vibration rubber devices. In the assembly, the axial ends of the center-of-gravity inertia main axis in rolling motion and the axial ends of the center-of-gravity inertia main axis in pitching motion are respectively supported by a pair of anti-vibration rubber devices. One pair of anti-vibration rubber devices has a center of elasticity when regarded as one elastic body located on the center-of-gravity inertia principal axis in the rolling motion of the assembly. The other pair of anti-vibration rubber devices has a center of elasticity when regarded as one elastic body located on the center-of-gravity inertia principal axis in pitching motion.
 前記組立体は、車両の駆動輪に接続されている。つまり、前記組立体は、前記車輪等の外部からの駆動反力が伝達される。前記一方の一対の防振ゴム装置は、ローリング運動における慣性主軸上の任意の位置を基準とする弾性主軸に基づいて前記駆動反力による振動及び組立体自体の振動とを抑制する。同様にして、前記他方の一対の防振ゴム装置は、ピッチング運動における慣性主軸上の任意の位置を基準とする弾性主軸に基づいて前記駆動反力による振動及び組立体自体の振動を抑制する。よって、一方の一対の防振ゴム装置の弾性中心及び他方の一対の防振ゴム装置における弾性中心は、前記組立体の慣性中心と一致していない。一方の一対の防振ゴム装置と他方の一対の防振ゴム装置とは、前記組立体自体の振動と外部からの駆動反力による振動を抑制するために、それぞれ異なる位置においてそれぞれ異なる方向の弾性主軸によって前記組立体を防振している。 The assembly is connected to the drive wheels of the vehicle. In other words, the drive reaction force from outside such as the wheels is transmitted to the assembly. The one pair of anti-vibration rubber devices suppresses vibrations due to the drive reaction force and vibrations of the assembly itself based on an elastic principal axis based on an arbitrary position on the principal axis of inertia in rolling motion. Similarly, the other pair of anti-vibration rubber devices suppresses vibrations due to the drive reaction force and vibrations of the assembly itself based on an elastic principal axis with an arbitrary position on the inertial principal axis in pitching motion as a reference. Therefore, the center of elasticity of one pair of rubber vibration isolators and the center of elasticity of the other pair of rubber vibration isolators do not coincide with the center of inertia of the assembly. One pair of rubber vibration isolators and the other pair of rubber vibration isolators have elasticity in different directions at different positions in order to suppress the vibration of the assembly itself and the vibration due to the drive reaction force from the outside. A spindle isolates the assembly from vibrations.
特開平10-119897号公報JP-A-10-119897 特開昭60-116937号公報JP-A-60-116937
 一方、前記水平対向エンジンを備えるエンジン発電機ユニットの場合、前記水平対向エンジンは、電力を発電させる発電機を一定の回転数で回転させるので、特許文献1に記載の水平対向エンジン及び特許文献2の組立体のように駆動反力の変動による振動が生じにくい。このような水平対向エンジンを備えるエンジン発電機ユニットにおいて、振動を連成させることなく減衰させることができるマウント部材の配置を検討した。 On the other hand, in the case of an engine generator unit including the horizontally opposed engine, the horizontally opposed engine rotates the generator for generating electric power at a constant rotation speed. Vibration due to fluctuations in driving reaction force is less likely to occur as in the assembly of . In an engine generator unit equipped with such a horizontally opposed engine, the arrangement of mount members capable of damping vibrations without coupling them was studied.
 本発明は、水平対向エンジンの振動を連成させることなく減衰させることができるエンジン発電機ユニットの構成を実現することを目的とする。 An object of the present invention is to realize a configuration of an engine-generator unit that can attenuate the vibration of a horizontally opposed engine without coupling it.
 本発明者は、水平対向エンジンの振動を連成させることなく減衰させることができるエンジン発電機ユニットにおいて、マウント部材の構成について検討した。鋭意検討の結果、本発明者は、以下のような構成に想到した。 The inventor studied the configuration of the mount member in an engine-generator unit that can attenuate the vibration of a horizontally opposed engine without coupling it. As a result of intensive studies, the inventors came up with the following configuration.
 本発明の一実施形態に係る発電専用のエンジン発電機ユニットは、少なくとも2つのシリンダがクランク軸の軸線方向から見て、第1方向と前記第1方向の反対方向である第2方向とに前記シリンダの軸線が延びるように位置している水平対向エンジンと、前記水平対向エンジンを支持する複数のマウント部材と前記水平対向エンジンのクランク軸に連結される発電機と、を備えた、外部に機械的な動力を伝達する動力取出し機構を有さない発電専用のエンジン発電機ユニットである。 In an engine generator unit dedicated to power generation according to one embodiment of the present invention, at least two cylinders are arranged in a first direction and a second direction opposite to the first direction when viewed from the axial direction of the crankshaft. A machine externally provided with a horizontally opposed engine positioned so that the axis of a cylinder extends, a plurality of mounting members supporting the horizontally opposed engine, and a generator connected to a crankshaft of the horizontally opposed engine. It is an engine-generator unit dedicated to power generation that does not have a power take-off mechanism that transmits the actual power.
 前記複数のマウント部材は、全てのマウント部材を一つの弾性体とみなしたときの弾性中心が前記発電専用のエンジン発電機ユニットの慣性中心に一致するように位置している。 The plurality of mount members are positioned so that the center of elasticity when all the mount members are regarded as one elastic body coincides with the center of inertia of the engine generator unit dedicated to power generation.
 上述の構成では、前記発電専用のエンジン発電機ユニットは、自動車のエンジンのように外部の負荷が直接伝達されるトランスミッション等の外部に機械的な動力を伝達する動力取出し機構を有さない。つまり、前記発電専用のエンジン発電機ユニットには、駆動反力の発生源である機械的な負荷が連結されていない。更に、前記水平対向エンジンは、クランク軸の軸線を中心線として左右の重量配分がほぼ均等で、2つのシリンダが180度反転した状態で互いに逆方向に往復移動する。このため、前記水平対向エンジンを有する前記発電専用のエンジン発電機ユニットは、全てのマウント部材を一つの弾性体とみなしたときの弾性中心を前記発電専用のエンジン発電機ユニットの慣性中心に容易に一致させることができる。また、前記発電専用のエンジン発電機ユニットは、前記発電専用のエンジン発電機ユニットを支持している全てのマウント部材からの反力が前記発電専用のエンジン発電機ユニットの慣性中心に加わる。従って、前記発電専用のエンジン発電機ユニットは、前記マウント部材からの反力による前記発電専用のエンジン発電機ユニットの偶力の発生が抑制される。また、前記発電専用のエンジン発電機ユニットは、前記全てのマウント部材によって振動を抑制する。これにより、前記発電専用のエンジン発電機ユニットは、全てのマウント部材によって前記水平対向エンジンの振動を連成させることなく減衰させることができる。 In the above configuration, the engine generator unit dedicated to power generation does not have a power take-off mechanism that transmits mechanical power to the outside, such as a transmission that directly transmits an external load like an automobile engine. In other words, the mechanical load, which is the source of the drive reaction force, is not connected to the engine generator unit dedicated to power generation. Further, the horizontally opposed engine has a substantially equal weight distribution on the right and left sides with the axis of the crankshaft as the center line, and reciprocates in opposite directions with the two cylinders being 180 degrees reversed. Therefore, in the engine-generator unit dedicated to power generation having the horizontally opposed engine, the center of elasticity when all the mount members are regarded as one elastic body can easily be the center of inertia of the engine-generator unit dedicated to power generation. can be matched. Further, in the engine generator unit dedicated to power generation, the reaction force from all the mount members supporting the engine generator unit dedicated to power generation is applied to the center of inertia of the engine generator unit dedicated to power generation. Therefore, the generation-dedicated engine-generator unit is prevented from generating a force couple due to the reaction force from the mount member. Further, the engine generator unit dedicated to power generation suppresses vibrations by all the mounting members. As a result, the engine-generator unit dedicated to power generation can attenuate the vibration of the horizontally opposed engine by all the mount members without coupling the vibration.
 他の観点によれば、本発明の発電専用のエンジン発電機ユニットは、以下の構成を含むことが好ましい。前記複数のマウント部材は、全てのマウント部材を1つの弾性体とみなしたときの弾性主軸のうち前記クランク軸の回転軸線が延びる方向の弾性主軸が、前記発電専用のエンジン発電機ユニットの慣性主軸のうち前記クランク軸の回転軸線が延びる方向の慣性主軸に一致するように位置している。 From another point of view, the engine generator unit dedicated to power generation of the present invention preferably includes the following configuration. Among the elastic main axes of the plurality of mount members when all the mount members are regarded as one elastic body, the elastic main axis in the direction in which the rotation axis of the crankshaft extends is the inertia main axis of the engine generator unit dedicated to power generation. It is located so as to coincide with the principal axis of inertia in the direction in which the rotational axis of the crankshaft extends.
 上述の構成では、前記発電専用のエンジン発電機ユニットは、全てのマウント部材を1つの弾性体とみなしたときの弾性主軸のうち前記クランク軸の回転軸線が延びる方向の弾性主軸が、前記発電専用のエンジン発電機ユニットの慣性主軸のうち前記クランク軸の回転軸線が延びる方向の慣性主軸に一致している。つまり、前記発電専用のエンジン発電機ユニットは、全てのマウント部材による前記クランク軸の回転軸線が延びる方向からの反力が前記発電専用のエンジン発電機ユニットの慣性主軸の方向と一致している。従って、前記発電専用のエンジン発電機ユニットは、前記発電専用のエンジン発電機ユニットを回転させる偶力の発生が抑制される。よって、前記発電専用のエンジン発電機ユニットには、前記クランク軸の回転軸線回りに生じる回転モーメントを起因とする振動の連成が生じにくい。これにより、前記発電専用のエンジン発電機ユニットは、前記複数のマウント部材によって前記水平対向エンジンの振動を連成させることなく減衰させることができる。 In the above configuration, in the engine generator unit dedicated to power generation, when all the mount members are regarded as one elastic body, the elastic principal axis in the direction in which the rotation axis of the crankshaft extends is the elastic principal axis dedicated to power generation. of the main inertia axes of the engine generator unit in the direction in which the rotation axis of the crankshaft extends. That is, in the engine generator unit dedicated to power generation, the reaction force from the direction in which the rotation axis of the crankshaft extends by all the mount members coincides with the direction of the principal axis of inertia of the engine generator unit dedicated to power generation. Therefore, in the engine generator unit dedicated to power generation, generation of a couple of forces that rotate the engine generator unit dedicated to power generation is suppressed. Therefore, in the engine-generator unit dedicated to power generation, coupling of vibration caused by the rotational moment generated about the rotation axis of the crankshaft is less likely to occur. Thus, the engine-generator unit dedicated to power generation can attenuate vibrations of the horizontally opposed engine by the plurality of mount members without coupling the vibrations.
