WO2022161498A1 - 一种用于机器人的主手操控装置及机器人 - Google Patents

一种用于机器人的主手操控装置及机器人 Download PDF

Info

Publication number
WO2022161498A1
WO2022161498A1 PCT/CN2022/075244 CN2022075244W WO2022161498A1 WO 2022161498 A1 WO2022161498 A1 WO 2022161498A1 CN 2022075244 W CN2022075244 W CN 2022075244W WO 2022161498 A1 WO2022161498 A1 WO 2022161498A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronizing wheel
assembly
feedback
rotating
control assembly
Prior art date
Application number
PCT/CN2022/075244
Other languages
English (en)
French (fr)
Inventor
路壮壮
翟明春
屈萌
焦伟
Original Assignee
武汉联影智融医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110135533.0A external-priority patent/CN114831702A/zh
Priority claimed from CN202110454129.XA external-priority patent/CN113116519B/zh
Application filed by 武汉联影智融医疗科技有限公司 filed Critical 武汉联影智融医疗科技有限公司
Priority to CN202280012047.2A priority Critical patent/CN116829096A/zh
Priority to EP22745369.3A priority patent/EP4272684A1/en
Publication of WO2022161498A1 publication Critical patent/WO2022161498A1/zh
Priority to US18/363,689 priority patent/US20230372043A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/02Hand grip control means
    • B25J13/025Hand grip control means comprising haptic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/06Control stands, e.g. consoles, switchboards
    • B25J13/065Control stands, e.g. consoles, switchboards comprising joy-sticks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • B25J9/0045Programme-controlled manipulators having parallel kinematics with kinematics chains having a rotary joint at the base
    • B25J9/0048Programme-controlled manipulators having parallel kinematics with kinematics chains having a rotary joint at the base with kinematics chains of the type rotary-rotary-rotary
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • G05G2009/04703Mounting of controlling member
    • G05G2009/04707Mounting of controlling member with ball joint
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • G05G2009/04766Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks providing feel, e.g. indexing means, means to create counterforce

Definitions

  • the present specification relates to the technical field of medical devices, and in particular, to a master hand control device for a robot and a robot.
  • CT computed tomography
  • Surgical operations guided by CT images can be judged in real time and adjusted in time under the premise of CT imaging, which greatly improves the success rate of surgery, reduces the risk of surgery, and improves the recovery speed and quality of life of patients.
  • CT equipment all use X-rays, ⁇ -rays, etc. to complete the imaging work. Completing the operation on the CT side will expose the doctor to the radiation environment for a long time, which will pose a great threat to the health of the body.
  • the master-slave teleoperated robot came into being.
  • the master-slave teleoperated robot is a surgical method with an auxiliary surgical mode as the front end of the comparison. Controlling the image-guided robot to perform surgical operations by remote operation can effectively prevent doctors from being exposed to radiation.
  • the current master-slave teleoperated robot cannot simulate the operation of the doctor to control the posture of the surgical tool, which may increase the risk and uncertainty of the operation, increase the operation time, reduce the operation efficiency, and affect the success rate of the operation. Therefore, there is a need for a master-slave teleoperated robot capable of simulating the operation of a doctor to control the posture of a surgical tool.
  • main hand control device for a robot
  • the main hand control device includes: an end control assembly; and an attitude adjustment component
  • the attitude adjustment component includes a first mechanism and a second mechanism, so The first mechanism and the second mechanism are respectively connected to the end control assembly, and the end control assembly controls the first mechanism and the first mechanism through the corresponding connection with the first mechanism and the second mechanism.
  • the first mechanism includes a first rotary transport bar; the second mechanism includes a second rotary transport bar; the axis of rotation of the first rotary transport bar and the rotation of the second rotary transport bar The included angle of the axes is greater than 10°.
  • the included angle between the axis of rotation of the first rotating transport bar and the axis of rotation of the second rotating transport bar is greater than 85°.
  • the axis of rotation of the first rotary transport bar intersects the axis of rotation of the second rotary transport bar.
  • the end control assembly may directly apply force to the first rotating conveyor, and/or the second rotating conveyor.
  • a first guide hole is formed on the first rotating transmission bar
  • a second guide hole is formed on the second rotating transmission bar
  • the end control assembly passes through the first guide hole and the second guide hole
  • the end control assembly is rotatably connected to the base.
  • it further includes: a first information collection device, the first information collection device detects the rotation angle of the first mechanism, and transmits it to a communication device; a second information collection device, the second information collection device The device detects the rotation angle of the second mechanism and transmits it to the communication device.
  • the first information collection device includes a first encoder; the second information collection device includes a second encoder.
  • it further includes: a first feedback component, the first feedback component applies attitude adjustment resistance to the first mechanism based on the first feedback information; a second feedback component, the second feedback component is based on the second feedback The feedback information applies a posture adjustment resistance to the second mechanism.
  • the end of the first rotating transmission bar is connected to the first feedback assembly, and the first feedback assembly includes a first transmission assembly and a first feedback motor, and the first feedback motor passes through the first feedback motor.
  • a transmission assembly is connected to the first rotating transmission bar; the end of the second rotating transmission bar is connected to the second feedback assembly, the second feedback assembly includes a second transmission assembly and a second feedback motor, the first The second feedback motor is connected with the second rotating transmission bar through the second transmission assembly.
  • the first transmission assembly includes a first synchronizing wheel and a second synchronizing wheel, the first synchronizing wheel is connected to the first rotating transmission bar, and the second synchronizing wheel is fixedly arranged on the The output shaft of the first feedback motor, the first synchronous wheel is drivingly connected with the second synchronous wheel;
  • the second transmission assembly includes a third synchronous wheel and a fourth synchronous wheel, the third synchronous wheel is connected with the The second rotating transmission bar is connected, the fourth synchronizing wheel is fixedly arranged on the output shaft of the second feedback motor, and the third synchronizing wheel is drivingly connected with the fourth synchronizing wheel.
  • the first synchronizing wheel and the second synchronizing pulley are connected through a first rope drive, and a first tensioning member and a second tensioning member are provided along the rope winding direction of the first synchronizing pulley.
  • the two ends of the rope are respectively fixed by the first tensioning member and the second tensioning member;
  • the third synchronizing wheel and the fourth synchronizing wheel are connected by a second rope drive, and the third synchronizing wheel is wound along its edge
  • a third tension member and a fourth tension member are arranged in the direction of the rope, and the two ends of the rope are respectively fixed by the third tension member and the fourth tension member.
  • the first mechanism includes a first rotating shaft and a first connecting member, one end of the first connecting member is connected with the first rotating shaft, and the other end of the first connecting member is movably connected to the first connecting member
  • An end control assembly the second mechanism includes a second rotating shaft and a second connecting member, one end of the second connecting member is connected with the second rotating shaft, and the other end of the second connecting member is movably connected to the end control assembly; the included angle between the axis of the first rotating shaft and the axis of the second rotating shaft is greater than 10°.
  • first connection member and the second connection member circumferentially surround the end control assembly.
  • the first connecting member includes a first connecting straight rod and a first connecting curved rod, one end of the first connecting curved rod is connected to the first rotating shaft, and the other One end is connected to the first connecting straight rod, and the first connecting straight rod is movably connected to the end control assembly;
  • the second connecting member includes a second connecting straight rod and a second connecting curved rod, the second connecting curved rod is One end of the rod is connected with the second rotating shaft, the other end of the second connecting curved rod is connected with the second connecting straight rod, and the second connecting straight rod is movably connected with the end control assembly.
  • the included angle between the axis of the first rotating shaft and the axis of the second rotating shaft is greater than 85°.
  • the first axis of rotation and the second axis of rotation intersect.
  • it further includes: a third information collection device, the third information collection device detects the rotation angle of the first mechanism, and transmits it to a communication device; a fourth information collection device, the fourth information collection device The device detects the rotation angle of the second mechanism and transmits it to the communication device.
  • the third information collection device includes a third encoder; the fourth information collection device includes a fourth encoder.
  • it further includes: a third feedback component, the third feedback component applies an attitude adjustment resistance to the first mechanism based on the third feedback information; a fourth feedback component, the fourth feedback component is based on the fourth feedback The feedback information applies a posture adjustment resistance to the second mechanism.
  • the first rotating shaft is connected to the third feedback assembly
  • the third feedback assembly includes a third feedback motor and a third transmission assembly
  • the third feedback motor passes through the third transmission assembly connected with the first rotating shaft
  • the second rotating shaft is connected with the fourth feedback component
  • the fourth feedback component includes a fourth feedback motor and a fourth transmission component
  • the fourth feedback motor passes through the The four transmission assemblies are connected with the second rotating shaft.
  • the third transmission assembly includes a fifth synchronizing wheel and a sixth synchronizing wheel, the radius of the fifth synchronizing wheel is greater than that of the sixth synchronizing wheel, and the fifth synchronizing wheel and the the first rotating shaft is connected, the sixth synchronizing wheel is fixedly arranged on the output shaft of the third feedback motor, the fifth synchronizing wheel is drivingly connected with the sixth synchronizing wheel;
  • the fourth transmission assembly includes a seventh A synchronizing wheel and an eighth synchronizing wheel, the radius of the seventh synchronizing wheel is larger than that of the eighth synchronizing wheel, the seventh synchronizing wheel is connected with the second rotating shaft, and the eighth synchronizing wheel is fixedly arranged on the The output shaft of the fourth feedback motor, the seventh synchronizing wheel is in driving connection with the eighth synchronizing wheel.
  • the fifth synchronizing pulley and the sixth synchronizing pulley are connected by a rope drive, and a fifth tensioning member is provided along the rope winding direction of the fifth synchronizing pulley; the seventh synchronizing pulley and The eighth synchronizing wheel is connected by a rope transmission, and the seventh synchronizing wheel is provided with a sixth tensioning member along the rope winding direction.
  • the fifth synchronizing wheel and the sixth synchronizing wheel are connected by a double-rope drive; the seventh synchronizing wheel and the eighth synchronizing wheel are connected by a double-rope drive.
  • the upper edge of the fifth synchronizing wheel is provided with a guide member along the rope winding direction, so that the rope on the fifth synchronizing wheel can be wound onto the sixth synchronizing wheel according to a predetermined pitch;
  • the seventh synchronizing wheel The upper edge of the wheel is provided with a guide along its winding direction, so that the rope on the seventh synchronizing wheel can be wound onto the eighth synchronizing wheel according to a predetermined pitch.
  • the posture adjustment member further includes a locking mechanism.
  • the locking mechanism includes: a first braking member that locks/unlocks the rotation of the first mechanism; a second braking member that locks the second braking member /Unlock the rotation of the second mechanism.
  • the locking mechanism includes a plurality of electromagnets and a plurality of state detection units corresponding to the plurality of electromagnets, the plurality of electromagnets are arranged along the circumference of the end control assembly, and the A plurality of electromagnets are connected/disconnected from the terminal control assembly through power-on/power-off, so as to lock/unlock the posture of the terminal control assembly, and the plurality of state detection units detect the states of the plurality of electromagnets and transmit the state to the terminal control assembly. communication device.
  • the posture adjustment component further includes a plurality of posture adjustment touch switches, and the plurality of posture adjustment touch switches are arranged along a peripheral side of the distal end control assembly.
  • the attitude adjustment component further includes a plurality of inclination angle detection members, the plurality of inclination angle detection members are arranged along the peripheral side of the end control assembly, and the plurality of inclination angle detection members detect the end control assembly and transmit it to the communication device.
  • it further includes a base, the base includes a seat body and a rotating platform, the rotating platform is connected with the first mechanism and the second mechanism of the posture adjusting component, and the rotating platform and the base body is rotatably connected, the rotation plane of the rotating platform relative to the base body is parallel to the plane where the base body is located, and the rotating platform is associated with at least one joint motion of the robot.
  • the base further includes a driving member and a transmission assembly, and the driving member drives the rotating platform to rotate through the transmission assembly.
  • the transmission assembly includes a worm and a worm gear that mesh with each other, the worm is connected to the output end of the driving member, and the worm gear is fixedly connected to the rotating platform.
  • the transmission assembly includes a driving wheel and a driven wheel, a timing belt is sleeved on the driving wheel and the driven wheel, the driving wheel is connected with the output end of the driving member, and the driven wheel is connected to the output end of the driving member.
  • the rotating platform is fixedly connected.
  • the rotating platform is provided with a fifth encoder, and the fifth encoder detects the rotation angle of the rotating platform and transmits it to the communication device.
  • the distal control assembly includes an distal control force feedback assembly that applies resistance to the distal control assembly based on distal control force feedback information.
  • the distal end control assembly is at least one of a puncture needle assembly, a surgical shear assembly, or a suturing assembly.
  • One of the embodiments of this specification provides a robot, including a robot body, an end effector, and the above-mentioned master hand manipulation device; the end effector is connected to the robot body, the robot body is electrically connected to a communication device, and the robot body is electrically connected to a communication device.
  • the main hand manipulation device is electrically connected to the communication device and the end effector.
  • FIG. 1 is an application scenario diagram of a robot according to some embodiments of the present specification
  • FIG. 2 is a schematic structural diagram of a master hand control device according to some embodiments of the present specification
  • FIG. 3 is a schematic structural diagram of an attitude adjustment component and an end control assembly according to some embodiments of the present specification
  • FIG. 4 is a schematic bottom view of the main hand control device according to some embodiments of the present specification.
