WO2022162818A1 - 無線通信システム、無線通信方法、送信側システム、及び受信側システム - Google Patents

無線通信システム、無線通信方法、送信側システム、及び受信側システム Download PDF

Info

Publication number
WO2022162818A1
WO2022162818A1 PCT/JP2021/002973 JP2021002973W WO2022162818A1 WO 2022162818 A1 WO2022162818 A1 WO 2022162818A1 JP 2021002973 W JP2021002973 W JP 2021002973W WO 2022162818 A1 WO2022162818 A1 WO 2022162818A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
decomposed
circuit
phase difference
spectrum
Prior art date
Application number
PCT/JP2021/002973
Other languages
English (en)
French (fr)
Inventor
史洋 山下
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/002973 priority Critical patent/WO2022162818A1/ja
Priority to JP2022577905A priority patent/JPWO2022162818A1/ja
Publication of WO2022162818A1 publication Critical patent/WO2022162818A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present invention relates to wireless communication technology using spectrum decomposition/synthesis.
  • each user communicates by renting the necessary frequency band from the satellite operator.
  • Satellite transponder frequency resources are limited, and it is desired to efficiently utilize the limited frequency resources. For example, if some frequency bands have already been allocated to existing users, fine unused bands will be scattered on the frequency axis. If small unused bandwidths are scattered, it may not be possible to allocate the requested bandwidth to a new user even though the total unused bandwidth is sufficiently large. This causes a decrease in frequency utilization efficiency.
  • Non-Patent Document 1 proposes "spectrum decomposition/synthesis transmission technology" as a technique for effectively using unused bands and improving frequency utilization efficiency.
  • FIG. 1 is a conceptual diagram for explaining the outline of spectrum decomposition/synthesis transmission.
  • a signal from each user's terminal (A, B, X) is sent from a ground station to a base station via a satellite transponder. Some of the frequency bands in satellite transponders are already in use by existing users.
  • the spectrum of the transmission signal from each terminal is decomposed into a plurality of sub-spectrum, and the plurality of sub-spectrum are distributed in the unused band.
  • a transmission signal with such multiple subspectrum is sent to a base station via a satellite repeater.
  • the receiving base station recreates the original transmitted signal by combining multiple subspectra of the received signal. In this way, the scattered unused bands can be effectively used to improve frequency utilization efficiency.
  • FIG. 2 is a block diagram schematically showing the configuration of a radio communication system that performs spectrum decomposition/synthesis. Wireless communication takes place between the transmitting system and the receiving system via a satellite repeater.
  • the transmitting side system includes a frame generation circuit 10A, a modulation circuit 20 and a spectrum decomposition circuit 30.
  • FIG. The receiving system includes a spectrum synthesis circuit 40 and a demodulation circuit 50A.
  • the frame generation circuit 10A generates frames for transmitting data to be transmitted.
  • a continuous signal is considered as data to be transmitted.
  • FIG. 3 shows a frame format for a typical continuous signal.
  • a frame in case of a continuous signal consists of a unique word UW and a data signal DAT.
  • the frame generation circuit 10A generates a transmission signal TB having a frame format as shown in FIG. 3 by adding a unique word UW to the data signal DAT to be transmitted.
  • the modulation circuit 20 receives the transmission signal TB output from the frame generation circuit 10A.
  • the modulation circuit 20 modulates the transmission signal TB and outputs a modulated transmission signal TC.
  • the spectrum decomposition circuit 30 performs "spectrum decomposition processing" on the transmission signal TC. More specifically, the spectrum decomposition circuit 30 acquires the transmission signal TC in the frequency domain by Fast Fourier Transform (FFT), and decomposes the transmission signal TC into a plurality of subspectrum on the frequency axis. Furthermore, the spectrum decomposition circuit 30 shifts the plurality of sub-spectrum to desired frequency positions (unused bands), that is, dispersively arranges them. The decomposed transmission signal TD comprises a plurality of subspectrums generated in this way. Then, the spectrum decomposition circuit 30 generates and outputs a decomposed transmission signal TD in the time domain by inverse fast Fourier transform (IFFT).
  • FFT Fast Fourier Transform
  • IFFT inverse fast Fourier transform
  • the transmitting system transmits the decomposed transmission signal TD to the receiving system.
  • the receiving system receives the decomposed transmission signal TD transmitted from the transmitting system as a decomposed received signal RD.
  • the spectrum synthesis circuit 40 performs "spectrum synthesis processing" on the decomposed received signal RD. More specifically, spectrum synthesizing circuit 40 includes frequency domain transforming circuit 41 , synthesizing processing circuit 42 , time domain transforming circuit 43 , and phase difference estimating circuit 44 .
  • the frequency domain conversion circuit 41 acquires the decomposed received signal RD in the frequency domain by FFT.
  • a synthesizing circuit 42 extracts and synthesizes a plurality of subspectra of the decomposed received signal RD. At this time, the synthesizing circuit 42 synthesizes the plurality of sub-spectrum by returning the plurality of sub-spectrum to the original frequency position of the transmission signal TC.
  • the combined received signal RC has a combined spectrum.
  • the time domain conversion circuit 43 generates and outputs a composite received signal RC in the time domain by IFFT.
  • Phase difference compensation processing as described below is performed in the spectrum synthesis processing.
  • FIG. 4 is a conceptual diagram for explaining phase difference compensation processing.
  • the transmission delay causes a phase ramp in the decomposed received signal RD at the receiver. If spectrum synthesizing processing is performed as it is, the phase characteristics of the synthesized received signal RC after synthesis become discontinuous, degrading the transmission characteristics. Therefore, it is necessary to compensate for the phase difference at the timing of spectrum synthesis processing.
  • the decomposed received signal RD has a plurality of subspectra SSP1 to SSP3.
  • the phase difference between adjacent sub-spectrum SSP1 and SSP2 is ⁇ 1, and the phase difference between adjacent sub-spectrum SSP2 and SSP3 is ⁇ 2.
  • the phase difference estimating circuit 44 of the spectrum synthesizing circuit 40 estimates (detects) the phase differences ⁇ 1 and ⁇ 2 based on the plurality of subspectra SSP1 to SSP3 of the decomposed received signal RD.
  • the phase difference estimating circuit 44 outputs the estimated phase differences ⁇ 1 and ⁇ 2 to the synthesizing circuit 42 .
  • the synthesizing circuit 42 corrects the phase characteristics of each subspectrum so that the phase differences ⁇ 1 and ⁇ 2 become zero, and performs spectrum synthesizing processing. For example, the synthesizing circuit 42 adds the correction value ⁇ 1 to the phase of the sub-spectrum SSP2, and adds the correction value ⁇ 1+ ⁇ 2 to the phase of the sub-spectrum SSP2. As a result, the phase characteristics of the synthesized received signal RC after synthesis are continuous.
  • the demodulation circuit 50A receives the composite reception signal RC output from the spectrum synthesis circuit 40.
  • the demodulation circuit 50A demodulates the combined received signal RC to obtain a received signal RB corresponding to the transmitted signal TB.
  • FIG. 5 is a conceptual diagram showing a general burst signal frame format.
  • a burst signal frame includes a preamble signal PRE, a unique word UW, and a data signal DAT.
  • the preamble signal PRE includes the reproduced carrier signal CA and the reproduced timing signal TM, and is placed before the unique word UW.
  • FIG. 6 is a block diagram schematically showing the configuration of a radio communication system that performs spectrum decomposition/combination of burst signals. The description overlapping with that of FIG. 2 described above will be omitted as appropriate.
  • the transmission side system includes a burst frame generation circuit 10B, a modulation circuit 20, and a spectrum decomposition circuit 30.
  • a burst frame generation circuit 10B generates a transmission signal TB having a burst signal frame format as shown in FIG. Specifically, the burst frame generation circuit 10B generates the transmission signal TB by adding the unique word UW and the preamble signal PRE to the front stage of the data signal DAT to be transmitted.
  • the receiving side system includes a spectrum synthesizing circuit 40 and a demodulating circuit 50B.
  • the demodulation circuit 50B receives the synthesized received signal RC output from the spectrum synthesizing circuit 40.
  • the demodulation circuit 50 B includes a burst demodulation circuit 51 and a burst detection circuit 52 .
  • the burst detection circuit 52 detects the reception timing of the burst signal based on the composite received signal RC.
  • the burst detection timing is the detected burst signal reception timing. If the burst detection timing is known, the burst signal frame interval can be estimated based on known frame format information.
  • the burst demodulation circuit 51 burst-demodulates the composite reception signal RC to obtain a reception signal RB corresponding to the transmission signal TB.
  • FIG. 7 is a conceptual diagram for explaining phase difference compensation processing in the case of burst signals.
  • the data signal DAT is a modulated signal made up of random bits.
  • the decomposed received signal RD has the same sub-spectrum SSP1-SSP3 as in the case of the continuous signal shown in FIG.
  • adjacent sub-spectrum SSP1 and SSP2 intersect at intersection frequency f1
  • adjacent sub-spectrum SSP2 and SSP3 intersect at intersection frequency f2.
  • the phase difference estimating circuit 44 estimates the phase difference ⁇ 1 (see FIG. 4) based on the respective phases of the sub-spectrum SSP1 and SSP2 at the intersection frequency f1.
  • the phase difference estimating circuit 44 estimates the phase difference ⁇ 2 (see FIG. 4) based on the respective phases of the sub-spectra SSP2 and SSP3 at the intersection frequency f2.
  • the carrier reproduction signal CA of the preamble signal PRE is an unmodulated signal consisting of consecutive identical bits.
  • the spectrum of the decomposed received signal RD becomes a line spectrum as shown in FIG.
  • the phase difference estimation circuit 44 operates even if there is no significant signal. As a result, the phase difference estimating circuit 44 outputs meaningless and erroneous phase differences ⁇ 1′ and ⁇ 2′ to the synthesizing circuit 42 instead of the correct phase differences ⁇ 1 and ⁇ 2.