 他の観点によれば、本発明の発電専用のエンジン発電機ユニットは、以下の構成を含むことが好ましい。前記複数のマウント部材は、前記クランク軸の回転軸線に垂直な方向且つ前記シリンダの移動方向に垂直な方向から見て、前記発電専用のエンジン発電機ユニットの慣性中心を対称点とする点対称になるように位置している。 From another point of view, the engine generator unit dedicated to power generation of the present invention preferably includes the following configuration. The plurality of mounting members are symmetrical about the center of inertia of the engine-generator unit dedicated to power generation when viewed from a direction perpendicular to the rotation axis of the crankshaft and a direction perpendicular to the moving direction of the cylinder. It is located so that
 上述の構成では、前記複数のマウント部材が、前記クランク軸の回転軸線に垂直な方向、且つ前記シリンダの移動方向に垂直な方向から見て、前記水平対向エンジンの慣性中心を対称点とする点対称になるように位置している。つまり、前記複数のマウント部材は、前記水平対向エンジンの慣性中心を囲むように位置している。従って、前記水平対向エンジンは、前記複数のマウント部材によって安定的に支持され、且つ前記クランク軸回りの回転モーメントに起因する振動を前記複数のマウント部材によって受け止めることができる。これにより、前記発電専用のエンジン発電機ユニットは、前記複数のマウント部材によって前記水平対向エンジンの振動を連成させることなく減衰させることができる。 In the above configuration, the plurality of mount members have a symmetrical point about the center of inertia of the horizontally opposed engine when viewed from a direction perpendicular to the rotation axis of the crankshaft and a direction perpendicular to the movement direction of the cylinder. positioned symmetrically. That is, the plurality of mount members are positioned so as to surround the center of inertia of the horizontally opposed engine. Therefore, the horizontally opposed engine is stably supported by the plurality of mount members, and vibrations caused by the rotational moment about the crankshaft can be received by the plurality of mount members. Thus, the engine-generator unit dedicated to power generation can attenuate vibrations of the horizontally opposed engine by the plurality of mount members without coupling the vibrations.
 他の観点によれば、本発明の発電専用のエンジン発電機ユニットは、以下の構成を含むことが好ましい。前記水平対向エンジンにおけるクランク軸の両端には、発電機がそれぞれ連結され、前記複数のマウント部材は、前記クランク軸の回転軸線が延びる方向に垂直な方向且つ前記シリンダの移動方向に垂直な方向から見て、前記クランク軸の回転軸線と、前記発電専用のエンジン発電機ユニットの慣性中心を通り且つ前記シリンダの移動方向に延びる直線とによって区切られる4つの領域に少なくとも1つずつ位置する。 From another point of view, the engine generator unit dedicated to power generation of the present invention preferably includes the following configuration. Generators are connected to both ends of the crankshaft of the horizontally opposed engine, respectively, and the plurality of mount members are mounted in a direction perpendicular to the direction in which the rotation axis of the crankshaft extends and in a direction perpendicular to the direction of movement of the cylinder. As can be seen, at least one is located in each of four regions defined by the rotation axis of the crankshaft and a straight line passing through the center of inertia of the engine-generator unit dedicated to power generation and extending in the moving direction of the cylinder.
 上述の構成では、前記複数のマウント部材は、前記クランク軸の回転軸線に垂直な方向、且つ前記シリンダの移動方向に垂直な方向から見て、前記水平対向エンジンの慣性中心を中心として4象限に分割した領域に少なくとも1つずつ位置している。つまり、前記水平対向エンジンは、少なくとも4つの前記マウント部材によって慣性中心を囲むように支持されている。従って、前記水平対向エンジンは、より安定して前記複数のマウント部材に支持され、前記クランク軸回りの回転モーメントを均等に受け止めることができる。これにより、前記発電専用のエンジン発電機ユニットは、前記複数のマウント部材によって前記水平対向エンジンの振動を連成させることなく減衰させることができる。 In the above configuration, the plurality of mount members are arranged in four quadrants around the center of inertia of the horizontally opposed engine when viewed from a direction perpendicular to the rotation axis of the crankshaft and a direction perpendicular to the movement direction of the cylinder. At least one is located in each divided area. That is, the horizontally opposed engine is supported so as to surround the center of inertia by at least four of the mount members. Therefore, the horizontally opposed engine is more stably supported by the plurality of mount members, and can evenly receive the rotational moment about the crankshaft. Thus, the engine-generator unit dedicated to power generation can attenuate vibrations of the horizontally opposed engine by the plurality of mount members without coupling the vibrations.
 他の観点によれば、本発明の発電専用のエンジン発電機ユニットは、以下の構成を含むことが好ましい。前記水平対向エンジンにおけるクランク軸の両端には、発電機がそれぞれ連結され、前記複数のマウント部材は、ぞれぞれの前記発電機において、前記クランク軸の回転軸線が延びる方向の端部に位置し、且つ前記複数のマウント部材を1つの弾性体とみなしたときの弾性主軸のうち前記クランク軸の回転軸線が延びる方向の弾性主軸が、前記発電専用のエンジン発電機ユニットの慣性主軸のうち前記クランク軸の回転軸線が延びる方向の慣性主軸に一致するように位置している。 From another point of view, the engine generator unit dedicated to power generation of the present invention preferably includes the following configuration. Generators are connected to both ends of the crankshaft of the horizontally opposed engine, and the plurality of mount members are positioned at the ends of the respective generators in the direction in which the rotation axis of the crankshaft extends. and when the plurality of mount members are regarded as one elastic body, the elastic main axis in the direction in which the rotation axis of the crankshaft extends is the inertia main axis of the engine-generator unit dedicated to power generation. It is located so as to coincide with the principal axis of inertia in the direction in which the rotation axis of the crankshaft extends.
 上述の構成では、前記発電専用のエンジン発電機ユニットは、前記クランク軸の回転軸線が延びる方向の両端部であって、前記クランク軸の回転軸線が延びる方向から見て前記発電専用のエンジン発電機ユニットの慣性中心と重複する位置を前記マウント部材で支持されている。従って、前記発電専用のエンジン発電機ユニットは、前記クランク軸の回転軸線回りの回転モーメントを前記クランク軸の回転軸線が延びる方向の両端部に設けられている前記マウント部材によって受け止めている。この際、複数のマウント部材の弾性主軸と前記水平対向エンジンの慣性中心とが一致しているので、前記発電専用のエンジン発電機ユニットは、複数のマウント部材からの反力と慣性中心とのずれによる偶力の発生が抑制される。これにより、前記発電専用のエンジン発電機ユニットは、前記複数のマウント部材によって前記水平対向エンジンの振動を連成させることなく減衰させることができる。 In the above configuration, the engine generator unit dedicated to power generation is located at both end portions in the direction in which the rotation axis of the crankshaft extends, and is the engine generator dedicated to power generation when viewed from the direction in which the rotation axis of the crankshaft extends. It is supported by the mount member at a position overlapping the center of inertia of the unit. Therefore, in the engine generator unit dedicated to power generation, the rotational moment about the rotation axis of the crankshaft is received by the mount members provided at both ends in the direction in which the rotation axis of the crankshaft extends. At this time, since the main elastic axes of the plurality of mount members and the center of inertia of the horizontally opposed engine are aligned, the engine-generator unit dedicated to power generation will not be affected by the reaction force from the plurality of mount members and the deviation of the center of inertia. The generation of a couple of forces due to is suppressed. Thus, the engine-generator unit dedicated to power generation can attenuate vibrations of the horizontally opposed engine by the plurality of mount members without coupling the vibrations.
 他の観点によれば、本発明の発電専用のエンジン発電機ユニットは、以下の構成を含むことが好ましい。前記複数のマウント部材は、前記クランク軸の回転軸線回りの回転モーメントによって作用する力の方向における弾性率が、他の力の方向における弾性率よりも小さい。 From another point of view, the engine generator unit dedicated to power generation of the present invention preferably includes the following configuration. The plurality of mount members have a smaller modulus of elasticity in a direction of force acting by a rotational moment about the rotational axis of the crankshaft than in other directions of force.
 上述の構成では、前記複数のマウント部材は、水平対向エンジンを支持し、且つ前記クランク軸の回転軸線回りの回転モーメントによって作用する力を弾性変形しながら受け止める。つまり、前記複数のマウント部材は、振動を吸収する必要がある方向の弾性率が、前記水平対向エンジンの重量を支持する必要がある方向の弾性率よりも小さくなるように構成されている。これにより、前記発電専用のエンジン発電機ユニットは、前記複数のマウント部材によって前記水平対向エンジンの振動を連成させることなく減衰させることができる。 In the above configuration, the plurality of mount members support the horizontally opposed engine, and receive the force exerted by the rotational moment about the rotation axis of the crankshaft while being elastically deformed. That is, the plurality of mount members are configured such that the elastic modulus in the direction required to absorb vibration is smaller than the elastic modulus in the direction required to support the weight of the horizontally opposed engine. Thus, the engine-generator unit dedicated to power generation can attenuate vibrations of the horizontally opposed engine by the plurality of mount members without coupling the vibrations.
 本明細書で使用される専門用語は、特定の実施形態のみを定義する目的で使用されるのであって、前記専門用語によって発明を制限する意図はない。 The technical terms used in this specification are used for the purpose of defining specific embodiments only, and are not intended to limit the invention by the technical terms.
 本明細書で使用される「及び/または」は、一つまたは複数の関連して列挙された構成物のすべての組み合わせを含む。 As used herein, "and/or" includes all combinations of one or more of the associated listed constructs.
 本明細書において、「含む、備える(including)」「含む、備える(comprising)」または「有する(having)」及びそれらの変形の使用は、記載された特徴、工程、操作、要素、成分、及び/または、それらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、及び/または、それらのグループのうちの1つまたは複数を含むことができる。 As used herein, the use of "including," "comprising," or "having," and variations thereof, refers to the features, steps, operations, elements, components, and /or may include one or more of steps, acts, elements, components and/or groups thereof, although specifying the presence of equivalents thereof.
 本明細書において、「取り付けられた」、「接続された」、「結合された」、及び/または、それらの等価物は、広義の意味で使用され、“直接的及び間接的な”取り付け、接続及び結合の両方を包含する。さらに、「接続された」及び「結合された」は、物理的または機械的な接続または結合に限定されず、直接的または間接的な電気的接続または結合を含むことができる。 As used herein, "attached," "connected," "coupled," and/or equivalents thereof are used broadly and include "direct and indirect" attachment, It includes both connection and coupling. Furthermore, "connected" and "coupled" are not limited to physical or mechanical connections or couplings, but can include direct or indirect electrical connections or couplings.
 他に定義されない限り、本明細書で使用される全ての用語(技術用語及び科学用語を含む)は、本発明が属する技術分野の当業者によって一般的に理解される意味と同じ意味を有する。 Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by a person skilled in the art to which this invention belongs.
 一般的に使用される辞書に定義された用語は、関連する技術及び本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的または過度に形式的な意味で解釈されることはない。 Terms defined in commonly used dictionaries are to be construed to have a meaning consistent with their meaning in the context of the relevant art and this disclosure, unless explicitly defined herein. , is not to be interpreted in an idealized or overly formal sense.
 本発明の説明においては、いくつもの技術および工程が開示されていると理解される。これらの各々は、個別の利益を有し、他に開示された技術の1つ以上、または、場合によっては全てと共に使用することもできる。 It is understood that a number of techniques and processes are disclosed in the description of the present invention. Each of these has individual benefits and can also be used in conjunction with one or more, or possibly all, of the other disclosed techniques.
 したがって、明確にするために、本発明の説明では、不要に個々のステップの可能な組み合わせをすべて繰り返すことを控える。しかしながら、本明細書及び特許請求の範囲は、そのような組み合わせがすべて本発明の範囲内であることを理解して読まれるべきである。 Therefore, for the sake of clarity, the description of the present invention refrains from unnecessarily repeating all possible combinations of individual steps. However, the specification and claims should be read with the understanding that all such combinations are within the scope of the present invention.
 本明細書では、本発明に係る発電専用のエンジン発電機ユニットの実施形態について説明する。 This specification describes an embodiment of an engine generator unit dedicated to power generation according to the present invention.
 以下の説明では、本発明の完全な理解を提供するために多数の具体的な例を述べる。しかしながら、当業者は、これらの具体的な例がなくても本発明を実施できることが明らかである。 In the following description, a number of specific examples are set forth to provide a thorough understanding of the invention. However, it will be obvious to one skilled in the art that the invention may be practiced without these specific examples.
