WO2022162849A1 - 飛行体識別システム、管制システム、飛行体識別方法、コンピュータ可読媒体及び飛行体 - Google Patents

飛行体識別システム、管制システム、飛行体識別方法、コンピュータ可読媒体及び飛行体 Download PDF

Info

Publication number
WO2022162849A1
WO2022162849A1 PCT/JP2021/003127 JP2021003127W WO2022162849A1 WO 2022162849 A1 WO2022162849 A1 WO 2022162849A1 JP 2021003127 W JP2021003127 W JP 2021003127W WO 2022162849 A1 WO2022162849 A1 WO 2022162849A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
information
communication terminal
control system
unit
Prior art date
Application number
PCT/JP2021/003127
Other languages
English (en)
French (fr)
Inventor
敏明 山下
英夫 安達
尚志 水本
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US18/273,702 priority Critical patent/US20240105066A1/en
Priority to JP2022577929A priority patent/JPWO2022162849A5/ja
Priority to EP21922865.7A priority patent/EP4287163A4/en
Priority to PCT/JP2021/003127 priority patent/WO2022162849A1/ja
Priority to CN202180092199.3A priority patent/CN116830175A/zh
Publication of WO2022162849A1 publication Critical patent/WO2022162849A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0056Navigation or guidance aids for a single aircraft in an emergency situation, e.g. hijacking
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0034Assembly of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0052Navigation or guidance aids for a single aircraft for cruising
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0082Surveillance aids for monitoring traffic from a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0091Surveillance aids for monitoring atmospheric conditions