  • the synthesizing circuit 42 corrects the phase characteristics of each subspectrum based on the erroneous phase differences ⁇ 1' and ⁇ 2', and performs spectrum synthesizing processing. Therefore, the phase characteristics of the synthesized reception signal RC after synthesis are not continuous, and the phase difference remains. Specifically, a phase difference of ⁇ 1 ⁇ 1′ remains at the intersection frequency f1, and a phase difference of ⁇ 1+ ⁇ 2 ⁇ 1′ ⁇ 2′ remains at the intersection frequency f2.
  • FIG. 8 is a conceptual diagram for explaining problems when phase difference estimation is not performed correctly.
  • the burst detection circuit 52 described above detects the reception timing of the burst signal (burst detection timing). Specifically, the burst detection circuit 52 compares the absolute value of the cumulative value of the symbol phase differences of the composite received signal RC with the threshold. Then, the burst detection circuit 52 uses the timing at which the absolute value of the cumulative value of the symbol phase differences exceeds the threshold value as the burst detection timing. If the burst detection timing is known, burst demodulation becomes possible.
  • phase difference estimation is not performed correctly in the reception period of the preamble signal PRE (carrier reproduction signal CA).
  • the phase difference compensation process becomes imperfect, and the phase difference (discontinuity) remains in the phase characteristics of the composite received signal RC.
  • the absolute value of the cumulative value of the symbol phase difference does not reach the threshold during the reception period of the preamble signal PRE (carrier recovery signal CA). That is, there is a possibility that burst detection timing cannot be obtained. If burst detection timing cannot be obtained, burst demodulation cannot be performed.
  • One object of the present invention is to provide a technique capable of appropriately transmitting burst signals using spectrum decomposition/synthesis.
  • a first aspect provides a wireless communication system that performs wireless communication between a transmitting system and a receiving system.
  • the sending system a transmission signal generation circuit that generates a transmission signal by adding a phase synchronization signal containing random bits to the front stage of a preamble signal of a burst signal; a spectrum decomposition circuit that decomposes a transmission signal into a plurality of subspectrums on a frequency axis and generates a decomposed transmission signal having a plurality of subspectrum.
  • the receiving system receives the decomposed transmission signal transmitted from the transmitting system as a decomposed received signal.
  • the receiving system a phase difference estimation circuit for estimating a phase difference between a plurality of subspectra based on a plurality of subspectra of the decomposed received signal corresponding to the phase synchronization signal;
  • a spectrum synthesizing circuit that performs spectrum synthesizing processing to generate a synthesized received signal by synthesizing a plurality of subspectra of the decomposed received signal while compensating for the estimated phase difference, and a demodulator circuit that demodulates the synthesized received signal.
  • a second aspect provides a wireless communication method for performing wireless communication between a transmitting system and a receiving system.
  • the wireless communication method is generating a transmission signal in a transmitting system by adding a phase synchronization signal containing random bits to the front of a preamble signal of a burst signal; decomposing a transmission signal into a plurality of sub-spectrums on a frequency axis in a transmission-side system to generate a decomposed transmission signal having a plurality of sub-spectrum; receiving, in a receiving system, a decomposed transmit signal transmitted from the transmitting system as a decomposed received signal; estimating, in a receiving system, a phase difference between the plurality of subspectra based on the plurality of subspectra of the decomposed received signal corresponding to the phase synchronization signal; performing, in a receiving system, a spectrum synthesis process that produces a composite received signal by combining multiple subspectra of the decomposed received signal while compensating for the estimated phase difference; and demodulating the composite
  • a third aspect provides a transmitting system that wirelessly communicates with a receiving system.
  • the sending system a transmission signal generation circuit that generates a transmission signal by adding a phase synchronization signal containing random bits to the front stage of a preamble signal of a burst signal; a spectrum decomposition circuit that decomposes a transmission signal into a plurality of subspectrums on a frequency axis and generates a decomposed transmission signal having a plurality of subspectrum.
  • the receiving system receiving a decomposed transmission signal transmitted from a transmitting system as a decomposed received signal; estimating a phase difference between the plurality of subspectra based on the plurality of subspectra of the decomposed received signal corresponding to the phase synchronization signal; performing spectrum synthesis processing to generate a synthesized received signal by synthesizing a plurality of subspectra of the decomposed received signal while compensating for the estimated phase difference; Demodulate the composite received signal.
  • a fourth aspect provides a receiving system that wirelessly communicates with a transmitting system.
  • the sending system generating a transmission signal by adding a phase synchronization signal containing random bits to the front of a preamble signal of a burst signal;
  • a transmission signal is decomposed into a plurality of subspectra on the frequency axis to generate a decomposed transmission signal having a plurality of subspectra.
  • the receiving system receives the decomposed transmission signal transmitted from the transmitting system as a decomposed received signal.
  • the receiving system a phase difference estimation circuit for estimating a phase difference between a plurality of subspectra based on a plurality of subspectra of the decomposed received signal corresponding to the phase synchronization signal;
  • a spectrum synthesizing circuit that performs spectrum synthesizing processing to generate a synthesized received signal by synthesizing a plurality of subspectra of the decomposed received signal while compensating for the estimated phase difference, and a demodulator circuit that demodulates the synthesized received signal.
  • a phase synchronization signal including random bits is added before the preamble signal of the burst signal in the transmission side system.
  • the receiving system can accurately estimate the phase difference between a plurality of subspectra.
  • spectrum synthesis processing is performed while compensating for the estimated phase difference. Since the phase difference compensation process and the spectrum synthesis process are performed with high precision even for the preamble signal of the burst signal, it is possible to detect the reception timing of the burst signal and appropriately perform burst demodulation.
  • FIG. 2 is a conceptual diagram for explaining an outline of spectrum decomposition/synthesis transmission
  • 1 is a block diagram schematically showing the configuration of a radio communication system that performs spectrum decomposition/synthesis according to conventional technology
  • FIG. 1 is a conceptual diagram showing a frame format for a general continuous signal
  • FIG. FIG. 4 is a conceptual diagram for explaining phase difference compensation processing during spectrum synthesis processing
  • 1 is a conceptual diagram showing a general burst signal frame format
  • FIG. 1 is a block diagram schematically showing the configuration of a radio communication system that performs spectrum decomposition/combination of burst signals
  • FIG. FIG. 4 is a conceptual diagram for explaining problems in the case of burst signals
  • FIG. 4 is a conceptual diagram for explaining problems in the case of burst signals; 1 is a block diagram schematically showing the configuration of a radio communication system according to a first embodiment of the present invention;
  • FIG. FIG. 2 is a conceptual diagram showing a burst signal frame format according to the first embodiment of the present invention;
  • FIG. 4 is a conceptual diagram for explaining phase difference compensation processing according to the first embodiment of the present invention;
  • 1 is a block diagram for explaining a phase difference estimating circuit according to a first embodiment of the present invention;
  • FIG. 6 is a conceptual diagram showing a burst signal frame format according to the second embodiment of the present invention;
  • FIG. 9 is a block diagram schematically showing the configuration of a radio communication system 100 according to the first embodiment.
  • the wireless communication system 100 includes a transmitting system 100T and a receiving system 100R. Wireless communication is performed between the transmitting side system 100T and the receiving side system 100R.
  • wireless communication system 100 is a satellite communication system. In that case, wireless communication is performed between the transmitting side system 100T and the receiving side system 100R via the satellite transponder.
  • the transmission side system 100T may be a single device or may be a combination of multiple devices.
  • the receiving system 100R may be a single device or a combination of multiple devices.
  • Radio communication system 100 transmits burst signals using spectrum decomposition/synthesis. A configuration related to spectrum decomposition/synthesis of burst signals will be described below.
  • the transmission side system 100T includes a transmission signal generation circuit 110, a modulation circuit 120, and a spectrum decomposition circuit .
  • the transmission signal generation circuit 110 generates and outputs a transmission signal TB.
  • the transmission signal generation circuit 110 includes a burst frame generation circuit 111 and a phase synchronization signal generation circuit 112 .
  • a burst frame generation circuit 111 generates a burst signal frame for burst transmission of data to be transmitted.
  • FIG. 10 is a conceptual diagram showing a burst signal frame format according to this embodiment.
  • the burst signal frame further includes a "phase synchronization signal PS" in addition to the signals shown in FIG. That is, the burst signal frame further includes the phase synchronization signal PS in addition to the preamble signal PRE (carrier recovery signal CA, timing recovery signal TM), unique word UW, and data signal DAT.
  • the phase synchronization signal PS is placed before the preamble signal PRE.
  • the phase synchronization signal PS contains random bits.
  • the phase synchronization signal PS containing random bits is used in spectrum synthesis processing (phase difference compensation processing), which will be described later.
  • the phase synchronization signal generation circuit 112 generates a phase synchronization signal PS and outputs the phase synchronization signal PS to the burst frame generation circuit 111 .