 よって、以下の開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。 Accordingly, the following disclosure should be considered illustrative of the invention and is not intended to limit the invention to the specific embodiments illustrated by the following drawings or description.
 [発電専用のエンジン発電機ユニット]
 本明細書において、発電専用のエンジン発電機ユニットとは、ディーゼルエンジン、ガソリンエンジンなどの各種のレシプロエンジンによって、ダイナモ等から構成される発電機を駆動して発電する装置である。前記発電専用のエンジン発電機ユニットは、外部からの電力発電要求に応じて、前記エンジンの回転数を制御して発電する。前記発電専用のエンジン発電機ユニットには、外部に機械的な動力を伝達する動力取出し機構を有さない。つまり、前記発電専用のエンジン発電機ユニットは、エンジンの駆動力を前記発電機以外に供給していない。例えば、マルチコプターに電力を供給する前記発電専用のエンジン発電機ユニットは、マルチコプターのプロペラを回転させるための動力を出力しない。前記本実施例において、前記発電専用のエンジン発電機ユニットは、水平対向エンジンを備えている。
[Engine generator unit for power generation]
In this specification, an engine-generator unit dedicated to power generation is a device that generates power by driving a generator composed of a dynamo or the like with various reciprocating engines such as a diesel engine and a gasoline engine. The engine generator unit dedicated to power generation controls the rotation speed of the engine to generate power in response to a power generation request from the outside. The engine generator unit dedicated to power generation does not have a power take-off mechanism for transmitting mechanical power to the outside. That is, the engine-generator unit dedicated to power generation does not supply the driving force of the engine to anything other than the generator. For example, the engine-generator unit dedicated to power generation that supplies electric power to the multicopter does not output power to rotate the propeller of the multicopter. In the present embodiment, the engine generator unit dedicated to power generation comprises a horizontally opposed engine.
 [水平対向エンジン]
 本明細書において、水平対向エンジンとは、少なくとも2つのシリンダがクランク軸の軸線方向から見て、第1方向と前記第1方向の反対方向である第2方向とに前記シリンダの軸線が延びるように位置しているエンジンである。前記水平対向エンジンは、前記シリンダ内に位置しているピストン同士が互いに近接または離隔するように移動するレシプロエンジンである。水平対向エンジンは、クランク軸の軸線及ピストンの軸線が水平になるように位置している。前記第1方向は、前記水平対向エンジンの前記クランク軸の軸線方向を前後方向と規定した場合、右方向または左方向である。
[horizontally opposed engine]
In this specification, the term "horizontally opposed engine" refers to an engine in which at least two cylinders extend in a first direction and a second direction opposite to the first direction when viewed from the axial direction of the crankshaft. The engine is located in The horizontally opposed engine is a reciprocating engine in which pistons positioned in the cylinder move toward or away from each other. A horizontally opposed engine is positioned so that the axis of the crankshaft and the axis of the piston are horizontal. The first direction is the right direction or the left direction when the axial direction of the crankshaft of the horizontally opposed engine is defined as the front-rear direction.
 [マウント部材]
 本明細書において、マウント部材とは、前記発電専用のエンジン発電機ユニットを支持するとともに、前記マウント部材によって支持されている前記発電機用エンジンから外部に伝達される運動エネルギー(振動)を減衰させる。
[Mounting material]
In this specification, the mount member supports the engine-generator unit dedicated to power generation and attenuates kinetic energy (vibration) transmitted from the generator engine supported by the mount member to the outside. .
 [弾性主軸]
 本明細書において、弾性主軸とは、ある軸に沿って力を加えたとき、力の方向と弾性変位の方向が一致し、且つ、角変位を生じないような軸をいう。例えば、圧縮バネは、軸線の方向に力を加えたとき、軸線の方向に圧縮され、且つ角変位を生じない。従って、圧縮バネにおける軸線は、圧縮バネの弾性主軸の一つである。弾性体には、互いに直交する3本の弾性主軸が存在する。
[Elastic principal axis]
In this specification, the term "elastic principal axis" refers to an axis such that when a force is applied along a certain axis, the direction of the force and the direction of elastic displacement are the same and no angular displacement occurs. For example, a compression spring compresses in the direction of the axis and does not undergo angular displacement when a force is applied in the direction of the axis. Therefore, the axis of the compression spring is one of the principal elastic axes of the compression spring. An elastic body has three elastic main axes that are perpendicular to each other.
 [弾性中心]
 本明細書において、弾性中心とは、弾性体において3本の弾性主軸が互いに直交する交点をいう。
[Elastic center]
In this specification, the term "elastic center" refers to an intersection point at which three elastic principal axes intersect each other at right angles in an elastic body.
 [弾性率]
 本明細書において、弾性率とは、弾性体の変形のしにくさを表す物性値である。弾性率が小さいほど変形し易い。
[Elastic modulus]
In this specification, the elastic modulus is a physical property value representing the difficulty of deformation of an elastic body. The smaller the elastic modulus, the easier the deformation.
 [慣性主軸]
 本明細書において、慣性主軸とは、ある軸を中心にして剛体を回転させたとき、剛体とともに回転する座標系からみて、回転軸の方向を変えさせようとする偶力が発生しないような軸をいう。一般に剛体の慣性主軸は、直交する3軸を座標として慣性モーメントと慣性乗積とから3軸の慣性主軸の方向を算出する。
[Inertia principal axis]
In this specification, the principal axis of inertia is an axis that, when a rigid body is rotated around a certain axis, does not generate a couple of forces that would change the direction of the rotation axis when viewed from a coordinate system that rotates together with the rigid body. Say. In general, the principal axes of inertia of a rigid body are calculated from the moment of inertia and the product of inertia with the three orthogonal axes as coordinates.
 [慣性中心]
 本明細書において、慣性中心とは、重量質量の中心(重心)、または慣性質量の中心である。重力質量とは、物体が重力によって引かれる強さを基にして定義される質量である。慣性質量とは、物体の加速度を基に定義される質量である。重量質量と慣性質量とは等価である。慣性中心は物体の各部分の質量が重心位置に集約している質量中心とみなせる。
[Center of Inertia]
As used herein, the center of inertia is the center of weight mass (center of gravity) or the center of inertia mass. Gravitational mass is the mass defined based on the strength with which an object is pulled by gravity. Inertial mass is mass defined based on the acceleration of an object. Gravimetric mass and inertial mass are equivalent. The center of inertia can be regarded as the center of mass where the mass of each part of the object is concentrated at the center of gravity.
 [慣性主軸と弾性主軸との一致]
 本明細書において、慣性主軸と弾性主軸との一致とは、慣性中心に対する弾性中心の方向のずれが25度以内、好ましくは5度以内である位置関係をいう。クランク軸の回転軸線と弾性主軸との一致も同様である。
[Coincidence between principal axis of inertia and principal axis of elasticity]
In this specification, the coincidence of the principal axis of inertia and the principal axis of elasticity refers to a positional relationship in which the deviation of the direction of the center of elasticity from the center of inertia is within 25 degrees, preferably within 5 degrees. The same applies to the coincidence of the rotation axis of the crankshaft and the elastic main axis.
 本発明の一実施形態によれば、水平対向エンジンの振動を連成させることなく減衰させることができる発電専用のエンジン発電機ユニットの構成を実現することができる。 According to one embodiment of the present invention, it is possible to realize a configuration of an engine-generator unit dedicated to power generation that can attenuate the vibration of a horizontally opposed engine without coupling it.
図1は、本発明の実施形態1に係る発電専用のエンジン発電機ユニットの平面図を示す。FIG. 1 shows a plan view of an engine generator unit dedicated to power generation according to Embodiment 1 of the present invention. 図2は、本発明の実施形態1に係る発電専用のエンジン発電機ユニットを支持するマウント部材の弾性主軸と弾性中心とを表す模式図を示す。FIG. 2 is a schematic diagram showing the elastic main axis and the elastic center of the mount member that supports the engine generator unit dedicated to power generation according to the first embodiment of the present invention. 図3は、本発明の実施形態1に係る発電専用のエンジン発電機ユニットの正面図を示す。FIG. 3 shows a front view of an engine generator unit dedicated to power generation according to Embodiment 1 of the present invention. 図4は、本発明の実施形態1に係る発電専用のエンジン発電機ユニットの側面図を示す。FIG. 4 shows a side view of an engine generator unit dedicated to power generation according to Embodiment 1 of the present invention. 図5は、本発明の実施形態2に係る発電専用のエンジン発電機ユニットの平面図を示す。FIG. 5 shows a plan view of an engine generator unit dedicated to power generation according to Embodiment 2 of the present invention. 図6は、本発明の実施形態2に係る発電専用のエンジン発電機ユニットを支持するマウント部材の弾性主軸と弾性中心とを表す模式図を示す。FIG. 6 shows a schematic diagram showing the elastic principal axis and the elastic center of the mount member that supports the engine generator unit dedicated to power generation according to Embodiment 2 of the present invention. 図7は、本発明の実施形態2に係る発電専用のエンジン発電機ユニットの側面図を示す。FIG. 7 shows a side view of an engine generator unit dedicated to power generation according to Embodiment 2 of the present invention.
 以下で、各実施形態について、図面を参照しながら説明する。各図において、同一部分には同一の符号を付して、その同一部分の説明は繰り返さない。なお、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。 Each embodiment will be described below with reference to the drawings. In each figure, the same parts are denoted by the same reference numerals, and the description of the same parts will not be repeated. Note that the dimensions of the constituent members in each drawing do not faithfully represent the actual dimensions of the constituent members, the dimensional ratios of the respective constituent members, and the like.
 [実施形態1]
 <エンジン発電機ユニットの全体構成>
 図1と図2とを用いて本発明の実施形態1に係る発電専用のエンジン発電機ユニットであるエンジン発電機ユニット1について説明する。図1は、エンジン発電機ユニット1の平面図である。図2は、エンジン発電機ユニット1を支持するマウント部材16の模式図である。
[Embodiment 1]
<Overall Configuration of Engine Generator Unit>
An engine-generator unit 1, which is an engine-generator unit dedicated to power generation, according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 and 2. FIG. FIG. 1 is a plan view of the engine generator unit 1. FIG. FIG. 2 is a schematic diagram of the mount member 16 that supports the engine generator unit 1. As shown in FIG.
 図1に示すように、本発明の実施形態1に係るエンジン発電機ユニット1は、エンジンの駆動力によって発電機15を駆動させて発電する発電専用の装置である。エンジン発電機ユニット1は、水平対向エンジン2、ダイナモによって構成される発電機15、複数のマウント部材16を備える。以下の実施形態において、水平対向エンジン2のクランク軸8の回転軸線Cが延びる方向を前後方向と規定する。また、クランク軸8の回転軸線Cに垂直、且つ前記シリンダの移動方向に垂直な方向から見て、ピストンの移動方向を左右方向と規定する。また、クランク軸8の回転軸線Cと前記シリンダの移動方向とに垂直な方向を上下方向と規定する。 As shown in FIG. 1, the engine generator unit 1 according to Embodiment 1 of the present invention is a device dedicated to power generation that generates power by driving the generator 15 with the driving force of the engine. The engine generator unit 1 includes a horizontally opposed engine 2 , a generator 15 configured by a dynamo, and a plurality of mount members 16 . In the following embodiments, the direction in which the rotation axis C of the crankshaft 8 of the horizontally opposed engine 2 extends is defined as the front-rear direction. Further, the moving direction of the piston is defined as the left-right direction when viewed from a direction perpendicular to the rotation axis C of the crankshaft 8 and perpendicular to the moving direction of the cylinder. A vertical direction is defined as a direction perpendicular to the rotation axis C of the crankshaft 8 and the moving direction of the cylinder.