Definitions

  • the present disclosure relates to an aircraft identification system, a control system, an aircraft identification method, a computer-readable medium, and an aircraft.
  • Patent Document 1 describes a flying vehicle that automatically performs operations from takeoff in a first takeoff and landing section to departure and arrival in a second takeoff and landing section under the control of a control system that controls the operation of the flying vehicle.
  • An operating system is disclosed.
  • aircraft information includes a variety of information such as aircraft ID, remaining energy, flight route, etc. Disclosing all of this is a security issue. It is necessary to provide
  • An object of the present disclosure is to solve such problems.
  • An object identification method, a computer readable medium and an air vehicle are provided.
  • An aircraft identification system includes: an air vehicle; a communication terminal that acquires the body ID of the flying object; a control system that controls the flight of the aircraft, the control system associates and manages the aircraft ID and a plurality of pieces of information about the aircraft indicated by the aircraft ID;
  • an inquiry message containing the aircraft ID and the authority level assigned to the communication terminal is received from the communication terminal, according to the authority level of the communication terminal, a plurality of aircraft related to the aircraft associated with the aircraft ID Information to be transmitted to the communication terminal is selected from the information, and the selected information is transmitted to the communication terminal.
  • the control system is a communication unit that communicates with a communication terminal; a storage unit that associates, manages, and stores a body ID of a flying object and a plurality of pieces of information about the flying object indicated by the body ID; a selection unit that selects information to be transmitted to the communication terminal from among a plurality of pieces of information about the flying object;
  • the selection unit refers to the storage unit and selects information to be transmitted to the communication terminal from among a plurality of pieces of information regarding the aircraft associated with the aircraft ID, according to the authority level of the communication terminal. death, The communication unit transmits the information selected by the selection unit to the communication terminal.
  • the flying object identification method includes: managing a body ID of a flying body and a plurality of pieces of information about the flying body indicated by the body ID in association with each other; When an inquiry message including the aircraft ID and the authority level assigned to the communication terminal is received from the communication terminal, a plurality of pieces of information about the aircraft associated with the aircraft ID according to the authority level of the communication terminal. is a method of selecting information to be transmitted to the communication terminal from among and transmitting the selected information to the communication terminal.
  • a computer-readable medium comprises: managing a body ID of a flying body and a plurality of pieces of information about the flying body indicated by the body ID in association with each other; When an inquiry message including the aircraft ID and the authority level assigned to the communication terminal is received from the communication terminal, a plurality of pieces of information about the aircraft associated with the aircraft ID according to the authority level of the communication terminal. selecting information to be transmitted to the communication terminal from among, and transmitting the selected information to the communication terminal; A temporary computer-readable medium storing a program for causing a computer to execute a process.
  • the aircraft according to the present disclosure is a storage unit that associates and stores aircraft information, which is information about the aircraft, with authority levels; an encryption unit that encrypts the aircraft information associated with a predetermined authority level; and a communication unit that transmits the encrypted flying object information.
  • an aircraft identification system it is possible to provide an aircraft identification system, a control system, an aircraft identification method, a computer-readable medium, and an aircraft capable of appropriately providing information on the aircraft according to the situation while improving security.
  • FIG. 1 is a block diagram showing the configuration of an aircraft identification system according to a first embodiment
  • FIG. 4 is a diagram showing an example of a device ID table according to the first embodiment
  • FIG. It is a flow chart which shows operation of a control system concerning a 1st embodiment.
  • FIG. 10 is a block diagram showing the configuration of an aircraft identification system according to a second embodiment
  • FIG. 3 is a block diagram showing the configuration of an aircraft according to a second embodiment
  • FIG. It is a block diagram which shows the structure of the control system concerning 2nd Embodiment.
  • It is a flowchart which shows operation
  • It is a flowchart which shows operation
  • FIG. 11 is a block diagram showing the configuration of an aircraft identification system according to a third embodiment; FIG. It is a flow chart which shows operation of a control system concerning a 3rd embodiment.
  • FIG. 11 is a block diagram showing the configuration of an aircraft identification system according to a fourth embodiment;
  • FIG. 12 is a diagram showing correspondence between authority levels and aircraft information according to the fourth embodiment;
  • It is a flow chart which shows operation of a control system concerning a 4th embodiment.
  • FIG. 11 is a block diagram showing the configuration of an aircraft identification system according to a fifth embodiment; It is a flowchart which shows operation
  • 3 is a block diagram showing a configuration example of a control device in an aircraft, a control system, and a communication terminal according to each embodiment;
  • FIG. 3 is a block diagram showing a configuration example of a control device in an aircraft, a control system, and a communication terminal according to each embodiment;
  • FIG. 1 is a block diagram showing the configuration of an aircraft identification system 1 according to the first embodiment.
  • An aircraft identification system 1 includes an aircraft 2 and a control system 3 .
  • the flying object 2 is, for example, a rotary wing aircraft having rotary wings, such as a drone, an unmanned aerial vehicle (UAV), a flying car, a vertical take-off and landing aircraft (VTOL), and the like. .
  • the flying object 2 generates lift and thrust by rotationally driving the rotor blades.
  • the aircraft 2 may be an unmanned aircraft on which luggage or the like is loaded, or a manned aircraft on which passengers board.
  • the flying object 2 has a machine ID as its own machine identification information. Different flying objects 2 are assigned different body IDs, and no flying body 2 having the same body ID exists.
  • the aircraft 2 has a communication unit 14 and an aircraft ID control unit 15 .
  • the communication unit 14 and the device ID control unit 15 may be software or modules whose processing is executed by a processor executing a program stored in memory. Alternatively, the communication unit 14 and the device ID control unit 15 may be hardware such as circuits or chips.
  • the communication unit 14 transmits the device ID.
  • the communication unit 14 performs radio communication with the ground side, that is, the control system 3 .
  • the communication unit 14 performs wireless communication with the control system 3 according to a predetermined frequency, transmission power, and the like.
  • the communication unit 14 may perform processing in accordance with communication standards defined in 3GPP (3rd Generation Partnership Project) such as 5G, 4G, Wi-Fi (registered trademark), Bluetooth (registered trademark), etc. Processing may be performed in accordance with communication standards.
  • the communication unit 14 transmits radio signals to the control system 3 .
  • the communication unit 14 receives radio signals from the control system 3 . This enables transmission and reception of data and information between the aircraft 2 and the control system 3 .
  • the communication unit 14 transmits the aircraft ID and position information of the aircraft 2 to the control system 3 .
  • the communication unit 14 can transmit the aircraft ID not only to the control system 3 but also to communication terminals such as smartphones. In this case, for example, by installing a predetermined application in the smartphone, it is possible to obtain the aircraft ID transmitted by the aircraft 2 .
  • the communication unit 14 can transmit the aircraft ID of itself to another aircraft 2, receive the aircraft ID from the other aircraft 2, and can transmit and receive the aircraft ID between the aircraft 2. It is possible.
  • the device ID control unit 15 controls the change and transmission of the device ID.
  • the device ID control unit 15 holds the device ID of its own device that is changed according to a predetermined change pattern.
  • the device ID may be changed, for example, every predetermined time, or may be changed at an arbitrary timing, and the timing of changing the device ID can be set at a timing desired by the user or the like.
  • the aircraft ID may change as the number of flights increases, or may change after multiple flights.
  • the device ID control unit 15 creates a plurality of device IDs in advance as described in the device ID table of FIG. 2, and changes the device IDs at predetermined time intervals.
  • the communication unit 14 may transmit the device ID table stored by the device ID control unit 15 to the control system 3 .
  • the aircraft ID control unit 15 can share the aircraft ID change pattern with the control system 3 that controls the flight of the aircraft.
  • the communication unit 14 may receive the aircraft ID table from the control system 3 .
  • the aircraft ID change pattern of the aircraft 2 is shared between the aircraft 2 and the control system 3 .
  • the aircraft ID at the start of flight (0 minutes after the start of flight) is #0
  • the aircraft ID at 10 minutes after the start of flight is #1
  • the aircraft ID at 20 minutes after the start of flight is #2
  • Thirty minutes after the start of flight the aircraft ID is #3.
  • the device ID table in FIG. 2 is an example, and any device ID may be generated.
  • the aircraft ID control unit 15 or the control system 3 may generate an aircraft ID using an algorithm, a random number generation function, or the like.
  • the machine ID may be a randomly generated ID or an ID that changes according to at least one of the number of flights and the flight time of the machine.
  • the flying object 2 flies according to a predetermined flight plan while communicating wirelessly with the control system 3.
  • the flying object 2 can autonomously fly along a flight path from a takeoff place to a landing place.
  • the aircraft 2 takes off from a takeoff and landing facility and flies along a flight route based on a flight plan.
  • the flying object 2 lands at the landing site after flying to the landing site corresponding to the destination.
  • a flight path is a three-dimensional path from a takeoff site to a landing site.
  • Pre-designated take-off and landing facilities can be used for take-off and landing locations. Note that the take-off location and landing location may be arbitrary locations as long as there is space for landing. Of course, the takeoff/landing place for takeoff and the takeoff/landing place for landing may be the same place.
  • the operation of the flying object 2 can be switched between autopilot or manual operation by the operator.
  • the flying object 2 can be configured to operate automatically and switch to manual operation in an emergency, since the operator is required to have advanced maneuvering skills in an area with many obstacles, such as an urban area.
  • the control system 3 is an operation management/control system.
  • the control system 3 is a hardware device (computer device) for performing flight management and air traffic control of the aircraft 2, and is installed in the flight control center.
  • the control system 3 is not limited to a single physical device. For example, a plurality of processors may work together to perform processing described later.
  • control system 3 may be provided in an air traffic control center that communicates with a plurality of operation control centers.
  • control system 3 of the flight control center and the control system 3 of the air traffic control center communicate with each other, so that the aircraft 2 can be controlled over a wide area.
  • the control system 3 has a communication unit 4 and an identification unit 5.
  • the communication unit 4 and the identification unit 5 may be software or modules whose processing is executed by a processor executing a program stored in memory.
  • the communication unit 4 and the identification unit 5 may be hardware such as circuits or chips.
  • the communication unit 4 acquires the aircraft ID transmitted from the aircraft 2 and the position information of the aircraft 2 . Also, the communication unit 4 acquires the aircraft ID and position information of the aircraft 2 at different timings.
  • the identification unit 5 identifies the flying object 2 using the aircraft ID received from the flying object 2 .
  • the identification unit 5 may be configured to hold in advance a table in which aircraft IDs and aircraft are associated, refer to the table, and extract aircraft associated with the received aircraft ID.
  • the communication unit 4 may acquire different aircraft IDs from the aircraft 2 at different timings.
  • the identification unit 5 determines that the machine ID different from the first machine ID is different from the first machine ID based on the change between the position information acquired together with the first machine ID and the position information acquired together with the machine ID different from the first machine ID. , indicates the aircraft 2 associated with the first aircraft ID.
  • a change in position information may be indicated by using, for example, the distance between position information acquired at different timings. For example, even if the identification unit 5 determines that the aircraft ID different from the first aircraft ID indicates the aircraft 2 associated with the first aircraft ID when the change in the position information is within a predetermined range, good.
  • FIG. 3 is a flow chart showing the operation of the control system 3 according to the first embodiment.
  • the communication unit 4 acquires the first aircraft ID and position information of the aircraft 2 (S1).
  • the initial machine ID is called the first machine ID
  • the changed machine ID is called the second machine ID.
  • the identification unit 5 identifies the aircraft 2 using the first aircraft ID (S2).
  • the control system 3 communicates with the aircraft 2 that transmits the first aircraft ID, and performs operation management and air traffic control of the aircraft 2 .
  • the control system 3 causes the identification unit 5 to The operation management and air traffic control of the aircraft 2 transmitting the identified first aircraft ID are continued.
  • the identification unit 5 identifies the first aircraft ID. Based on the change between the position information at the time of acquisition and the position information at the time of acquiring the second aircraft ID, the aircraft 2 transmitting the second aircraft ID transmits the first aircraft ID. It is determined whether or not it is the same as the flying object 2 . For example, the identification unit 5 determines whether the change between the position information when the first machine ID is acquired and the position information when the second machine ID is acquired is equal to or less than a threshold (S4). .
  • the identification unit 5 identifies the flying object 2 transmitting the second aircraft ID. , is determined to be the same flying object 2 as the flying object 2 that transmitted the first aircraft ID (S5).
  • a preset threshold value for example, 50 m
  • the identifying unit 5 identifies the aircraft 2 transmitting the second aircraft ID as the first aircraft.
  • the flying object 2 is identified as different from the flying object 2 that transmitted the ID (S6).
  • the air traffic control system 3 identifies the aircraft 2 transmitting the first aircraft ID and the aircraft 2 transmitting the second aircraft ID as different aircraft 2, and performs flight management and air traffic control. conduct.
  • the aircraft 2 according to the first embodiment can improve security by changing the aircraft ID.
  • the control system 3 will not be able to identify the flying object 2, so there is also a problem that the safety of flight may be lost.
  • the control system 3 according to the first embodiment can identify the flying object 2 by using the position information of the flying object 2 even when different aircraft IDs are acquired at different timings. can be done. As a result, the control system 3 can identify or specify the aircraft 2 that changes the transmitted aircraft ID in consideration of security.
  • FIG. 4 is a block diagram showing the configuration of an aircraft identification system 100 according to the second embodiment.
  • the aircraft identification system 100 includes an aircraft 20 and a control system 30 .
  • FIG. 5 is a block diagram showing the configuration of the aircraft 20 according to the second embodiment.
  • the aircraft 20 includes a flight control section 11 , a drive mechanism 12 , a sensor 13 , a communication section 14 , a body ID control section 15 , a display section 16 and a battery 17 .
  • the same reference numerals are given to the same components as in the first embodiment, and detailed description thereof will be omitted as appropriate.
  • the flight control unit 11 controls each component that constitutes the aircraft 20 .
  • the drive mechanism 12 has rotary wings and their motors, and generates lift and thrust for flight.
  • the flight control unit 11 outputs drive signals for controlling the drive mechanism 12 .
  • the flight control unit 11 controls the drive mechanism 12 so that the drive mechanism 12 drives the rotor blades independently.
  • the flight control unit 11 stores flight plans in a memory or the like.
  • the flight control unit 11 may store a flight plan received from the control system 30 in its memory, or may store a flight plan input by the user of the aircraft 20 in its memory.
  • the flight control unit 11 controls the drive mechanism 12 so as to fly according to the flight plan.
  • the flight control unit 11 flies by controlling the drive mechanism 12 so that the aircraft 20 approaches the flight path when the position of the aircraft moves away from the flight path due to wind or the like.
  • the flight control unit 11 can detect the position of the flying object 20 by using the sensor 13 .
  • the flight control section 11 controls the drive mechanism 12 based on the detection result of the sensor 13 .
  • the sensor 13 detects information regarding the flight state of the aircraft 20 .
  • the sensor 13 has, for example, a gyro sensor that detects the attitude of the aircraft, a position sensor that detects the position of the aircraft, and the like.
  • a satellite positioning sensor such as GPS (Global Positioning System) can be used.
  • the flight control unit 11 identifies the position of the aircraft based on the information acquired by the sensor 13 . Specifically, the flight control unit 11 identifies the three-dimensional position of the aircraft 20 based on positioning information received by the sensor 13 from a plurality of satellites, for example.
  • the communication unit 14 transmits the aircraft ID and position information about the position specified by the flight control unit 11 .
  • the number of sensors 13 is not limited to one, and a plurality of sensors 13 may be used.
  • the aircraft 20 may be provided with a display unit 16 for showing passengers the flight status, congestion during flight, aircraft information, and the like.
  • the display content displayed on the display unit 16 may be changed according to the information about the flying object 20 .
  • the display content displayed on the display unit 16 may be changed according to information as to whether the flying object 20 is a manned aircraft or an unmanned aircraft.
  • the display content displayed on the display unit 16 may be changed according to information as to whether the flying object 20 is in automatic operation or manual operation.
  • the display unit 16 may be omitted.
  • the battery 17 supplies power to each device that constitutes the aircraft 20 .
  • the flying object 20 can fly while communicating with the control system 30 by providing the components described above.
  • FIG. 6 is a block diagram of the control system 30 according to the second embodiment.
  • the control system 30 includes a communication unit 4 , an identification unit 5 , a generation unit 6 , a storage unit 7 and an estimation unit 8 .
  • the same components as in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted as appropriate.