  • FIG. 5 is a schematic structural diagram of a master hand control device according to another structure shown in some embodiments of the present specification.
  • FIG. 6 is a schematic structural diagram of the first connecting shaft and the second connecting shaft respectively movably connecting end control assemblies according to some embodiments of the present specification
  • FIG. 7 is a cross-sectional view of a first connecting shaft and a second connecting shaft respectively articulating end control assemblies according to some embodiments of the present specification
  • FIG. 8 is a schematic diagram of the posture adjustment of the main hand control device according to another structure shown in some embodiments of the present specification.
  • FIG. 9 is a schematic diagram of the posture adjustment of the main hand control device according to another structure shown in some embodiments of the present specification.
  • FIG. 10 is a schematic diagram of the posture adjustment of the main hand control device according to another structure shown in some embodiments of the present specification.
  • FIG. 11 is a schematic structural diagram of a third transmission assembly and a fourth transmission assembly according to some embodiments of the present specification.
  • Figure 12 is a schematic diagram of a double rope drive according to some embodiments of the present specification.
  • Figure 13 is a top view of a master hand manipulation device according to some embodiments of the present specification.
  • FIG. 14 is a schematic structural diagram of a base according to some embodiments of the present specification.
  • FIG. 15 is a schematic diagram of the principle of multi-degree-of-freedom attitude adjustment of the robot according to the associated motion of the master hand manipulation device according to some embodiments of the present specification.
  • system means for distinguishing different components, elements, parts, parts or assemblies at different levels.
  • device means for converting components, elements, parts, parts or assemblies to different levels.
  • Surgical robots are medical devices that integrate clinical medicine, biomechanics, mechanics, computer science, microelectronics and many other disciplines. Surgical robots assist doctors to perform complex surgical operations in the form of minimally invasive surgery through a clear imaging system and flexible robotic arms, completing intraoperative positioning, cutting, puncturing, hemostasis, suturing and other operations.
  • CT imaging equipment medical personnel can use surgical robots to assist in surgical treatment.
  • performing surgery on the CT side will expose medical personnel to radiation environment for a long time, which poses a great threat to health. Therefore, master-slave surgery can be used.
  • the telerobot controls the image-guided robot to perform surgical operations through remote operation.
  • the current robots often cannot accurately simulate the operation process of medical personnel, and cannot feedback the magnitude of the force.
  • the lack of force perception by medical personnel may increase the risk and uncertainty of surgery, and affect the efficiency of surgery.
  • some embodiments of the present specification provide a robot for surgery, which includes a main hand manipulation device for manipulating the end effector of the robot, the main hand manipulation device can simulate the operation of medical personnel and can provide force Feedback to avoid risks in the surgical process and improve surgical efficiency.
  • FIG. 1 is an application scenario diagram of a robot according to some embodiments of the present specification.
  • the robot may include a robot body 110 , an end effector 130 and a main hand manipulation device 200 .
  • the end effector 130 is connected to the robot body 110 (for example, disposed at the end of the robot arm of the robot body 110 ), the robot body 110 is electrically connected to the communication device 120 , and the main hand manipulation device 200 is electrically connected to the communication device 120 and the end effector 130 , thereby The end effector 130 is controlled to perform a synchronous operation.
  • the robot body 110 When the robot is actually used, the robot body 110 is located in the scanning room.
  • the robot body 110 includes a robotic arm, which can drive the end effector 130 installed at the end of the robotic arm to move, so as to adjust the posture of the functional components at the end of the robotic arm.
  • the end effector 130 is provided on the robot body 110 for performing synchronized actions (eg, puncturing, suturing, etc.).
  • the console of the imaging equipment is installed in the control room, and there is a concrete wall between the control room and the scanning room to shield the radiation.
  • a master hand control device 200 is also set in the control room. The doctor can control the robot body 110 in the scanning room by operating the master hand control device 200 in the control room, so as to complete the master-slave teleoperated surgical operation.
  • FIG. 2 is a schematic structural diagram of a master hand manipulation device 200 according to some embodiments of the present specification.
  • the main hand control device 200 involved in the embodiments of the present specification will be described in detail below. It should be noted that the following examples are only used to explain the present application, and do not constitute a limitation to the present application.
  • the main hand manipulation device 200 for a robot may include an end control assembly 210 and a posture adjustment component 220 .
  • the end control assembly 210 is used to control the end effector 130 to perform operations, for example, to perform operations such as puncturing, suturing, and the like.
  • the end control assembly 210 may be a hollow cylindrical structure for easy handling.
  • the end control assembly 210 may be adaptively designed according to the operating habits of medical personnel and the structure of the end effector 130 to facilitate use.
  • the end control assembly 210 can be correspondingly configured as a puncture needle assembly, a surgical scissors assembly or a suture needle assembly according to different end effectors 130 (such as puncture needles, surgical scissors, sewing needles, etc.), and its shape can be configured as a corresponding functional component shape or other shapes that are convenient for operation, which are not limited here.
  • the distal control assembly 210 includes a distal control force feedback component that applies resistance to the distal control assembly 210 based on the distal control force feedback information.
  • the feedback information of the end control force may include the magnitude and direction of the resistance.
  • the end effector 130 may be a puncture needle. When the puncture needle is pierced into the patient's body, the body tissue will produce a reaction force on the puncture needle, which is the resistance of the puncture. sensor detection.
  • the end control component 210 controls the end effector 130 (eg, a puncture needle) to operate
  • the puncture needle encounters a puncture resistance, which can be fed back to the robot body 110, and the robot body 110 can control the end control force feedback component to
  • the tip control assembly 210 applies a resistance comparable to the puncture resistance.
  • the medical staff performs the puncture operation, they can feel the needle insertion resistance of the puncture needle through the puncture resistance fed back by the end control force feedback component, so as to truly simulate the situation of holding the needle for puncture.
  • the end control force feedback assembly may include an actuator motor and a position detection unit.
  • the position detection unit can detect the current position state of the slider, identify the movement stroke of the slider, and feed back to the robot body 110 .
  • the robot body 110 controls the execution motor to apply a certain current to generate torque action.
  • the resistance produced by this torque is consistent with the resistance of the actual needle insertion of the puncture needle.
  • the resistance acts on the hands of the medical staff through the slip ring on the terminal puncture assembly 210, and the doctor will feel the resistance when moving the slip ring, so as to realize the feedback function of the puncturing force.
  • the end control force feedback assembly can detect the distance of the linear motion of the slip ring and feed it back to the robot body 110.
  • the robot body 110 converts the distance of the linear motion of the slip ring into a linear displacement
  • the robot body 110 controls the robotic arm to drive the puncture needle to perform the puncture operation through the linear displacement.
  • the end control force feedback component can be connected with the roller of the linear motion component. When the roller rotates, the end control force feedback component can detect the distance of the linear motion of the slip ring, and feedback it to the robot body 110 to control the puncture needle to puncture.
  • the main hand manipulation device 200 may be electrically connected to the communication device 120 and the end effector 130 , and the communication device 120 is electrically connected to the robot body 110 .
  • the resistance information received by the end effector 130 can be transmitted to the robot body 110; the robot body 110 can send corresponding force feedback information to the main hand manipulation device 200 through the communication device 120 according to the resistance information, thereby realizing signal transmission.
  • the connection manner of the communication device 120 to the main hand manipulation device 200 and the robot body 110 may include wired connection, wireless connection or a combination of the two.
  • Wired connections may include connections via electrical, optical, or telephone lines, etc., or any combination thereof.
  • Wireless connections may include connections via Bluetooth, Wi-Fi, WiMax, WLAN, ZigBee, mobile networks (eg, 3G, 4G, or 5G, etc.), or any combination thereof.
  • the posture adjusting component 220 is a device for adjusting the posture of the end control assembly 210 .
  • the posture adjustment component 220 may include a first mechanism and a second mechanism, the first mechanism and the second mechanism are respectively connected to the end control assembly 210, and the end control assembly 210 passes through the correspondence with the first mechanism and the second mechanism The connection controls the movement of the first mechanism and the second mechanism. Since the first mechanism and the second mechanism are respectively connected to the end control assembly 210 , the end control assembly 210 driving the first mechanism to move has no effect on the second mechanism, and the end control assembly 210 drives the second mechanism to move the first mechanism.
  • the first mechanism and the second mechanism can each independently move (eg, rotate about their axis of rotation, etc.).
  • the first mechanism and the second mechanism may be the same or similar structures.
  • the first and second mechanisms may be used to convert at least a portion of motion (eg, swing) of tip control assembly 210 into corresponding motion (eg, rotation about its axis of rotation) of the first and second mechanisms ).
  • the first mechanism can rotate around its rotation axis A and has a first degree of rotational freedom
  • the second mechanism can rotate around its rotation axis B and has a second rotation degree of freedom.
  • the swing of the end control assembly 210 can drive the first mechanism to rotate around its rotation axis A, the swing of the end control assembly 210 can drive the second mechanism to rotate around its rotation axis B, and the actual posture adjustment movement of the end control assembly 210 is the first mechanism and the The second mechanism rotates the superimposed vector sum.
  • FIG. 3 is a schematic structural diagram of the posture adjustment component 220 and the end control assembly 210 according to some embodiments of the present specification.
  • the first mechanism may include a first rotating transfer bar 310 ; the second mechanism may include a second rotating transfer bar 320 .
  • the first rotary transfer bar 310 and the second rotary transfer bar 320 may be rotatably mounted on the base 230, for example, the first rotary transfer bar 310 and the second rotary transfer bar 320 may be mounted by a rotary pair On the base 230, and can rotate around the axis of the rotating pair.
  • first rotary transfer bar 310 and the second rotary transfer bar 320 may be semi-circular rings, so as to leave a space where the end control assembly 210 can be installed.
  • first rotating transmission strip 310 and the second rotating transmission strip 320 may also have other shapes, such as straight strips, folded strips, irregular strips, etc., which are not limited herein.
  • the included angle between the rotation axis of the first rotary transmission bar 310 and the rotation axis of the second rotary transmission bar 320 is set to be greater than 10°.
  • it can be set at any angle within 10-180° (eg, set at 30°, set at 60°, set at 135°, etc.).
  • the included angle between the axis of rotation of the first rotary transport bar 310 and the axis of rotation of the second rotary transport bar 320 may be greater than 85°, for example, the axis of rotation of the first rotary transport bar 310 and the second rotary transport bar
  • the included angle of the rotation axis of 320 may be 90°, as shown in FIG. 3 .
  • the axis of rotation of the first rotary transfer bar 310 and the axis of rotation of the second rotary transfer bar 320 may intersect. In some embodiments, the rotation axis of the first rotary transmission bar 310 and the rotation axis of the second rotary transmission bar 320 may not intersect. When the rotation axis of the first rotation transmission bar 310 and the rotation axis of the second rotation transmission bar 320 intersect, the plane on which the rotation axis of the first rotation transmission bar 310 and the rotation axis of the second rotation transmission bar 320 are located may be parallel to the horizontal plane, It can also be non-parallel to the horizontal plane.
  • the end control assembly 210 may directly apply a force to the first rotary transport bar 310 and/or the second rotary transport bar 320, so that the first rotary transport bar 310 and/or the second rotary transport bar 320 respectively rotate around Its axis of rotation rotates.
  • a first guide hole 311 is formed on the first rotating transmission bar 310, and the first guide hole 311 can be opened along the length direction of the first rotating transmission bar 310; the second rotating transmission bar 320 is formed along its extending direction A second guide hole 321 is formed thereon, and the second guide hole 321 can be opened along the length direction of the second rotating transmission bar 320 .
  • the end control assembly 210 passes through the first guide hole 311 and the second guide hole 321 .
  • the first guide hole 311 is symmetrical on both sides with the middle position of the first rotating transmission bar 310 ; the second guide hole 321 transmits the second rotating transmission
  • the middle position of the strip 320 is symmetrical on both sides, and the bottom end of the end control assembly 210 passes through the intersection of the first guide hole 311 and the second guide hole 321 and can swing along the extending direction of any guide hole.
  • the portion of the end control assembly 210 passing through the second rotating transmission bar 320 pushes the second rotating transmission bar 320 to rotate with the swinging direction of the end control assembly 210 .
  • the portion of the end control assembly 210 passing through the first rotating transmission bar 310 pushes the first rotating transmission bar 310 to rotate with the swing direction of the end control assembly 210 .
  • the end control assembly 210 when the end control assembly 210 swings in any direction along the movable part with the base 230, it can be decomposed into the first rotating transmission bar 310 rotating along its rotation axis and the second rotating transmission bar 320 along its rotating axis according to the decomposition method.
  • the axis of rotation rotates.
  • the end control assembly 210 and the base 230 are rotatably connected.
  • the base 230 is a structure for carrying and installing the end control assembly 210 and the posture adjusting component 220 .
  • the end control assembly 210 and the base 230 may be connected by a spherical pair.
  • the bottom of the end control assembly 210 may be provided with a hinge joint 211, and the end control assembly 210 is pivotally hinged with the base 230 through the hinge joint 211, so that the end control assembly 210 can be relative to the base 230 with the hinge head 211 as the center of rotation turn.
  • the hinge joint 211 can be set as a spherical shape
  • the surface connecting the base 230 with the end control assembly 210 can be set with a spherical groove
  • the spherical hinge joint 211 is rotatably fitted in the spherical groove, so that the end control assembly 210 and the base
  • the seats 230 are connected by a spherical hinge structure.