 水平対向エンジン2は、水平対向2気筒エンジンである。水平対向エンジン2は、2つのシリンダがクランク軸8の回転軸線C方向から見て、右方向と右方向の反対方向である左方向とに第1シリンダ4と第2シリンダ7との軸線が延びるように位置しているエンジンである。つまり、水平対向エンジン2は、クランク軸8の回転軸線Cに垂直、且つシリンダ(第1シリンダ4及び第2シリンダ7)の移動方向に垂直な方向から見て、クランク軸8の左右にシリンダが位置しているエンジンである。水平対向エンジン2は、第1シリンダブロック3、第2シリンダブロック6、第1シリンダヘッド11、第2シリンダヘッド14、クランク軸8、第1コンロッド10、第2コンロッド13、第1ピストン9、第2ピストン12を有する。 The horizontally opposed engine 2 is a horizontally opposed 2-cylinder engine. In the horizontally opposed engine 2, two cylinders are arranged so that the axes of the first cylinder 4 and the second cylinder 7 extend in the right direction and the left direction, which is the opposite direction to the right direction, when viewed from the direction of the rotation axis C of the crankshaft 8. It is the engine that is located. That is, the horizontally opposed engine 2 has cylinders on the left and right sides of the crankshaft 8 when viewed from a direction perpendicular to the rotation axis C of the crankshaft 8 and perpendicular to the moving direction of the cylinders (the first cylinder 4 and the second cylinder 7). engine located. The horizontally opposed engine 2 includes a first cylinder block 3, a second cylinder block 6, a first cylinder head 11, a second cylinder head 14, a crankshaft 8, a first connecting rod 10, a second connecting rod 13, a first piston 9, a second It has 2 pistons 12 .
 第1シリンダブロック3は、第1シリンダ4とクランクケース5の一部とを構成する部材である。第1シリンダブロック3は、例えばアルミニウム合金によって形成されている。第1シリンダブロック3には、第1ピストン9を収容する第1シリンダ4が形成されている。第1シリンダ4の基端部には、クランク軸8を収容するクランクケース5の一部が形成されている。クランクケース5には、クランク軸8を支持する軸受部の一部が形成されている。第1シリンダ4の軸線は、クランクケース5の軸受部の軸線に直交している。また、第1シリンダ4の軸線は、クランク軸8の回転軸線C方向から見た第1方向に延びている。本実施形態において、第1方向は右方向とする。第1シリンダ4の基端は、クランクケース5内に連通している。 The first cylinder block 3 is a member that forms part of the first cylinder 4 and the crankcase 5 . The first cylinder block 3 is made of, for example, an aluminum alloy. A first cylinder 4 accommodating a first piston 9 is formed in the first cylinder block 3 . A portion of a crankcase 5 that accommodates a crankshaft 8 is formed at the base end of the first cylinder 4 . A part of a bearing for supporting the crankshaft 8 is formed in the crankcase 5 . The axis of the first cylinder 4 is perpendicular to the axis of the bearing portion of the crankcase 5 . Also, the axis of the first cylinder 4 extends in the first direction viewed from the rotation axis C direction of the crankshaft 8 . In this embodiment, the first direction is the right direction. A base end of the first cylinder 4 communicates with the inside of the crankcase 5 .
 第2シリンダブロック6は、第2シリンダ7とクランクケース5の一部とを構成する部材である。第2シリンダブロック6は、例えばアルミニウム合金によって形成されている。第2シリンダブロック6には、第2ピストン12を収容する第2シリンダ7が形成されている。第2シリンダ7の基端部には、クランク軸8を収容するクランクケース5の一部が形成されている。クランクケース5には、クランク軸8を支持する軸受部の一部が形成されている。第2シリンダ7の軸線は、クランクケース5の前記軸受部の軸線に直交している。また、第2シリンダ7の軸線は、クランク軸8の回転軸線C方向から見た第1方向の反対方向である第2方向に延びている。本実施形態において、第2方向は、左方向である。第2シリンダ7の基端は、クランクケース5内に連通している。 The second cylinder block 6 is a member that forms part of the second cylinder 7 and the crankcase 5 . The second cylinder block 6 is made of, for example, an aluminum alloy. A second cylinder 7 accommodating a second piston 12 is formed in the second cylinder block 6 . A portion of a crankcase 5 that accommodates a crankshaft 8 is formed at the base end of the second cylinder 7 . A part of a bearing for supporting the crankshaft 8 is formed in the crankcase 5 . The axis of the second cylinder 7 is perpendicular to the axis of the bearing portion of the crankcase 5 . Further, the axis of the second cylinder 7 extends in the second direction opposite to the first direction when viewed from the rotation axis C direction of the crankshaft 8 . In this embodiment, the second direction is the left direction. A proximal end of the second cylinder 7 communicates with the inside of the crankcase 5 .
 第1シリンダブロック3と第2シリンダブロック6とは、互いのクランクケース5の一部を対向させた状態で連結されている。これにより、第1シリンダブロック3と第2シリンダブロック6は、クランクケース5を構成している。つまり、第1シリンダ4と第2シリンダ7との間にクランクケース5が構成されている。クランクケース5には、クランク軸8を支持する図示しない軸受部が構成されている。前記軸受部の軸線は、クランク軸8の回転軸線Cと一致する。 The first cylinder block 3 and the second cylinder block 6 are connected to each other with parts of the crankcases 5 facing each other. Thereby, the first cylinder block 3 and the second cylinder block 6 constitute a crankcase 5 . That is, the crankcase 5 is constructed between the first cylinder 4 and the second cylinder 7 . A bearing (not shown) that supports the crankshaft 8 is formed in the crankcase 5 . The axis of the bearing portion coincides with the rotational axis C of the crankshaft 8 .
 第1シリンダ4と第2シリンダ7とは、クランク軸8の回転軸線Cを中心線として左右方向に略平行に位置している。第1シリンダ4は、クランク軸8の回転軸線Cの右に位置している。第2シリンダ7は、クランク軸8の回転軸線Cの左に位置している。第1シリンダ4と第2シリンダ7とは、クランク軸8に連結される第1コンロッド10と第2コンロッド13とが干渉しないようにクランク軸8の回転軸線C方向にずれて位置している。 The first cylinder 4 and the second cylinder 7 are positioned substantially parallel in the left-right direction with the rotation axis C of the crankshaft 8 as the center line. The first cylinder 4 is positioned to the right of the rotation axis C of the crankshaft 8 . The second cylinder 7 is positioned to the left of the rotation axis C of the crankshaft 8 . The first cylinder 4 and the second cylinder 7 are offset in the direction of the rotation axis C of the crankshaft 8 so that the first connecting rod 10 and the second connecting rod 13 connected to the crankshaft 8 do not interfere with each other.
 クランク軸8は、第1ピストン9及び第2ピストン12の往復運動を回転運動に変換する軸である。クランク軸8は、クランクケース5の軸受部に回転自在に支持されている。クランク軸8の回転軸線Cは、第1シリンダ4の軸線及び第2シリンダ7の軸線に直交している。クランク軸8の両端部は、出力軸としてクランクケース5から外部に延びている。 The crankshaft 8 is a shaft that converts the reciprocating motion of the first piston 9 and the second piston 12 into rotary motion. The crankshaft 8 is rotatably supported by bearings of the crankcase 5 . A rotation axis C of the crankshaft 8 is perpendicular to the axes of the first cylinder 4 and the second cylinder 7 . Both ends of the crankshaft 8 extend outside from the crankcase 5 as output shafts.
 第1ピストン9は、第1シリンダ4内において発生した燃料の燃焼によるエネルギーをクランク軸8に伝達する部品である。第1ピストン9は、第1シリンダ4内を摺動可能な外径を有する円筒状に形成されている。第1ピストン9は、第1シリンダ4に収容されている。第1ピストン9には、第1コンロッド10の一端部が揺動可能に連結されている。第1コンロッド10の他端部には、クランク軸8が揺動可能に連結されている。つまり、第1ピストン9は、第1コンロッド10を介してクランク軸8に揺動可能に連結されている。第1シリンダ4の先端部には、第1シリンダヘッド11が連結されている。これにより、第1シリンダ4の内部には、第1シリンダヘッド11と第1ピストン9とによって囲まれた燃焼室が構成されている。 The first piston 9 is a component that transmits energy generated by combustion of fuel generated in the first cylinder 4 to the crankshaft 8 . The first piston 9 is formed in a cylindrical shape having an outer diameter that allows it to slide inside the first cylinder 4 . A first piston 9 is housed in the first cylinder 4 . One end of a first connecting rod 10 is oscillatably connected to the first piston 9 . A crankshaft 8 is pivotably connected to the other end of the first connecting rod 10 . That is, the first piston 9 is oscillatably connected to the crankshaft 8 via the first connecting rod 10 . A first cylinder head 11 is connected to the tip of the first cylinder 4 . Thereby, a combustion chamber surrounded by the first cylinder head 11 and the first piston 9 is formed inside the first cylinder 4 .
 第2ピストン12は、第2シリンダ7内において発生した燃料の燃焼によるエネルギーをクランク軸8に伝達する部品である。第2ピストン12は、第2シリンダ7内を摺動可能な外径を有する円筒状に形成されている。第2ピストン12は、第2シリンダ7に収容されている。第2ピストン12には、第2コンロッド13の一端部が揺動可能に連結されている。さらに、第2コンロッド13の他端部には、クランク軸8が揺動可能に連結されている。つまり、第2ピストン12は、第2コンロッド13を介してクランク軸8に揺動自可能に連結されている。第2シリンダ7の先端部には、第2シリンダヘッド14が連結されている。これにより、第2シリンダ7の内部には、第2シリンダヘッド14と第2ピストン12とによって囲まれた燃焼室が構成されている。 The second piston 12 is a component that transmits energy generated by combustion of fuel generated in the second cylinder 7 to the crankshaft 8 . The second piston 12 is formed in a cylindrical shape having an outer diameter that allows it to slide inside the second cylinder 7 . The second piston 12 is housed in the second cylinder 7 . One end of a second connecting rod 13 is oscillatably connected to the second piston 12 . Furthermore, the crankshaft 8 is connected to the other end of the second connecting rod 13 so as to be able to swing. That is, the second piston 12 is oscillatably connected to the crankshaft 8 via the second connecting rod 13 . A second cylinder head 14 is connected to the tip of the second cylinder 7 . Thereby, a combustion chamber surrounded by the second cylinder head 14 and the second piston 12 is formed inside the second cylinder 7 .
 このように構成される水平対向エンジン2は、回転軸線Cが前後方向に延びるように位置しているクランク軸8の左右に第1ピストン9と第2ピストン12とが位置している。第1ピストン9の軸線と第2ピストン12の軸線とは、略水平な方向に延び、且つクランク軸8の回転軸線Cに対して垂直になっている。水平対向エンジン2は、第1ピストン9と第2ピストン12とが180度反転した状態において互いに逆方向に往復移動することでクランク軸8を回転させる。 In the horizontally opposed engine 2 configured in this way, the first piston 9 and the second piston 12 are positioned on the left and right sides of the crankshaft 8 positioned so that the rotation axis C extends in the longitudinal direction. The axis of the first piston 9 and the axis of the second piston 12 extend substantially horizontally and are perpendicular to the rotation axis C of the crankshaft 8 . The horizontally opposed engine 2 rotates the crankshaft 8 by reciprocating in opposite directions with the first piston 9 and the second piston 12 being reversed by 180 degrees.