  • the communication unit 4 performs wireless communication with the aircraft 20 and acquires aircraft information including the aircraft ID and position information of the aircraft 20 .
  • the aircraft information may include performance information regarding the performance of the aircraft 20 .
  • Performance information includes data on the weight, size, flight time, turning ability, wind resistance, flight speed, and flight altitude of the aircraft 20 .
  • the performance information may include data regarding remaining battery capacity and fuel level during flight.
  • the performance information may include information indicating whether the aircraft is manned or unmanned.
  • the aircraft information may include information indicating whether or not the aircraft is an emergency aircraft for police, fire, ambulance, or the like.
  • the communication unit 4 performs wireless communication with the flying object 20 according to a predetermined frequency, transmission output, and the like.
  • the communication unit 4 may perform processing in accordance with communication standards such as 5G and 4G defined by 3GPP, and processing in accordance with communication standards such as Wi-Fi (registered trademark) and Bluetooth (registered trademark). may be performed.
  • the communication unit 4 transmits radio signals to the aircraft 20 .
  • the communication unit 4 receives radio signals from the aircraft 20 . This enables transmission and reception of data and information between the aircraft 20 and the control system 30 .
  • the generation unit 6 generates a flight plan including a flight route and a flight schedule based on the scheduled takeoff time (scheduled takeoff time) of the aircraft 20 acquired by the communication unit 4 and the movement information regarding the destination.
  • the scheduled take-off time may be the current time or the time registered in the schedule in advance.
  • the scheduled take-off time and destination may be information directly input into the control system 30 by the user of the aircraft 20 or the user of the control system 30 .
  • the destination may be a place name, facility name, address, coordinates (latitude and longitude), and the like. Also, the destination may be the ID of the takeoff/landing facility itself, and the movement information may include intermediate points between the takeoff location and the landing location.
  • a flight route is a travel route from the takeoff site to the landing site corresponding to the destination.
  • the flight path is information indicating the trajectory of the target position that the flying object 20 passes through. Further, on the flight route, each target position may be associated with an estimated flight time.
  • a flight path may be, for example, a set of three-dimensional coordinates indicating target positions. Specifically, the flight path may be data in which three-dimensional coordinates are arranged in chronological order. A flight path is generated by connecting the three-dimensional coordinates.
  • the generation unit 6 may generate a flight route based on the performance information. For example, the generation unit 6 generates a flight path so as to satisfy the performance indicated by the performance information.
  • the performance information includes the weight, size, flight time, turning ability, wind resistance, flight speed, and flight altitude of the aircraft 20 .
  • the performance information may include the current battery level and fuel level. For example, when power is provided by an electric motor, the remaining battery level is included in the performance information, and when power is provided by an internal combustion engine, the remaining amount of fuel such as gasoline is included in the performance information. Alternatively, when a fuel cell is used as the battery 17, the remaining amount of fuel such as hydrogen is included in the performance information. When the internal combustion engine and the electric motor are used together as motive power, both the remaining battery level and the remaining fuel level may be included in the performance information.
  • the generation unit 6 For example, if the performance information includes a possible flight time, the generation unit 6 generates a flight route so that the possible flight time is not exceeded. Specifically, the generating unit 6 shortens the flight distance of the aircraft 20 with a short available flight time to generate a flight route that does not exceed the available flight time. As a matter of course, the generation unit 6 can generate a flight route so as to satisfy performance other than the available flight time.
  • the communication unit 4 transmits the generated flight plan to the aircraft 20 .
  • the storage unit 7 stores the aircraft information acquired from the aircraft 20 and the flight plan generated by the generation unit 6.
  • the storage unit 7 also stores an aircraft ID table that indicates the change pattern of the aircraft ID transmitted by the aircraft 20 .
  • the identification unit 5 identifies the acquired aircraft based on the aircraft ID table stored in the storage unit 7 in addition to the change between the position information acquired at different timings. Identify the aircraft 20 associated with the ID. Further, the identification unit 5 may identify the flying object 20 by referring to the flight plan in addition to the aircraft ID and position information. The identifying unit 5 compares the position information of the flying object 20 in flight with the flight plan of the flying object 20 to improve the accuracy of identifying the flying object 20 .
  • the estimating unit 8 estimates the estimated position of the flying object 20 in flight based on the position information and flight plan of the flying object 20 at the time of communication disconnection when wireless communication between the control system 30 and the flying object 20 is cut off. .
  • the estimating unit 8 calculates the speed and direction of the flying object 20 from the position information up to the time when the communication is cut off, and uses the flight route and flight schedule of the flight plan after the time when the communication is cut off to calculate the flying object 20. Estimate the estimated position of .
  • the identifying unit 5 identifies the flying object 20 by comparing the aircraft ID of the flying object 20 at the estimated position with the aircraft ID based on the aircraft ID table. Furthermore, the identifying unit 5 identifies the flying object 20 by comparing the position of the flying object 20 when communication is restored with the estimated position of the flying object 20 at the timing when communication is restored.
  • FIG. 7 is a flow chart showing the operation of the control system 30 according to the second embodiment. Since S11 to S14 in FIG. 7 are the same as S1 to S4 in FIG. 3, description thereof is omitted. As in FIG. 3, in order to distinguish the machine IDs, the initial machine ID is called the first machine ID, and the changed machine ID is called the second machine ID.
  • the identification unit 5 When the change between the position information when the first machine ID is acquired and the position information when the second machine ID is acquired is equal to or less than a threshold value (S14, YES), the identification unit 5 causes the storage unit 7 to store Refers to the machine ID change pattern.
  • the change between position information being equal to or less than a threshold means that the amount of change between position information is equal to or less than a threshold.
  • the identification unit 5 determines whether the second aircraft ID is the same as the aircraft ID specified by the aircraft ID change pattern of the aircraft 20 that transmitted the first aircraft ID (S15).
  • the identification unit 5 determines that the aircraft 20 transmitting the second aircraft ID has transmitted the first aircraft ID.
  • the flying object 20 is identified as a different flying object 20 (S18). If the second aircraft ID is the same as the aircraft ID specified by the change pattern (S15, YES), the identification unit 5 refers to the flight plan stored in the storage unit 7, and determines the second aircraft ID acquired. It is determined whether the position is the position in the flight plan of the aircraft 20 transmitting the first aircraft ID (S16). When the position at which the second aircraft ID was acquired does not exist in the flight plan (S16, NO), the identification unit 5 identifies it as a different aircraft 20 (S18).
  • the identification unit 5 identifies the aircraft 20 transmitting the second aircraft ID and the first aircraft ID. It is determined that the transmitting flying object 20 is the same flying object 20 (S17). Also, although FIG. 7 shows that the processes are executed in the order of steps S14, S15, and S16, the order of steps S14, S15, and S16 may be changed. For example, the control system 30 may execute the process of step S15 and then execute the process of step S14 or S16, or execute the process of step S16 and then execute the process of step S14 or S15. good too.
  • FIG. 8 is a flowchart showing the operation of the control system 30 when communication with the aircraft 20 is restored. Since S21 to S22 in FIG. 8 are the same as S1 to S2 in FIG. 3, description thereof is omitted. As in FIG. 3, in order to distinguish the machine IDs, the initial machine ID is called the first machine ID, and the changed machine ID is called the second machine ID.
  • the estimating unit 8 determines the position of the flying object 20 in flight based on the position information of the flying object 20 at the time of communication disconnection and the flight plan stored in the storage unit 7.
  • An estimated position is estimated (S23). For example, when the communication unit 4 does not receive a radio signal from the aircraft 20 for a predetermined period of time, or when the communication unit 4 does not receive a response signal to the radio signal transmitted by the communication unit 4, the estimation unit 8 determines whether the communication unit 4 and the aircraft 20 may be determined to have been disconnected.
  • the identification unit 5 identifies the aircraft 20 using the first aircraft ID.
  • the identification unit 5 identifies the estimated position of the flying object 20 estimated by the estimation unit 8 and the second aircraft ID. is compared with the location information when it was acquired.
  • the identification unit 5 identifies the aircraft as a different flying object 20 (S28).
  • the identification section 5 refers to the machine ID change pattern stored in the storage section 7.
  • the identification unit 5 determines whether the second aircraft ID is the same as the aircraft ID specified by the aircraft ID change pattern of the aircraft 20 that transmitted the first aircraft ID (S26). When the second aircraft ID is different from the aircraft ID specified by the change pattern (S26, NO), the identification unit 5 determines that the aircraft 20 transmitting the second aircraft ID has transmitted the first aircraft ID. The flying object 20 is identified as a different flying object 20 (S28). If the second aircraft ID is the same as the aircraft ID specified by the change pattern (S26, YES), the identification unit 5 transmits the aircraft 20 transmitting the second aircraft ID and the first aircraft ID. It is determined that the flying object 20 that was flying is the same flying object 20 (S27). Also, although FIG. 8 shows that the processes are executed in the order of steps S25 and S26, the order of steps S25 and S26 may be changed. For example, the control system 30 may execute the process of step S26 and then execute the process of step S25.
  • the control system 30 identifies the flying object 20 by using the change between the position information of the flying object 20, the change pattern of the aircraft ID, and the flight plan. can be done. Furthermore, even if the aircraft ID of the aircraft 20 is changed when communication with the aircraft 20 is cut, the control system 30 compares the position information of the aircraft 20 at the time of communication restoration with the estimated position. , and the change pattern of the aircraft ID, it is possible to determine whether or not the second aircraft ID indicates the aircraft 20 . This allows the control system 30 to identify the flying object 20 even if the flying object 20 changes its body ID to improve security.
  • An aircraft identification system 101 according to the third embodiment includes an aircraft 2 , a control system 31 and a communication terminal 40 .
  • the aircraft 2 includes a communication section 14 and an aircraft ID control section 15 .
  • the control system 31 includes a communication section 4 , an identification section 5 and an estimation section 8 .
  • An aircraft identification system 101 according to the third embodiment is a system that identifies an aircraft 2 using a communication terminal 40 .
  • the same components as in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted as appropriate.
  • the communication terminal 40 is, for example, a smartphone, and has a communication function and a photographing function.
  • the communication terminal 40 can communicate with the control system 31 .
  • the communication terminal 40 may communicate with the control system 31 via a mobile network managed by a telecommunications carrier or the Internet.
  • a user of the communication terminal 40 can acquire information on the flying object 2 by transmitting an inquiry message containing an image including the flying object 2 and position information of the communication terminal 40 to the control system 31 .
  • the user of the communication terminal 40 takes an image including the flying object 2 when the flying object 2 is emitting noise or when a suspicious flying object 2 is flying, and inquires the control system 31. I do.
  • the communication terminal 40 can acquire the aircraft ID by directly communicating with the aircraft 2 by radio.
  • a communication method such as Bluetooth (registered trademark) may be used.
  • the communication terminal 40 requests the aircraft ID from the flying object 2, and if it cannot obtain a response from the flying object 2, it determines that the flying object 2 is a suspicious object, and You may report to the police that a suspicious aircraft is flying and staying.
  • the communication terminal 40 may transmit a message to the aircraft 2 in addition to the aircraft ID request.
  • the message may be, for example, the content that the noise during the flight is too loud or the purpose of the stay.
  • the communication terminal 40 can acquire circumstances such as the purpose of stay of the flying object 2 when there is a response from the flying object 2 .
  • the communication terminal 40 cannot obtain a response from the flying object 2, it determines that the flying object 2 is a suspicious object, and reports to the police that a suspicious object is flying and staying around the position of the communication terminal 40. may be notified to
  • the communication unit 14 of the aircraft 2 When the communication unit 14 of the aircraft 2 receives a request signal for the aircraft ID from, for example, the control system 31, the communication terminal 40, or another aircraft 2, it transmits a response signal including the aircraft ID in response to the request. Note that whether or not to respond to the machine ID request may be set in advance according to the request source. Alternatively, the user of the aircraft 2 may decide whether or not to respond to the request for the aircraft ID and the content of the response.
  • the communication unit 4 of the control system 31 receives from the communication terminal 40 an image including the aircraft 2 photographed by the communication terminal 40 and the position information of the communication terminal 40 .
  • the estimation unit 8 estimates the estimated position of the flying object 2 using the background information and position information included in the received image.
  • the estimation unit 8 identifies the position of the communication terminal 40 at the time of image capturing from the position information of the communication terminal 40 .
  • the estimation unit 8 estimates the position of the aircraft 2 near the position of the communication terminal 40 from the background information included in the received image.
  • the estimation unit 8 may estimate the position of a building, steel tower, mountain, river, sea, or the like, which is background information, using map information or the like.
  • the estimation unit 8 may estimate the position of the aircraft 2 from the background image without using the position information of the communication terminal 40. good. Furthermore, the estimation unit 8 may estimate the position of the flying object 2 by estimating the distance between the flying object 2 in the image and the background information. The estimating unit 8 also determines the shooting direction of the communication terminal 40 , that is, the angle of the communication terminal 40 when the communication terminal 40 is held up toward the sky to shoot the flying object 2 , and the like. May be used for estimation.
  • the communication unit 4 sends, via a mobile network managed by a telecommunications carrier, a communication terminal 40 existing in a predetermined area, a photographed image of the sky above the predetermined area, or the position of the communication terminal 40 that has photographed the image. You can also request information.
  • the identifying unit 5 identifies the flying object 2 using the estimated position of the flying object 2 estimated by the estimating unit 8 .
  • the identifying unit 5 identifies the flying object 2 at the estimated position, for example, by comparing the position information of the flying object 2 under control with the estimated position. Specifically, when the distance between the position of the flying object 2 under control and the estimated position is shorter than a predetermined distance, the identifying unit 5 determines that the flying object 2 existing at the estimated position It may be identified as the aircraft 2 under control.
  • the communication unit 4 transmits information on the identified flying object 2 to the communication terminal 40 .
  • the communication unit 4 transmits information such as the aircraft ID, aircraft information, and destination of the identified flying object 2 to the communication terminal.
  • the user of the communication terminal 40 can acquire the information of the aircraft 2 .
  • the aircraft ID of the aircraft 2 may be associated in advance with information such as aircraft information and destination.
  • the communication unit 4 may transmit a request signal requesting the aircraft ID to the aircraft 2 at the estimated position of the aircraft 2 estimated by the estimation unit 8 using directional radio waves.
  • the identification unit 5 can identify the aircraft 2 using the aircraft ID included in the response signal when the communication unit 4 receives the response signal to the request signal.
  • the identifying unit 5 may identify the flying object 2 corresponding to the aircraft ID by referring to the storage unit 7 that stores information on the flying object 2 .
  • the identification unit 5 determines that the flying object 2 at the estimated position is a suspicious flying object 2, and the communication unit 4 determines that the identifying unit 5 determines that the flying object 2 is suspicious.
  • a message or the like is transmitted to the communication terminal 40 that the flying object 2 is a suitable flying object 2 .
  • the communication unit 4 may report to the police that the suspicious flying object 2 is flying and staying at the estimated position.
  • the case where the communication unit 4 cannot identify the aircraft ID of the aircraft 2 may be, for example, the case where the response signal does not include the aircraft ID. It may not be attached.
  • FIG. 10 is a flow chart showing the operation of the control system 31 according to the third embodiment.
  • the operation of the control system 31 will be described below with reference to FIG.
  • the communication unit 4 receives from the communication terminal 40 an image including the aircraft 2 photographed by the communication terminal 40 and the position information of the communication terminal 40 (S31).
  • the estimation unit 8 estimates the estimated position of the flying object 2 using the background information and position information included in the received image (S32).
  • the communication unit 4 transmits a request signal requesting the aircraft ID to the aircraft 2 at the estimated position of the aircraft 2 estimated by the estimation unit 8 using directional radio waves (S33).
  • the identification unit 5 identifies the aircraft 2 using the aircraft ID included in the response signal (S35).
  • the communication unit 4 transmits the information of the identified flying object 2 to the communication terminal 40 (S36). determines that the flying object 2 at the estimated position is a suspicious flying object 2 (S37). The communication unit 4 transmits the determination result to the communication terminal 40 (S38). Further, when determining in step S34 that there is no flying object associated with the aircraft ID included in the received response signal, the identification unit 5 determines that the flying object 2 at the estimated position is a suspicious flying object 2. You may Further, if the response signal received in step S ⁇ b>34 does not include the aircraft ID, the identification unit 5 may determine that the flying object 2 at the estimated position is a suspicious flying object 2 .