  • the opening diameter of the spherical groove may be smaller than the diameter of the hinge head 211 .
  • the hinge joint 211 can also be set as a universal joint.
  • the main hand manipulation device 200 may further include a first information collection device and a second information collection device, the first information collection device may detect the rotation angle of the first mechanism, and transmit the second information to the communication device 120.
  • the collection device can detect the rotation angle of the second mechanism and transmit it to the communication device 120 .
  • the first information collection apparatus may include a first encoder 331
  • the second information collection apparatus may include a second encoder 341 .
  • An encoder is a device that compiles and converts signals or data into signal forms for communication, transmission and storage.
  • the encoder usually includes a magnetic disk and a reading head, and the rotation angle can be detected through the cooperation of the magnetic disk and the reading head.
  • the first encoder 331 and the second encoder 341 can detect the rotation angle of the output shafts of the first feedback motor 330 and the second feedback motor 340, and feed back the rotation angle to the robot body 110 through the communication device 120 , the robot body 110 controls the end effector 130 to adjust the spatial posture according to the rotation angle, so as to complete the operation requirements.
  • the main hand manipulation device 200 may further include a first feedback component and a second feedback component, the first feedback component may apply attitude adjustment resistance to the first mechanism based on the first feedback information, and the second feedback component may be based on the first feedback information.
  • the second feedback information applies a posture adjustment resistance to the second mechanism.
  • the first feedback assembly may be connected to the end of the first rotating transmission bar 310, the first feedback assembly includes a first transmission assembly and a first feedback motor 330, and the first feedback motor 330 communicates with the first transmission assembly through the first transmission assembly.
  • a rotating transmission bar 310 is connected; the first encoder 331 can be arranged on the first feedback motor 330 .
  • the second feedback assembly can be connected to the end of the second rotating transmission bar 320, the second feedback assembly includes a second transmission assembly and a second feedback motor 340, and the second feedback motor 340 is connected to the second rotating transmission bar 320 through the second transmission assembly ;
  • the second encoder 341 can be arranged on the second feedback motor 340 .
  • the first transmission assembly may include a first synchronization wheel 351 and a second synchronization wheel 352 ;
  • the second transmission assembly may include a third synchronization wheel 361 and a fourth synchronization wheel 362 .
  • FIG. 4 is a schematic bottom view of the main hand manipulation device 200 according to some embodiments of the present specification.
  • a rib 410 can be provided on the outside of the base 230 , and the first synchronizing wheel 351 and the third synchronizing wheel 361 are respectively installed on the side of the rib 410 .
  • the first feedback motor 330 and the second feedback motor 340 can be installed inside the rib 410 and located at the bottom end of the base 230 .
  • the output shafts of the first feedback motor 330 and the second feedback motor 340 extend from the inside of the rib 410 respectively.
  • an integrated chip 420 may be installed in the spare part of the sidewall 410 , the integrated chip 420 may include signal transmission components and the like, and the integrated chip 420 may be communicatively connected to the robot body 110 through the communication device 120 .
  • the feedback component is a component for applying attitude adjustment resistance
  • the first feedback component and the second feedback component can respectively apply attitude adjustment to the first rotation transmission bar 310 and the second rotation transmission bar 320 based on the first feedback information and the second feedback information resistance.
  • the first feedback information and the second feedback information are resistance information in different directions received by the end effector 130 when performing an attitude adjustment operation.
  • the first feedback assembly can generate a resistance that is opposite to the rotation trend and has an adjustable size according to the first feedback information, and feedback to the first rotating transmission bar 310, and the second feedback assembly can be based on the second feedback.
  • the information produces a resistance with an opposite rotation trend and an adjustable size, which is fed back to the second rotating transmission bar 320 .
  • the resistance can be generated in different ways, for example, it can be generated by electromagnetic rotation between the stator and the rotor, it can also be generated by expansion and contraction of air pressure, and it can also be generated by hydraulic extrusion.
  • the posture adjustment action of the end control assembly 210 is decomposed into the rotation of the first rotating transmission bar 310 and the second rotation through the first mechanism and the second mechanism in a vertical decomposition manner.
  • the rotation of the transmission bar 320, the rotation of the first rotary transmission bar 310 and the rotation of the second rotary transmission bar 320 respectively drive the first transmission assembly and the second transmission assembly to rotate, and the first transmission assembly and the second transmission assembly
  • the motor 330 and the output shaft of the second feedback motor 340 are connected, so when the first transmission assembly and the second transmission assembly rotate, the output shafts of the first feedback motor 330 and the second feedback motor 340 are driven to rotate; and when the first feedback motor 330 rotates
  • the stator of the second feedback motor 340 is energized, the electromagnetic force between the stator and the rotor exerts an electromagnetic force that rotates the stator, and the electromagnetic force drives the corresponding output shaft to have another rotation tendency, that is, resistance is formed.
  • the first feedback motor 330 and the second feedback motor 340 are configured so that the magnitude of the stator current is related to the magnitude of the contact force when the posture is adjusted, and the magnitude of the stator current can be controlled by the robot body 110, thereby realizing the magnitude of the resistance Adjustable.
  • the robot body 110 can determine the magnitude of the stator current through the attitude adjustment resistance encountered by the end effector 130, so that the first feedback motor 330 and the second feedback motor 340 transmit transmission to the first rotation transmission bar 310 and the second rotation transmission bar respectively.
  • the bar 320 exerts a resistance comparable to the stance resistance of the end of the robotic arm.
  • the first transmission assembly may include a first synchronization wheel 351 and a second synchronization wheel 352, the first synchronization wheel 351 is connected with the first rotating transmission bar 310, and the second synchronization wheel 352 is fixedly arranged on the first feedback motor 330 output shaft, the first synchronizing wheel 351 is connected with the second synchronizing wheel 352 in a driving manner;
  • the second transmission assembly includes a third synchronizing wheel 361 and a fourth synchronizing wheel 362, the third synchronizing wheel 361 is connected with the second rotating transmission bar 320,
  • the fourth synchronizing wheel 362 is fixedly arranged on the output shaft of the second feedback motor 340 , and the third synchronizing wheel 361 is in driving connection with the fourth synchronizing wheel 362 .
  • the first synchronizing wheel 351 and the second synchronizing wheel 352 can be connected by a synchronous belt, a wire rope, etc., which are sleeved on them, and the third synchronizing wheel 361 and the fourth synchronizing wheel 362 can be sleeved on the The synchronous belt and steel wire rope on it realize the transmission connection.
  • the first rotating transmission bar 310 and the second rotating transmission bar 320 can respectively drive the first synchronizing wheel 351 and the third synchronizing wheel 361 to rotate, thereby driving the second synchronizing wheel 352 and the fourth synchronizing wheel 362 to rotate.
  • the first transmission assembly and the second transmission assembly may also adopt the cooperation between precision gears, and may also use other ways to cooperate in the transmission, which is not limited thereto.
  • first synchronous pulley 351 and the second synchronous pulley 352 may be connected in a driving manner through a first rope 355 (eg, a steel wire rope, etc.), and a first tension member 353 is provided on the edge of the first synchronous pulley 351 along its winding direction.
  • first rope 355 eg, a steel wire rope, etc.
  • the two ends of the rope are respectively fixed by the first tensioning member 353 and the second tensioning member 354; the third synchronizing pulley 361 and the fourth synchronizing pulley 362 are drivingly connected through the second rope 365, and the third synchronizing pulley A third tensioning member 363 and a fourth tensioning member 364 are disposed on the edge of the wheel 361 along the rope winding direction, and the two ends of the rope are respectively fixed by the third tensioning member 363 and the fourth tensioning member 364 .
  • the first synchronizing wheel 351 may be a sheet-like structure formed by an arc-shaped side with an arc-shaped angle greater than 180° and a straight side enclosed by a straight side.
  • a steel wire rope is arranged along its edge, and the two ends of the wire rope are respectively fixed on the straight side of the first synchronizing wheel 351 through the first tensioning member 353 and the second tensioning member 354, and the outer side of the steel wire rope is coupled with the outer side of the second synchronizing wheel 352.
  • the first tensioning member 353 and the second tensioning member 354 may include fasteners such as bolts, studs, etc., and adjusting the bolts, studs, etc. can adjust the working length of the wire rope, so that the wire rope can be pressed at a suitable pressure Work on synchronized wheels to prevent slipping.
  • the transmission connection between the third synchronization wheel 361 and the fourth synchronization wheel 362 may also adopt the same transmission structure as the first synchronization wheel 351 and the second synchronization wheel 352 described above, which will not be repeated here.
  • FIG. 5 is a schematic structural diagram of a master hand manipulation device 500 according to another structure shown in some embodiments of the present specification.
  • the main hand control device 500 with another structure involved in the embodiment of the present specification will be described in detail below. It should be noted that the following examples are only used to explain the present application, and do not constitute a limitation to the present application.
  • the first mechanism includes a first rotating shaft 511 and a first connecting member 514 .
  • One end of the first connecting member 514 is connected with the first rotating shaft 511 , and the other end of the first connecting member 514 is movably connected to the end control assembly 210 .
  • the first connecting member 514 may include a first connecting straight rod 512 and a first connecting curved rod 513 .
  • One end of the first connecting crank rod 513 is connected to the first rotating shaft 511
  • the other end of the first connecting crank rod 513 is connected to the first connecting straight rod 512
  • the first connecting straight rod 512 is movably connected to the end control assembly 210 .
  • the second mechanism includes a second rotating shaft 521 and a second connecting member 524 .
  • One end of the second connecting member 524 is connected to the second rotating shaft 521 , and the other end of the second connecting member 524 is movably connected to the end control assembly 210 .
  • the second connecting member 524 may include a second connecting straight rod 522 and a second connecting curved rod 523 .
  • One end of the second connecting curved rod 523 is connected with the second rotating shaft 521
  • the other end of the second connecting rod 523 is connected with the second connecting straight rod 522
  • the second connecting straight rod 522 is movably connected to the end control assembly 210 .
  • the first connecting member 514 and the second connecting member 524 surround the end control assembly 210 in the circumferential direction.
  • the first connecting straight rod 512 and the second connecting straight rod 522 may be along the diameter of the end control assembly 210 . to the settings.
  • the first connecting crank rod 513 and the second connecting crank rod 523 can be disposed along the circumference of the outer side of the end control assembly 210, which can make the structure of the whole device more compact and space-saving to a certain extent.
  • the first connecting curved rod 513 and the second connecting curved rod 523 may also have other shapes, for example, a straight bar shape and the like.
  • FIG. 6 is a schematic structural diagram of the first connecting straight rod 512 and the second connecting straight rod 522 respectively movably connecting the end control assembly 210 according to some embodiments of the present specification.
  • 7 is a cross-sectional view of the first connecting straight rod 512 and the second connecting straight rod 522 respectively articulating the end control assembly 210 according to some embodiments of the present specification.
  • the first connecting straight rod 512 is used as one end of the first connecting member 514 to describe the structural relationship with the end control assembly 210
  • the second connecting straight rod 522 is used as one end of the second connecting member 524 to describe the structural relationship with the end control assembly 210.
  • the structural relationship of the articulation of the terminal control assembly 210 As shown in FIG.
  • the end control assembly 210 may be provided with a chute matching the first connecting straight rod 512 and the second connecting straight rod 522 , and the sliding groove may be disposed along the circumferential direction of the end control assembly 210 . and the second connecting straight rod 522 can be slidably installed in the chute, the first connecting straight rod 512 and the second connecting straight rod 522 can rotate along the chute and around the central axis of the end control assembly 210 to realize the movable connection .
  • the chute may run through the entire circumference, or may only be arranged in a partial area of the circumference, in the shape of an arc.
  • first straight connecting rod 512 and the second straight connecting rod 522 may be installed in the same chute, or may be installed in different chute, for example, may be installed in two parallel chutes.
  • first connecting straight rod 512 and the second connecting straight rod 522 may be installed between the upper and lower plane thrust bearings 610 , as shown in FIG. 7 .
  • the first mechanism can rotate around the rotation axis A of the first rotation shaft 511 and has a first rotational degree of freedom
  • the second mechanism can rotate around the rotation axis B of the second rotation shaft 521 , Has a second rotational degree of freedom
  • the included angle between the rotation axis A of the first rotation shaft 511 and the rotation axis B of the second rotation shaft 521 may be greater than 10°.
  • it can be set at any angle within 10-180° (eg, set at 30°, set at 60°, set at 135°, etc.).
  • the included angle between the rotational axis A of the first rotational shaft 511 and the rotational axis B of the second rotational shaft 521 may be greater than 85°, for example, the angle between the rotational axis A of the first rotational shaft 511 and the rotational axis B of the second rotational shaft 521 may be greater than 85°.
  • the included angle of the rotation axis B may be 90°, as shown in FIG. 5 , so that the first mechanism and the second mechanism can obtain a larger operating space.
  • the rotation axis A of the first rotation shaft 511 and the rotation axis B of the second rotation shaft 521 may or may not intersect.
  • the planes where the rotation axis A of the first rotation shaft 511 and the rotation axis B of the second rotation shaft 521 are located can be parallel to the horizontal plane, or May not be parallel to the horizontal plane.
  • first connecting straight rod 512 and the first connecting curved rod 513 are used as the first connecting member 514 to describe the movement relationship with the end control assembly 210.