  • a burst frame generation circuit 111 generates a transmission signal TB having a burst signal frame format as shown in FIG. Specifically, the burst frame generation circuit 111 adds a unique word UW and a preamble signal PRE to the front stage of the data signal DAT to be transmitted. Furthermore, the burst frame generation circuit 111 adds a phase synchronization signal PS containing random bits to the front stage of the preamble signal PRE to generate a transmission signal TB.
  • a burst frame generation circuit 111 outputs a transmission signal TB.
  • the modulation circuit 120 receives the transmission signal TB output from the transmission signal generation circuit 110 .
  • the modulation circuit 120 modulates the transmission signal TB and outputs a modulated transmission signal TC.
  • the spectrum decomposition circuit 130 performs "spectrum decomposition processing" on the transmission signal TC. More specifically, the spectrum decomposition circuit 130 acquires the transmission signal TC in the frequency domain by fast Fourier transform (FFT), and decomposes the transmission signal TC into a plurality of subspectrum on the frequency axis. Furthermore, the spectrum decomposition circuit 130 shifts the plurality of sub-spectrum to desired frequency positions (unused bands), that is, arranges them in a distributed manner. The decomposed transmission signal TD comprises a plurality of subspectrums generated in this way. Then, the spectrum decomposition circuit 130 generates and outputs a decomposed transmission signal TD in the time domain by inverse fast Fourier transform (IFFT).
  • FFT fast Fourier transform
  • IFFT inverse fast Fourier transform
  • the transmitting system 100T transmits the decomposed transmission signal TD to the receiving system 100R.
  • the receiving system 100R receives the decomposed transmission signal TD transmitted from the transmitting system 100T as a decomposed received signal RD.
  • the frequency position information of the original spectrum of the transmission signal TC and the subspectrum of the decomposed transmission signal TD may be separately transmitted from the transmission side system 100T to the reception side system 100R.
  • the receiving system 100R includes a spectrum synthesis circuit 140 and a demodulation circuit 150.
  • the spectrum synthesis circuit 140 performs "spectrum synthesis processing" on the decomposed received signal RD. More specifically, spectrum synthesizing circuit 140 includes frequency domain transforming circuit 141 , synthesizing processing circuit 142 , time domain transforming circuit 143 , and phase difference estimating circuit 144 .
  • the frequency domain conversion circuit 141 obtains the decomposed received signal RD in the frequency domain by FFT.
  • Synthesis processing circuit 142 extracts and synthesizes a plurality of subspectra of decomposed received signal RD. At this time, the synthesizing circuit 142 synthesizes a plurality of subspectra by returning the plurality of subspectra to the original frequency positions of the transmission signal TC.
  • the combined received signal RC has a combined spectrum.
  • the time domain conversion circuit 143 generates and outputs a composite received signal RC in the time domain by IFFT.
  • phase difference compensation process As described in FIG. 4 is performed. Specifically, phase difference estimating circuit 144 estimates (detects) phase differences between a plurality of subspectra based on a plurality of subspectra of decomposed received signal RD. The phase difference estimation circuit 144 outputs the estimated phase difference to the synthesis processing circuit 142 . The synthesis processing circuit 142 performs spectrum synthesis processing while compensating for the estimated phase difference. That is, the synthesizing circuit 142 corrects the phase characteristic of each subspectrum so that the phase difference becomes 0, and performs spectrum synthesizing processing. As a result, the phase characteristics of the synthesized received signal RC after synthesis are continuous.
  • the demodulation circuit 150 receives the composite received signal RC output from the spectrum synthesis circuit 140.
  • Demodulator circuit 150 includes burst demodulator circuit 151 and burst detector circuit 152 .
  • the burst detection circuit 152 detects the reception timing of the burst signal based on the composite received signal RC.
  • the burst detection timing is the detected burst signal reception timing. More specifically, burst detection circuit 152 compares the absolute value of the accumulated symbol phase difference of combined received signal RC with a threshold. Then, the burst detection circuit 152 uses the timing at which the absolute value of the cumulative value of the symbol phase differences exceeds the threshold value as the burst detection timing (see FIG. 8).
  • the burst frame receiving period can be estimated based on the known frame format information.
  • the burst demodulation circuit 151 burst-demodulates the combined reception signal RC to obtain a reception signal RB corresponding to the transmission signal TB.
  • FIG. 11 is a conceptual diagram for explaining phase difference compensation processing during spectrum synthesis processing according to the present embodiment.
  • the decomposed received signal RD corresponding to the phase synchronization signal PS has a plurality of subspectrums similar to those of the data signal DAT.
  • the decomposed received signal RD corresponding to the phase synchronization signal PS has a plurality of subspectra SSP1-SSP3.
  • phase difference estimation circuit 144 estimates the phase difference ⁇ 1 between the adjacent sub-spectrum SSP1 and SSP2 based on the respective phases of the sub-spectrum SSP1 and SSP2 at the intersection frequency f1.
  • the phase difference estimation circuit 44 estimates the phase difference ⁇ 2 between the adjacent sub-spectrum SSP2, SSP3 based on the respective phases of the sub-spectrum SSP2, SSP3 at the intersection frequency f2.
  • the phase difference estimating circuit 144 can estimate the phase differences ⁇ 1 and ⁇ 2 based on the multiple subspectra SSP1 to SSP3 of the decomposed received signal RD corresponding to the phase synchronization signal PS.
  • a phase difference estimating circuit 144 holds the phase differences ⁇ 1 and ⁇ 2 estimated in the reception period of the phase synchronization signal PS.
  • the phase difference estimating circuit 144 includes a retaining circuit 145 that retains the phase differences ⁇ 1 and ⁇ 2 estimated during the reception period of the phase synchronization signal PS.
  • the phase difference estimation circuit 144 outputs the phase differences ⁇ 1 and ⁇ 2 held in the holding circuit 145 to the synthesizing circuit 142 .
  • the synthesis processing circuit 142 performs spectrum synthesis processing while compensating for the estimated phase differences ⁇ 1 and ⁇ 2.
  • the synthesis processing circuit 142 Based on the phase differences ⁇ 1 and ⁇ 2 held in the holding circuit 145, the synthesis processing circuit 142 performs spectrum synthesis processing on the decomposed received signal RD corresponding to the preamble signal PRE. Since the correct phase differences ⁇ 1 and ⁇ 2 are used, phase difference compensation processing and spectrum synthesis processing can be performed with high precision even for the preamble signal PRE. As a result, the burst detection circuit 152 of the demodulation circuit 150 can detect the burst signal reception timing (burst detection timing) based on the combined received signal RC corresponding to the preamble signal PRE (see FIG. 8). .
  • the burst detection circuit 152 of the demodulation circuit 150 notifies the phase difference estimation circuit 144 of the spectrum synthesis circuit 140 of burst detection timing. If the burst detection timing is known, the burst frame receiving period can be estimated based on known frame format information.
  • the holding circuit 145 holds the estimated phase differences ⁇ 1 and ⁇ 2 at least until the burst frame reception interval ends.
  • Synthesis processing circuit 142 performs spectrum synthesis processing on decomposed received signal RD corresponding to unique word UW and data signal DAT based on phase differences ⁇ 1 and ⁇ 2 held in holding circuit 145 . Since accurate phase differences ⁇ 1 and ⁇ 2 are used, phase difference compensation processing and spectrum synthesis processing can be performed with high accuracy also for unique word UW and data signal DAT.
  • the burst demodulation circuit 151 appropriately burst-demodulates the composite received signal RC.
  • the phase synchronization signal PS including random bits is added before the preamble signal PRE of the burst signal.
  • the receiving system 100R can accurately estimate the phase difference between a plurality of subspectra.
  • spectrum synthesis processing is performed while compensating for the estimated phase difference. Since the phase difference compensation process and the spectrum synthesis process are performed with high precision even on the preamble signal PRE of the burst signal, it is possible to detect the reception timing of the burst signal and appropriately perform burst demodulation. That is, according to this embodiment, it is possible to appropriately transmit a burst signal using spectrum decomposition/synthesis.
  • FIG. 13 is a conceptual diagram showing a burst signal frame format according to the second embodiment.
  • the preceding burst signal frame contains a dummy signal DUM as a data signal.
  • the unique word UW and dummy signal DUM of the preceding burst signal frame are used as the phase synchronization signal PS for the succeeding burst signal.
  • the phase synchronization signal generation circuit 112 of the transmission signal generation circuit 110 outputs the phase synchronization signal PS including the unique word UW and the dummy signal DUM to the burst frame generation circuit 111 .
  • a burst frame generation circuit 111 generates a transmission signal TB having a burst signal frame format as shown in FIG.
  • the phase difference estimating circuit 144 of the spectrum synthesizing circuit 140 estimates the phase difference between a plurality of subspectra in the reception period of the unique word UW and dummy signal DUM of the preceding burst signal frame.
  • a holding circuit 145 holds the estimated phase difference.
  • the synthesis processing circuit 142 performs phase difference compensation processing and spectrum synthesis processing on the subsequent burst signal frame based on the phase difference held in the holding circuit 145 .
  • REFERENCE SIGNS LIST 100 wireless communication system 100T transmission side system 100R reception side system 110 transmission signal generation circuit 120 modulation circuit 130 spectrum decomposition circuit 140 spectrum synthesis circuit 142 synthesis processing circuit 144 phase difference estimation circuit 150 demodulation circuit 151 burst demodulation circuit 152 burst detection circuit CA carrier Playback signal DAT Data signal PRE Preamble signal PS Phase synchronization signal TM Timing playback signal UW Unique word