  • control system 31 can identify the flying object 2 based on the image received from the communication terminal 40 and the position information of the communication terminal 40 . As a result, the control system 31 can provide the user of the communication terminal 40 with information on the flying object 2 and determination results as to whether the flying object 2 is suspicious.
  • FIG. 11 is a block diagram showing the configuration of an aircraft identification system 102 according to the fourth embodiment.
  • An aircraft identification system 102 according to the fourth embodiment includes an aircraft 2 , a control system 32 and a communication terminal 40 .
  • the aircraft 2 includes a communication section 14 and an aircraft ID control section 15 .
  • the control system 32 includes a communication section 4 , a storage section 7 and a selection section 9 .
  • the flying object identification system 102 according to the fourth embodiment is a system that discloses appropriate information to the communication terminal 40 according to the authority level of the communication terminal 40 .
  • the same components as in the first to third embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted as appropriate.
  • the communication terminal 40 can acquire the aircraft ID by wirelessly communicating with the aircraft 2.
  • a communication method such as Bluetooth (registered trademark) may be used.
  • An authority level is assigned in advance to the communication terminal 40 .
  • the communication terminal 40 can acquire information on the aircraft 2 from the control system 32 by transmitting an inquiry message including the aircraft ID and the authority level acquired from the aircraft 2 to the control system 32 .
  • the storage unit 7 of the control system 32 associates, manages, and stores the aircraft ID of the aircraft 2 and a plurality of pieces of information about the aircraft 2 indicated by the aircraft ID.
  • the storage unit 7 may manage a plurality of pieces of information about the aircraft 2 and a plurality of authority levels in association with each other. For example, as shown in FIG. 12, the storage unit 7 stores a plurality of pieces of information regarding the aircraft 2 according to authority levels.
  • the information of authority level 3 corresponds to the personal information of the user of the aircraft 2
  • the information of authority level 2 corresponds to the information of the flight route and the remaining amount of the battery 17 .
  • the information of authority level 1 corresponds to the information of the destination of the aircraft 2 . These are only examples, and the administrator or user of the aircraft 2 may set the authority level associated with the information of the aircraft 2 .
  • the selection unit 9 refers to the storage unit 7 when the communication unit 4 receives from the communication terminal 40 an inquiry message including the device ID and the authority level assigned to the communication terminal 40 .
  • the selection unit 9 selects information to be transmitted to the communication terminal 40 from a plurality of pieces of information regarding the aircraft 2 associated with the aircraft ID, according to the authority level of the communication terminal 40 .
  • the communication unit 4 transmits information on the aircraft 2 selected by the selection unit 9 to the communication terminal 40 .
  • the selection unit 9 can select information about the aircraft 2 associated with the authority level assigned to the communication terminal 40 as follows. For example, in response to an inquiry from the communication terminal 40 of authority level 3 owned by the police, the selection unit 9 selects authority level 3 information. Similarly, in response to an inquiry from the communication terminal 40 with authority level 2 owned by the traffic information center, the selection unit 9 selects authority level 2 information. Further, regarding an inquiry from the communication terminal 40 of authority level 1 owned by a general person, the selection unit 9 selects the information of authority level 1. FIG.
  • the selection unit 9 may select the authority level assigned to the communication terminal 40 and the information on the aircraft 2 associated with an authority level lower than the authority level. Specifically, the selection unit 9 selects information of authority levels 1 to 3 in response to an inquiry from a communication terminal 40 of authority level 3 owned by the police, and selects information of authority levels 1 to 3, For inquiries from 40, information of authority levels 1 and 2 is selected. For an inquiry from a communication terminal 40 of authority level 1 owned by a general person, the selection unit 9 selects authority level 1 information. The selection unit 9 does not select the information on the aircraft 2 in response to an inquiry about information with a higher authority level than the authority level assigned to the communication terminal 40 . In this case, the communication unit 4 may notify the communication terminal 40 that the information on the aircraft 2 cannot be provided. Thereby, the selection unit 9 can select information to be transmitted to the communication terminal 40 according to the authority level of the communication terminal 40 .
  • FIG. 13 is a flow chart showing the operation of the control system 32 according to the fourth embodiment.
  • the communication unit 4 receives an inquiry message including the device ID and the authority level assigned to the communication terminal 40 from the communication terminal 40 (S41).
  • the selection unit 9 confirms the authority level included in the inquiry message of the communication terminal 40 (S42).
  • the selection unit 9 refers to the storage unit 7 and selects information on the aircraft 2 corresponding to the authority level of the communication terminal 40 (S43).
  • the communication unit 4 transmits the information selected by the selection unit 9 to the communication terminal 40 (S44).
  • control system 32 provides information on the aircraft 2 according to the authority level of the communication terminal 40.
  • the control system 32 can suppress leakage of information about the aircraft 2 and improve security.
  • the control system 32 can appropriately provide information on the aircraft 2 according to the situation while improving security.
  • FIG. 14 is a block diagram showing the configuration of an aircraft identification system 103 according to the fifth embodiment.
  • An aircraft identification system 103 according to the fifth embodiment includes an aircraft 21 , a control system 33 and a communication terminal 40 .
  • the aircraft 21 includes a communication section 14 , a storage section 18 and an encryption section 19 .
  • the control system 33 includes a communication section 4 , a storage section 7 , a selection section 9 and an encryption section 10 .
  • the same reference numerals are given to the same components as in the first to fourth embodiments, and detailed description thereof will be omitted as appropriate.
  • the flying object 21 according to the fifth embodiment can encrypt and transmit the information it owns according to the authority level. Further, the flying object identification system 103 according to the fifth embodiment, like the flying object identification system 102 according to the fourth embodiment, sends appropriate information to the communication terminal 40 according to the authority level of the communication terminal 40. It is a system to disclose.
  • the storage unit 18 of the flying object 21 stores the flying object information, which is information about the flying object 21, and the authority level in association with each other.
  • the storage unit 18 stores a plurality of flying object information regarding the flying object 21 according to the authority level.
  • the information of authority level 3 corresponds to the personal information of the user of the aircraft 21, and the information of authority level 2 corresponds to the information of the flight route and the remaining amount of the battery 17.
  • FIG. The information of authority level 1 corresponds to the information of the destination of the aircraft 21 .
  • the administrator or user of the flying object 21 may set the authority level associated with the flying object information of the flying object 21 . That is, the flying object 21 can set which information among the information to be transmitted is disclosed to which authority level. Also, the flying object 21 can set which information to transmit.
  • the encryption unit 19 encrypts the aircraft information associated with the predetermined authority level. For example, when the predetermined authority level is 3, the encryption unit 19 encrypts the aircraft information associated with authority level 3. Further, when the predetermined authority level is 1-3, the encryption unit 19 may encrypt all the aircraft information associated with authority levels 1-3.
  • the communication unit 14 transmits encrypted aircraft information.
  • the aircraft information is aircraft information, such as the flight route, personal information of the aircraft owner and aircraft manager, payloads, aircraft information, connection information, aircraft status such as presence or absence of malfunctions and remaining energy. , maintenance information, etc.
  • the communication terminal 40 has an authority level according to the status of the user, and can decrypt the encrypted aircraft information received from the aircraft 21 .
  • Users of the communication terminal 40 are, for example, the police, parking lot managers, and ordinary people.
  • the police have a communication terminal 40 assigned authority level 3
  • the parking lot manager has a communication terminal 40 assigned authority level 2
  • the general public has a communication terminal 40 assigned authority level 1. holds 40.
  • the encryption unit 19 encrypts the aircraft information of the aircraft 21 associated with the authority level 3 and the communication unit 14 transmits the encrypted aircraft information
  • the authority level held by the police is 3 communication terminal 40 can decrypt the encrypted privilege level 3 aircraft information of the aircraft 21 .
  • the communication terminal 40 of authority level 2 owned by the parking lot manager and the communication terminal 40 of authority level 1 owned by the general public cannot decrypt the encrypted aircraft information of authority level 3.
  • the communication terminal 40 at authority level 3 can receive aircraft information associated with authority level 1 or 2.
  • the communication terminal 40 with authority level 3 can decrypt the encrypted aircraft information with authority level 1 or 2 as well. That is, the communication terminal 40 can acquire the aircraft information associated with its own authority level and authority levels lower than its own authority level.
  • the flying object 21 according to the fifth embodiment can encrypt and transmit the information it owns according to the authority level, thereby improving security and enabling communication with an appropriate authority level.
  • Information can be communicated to the owner of the terminal 40 .
  • the control system 33 according to the fifth embodiment can also disclose appropriate information to the communication terminal 40 in response to an inquiry from the communication terminal 40 according to the authority level of the communication terminal 40.
  • an encryption unit 10 is added as compared with the control system 32 according to the fourth embodiment.
  • the encryption unit 10 of the control system 33 encrypts the information of the aircraft 21 associated with the predetermined authority level. For example, when the predetermined authority level is 3, the encryption unit 10 encrypts the aircraft information of the aircraft 21 associated with the authority level 3. Note that the encryption unit 10 may encrypt all the aircraft information associated with the authority levels 1 to 3 when the predetermined authority levels are 1 to 3.
  • FIG. The communication unit 4 transmits encrypted information on the flying object 21 .
  • the communication terminal 40 with authority level 3 can acquire the information on the authority level 3 aircraft 21 by decrypting the encrypted information on the authority level 3 aircraft 21 .
  • the operation of the control system 33 will be described below with reference to FIG. 15 .
  • FIG. 15 is a flow chart showing the operation of the control system 33 according to the fifth embodiment.
  • the communication unit 4 receives an inquiry message including the device ID and the authority level assigned to the communication terminal 40 from the communication terminal 40 (S51).
  • the selection unit 9 confirms the authority level included in the inquiry message of the communication terminal 40 (S52).
  • the selection unit 9 refers to the storage unit 7 and selects the information of the aircraft 21 corresponding to the authority level 3 (S53).
  • the encryption unit 10 encrypts the information of the aircraft 21 associated with the authority level 3 (S54).
  • the communication unit 4 transmits to the communication terminal 40 the information on the aircraft 21 associated with the authority level 3 selected by the selection unit 9 and encrypted by the encryption unit 10 (S55).
  • control system 33 can prevent interception by other communication terminals 40 by providing the encryption unit 10 .
  • the control system 33 can further suppress leakage of information on the aircraft 21 and improve the security of the communication system between the communication terminal 40 and the control system 33 .
  • the control system 33 can appropriately provide information on the aircraft 21 according to the situation while improving security.
  • the aircraft 2 and 21 in case of an emergency, directly send emergency information including malfunction and landing location to the communication terminal 40 without going through the control system 32 and control system 33. You may make it transmit.
  • the aircraft 2 and 21 may broadcast emergency information to the communication terminals 40 on the ground located at the landing site and on the landing route.
  • the landing route is a flight route from the occurrence of an emergency such as a malfunction of the aircraft 2 and 21 to the landing of the aircraft 2 and 21 at the landing point.
  • the aircraft 2 and 21 may broadcast emergency information to the communication terminal 40 on the ground via a mobile network managed by a telecommunications carrier without going through the control systems 32 and 33 .
  • the flying object 2 and the flying object 21 can immediately transmit emergency information to the communication terminal 40, thereby suppressing damage caused by an accident. be able to.
  • FIG. 16 shows control devices in aircraft 2, aircraft 20, aircraft 21, control system 3, control system 30, control system 31, control system 32, control system 33, and communication terminal 40 according to the respective embodiments. It is a block diagram showing a configuration example.
  • these controllers include network interface 201 , processor 202 and memory 203 .
  • the network interface 201 may be used to communicate with network nodes (e.g., eNB, MME, P-GW,).
  • Network interface 201 may include, for example, an IEEE 802.3 series compliant network interface card (NIC).
  • eNB stands for evolved Node B
  • MME Mobility Management Entity
  • P-GW Packet Data Network Gateway.
  • IEEE stands for Institute of Electrical and Electronics Engineers.
  • the processor 202 reads and executes software (computer program) from the memory 203 to control the aircraft 2, 20, 21, control system 3, control system 30, and control system described in the above embodiments. 31 , control system 32 , control system 33 , and communication terminal 40 .
  • Processor 202 may be, for example, a microprocessor, MPU, or CPU.
  • Processor 202 may include multiple processors.
  • the memory 203 is configured by a combination of volatile memory and nonvolatile memory.
  • Memory 203 may include storage remotely located from processor 202 .
  • the processor 202 may access the memory 203 via an I/O (Input/Output) interface (not shown).
  • I/O Input/Output
  • the memory 203 is used to store software modules.
  • the processor 202 reads and executes these software module groups from the memory 203 to operate the aircraft 2, 20, 21, control system 3, control system 30, and control system described in the above-described embodiments. 31, the control system 32, the control system 33, and the communication terminal 40 can perform operations and processes.
  • control system 3 As described with reference to FIG. 16, the aircraft 2, 20, 21, control system 3, control system 30, control system 31, control system 32, control system 33, and communication terminal 40 in the above embodiment
  • Each of the processors of the control device executes one or more programs containing instruction groups for causing the computer to perform the operations and processes described in the above embodiments.
  • Non-transitory computer readable media include various types of tangible storage media.
  • Examples of non-transitory computer readable media include magnetic recording media (eg, floppy disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical discs), CD-ROMs, CD-Rs, CD-R/Ws , semiconductor memory (eg, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM).
  • the program may also be delivered to the computer on various types of transitory computer readable medium. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. Transitory computer-readable media can deliver the program to the computer via wired channels, such as wires and optical fibers, or wireless channels.
  • (Appendix 1) an air vehicle; a communication terminal that acquires the body ID of the flying object; a control system that controls the flight of the aircraft, The control system is managing the machine ID and a plurality of pieces of information about the flying machine indicated by the machine ID in association with each other;
  • a plurality of aircraft related to the aircraft associated with the aircraft ID Selecting information to be transmitted to the communication terminal from information, and transmitting the selected information to the communication terminal;
  • Aircraft identification system Aircraft identification system.
  • the control system is managing a plurality of pieces of information about the flying object and a plurality of authority levels in association with each other; Selecting information about the aircraft associated with the authority level assigned to the communication terminal, or information associated with the authority level assigned to the communication terminal and an authority level lower than the authority level Clause 1.
  • the control system encrypts information on the aircraft associated with a predetermined authority level. 3.
  • the flying object In case of emergency, the flying object directly transmits emergency information including malfunction and landing location to the communication terminal without going through the control system.
  • the aircraft identification system according to any one of Appendices 1 to 3.
  • (Appendix 7) a communication unit that communicates with a communication terminal; a storage unit that associates, manages, and stores a body ID of a flying object and a plurality of pieces of information about the flying object indicated by the body ID; a selection unit that selects information to be transmitted to the communication terminal from among a plurality of pieces of information about the flying object;
  • the selection unit refers to the storage unit, and selects information to be transmitted to the communication terminal from among a plurality of pieces of information related to the aircraft associated with the aircraft ID, according to the authority level of the communication terminal. death,
  • the communication unit transmits the information selected by the selection unit to the communication terminal. control system.
  • Appendix 8 further comprising an encryption unit that encrypts information of the aircraft associated with a predetermined authority level;
  • the control system according to appendix 7. (Appendix 9) managing a body ID of a flying body and a plurality of pieces of information about the flying body indicated by the body ID in association with each other; When an inquiry message including the aircraft ID and the authority level assigned to the communication terminal is received from the communication terminal, a plurality of pieces of information about the aircraft associated with the aircraft ID according to the authority level of the communication terminal. selecting information to be transmitted to the communication terminal from among, and transmitting the selected information to the communication terminal; Aircraft identification method.
  • (Appendix 11) a storage unit that associates and stores aircraft information, which is information about the aircraft, with authority levels; an encryption unit that encrypts the aircraft information associated with a predetermined authority level; a communication unit that transmits the encrypted flying object information, Airplane.
  • Reference Signs List 1 100, 101, 102, 103 aircraft identification system 2, 20, 21 aircraft 3, 30, 31, 32, 33 control system 4 communication unit 5 identification unit 6 generation unit 7 storage unit 8 estimation unit 9 selection unit 10