  • second connecting straight rod 522 and the second The connecting crank rod 523 is used as the second connecting member 524 to describe the movement relationship with the end control assembly 210 .
  • the first connecting straight rod 512 can drive the first connecting crank rod 513 around the rotation axis A of the first rotating shaft 511 to follow the end control.
  • the assembly 210 rotates in the swing direction.
  • the end control assembly 210 rotates around the rotation axis A of the second rotating shaft 521
  • the second connecting rod 523 can be driven by the second connecting shaft 522 to swing around the rotation axis B of the second rotating shaft 521 with the end control assembly 210 direction turn.
  • the end control assembly 210 swings in any direction, it can be decomposed into rotation around the rotation axis A of the first rotation shaft 511 and rotation around the rotation axis B of the second rotation shaft 521 in a decomposed manner.
  • FIG. 8 is a schematic diagram of posture adjustment of a master hand manipulation device 500 according to another structure shown in some embodiments of the present specification.
  • the end control assembly 210 only swings around the rotation axis A of the first rotation shaft 511 (the left-right direction in FIG. 8 ), and drives the first connecting curved rod 513 to rotate around the first connecting rod 512 through the first connecting straight rod 512 .
  • the rotation axis A of the shaft 511 is rotated to realize the attitude adjustment of a single degree of freedom (the first rotational degree of freedom).
  • FIG. 9 is a schematic diagram of posture adjustment of the master hand manipulation device 500 according to another structure shown in some embodiments of the present specification.
  • the first connecting straight rod 513 and the second connecting curved rod 523 are horizontal
  • the end control assembly 210 is perpendicular to the horizontal plane at the zero position of the master hand control device 500 (the state before posture adjustment), and the end control assembly 210 is shown in the figure 9 swings inward
  • the first connecting straight rod 512 drives the first connecting curved rod 513 to rotate counterclockwise around the rotation axis A of the first rotating shaft 511
  • the second connecting straight rod 522 drives the second connecting curved rod 523 to rotate counterclockwise.
  • the rotation axis B of the second rotation shaft 521 rotates clockwise.
  • the first rotating shaft 511 and the second rotating shaft 521 can be installed on the base 230, and their positions relative to the base 230 do not change.
  • the position of the connecting end of the first connecting curved rod 513 and the first connecting straight rod 512 and the position of the second connecting curved rod 523 and the The position of the connecting end of the second straight connecting rod 522 and the end control assembly 210 will move relative to each other, so that the angle ⁇ between the first straight connecting rod 512 and the second straight connecting rod 522 gradually decreases.
  • FIG. 10 is a schematic diagram of posture adjustment of a master hand manipulation device 500 according to another structure shown in some embodiments of the present specification.
  • the first connecting crank rod 513 and the second connecting crank rod 523 are horizontal, and the end control assembly 210 is perpendicular to the horizontal plane at the zero position of the master hand control device 500 (the state before attitude adjustment), and the end control assembly 210 is shown in the figure.
  • the first connecting straight rod 512 drives the first connecting crank rod 513 to rotate clockwise around the rotation axis A of the first rotating shaft 511
  • the second connecting straight rod 522 drives the second connecting crank rod 523 to rotate around the second connecting rod 523.
  • the rotation axis B of the rotation shaft 521 rotates clockwise.
  • the first rotating shaft 511 and the second rotating shaft 521 can be installed on the base 230, and the position relative to the base 230 does not change, and the end control assembly 210 swings to the right to make the first connection
  • the position of the connecting end of the first connecting crank rod 513 and the first connecting straight rod 512 and the position of the second connecting crank rod 523 and the first connecting rod The connection end positions of the two connecting straight rods 522 and the end control assembly 210 will move relative to each other, so that the included angle ⁇ between the first connecting straight rod 512 and the second connecting straight rod 522 gradually increases.
  • the main hand manipulation device 500 may further include a third information collection device and a fourth information collection device, and the third information collection device may detect the rotation angle of the first mechanism and transmit it to the communication device , the fourth information collection device can detect the rotation angle of the second mechanism and transmit it to the communication device.
  • the third information collection apparatus may include a third encoder 551
  • the fourth information collection apparatus may include a fourth encoder 561 .
  • An encoder is a device that compiles and converts signals or data into signal forms for communication, transmission and storage.
  • the third encoder 551 and the fourth encoder 561 may include a magnetic disk and a read head, and the detection of the rotation angle of the first connection part 514 and the second connection part 524 can be realized by the cooperation of the magnetic disk and the read head.
  • the third encoder 551 and the fourth encoder 561 can feed back the rotation angle to the robot body 110 through the communication device 120, and the robot body 110 can control the end effector 130 to adjust the spatial posture according to the rotation angle to complete the operation requirements.
  • the main hand manipulation device 500 may further include a third feedback component and a fourth feedback component, the third feedback component may apply attitude adjustment resistance to the first mechanism based on the third feedback information, and the fourth feedback component may be based on the third feedback information.
  • the four feedback information exerts a posture adjustment resistance on the second mechanism.
  • the third feedback assembly may be connected to the first rotating shaft 511, the third feedback assembly includes a third feedback motor 552 and a third transmission assembly, and the third feedback motor 552 is connected to the first rotating shaft through the third transmission assembly 511 is connected; the third encoder 551 can be arranged at the end of the first rotating shaft 511 .
  • the fourth feedback assembly can be connected to the second rotating shaft 521, the fourth feedback assembly includes a fourth feedback motor 562 and a fourth transmission assembly, and the fourth feedback motor 562 is connected to the second rotating shaft 521 through the fourth transmission assembly; the fourth encoding
  • the device 561 may be disposed at the end of the second rotating shaft 521 .
  • the third transmission assembly may include a fifth synchronization wheel 710 and a sixth synchronization wheel 720
  • the fourth transmission assembly may include a seventh synchronization wheel 730 and an eighth synchronization wheel 740 .
  • the feedback component is a component for applying attitude adjustment resistance
  • the third feedback component and the fourth feedback component can respectively apply attitude adjustment resistance to the first rotation axis 511 and the second rotation axis 521 based on the third feedback information and the fourth feedback information.
  • the third feedback information and the fourth feedback information are resistance information in different directions received by the end effector 130 when performing an attitude adjustment operation.
  • the end effector 130 has an attitude adjustment resistance, it is fed back to the main hand control device 500 through the communication device 120.
  • the third feedback motor 552 and the fourth feedback motor 562 can receive the third feedback information and the fourth feedback information, and pass the third feedback information and the fourth feedback information.
  • the three transmission assemblies and the fourth transmission assembly apply a resistance equivalent to the attitude adjustment resistance of the end effector 130 to the first rotation shaft 511 and the second rotation shaft 521 , so as to realize the attitude adjustment force feedback of the end effector 130 .
  • the operator drives the end control assembly 210 to rotate, the operator can feel the resistance opposite to the direction of rotation, thereby realizing force feedback during posture adjustment.
  • FIG. 11 is a schematic structural diagram of a third transmission assembly and a fourth transmission assembly according to some embodiments of the present specification.
  • the third transmission assembly includes a fifth synchronizing wheel 710 and a sixth synchronizing wheel 720 , the fifth synchronizing wheel 710 is connected with the first rotating shaft 511 (not shown in FIG. 11 ), and the sixth synchronizing wheel 720 is fixedly arranged
  • the fifth synchronizing wheel 710 is drivingly connected with the sixth synchronizing wheel 720;
  • the fourth transmission assembly includes a seventh synchronizing wheel 730 and an eighth synchronizing wheel 740 (not shown in FIG.
  • the seventh The synchronizing wheel 730 is connected with the second rotating shaft 521
  • the eighth synchronizing wheel 740 is fixedly arranged on the output shaft of the fourth feedback motor 562
  • the seventh synchronizing wheel 730 is drivingly connected with the eighth synchronizing wheel 740 .
  • the fifth synchronizing wheel 710 and the sixth synchronizing wheel 720 may be connected by a synchronous belt, a wire rope, etc., which are sleeved thereon
  • the seventh synchronizing wheel 730 and the eighth synchronizing wheel 740 may be sleeved on the The synchronous belt and steel wire rope on it realize the transmission connection.
  • the first rotation shaft 511 and the second rotation shaft 521 can respectively drive the fifth synchronization wheel 710 and the seventh synchronization wheel 730 to rotate, thereby driving the sixth synchronization wheel 720 and the eighth synchronization wheel 740 to rotate.
  • the third transmission assembly and the fourth transmission assembly may also adopt the cooperation between precision gears, and may also use other ways to cooperate in the transmission, which is not limited.
  • the radius of the fifth synchronization wheel 710 may be larger than the radius of the sixth synchronization wheel 720 ; the radius of the seventh synchronization wheel 730 may be larger than the radius of the eighth synchronization wheel 740 .
  • the radius ratio of the fifth synchronizing wheel 710 and the sixth synchronizing wheel 720 may be 10:1; the radius ratio of the seventh synchronizing wheel 730 and the eighth synchronizing wheel 740 is 10:1.
  • the radius ratio is the transmission ratio, and the transmission ratio can be determined according to the attitude adjustment load.
  • the parallel mechanism can increase the transmission ratio between the synchronous wheels as much as possible, so that the smallest possible motor can be selected under the same attitude adjustment load requirements, and the DC brush motor is preferred for force feedback.
  • the fifth synchronizing wheel 710 and the sixth synchronizing wheel 720 are drivingly connected by a rope (for example, a wire rope, etc.), and a fifth tensioning member 750 is provided on the edge of the fifth synchronizing wheel 710 along its rope winding direction for tensioning Tighten and fix the rope;
  • the seventh synchronizing wheel 730 and the eighth synchronizing wheel 740 are connected by rope transmission, and the seventh synchronizing wheel 730 is provided with a sixth tensioning member (not shown in the figure) along its rope winding direction for tensioning and fixed ropes.
  • the fifth synchronizing wheel 710 can be a fan-shaped sheet structure, and the two right-angled sides are provided with fifth tensioning members 750, and the two ends of the wire rope pass through the two ends respectively.
  • the fifth tension member 750 is fixed, and the outer side of the wire rope is coupled with the outer side of the sixth synchronizing pulley 720 .
  • the fifth tensioner 750 and the sixth tensioner may comprise fasteners such as tension bolts, lock nuts, and the like.
  • the working length of the rope can be adjusted by adjusting the tensioning member, so that the rope can work on the synchronous wheel with suitable pressure and prevent the rope from slipping during operation.
  • Figure 12 is a schematic diagram of a double rope drive according to some embodiments of the present specification.
  • the fifth synchronizing wheel 710 and the sixth synchronizing wheel 720 may be connected by a double rope drive; the seventh synchronizing wheel 730 and the eighth synchronizing wheel 740 may be connected by a double rope drive, as shown in FIG. 12 .
  • the sixth synchronizing wheel 740 also need to be increased synchronously (there is a linear relationship between the diameter of the element wire and the diameter of the sixth synchronizing wheel 720 and the eighth synchronizing wheel 740 to meet the service life and 740), thereby affecting the transmission ratio.
  • the double-rope transmission method does not change the diameters of the sixth synchronizing wheel 720 and the eighth synchronizing wheel 740, so the transmission rigidity can be doubled under the condition of keeping the transmission ratio unchanged.
  • the upper edge of the fifth synchronizing wheel 710 is provided with a guide member 760 along the rope winding direction, so that the rope (eg, wire rope, etc.) on the fifth synchronizing wheel 710 can be wound onto the sixth synchronizing wheel 720 according to a predetermined pitch ;
  • the upper edge of the seventh synchronous wheel 730 is provided with a guide along its winding direction, so that the rope on the seventh synchronous wheel 730 can be wound into the eighth synchronous wheel 740 according to a predetermined pitch.
  • the guide member 760 may be a guide post or the like.
  • the posture adjustment member 220 may include a locking mechanism for locking or unlocking the posture of the end control assembly 210 .
  • the tip control assembly 210 is able to move.
  • a locking mechanism enables locking and unlocking of tip control assembly 210 .
  • the locking mechanism can be fixedly arranged in the posture adjusting member 220 , or can be fixedly installed on the base 230 .
  • the locking mechanism is capable of locking/unlocking through contact/disengagement with the tip control assembly 210 .
  • the locking mechanism can respectively lock the end control assembly 210 relative to the first mechanism and the second mechanism.
  • the locking mechanism can prevent the end control assembly 210 from rotating about the axis of rotation A of the first mechanism, while the movement of the second mechanism about its axis of rotation B is not affected.
  • the locking mechanism can prevent the end control assembly 210 from rotating about the rotation axis B of the second mechanism, and at this time, the movement of the first mechanism about its rotation axis A is not affected.
  • the locking mechanism can prevent the end control assembly 210 from rotating around the rotation axis A of the first mechanism and the rotation axis B of the second mechanism. At this time, the end control assembly 210 forms a fixed relative to the first mechanism and the second mechanism. overall. In some embodiments, the entirety of the end control assembly 210 relative to the first mechanism and the second mechanism can rotate relative to the base 230 about a perpendicular to the plane of the base 230, and the rotation can be restricted by a locking mechanism. In some embodiments, the tip control assembly 210 itself is rotatable about its central axis, and this rotation can be limited by a locking mechanism. When the spatial posture of the end effector 130 needs to be adjusted, the locking mechanism is unlocked.
  • the end control assembly 210 can move to adjust the spatial posture of the end effector 130 .