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

無線通信システムは、送信側システムと受信側システムとの間で無線通信を行う。送信側システムは、バースト信号のプリアンブル信号の前段にランダムビットを含む位相同期信号を付加することによって送信信号を生成する。送信側システムは、送信信号を周波数軸上で複数のサブスペクトラムに分解し、複数のサブスペクトラムを有する分解送信信号を生成する。受信側システムは、送信側システムから送信される分解送信信号を分解受信信号として受信する。受信側システムは、位相同期信号に対応する分解受信信号の複数のサブスペクトラムに基づいて、複数のサブスペクトル間の位相差を推定する。受信側システムは、推定された位相差を補償しながら分解受信信号の複数のサブスペクトラムを合成することによって合成受信信号を生成する。受信側システムは、合成受信信号を復調する。

Description

無線通信システム、無線通信方法、送信側システム、及び受信側システム
 本発明は、スペクトラム分解・合成を利用した無線通信技術に関する。
 近年、地上ネットワークにおいてIoT(Internet of Things)の利用が爆発的に普及している。地上ネットワークがカバーできないエリアにおいては、広域なサービスエリアを有する衛星を介したIoT、すなわち衛星IoTの利用が有望である。
 一般に、衛星通信の場合、各ユーザは、必要な周波数帯域を衛星事業者から借りることにより通信を行う。衛星中継器の周波数資源は限られており、その限られた周波数資源を効率的に利用することが望まれる。例えば、既存ユーザに一部の周波数帯域が既に割り当てられている場合、細かい未使用帯域が周波数軸上に散在することになる。細かい未使用帯域が散在する場合、未使用帯域全体の合計は十分大きいにもかかわらず、新たなユーザに要求帯域を割り当てることができない可能性がある。このことは、周波数利用効率の低下を招く。
 未使用帯域を有効利用して、周波数利用効率を向上させるための技術として、非特許文献1は、「スペクトラム分解・合成伝送技術」を提案している。
 図1は、スペクトラム分解・合成伝送の概要を説明するための概念図である。各ユーザの端末(A,B,X)からの信号は、地上局から衛星中継器を介して基地局に送られる。衛星中継器における周波数帯域の一部は、既存ユーザによって既に利用されている。未使用帯域を利用して通信を行うために、各端末からの送信信号のスペクトラムは複数のサブスペクトラムに分解され、それら複数のサブスペクトラムが未使用帯域に分散的に配置される。そのような複数のサブスペクトラムを有する送信信号が、衛星中継器を介して基地局に送られる。受信側の基地局は、受信信号の複数のサブスペクトラムを合成することによって、元の送信信号を再現する。このようにして、散在する未使用帯域を有効利用して、周波数利用効率を向上させることができる。
 図2は、スペクトラム分解・合成を行う無線通信システムの構成を概略的に示すブロック図である。衛星中継器を介して送信側システムと受信側システムとの間で無線通信が行われる。送信側システムは、フレーム生成回路10A、変調回路20、及びスペクトラム分解回路30を含んでいる。受信側システムは、スペクトラム合成回路40及び復調回路50Aを含んでいる。
 フレーム生成回路10Aは、送信対象のデータを伝送するためのフレームを生成する。ここでは、送信対象のデータとして連続信号を考える。図3は、一般的な連続信号の場合のフレームフォーマットを示している。図3に示されるように、連続信号の場合のフレームは、ユニークワードUWとデータ信号DATから構成される。フレーム生成回路10Aは、送信対象のデータ信号DATにユニークワードUWを付加することによって、図3に示されるようなフレームフォーマットを有する送信信号TBを生成する。
 変調回路20は、フレーム生成回路10Aから出力される送信信号TBを受け取る。変調回路20は、送信信号TBを変調し、変調後の送信信号TCを出力する。
 スペクトラム分解回路30は、送信信号TCに対して「スペクトラム分解処理」を行う。より詳細には、スペクトラム分解回路30は、高速フーリエ変換(FFT: Fast Fourier Transform)によって周波数領域における送信信号TCを取得し、送信信号TCを周波数軸上で複数のサブスペクトラムに分解する。更に、スペクトラム分解回路30は、複数のサブスペクトラムを所望の周波数位置(未使用帯域)にシフトさせる、つまり、分散的に配置する。分解送信信号TDは、このようにして生成された複数のサブスペクトラムを有する。そして、スペクトラム分解回路30は、逆高速フーリエ変換(IFFT: Inverse FFT)によって時間領域における分解送信信号TDを生成し、出力する。
 送信側システムは、分解送信信号TDを受信側システムに送信する。受信側システムは、送信側システムから送信される分解送信信号TDを分解受信信号RDとして受信する。
 スペクトラム合成回路40は、分解受信信号RDに対して「スペクトラム合成処理」を行う。より詳細には、スペクトラム合成回路40は、周波数領域変換回路41、合成処理回路42、時間領域変換回路43、及び位相差推定回路44を含んでいる。周波数領域変換回路41は、FFTによって周波数領域における分解受信信号RDを取得する。合成処理回路42は、分解受信信号RDの複数のサブスペクトラムを抽出し、合成する。このとき、合成処理回路42は、複数のサブスペクトラムを元の送信信号TCの周波数位置に戻すことによって、複数のサブスペクトラムを合成する。合成受信信号RCは、合成後のスペクトラムを有する。時間領域変換回路43は、IFFTによって時間領域における合成受信信号RCを生成し、出力する。
 スペクトラム合成処理においては、以下に説明されるような「位相差補償処理」が行われる。図4は、位相差補償処理を説明するための概念図である。スペクトラム分解伝送の場合、伝送遅延により、受信側の分解受信信号RDに位相傾斜が生じる。そのままスペクトラム合成処理を行うと、合成後の合成受信信号RCの位相特性が不連続になり、伝送特性が劣化する。そこで、スペクトラム合成処理のタイミングで位相差を補償する必要がある。
 図4に示される例では、分解受信信号RDは、複数のサブスペクトラムSSP1~SSP3を有している。隣接するサブスペクトラムSSP1、SSP2間の位相差はθ1であり、隣接するサブスペクトラムSSP2、SSP3間の位相差はθ2である。スペクトラム合成回路40の位相差推定回路44は、分解受信信号RDの複数のサブスペクトラムSSP1~SSP3に基づいて位相差θ1、θ2を推定(検出)する。位相差推定回路44は、推定した位相差θ1、θ2を合成処理回路42に出力する。合成処理回路42は、位相差θ1、θ2が0になるように各サブスペクトラムの位相特性を補正して、スペクトラム合成処理を行う。例えば、合成処理回路42は、サブスペクトラムSSP2の位相に補正値θ1を加え、サブスペクトラムSSP2の位相に補正値θ1+θ2を加える。これにより、合成後の合成受信信号RCの位相特性が連続する。
 復調回路50Aは、スペクトラム合成回路40から出力される合成受信信号RCを受け取る。復調回路50Aは、合成受信信号RCを復調し、送信信号TBに対応する受信信号RBを取得する。
山下他,"衛星中継器コグニティブ利用のためのスペクトラム分解伝送アダプタ",電子情報通信学会 信学技報, vol. 117, no. 261, SAT2017-54, pp. 115-120, 2017年10月.
 上述のスペクトラム分解・合成伝送技術がバースト信号の通信に適用される場合を考える。例えば、衛星IoTの場合、IoTユーザは小容量データを瞬間的に送信するため、バースト信号の使用が想定される。