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本実施の形態にかかる飛行体識別システム(102)は、飛行体(2)と、飛行体(2)の機体IDを取得する通信端末(40)と、飛行体(2)の運航を管制する管制システム(32)と、を備え、管制システム(32)は、機体IDと、機体IDが示す飛行体(2)に関する複数の情報を対応付けて管理し、通信端末(40)から機体ID及び通信端末(40)に割り当てられた権限レベルを含む問い合わせメッセージを受信した場合、通信端末(40)の権限レベルに応じて、機体IDと対応付けられた飛行体(2)に関する複数の情報の中から通信端末(40)へ送信すべき情報を選択し、選択した情報を通信端末(40)に送信する。

Description

飛行体識別システム、管制システム、飛行体識別方法、コンピュータ可読媒体及び飛行体
 本開示は、飛行体識別システム、管制システム、飛行体識別方法、コンピュータ可読媒体及び飛行体に関する。
 近年、空飛ぶクルマなどの飛行体の研究開発が活発になってきている。例えば、特許文献1には、飛行車両の運航の管制を行う管制システムによる制御の下、飛行車両の第1離発着区間の離陸から第2離発着区間の発着までの動作が自動的に行われる飛行車両運行システムが開示されている。
特開2017-151839号公報
 飛行体が移動手段となるには、飛行体に対する安心感を高めて、飛行体が社会に受け入れられるような仕組みが求められる。飛行体に対する安心感を高めるためには、誰もが飛行中の飛行体の情報を取得できるようにすることが考えられる。一方で、飛行体の情報には機体ID、エネルギー残量、飛行経路などの様々な情報があり、そのすべてを開示することはセキュリティ上問題であり、状況に応じて適切な飛行体の情報を提供することが必要である。
 本開示の目的は、このような課題を解決するためになされたものであり、セキュリティを向上させつつ、状況に応じて飛行体の情報を適切に提供可能な飛行体識別システム、管制システム、飛行体識別方法、コンピュータ可読媒体及び飛行体を提供する。
 本開示にかかる飛行体識別システムは、
 飛行体と、
 前記飛行体の機体IDを取得する通信端末と、
 前記飛行体の運航を管制する管制システムと、を備え、
 前記管制システムは、前記機体IDと、前記機体IDが示す前記飛行体に関する複数の情報を対応付けて管理し、
 前記通信端末から前記機体ID及び前記通信端末に割り当てられた権限レベルを含む問い合わせメッセージを受信した場合、前記通信端末の権限レベルに応じて、前記機体IDと対応付けられた前記飛行体に関する複数の情報の中から前記通信端末へ送信すべき情報を選択し、選択した情報を前記通信端末に送信する。
 本開示にかかる管制システムは、
 通信端末と通信する通信部と、
 飛行体の機体IDと、前記機体IDが示す前記飛行体に関する複数の情報を対応付けて管理し、記憶する記憶部と、
 前記飛行体に関する複数の情報の中から前記通信端末へ送信すべき情報を選択する選択部と、を備え、
 前記通信部が、前記通信端末から前記機体ID及び前記通信端末に割り当てられた権限レベルを含む問い合わせメッセージを受信した場合、
 前記選択部は、前記記憶部を参照し、前記通信端末の権限レベルに応じて、前記機体IDと対応付けられた前記飛行体に関する複数の情報の中から前記通信端末へ送信すべき情報を選択し、
 前記通信部が、前記選択部が選択した情報を前記通信端末に送信する。
 本開示にかかる飛行体識別方法は、
 飛行体の機体IDと、前記機体IDが示す前記飛行体に関する複数の情報を対応付けて管理し、
 通信端末から前記機体ID及び前記通信端末に割り当てられた権限レベルを含む問い合わせメッセージを受信した場合、前記通信端末の権限レベルに応じて、前記機体IDと対応付けられた前記飛行体に関する複数の情報の中から前記通信端末へ送信すべき情報を選択し、選択した情報を前記通信端末に送信する方法である。
 本開示にかかるコンピュータ可読媒体は、
 飛行体の機体IDと、前記機体IDが示す前記飛行体に関する複数の情報を対応付けて管理し、
 通信端末から前記機体ID及び前記通信端末に割り当てられた権限レベルを含む問い合わせメッセージを受信した場合、前記通信端末の権限レベルに応じて、前記機体IDと対応付けられた前記飛行体に関する複数の情報の中から前記通信端末へ送信すべき情報を選択し、選択した情報を前記通信端末に送信する、
 処理をコンピュータに実行させるためのプログラムが格納された一時的なコンピュータ可読媒体である。
 本開示にかかる飛行体は、
 飛行体に関する情報である飛行体情報と、権限レベルとを対応付けて記憶する記憶部と、
 所定の権限レベルに対応付けられた前記飛行体情報を暗号化する暗号化部と、
 暗号化した前記飛行体情報を発信する通信部と、を備える。
 本開示によれば、セキュリティを向上させつつ、状況に応じて飛行体の情報を適切に提供可能な飛行体識別システム、管制システム、飛行体識別方法、コンピュータ可読媒体及び飛行体を提供できる。
第1の実施形態にかかる飛行体識別システムの構成を示すブロック図である。 第1の実施形態にかかる機体IDテーブルの例を示した図である。 第1の実施形態にかかる管制システムの動作を示すフローチャートである。 第2の実施形態にかかる飛行体識別システムの構成を示すブロック図である。 第2の実施形態にかかる飛行体の構成を示すブロック図である。 第2の実施形態にかかる管制システムの構成を示すブロック図である。 第2の実施形態にかかる管制システムの動作を示すフローチャートである。 第2の実施形態にかかる管制システムの動作を示すフローチャートである。 第3の実施形態にかかる飛行体識別システムの構成を示すブロック図である。 第3の実施形態にかかる管制システムの動作を示すフローチャートである。 第4の実施形態にかかる飛行体識別システムの構成を示すブロック図である。 第4の実施形態にかかる権限レベルと飛行体の情報との対応を示した図である。 第4の実施形態にかかる管制システムの動作を示すフローチャートである。 第5の実施形態にかかる飛行体識別システムの構成を示すブロック図である。 第5の実施形態にかかる管制システムの動作を示すフローチャートである。 それぞれの実施の形態にかかる飛行体、管制システム、通信端末における制御装置の構成例を示すブロック図である。
 以下、本発明を適用した具体的な実施形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。
 (第1の実施形態)
 図1は、第1の実施形態にかかる飛行体識別システム1の構成を示すブロック図である。飛行体識別システム1は、飛行体2、管制システム3を備える。
 飛行体2は、例えば、回転翼を有する回転翼機であり、ドローン、無人飛行機(Unmanned Aerial Vehicle,UAV)、空飛ぶクルマ、垂直離着陸機(Vertical Take-Off and Landing Aircraft,VTOL)などである。飛行体2は、回転翼が回転駆動することで揚力、及び推力を発生させる。飛行体2は、荷物などを搭載する無人機であってもよく、搭乗者が搭乗する有人機であってもよい。
 飛行体2は、自身の機体識別情報として機体IDを有する。異なる飛行体2には、異なる機体IDが付され、同一の機体IDを有する飛行体2は存在しない。飛行体2は、通信部14及び機体ID制御部15を有する。通信部14及び機体ID制御部15は、プロセッサがメモリに格納されたプログラムを実行することによって処理が実行されるソフトウェアもしくはモジュールであってもよい。または、通信部14及び機体ID制御部15は、回路もしくはチップ等のハードウェアであってもよい。
 通信部14は、機体IDを発信する。通信部14は、地上側、つまり、管制システム3と無線通信を行う。通信部14は、管制システム3との間において予め定められた周波数及び送信出力等に従って管制システム3と無線通信を行う。例えば、通信部14は、5G、4G等の3GPP(3rd Generation Partnership Project)において定められた通信規格に沿った処理を行ってもよく、Wi-Fi(登録商標)、Bluetooth(登録商標)等の通信規格に沿った処理を行ってもよい。通信部14は、無線信号を管制システム3に送信する。通信部14は、管制システム3から無線信号を受信する。これにより、飛行体2と管制システム3との間でデータや情報の送受信が可能となる。通信部14は、管制システム3に飛行体2の機体ID及び位置情報を送信する。
 また、通信部14は、管制システム3だけでなく、例えばスマートフォンなどの通信端末に機体IDを発信することができる。この場合、スマートフォンに例えば所定のアプリケーションをインストールしておくことで飛行体2が発信している機体IDを取得することができる。また、通信部14は、他の飛行体2に自機の機体IDを送信することや他の飛行体2から機体IDを受信することができ、飛行体2間で機体IDを送受信することが可能である。
 機体ID制御部15は、機体IDの変更及び発信を制御する。機体ID制御部15は、所定の変更パターンに従って変更される自機の機体IDを保持する。機体IDは、例えば所定の時間ごとに変更されてもよく、任意のタイミングに変更されてもよく、機体IDの変更のタイミングは、ユーザ等の所望のタイミングに設定可能である。例えば、機体IDは、飛行回数が増加するときに変更されてもよく、複数回飛行した後に変更されてもよい。
 例えば、機体ID制御部15は、所定の変更パターンとして、図2の機体IDテーブルに記載しているように、予め複数の機体IDを作成しておき、機体IDを所定の時間ごとに変更してもよい。通信部14は、機体ID制御部15が記憶している機体IDテーブルを管制システム3に送信してもよい。これにより、機体ID制御部15は、自機の飛行を管制する管制システム3との間で機体IDの変更パターンを共有することができる。もしくは、通信部14は、管制システム3から機体IDテーブルを受信してもよい。これらにより、飛行体2と管制システム3とにおいて、飛行体2の機体IDの変更パターンが共有される。
 図2に示す機体IDテーブルは、飛行開始時(飛行開始0分後)の機体IDを#0、飛行開始10分後の機体IDを#1、飛行開始20分後の機体IDを#2、飛行開始30分後の機体IDを#3としている。なお、図2の機体IDテーブルは例示であり、任意の機体IDを生成してもよい。例えば、機体ID制御部15もしくは管制システム3は、アルゴリズムや乱数発生関数などを用いて、機体IDを生成してもよい。また、機体IDは、ランダムに生成されるID、又は、自機の飛行回数及び飛行時間のうち少なくともいずれかに応じて変更されるIDであってもよい。
 飛行体2は、管制システム3と無線通信を行いながら、予め定められた飛行計画に沿って飛行する。飛行体2は、離陸場所から着陸場所までの飛行経路を自律飛行できる。例えば、飛行体2は、離着陸施設から離陸して、飛行計画に基づく飛行経路に沿って飛行する。飛行体2は、目的地に対応する着陸場所まで飛行すると、着陸場所に着陸する。飛行経路は、離陸場所から着陸場所までの3次元経路である。離陸場所及び着陸場所は予め指定された離発着施設を使用することができる。なお、離陸場所及び着陸場所は着陸できるスペースがあれば、任意の場所であってもよい。もちろん、離陸する離着陸場所と着陸する離着陸場所は同じ場所であってもよい。
 飛行体2の操縦は、自動操縦あるいは操縦者によるマニュアル操縦を切り替え可能である。飛行体2は、例えば市街地等の障害物の多い地域では、操縦者に高度な操縦技術が求められるため、自動操縦とし、緊急時には、マニュアル操縦に切り替えるように構成することもできる。
 管制システム3は、運航管理・管制システムである。管制システム3は、飛行体2の運航管理及び航空管制を行うためのハードウェア装置(コンピュータ装置)であり、運航管理センターに設置されている。管制システム3は、物理的に単一な装置に限られるものではなく、例えば、複数のプロセッサが協働して、後述する処理を行ってもよい。
 また、広域の管制を行うために、複数の運航管理センターと通信する航空管制センターに管制システム3が設けられてもよい。これにより、運航管理センターの管制システム3と、航空管制センターの管制システム3とが通信することで、広域で飛行体2を管制することができる。
 管制システム3は、通信部4及び識別部5を有する。通信部4及び識別部5は、プロセッサがメモリに格納されたプログラムを実行することによって処理が実行されるソフトウェアもしくはモジュールであってもよい。または、通信部4及び識別部5は、回路もしくはチップ等のハードウェアであってもよい。
 通信部4は、飛行体2から発信された機体ID及び飛行体2の位置情報を取得する。また、通信部4は、異なるタイミングに、飛行体2の機体ID及び位置情報を取得する。
 識別部5は、飛行体2から受信した機体IDを用いて飛行体2を識別する。例えば、識別部5は、機体IDと飛行体とが関連付けられたテーブルを予め保持し、テーブルを参照して、受信した機体IDに関連付けられた飛行体を抽出するように構成されてもよい。
 ここで、通信部4は、飛行体2から、異なるタイミングに異なる機体IDを取得することがある。この場合、識別部5は、最初の機体IDとともに取得した位置情報と、最初の機体IDとは異なる機体IDとともに取得した位置情報との変化に基づいて、最初の機体IDとは異なる機体IDが、最初の機体IDに関連付けられた飛行体2を示すかを判定する。位置情報の変化とは、例えば、異なるタイミングに取得された位置情報間の距離等を用いて示されてもよい。例えば、識別部5は、位置情報の変化が所定の範囲内であるときに、最初の機体IDとは異なる機体IDが、最初の機体IDに関連付けられた飛行体2を示すと判定してもよい。
 以下、図3を用いて、第1の実施形態にかかる管制システム3の動作について説明する。図3は、第1の実施形態にかかる管制システム3の動作を示したフローチャートである。
 はじめに、通信部4は、飛行体2の第1の機体ID及び位置情報を取得する(S1)。ここでは、機体IDを区別するため、最初の機体IDを第1の機体ID、変更後の機体IDを第2の機体IDと呼ぶ。次に、識別部5は、第1の機体IDを用いて飛行体2を識別する(S2)。以降、管制システム3は、第1の機体IDを発信する飛行体2と通信し、飛行体2の運航管理及び航空管制を行う。
 その後、管制システム3は、通信部4が第2の機体ID及び第2の機体IDを発信している飛行体2の位置情報を取得していないときは(S3、NO)、識別部5で識別した第1の機体IDを発信している飛行体2の運航管理及び航空管制を継続して行う。
 一方で、通信部4が第2の機体ID及び第2の機体IDを発信している飛行体2の位置情報を取得したとき(S3、YES)、識別部5は、第1の機体IDを取得した際の位置情報と、第2の機体IDを取得した際の位置情報との変化に基づいて、第2の機体IDを発信している飛行体2が、第1の機体IDを発信した飛行体2と同一であるか否かを判定する。例えば、識別部5は、第1の機体IDを取得した際の位置情報と、第2の機体IDを取得した際の位置情報との変化が閾値以下であるか否かを判定する(S4)。識別部5は、異なるタイミングで取得された位置情報間の距離が予め設定した閾値(例えば、50m)以下であるとき(S4、YES)、第2の機体IDを発信している飛行体2と、第1の機体IDを発信していた飛行体2とが同一の飛行体2であると判定する(S5)。
 識別部5は、異なるタイミングで取得された位置情報間の距離が予め設定した閾値よりも大きいとき(S4、NO)、第2の機体IDを発信している飛行体2を、第1の機体IDを発信していた飛行体2と異なる飛行体2として識別する(S6)。管制システム3は、第1の機体IDを発信している飛行体2と、第2の機体IDを発信している飛行体2とをそれぞれ異なる飛行体2として識別し、運航管理及び航空管制を行う。
 以上説明したように、第1の実施形態にかかる飛行体2は、機体IDを変更することによって、セキュリティを向上させることができる。一方で、飛行体2が機体IDを任意に変更してしまうと、管制システム3が飛行体2を識別できなくなるため、飛行の安全性を失いかねないという問題もあった。これに対して、第1の実施形態にかかる管制システム3は、異なるタイミングに異なる機体IDを取得した場合であっても、飛行体2の位置情報を用いることによって、飛行体2を特定することができる。その結果、管制システム3は、セキュリティを考慮して発信する機体IDを変更する飛行体2を識別もしくは特定することができる。
 (第2の実施形態)
 図4は、第2の実施形態にかかる飛行体識別システム100の構成を示したブロック図である。飛行体識別システム100は、飛行体20、管制システム30を備える。
 図5は、第2の実施形態にかかる飛行体20の構成を示したブロック図である。飛行体20は、飛行制御部11、駆動機構12、センサ13、通信部14、機体ID制御部15、表示部16、バッテリ17を備えている。第2の実施形態にかかる飛行体20において、第1の実施形態と同様な構成要素には同様の符号を付し、適宜詳細な説明を省略する。
 飛行制御部11は、飛行体20を構成する各構成要素を制御する。駆動機構12は、回転翼及びそのモータを備えており、飛行するための揚力や推力を発生させる。飛行制御部11は、駆動機構12を制御するための駆動信号を出力する。例えば、飛行体20が複数の回転翼を有する場合、駆動機構12が回転翼をそれぞれ独立に駆動するように、飛行制御部11が駆動機構12を制御する。
 飛行制御部11は、飛行計画をメモリなどに格納している。飛行制御部11は、管制システム30から受信した飛行計画をメモリに格納してもよく、飛行体20のユーザから入力された飛行計画をメモリに格納してもよい。自動操縦の場合、飛行制御部11は、飛行計画に沿って飛行するように、駆動機構12を制御する。飛行制御部11は、風などにより、自機位置が飛行経路から離れた場合、飛行体20が飛行経路に近づくように駆動機構12を制御し飛行する。飛行制御部11は、飛行体20の位置を、センサ13を用いることにより検出可能である。飛行制御部11は、センサ13における検出結果に基づいて、駆動機構12を制御する。
 センサ13は、飛行体20の飛行状態に関する情報を検出する。センサ13は、例えば、機体の姿勢を検出するジャイロセンサや機体の位置を検出する位置センサなどを有している。位置センサとしては、例えば、GPS(Global Positioning System)などの衛星測位センサなどを用いることができる。飛行制御部11は、センサ13が取得した情報に基づいて自機の位置を特定する。具体的には、飛行制御部11は、例えばセンサ13が複数の人工衛星から受信した測位情報に基づいて、飛行体20の3次元位置を特定する。通信部14は、機体ID及び飛行制御部11が特定した位置に関する位置情報を発信する。なお、センサ13は、一つに限られるものでなく、複数のセンサ13であってもよい。