  • the locking mechanism can be locked, so that the spatial posture of the end effector 130 does not change, so as to prevent the end effector 130 from continuing to move and affecting the spatial posture of the end effector 130 .
  • the locking mechanism may include a first braking member 553 and a second braking member 563 , the first braking member 553 may lock/unlock the rotation of the first mechanism, and the second braking member 563 can lock/unlock the rotation of the second mechanism.
  • the first braking member 553 and the second braking member 563 may be disposed on the output shafts of the third feedback motor 552 and the fourth feedback motor 562, respectively, and are used for braking the third feedback motor 552 and/or the fourth feedback motor 562.
  • the output shaft is locked to prevent the output shaft of the third feedback motor 552 and/or the fourth feedback motor 562 from rotating, thereby restricting the rotation of the first mechanism about its rotation axis and/or limiting the rotation of the second mechanism about its rotation axis.
  • the first brake member 553 and the second brake member 563 may be a holding brake.
  • the locking mechanism may include a plurality of electromagnets 1321 and a plurality of state detection units 1322 corresponding to the plurality of electromagnets 1321.
  • the plurality of electromagnets 1321 may be disposed along the circumference of the end control assembly 210.
  • the iron 1321 can be connected/disconnected from the end control assembly 210 by powering on/off, thereby locking/unlocking the posture of the end control assembly 210 , and the plurality of state detection units 1322 can detect the states of the plurality of electromagnets 1321 and transmit them to the communication device 120 .
  • the electromagnet 1321 can control the extension of the extension shaft that abuts against the end control assembly 210 to limit the movement of the end control assembly 210.
  • the extension and retraction of the extension shaft can be energized by the electromagnet 1321 or Power-off control, specifically, can be set to extend the shaft when the electromagnet 1321 is energized, or can be set to extend the shaft when the electromagnet 1321 is powered off;
  • the state detection unit 1322 can be used to detect the working state of the electromagnet 1321 , that is, to detect whether the electromagnet 1321 is in a power-on or power-off state, so as to correspondingly know whether the extension shaft is extended.
  • the extension shaft when the electromagnet 1321 is energized, the extension shaft can come into contact with the end control assembly 210, limiting the rotation of the end control assembly 210 toward the direction of the extension shaft.
  • the electromagnet 1321 when the electromagnet 1321 is powered off, the extension shaft retracts and no longer contacts the end control assembly 210. At this time, the restraint of the end control assembly 210 in the direction of the extension shaft is released, and the end control assembly 210 can move toward the position where the extension shaft is located. directional movement.
  • the number of the electromagnets 1321 is multiple, and the multiple electromagnets 1321 may be uniformly distributed along the circumference of the end control assembly 210 .
  • the number of the electromagnets 1321 is four, and the four electromagnets 1321 may be evenly distributed on the peripheral side of the end control assembly 210 .
  • the locking of the end control assembly 210 can be achieved when the four electromagnets 1321 are extended.
  • the electromagnet 1321 may be fixed by means of threads or the like.
  • an elastic support 1330 (eg, a spring, etc.) may be provided on the peripheral side of the end control assembly 210, and the elastic support 1330 can keep the end control assembly 210 in a vertical state when the electromagnet 1321 is retracted. Provides recovery force for movement when adjusting posture.
  • the state detection unit 1322 can detect the working state of the electromagnet 1321 in real time and feed it back to the robot body 110 .
  • the state detection unit 1322 can detect whether the electromagnet 1321 works normally, which improves the safety of the whole machine. Just as an example, when the electromagnet 1321 is powered off, the state detection unit 1322 detects that the electromagnet 1321 makes the extension shaft in the extended state, and at this time, the state detection unit 1322 feeds back a signal that the end control assembly 210 is locked to the robot body 110 , indicating that the end control assembly 210 cannot move. When the electromagnet 1321 is energized, the state detection unit 1322 detects that the electromagnet 1221 makes the extension shaft in a retracted state.
  • the state detection unit 1322 feeds back a signal that the end control assembly 210 is unlocked to the robot body 110, indicating that the end control unit 210 able to exercise.
  • the state detection unit 1322 may be a photoelectric switch, or other components capable of detecting the state of the electromagnet 1321 .
  • the posture adjustment component 220 may further include a plurality of posture adjustment touch switches 1310, and the plurality of posture adjustment touch switches 1310 may be disposed along the circumference of the distal end control assembly 210, and may be used to control the locking mechanism.
  • the posture adjustment touch switch 1310 can be used to control the locking mechanism, the posture adjustment touch switch 1310 can be electrically connected with the electromagnet 1321 , and the posture adjustment touch switch 1310 can control the electromagnet 1310 to be turned on and off.
  • the posture adjustment touch switch 1310 may be electrically connected to the robot body 110 .
  • the posture adjustment touch switch 1310 can control the electromagnet 1321 to energize, so that the extension shaft controlled by the electromagnet 1321 is separated from the end control assembly 210, and the end control assembly 210 is unlocked and can move.
  • the posture adjustment touch switch 1310 controls the electromagnet 1321 to be powered off, and the extension shaft of the electromagnet 1321 extends to lock the end control assembly 210 .
  • the locking and unlocking control of the terminal control assembly 210 can be realized by turning the electromagnet 1321 on and off.
  • the electromagnet 1321 before performing the posture adjustment action, the electromagnet 1321 is unlocked through the posture adjustment touch switch 1310 to control the extension shaft of the electromagnet 1321 to retract.
  • the end control assembly 210 can move to realize the end effector 130 adjustment of the spatial attitude. Operate the posture adjustment touch switch 1310 again to control the extension shaft of the electromagnet 1321 to extend, and the end control assembly 210 cannot move, so as to avoid false triggering of the posture adjustment action when performing operations such as surgical operations.
  • the end control assembly 210 corresponds to the end execution When the device 130 is a puncture needle, it cannot be rotated during the puncture process based on clinical requirements, so as to ensure the stability of the puncture process and the puncture effect.
  • the posture adjustment action should be performed first, and after the posture adjustment action is completed, the end control assembly 210 is locked by the posture adjustment touch switch 1310, and finally the puncturing action is performed.
  • the posture adjustment action can also be performed in turn with the puncture action, as long as it is ensured that the posture adjustment action is unlocked before the puncture action is executed, and the puncture action is locked before the puncture action is executed.
  • the posture adjustment component 220 may further include a plurality of inclination angle detection members (not shown in the figure), the plurality of inclination angle detection members may be disposed along the peripheral side of the terminal control assembly 210, and the plurality of inclination angle detection members may detect the terminal end
  • the tilt angle of the assembly 210 is controlled and transmitted to the communication device 120 .
  • the inclination angle detector corresponding to the direction can detect the inclination of the end control assembly 210 and further detect the inclination angle of the end control assembly 210 .
  • the inclination detector can be electrically connected with the robot body 110, and the inclination detector can feed back the inclination angle of the end control assembly 210 to the robot main body 110, and the robot main body 110 can adjust the spatial posture of the end effector 130 according to the inclination angle, so that it can be aligned target target.
  • the end control assembly 210 when the end control assembly 210 is tilted, it may not correspond to any inclination detection member, but corresponds to a position between two inclination detection members. In this case, the two inclination detection members jointly detect the inclination of the end control assembly 210 angle.
  • the principle of jointly detecting the inclination angle of the end control assembly 210 by two inclination angle detection parts is substantially the same as that of the detection by one inclination angle detection part, which is not repeated here.
  • the number of the inclination detection members may be four, and the four inclination detection members are evenly distributed on the peripheral side of the end control assembly 210.
  • the end control assembly 210 realizes the spatial attitude adjustment of the end effector 130 through four inclination detection members. That is to say, when the end control assembly 210 moves toward any inclination angle detection piece, the adjustment is realized by the inclination angle detection piece in that direction, and when it needs to move in other directions, the end control assembly 210 moves toward other inclination angle detection pieces.
  • an emergency stop switch may also be provided, and the emergency stop switch and the complete machine switch may be electrically connected to the robot body 110 respectively.
  • the emergency stop switch can perform emergency stop operation to avoid the inability to stop the operation in the event of an accident.
  • the switch of the whole machine is used to realize the switch operation of the equipment.
  • a plurality of indicator lights and their corresponding state indicating units may also be provided, and the plurality of indicator lights include but are not limited to the rotation indicator lights of the terminal control assembly 210 and the like.
  • the status indicating unit can be used to control the on and off of each indicator light.
  • the robot body 110 can receive the triggered signal, otherwise the signal is blocked.
  • the locking mechanism is unlocked, the state of the electromagnet 1321 can be detected by the state detection unit 1322 and reported to the robot body 110 , and the direction of the end control assembly 210 can be identified by the inclination detector and reported to the robot body 110 .
  • FIG. 14 is a schematic structural diagram of the base 230 according to some embodiments of the present specification.
  • the base 230 involved in the embodiments of the present specification will be described in detail below. It should be noted that the following examples are only used to explain the present application, and do not constitute a limitation to the present application.
  • the main hand manipulation device 200 ( 500 ) further includes a base 230 , and the base 230 may be disposed on the bottom of the posture adjusting member 220 for supporting and carrying.
  • the base 230 may be provided with a counterweight with a relatively large mass, which will not cause the entire device to shake during operation, and the entire device can remain stable.
  • the base 230 as a platform for supporting and carrying, can be applied to the main hand control device 200, the main hand control device 500, and can also be applied to other structures as a base platform, as described below. Taking the application to the master hand control device 200 as an example, the structure of the base 230 is only described, but not limited thereto.
  • the base 230 can be in the shape of a flat plate, which is advantageous for being placed on a horizontal table for operation.
  • the middle part of the base 230 can be hollowed out for placing other devices.
  • the end control assembly 210 and the posture adjusting part 220 can be arranged in the hollowed out part in the middle of the base 230 and connected with the base 230 .
  • a hole may be provided on the base 230 to facilitate the movement of the device mounted on the base 230.
  • a synchronous wheel rotatably mounted on the base 230 can be rotated to the base 230 through the hole. Below the countertop.
  • the base 230 itself may be rotatable, so as to drive the posture adjustment component 220 and the end control assembly 210 disposed thereon to rotate together with it, so as to map the posture adjustment plane where the end functional assembly of the robotic arm is located.
  • the base 230 may include a base body 1420 and a rotating platform 1410 .
  • the attitude adjustment component 220 adds a degree of freedom for mapping the robot attitude, and the degree of freedom can map the attitude adjustment plane of the end effector 130, so that the main hand manipulation device 200 can form a relationship with the robot. a mapping relationship.
  • the rotating platform 1410 can be fixedly connected with the second rotating mechanism of the posture adjusting member 220 , the rotating platform 1410 can be rotatably connected with the base body 1420 , and the rotation plane of the rotating platform 1410 relative to the base body 1420 is parallel to the base body 1420, and the rotating platform 1410 is associated with at least one articulation of the robot.
  • the rotation plane of the rotating platform 1410 relative to the base body 1420 may not be parallel to the plane where the base body 1420 is located, as long as the mapping relationship of the master hand manipulation device 200 to at least one joint of the robot can be guaranteed.
  • the base body 1420 may be a frame structure, and the shape may be a square, a circle, a polygon, etc., which is not limited here.
  • the rotating platform 1410 can be arranged in the installation space of the base body 1420 and is rotatably connected with the base body 1420 , and the posture adjusting member 220 can be installed on the rotating platform 1410 .
  • the base 230 may further include a driving member 1430 and a transmission assembly.
  • the driving member 1430 may be a driving member such as a motor that is adapted to the power required by the rotating platform 1410 , and the driving member 1430 may be directly connected to the rotating platform 1410 , it can also be connected with the rotating platform 1410 through the transmission assembly, so as to drive the rotating platform 1410 to rotate.
  • the driver 1430 can communicate with the robot body 110 through the communication device 120 .
  • the transmission assembly may include a worm 1440 and a worm wheel that mesh with each other, the worm 1340 is connected to the output end of the driving member 1430 , and the worm wheel is fixedly connected to the rotating platform 1410 .
  • the driving member 1330 drives the worm 1440 to rotate
  • the worm wheel can rotate correspondingly with the rotation of the worm, and at the same time drives the rotating platform 1410 to rotate around the vertical line of the plane where it is located; That is, the directions of the first mechanism and the second mechanism are changed at the same time; however, the angle between the first mechanism and the second mechanism remains unchanged, so that the rotation angle between the rotating platform 1410 and the base body 1420 can be precisely controlled.
  • the transmission assembly may include a driving wheel and a driven wheel, the driving wheel and the driven wheel are sleeved with a timing belt, the driving wheel is connected with the output end of the driving member, and the driven wheel is fixedly connected with the rotating platform.
  • the driving member 1430 drives the driving wheel to rotate
  • the driving wheel can drive the driven wheel to rotate through the synchronous belt, and simultaneously drives the rotating platform 1410 to rotate around the vertical line of the plane where it is located.
  • the transmission component may also be a gear or the like, as long as it can be connected with the driving member 1430 and drive the rotating platform 1410 to rotate.
  • the rotating platform 1410 may be provided with a fifth encoder, and the fifth encoder may detect the rotation angle of the rotating platform 1410 and transmit it to the communication device 120 .
  • the rotation angle detected by the fifth encoder can be transmitted to the robot body 110 through the communication device 120, and the robot body 110 controls the posture adjustment plane corresponding to at least one joint of the robot to rotate by the same angle according to the rotation angle, so as to realize the synchronization of the two Variety.