 発電機15は、電力を発電する装置である。発電機15は、ダイナモ等によって構成されている。発電機15は、水平対向エンジン2のクランクケース5におけるクランク軸8の回転軸線Cが延びる方向の両端部にフランジを介してそれぞれ1台ずつ固定されている。つまり、エンジン発電機ユニット1は、発電機15を2台有している。2台の発電機15は、クランク軸8の両端にそれぞれ連結されている。これにより、2台の発電機15は、クランク軸8の回転により電力を同時に発電するように構成されている。このように、エンジン発電機ユニット1は、2台の発電機15に動力を供給する。つまり、エンジン発電機ユニット1は、エンジン発電機ユニット1の稼働に関係しない外部の装置に動力を供給していない。当然ながら、エンジン発電機ユニット1は、外部の装置に動力を供給するための変速装置を有さない。エンジン発電機ユニット1は、外部に機械的な動力を伝達する動力取出し機構を有さない発電専用のエンジン発電機ユニットとして構成されている。 The generator 15 is a device that generates electric power. The generator 15 is composed of a dynamo or the like. The generators 15 are fixed one by one to both ends of the crankcase 5 of the horizontally opposed engine 2 in the direction in which the rotation axis C of the crankshaft 8 extends through flanges. That is, the engine generator unit 1 has two generators 15 . The two generators 15 are connected to both ends of the crankshaft 8, respectively. As a result, the two generators 15 are configured to simultaneously generate electric power by the rotation of the crankshaft 8 . Thus, the engine generator unit 1 powers two generators 15 . That is, the engine generator unit 1 does not supply power to external devices unrelated to the operation of the engine generator unit 1 . Naturally, the engine-generator unit 1 does not have a transmission for powering external devices. The engine-generator unit 1 is configured as an engine-generator unit dedicated to power generation without a power take-off mechanism for transmitting mechanical power to the outside.
 複数のマウント部材16は、エンジン発電機ユニット1を支持し、且つエンジン発電機ユニット1の振動を減衰させる。複数のマウント部材16は、例えば、ゴムを用いたゴムマウントから構成されている。ゴムマウントは、天然ゴム、ブチルゴムまたはクロロプレンゴム等のゴムから構成されている。 A plurality of mounting members 16 support the engine generator unit 1 and attenuate the vibration of the engine generator unit 1 . The plurality of mount members 16 are composed of rubber mounts using rubber, for example. Rubber mounts are composed of rubber such as natural rubber, butyl rubber or chloroprene rubber.
 図2に示すように、複数のマウント部材16は、例えば、円柱状のゴム部材16aの両端部に金属製の取付部16bがそれぞれ固定された円柱型ゴムマウントから構成されている。円柱型ゴムマウントは、取付部16bに加わる外力をゴム部材16aによって支持し、且つ一方の取付部16bから入力される振動をゴム部材16aが弾性変形することによって減衰させる。円柱型ゴムマウントは、ゴム部材16aの大きさ、形状、姿勢、硬度等によって耐荷重及び振動特性が変化する。 As shown in FIG. 2, the plurality of mount members 16 are, for example, cylindrical rubber mounts in which metal mounting portions 16b are fixed to both ends of a cylindrical rubber member 16a. The cylindrical rubber mount supports the external force applied to the mounting portion 16b by the rubber member 16a, and attenuates vibration input from one mounting portion 16b by elastic deformation of the rubber member 16a. The cylindrical rubber mount changes its load capacity and vibration characteristics depending on the size, shape, attitude, hardness, etc. of the rubber member 16a.
 図1に示すように、複数のマウント部材16は、本実施形態において、同じ耐荷重及び振動特性の4個のマウント部材16によって水平対向エンジン2の第1シリンダ4と第2シリンダ7の軸線が略水平な状態になるようにエンジン発電機ユニット1を支持している。複数のマウント部材16の一方の取付部16b(図2参照)は、ブラケット17を介してクランクケース5に連結されている。複数のマウント部材16の他方の取付部16b(図2参照)は、エンジン発電機ユニット1を固定する図示しない固定フレームに連結されている。つまり、4個のマウント部材16は、エンジン発電機ユニット1における水平対向エンジン2を支持している。 As shown in FIG. 1, in this embodiment, the plurality of mounting members 16 are such that the axes of the first cylinder 4 and the second cylinder 7 of the horizontally opposed engine 2 are aligned by four mounting members 16 having the same load resistance and vibration characteristics. It supports the engine generator unit 1 so as to be in a substantially horizontal state. One attachment portion 16 b (see FIG. 2 ) of the plurality of mount members 16 is connected to the crankcase 5 via a bracket 17 . The other mounting portions 16b (see FIG. 2) of the plurality of mounting members 16 are connected to a fixing frame (not shown) that fixes the engine generator unit 1. As shown in FIG. In other words, the four mounting members 16 support the horizontally opposed engine 2 in the engine generator unit 1 .
 このように構成されるエンジン発電機ユニット1は、水平対向エンジン2によって2台の発電機15を駆動させる。エンジン発電機ユニット1は、2台の発電機15から電力を外部に供給する。エンジン発電機ユニット1は、クランク軸8の左右に第1シリンダ4と第2シリンダ7とが略水平に位置し、且つクランク軸8の前後に発電機15がそれぞれ位置している。つまり、エンジン発電機ユニット1は、左右方向、前後方向、上下方向の重量配分ほぼ均等になるように構成されている。エンジン発電機ユニット1は、複数のマウント部材16によって図示しない固定フレームから支持されている。 The engine-generator unit 1 configured in this way drives two generators 15 with the horizontally opposed engine 2 . The engine generator unit 1 supplies electric power to the outside from two generators 15 . In the engine generator unit 1, the first cylinder 4 and the second cylinder 7 are positioned substantially horizontally on the left and right sides of the crankshaft 8, and the generators 15 are positioned on the front and rear sides of the crankshaft 8, respectively. That is, the engine-generator unit 1 is configured so that the weight distribution in the left-right direction, the front-rear direction, and the vertical direction is substantially uniform. The engine generator unit 1 is supported from a fixed frame (not shown) by a plurality of mounting members 16 .
 <エンジン発電機ユニットに対するマウント部材の配置>
 次に、図1から図4を用いて、エンジン発電機ユニット1に対する複数のマウント部材16の配置について説明する。図3は、エンジン発電機ユニット1の正面図である。図4は、エンジン発電機ユニット1の側面図である。
<Arrangement of mounting member for engine generator unit>
Next, the arrangement of the plurality of mount members 16 with respect to the engine generator unit 1 will be described with reference to FIGS. 1 to 4. FIG. FIG. 3 is a front view of the engine generator unit 1. FIG. 4 is a side view of the engine generator unit 1. FIG.
 図1、図3に示すように、水平対向エンジン2のクランク軸8の両端部には、発電機15がそれぞれ連結されている。従って、エンジン発電機ユニット1における慣性中心Icは、クランク軸8の回転軸線C上であって、第2コンロッド13との近傍に位置する。また、エンジン発電機ユニット1において、互いに直交する3本の慣性主軸Ix、Iy、Izのうち1本の慣性主軸Ixは、クランク軸8の回転軸線Cと略一致している。 As shown in FIGS. 1 and 3, generators 15 are connected to both ends of the crankshaft 8 of the horizontally opposed engine 2, respectively. Therefore, the center of inertia Ic of the engine generator unit 1 is located on the rotation axis C of the crankshaft 8 and in the vicinity of the second connecting rod 13 . In the engine-generator unit 1 , one of the three main inertia axes Ix, Iy, and Iz perpendicular to each other, Ix, substantially coincides with the rotational axis C of the crankshaft 8 .
 図2に示すように、円柱型ゴムマウントから構成されるマウント部材16には、互いに直交する3本の弾性主軸E1、E2、E3が存在する。3本の弾性主軸E1、E2、E3は、ゴム部材16aの弾性率に基づいて定まる。また、マウント部材16には、3本の弾性主軸E1、E2、E3が互いに直交する弾性中心E0が存在する。円柱型ゴムマウントにおいて、取付部16b同士を近づける(離す)方向の弾性主軸を圧縮方向弾性主軸E1とする。圧縮方向弾性主軸E1と直交する2本の弾性主軸を第1せん断方向弾性主軸E2と第2せん断方向弾性主軸E3とする。 As shown in FIG. 2, the mount member 16 composed of a cylindrical rubber mount has three elastic principal axes E1, E2, and E3 perpendicular to each other. The three elastic main axes E1, E2, E3 are determined based on the elastic modulus of the rubber member 16a. The mount member 16 also has an elastic center E0 at which the three elastic main axes E1, E2, and E3 intersect perpendicularly. In the cylindrical rubber mount, the main elastic axis in the direction in which the mounting portions 16b are brought closer (separated) from each other is defined as the main elastic axis E1 in the compression direction. Two elastic main axes orthogonal to the compression direction elastic main axis E1 are defined as a first shear direction elastic main axis E2 and a second shear direction elastic main axis E3.
 図3と図4とに示すように、エンジン発電機ユニット1を支持している4個のマウント部材16は、エンジン発電機ユニット1を支持する1個の弾性体としてみなすことができる。4個のマウント部材16を合成して1個の弾性体とみなされた合成マウント部材は、4個のマウント部材16の弾性主軸E1、E2、E3(図2参照)を合成した弾性主軸である3本の合成弾性主軸Ex、Ey、Ezを有する。3本の合成弾性主軸Ex、Ey、Ezは、4個のマウント部材16のそれぞれの弾性主軸E1、E2、E3の方向を考慮して算出される。また、合成マウント部材には、3本の合成弾性主軸Ex、Ey、Ezが互いに直交する弾性中心である合成弾性中心Ecが存在する。つまり、合成弾性主軸Ex、Ey、Ezの向きと合成弾性中心Ecの位置とは、4個のマウント部材16の弾性率と姿勢とによって変化する。 As shown in FIGS. 3 and 4, the four mounting members 16 that support the engine generator unit 1 can be regarded as one elastic body that supports the engine generator unit 1. A synthetic mount member that is regarded as one elastic body by synthesizing the four mount members 16 is an elastic principal axis obtained by synthesizing the elastic principal axes E1, E2, and E3 (see FIG. 2) of the four mount members 16. It has three synthetic principal elastic axes Ex, Ey, and Ez. The three synthetic principal elastic axes Ex, Ey, and Ez are calculated in consideration of the directions of the principal elastic axes E1, E2, and E3 of the four mount members 16, respectively. The synthetic mount member also has a synthetic elastic center Ec, which is an elastic center at which the three synthetic elastic principal axes Ex, Ey, and Ez are perpendicular to each other. That is, the directions of the synthetic elastic principal axes Ex, Ey, Ez and the position of the synthetic elastic center Ec change depending on the elastic moduli and attitudes of the four mount members 16 .
 4個のマウント部材16は、合成マウント部材とみなした際の合成弾性中心Ecがエンジン発電機ユニット1の慣性中心Icに一致するように位置している。本実施形態において、4個のマウント部材16のうち左右方向に並んでいるマウント部材16の圧縮方向弾性主軸E1は、クランク軸8の回転軸線Cが延びる方向からみて、エンジン発電機ユニット1の慣性中心Icを通過する上下方向の線上で交差している(図4参照)。また、4個のマウント部材16のうち前後方向に並んでいるマウント部材16の圧縮方向弾性主軸E1は、第1シリンダ4または第2シリンダ7の軸線が延びる方向から見て、エンジン発電機ユニット1の慣性中心Icを通過する上下方向の線上において交差している(図3参照)。 The four mount members 16 are positioned so that the composite elastic center Ec when regarded as a composite mount member coincides with the inertia center Ic of the engine generator unit 1 . In this embodiment, the compression direction elastic main axis E1 of the mounting members 16 arranged in the left-right direction among the four mounting members 16 is the inertia of the engine generator unit 1 when viewed from the direction in which the rotation axis C of the crankshaft 8 extends. They intersect on a vertical line passing through the center Ic (see FIG. 4). Further, the compression direction elastic principal axis E1 of the mounting members 16 arranged in the front-rear direction among the four mounting members 16 is the same as the engine generator unit 1 when viewed from the direction in which the axis of the first cylinder 4 or the second cylinder 7 extends. intersect on a vertical line passing through the center of inertia Ic (see FIG. 3).