 図5は、一般的なバースト信号フレームフォーマットを示す概念図である。バースト信号フレームは、プリアンブル信号PRE、ユニークワードUW、及びデータ信号DATを含んでいる。プリアンブル信号PREは、キャリア再生信号CAとタイミング再生信号TMを含んでおり、ユニークワードUWの前段に配置されている。
 図6は、バースト信号のスペクトラム分解・合成を行う無線通信システムの構成を概略的に示すブロック図である。上述の図2と重複する説明は適宜省略する。
 送信側システムは、バーストフレーム生成回路10B、変調回路20、及びスペクトラム分解回路30を含んでいる。バーストフレーム生成回路10Bは、図5で示されたようなバースト信号フレームフォーマットを有する送信信号TBを生成する。具体的には、バーストフレーム生成回路10Bは、送信対象のデータ信号DATの前段にユニークワードUWとプリアンブル信号PREを付加することによって、送信信号TBを生成する。
 受信側システムは、スペクトラム合成回路40及び復調回路50Bを含んでいる。復調回路50Bは、スペクトラム合成回路40から出力される合成受信信号RCを受け取る。復調回路50Bは、バースト復調回路51とバースト検出回路52を含んでいる。バースト検出回路52は、合成受信信号RCに基づいて、バースト信号の受信タイミングを検出する。バースト検出タイミングは、検出されたバースト信号受信タイミングである。バースト検出タイミングが分かれば、既知であるフレームフォーマット情報に基づいてバースト信号フレーム区間を推定することができる。バースト復調回路51は、合成受信信号RCをバースト復調し、送信信号TBに対応する受信信号RBを取得する。
 図7は、バースト信号の場合の位相差補償処理を説明するための概念図である。データ信号DATは、ランダムビットからなる変調信号である。そのようなデータ信号DATの受信区間では、分解受信信号RDは、図4で示された連続信号の場合と同様のサブスペクトラムSSP1~SSP3を有する。スペクトラム合成処理において、隣接するサブスペクトラムSSP1、SSP2は交点周波数f1において交差し、隣接するサブスペクトラムSSP2、SSP3は交点周波数f2において交差する。位相差推定回路44は、交点周波数f1におけるサブスペクトラムSSP1、SSP2のそれぞれの位相に基づいて、位相差θ1(図4参照)を推定する。同様に、位相差推定回路44は、交点周波数f2におけるサブスペクトラムSSP2、SSP3のそれぞれの位相に基づいて、位相差θ2(図4参照)を推定する。
 しかしながら、プリアンブル信号PREのキャリア再生信号CAは、連続する同一ビットからなる無変調信号である。そのようなキャリア再生信号CAの受信区間においては、分解受信信号RDのスペクトラムは、図7に示されるように線スペクトラムとなる。つまり、バースト信号のキャリア再生信号CAの受信区間においては、上記の交点周波数f1、f2に有意な信号が存在しない。従って、位相差θ1、θ2を正確に推定することができない。
 有意な信号が存在しなくても位相差推定回路44は動作する。その結果、位相差推定回路44は、正しい位相差θ1、θ2ではなく、意味のない誤った位相差θ1’、θ2’を合成処理回路42に出力する。合成処理回路42は、誤った位相差θ1’、θ2’に基づいて各サブスペクトラムの位相特性を補正して、スペクトラム合成処理を行う。従って、合成後の合成受信信号RCの位相特性は連続せず、位相差が残留する。具体的には、交点周波数f1ではθ1-θ1’の位相差が残留し、交点周波数f2ではθ1+θ2-θ1’-θ2’の位相差が残留する。
 図8は、位相差推定が正しく実施されない場合の課題を説明するための概念図である。上記のバースト検出回路52は、バースト信号の受信タイミング(バースト検出タイミング)を検出する。具体的には、バースト検出回路52は、合成受信信号RCのシンボル位相差分の累積値の絶対値を閾値と比較する。そして、バースト検出回路52は、シンボル位相差分の累積値の絶対値が閾値を超えるタイミングをバースト検出タイミングとする。バースト検出タイミングが分かるとバースト復調が可能となる。
 しかしながら、上述の通り、プリアンブル信号PRE(キャリア再生信号CA)の受信区間において、位相差推定は正しく実施されない。その結果、位相差補償処理は不完全となり、合成受信信号RCの位相特性には位相差(不連続)が残留する。その場合、プリアンブル信号PRE(キャリア再生信号CA)の受信区間において、シンボル位相差分の累積値の絶対値が、閾値に到達しない可能性がある。すなわち、バースト検出タイミングが得られない可能性がある。バースト検出タイミングが得られないと、バースト復調ができなくなる。
 このように、従来のスペクトラム分解・合成伝送技術が単純にバースト信号の通信に適用される場合、バースト信号の復調が正しく行われないおそれがある。
 本発明の1つの目的は、スペクトラム分解・合成を利用してバースト信号を適切に伝送することができる技術を提供することにある。
 第1の観点は、送信側システムと受信側システムとの間で無線通信を行う無線通信システムを提供する。
 送信側システムは、
  バースト信号のプリアンブル信号の前段にランダムビットを含む位相同期信号を付加することによって送信信号を生成する送信信号生成回路と、
  送信信号を周波数軸上で複数のサブスペクトラムに分解し、複数のサブスペクトラムを有する分解送信信号を生成するスペクトラム分解回路と
 を備える。
 受信側システムは、送信側システムから送信される分解送信信号を分解受信信号として受信する。
 受信側システムは、
  位相同期信号に対応する分解受信信号の複数のサブスペクトラムに基づいて、複数のサブスペクトル間の位相差を推定する位相差推定回路と、
  推定された位相差を補償しながら分解受信信号の複数のサブスペクトラムを合成することによって合成受信信号を生成するスペクトラム合成処理を行うスペクトラム合成回路と
  合成受信信号を復調する復調回路と
 を備える。
 第2の観点は、送信側システムと受信側システムとの間で無線通信を行う無線通信方法を提供する。
 無線通信方法は、
 送信側システムにおいて、バースト信号のプリアンブル信号の前段にランダムビットを含む位相同期信号を付加することによって送信信号を生成するステップと、
 送信側システムにおいて、送信信号を周波数軸上で複数のサブスペクトラムに分解し、複数のサブスペクトラムを有する分解送信信号を生成するステップと、
 受信側システムにおいて、送信側システムから送信される分解送信信号を分解受信信号として受信するステップと、
 受信側システムにおいて、位相同期信号に対応する分解受信信号の複数のサブスペクトラムに基づいて、複数のサブスペクトル間の位相差を推定するステップと、
 受信側システムにおいて、推定された位相差を補償しながら分解受信信号の複数のサブスペクトラムを合成することによって合成受信信号を生成するスペクトラム合成処理を行うステップと、
 受信側システムにおいて、合成受信信号を復調するステップと
 を含む。
 第3の観点は、受信側システムと無線通信を行う送信側システムを提供する。
 送信側システムは、
  バースト信号のプリアンブル信号の前段にランダムビットを含む位相同期信号を付加することによって送信信号を生成する送信信号生成回路と、
  送信信号を周波数軸上で複数のサブスペクトラムに分解し、複数のサブスペクトラムを有する分解送信信号を生成するスペクトラム分解回路と
 を備える。
 受信側システムは、
  送信側システムから送信される分解送信信号を分解受信信号として受信し、
  位相同期信号に対応する分解受信信号の複数のサブスペクトラムに基づいて、複数のサブスペクトル間の位相差を推定し、
  推定された位相差を補償しながら分解受信信号の複数のサブスペクトラムを合成することによって合成受信信号を生成するスペクトラム合成処理を行い、
  合成受信信号を復調する。
 第4の観点は、送信側システムと無線通信を行う受信側システムを提供する。
 送信側システムは、