  • the rotation platform 1410 can be actively synchronized with the pose adjustment plane where at least one joint of the robot is located.
  • FIG. 15 is a schematic diagram of the principle of multi-degree-of-freedom pose adjustment of a robot according to the associated motion of the master hand manipulation device 200 ( 500 ) according to some embodiments of the present specification.
  • the corresponding relationship between the master hand manipulation device 200 and the attitude adjustment plane where at least one joint of the robot is located can be formed by detecting the rotation angle of the first adjustment joint 1530 and the second adjustment joint 1540 and superimposing the vectors of the two.
  • the rotation angle information is fed back to the robot body 110, and then a control command is transmitted to the driver 1430 through the communication device 120 to rotate the corresponding angle, thereby driving the rotating platform 1410 to rotate by the corresponding angle (the vector sum of the first adjustment joint 1530 and the second adjustment joint 1540).
  • the mapping of the robot posture adjustment plane by the main hand manipulation device 200 can be realized (that is, the rotation of the rotating platform 1410 relative to the base 1420 is associated with at least one joint motion of the robot). This process can be performed after the robot poses the joints (the operator freely adjusts the pose). In this way, the rotational degrees of freedom of the rotating platform 1410 relative to the base body 1420 are set as active mapping joints, which can achieve the same mapping as the robot posture without manual dragging. It should be noted that the base 230 also has the same mapping relationship when applied to the main hand control device 500 , which is not repeated here.
  • the attitude adjustment plane where the robot attitude adjustment joints are located is realized by the vector sum of the rotation of the first adjustment joint 1530 and the second adjustment joint 1540; and the attitude adjustment joints of the end effector 130 correspond to the first mechanism and the second mechanism respectively. .
  • the pose of the end of the robotic arm of the robot is perpendicular to the horizontal plane, which is defined as the zero position;
  • the posture adjustment joint 1510 and the posture adjustment joint 1520 respectively correspond to the first mechanism and the second mechanism), the first adjustment joint 1530 and the second adjustment joint 1540 are respectively adjusted. It is recorded and transmitted to the master hand control device 200 .
  • the main hand manipulation device 200 controls the rotation angles corresponding to the first mechanism, the second mechanism and the base 230 respectively, so as to realize the synchronization of the postures of each joint.
  • the rotation angle of the rotation platform 1410 of the main hand manipulation device 200 is equal to the vector sum of the first adjustment joint 1530 and the second adjustment joint 1540 of the robot (because the first adjustment joint
  • the rotation angles of 1530 and the second adjusting joint 1540 are divided into positive and negative (left and right) directions in FIG. 15 .
  • the robot adjusts the posture adjustment joints corresponding to the first mechanism and the second mechanism during the positioning process
  • the rotation angle information of the corresponding posture adjustment joints relative to the zero position will be transmitted to the robot body 110 respectively, and control the joints with the first mechanism and the second mechanism.
  • the second mechanism rotates by a corresponding angle relative to the zero position.
  • the main hand manipulation device 200 realizes a one-to-one mapping relationship between the posture of the end control assembly 210 and the posture of the end effector 130 through the above mapping process, that is, the two are completely synchronized; 200 fine-tunes the posture of the end effector 130 .
  • the posture of the end control assembly 210 may not be completely mapped one-to-one with the posture of the end effector 130, but only a partial incomplete mapping relationship may be implemented according to requirements.

Abstract

本说明书实施例提供一种用于机器人的主手操控装置及机器人。主手操控装置包括:末端控制组件;调姿部件,所述调姿部件包括第一机构和第二机构,所述第一机构和所述第二机构分别连接于所述末端控制组件,所述末端控制组件通过与所述第一机构和所述第二机构的对应连接控制所述第一机构和所述第二机构运动。

Description

一种用于机器人的主手操控装置及机器人
交叉引用
本申请要求于2021年2月1日递交的中国申请号为2021101355330的优先权,于2021年4月26日递交的中国申请号为202110454129X的优先权,其内容通过引用结合于此。
技术领域
本说明书涉及医疗器械技术领域,特别涉及一种用于机器人的主手操控装置及机器人。
背景技术
近年来,X射线计算机断层扫描成像技术(CT)无论是在基本技术方面,还是在新的临床应用方面都取得了巨大的进展。如今CT已不再作为一项单纯的影像检查而存在,CT(计算机断层扫描)可以配合临床各科实现各种检查和治疗,并取得显著的医疗效果。CT图像引导下的手术操作是在CT成像的前提下,可以实时判断并及时做出调整,大大提高了手术成功率、降低手术风险,提高患者的康复速度和生活质量。但是CT设备均采用X射线、γ射线等完成成像工作,在CT侧完成手术会让医生长期暴露在辐射环境中,对身体健康造成极大威胁。因此主从遥操作式机器人应运而生。主从遥操作式机器人是辅助手术模式作为比较前端的一种手术方式。通过远程操作控制图像引导机器人执行手术操作,可以有效的避免医生受到辐射照射。但是,目前的主从遥操作式的机器人无法模拟医生操作控制手术工具姿态,可能会增加手术风险和不确定性,同时增加手术时间,降低手术效率,影响手术的成功率。因此,需要一种能够模拟医生操作控制手术工具姿态的主从遥操作式机器人。
发明内容
本说明书实施例之一提供一种用于机器人的主手操控装置,所述主手操控装置包括:末端控制组件;以及调姿部件,所述调姿部件包括第一机构和第二机构,所述第一机构和所述第二机构分别连接于所述末端控制组件,所述末端控制组件通过与所述第一机构和所述第二机构的对应连接控制所述第一机构和所述第二机构运动。
在一些实施例中,所述第一机构包括第一转动传输条;所述第二机构包括第二转动传输条;所述第一转动传输条的转动轴线和所述第二转动传输条的转动轴线的夹角大于10°。
在一些实施例中,所述第一转动传输条的转动轴线和所述第二转动传输条的转动轴线的夹角大于85°。
在一些实施例中,所述第一转动传输条的转动轴线和所述第二转动传输条的转动轴线相交。
在一些实施例中,所述末端控制组件可直接对第一转动传输条,和/或第二转动传输条施加作用力。
在一些实施例中,所述第一转动传输条上开设有第一导向孔,所述第二转动传输条上开设有第二导向孔,所述末端控制组件穿过所述第一导向孔和所述第二导向孔。
在一些实施例中,所述末端控制组件与基座转动连接。
在一些实施例中,还包括:第一信息采集装置,所述第一信息采集装置检测所述第一机构的转动角度,并传输到通信装置;第二信息采集装置,所述第二信息采集装置检测所述第二机构的转动角度,并传输到通信装置。
在一些实施例中,所述第一信息采集装置包括第一编码器;所述第二信息采集装置包括第二编码器。
在一些实施例中,还包括:第一反馈组件,所述第一反馈组件基于第一反馈信息对所述第一机构施加调姿阻力;第二反馈组件,所述第二反馈组件基于第二反馈信息对所述第二机构施加调姿阻力。
在一些实施例中,所述第一转动传输条端部连接所述第一反馈组件,所述第一反馈组件包括第一传动组件和第一反馈电机,所述第一反馈电机通过所述第一传动组件与所述第一转动传输条连接;所述第二转动传输条端部连接所述第二反馈组件,所述第二反馈组件包括第二传动组件和第二反馈电机,所述第二反馈电机通过所述第二传动组件与所述第二转动传输条连接。
在一些实施例中,所述第一传动组件包括第一同步轮和第二同步轮,所述第一同步轮与所述第一转动传输条连接,所述第二同步轮固定设置于所述第一反馈电机的输出轴,所述第一同步轮与所述第二同步轮传动连接;所述第二传动组件包括第三同步轮和第四同步轮,所述第三同步轮与所述第二转动传输条连接,所述第四同步轮固定设置于所述第二反馈电机的输出轴,所述第三同步轮与所述第四同步轮传动连接。
在一些实施例中,所述第一同步轮和所述第二同步轮通过第一绳索传动连接,所述第一同步轮边沿其绕绳方向设置有第一张紧件和第二张紧件,所述绳索两端分别通过第一张紧件和第二张紧件固定;所述第三同步轮和所述第四同步轮通过第二绳索传动连接,所述第三同步轮边沿其绕绳方向设置有第三张紧件和第四张紧件,所述绳索两端分别通过第三张紧件和第四张紧件固定。
在一些实施例中,所述第一机构包括第一转动轴和第一连接部件,所述第一连接部件一端与所述第一转动轴连接,所述第一连接部件另一端活动连接所述末端控制组件;所述第二机构包括第二转动轴和第二连接部件,所述第二连接部件一端与所述第二转动轴连接,所述第二连接部件另一端活动连接所述末端控制组件;所述第一转动轴的轴线和所述第二转动轴的轴线间的夹角大于10°。
在一些实施例中,所述第一连接部件和第二连接部件沿周向围绕所述末端控制组件。