 上述の構成において、4個のマウント部材16は、合成マウント部材とみなした際の合成弾性主軸Ex、Ey、Ezのうちクランク軸8の回転軸線C方向の合成弾性主軸Exが、エンジン発電機ユニット1の慣性主軸Ix、Iy、Izのうちクランク軸8の回転軸線C方向の慣性主軸Ixに一致するように位置している。 In the above-described configuration, the four mount members 16 are composed of synthetic elastic principal axes Ex, Ey, and Ez when the four mount members 16 are regarded as synthetic mount members. Among the main inertia axes Ix, Iy, and Iz, the main inertia axis Ix of the crankshaft 8 in the direction of the rotation axis C is positioned so as to coincide with the main inertia axis Ix.
 このように構成することで、駆動反力の発生源である機械的な負荷が連結されていないエンジン発電機ユニット1は、水平対向エンジン2のクランク軸8の回転軸線C回りの回転モーメントが主な振動の発生要因である。更に、エンジン発電機ユニット1は、左右方向、前後方向、上下方向の重量配分ほぼ均等になるように構成されている水平対向エンジン2を有している。従って、エンジン発電機ユニット1は、複数のマウント部材16の合成弾性中心Ecとエンジン発電機ユニット1の慣性中心Icとを容易に一致させることができる。よって、エンジン発電機ユニット1は、複数のマウント部材16からの反力がエンジン発電機ユニット1の慣性中心Icに加わるので、水平対向エンジン2の振動を複数のマウント部材16によって均等に受け止めることができる。 With this configuration, the engine-generator unit 1 to which the mechanical load, which is the source of the drive reaction force, is not connected, is mainly affected by the rotational moment around the rotational axis C of the crankshaft 8 of the horizontally opposed engine 2. It is the cause of the vibration. Furthermore, the engine-generator unit 1 has a horizontally opposed engine 2 configured so that the weight distribution in the left-right direction, the front-rear direction, and the vertical direction is substantially uniform. Therefore, the engine generator unit 1 can easily match the combined elastic center Ec of the plurality of mount members 16 with the inertia center Ic of the engine generator unit 1 . Therefore, in the engine generator unit 1, since the reaction force from the plurality of mount members 16 is applied to the center of inertia Ic of the engine generator unit 1, the vibration of the horizontally opposed engine 2 can be received evenly by the plurality of mount members 16. can.
 エンジン発電機ユニット1は、複数のマウント部材16によるクランク軸8の回転軸線Cが延びる方向(合成弾性主軸Exの方向)からの反力がエンジン発電機ユニット1の慣性主軸Ixの方向と一致している。従って、エンジン発電機ユニット1には、クランク軸8の回転軸線C回りに生じる回転モーメントによってエンジン発電機ユニット1を回転させる偶力が発生しない。つまり、エンジン発電機ユニット1には、クランク軸8の回転軸線C回りに生じる回転モーメントを起因とする振動の連成が生じにくい。これにより、エンジン発電機ユニット1は、複数のマウント部材16によって水平対向エンジン2の振動を連成させることなく減衰させることができる。 In the engine-generator unit 1, the reaction force from the direction in which the rotational axis C of the crankshaft 8 extends (the direction of the synthetic elastic principal axis Ex) by the plurality of mount members 16 coincides with the direction of the inertia principal axis Ix of the engine-generator unit 1. ing. Therefore, in the engine-generator unit 1, a torque couple that rotates the engine-generator unit 1 due to the rotational moment generated about the rotation axis C of the crankshaft 8 is not generated. That is, in the engine-generator unit 1, coupled vibration caused by the rotational moment generated about the rotational axis C of the crankshaft 8 is less likely to occur. As a result, the engine generator unit 1 can attenuate the vibration of the horizontally opposed engine 2 by the plurality of mount members 16 without coupling the vibration.
 また、同一の耐荷重及び振動特性である4個のマウント部材16は、クランク軸8の回転軸線Cが延びる方向に垂直な方向、且つ第1シリンダ4及び第2シリンダ7の移動方向に垂直な方向から見て、エンジン発電機ユニット1の慣性中心Icを対称点とする点対称になるように位置している。この際、複数のマウント部材16は、クランク軸8の回転軸線Cが延びる方向に垂直な方向、且つ第1シリンダ4及び第2シリンダ7の移動方向に垂直な方向から見て、水平対向エンジン2の慣性中心Icを囲むように位置している。 Further, the four mounting members 16 having the same load resistance and vibration characteristics are mounted in a direction perpendicular to the direction in which the rotation axis C of the crankshaft 8 extends and perpendicular to the moving directions of the first cylinder 4 and the second cylinder 7 . When viewed from the direction, they are positioned symmetrically about the center of inertia Ic of the engine generator unit 1 as a point of symmetry. At this time, the plurality of mount members 16 are mounted on the horizontally opposed engine 2 when viewed in a direction perpendicular to the direction in which the rotation axis C of the crankshaft 8 extends and in a direction perpendicular to the movement direction of the first cylinder 4 and the second cylinder 7 . is located so as to surround the center of inertia Ic.
 従って、エンジン発電機ユニット1は、複数のマウント部材16によって安定的に支持され、且つクランク軸8の回転軸線C回りの回転モーメントに起因する振動を複数のマウント部材16によって均等に受け止めることができる。これにより、エンジン発電機ユニット1は、複数のマウント部材16によって水平対向エンジン2の振動を連成させることなく減衰させることができる。 Therefore, the engine-generator unit 1 is stably supported by the plurality of mount members 16, and the vibration caused by the rotational moment of the crankshaft 8 about the rotation axis C can be evenly received by the plurality of mount members 16. . As a result, the engine generator unit 1 can attenuate the vibration of the horizontally opposed engine 2 by the plurality of mount members 16 without coupling the vibration.
 上述の構成において、4個以上のマウント部材16によってエンジン発電機ユニット1を支持する場合、複数のマウント部材16は、クランク軸8の回転軸線Cが延びる方向に垂直な方向、且つ第1シリンダ4及び第2シリンダ7の移動方向に垂直な方向から見て、クランク軸8の回転軸線Cと、エンジン発電機ユニット1の慣性中心Icを通り且つ第1シリンダ4及び第2シリンダ7の移動方向に延びる直線とによって区切られる4つの領域に少なくとも1つずつ位置している。 In the above configuration, when the engine-generator unit 1 is supported by four or more mount members 16, the plurality of mount members 16 are arranged in a direction perpendicular to the direction in which the rotation axis C of the crankshaft 8 extends and and in the moving direction of the first cylinder 4 and the second cylinder 7 passing through the rotation axis C of the crankshaft 8 and the center of inertia Ic of the engine-generator unit 1 when viewed from a direction perpendicular to the moving direction of the second cylinder 7. At least one is located in each of the four regions separated by the extending straight lines.
 エンジン発電機ユニット1は、クランク軸8の回転軸線Cが延びる方向に垂直な方向、且つ第1シリンダ4及び第2シリンダ7の移動方向に垂直な方向から見て、少なくとも4つのマウント部材16によって慣性中心Icを囲むように支持されている。従って、水平対向エンジン2は、より安定して複数のマウント部材16に支持され、クランク軸8回りの回転モーメントを均等に受け止めることができる。これにより、エンジン発電機ユニット1は、複数のマウント部材16によって水平対向エンジン2の振動を連成させることなく減衰させることができる。また、本実施形態において、エンジン発電機ユニット1は、4つのマウント部材16以外に振動を減衰させるマウント部材を有さない。エンジン発電機ユニット1は、1つの弾性体とみなしたときの弾性中心がエンジン発電機ユニット1の慣性中心に一致するように位置している4つのマウント部材16によって、水平対向エンジン2の振動を連成させることなく減衰させることができる。 The engine generator unit 1 is mounted by at least four mounting members 16 when viewed in a direction perpendicular to the direction in which the rotation axis C of the crankshaft 8 extends and in a direction perpendicular to the moving direction of the first cylinder 4 and the second cylinder 7 . It is supported so as to surround the center of inertia Ic. Accordingly, the horizontally opposed engine 2 is more stably supported by the plurality of mount members 16 and can evenly receive the rotational moment around the crankshaft 8 . As a result, the engine generator unit 1 can attenuate the vibration of the horizontally opposed engine 2 by the plurality of mount members 16 without coupling the vibration. Further, in the present embodiment, the engine generator unit 1 does not have any mount members for damping vibration other than the four mount members 16 . The engine generator unit 1 absorbs vibrations of the horizontally opposed engine 2 by means of four mounting members 16 positioned so that the center of elasticity when regarded as one elastic body coincides with the center of inertia of the engine generator unit 1. It can be attenuated without coupling.
 [実施形態2]
 <クランク軸の回転軸心方向からの支持>
 図5と図6とを用いて、本発明の実施形態2に係るエンジン発電機ユニット1Aについて説明する。図5は、本発明の実施形態2に係るエンジン発電機ユニット1Aの平面図である。図6は、本発明の実施形態2に係るマウント部材を表す模式図である。なお、以下の実施形態において、既に説明した実施形態と同様の点に関してはその具体的説明を省略し、相違する部分を中心に説明する。
[Embodiment 2]
<Support from the rotation axis direction of the crankshaft>
An engine generator unit 1A according to Embodiment 2 of the present invention will be described with reference to FIGS. 5 and 6. FIG. FIG. 5 is a plan view of an engine generator unit 1A according to Embodiment 2 of the present invention. FIG. 6 is a schematic diagram showing a mount member according to Embodiment 2 of the present invention. In addition, in the following embodiments, the specific description of the same points as those of the already described embodiments will be omitted, and the description will focus on the different parts.
 図5に示すように、本発明の実施形態2に係るエンジン発電機ユニット1Aは、複数のマウント部材18として2つのマウント部材18によって支持されている。 As shown in FIG. 5, the engine generator unit 1A according to Embodiment 2 of the present invention is supported by two mount members 18 as a plurality of mount members 18. As shown in FIG.
 図6に示すように、複数のマウント部材18は、エンジン発電機ユニット1Aを支持し、エンジン発電機ユニット1Aの振動を減衰させる。複数のマウント部材18は、ゴムを用いたゴムマウントから構成されている。複数のマウント部材18は、例えば、円筒状のゴム部材18aの外周面に金属製の外筒18bが固定され、ゴム部材18aの内周面に金属製の内筒18cが固定された円筒型ゴムマウントから構成されている。円筒型ゴムマウントは、外筒18bまたは内筒18cに加わる外力をゴム部材18aによって支持し、且つ外筒18bまたは内筒18cから入力される振動をゴム部材18aが弾性変形することによって減衰させる。円筒型ゴムマウントは、ゴム部材18aの大きさ、形状、姿勢、硬度等によって耐荷重及び振動特性が変化する。 As shown in FIG. 6, the plurality of mounting members 18 support the engine generator unit 1A and attenuate the vibration of the engine generator unit 1A. The plurality of mount members 18 are configured by rubber mounts using rubber. The plurality of mount members 18 are, for example, a cylindrical rubber member 18a with a metal outer cylinder 18b fixed to the outer peripheral surface of the rubber member 18a and a metal inner cylinder 18c fixed to the inner peripheral surface of the rubber member 18a. It consists of mounts. The cylindrical rubber mount supports the external force applied to the outer cylinder 18b or the inner cylinder 18c by the rubber member 18a, and attenuates the vibration input from the outer cylinder 18b or the inner cylinder 18c by elastic deformation of the rubber member 18a. The load capacity and vibration characteristics of the cylindrical rubber mount vary depending on the size, shape, attitude, hardness, etc. of the rubber member 18a.