  バースト信号のプリアンブル信号の前段にランダムビットを含む位相同期信号を付加することによって送信信号を生成し、
  送信信号を周波数軸上で複数のサブスペクトラムに分解し、複数のサブスペクトラムを有する分解送信信号を生成する。
 受信側システムは、送信側システムから送信される分解送信信号を分解受信信号として受信する。
 受信側システムは、
  位相同期信号に対応する分解受信信号の複数のサブスペクトラムに基づいて、複数のサブスペクトル間の位相差を推定する位相差推定回路と、
  推定された位相差を補償しながら分解受信信号の複数のサブスペクトラムを合成することによって合成受信信号を生成するスペクトラム合成処理を行うスペクトラム合成回路と
  合成受信信号を復調する復調回路と
 を備える。
 本発明によれば、送信側システムにおいて、バースト信号のプリアンブル信号の前段にランダムビットを含む位相同期信号が付加される。受信側システムでは、その位相同期信号を用いることによって、複数のサブスペクトル間の位相差を精度良く推定することが可能となる。そして、推定された位相差を補償しながらスペクトラム合成処理が行われる。バースト信号のプリアンブル信号に対しても位相差補償処理及びスペクトラム合成処理は精度良く行われるため、バースト信号の受信タイミングを検出し、バースト復調を適切に行うことが可能となる。このように、本発明によれば、スペクトラム分解・合成を利用してバースト信号を適切に伝送することが可能となる。
スペクトラム分解・合成伝送の概要を説明するための概念図である。 従来技術に係るスペクトラム分解・合成を行う無線通信システムの構成を概略的に示すブロック図である。 一般的な連続信号の場合のフレームフォーマットを示す概念図である。 スペクトラム合成処理時の位相差補償処理を説明するための概念図である。 一般的なバースト信号フレームフォーマットを示す概念図である。 バースト信号のスペクトラム分解・合成を行う無線通信システムの構成を概略的に示すブロック図である。 バースト信号の場合の課題について説明するための概念図である。 バースト信号の場合の課題について説明するための概念図である。 本発明の第1の実施の形態に係る無線通信システムの構成を概略的に示すブロック図である。 本発明の第1の実施の形態に係るバースト信号フレームフォーマットを示す概念図である。 本発明の第1の実施の形態に係る位相差補償処理を説明するための概念図である。 本発明の第1の実施の形態に係る位相差推定回路について説明するためのブロック図である。 本発明の第2の実施の形態に係るバースト信号フレームフォーマットを示す概念図である。
 添付図面を参照して、本発明の実施の形態を説明する。
 1.第1の実施の形態
 図9は、第1の実施の形態に係る無線通信システム100の構成を概略的に示すブロック図である。無線通信システム100は、送信側システム100Tと受信側システム100Rを含んでいる。送信側システム100Tと受信側システム100Rとの間で無線通信が行われる。例えば、無線通信システム100は、衛星通信システムである。その場合、衛星中継器を経由して送信側システム100Tと受信側システム100Rとの間で無線通信が行われる。尚、送信側システム100Tは、単一の装置であってもよいし、複数の装置の組み合わせであってもよい。受信側システム100Rは、単一の装置であってもよいし、複数の装置の組み合わせであってもよい。
 本実施の形態では、特に、バースト信号の通信について考える。本実施の形態に係る無線通信システム100は、スペクトラム分解・合成を利用してバースト信号を伝送する。以下、バースト信号のスペクトラム分解・合成に関連する構成について説明する。
 送信側システム100Tは、送信信号生成回路110、変調回路120、及びスペクトラム分解回路130を含んでいる。
 送信信号生成回路110は、送信信号TBを生成し、出力する。送信信号生成回路110は、バーストフレーム生成回路111と位相同期信号生成回路112を含んでいる。バーストフレーム生成回路111は、送信対象のデータをバースト伝送するためのバースト信号フレームを生成する。
 図10は、本実施の形態に係るバースト信号フレームフォーマットを示す概念図である。本実施の形態によれば、バースト信号フレームは、図5で示された信号に加えて、「位相同期信号PS」を更に含んでいる。つまり、バースト信号フレームは、プリアンブル信号PRE(キャリア再生信号CA、タイミング再生信号TM)、ユニークワードUW、及びデータ信号DATに加えて、位相同期信号PSを更に含んでいる。位相同期信号PSは、プリアンブル信号PREの前段に配置される。
 位相同期信号PSは、ランダムビットを含んでいる。ランダムビットを含む位相同期信号PSは、後述されるスペクトラム合成処理(位相差補償処理)において利用される。
 位相同期信号生成回路112は、位相同期信号PSを生成し、位相同期信号PSをバーストフレーム生成回路111に出力する。バーストフレーム生成回路111は、図10で示されたようなバースト信号フレームフォーマットを有する送信信号TBを生成する。具体的には、バーストフレーム生成回路111は、送信対象のデータ信号DATの前段に、ユニークワードUWとプリアンブル信号PREを付加する。更に、バーストフレーム生成回路111は、プリアンブル信号PREの前段にランダムビットを含む位相同期信号PSを付加し、送信信号TBを生成する。バーストフレーム生成回路111は、送信信号TBを出力する。
 変調回路120は、送信信号生成回路110から出力される送信信号TBを受け取る。変調回路120は、送信信号TBを変調し、変調後の送信信号TCを出力する。
 スペクトラム分解回路130は、送信信号TCに対して「スペクトラム分解処理」を行う。より詳細には、スペクトラム分解回路130は、高速フーリエ変換(FFT)によって周波数領域における送信信号TCを取得し、送信信号TCを周波数軸上で複数のサブスペクトラムに分解する。更に、スペクトラム分解回路130は、複数のサブスペクトラムを所望の周波数位置(未使用帯域)にシフトさせる、つまり、分散的に配置する。分解送信信号TDは、このようにして生成された複数のサブスペクトラムを有する。そして、スペクトラム分解回路130は、逆高速フーリエ変換(IFFT)によって時間領域における分解送信信号TDを生成し、出力する。
 送信側システム100Tは、分解送信信号TDを受信側システム100Rに送信する。受信側システム100Rは、送信側システム100Tから送信される分解送信信号TDを分解受信信号RDとして受信する。尚、送信信号TCの元のスペクトラム及び分解送信信号TDのサブスペクトラムの周波数位置情報が、別途、送信側システム100Tから受信側システム100Rに送信されてもよい。
 受信側システム100Rは、スペクトラム合成回路140及び復調回路150を含んでいる。
 スペクトラム合成回路140は、分解受信信号RDに対して「スペクトラム合成処理」を行う。より詳細には、スペクトラム合成回路140は、周波数領域変換回路141、合成処理回路142、時間領域変換回路143、及び位相差推定回路144を含んでいる。周波数領域変換回路141は、FFTによって周波数領域における分解受信信号RDを取得する。合成処理回路142は、分解受信信号RDの複数のサブスペクトラムを抽出し、合成する。このとき、合成処理回路142は、複数のサブスペクトラムを元の送信信号TCの周波数位置に戻すことによって、複数のサブスペクトラムを合成する。合成受信信号RCは、合成後のスペクトラムを有する。時間領域変換回路143は、IFFTによって時間領域における合成受信信号RCを生成し、出力する。