 飛行体20には、飛行状況、飛行中の混雑状況、機体情報などを乗客に示す表示部16が設けられてもよい。飛行体20に関する情報に応じて、表示部16に表示される表示内容が変わってもよい。例えば、飛行体20が有人機または無人機であるかの情報に応じて、表示部16に表示される表示内容が変更されてもよい。あるいは、飛行体20が自動運転中またはマニュアル運転中であるかの情報に応じて、表示部16に表示される表示内容が変更されてもよい。なお、無人機の場合、表示部16は省略されてもよい。バッテリ17は、飛行体20を構成する各機器に電力を供給する。
 飛行体20は、上述の構成要素を備えることで、管制システム30と通信しながら飛行することができる。
 図6は、第2の実施形態にかかる管制システム30のブロック図である。管制システム30は、通信部4、識別部5、生成部6、記憶部7、推定部8を備える。第2の実施形態にかかる管制システム30において、第1の実施形態と同様な構成要素には同様の符号を付し、適宜詳細な説明を省略する。
 通信部4は、飛行体20と無線通信を行い、飛行体20の機体ID及び位置情報を含む機体情報を取得する。機体情報には、飛行体20の性能に関する性能情報を含んでいてもよい。性能情報は、飛行体20の重量、サイズ、飛行可能時間、旋回能力、耐風性、飛行速度、飛行高度に関するデータを含んでいる。性能情報は、飛行中における電池残量や燃料残量に関するデータを含んでいてもよい。さらに、性能情報は、有人機又は無人機であるかを示す情報を含んでいてもよい。機体情報は、警察、消防、救急などの緊急機体であるか否かを示す情報を含んでいてもよい。
 通信部4は、飛行体20との間において予め定められた周波数及び送信出力等に従って飛行体20と無線通信を行う。例えば、通信部4は、5G、4G等の3GPPにおいて定められた通信規格に沿った処理を行ってもよく、Wi-Fi(登録商標)、Bluetooth(登録商標)等の通信規格に沿った処理を行ってもよい。通信部4は、無線信号を飛行体20に送信する。通信部4は、飛行体20から無線信号を受信する。これにより、飛行体20と、管制システム30との間でデータや情報の送受信が可能となる。
 生成部6は、通信部4が取得した飛行体20の離陸予定時間(離陸予定時刻)、及び目的地に関する移動情報に基づいて、飛行経路及び飛行スケジュールを含む飛行計画を生成する。離陸予定時間は、現在の時刻であってもよく、予めスケジュール登録された時刻であってもよい。離陸予定時間及び目的地は、飛行体20のユーザもしくは管制システム30のユーザによって管制システム30に直接入力された情報であってもよい。なお、目的地は、地名、施設名、住所、座標(緯度及び経度)などであってもよい。また、目的地は、離発着施設自体のIDなどとしてもよく、移動情報は、離陸場所から着陸場所までの間にある経由地を含んでいてもよい。
 飛行経路は、離陸場所から、目的地に対応する着陸場所までの移動経路である。飛行経路は、飛行体20が経由する目標位置の軌跡を示す情報である。さらに、飛行経路において、目標位置のそれぞれに飛行予定時刻が対応付けられていてもよい。飛行経路は、例えば、目標位置を示す3次元座標の集合であってもよい。具体的には、飛行経路は、3次元座標が時系列に沿って並べられているデータであってもよい。3次元座標を繋ぎ合わせることで、飛行経路が生成される。
 生成部6は、性能情報に基づいて、飛行経路を生成してもよい。例えば、生成部6は、性能情報が示す性能を満たすように、飛行経路を生成する。性能情報は、飛行体20の重量、サイズ、飛行可能時間、旋回能力、耐風性、飛行速度、飛行高度である。性能情報は、現在の電池残量や燃料残量を含んでいてもよい。例えば、動力が電動モータによる場合は、電池残量が性能情報に含まれ、動力が内燃機関によるものである場合、ガソリンなどの燃料の残量が性能情報に含まれる。あるいは、燃料電池をバッテリ17として用いる場合、水素などの燃料残量が性能情報に含まれる。内燃機関と電動モータとを動力として併用する場合、電池残量と燃料残量との両方が性能情報に含まれてもよい。
 性能情報として、例えば、飛行可能時間が含まれている場合、生成部6は、飛行可能時間を越えないように飛行経路を生成する。具体的には、生成部6は、飛行可能時間が短い飛行体20に対しては、飛行距離を短くして、飛行可能時間を越えないような飛行経路を生成する。当然のことながら、生成部6は、飛行可能時間以外の他の性能を満たすように、飛行経路を生成することができる。通信部4は、生成した飛行計画を、飛行体20へ送信する。
 記憶部7は、飛行体20から取得した機体情報、及び生成部6において生成された飛行計画を記憶している。また、記憶部7は、飛行体20が発信する機体IDの変更パターンを示す機体IDテーブルを記憶する。
 識別部5は、飛行体20の機体IDが変更されたとしても、異なるタイミングに取得された位置情報間の変化に加えて、記憶部7に記憶されている機体IDテーブルに基づき、取得した機体IDに対応付けられている飛行体20を識別する。また、識別部5は、機体ID、位置情報に加え、飛行計画を参照し、飛行体20を識別してもよい。識別部5は、飛行している飛行体20の位置情報を、飛行体20の飛行計画と照らし合わせることで、飛行体20を識別する確度を高めることができる。
 推定部8は、管制システム30と飛行体20との無線通信が切断されたとき、通信切断時の飛行体20の位置情報及び飛行計画に基づき、飛行中の飛行体20の推定位置を推定する。例えば、推定部8は、通信切断時までの位置情報から飛行体20の速度、方向を算出するとともに、通信が切断した時点より後の飛行計画の飛行経路及び飛行スケジュールを用いて、飛行体20の推定位置を推定する。
 識別部5は、通信が復旧したとき、推定位置の飛行体20の機体IDと、機体IDテーブルに基づく機体IDとを比較することで、飛行体20を識別する。さらに、識別部5は、通信が復旧したときの飛行体20の位置と、通信が復旧したタイミングの飛行体20の推定位置とを比較することによって、飛行体20を識別する。
 図7は、第2の実施形態に係る管制システム30の動作を示すフローチャートである。図7におけるS11~S14は、図3におけるS1~S4と同様であるため、説明を省略する。図3と同様に、機体IDを区別するため、最初の機体IDを第1の機体ID、変更後の機体IDを第2の機体IDと呼ぶ。
 識別部5は、第1の機体IDを取得した際の位置情報と、第2の機体IDを取得した際の位置情報との変化が閾値以下のとき(S14、YES)、記憶部7が記憶する機体IDの変更パターンを参照する。位置情報間の変化が閾値以下とは、位置情報間の変化量が閾値以下であることを意味する。識別部5は、第2の機体IDが、第1の機体IDを発信していた飛行体20の機体IDの変更パターンによって特定される機体IDと同じであるかを判定する(S15)。
 識別部5は、第2の機体IDが変更パターンによって特定される機体IDと異なる場合(S15、NO)、第2の機体IDを発信している飛行体20が第1の機体IDを発信した飛行体20とは異なる飛行体20として識別する(S18)。識別部5は、第2の機体IDが変更パターンによって特定される機体IDと同じ場合(S15、YES)、記憶部7が記憶する飛行計画を参照し、第2の機体IDを取得した際の位置が第1の機体IDを発信していた飛行体20の飛行計画上の位置であるかを判定する(S16)。第2の機体IDを取得した際の位置が飛行計画に存在しないとき(S16、NO)、識別部5は、異なる飛行体20として識別する(S18)。第2の機体IDを取得した際の位置が飛行計画に存在するとき(S16、YES)、識別部5は、第2の機体IDを発信している飛行体20と、第1の機体IDを発信していた飛行体20とが同一の飛行体20であると判定する(S17)。また、図7においては、ステップS14、S15、及びS16の順に処理が実行されることが示されているが、ステップS14、S15、及びS16の順番は、変更されてもよい。例えば、管制システム30は、ステップS15の処理を実行してから、ステップS14もしくはS16の処理を実行してもよく、ステップS16の処理を実行してから、ステップS14もしくはS15の処理を実行してもよい。
 図8は、飛行体20との通信が復旧した際の管制システム30の動作を示すフローチャートである。図8におけるS21~S22は、図3におけるS1~S2と同様であるため、説明を省略する。図3と同様に、機体IDを区別するため、最初の機体IDを第1の機体ID、変更後の機体IDを第2の機体IDと呼ぶ。
 推定部8は、通信部4と飛行体20との通信が切断されたとき、通信切断時の飛行体20の位置情報及び記憶部7が記憶する飛行計画に基づき、飛行中の飛行体20の推定位置を推定する(S23)。例えば、推定部8は、通信部4が飛行体20から所定期間無線信号を受信しない場合、もしくは、通信部4が送信した無線信号に対する応答信号を受信しない場合等に、通信部4と飛行体20との通信が切断されたと判定してもよい。通信復旧時に、通信部4が第1の機体IDを取得したときは、識別部5は、第1の機体IDを用いて飛行体20を識別する。
 一方で、通信復旧時に通信部4が第2の機体ID及び位置情報を取得した場合(S24)、識別部5は、推定部8が推定した飛行体20の推定位置と、第2の機体IDを取得した際の位置情報とを比較する。識別部5は、推定位置と第2の機体IDを取得した際の位置との差が閾値より大きいとき(S25、NO)、異なる飛行体20として識別する(S28)。
 識別部5は、推定位置と第2の機体IDを取得した際の位置との差が閾値以下のとき(S25、YES)、記憶部7が記憶する機体IDの変更パターンを参照する。識別部5は、第2の機体IDが、第1の機体IDを発信していた飛行体20の機体IDの変更パターンによって特定される機体IDと同じであるかを判定する(S26)。識別部5は、第2の機体IDが変更パターンによって特定される機体IDと異なる場合(S26、NO)、第2の機体IDを発信している飛行体20が第1の機体IDを発信した飛行体20とは異なる飛行体20として識別する(S28)。識別部5は、第2の機体IDが変更パターンによって特定される機体IDと同じ場合(S26、YES)、第2の機体IDを発信している飛行体20と、第1の機体IDを発信していた飛行体20とが同一の飛行体20であると判定する(S27)。また、図8においては、ステップS25及びS26の順に処理が実行されることが示されているが、ステップS25及びS26の順番は、変更されてもよい。例えば、管制システム30は、ステップS26の処理を実行してから、ステップS25の処理を実行してもよい。
 以上説明したように、第2の実施形態にかかる管制システム30は、飛行体20の位置情報間の変化、機体IDの変更パターン、及び、飛行計画を用いることで、飛行体20を識別することができる。さらに、管制システム30は、飛行体20との通信が切断された場合に、飛行体20の機体IDが変更されたとしても、通信復旧時の飛行体20の位置情報と推定位置との比較結果、及び、機体IDの変更パターンを用いて、第2の機体IDが飛行体20を示すか否かを判定することができる。これにより、飛行体20がセキュリティを向上させるために機体IDを変更したとしても、管制システム30は飛行体20を識別することができる。
(第3の実施形態)
 図9を用いて、第3の実施形態にかかる飛行体識別システム101について説明する。第3の実施形態にかかる飛行体識別システム101は、飛行体2、管制システム31、通信端末40を備える。飛行体2は、通信部14、機体ID制御部15を備える。管制システム31は、通信部4、識別部5、推定部8を備える。第3の実施形態にかかる飛行体識別システム101は、通信端末40を用いて飛行体2を識別するシステムである。第3の実施形態にかかる飛行体識別システム101において、第1及び第2の実施形態と同様の構成要素には同様の符号を付し、適宜詳細な説明を省略する。
 通信端末40は、例えば、スマートフォンであり、通信機能及び撮影機能を有している。通信端末40は、管制システム31と通信可能である。例えば、通信端末40は、通信事業者が管理するモバイルネットワーク、もしくはインターネットを介して、管制システム31と通信してもよい。通信端末40のユーザは、飛行体2を含む画像と通信端末40の位置情報とを含む問い合わせメッセージを管制システム31に送信することで、飛行体2の情報を取得することができる。例えば、通信端末40のユーザは、飛行体2が騒音を発しているときや不審な飛行体2が飛行しているときなどに、飛行体2を含む画像を撮影し、管制システム31への問い合わせを行う。
 また、通信端末40は、直接飛行体2と無線通信することで、機体IDを取得することができる。無線通信は、例えば、Bluetooth(登録商標)などの通信方法が用いられてもよい。例えば、通信端末40は、飛行体2に対して、機体IDを要求し、飛行体2からの応答を得ることができない場合、飛行体2を不審な機体として判定し、通信端末40の位置周辺に不審な機体が飛行及び滞在していることを警察に通報するようにしてもよい。
 通信端末40は、飛行体2に対して、機体ID要求に加えて、メッセージを伝えるようにしてもよい。メッセージは、例えば、飛行中の騒音が大きくうるさいといった内容や滞在目的等であってよい。通信端末40は、飛行体2から応答があったとき、飛行体2の滞在目的などの事情を取得することができる。一方、通信端末40は、飛行体2から応答を得ることができない場合、飛行体2を不審な機体として判定し、通信端末40の位置周辺に不審な機体が飛行及び滞在していることを警察に通報するようにしてもよい。
 飛行体2の通信部14は、例えば管制システム31や通信端末40、他の飛行体2などから機体IDの要求信号を受信したとき、要求に応じて、機体IDを含む応答信号を発信する。なお、機体IDの要求に対する応答の可否は、要求元に応じて予め設定していてもよい。また、飛行体2のユーザが機体IDの要求に対する応答の可否や応答内容を決定するようにしてもよい。
 管制システム31の通信部4は、通信端末40において撮影された飛行体2を含む画像と、通信端末40の位置情報とを通信端末40から受信する。推定部8は、受信した画像に含まれる背景情報及び位置情報を用いて、飛行体2の推定位置を推定する。推定部8は、通信端末40の位置情報から画像撮影時の通信端末40の位置を特定する。さらに、推定部8は、受信した画像に含まれる背景情報から、通信端末40の位置付近における飛行体2の位置を推定する。例えば、推定部8は、背景情報である建物、鉄塔、山、川、もしくは海、等の位置を、地図情報等を用いて推定してもよい。また、推定部8は、受信した背景画像に位置の明らかなランドマークが含まれている場合は、通信端末40の位置情報を用いることなく、背景画像から飛行体2の位置を推定してもよい。さらに推定部8は、画像内の飛行体2と背景情報との距離を推定することによって、飛行体2の位置を推定してもよい。また、推定部8は、通信端末40の撮影方向、すなわち、飛行体2を撮影するために上空に向かって通信端末40をかざしているときの通信端末40の角度等を飛行体2の位置の推定に用いてもよい。なお、通信部4は、通信事業者が管理するモバイルネットワークを介して、所定の領域に存在する通信端末40に対して、所定の領域の上空の撮影画像や画像を撮影した通信端末40の位置情報を要求することもできる。
 識別部5は、推定部8が推定した飛行体2の推定位置を用いて、飛行体2を識別する。識別部5は、例えば、管制している飛行体2の位置情報と、推定位置とを比較することで、推定位置の飛行体2を識別する。具体的には、識別部5は、管制している飛行体2の位置と、推定位置との間の距離が、予め定められた距離より短い場合に、推定位置に存在する飛行体2が、管制している飛行体2であると識別してもよい。
 通信部4は、識別された飛行体2の情報を通信端末40へ送信する。例えば、通信部4は、識別された飛行体2の機体ID、機体情報、目的地などの情報を通信端末に送信する。これにより、通信端末40のユーザは、飛行体2の情報を取得することができる。例えば、飛行体2の機体IDは、機体情報、目的地などの情報と予め対応付けられていてもよい。
 通信部4は、推定部8が推定した飛行体2の推定位置に、指向性のある電波を用いて機体IDを要求する要求信号を飛行体2に送信してもよい。識別部5は、通信部4が要求信号に対する応答信号を受信したときに、応答信号に含まれる機体IDを用いて飛行体2を識別することができる。識別部5は、飛行体2の情報を記憶する記憶部7を参照し、機体IDに対応する飛行体2を識別してもよい。
 識別部5は、飛行体2の機体IDを識別できなかった場合、推定位置の飛行体2を不審な飛行体2であると判定し、通信部4は、識別部5が飛行体2を不審な飛行体2であることを通信端末40にメッセージ等で送信する。このとき、通信部4は不審な飛行体2が推定位置に飛行及び滞在していることを警察に通報するようにしてもよい。通信部4が飛行体2の機体IDを識別できなかった場合とは、例えば、応答信号に機体IDが含まれていない場合であってもよく、応答信号に含まれる機体IDに飛行体が対応付けられていない場合であってもよい。
 図10は、第3の実施形態にかかる管制システム31の動作を示すフローチャートである。以下、図10を用いて、管制システム31の動作について説明する。
 はじめに、通信部4は、通信端末40において撮影された飛行体2を含む画像と、通信端末40の位置情報とを通信端末40から受信する(S31)。推定部8は、受信した画像に含まれる背景情報及び位置情報を用いて、飛行体2の推定位置を推定する(S32)。通信部4は、推定部8が推定した飛行体2の推定位置に、指向性のある電波を用いて機体IDを要求する要求信号を飛行体2に送信する(S33)。通信部4が要求信号に対する応答信号を受信したとき(S34、YES)、識別部5は、応答信号に含まれる機体IDを用いて飛行体2を識別する(S35)。通信部4は、識別された飛行体2の情報を通信端末40に送信する(S36)一方で、通信部4が要求信号に対する応答信号を受信できなかったとき(S34、NO)、識別部5は、推定位置の飛行体2を不審な飛行体2であると判定する(S37)。通信部4は、判定結果を通信端末40に送信する(S38)。また、識別部5は、ステップS34において受信した応答信号に含まれる機体IDに対応付けられた飛行体が存在しないと判定した場合、推定位置の飛行体2を不審な飛行体2であると判定してもよい。また、識別部5は、ステップS34において受信した応答信号に機体IDが含まれていない場合、推定位置の飛行体2を不審な飛行体2であると判定してもよい。
 以上のように、第3の実施形態にかかる管制システム31は、通信端末40から受信した画像及び通信端末40の位置情報に基づき、飛行体2を識別することができる。これにより、管制システム31は、通信端末40のユーザに飛行体2の情報や不審な飛行体2であるかの判定結果を提供することができる。
(第4の実施形態)
 図11は、第4の実施形態にかかる飛行体識別システム102の構成を示したブロック図である。第4の実施形態にかかる飛行体識別システム102は、飛行体2、管制システム32、通信端末40を備える。飛行体2は、通信部14、機体ID制御部15を備える。管制システム32は、通信部4、記憶部7、選択部9を備える。第4の実施形態にかかる飛行体識別システム102は、通信端末40の権限レベルに応じて、通信端末40に適切な情報を開示するシステムである。第4の実施形態にかかる飛行体識別システム102において、第1~第3の実施形態と同様の構成要素には同様の符号を付し、適宜詳細な説明を省略する。