 複数のマウント部材18は、本実施形態において、同じ耐荷重及び振動特性の2個のマウント部材18によって水平対向エンジン2の第1シリンダ4と第2シリンダ7の軸線が略水平な状態になるようにエンジン発電機ユニット1Aを支持している。複数のマウント部材18の一方の取付部16bは、ブラケットを介して発電機15に連結されている。複数のマウント部材18の他方の取付部16bは、エンジン発電機ユニット1Aを固定する固定フレームに連結されている。 In this embodiment, the plurality of mount members 18 are arranged so that the axes of the first cylinder 4 and the second cylinder 7 of the horizontally opposed engine 2 are substantially horizontal by two mount members 18 having the same load resistance and vibration characteristics. supports the engine generator unit 1A. One attachment portion 16b of the plurality of mount members 18 is connected to the generator 15 via a bracket. The other mounting portions 16b of the plurality of mounting members 18 are connected to a fixed frame that fixes the engine generator unit 1A.
 <エンジン発電機ユニットに対するマウント部材の配置>
 次に、図5から図7を用いて、エンジン発電機ユニット1Aに対する複数のマウント部材18の配置について説明する。図7は、本発明の実施形態2に係るエンジン発電機ユニット1Aの側面図である。
<Arrangement of mounting member for engine generator unit>
Next, the arrangement of the plurality of mount members 18 with respect to the engine generator unit 1A will be described with reference to FIGS. 5 to 7. FIG. FIG. 7 is a side view of an engine generator unit 1A according to Embodiment 2 of the present invention.
 円筒型ゴムマウントから構成されるマウント部材18には、互いに直交する3本の弾性主軸E1、E2、E3が存在する。3本の弾性主軸E1、E2、E3は、ゴム部材18aの弾性率に基づいて定まる。また、マウント部材18には、3本の弾性主軸E1、E2、E3が互いに直交する弾性中心E0が存在する。円柱型ゴムマウントにおいて、径方向であって直交する2方向の弾性主軸を第1圧縮方向弾性主軸E1と第2圧縮方向弾性主軸E2とする。軸線方向の弾性主軸をせん断方向弾性主軸E3とする。 The mount member 18, which is a cylindrical rubber mount, has three elastic main axes E1, E2, and E3 perpendicular to each other. The three elastic main axes E1, E2, E3 are determined based on the elastic modulus of the rubber member 18a. The mount member 18 also has an elastic center E0 at which the three elastic main axes E1, E2, and E3 intersect perpendicularly. In the cylindrical rubber mount, the main elastic axes in the two orthogonal radial directions are defined as a first elastic main axis E1 and a second elastic main axis E2. The principal elastic axis in the axial direction is assumed to be the principal elastic axis in the shear direction E3.
 2個のマウント部材18は、合成マウント部材とみなした際の合成弾性中心Ecがエンジン発電機ユニット1Aの慣性中心Icに一致するように位置している。本実施形態において、2個のマウント部材18は、エンジン発電機ユニット1Aの2台の発電機15を支持している。2個のマウント部材18は、それぞれの発電機15におけるクランク軸8の回転軸線Cの方向の端部に連結されている。また、2個のマウント部材18は、合成マウント部材とみなしたときの合成弾性主軸Ex、Ey、Ezのうちクランク軸8の回転軸線Cが延びる方向の合成弾性主軸Exが、エンジン発電機ユニット1Aの慣性主軸Ix、Iy、Izのうちクランク軸8の回転軸線Cが延びる方向の慣性主軸Ixに一致するように位置している。 The two mount members 18 are positioned so that the composite elastic center Ec when regarded as a composite mount member coincides with the inertia center Ic of the engine generator unit 1A. In this embodiment, the two mounting members 18 support the two generators 15 of the engine generator unit 1A. The two mounting members 18 are connected to the ends of the crankshaft 8 in the direction of the rotational axis C of the respective generators 15 . Further, when the two mount members 18 are regarded as synthetic mount members, the synthetic elastic principal axis Ex of the synthetic elastic principal axes Ex, Ey, and Ez in the direction in which the rotation axis C of the crankshaft 8 extends corresponds to the engine generator unit 1A. of the main inertia axes Ix, Iy, and Iz of the crankshaft 8 in the direction in which the rotation axis C of the crankshaft 8 extends.
 この際、2個のマウント部材18は、クランク軸8の回転軸線C回りの回転モーメントによって作用する力の方向における弾性率が、他の力の方向における弾性率よりも小さくなるように構成されている。つまり、2個のマウント部材18は、クランク軸8の回転軸線C回りの回転モーメントによって作用する力を起因とする振動を弾性変形によって減衰させる特性が最も大きい。 At this time, the two mount members 18 are configured so that the elastic modulus in the direction of force acting by the rotational moment about the rotation axis C of the crankshaft 8 is smaller than the elastic modulus in other force directions. there is That is, the two mount members 18 have the greatest characteristic of damping vibration caused by the force acting by the rotational moment about the rotation axis C of the crankshaft 8 by elastic deformation.
 エンジン発電機ユニット1Aは、2個のマウント部材18を合成マウント部材とみなしたときの合成弾性中心Ecとエンジン発電機ユニット1Aの慣性中心Icとが一致しているので、2個のマウント部材18からの反力と慣性中心Icとのずれによる偶力の発生が抑制される。また、2個のマウント部材18は、エンジン発電機ユニット1Aを支持し、且つクランク軸8の回転軸線C回りの回転モーメントによって作用する力を弾性変形しながら受け止める。これにより、エンジン発電機ユニット1Aは、複数のマウント部材18によって水平対向エンジン2の振動を連成させることなく減衰させることができる。 In the engine generator unit 1A, the composite elastic center Ec when the two mount members 18 are regarded as a composite mount member coincides with the inertia center Ic of the engine generator unit 1A. The generation of a force couple due to the deviation between the reaction force from the center of inertia Ic and the center of inertia Ic is suppressed. The two mount members 18 support the engine-generator unit 1A, and receive the force exerted by the rotational moment about the rotational axis C of the crankshaft 8 while being elastically deformed. As a result, the engine generator unit 1A can attenuate the vibration of the horizontally opposed engine 2 by the plurality of mount members 18 without coupling the vibration.
 (その他の実施形態)
 なお、上述の全ての実施形態において、エンジン発電機ユニット1、1Aは、クランク軸8の両端部に2台の発電機15が連結されている。しかしながら、エンジン発電機ユニットは上述の実施形態の構成に限定されない。例えば、エンジン発電機ユニットは、クランク軸の端部に1台の発電機だけを有する構成でもよい。
(Other embodiments)
In all the above-described embodiments, the engine generator units 1 and 1A have two generators 15 connected to both ends of the crankshaft 8 . However, the engine generator unit is not limited to the configuration of the above embodiments. For example, the engine generator unit may be configured with only one generator at the end of the crankshaft.
 また、上述の全ての実施形態において、エンジン発電機ユニット1、1Aは、2気筒の水平対向エンジン2を有している。しかしながら、水平対向エンジンは上述の実施形態の構成に限定されない。例えば、エンジン発電機ユニットは、複数の気筒を有する水平対向エンジンを有する構成でもよい。 In addition, in all the embodiments described above, the engine- generator units 1 and 1A have the two-cylinder horizontally opposed engine 2 . However, the horizontally opposed engine is not limited to the configurations of the above-described embodiments. For example, the engine generator unit may have a horizontally opposed engine with multiple cylinders.
 また、上述の全ての実施形態において、エンジン発電機ユニット1は、4個のマウント部材によって支持され、エンジン発電機ユニット1Aは、2個のマウント部材によって支持されている。しかしながら、エンジン発電機ユニットの構成は、上述の実施形態の構成に限定されない。例えば、エンジン発電機ユニットは、2個以上のマウント部材によって支持される構成であればよい。 Also, in all the above-described embodiments, the engine generator unit 1 is supported by four mounting members, and the engine generator unit 1A is supported by two mounting members. However, the configuration of the engine generator unit is not limited to the configuration of the above-described embodiment. For example, the engine generator unit may be configured to be supported by two or more mounting members.
 また、上述の全ての実施形態において、エンジン発電機ユニット1、1Aは、ゴムマウントによって支持されている。しかしながら、エンジン発電機ユニットの構成は、上述の実施形態の構成に限定されない。例えば、エンジン発電機ユニットは、液封入式マウント、油圧式マウント、電磁式マウント、負圧式マウントまたはピエゾ式マウントによって支持される構成でもよい。 Also, in all the above-described embodiments, the engine generator units 1, 1A are supported by rubber mounts. However, the configuration of the engine generator unit is not limited to the configuration of the above-described embodiment. For example, the engine-generator unit may be supported by hydraulic, hydraulic, electromagnetic, vacuum, or piezo mounts.
 また、上述の実施形態において、エンジン発電機ユニット1、1Aは、円柱型ゴムマウントまたは円筒型ゴムマウントによって支持されている。しかしながら、エンジン発電機ユニットは、上述の実施形態の構成に限定されない。例えば、エンジン発電機ユニットは、V型ゴムマウント、O型ゴムマウント等の他の形状のゴムマウントによって支持される構成でもよい。 Also, in the above-described embodiments, the engine generator units 1 and 1A are supported by columnar rubber mounts or cylindrical rubber mounts. However, the engine generator unit is not limited to the configuration of the above embodiments. For example, the engine-generator unit may be configured to be supported by rubber mounts of other shapes, such as V-shaped rubber mounts and O-shaped rubber mounts.
 また、上述の実施形態2において、2個のマウント部材18は、それぞれの発電機15におけるクランク軸8の回転軸線Cが延びる方向の端部に連結されている。しかしながら、エンジン発電機ユニットは、上述の実施形態の構成に限定されない。例えば、エンジン発電機ユニットは、クランク軸の回転軸線に垂直な方向に補助マウント部材を連結した構成でもよい。補助マウント部材は、水平対向エンジンのクランク軸の回転軸線回りの回転を抑制するマウント部材である。エンジン発電機ユニットは、2個のマウント部材と補助マウント部材との合成マウント部材の合成弾性中心をエンジン発電機ユニットの慣性中心に一致させることで、水平対向エンジン2の振動を連成させることなく減衰させることができる。 Also, in the second embodiment described above, the two mount members 18 are connected to the ends of the respective generators 15 in the direction in which the rotation axis C of the crankshaft 8 extends. However, the engine generator unit is not limited to the configuration of the above embodiments. For example, the engine generator unit may have a configuration in which the auxiliary mount member is connected in a direction perpendicular to the rotation axis of the crankshaft. The auxiliary mount member is a mount member that suppresses rotation of the crankshaft of the horizontally opposed engine about the rotation axis. The engine-generator unit does not couple vibrations of the horizontally opposed engine 2 by aligning the combined elastic center of the composite mount member of the two mount members and the auxiliary mount member with the inertia center of the engine-generator unit. can be attenuated.
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。 Although the embodiments of the present invention have been described above, the above-described embodiments are merely examples for carrying out the present invention. Therefore, without being limited to the above-described embodiment, it is possible to modify the above-described embodiment as appropriate without departing from the spirit thereof.