 スペクトラム合成処理においては、図4で説明されたような「位相差補償処理」が行われる。具体的には、位相差推定回路144は、分解受信信号RDの複数のサブスペクトラムに基づいて、複数のサブスペクトル間の位相差を推定(検出)する。位相差推定回路144は、推定した位相差を合成処理回路142に出力する。合成処理回路142は、推定された位相差を補償しながらスペクトラム合成処理を行う。つまり、合成処理回路142は、位相差が0になるように各サブスペクトラムの位相特性を補正して、スペクトラム合成処理を行う。これにより、合成後の合成受信信号RCの位相特性が連続する。
 復調回路150は、スペクトラム合成回路140から出力される合成受信信号RCを受け取る。復調回路150は、バースト復調回路151とバースト検出回路152を含んでいる。
 バースト検出回路152は、合成受信信号RCに基づいて、バースト信号の受信タイミングを検出する。バースト検出タイミングは、検出されたバースト信号受信タイミングである。より詳細には、バースト検出回路152は、合成受信信号RCのシンボル位相差分の累積値の絶対値を閾値と比較する。そして、バースト検出回路152は、シンボル位相差分の累積値の絶対値が閾値を超えるタイミングをバースト検出タイミングとする(図8参照)。
 バースト検出タイミングが分かれば、既知であるフレームフォーマット情報に基づいてバーストフレーム受信区間を推定することができる。バースト復調回路151は、合成受信信号RCをバースト復調し、送信信号TBに対応する受信信号RBを取得する。
 図11は、本実施の形態に係るスペクトラム合成処理時の位相差補償処理を説明するための概念図である。
 まず、位相同期信号PSの受信区間について考える(図11中の(a))。上述の通り、位相同期信号PSは、ランダムビットを含んでいる。従って、位相同期信号PSに対応する分解受信信号RDは、データ信号DATの場合と同様の複数のサブスペクトラムを有する。図11に示される例では、位相同期信号PSに対応する分解受信信号RDは、複数のサブスペクトラムSSP1~SSP3を有している。
 スペクトラム合成処理において、隣接するサブスペクトラムSSP1、SSP2は交点周波数f1において交差し、隣接するサブスペクトラムSSP2、SSP3は交点周波数f2において交差する。位相差推定回路144は、交点周波数f1におけるサブスペクトラムSSP1、SSP2のそれぞれの位相に基づいて、隣接するサブスペクトラムSSP1、SSP2間の位相差θ1を推定する。同様に、位相差推定回路44は、交点周波数f2におけるサブスペクトラムSSP2、SSP3のそれぞれの位相に基づいて、隣接するサブスペクトラムSSP2、SSP3間の位相差θ2を推定する。
 このように、位相差推定回路144は、位相同期信号PSに対応する分解受信信号RDの複数のサブスペクトラムSSP1~SSP3に基づいて、位相差θ1、θ2を推定することができる。位相差推定回路144は、位相同期信号PSの受信区間において推定された位相差θ1、θ2を保持する。例えば、図12に示されるように、位相差推定回路144は、位相同期信号PSの受信区間において推定された位相差θ1、θ2を保持する保持回路145を含んでいる。位相差推定回路144は、保持回路145に保持されている位相差θ1、θ2を合成処理回路142に出力する。合成処理回路142は、推定された位相差θ1、θ2を補償しながらスペクトラム合成処理を行う。
 次に、プリアンブル信号PRE(特にキャリア再生信号CA)の受信区間について考える(図11中の(b))。合成処理回路142は、保持回路145に保持されている位相差θ1、θ2に基づいて、プリアンブル信号PREに対応する分解受信信号RDに関するスペクトラム合成処理を行う。正確な位相差θ1、θ2が用いられるため、プリアンブル信号PREに対しても位相差補償処理及びスペクトラム合成処理は精度良く行われる。その結果、復調回路150のバースト検出回路152は、プリアンブル信号PREに対応する合成受信信号RCに基づいて、バースト信号の受信タイミング(バースト検出タイミング)を検出することが可能となる(図8参照)。
 復調回路150のバースト検出回路152は、バースト検出タイミングをスペクトラム合成回路140の位相差推定回路144に通知する。バースト検出タイミングが分かれば、既知であるフレームフォーマット情報に基づいてバーストフレーム受信区間を推定することができる。保持回路145は、少なくともバーストフレーム受信区間が終了するまで、推定された位相差θ1、θ2を保持する。
 次に、ユニークワードUW及びデータ信号DATの受信区間について考える(図11中の(c))。合成処理回路142は、保持回路145に保持されている位相差θ1、θ2に基づいて、ユニークワードUW及びデータ信号DATに対応する分解受信信号RDに関するスペクトラム合成処理を行う。正確な位相差θ1、θ2が用いられるため、ユニークワードUW及びデータ信号DATに対しても位相差補償処理及びスペクトラム合成処理は精度良く行われる。バースト復調回路151は、合成受信信号RCを適切にバースト復調する。
 以上に説明されたように、本実施の形態によれば、送信側システム100Tにおいて、バースト信号のプリアンブル信号PREの前段にランダムビットを含む位相同期信号PSが付加される。受信側システム100Rでは、その位相同期信号PSを用いることによって、複数のサブスペクトル間の位相差を精度良く推定することが可能となる。そして、推定された位相差を補償しながらスペクトラム合成処理が行われる。バースト信号のプリアンブル信号PREに対しても位相差補償処理及びスペクトラム合成処理は精度良く行われるため、バースト信号の受信タイミングを検出し、バースト復調を適切に行うことが可能となる。すなわち、本実施の形態によれば、スペクトラム分解・合成を利用してバースト信号を適切に伝送することが可能となる。
 例えば、衛星IoTの場合、IoTユーザは小容量データを瞬間的に送信するため、バースト信号の使用が想定される。本実施の形態に係るスペクトラム分解・合成伝送技術を利用することによって、多数のIoT信号を効率的に収集することが可能となる(図1参照)。
 2.第2の実施の形態
 図13は、第2の実施の形態に係るバースト信号フレームフォーマットを示す概念図である。第2の実施の形態では、2つのバースト信号が連続的に送信される。前段のバースト信号フレームは、データ信号としてダミー信号DUMを含んでいる。その前段のバースト信号フレームのユニークワードUWとダミー信号DUMが、後段のバースト信号に対する位相同期信号PSとして用いられる。
 送信信号生成回路110の位相同期信号生成回路112は、ユニークワードUWとダミー信号DUMを含む位相同期信号PSをバーストフレーム生成回路111に出力する。バーストフレーム生成回路111は、図13で示されたようなバースト信号フレームフォーマットを有する送信信号TBを生成する。
 スペクトラム合成回路140の位相差推定回路144は、前段のバースト信号フレームのユニークワードUWとダミー信号DUMの受信区間において、複数のサブスペクトラム間の位相差を推定する。保持回路145は、推定された位相差を保持する。合成処理回路142は、保持回路145に保持されている位相差に基づいて、後段のバースト信号フレームに対する位相差補償処理及びスペクトラム合成処理を行う。
 以上に説明された第2の実施の形態によっても、第1の実施の形態の場合と同様の技術的効果が得られる。
  100   無線通信システム
  100T  送信側システム
  100R  受信側システム
  110   送信信号生成回路
  120   変調回路
  130   スペクトラム分解回路
  140   スペクトラム合成回路
  142   合成処理回路
  144   位相差推定回路
  150   復調回路
  151   バースト復調回路
  152   バースト検出回路
   CA   キャリア再生信号
  DAT   データ信号
  PRE   プリアンブル信号
   PS   位相同期信号
   TM   タイミング再生信号
   UW   ユニークワード