在一些实施例中,所述第一连接部件包括第一连接直杆和第一连接曲杆,所述第一连接曲杆一端与所述第一转动轴连接,所述第一连接曲杆另一端连接所述第一连接直杆,所述第一连接直杆活动连接所述末端控制组件;所述第二连接部件包括第二连接直杆和第二连接曲杆,所述第二连接曲杆一端与所述第二转动轴连接,所述第二连接曲杆另一端连接所述第二连接直杆,所述第二连接直杆活动连接所述末端控制组件。
在一些实施例中,所述第一转动轴轴线和所述第二转动轴轴线的夹角大于85°。
在一些实施例中,所述第一转动轴轴线和所述第二转动轴轴线相交。
在一些实施例中,还包括:第三信息采集装置,所述第三信息采集装置检测所述第一机构的转动角度,并传输到通信装置;第四信息采集装置,所述第四信息采集装置检测所述第二机构的转动角度,并传输到通信装置。
在一些实施例中,所述第三信息采集装置包括第三编码器;所述第四信息采集装置包括第四编码器。
在一些实施例中,还包括:第三反馈组件,所述第三反馈组件基于第三反馈信息对所述第一机构施加调姿阻力;第四反馈组件,所述第四反馈组件基于第四反馈信息对所述第二机构施加调姿阻力。
在一些实施例中,所述第一转动轴连接所述第三反馈组件,所述第三反馈组件包括第三反馈电机和第三传动组件,所述第三反馈电机通过所述第三传动组件与所述第一转动轴连接;所述第二转动轴连接所述第四反馈组件,所述第四反馈组件包括第四反馈电机和第四传动组件,所述第四反馈电机通过所述第四传动组件与所述第二转动轴连接。
在一些实施例中,所述第三传动组件包括第五同步轮和第六同步轮,所述第五同步轮的半径大于所述第六同步轮的半径,所述第五同步轮与所述第一转动轴连接,所述第六同步轮固定设置于所述第三反馈电机的输出轴,所述第五同步轮与所述第六同步轮传动连接;所述第四传动组件包括第七同步轮和第八同步轮,所述第七同步轮的半径大于所述第八同步轮的半径,所述第七同步轮与所述第二转动轴连接,所述第八同步轮固定设置于所述第四反馈电机的输出轴,所述第七同步轮与所述第八同步轮传动连接。
在一些实施例中,所述第五同步轮和所述第六同步轮通过绳索传动连接,所述第五同步轮边沿其绕绳方向设置有第五张紧件;所述第七同步轮和所述第八同步轮通过绳索传动连接,所述第七同步轮边沿其绕绳方向设置有第六张紧件。
在一些实施例中,所述第五同步轮和所述第六同步轮采用双绳传动连接;所述第七同步轮和所述第八同步轮采用双绳传动连接。
在一些实施例中,所述第五同步轮上边沿其绕绳方向设置有导向件,使得第五同步轮上的绳索能够按照预定螺距绕入所述第六同步轮上;所述第七同步轮上边沿其绕绳方向设置有导向件,使得第七同步轮上的绳索能够按照预定螺距绕入所述第八同步轮上。
在一些实施例中,所述调姿部件还包括锁定机构。
在一些实施例中,所述锁定机构包括:第一制动件,所述第一制动件锁定/解锁所述第一机构的转动;第二制动件,所述第二制动件锁定/解锁所述第二机构的转动。
在一些实施例中,所述锁定机构包括多个电磁铁以及与所述多个电磁铁对应的多个状态检测单元,所述多个电磁铁沿所述末端控制组件的周侧设置,所述多个电磁铁通过通电/断电与所述末端控制组件连接/分离,从而锁定/解锁所述末端控制组件的姿态,所述多个状态检测单元检测所述多个电磁铁的状态并传输到通信装置。
在一些实施例中,所述调姿部件还包括多个调姿触动开关,所述多个调姿触动开关沿所述末端控制组件的周侧设置。
在一些实施例中,所述调姿部件还包括多个倾角检测件,所述多个倾角检测件沿所述末端控制组件的周侧设置,所述多个倾角检测件检测所述末端控制组件的倾角并传输到通信装置。
在一些实施例中,还包括基座,所述基座包括座体和转动平台,所述转动平台和所述调姿部件的 所述第一机构及所述第二机构连接,所述转动平台和所述座体可转动连接,所述转动平台相对于所述座体的转动平面平行于所述座体所在的平面,且所述转动平台与所述机器人的至少一个关节运动相关联。
在一些实施例中,所述基座还包括驱动件和传动组件,所述驱动件通过所述传动组件驱动所述转动平台转动。
在一些实施例中,所述传动组件包括相互啮合的蜗杆及涡轮,所述蜗杆与所述驱动件的输出端连接,所述涡轮与所述转动平台固定连接。
在一些实施例中,所述传动组件包括主动轮和从动轮,所述主动轮和所述从动轮上套设同步带,所述主动轮与所述驱动件的输出端连接,所从动轮与所述转动平台固定连接。
在一些实施例中,所述转动平台设置第五编码器,所述第五编码器检测所述转动平台的转动角度,并传输到通信装置。
在一些实施例中,所述末端控制组件包括末端控制力反馈组件,所述末端控制力反馈组件基于末端控制力反馈信息对所述末端控制组件施加阻力。
在一些实施例中,所述末端控制组件为穿刺针组件、手术剪切组件或缝合组件中至少之一。
本说明书实施例之一提供一种机器人,包括机器人本体、末端执行器以及如上述的主手操控装置;所述末端执行器与所述机器人本体连接,所述机器人本体电连接通信装置,所述主手操控装置电连接所述通信装置和所述末端执行器。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的机器人的应用场景图;
图2是根据本说明书一些实施例所示的主手操控装置的结构示意图;
图3是根据本说明书一些实施例所示的调姿部件和末端控制组件的结构示意图;
图4是根据本说明书一些实施例所示的主手操控装置的仰视结构示意图;
图5是根据本说明书一些实施例所示的另一结构主手操控装置的结构示意图;
图6是根据本说明书一些实施例所示的第一连接轴和第二连接轴分别活动连接末端控制组件的结构示意图;
图7是根据本说明书一些实施例所示的第一连接轴和第二连接轴分别活动连接末端控制组件的剖视图;
图8是根据本说明书一些实施例所示的另一结构主手操控装置的调姿示意图;
图9是根据本说明书一些实施例所示的另一结构主手操控装置的调姿示意图;
图10是根据本说明书一些实施例所示的另一结构主手操控装置的调姿示意图;
图11是根据本说明书一些实施例所示的第三传动组件和第四传动组件的结构示意图;
图12是根据本说明书一些实施例所示的双绳传动的示意图;
图13是根据本说明书一些实施例所示的主手操控装置的俯视图;
图14是根据本说明书一些实施例所示的基座的结构示意图;
图15是根据本说明书一些实施例所示的主手操控装置关联运动的机器人多自由度调姿的原理示意图。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
基于医疗机器人的技术研究和产品开发持续推进,手术机器人成为医疗机器人范畴中重要的领域之一。手术机器人是集临床医学、生物力学、机械学、计算机科学、微电子学等诸多学科为一体的医疗器 械。手术机器人通过清晰的成像系统和灵活的机械臂,以微创的手术形式,协助医生实施复杂的外科手术,完成术中定位、切断、穿刺、止血、缝合等操作。在CT成像设备的引导下,医务人员可以利用手术机器人辅助进行手术治疗,但在CT侧进行手术会使得医务人员长期暴露在辐射环境中,对身体健康造成极大威胁,因此,可以采用主从遥式机器人通过远程操作控制图像引导机器人执行手术操作。目前的机器人往往不能准确模拟医务人员的操作过程,无法反馈力的大小,医务人员由于缺乏力觉感知可能会增加手术的风险性和不确定性,且影响手术效率。
为了解决上述问题,本说明书一些实施例提供了一种用于手术的机器人,其包括用于操控机器人的末端执行器的主手操控装置,该主手操控装置能够模拟医务人员操作且能够提供力反馈,以规避手术过程存在的风险,提高手术效率。
图1是根据本说明书一些实施例所示的机器人的应用场景图。如图1所示,机器人可以包括机器人本体110、末端执行器130以及主手操控装置200。末端执行器130与机器人本体110连接(例如,设置于机器人本体110的机器臂的末端),机器人本体110电连接通信装置120,主手操控装置200电连接通信装置120和末端执行器130,从而控制末端执行器130执行同步操作。
机器人在实际使用时,机器人本体110位于扫描间内。可选地,机器人本体110包括机械臂,能够带动安装在机械臂末端的末端执行器130运动,以调整机器臂末端功能部件的姿态。末端执行器130设置在机器人本体110上,用于执行同步动作(例如,穿刺、缝合等)。与扫描间相邻设置或者间隔设置控制间。控制间中设置成像设备的操作台,并与扫描间之间存在混凝土墙壁,以屏蔽射线。并且,控制间内还设置主手操控装置200,医生通过操作控制间中的主手操控装置200实现对扫描间的机器人本体110的控制,从而完成主从遥操作式手术操作。
图2是根据本说明书一些实施例所示的主手操控装置200的结构示意图。以下将对本说明书实施例所涉及的主手操控装置200进行详细说明。需要注意的是,以下实施例仅用于解释本申请,并不构成对本申请的限定。
如图2所示,用于机器人的主手操控装置200可以包括末端控制组件210和调姿部件220。
末端控制组件210用于控制末端执行器130执行操作,例如,执行穿刺、缝针等操作。在一些实施例中,末端控制组件210可以为中空柱状结构,以方便握持。在一些实施例中,末端控制组件210可以根据医务人员的操作习惯以及根据末端执行器130的结构进行适应性设计,以方便使用。例如,末端控制组件210可以根据不同的末端执行器130(如穿刺针、手术剪、缝针等)相应设置为穿刺针组件、手术剪组件或缝针组件等,其形状可以设置为对应功能部件的形状或其他方便操作的形状,在此不作限制。
在一些实施例中,末端控制组件210包括末端控制力反馈组件,末端控制力反馈组件基于末端控制力反馈信息对末端控制组件210施加阻力。其中,末端控制力反馈信息可以包括阻力的大小、方向等。在一具体实施例中,末端执行器130可以为穿刺针,当穿刺针刺入患者体内时,人体组织会对穿刺针产生反作用力即为穿刺的阻力,该阻力通过设置在末端执行器130上的传感器检测。
在一些实施例中,末端控制组件210控制末端执行器130(例如,穿刺针)进行操作时,穿刺针遇到穿刺阻力,可以反馈给机器人本体110,机器人本体110可以控制末端控制力反馈组件向末端控制组件210施加与穿刺阻力相当的阻力。这样,医护人员进行穿刺操作时,可以通过末端控制力反馈组件反馈的穿刺阻力感受到穿刺针的进针阻力,以真实模拟握针穿刺的情况。
在一些实施例中,末端控制力反馈组件可以包括执行电机以及位置检测单元。位置检测单元可以检测当前滑块的位置状态,识别滑块的运动行程,并反馈至机器人本体110。例如,穿刺针执行穿刺过程中,机器人本体110控制执行电机施加一定的电流产生扭矩作用。该扭矩产生的阻力与穿刺针的实际进针的阻力相一致。该阻力通过末端穿刺组件210上的滑环作用到医护人员手上,医生移动滑环时会感到阻力,实现穿刺力的反馈功能。
末端控制组件210的滑环做直线运动时,末端控制力反馈组件能够检测到滑环的直线运动的距离,并反馈给机器人本体110,机器人本体110将滑环直线运动的距离转化为直线位移,机器人本体110通过直线位移控制机械臂带动穿刺针执行穿刺操作。例如,末端控制力反馈组件可以与直线运动组件的滚轮连接,滚轮转动时,末端控制力反馈组件能够检测滑环的直线运动的距离,并反馈至机器人本体110,以控制穿刺针进行穿刺。
在一些实施例中,主手操控装置200可以与通信装置120和末端执行器130电连接,通信装置120电连接机器人本体110。仅作为示例,末端执行器130受到的阻力信息可以传输给机器人本体110;机器人本体110可以根据阻力信息,通过通信装置120发送相应的力反馈信息给主手操控装置200,从而实现信号传输。在一些实施例中,通信装置120与主手操控装置200及机器人本体110的连接方式可以包括有线连接、无线连接或两者的组合。有线连接可以包括:通过电缆、光缆或电话线等连接,或其任意组合。无线连接可以包括:通过蓝牙、Wi-Fi、WiMax、WLAN、ZigBee、移动网络(例如,3G、4G或5G等) 等连接,或其任意组合。
调姿部件220为用于调整末端控制组件210的姿态的装置。在一些实施例中,调姿部件220可以包括第一机构和第二机构,第一机构和第二机构分别连接于末端控制组件210,末端控制组件210通过与第一机构和第二机构的对应连接控制第一机构和第二机构运动。由于第一机构和第二机构分别与末端控制组件210连接,因此末端控制组件210带动第一机构运动对第二机构无影响,末端控制组件210带动第二机构运动对第一机构也无影响。第一机构和第二机构可以各自独立地进行运动(例如,绕其转动轴线转动等)。在一些实施例中,第一机构和第二机构可以为相同或相类似的结构。在一些实施例中,第一机构和第二机构可以用于将末端控制组件210的至少一部分运动(例如,摆动)转换为第一机构和第二机构的对应运动(例如,绕其转动轴线转动)。具体的,第一机构可以绕其转动轴线A转动,具有第一转动自由度,第二机构可以绕其转动轴线B转动,具有第二转动自由度。末端控制组件210的摆动可以带动第一机构绕其转动轴线A转动,末端控制组件210的摆动可以带动第二机构绕其转动轴线B转动,末端控制组件210的实际调姿运动量为第一机构和第二机构转动叠加的矢量和。
图3是根据本说明书一些实施例所示的调姿部件220和末端控制组件210的结构示意图。如图3所示,第一机构可以包括第一转动传输条310;第二机构可以包括第二转动传输条320。在一些实施例中,第一转动传输条310和第二转动传输条320可以可转动地安装在基座230上,例如,第一转动传输条310和第二转动传输条320可以通过转动副安装在基座230上,且能够绕转动副的轴转动。在一些实施例中,第一转动传输条310和第二转动传输条320可以为半圆环状,以便于留出能够安装末端控制组件210的空间。在一些实施例中,第一转动传输条310和第二转动传输条320也可以为其他形状,例如直条状、折线条状、不规则条状等,在此不作限制。
在一些实施例中,第一转动传输条310的转动轴线和第二转动传输条320的转动轴线的夹角大于10°设置。例如,呈10-180°以内的任意角度设置(如呈30°设置、呈60°设置、呈135°设置等)。在一些实施例中,第一转动传输条310的转动轴线和第二转动传输条320的转动轴线的夹角可以大于85°,例如,第一转动传输条310的转动轴线和第二转动传输条320的转动轴线的夹角可以为90°,如图3所示。
在一些实施例中,第一转动传输条310的转动轴线和第二转动传输条320的转动轴线可以相交。在一些实施例中,第一转动传输条310的转动轴线和第二转动传输条320的转动轴线也可以不相交。当第一转动传输条310的转动轴线和第二转动传输条320的转动轴线相交时,第一转动传输条310的转动轴线及第二转动传输条320的转动轴线所在的平面可以与水平面平行,也可以与水平面不平行。
在一些实施例中,末端控制组件210可以直接对第一转动传输条310和/或第二转动传输条320施加作用力,使得第一转动传输条310和/或第二转动传输条320分别绕其转动轴线转动。在一些实施例中,第一转动传输条310上开设有第一导向孔311,第一导向孔311可以沿第一转动传输条310的长度方向开设;第二转动传输条320上沿其延伸方向上开设有第二导向孔321,第二导向孔321可以沿第二转动传输条320的长度方向开设。末端控制组件210穿过第一导向孔311和第二导向孔321。