  1、1A  エンジン発電機ユニット
  2  水平対向エンジン
 15  発電機
 16、18  マウント部材
 Ic  慣性中心
 Ec  合成弾性中心
 I0  弾性中心
 Ix、Iy、Iz  慣性主軸
 Ex、Ey、Ez  合成弾性主軸
Reference Signs List 1, 1A engine-generator unit 2 horizontally opposed engine 15 generator 16, 18 mount member Ic center of inertia Ec composite elastic center I0 elastic center Ix, Iy, Iz inertia principal axis Ex, Ey, Ez composite elastic principal axis

Claims (6)

  1.  少なくとも2つのシリンダがクランク軸の軸線方向から見て、第1方向と前記第1方向の反対方向である第2方向とに前記シリンダの軸線が延びるように位置している水平対向エンジンと、
     前記水平対向エンジンを支持する複数のマウント部材と
     前記水平対向エンジンのクランク軸に連結される発電機と、
     を備えた、外部に機械的な動力を伝達する動力取出し機構を有さない発電専用のエンジン発電機ユニットであって、
     前記複数のマウント部材は、
     全てのマウント部材を1つの弾性体とみなしたときの弾性中心が前記発電専用のエンジン発電機ユニットの慣性中心に一致するように位置している、
     発電専用のエンジン発電機ユニット。
    a horizontally opposed engine in which at least two cylinders are positioned such that the axes of the cylinders extend in a first direction and a second direction opposite to the first direction when viewed from the axial direction of the crankshaft;
    a plurality of mount members for supporting the horizontally opposed engine; a generator connected to a crankshaft of the horizontally opposed engine;
    An engine generator unit dedicated to power generation that does not have a power take-off mechanism that transmits mechanical power to the outside,
    The plurality of mounting members are
    The center of elasticity when all the mount members are regarded as one elastic body is located so as to coincide with the center of inertia of the engine generator unit dedicated to power generation.
    An engine generator unit dedicated to power generation.
  2.  請求項1に記載の発電専用のエンジン発電機ユニットにおいて、
     前記複数のマウント部材は、
     全てのマウント部材を1つの弾性体とみなしたときの弾性主軸のうち前記クランク軸の回転軸線が延びる方向の弾性主軸が、前記発電専用のエンジン発電機ユニットの慣性主軸のうち前記クランク軸の回転軸線が延びる方向の慣性主軸に一致するように位置している、発電専用のエンジン発電機ユニット。
    In the engine generator unit dedicated to power generation according to claim 1,
    The plurality of mounting members are
    When all the mount members are regarded as one elastic body, of the elastic main shafts, the elastic main shaft in the direction in which the rotation axis of the crankshaft extends is the main inertia shaft of the engine generator unit dedicated to power generation, and the rotation of the crankshaft. An engine-generator unit dedicated to power generation, positioned so as to coincide with the principal axis of inertia along which the axis extends.
  3.  請求項1または2に記載の発電専用のエンジン発電機ユニットにおいて、
     前記複数のマウント部材は、
     前記クランク軸の回転軸線に垂直な方向且つ前記シリンダの移動方向に垂直な方向から見て、前記発電専用のエンジン発電機ユニットの慣性中心を対称点とする点対称になるように位置している、発電専用のエンジン発電機ユニット。
    In the engine generator unit dedicated to power generation according to claim 1 or 2,
    The plurality of mounting members are
    When viewed from the direction perpendicular to the rotation axis of the crankshaft and the direction perpendicular to the movement direction of the cylinder, they are positioned symmetrically with respect to the center of inertia of the engine-generator unit dedicated to power generation. , an engine-generator unit dedicated to power generation.
  4.  請求項1から3のいずれか一項に記載の発電専用のエンジン発電機ユニットにおいて、
     前記水平対向エンジンにおけるクランク軸の両端には、発電機がそれぞれ連結され、
     前記複数のマウント部材は、
     前記クランク軸の回転軸線が延びる方向に垂直な方向且つ前記シリンダの移動方向に垂直な方向から見て、前記クランク軸の回転軸線と、前記発電専用のエンジン発電機ユニットの慣性中心を通り且つ前記シリンダの移動方向に延びる直線とによって区切られる4つの領域に少なくとも1つずつ位置する、発電専用のエンジン発電機ユニット。
    In the engine generator unit dedicated to power generation according to any one of claims 1 to 3,
    Generators are connected to both ends of the crankshaft of the horizontally opposed engine,
    The plurality of mounting members are
    When viewed from the direction perpendicular to the direction in which the rotation axis of the crankshaft extends and the direction perpendicular to the direction of movement of the cylinder, the At least one engine-generator unit dedicated to power generation, located in each of four regions separated by straight lines extending in the moving direction of the cylinder.
  5.  請求項1から3のいずれか一項に記載の発電専用のエンジン発電機ユニットにおいて、
     前記水平対向エンジンにおけるクランク軸の両端には、発電機がそれぞれ連結され、
     前記複数のマウント部材は、
     ぞれぞれの前記発電機において、前記クランク軸の回転軸線が延びる方向の端部に位置し、且つ全てのマウント部材を1つの弾性体とみなしたときの弾性主軸のうち前記クランク軸の回転軸線が延びる方向の弾性主軸が、前記発電専用のエンジン発電機ユニットの慣性主軸のうち前記クランク軸の回転軸線が延びる方向の慣性主軸に一致するように位置している、発電専用のエンジン発電機ユニット。
    In the engine generator unit dedicated to power generation according to any one of claims 1 to 3,
    Generators are connected to both ends of the crankshaft of the horizontally opposed engine,
    The plurality of mounting members are
    Rotation of the crankshaft of the elastic main shaft when each of the generators is positioned at the end in the direction in which the rotation axis of the crankshaft extends and all the mount members are regarded as one elastic body. An engine generator dedicated to power generation, wherein a principal elastic axis in an axis extending direction is positioned so as to coincide with a principal inertia axis of the principal inertia axis of the engine generator unit dedicated to power generation in a direction in which the rotation axis of the crankshaft extends. unit.
  6.  請求項5に記載の発電専用のエンジン発電機ユニットにおいて、
     前記複数のマウント部材は、
     前記クランク軸の回転軸線回りの回転モーメントによって作用する力の方向における弾性率が、他の力の方向における弾性率よりも小さい、発電専用のエンジン発電機ユニット。
    In the engine generator unit dedicated to power generation according to claim 5,
    The plurality of mounting members are
    An engine-generator unit dedicated to power generation, wherein the modulus of elasticity in the direction of force acting by the rotational moment about the axis of rotation of the crankshaft is smaller than the modulus of elasticity in other directions of force.
PCT/JP2021/046969 2021-12-20 2021-12-20 Engine generator unit exclusively for electric power generation WO2023119354A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/046969 WO2023119354A1 (en) 2021-12-20 2021-12-20 Engine generator unit exclusively for electric power generation
JP2022548453A JPWO2023119354A1 (en) 2021-12-20 2021-12-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046969 WO2023119354A1 (en) 2021-12-20 2021-12-20 Engine generator unit exclusively for electric power generation

Publications (1)

Publication Number Publication Date
WO2023119354A1 true WO2023119354A1 (en) 2023-06-29

Family

ID=86901596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046969 WO2023119354A1 (en) 2021-12-20 2021-12-20 Engine generator unit exclusively for electric power generation

Country Status (2)

Country Link
JP (1) JPWO2023119354A1 (en)
WO (1) WO2023119354A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116937A (en) * 1983-11-28 1985-06-24 Toyota Motor Corp Vibration-proof supporting method of internal- combustion engine for car
JPH078035U (en) * 1993-07-16 1995-02-03 富士重工業株式会社 Power unit support structure for automobiles
JPH09210108A (en) * 1996-01-30 1997-08-12 Yamaha Motor Co Ltd Engine supporting structure for ship
JP2001080368A (en) * 1999-09-10 2001-03-27 Nissan Motor Co Ltd Driving unit supporting device for vehicle
JP2006188078A (en) * 2004-12-28 2006-07-20 Honda Motor Co Ltd Power unit supporting device of vehicle
DE102007057597A1 (en) * 2007-11-28 2009-07-23 Mösch, Dominik Urban-rural-highway-global positioning system hybrid drive, is operated at optimum capacity range of fifteen kilowatt or thirty kilowatt and is used for two or more engines as input power
US20120298083A1 (en) * 2011-05-23 2012-11-29 Ricardo, Inc. Two-stroke heavy fuel engine
EP2765287A2 (en) * 2013-02-11 2014-08-13 Robby Moto Engineering S.r.l. Additional power supply apparatus, in particular for electric vehicles or the like
JP2020165440A (en) * 2019-03-28 2020-10-08 株式会社Soken Vibration isolation device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116937A (en) * 1983-11-28 1985-06-24 Toyota Motor Corp Vibration-proof supporting method of internal- combustion engine for car
JPH078035U (en) * 1993-07-16 1995-02-03 富士重工業株式会社 Power unit support structure for automobiles
JPH09210108A (en) * 1996-01-30 1997-08-12 Yamaha Motor Co Ltd Engine supporting structure for ship
JP2001080368A (en) * 1999-09-10 2001-03-27 Nissan Motor Co Ltd Driving unit supporting device for vehicle
JP2006188078A (en) * 2004-12-28 2006-07-20 Honda Motor Co Ltd Power unit supporting device of vehicle
DE102007057597A1 (en) * 2007-11-28 2009-07-23 Mösch, Dominik Urban-rural-highway-global positioning system hybrid drive, is operated at optimum capacity range of fifteen kilowatt or thirty kilowatt and is used for two or more engines as input power
US20120298083A1 (en) * 2011-05-23 2012-11-29 Ricardo, Inc. Two-stroke heavy fuel engine
EP2765287A2 (en) * 2013-02-11 2014-08-13 Robby Moto Engineering S.r.l. Additional power supply apparatus, in particular for electric vehicles or the like
JP2020165440A (en) * 2019-03-28 2020-10-08 株式会社Soken Vibration isolation device

Also Published As

Publication number Publication date
JPWO2023119354A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
US3402707A (en) Vibrationless engines
WO2019139056A1 (en) Power generation device and automobile
KR20130113420A (en) A helicopter engine mounting system and methods
US6848831B2 (en) Rotation shaft support structure of a motor/generator
CN105545473A (en) Vibration reducing diesel generator
WO2023119354A1 (en) Engine generator unit exclusively for electric power generation
US4295381A (en) Crankless reciprocating engine and gyroscopic power transmission system
WO2006082455A1 (en) Arrangement for piston machines to influence the force/moment arising during operation on the supports of the cylinder block having a main shaft casing
JP2017115604A (en) Internal combustion engine
JP7025106B2 (en) engine
JP2015519250A (en) Vibration damping unit for range extender
JP5542197B2 (en) Apparatus and method for damping vibration of piston engine, and piston engine
WO2021220490A1 (en) Engine generator unit for flying object, and flying object
CN101042170B (en) Vibration-damping method for piston type engine
WO2021220491A1 (en) Flight vehicle engine generator unit, and flight vehicle
JP7127889B2 (en) power unit
TWI815288B (en) Series hybrid straddle-type vehicle
JP3110172B2 (en) Engine secondary vibration isolation support device
JPH04307145A (en) Balancer unit in straight four-cylinder internal combustion engine for vehicle
JP2013129413A (en) Mounting structure of three-cylinder engine
JP3785102B2 (en) Power plant balancer equipment
JP3804684B2 (en) Power plant balancer equipment
US11255405B2 (en) Vibration prevention in a linear actuator
JP2018122801A (en) vehicle
WO2005021948A1 (en) Internal-combustion engine arrangement having a dynamically balanced mass

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022548453

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968792

Country of ref document: EP

Kind code of ref document: A1