 通信端末40は、飛行体2と無線通信することで、機体IDを取得することができる。無線通信は、例えば、Bluetooth(登録商標)などの通信方法が用いられてもよい。通信端末40には、予め権限レベルが割り当てられている。通信端末40は、飛行体2から取得した機体IDと権限レベルを含む問い合わせメッセージを管制システム32に送信することで、管制システム32から飛行体2の情報を取得することができる。
 第4の実施形態にかかる管制システム32の記憶部7は、飛行体2の機体IDと、機体IDが示す飛行体2に関する複数の情報を対応付けて管理し、記憶する。記憶部7は、飛行体2に関する複数の情報と、複数の権限レベルとを対応付けて管理するようにしてもよい。例えば、図12に示すように、記憶部7は飛行体2に関する複数の情報を権限レベルに応じて記憶している。権限レベル3の情報には、飛行体2のユーザの個人情報が該当し、権限レベル2の情報には、飛行経路、バッテリ17残量の情報が該当する。権限レベル1の情報には、飛行体2の目的地の情報が該当する。これらはあくまで例示であり、飛行体2の管理者やユーザが飛行体2の情報に対応付ける権限レベルを設定できるようにしてもよい。
 選択部9は、通信部4が通信端末40から機体ID及び通信端末40に割り当てられた権限レベルを含む問い合わせメッセージを受信した場合、記憶部7を参照する。選択部9は、通信端末40の権限レベルに応じて、機体IDと対応付けられた飛行体2に関する複数の情報の中から通信端末40へ送信すべき情報を選択する。通信部4は、選択部9が選択した飛行体2の情報を通信端末40に送信する。
 選択部9は、以下のように通信端末40に割り当てられた権限レベルに対応付けられた飛行体2に関する情報を選択することができる。例えば、警察が保有する権限レベル3の通信端末40からの問い合わせに関しては、選択部9は権限レベル3の情報を選択する。同様に、交通情報センターが保有する権限レベル2の通信端末40からの問い合わせに関しては、選択部9は権限レベル2の情報を選択する。また、一般人が保有する権限レベル1の通信端末40からの問い合わせに関しては、選択部9は権限レベル1の情報を選択する。
 あるいは、選択部9は、通信端末40に割り当てられた権限レベル及び権限レベルよりも低い権限レベルに対応付けられた飛行体2に関する情報を選択するようにしてもよい。具体的には、選択部9は、警察が保有する権限レベル3の通信端末40からの問い合わせに関しては、権限レベル1~3の情報を選択し、交通情報センターが保有する権限レベル2の通信端末40からの問い合わせに関しては、権限レベル1及び2の情報を選択する。一般人が保有する権限レベル1の通信端末40からの問い合わせに関しては、選択部9は権限レベル1の情報を選択する。
 選択部9は、通信端末40に割り当てられた権限レベルより高い権限レベルの情報の問い合わせに対しては、飛行体2の情報を選択しない。この場合、通信部4は、飛行体2の情報を提供できないことを通信端末40に通知するようにしてもよい。
 これにより、選択部9は、通信端末40の権限レベルに応じて、通信端末40に送信すべき情報を選択することができる。
 図13は、第4の実施形態にかかる管制システム32の動作を示したフローチャートである。
 通信部4は、通信端末40から機体ID及び通信端末40に割り当てられた権限レベルを含む問い合わせメッセージを受信する(S41)。選択部9は、通信端末40の問い合わせメッセージに含まれる権限レベルを確認する(S42)。選択部9は、記憶部7を参照し、通信端末40の権限レベルに対応する飛行体2の情報を選択する(S43)。通信部4は、通信端末40に選択部9で選択した情報を送信する(S44)。
 以上説明したように、第4の実施形態にかかる管制システム32は、通信端末40の権限レベルに応じて、飛行体2の情報を提供する。これにより、管制システム32は、飛行体2に関する情報の漏洩を抑制することができ、セキュリティを向上させることができる。管制システム32は、セキュリティを向上させつつ、状況に応じて飛行体2の情報を適切に提供することができる。
 (第5の実施形態)
 図14は、第5の実施形態にかかる飛行体識別システム103の構成を示すブロック図である。第5の実施形態にかかる飛行体識別システム103は、飛行体21、管制システム33、通信端末40を備える。飛行体21は、通信部14、記憶部18、暗号化部19を備える。管制システム33は、通信部4、記憶部7、選択部9、暗号化部10を備える。第5の実施形態にかかる飛行体識別システム103において、第1~第4の実施形態と同様の構成要素には同様の符号を付し、適宜詳細な説明を省略する。第5の実施形態にかかる飛行体21は、自身の保有する情報を権限レベルに応じて暗号化して発信することが可能である。また、第5の実施形態にかかる飛行体識別システム103は、第4の実施形態にかかる飛行体識別システム102と同様に、通信端末40の権限レベルに応じて、通信端末40に適切な情報を開示するシステムである。
 飛行体21の記憶部18は、飛行体21に関する情報である飛行体情報と、権限レベルとを対応付けて記憶する。例えば、上述した図12に示すように、記憶部18は飛行体21に関する複数の飛行体情報を権限レベルに応じて記憶する。例えば、権限レベル3の情報には、飛行体21のユーザの個人情報が該当し、権限レベル2の情報には、飛行経路、バッテリ17残量の情報が該当する。権限レベル1の情報には、飛行体21の目的地の情報が該当する。これらはあくまで例示であり、飛行体21の管理者やユーザが飛行体21の飛行体情報に対応付ける権限レベルを設定できるようにしてもよい。すなわち、飛行体21は、発信する情報のうち、どの情報をどの権限レベルに公開するかを設定することができる。また、飛行体21は、どの情報を発信するかを設定することができる。
 暗号化部19は、所定の権限レベルに対応付けられた飛行体情報を暗号化する。例えば、暗号化部19は、所定の権限レベルが3のとき、権限レベル3に対応付けられた飛行体情報を暗号化する。また、暗号化部19は、所定の権限レベルが1~3のとき、権限レベル1~3に対応付けられた飛行体情報を全て暗号化してもよい。通信部14は、暗号化した飛行体情報を発信する。なお、飛行体情報とは、機体情報であり、例えば、飛行経路、機体所有者や機体管理者の個人情報、搭載物、機体情報、乗り継ぎ情報、不具合の発生有無やエネルギー残量などの機体状況、メンテナンス情報などである。
 通信端末40は、ユーザの身分に応じた権限レベルを有し、飛行体21から受信した暗号化された飛行体情報を復号化することができる。通信端末40のユーザとしては、例えば、警察、駐機場管理者、一般人などである。例えば、警察は、権限レベル3が割り当てられた通信端末40を保有し、駐機場管理者は、権限レベル2が割り当てられた通信端末40を保有し、一般人は権限レベル1が割り当てられた通信端末40を保有する。
 例えば、暗号化部19が権限レベル3に対応付けられた飛行体21の飛行体情報を暗号化し、通信部14が暗号化された飛行体情報を発信しているとき、警察が保有する権限レベル3の通信端末40は、飛行体21の暗号化された権限レベル3の飛行体情報を復号化することができる。この場合、駐機場管理者が保有する権限レベル2の通信端末40や一般人が保有する権限レベル1の通信端末40では、暗号化された権限レベル3の飛行体情報を復号化することができない。また、権限レベル3の通信端末40は、権限レベル1または2に対応付けられた飛行体情報を受信することができる。また、権限レベル3の通信端末40は、暗号化された権限レベル1または2の飛行体情報も復号化することができる。すなわち、通信端末40は、自身の権限レベル及び自身の権限レベルよりも低い権限レベルに対応付けられた飛行体情報を取得することができる。
 以上説明したように、第5の実施形態にかかる飛行体21は、自身の保有する情報を権限レベルに応じて暗号化して発信することができ、セキュリティを向上させながら、適切な権限レベルの通信端末40の保有者に情報を伝えることができる。
 第5の実施形態にかかる管制システム33は、通信端末40からの問い合わせに対して、通信端末40の権限レベルに応じて、通信端末40に適切な情報を開示することも可能である。図14に示すように、第5の実施形態にかかる管制システム33では、第4の実施形態にかかる管制システム32と比べて、暗号化部10が追加されている。
 管制システム33の暗号化部10は、所定の権限レベルに対応付けられた飛行体21の情報を暗号化する。例えば、暗号化部10は、所定の権限レベルが3のとき、権限レベル3に対応付けられた飛行体21の飛行体情報を暗号化する。なお、暗号化部10は、所定の権限レベルが1~3のとき、権限レベル1~3に対応付けられた飛行体情報を全て暗号化してもよい。通信部4は、暗号化した飛行体21の情報を発信する。権限レベル3の通信端末40は、暗号化された権限レベル3の飛行体21の情報を復号化することで、権限レベル3の飛行体21の情報を取得することができる。以下、管制システム33の動作について、図15を用いて説明する。
 図15は、第5の実施形態にかかる管制システム33の動作を示したフローチャートである。まず、通信部4が通信端末40から機体ID及び通信端末40に割り当てられた権限レベルを含む問い合わせメッセージを受信する(S51)。選択部9は、通信端末40の問い合わせメッセージに含まれる権限レベルを確認する(S52)。選択部9が、通信端末40の権限レベルが3であることを確認したとき、選択部9は、記憶部7を参照し、権限レベル3に対応する飛行体21の情報を選択する(S53)。暗号化部10は、所定の権限レベルが3のとき、権限レベル3に対応付けられた飛行体21の情報を暗号化する(S54)。通信部4は、通信端末40に選択部9で選択し、暗号化部10で暗号化した権限レベル3に対応付けられた飛行体21に関する情報を通信端末40に送信する(S55)。
 以上説明したように、第5の実施形態にかかる管制システム33は、暗号化部10を設けることによって、他の通信端末40による傍受を防ぐことができる。これにより、管制システム33は、飛行体21の情報の漏洩をさらに抑制することができ、通信端末40と管制システム33との通信システムのセキュリティを向上させることができる。管制システム33は、セキュリティを向上させつつ、状況に応じて飛行体21の情報を適切に提供することができる。
 第4または第5の実施形態において、飛行体2及び飛行体21は、緊急の場合には、管制システム32及び管制システム33を介さず、不具合及び着陸場所を含む緊急情報を直接通信端末40に送信するようにしてもよい。また、飛行体2及び飛行体21は、着陸場所及び着陸経路に存在する地上の通信端末40に緊急情報をブロードキャストするようにしてもよい。着陸経路とは、飛行体2及び飛行体21に不具合等の緊急事態が発生してから、飛行体2及び飛行体21が着陸地点に着陸するまでの飛行経路である。飛行体2及び飛行体21は、管制システム32及び管制システム33を介さず、通信事業者が管理するモバイルネットワークを介して、緊急情報を地上の通信端末40にブロードキャストするようにしてもよい。これにより、飛行体2及び飛行体21は、緊急時に管制システム32及び管制システム33との通信が切断されたとしても、緊急情報を直ちに通信端末40に伝えることができるため、事故による被害を抑えることができる。
 図16は、それぞれの実施の形態にかかる飛行体2、飛行体20、飛行体21、管制システム3、管制システム30、管制システム31、管制システム32、管制システム33、通信端末40における制御装置の構成例を示すブロック図である。図16を参照すると、これらの制御装置は、ネットワークインタフェース201、プロセッサ202、及びメモリ203を含む。ネットワークインタフェース201は、ネットワークノード(e.g., eNB、MME、P-GW、)と通信するために使用されてもよい。ネットワークインタフェース201は、例えば、IEEE 802.3 seriesに準拠したネットワークインタフェースカード(NIC)を含んでもよい。ここで、eNBはevolved Node B、MMEはMobility Management Entity、P-GWはPacket Data Network Gatewayを表す。IEEEは、Institute of Electrical and Electronics Engineersを表す。
 プロセッサ202は、メモリ203からソフトウェア(コンピュータプログラム)を読み出して実行することで、上述の実施形態において説明された飛行体2、飛行体20、飛行体21、管制システム3、管制システム30、管制システム31、管制システム32、管制システム33、通信端末40にかかる処理を行う。プロセッサ202は、例えば、マイクロプロセッサ、MPU、又はCPUであってもよい。プロセッサ202は、複数のプロセッサを含んでもよい。
 メモリ203は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。メモリ203は、プロセッサ202から離れて配置されたストレージを含んでもよい。この場合、プロセッサ202は、図示されていないI/O(Input/Output)インタフェースを介してメモリ203にアクセスしてもよい。
 図16の例では、メモリ203は、ソフトウェアモジュール群を格納するために使用される。プロセッサ202は、これらのソフトウェアモジュール群をメモリ203から読み出して実行することで、上述の実施形態において説明された飛行体2、飛行体20、飛行体21、管制システム3、管制システム30、管制システム31、管制システム32、管制システム33、通信端末40にかかる動作及び処理を行うことができる。
 図16を用いて説明したように、上述の実施形態における飛行体2、飛行体20、飛行体21、管制システム3、管制システム30、管制システム31、管制システム32、管制システム33、通信端末40の制御装置が有するプロセッサの各々は、上述の実施形態にて説明された動作及び処理をコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行する。
 上述の例において、各種制御プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM)を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 飛行体と、
 前記飛行体の機体IDを取得する通信端末と、
 前記飛行体の運航を管制する管制システムと、を備え、
 前記管制システムは、
 前記機体IDと、前記機体IDが示す前記飛行体に関する複数の情報を対応付けて管理し、
 前記通信端末から前記機体ID及び前記通信端末に割り当てられた権限レベルを含む問い合わせメッセージを受信した場合、前記通信端末の権限レベルに応じて、前記機体IDと対応付けられた前記飛行体に関する複数の情報の中から前記通信端末へ送信すべき情報を選択し、選択した情報を前記通信端末に送信する、
 飛行体識別システム。
 (付記2)
 前記管制システムは、
 前記飛行体に関する複数の情報と、複数の権限レベルとを対応付けて管理し、
 前記通信端末に割り当てられた前記権限レベルに対応付けられた前記飛行体に関する情報を選択する、または、前記通信端末に割り当てられた前記権限レベル及び前記権限レベルよりも低い権限レベルに対応付けられた前記飛行体に関する情報を選択する、付記1に記載の飛行体識別システム。
 (付記3)
 前記管制システムは、所定の権限レベルに対応付けられた前記飛行体の情報を暗号化する、
 付記1または2に記載の飛行体識別システム。
 (付記4)
 前記飛行体は、緊急の場合、前記管制システムを介さず、不具合及び着陸場所を含む緊急情報を直接前記通信端末に送信する、
 付記1~3のいずれか1項に記載の飛行体識別システム。
 (付記5)
 前記飛行体は、前記着陸場所及び着陸経路に存在する地上の通信端末に前記緊急情報をブロードキャストする、
 付記4に記載の飛行体識別システム。
 (付記6)
 前記飛行体は、通信事業者が管理するモバイルネットワークを介して、前記緊急情報を前記地上の通信端末にブロードキャストする、
 付記5に記載の飛行体識別システム。
 (付記7)
 通信端末と通信する通信部と、
 飛行体の機体IDと、前記機体IDが示す前記飛行体に関する複数の情報を対応付けて管理し、記憶する記憶部と、
 前記飛行体に関する複数の情報の中から前記通信端末へ送信すべき情報を選択する選択部と、を備え、
 前記通信部が、前記通信端末から前記機体ID及び前記通信端末に割り当てられた権限レベルを含む問い合わせメッセージを受信した場合、
 前記選択部は、前記記憶部を参照し、前記通信端末の権限レベルに応じて、前記機体IDと対応付けられた前記飛行体に関する複数の情報の中から前記通信端末へ送信すべき情報を選択し、
 前記通信部が、前記選択部が選択した情報を前記通信端末に送信する、
 管制システム。
 (付記8)
 所定の権限レベルに対応付けられた前記飛行体の情報を暗号化する暗号化部をさらに備える、
 付記7に記載の管制システム。
 (付記9)
 飛行体の機体IDと、前記機体IDが示す前記飛行体に関する複数の情報を対応付けて管理し、
 通信端末から前記機体ID及び前記通信端末に割り当てられた権限レベルを含む問い合わせメッセージを受信した場合、前記通信端末の権限レベルに応じて、前記機体IDと対応付けられた前記飛行体に関する複数の情報の中から前記通信端末へ送信すべき情報を選択し、選択した情報を前記通信端末に送信する、
 飛行体識別方法。
 (付記10)
 飛行体の機体IDと、前記機体IDが示す前記飛行体に関する複数の情報を対応付けて管理し、
 通信端末から前記機体ID及び前記通信端末に割り当てられた権限レベルを含む問い合わせメッセージを受信した場合、前記通信端末の権限レベルに応じて、前記機体IDと対応付けられた前記飛行体に関する複数の情報の中から前記通信端末へ送信すべき情報を選択し、選択した情報を前記通信端末に送信する、
 処理をコンピュータに実行させるためのプログラムが格納された一時的なコンピュータ可読媒体。
 (付記11)
 飛行体に関する情報である飛行体情報と、権限レベルとを対応付けて記憶する記憶部と、
 所定の権限レベルに対応付けられた前記飛行体情報を暗号化する暗号化部と、
 暗号化した前記飛行体情報を発信する通信部と、を備える、
 飛行体。
 1、100、101、102、103 飛行体識別システム
 2、20、21 飛行体
 3、30、31、32、33 管制システム
 4 通信部
 5 識別部
 6 生成部
 7 記憶部
 8 推定部
 9 選択部
 10 暗号化部
 11 飛行制御部
 12 駆動機構
 13 センサ
 14 通信部
 15 機体ID制御部
 16 表示部
 17 バッテリ
 18 記憶部
 19 暗号化部
 40 通信端末
 201 ネットワークインタフェース
 202 プロセッサ
 203 メモリ