Claims (8)

  1.  送信側システムと受信側システムとの間で無線通信を行う無線通信システムであって、
     前記送信側システムは、
      バースト信号のプリアンブル信号の前段にランダムビットを含む位相同期信号を付加することによって送信信号を生成する送信信号生成回路と、
      前記送信信号を周波数軸上で複数のサブスペクトラムに分解し、前記複数のサブスペクトラムを有する分解送信信号を生成するスペクトラム分解回路と
     を備え、
     前記受信側システムは、前記送信側システムから送信される前記分解送信信号を分解受信信号として受信し、
     前記受信側システムは、
      前記位相同期信号に対応する前記分解受信信号の前記複数のサブスペクトラムに基づいて、前記複数のサブスペクトル間の位相差を推定する位相差推定回路と、
      前記推定された位相差を補償しながら前記分解受信信号の前記複数のサブスペクトラムを合成することによって合成受信信号を生成するスペクトラム合成処理を行うスペクトラム合成回路と
      前記合成受信信号を復調する復調回路と
     を備える
     無線通信システム。
  2.  請求項1に記載の無線通信システムであって、
     前記位相差推定回路は、前記推定された位相差を保持する保持回路を含み、
     前記スペクトラム合成回路は、前記保持回路に保持されている前記位相差に基づいて、前記プリアンブル信号に対応する前記分解受信信号に関する前記スペクトラム合成処理を行う
     無線通信システム。
  3.  請求項2に記載の無線通信システムであって、
     前記復調回路は、前記プリアンブル信号に対応する前記合成受信信号に基づいて、前記バースト信号の受信タイミングを検出し、
     前記保持回路は、前記バースト信号の受信区間が終了するまで、前記推定された位相差を保持し、
     前記スペクトラム合成回路は、前記保持回路に保持されている前記位相差に基づいて、前記バースト信号に対応する前記分解受信信号に関する前記スペクトラム合成処理を行う
     無線通信システム。
  4.  送信側システムと受信側システムとの間で無線通信を行う無線通信方法であって、
     前記送信側システムにおいて、バースト信号のプリアンブル信号の前段にランダムビットを含む位相同期信号を付加することによって送信信号を生成するステップと、
     前記送信側システムにおいて、前記送信信号を周波数軸上で複数のサブスペクトラムに分解し、前記複数のサブスペクトラムを有する分解送信信号を生成するステップと、
     前記受信側システムにおいて、前記送信側システムから送信される前記分解送信信号を分解受信信号として受信するステップと、
     前記受信側システムにおいて、前記位相同期信号に対応する前記分解受信信号の前記複数のサブスペクトラムに基づいて、前記複数のサブスペクトル間の位相差を推定するステップと、
     前記受信側システムにおいて、前記推定された位相差を補償しながら前記分解受信信号の前記複数のサブスペクトラムを合成することによって合成受信信号を生成するスペクトラム合成処理を行うステップと、
     前記受信側システムにおいて、前記合成受信信号を復調するステップと
     を含む
     無線通信方法。
  5.  請求項4に記載の無線通信方法であって、
     更に、前記推定された位相差を保持するステップを含み、
     前記スペクトラム合成処理を行うステップは、保持されている前記位相差に基づいて、前記プリアンブル信号に対応する前記分解受信信号に関する前記スペクトラム合成処理を行うステップを含む
     無線通信方法。
  6.  請求項5に記載の無線通信方法であって、
     更に、
     前記プリアンブル信号に対応する前記合成受信信号に基づいて、前記バースト信号の受信タイミングを検出するステップと、
     前記バースト信号の受信区間が終了するまで、前記推定された位相差を保持するステップと
     を含み、
     前記スペクトラム合成処理を行うステップは、保持されている前記位相差に基づいて、前記バースト信号に対応する前記分解受信信号に関する前記スペクトラム合成処理を行うステップを含む
     無線通信方法。
  7.  受信側システムと無線通信を行う送信側システムであって、
     バースト信号のプリアンブル信号の前段にランダムビットを含む位相同期信号を付加することによって送信信号を生成する送信信号生成回路と、
     前記送信信号を周波数軸上で複数のサブスペクトラムに分解し、前記複数のサブスペクトラムを有する分解送信信号を生成するスペクトラム分解回路と
     を備え、
     前記受信側システムは、
      前記送信側システムから送信される前記分解送信信号を分解受信信号として受信し、
      前記位相同期信号に対応する前記分解受信信号の前記複数のサブスペクトラムに基づいて、前記複数のサブスペクトル間の位相差を推定し、
      前記推定された位相差を補償しながら前記分解受信信号の前記複数のサブスペクトラムを合成することによって合成受信信号を生成するスペクトラム合成処理を行い、
      前記合成受信信号を復調する
     送信側システム。
  8.  送信側システムと無線通信を行う受信側システムであって、
     前記送信側システムは、
      バースト信号のプリアンブル信号の前段にランダムビットを含む位相同期信号を付加することによって送信信号を生成し、
      前記送信信号を周波数軸上で複数のサブスペクトラムに分解し、前記複数のサブスペクトラムを有する分解送信信号を生成し、
     前記受信側システムは、前記送信側システムから送信される前記分解送信信号を分解受信信号として受信し、
     前記受信側システムは、
      前記位相同期信号に対応する前記分解受信信号の前記複数のサブスペクトラムに基づいて、前記複数のサブスペクトル間の位相差を推定する位相差推定回路と、
      前記推定された位相差を補償しながら前記分解受信信号の前記複数のサブスペクトラムを合成することによって合成受信信号を生成するスペクトラム合成処理を行うスペクトラム合成回路と
      前記合成受信信号を復調する復調回路と
     を備える
     受信側システム。
PCT/JP2021/002973 2021-01-28 2021-01-28 無線通信システム、無線通信方法、送信側システム、及び受信側システム WO2022162818A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/002973 WO2022162818A1 (ja) 2021-01-28 2021-01-28 無線通信システム、無線通信方法、送信側システム、及び受信側システム
JP2022577905A JPWO2022162818A1 (ja) 2021-01-28 2021-01-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002973 WO2022162818A1 (ja) 2021-01-28 2021-01-28 無線通信システム、無線通信方法、送信側システム、及び受信側システム

Publications (1)

Publication Number Publication Date
WO2022162818A1 true WO2022162818A1 (ja) 2022-08-04

Family

ID=82653194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002973 WO2022162818A1 (ja) 2021-01-28 2021-01-28 無線通信システム、無線通信方法、送信側システム、及び受信側システム

Country Status (2)

Country Link
JP (1) JPWO2022162818A1 (ja)
WO (1) WO2022162818A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918532A (ja) * 1995-06-30 1997-01-17 Nec Corp バーストモード通信システムにおける無線通信装置及び受信方法
WO2005101711A1 (ja) * 2004-04-14 2005-10-27 Matsushita Electric Industrial Co., Ltd. 受信装置
JP2012191377A (ja) * 2011-03-10 2012-10-04 Nippon Telegr & Teleph Corp <Ntt> 受信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918532A (ja) * 1995-06-30 1997-01-17 Nec Corp バーストモード通信システムにおける無線通信装置及び受信方法
WO2005101711A1 (ja) * 2004-04-14 2005-10-27 Matsushita Electric Industrial Co., Ltd. 受信装置
JP2012191377A (ja) * 2011-03-10 2012-10-04 Nippon Telegr & Teleph Corp <Ntt> 受信装置

Also Published As

Publication number Publication date
JPWO2022162818A1 (ja) 2022-08-04

Similar Documents

Publication Publication Date Title
JP2998204B2 (ja) 拡散スペクトル雑音をキャンセルする方法および装置
JP2768354B2 (ja) 中継方式及びこれに用いる送信装置及び中継装置
US7110432B2 (en) Orthogonal chirp modulation in multipath environments
US20220224463A1 (en) Satellite communication method and related communication device
US7831200B2 (en) System and method for identifying the path or devices on the path of a communication signal
Laporte-Fauret et al. An enhanced lora-like receiver for the simultaneous reception of two interfering signals
US20100039985A1 (en) Apparatus and method for acquiring frame synchronization and frequency synchronization simultaneously in communication system
US10536188B2 (en) Signal processing method and transmitter and receiver
US7756473B2 (en) Apparatus and method of on-channel repeater
EP1901506A2 (en) Inter-symbol interference cancellation method for orthogonal frequency division multiple access system
JPH01503268A (ja) 適応等化器制御機能を具備する時分割多元接続(tdma)通信システム
Jung et al. Transceiver Design and Performance Analysis for LR-FHSS-based Direct-to-Satellite IoT
CN101171766A (zh) 用于在多载波多址接入系统中接收信号的装置和方法
WO2022162818A1 (ja) 無線通信システム、無線通信方法、送信側システム、及び受信側システム
Saarnisaari et al. 5G New Radio in SATCOM: An overview of physical and medium access layer issues
US5539783A (en) Non-coherent synchronization signal detector
WO2023007630A1 (ja) 無線通信システム、無線通信方法、送信アダプタ装置、及び受信アダプタ装置
US8194787B2 (en) Communication system, transmitter, communication method, and transmitter detection method
Xiao et al. SF-DS: A slot-free decoding scheme for collided LoRa transmissions
Ferré et al. A dual waveform differential chirp spread spectrum transceiver for leo satellite communications
KR100959899B1 (ko) 무선 신호 전송 방법
US7006430B2 (en) Receiver, receiving method, and recording medium which records program for receiving data signals
WO1999049591A1 (en) Data packet satellite communication system
US20060215734A1 (en) Transmitter apparatus, receiver apparatus, transmission method, reception method and program
US7773661B2 (en) Method and apparatus for monitoring a redundant (standby) transmitter in a radio communications system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577905

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922837

Country of ref document: EP

Kind code of ref document: A1