Claims (11)

  1.  飛行体と、
     前記飛行体の機体IDを取得する通信端末と、
     前記飛行体の運航を管制する管制システムと、を備え、
     前記管制システムは、
     前記機体IDと、前記機体IDが示す前記飛行体に関する複数の情報を対応付けて管理し、
     前記通信端末から前記機体ID及び前記通信端末に割り当てられた権限レベルを含む問い合わせメッセージを受信した場合、前記通信端末の権限レベルに応じて、前記機体IDと対応付けられた前記飛行体に関する複数の情報の中から前記通信端末へ送信すべき情報を選択し、選択した情報を前記通信端末に送信する、
     飛行体識別システム。
  2.  前記管制システムは、
     前記飛行体に関する複数の情報と、複数の権限レベルとを対応付けて管理し、
     前記通信端末に割り当てられた前記権限レベルに対応付けられた前記飛行体に関する情報を選択する、または、前記通信端末に割り当てられた前記権限レベル及び前記権限レベルよりも低い権限レベルに対応付けられた前記飛行体に関する情報を選択する、請求項1に記載の飛行体識別システム。
  3.  前記管制システムは、所定の権限レベルに対応付けられた前記飛行体の情報を暗号化する、
     請求項1または2に記載の飛行体識別システム。
  4.  前記飛行体は、緊急の場合、前記管制システムを介さず、不具合及び着陸場所を含む緊急情報を直接前記通信端末に送信する、
     請求項1~3のいずれか1項に記載の飛行体識別システム。
  5.  前記飛行体は、前記着陸場所及び着陸経路に存在する地上の通信端末に前記緊急情報をブロードキャストする、
     請求項4に記載の飛行体識別システム。
  6.  前記飛行体は、通信事業者が管理するモバイルネットワークを介して、前記緊急情報を前記地上の通信端末にブロードキャストする、
     請求項5に記載の飛行体識別システム。
  7.  通信端末と通信する通信部と、
     飛行体の機体IDと、前記機体IDが示す前記飛行体に関する複数の情報を対応付けて管理し、記憶する記憶部と、
     前記飛行体に関する複数の情報の中から前記通信端末へ送信すべき情報を選択する選択部と、を備え、
     前記通信部が、前記通信端末から前記機体ID及び前記通信端末に割り当てられた権限レベルを含む問い合わせメッセージを受信した場合、
     前記選択部は、前記記憶部を参照し、前記通信端末の権限レベルに応じて、前記機体IDと対応付けられた前記飛行体に関する複数の情報の中から前記通信端末へ送信すべき情報を選択し、
     前記通信部が、前記選択部が選択した情報を前記通信端末に送信する、
     管制システム。
  8.  所定の権限レベルに対応付けられた前記飛行体の情報を暗号化する暗号化部をさらに備える、
     請求項7に記載の管制システム。
  9.  飛行体の機体IDと、前記機体IDが示す前記飛行体に関する複数の情報を対応付けて管理し、
     通信端末から前記機体ID及び前記通信端末に割り当てられた権限レベルを含む問い合わせメッセージを受信した場合、前記通信端末の権限レベルに応じて、前記機体IDと対応付けられた前記飛行体に関する複数の情報の中から前記通信端末へ送信すべき情報を選択し、選択した情報を前記通信端末に送信する、
     飛行体識別方法。
  10.  飛行体の機体IDと、前記機体IDが示す前記飛行体に関する複数の情報を対応付けて管理し、
     通信端末から前記機体ID及び前記通信端末に割り当てられた権限レベルを含む問い合わせメッセージを受信した場合、前記通信端末の権限レベルに応じて、前記機体IDと対応付けられた前記飛行体に関する複数の情報の中から前記通信端末へ送信すべき情報を選択し、選択した情報を前記通信端末に送信する、
     処理をコンピュータに実行させるためのプログラムが格納された一時的なコンピュータ可読媒体。
  11.  飛行体に関する情報である飛行体情報と、権限レベルとを対応付けて記憶する記憶部と、
     所定の権限レベルに対応付けられた前記飛行体情報を暗号化する暗号化部と、
     暗号化した前記飛行体情報を発信する通信部と、を備える、
     飛行体。
PCT/JP2021/003127 2021-01-29 2021-01-29 飛行体識別システム、管制システム、飛行体識別方法、コンピュータ可読媒体及び飛行体 WO2022162849A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/273,702 US20240105066A1 (en) 2021-01-29 2021-01-29 Flying body identification system, control system, flying body identification method, computer readable medium, and flying body
JP2022577929A JPWO2022162849A5 (ja) 2021-01-29 飛行体識別システム、管制システム、飛行体識別方法、及び飛行体
EP21922865.7A EP4287163A4 (en) 2021-01-29 2021-01-29 FLIGHT VEHICLE IDENTIFICATION SYSTEM, CONTROL SYSTEM, FLIGHT VEHICLE IDENTIFICATION METHOD, COMPUTER READABLE MEDIUM AND FLIGHT VEHICLE
PCT/JP2021/003127 WO2022162849A1 (ja) 2021-01-29 2021-01-29 飛行体識別システム、管制システム、飛行体識別方法、コンピュータ可読媒体及び飛行体
CN202180092199.3A CN116830175A (zh) 2021-01-29 2021-01-29 飞行体识别系统、控制系统、飞行体识别方法、计算机可读介质和飞行体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003127 WO2022162849A1 (ja) 2021-01-29 2021-01-29 飛行体識別システム、管制システム、飛行体識別方法、コンピュータ可読媒体及び飛行体

Publications (1)

Publication Number Publication Date
WO2022162849A1 true WO2022162849A1 (ja) 2022-08-04

Family

ID=82652761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003127 WO2022162849A1 (ja) 2021-01-29 2021-01-29 飛行体識別システム、管制システム、飛行体識別方法、コンピュータ可読媒体及び飛行体

Country Status (4)

Country Link
US (1) US20240105066A1 (ja)
EP (1) EP4287163A4 (ja)
CN (1) CN116830175A (ja)
WO (1) WO2022162849A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017151839A (ja) 2016-02-26 2017-08-31 三菱重工業株式会社 飛行車両運航システム、飛行車両運航方法
JP2019530067A (ja) * 2016-09-27 2019-10-17 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人航空機(uav)を管理するシステム及び方法
JP2020537266A (ja) * 2017-10-10 2020-12-17 アビアクル カイ, エロディABIAKLE KAI, Elodie 車両を停止する方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3633653B1 (en) * 2015-03-31 2021-03-31 SZ DJI Technology Co., Ltd. Systems and methods for mutual authentication between an unmanned aerial vehicle and an authentication center
WO2021045244A1 (ko) * 2019-09-03 2021-03-11 엘지전자 주식회사 무인 비행체의 착륙방법 및 이를 위한 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017151839A (ja) 2016-02-26 2017-08-31 三菱重工業株式会社 飛行車両運航システム、飛行車両運航方法
JP2019530067A (ja) * 2016-09-27 2019-10-17 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人航空機(uav)を管理するシステム及び方法
JP2020537266A (ja) * 2017-10-10 2020-12-17 アビアクル カイ, エロディABIAKLE KAI, Elodie 車両を停止する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4287163A4

Also Published As

Publication number Publication date
EP4287163A4 (en) 2024-03-27
EP4287163A1 (en) 2023-12-06
CN116830175A (zh) 2023-09-29
US20240105066A1 (en) 2024-03-28
JPWO2022162849A1 (ja) 2022-08-04

Similar Documents

Publication Publication Date Title
US11230377B2 (en) Unmanned aerial vehicle platform
US12061473B2 (en) Flight management system for UAVS
US11316581B2 (en) Network capacity management
CA2984021C (en) Systems and methods for remote distributed control of unmanned aircraft
US9940843B2 (en) Systems and methods for managing restricted areas for unmanned autonomous vehicles
US20210263537A1 (en) Uav systems, including autonomous uav operational containment systems, and associated systems, devices, and methods
US9412279B2 (en) Unmanned aerial vehicle network-based recharging
US20210264799A1 (en) Uavs, including multi-processor uavs with secured parameters, and associated systems, devices, and methods
JPWO2020095430A1 (ja) 無人航空機運航管理装置、離着陸施設管理装置、無人航空機運航管理方法、及び無人航空機システム
KR102475866B1 (ko) 무인 비행체 감시 방법 및 장치
WO2022162849A1 (ja) 飛行体識別システム、管制システム、飛行体識別方法、コンピュータ可読媒体及び飛行体
WO2022162848A1 (ja) 管制システム、飛行体識別方法、コンピュータ可読媒体及び飛行体
WO2022162850A1 (ja) 飛行体、管制システム、飛行体識別方法及びコンピュータ可読媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577929

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18273702

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180092199.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021922865

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021922865

Country of ref document: EP

Effective date: 20230829