在一些实施例中,为使末端控制组件210能够向各个方向转动相同角度,第一导向孔311以第一转动传输条310的中部位置呈两侧对称;第二导向孔321以第二转动传输条320的中部位置呈两侧对称,末端控制组件210底端穿过第一导向孔311和第二导向孔321的交叉位置,并能够沿任一导向孔的延伸方向摆动。
仅作为示例,当末端控制组件210在第一导向孔311延伸方向摆动时,末端控制组件210穿过第二转动传输条320的部分推动第二转动传输条320随末端控制组件210的摆动方向转动。同理,当末端控制组件210在第二导向孔321延伸方向摆动时,末端控制组件210穿过第一转动传输条310的部分推动第一转动传输条310随末端控制组件210的摆动方向转动。基于该结构,末端控制组件210沿与基座230活动的部位向任意方向摆动时,均可以按照分解的方式分解为第一转动传输条310沿其转动轴线转动和第二转动传输条320沿其转动轴线转动。
在一些实施例中,末端控制组件210与基座230可以转动连接。基座230为用于承载和安装末端控制组件210及调姿部件220的结构。在一些实施例中,末端控制组件210与基座230可以通过球面副连接。在一些实施例中,末端控制组件210的底部可以设置铰接头211,末端控制组件210通过铰接头211与基座230转动铰接,使得末端控制组件210可以铰接头211为旋转中心相对于基座230转动。
如图3所示,铰接头211可以设置为球形,基座230与末端控制组件210连接的面可以设置球形凹槽,球形的铰接头211转动配合于球形凹槽,使得末端控制组件210与基座230通过球铰结构连接。进一步地,为了防止铰接头211从球形凹槽中脱离,球形凹槽的开口直径可以小于铰接头211的直径。在另一些实施例中,铰接头211也可以设置为万向转动节。
在一些实施例中,主手操控装置200还可以包括第一信息采集装置和第二信息采集装置,第一信 息采集装置可以检测第一机构的转动角度,并传输到通信装置120,第二信息采集装置可以检测第二机构的转动角度,并传输到通信装置120。在一些实施例中,第一信息采集装置可以包括第一编码器331,第二信息采集装置可以包括第二编码器341。
编码器为将信号或数据进行编制、转换为用于通讯、传输和存储的信号形式的设备。编码器通常包括磁盘和读数头,可以通过磁盘和读数头的配合实现转动角度的检测。在一些实施例中,第一编码器331和第二编码器341可以检测第一反馈电机330和第二反馈电机340的输出轴的转动角度,并通过通信装置120将转动角度反馈至机器人本体110,通过机器人本体110控制末端执行器130按照转动角度调整空间姿态,以完成操作需要。
在一些实施例中,主手操控装置200还可以包括第一反馈组件和第二反馈组件,第一反馈组件可以基于第一反馈信息对第一机构施加调姿阻力,第二反馈组件可以基于第二反馈信息对第二机构施加调姿阻力。在一些实施例中,第一反馈组件可以连接于第一转动传输条310端部,第一反馈组件包括第一传动组件和第一反馈电机330,第一反馈电机330通过第一传动组件与第一转动传输条310连接;第一编码器331可以设置于第一反馈电机330上。第二反馈组件可以连接于第二转动传输条320端部,第二反馈组件包括第二传动组件和第二反馈电机340,第二反馈电机340通过第二传动组件与第二转动传输条320连接;第二编码器341可以设置于第二反馈电机340上。在一些实施例中,第一传动组件可以包括第一同步轮351和第二同步轮352;第二传动组件可以包括第三同步轮361和第四同步轮362。
图4是根据本说明书一些实施例所示的主手操控装置200的仰视结构示意图。如图4所示,为了便于第一反馈电机330和第二反馈电机340的安装,基座230外侧可以设置挡边410,第一同步轮351和第三同步轮361分别安装在挡边410的外侧,第一反馈电机330和第二反馈电机340可以安装在挡边410内部并位于基座230底端,第一反馈电机330和第二反馈电机340的输出轴分别从挡边410的内部伸出并对应安装第二同步轮352和第四同步轮362。在一些实施例中,挡边410的空余部分可以安装集成芯片420,集成芯片420中可以包括信号传输部件等,集成芯片420可以通过通信装置120与机器人本体110通信连接。
反馈组件为用于施加调姿阻力的部件,第一反馈组件和第二反馈组件能够基于第一反馈信息和第二反馈信息分别向第一转动传输条310和第二转动传输条320施加调姿阻力。第一反馈信息和第二反馈信息为末端执行器130进行调姿操作时受到的不同方向的阻力信息。操作者调整末端控制组件210姿态时,第一反馈组件可以根据第一反馈信息产生与转动趋势相反且大小可调的阻力,反馈给第一转动传输条310,第二反馈组件可以根据第二反馈信息产生转动趋势相反且大小可调的阻力,反馈给第二转动传输条320。在不同的实施例中,该阻力的产生可以采用不同的方式实现,如可以采用定子与转子之间的电磁转动产生,也可以采用气压的伸缩膨胀产生,还可以采用液压挤压产生。
以采用定子与转子之间的电磁转动产生阻力为例,末端控制组件210的调姿动作通过第一机构和第二机构按照垂直分解的方式分解为第一转动传输条310的转动和第二转动传输条320的转动,第一转动传输条310的转动和第二转动传输条320的转动分别驱使第一传动组件和第二传动组件转动,第一传动组件和第二传动组件分别与第一反馈电机330和第二反馈电机340的输出轴连接,因而第一传动组件和第二传动组件转动时会驱使第一反馈电机330和第二反馈电机340的输出轴转动;而当第一反馈电机330和第二反馈电机340的定子通电时,定子与转子之间的电磁作用施加定子一个转动的电磁力,该电磁力驱动其对应的输出轴具有另一个转动趋势,即形成了阻力。其中,第一反馈电机330和第二反馈电机340被配置为其定子电流大小与姿态调节时所受接触力的大小相关,且该定子电流的大小可以由机器人本体110控制,进而实现阻力的大小可调。其中,机器人本体110可以通过末端执行器130遇到的调姿阻力,确定该定子电流的大小,使得第一反馈电机330和第二反馈电机340分别向第一转动传输条310和第二转动传输条320施加与机器臂末端的调姿阻力相当的阻力。
在一些实施例中,第一传动组件可以包括第一同步轮351和第二同步轮352,第一同步轮351与第一转动传输条310连接,第二同步轮352固定设置于第一反馈电机330的输出轴,第一同步轮351与第二同步轮352传动连接;第二传动组件包括第三同步轮361和第四同步轮362,第三同步轮361与第二转动传输条320连接,第四同步轮362固定设置于第二反馈电机340的输出轴,第三同步轮361与第四同步轮362传动连接。在一些实施例中,第一同步轮351与第二同步轮352可以通过套设在其上的同步带、钢丝绳等实现传动连接,第三同步轮361与第四同步轮362可以通过套设在其上的同步带、钢丝绳等实现传动连接。第一转动传输条310和第二转动传输条320可以分别驱使第一同步轮351和第三同步轮361转动,进而带动第二同步轮352和第四同步轮362的转动。
在一些实施例中,第一传动组件和第二传动组件还可以采用精密齿轮之间的配合,也可以采用其他方式配合传动,对此不做限定。
在一些实施例中,第一同步轮351和第二同步轮352可以通过第一绳索355(例如,钢丝绳等) 传动连接,第一同步轮351边沿其绕绳方向设置有第一张紧件353和第二张紧件354,绳索两端分别通过第一张紧件353和第二张紧件354固定;第三同步轮361和第四同步轮362通过第二绳索365传动连接,第三同步轮361边沿其绕绳方向设置有第三张紧件363和第四张紧件364,绳索两端分别通过第三张紧件363和第四张紧件364固定。
以第一同步轮351和第二同步轮352传动连接为例,第一同步轮351可以为弧形夹角大于180°的弧形边和一直边围合而成的片状结构,其弧形边沿其边沿设置有钢丝绳,钢丝绳的两端分别经过第一张紧件353和第二张紧件354固定在第一同步轮351的直边上,钢丝绳的外侧与第二同步轮352的外侧耦合。在一些实施例中,第一张紧件353和第二张紧件354可以包括螺栓、螺柱等紧固件,调节螺栓、螺柱等可以调整钢丝绳的工作长度,使得钢丝绳能够以合适的压力在同步轮上工作,防止打滑。
在一些实施例中,第三同步轮361和第四同步轮362传动连接也可以采用与上述第一同步轮351和第二同步轮352相同的传动结构,在此不再赘述。
图5是根据本说明书一些实施例所示的另一结构主手操控装置500的结构示意图。以下将对本说明书实施例所涉及的另一结构主手操控装置500进行详细说明。需要注意的是,以下实施例仅用于解释本申请,并不构成对本申请的限定。
在一些实施例中,第一机构包括第一转动轴511和第一连接部件514。第一连接部件514的一端与第一转动轴511连接,第一连接部件514另一端活动连接末端控制组件210。在一些实施例中,第一连接部件514可以包括第一连接直杆512和第一连接曲杆513。第一连接曲杆513一端与第一转动轴511连接,第一连接曲杆513另一端连接第一连接直杆512,第一连接直杆512活动连接末端控制组件210。在一些实施例中,第二机构包括第二转动轴521和第二连接部件524。第二连接部件524的一端与第二转动轴521连接,第二连接部件524另一端活动连接末端控制组件210。在一些实施例中,第二连接部件524可以包括第二连接直杆522和第二连接曲杆523。第二连接曲杆523一端与第二转动轴521连接,第二连接杆523另一端连接第二连接直杆522,第二连接直杆522活动连接末端控制组件210。
如图5所示,第一连接部件514和第二连接部件524沿周向围绕末端控制组件210,具体的,第一连接直杆512和第二连接直杆522可以沿末端控制组件210的径向设置。第一连接曲杆513和第二连接曲杆523可以沿末端控制组件210外侧的周向设置,在一定程度上能够使整个装置的结构更加紧凑和节省空间。在一些实施例中,第一连接曲杆513和第二连接曲杆523也可以为其他形状,例如,直条形等。
图6是是根据本说明书一些实施例所示的第一连接直杆512和第二连接直杆522分别活动连接末端控制组件210的结构示意图。图7是根据本说明书一些实施例所示的第一连接直杆512和第二连接直杆522分别活动连接末端控制组件210的剖视图。为了方便描述,以第一连接直杆512作为第一连接部件514的一端来描述与末端控制组件210活动连接的结构关系,以第二连接直杆522作为第二连接部件524的一端来描述与末端控制组件210活动连接的结构关系。如图6所示,末端控制组件210中可以设置与第一连接直杆512和第二连接直杆522匹配的滑槽,滑槽可以沿末端控制组件210周向设置,第一连接直杆512和第二连接直杆522可以可滑动地安装于滑槽中,第一连接直杆512和第二连接直杆522可以沿着滑槽,绕末端控制组件210的中心轴线转动,以实现活动连接。其中,滑槽可以贯通整个圆周,也可以仅设置于圆周的部分区域,呈圆弧形。在一些实施例中,第一连接直杆512和第二连接直杆522可以安装于同一滑槽中,也可以安装于不同滑槽中,例如,可以安装于平行设置的两条滑槽中。在一些实施例中,第一连接直杆512和第二连接直杆522可以安装在上下两个平面推力轴承610之间,如图7所示。
回到图5,在一些实施例中,第一机构可以绕第一转动轴511的转动轴线A转动,具有第一转动自由度,第二机构可以绕第二转动轴521的转动轴线B转动,具有第二转动自由度。在一些实施例中,第一转动轴511的转动轴线A和第二转动轴521的转动轴线B的夹角可以大于10°。例如,呈10-180°以内的任意角度设置(如呈30°设置、呈60°设置、呈135°设置等)。在一些实施例中,第一转动轴511的转动轴线A和第二转动轴521的转动轴线B的夹角可以大于85°,例如第一转动轴511的转动轴线A和第二转动轴521的转动轴线B的夹角可以为90°,如图5所示,以使得第一机构和第二机构能够获得较大的操作空间。
在一些实施例中,第一转动轴511的转动轴线A和第二转动轴521的转动轴线B可以相交,也可以不相交。当第一转动轴511的转动轴线A和第二转动轴521的转动轴线B相交时,第一转动轴511的转动轴线A及第二转动轴521的转动轴线B所在平面可以与水平面平行,也可以与水平面不平行。
为了方便描述,以下均以第一连接直杆512和第一连接曲杆513作为第一连接部件514来描述与末端控制组件210的运动关系,同样的,以第二连接直杆522和第二连接曲杆523作为第二连接部件524来描述与末端控制组件210的运动关系。仅作为示例,当末端控制组件210绕第一转动轴511的转动轴线A转动时,能够通过第一连接直杆512带动第一连接曲杆513绕第一转动轴511的转动轴线A随末端控制组件210摆动方向转动。同理,当末端控制组件210绕第二转动轴521的转动轴线A转动时,能够通过第 二连接轴522带动第二连接杆523绕第二转动轴521的转动轴线B随末端控制组件210摆动方向转动。基于该结构,末端控制组件210沿任意方向摆动时,均可以按照分解的方式分解为绕第一转动轴511的转动轴线A的转动和绕第二转动轴521的转动轴线B的转动。
图8是根据本说明书一些实施例所示的另一结构主手操控装置500的调姿示意图。如图8所示,末端控制组件210仅做绕第一转动轴511的转动轴线A的摆动(图8中左右方向),通过第一连接直杆512带动第一连接曲杆513绕第一转动轴511的转动轴线A转动,实现了对单一自由度(第一转动自由度)的调姿。
图9是根据本说明书一些实施例所示的另一结构主手操控装置500的调姿示意图。如图9所示,以第一连接直杆513和第二连接曲杆523水平,末端控制组件210与水平面垂直为主手操控装置500零位(调姿前状态),末端控制组件210向图9的纸面内摆动,通过第一连接直杆512带动第一连接曲杆513绕第一转动轴511的转动轴线A逆时针转动,通过第二连接直杆522带动第二连接曲杆523绕第二转动轴521的转动轴线B顺时针转动。在一些实施例中,第一转动轴511和第二转动轴521可以安装于基座230上,且相对于基座230的位置不发生改变,在末端控制组件210向纸面内摆动使第一连接曲杆513和第二连接曲杆523分别绕转动轴线A和转动轴线B转动的过程中,第一连接曲杆513与第一连接直杆512的连接端位置以及第二连接曲杆523与第二连接直杆522的连接端位置与末端控制组件210会发生相对运动,使得第一连接直杆512和第二连接直杆522之间的夹角α逐渐减小。
图10是根据本说明书一些实施例所示的另一结构主手操控装置500的调姿示意图。如图10所示,以第一连接曲杆513和第二连接曲杆523水平,末端控制组件210与水平面垂直为主手操控装置500零位(调姿前状态),末端控制组件210向图9右方摆动,通过第一连接直杆512带动第一连接曲杆513绕第一转动轴511的转动轴线A顺时针转动,通过第二连接直杆522带动第二连接曲杆523绕第二转动轴521的转动轴线B顺时针转动。在一些实施例中,第一转动轴511和第二转动轴521可以安装于基座230上,且相对于基座230的位置不发生改变,在末端控制组件210向右方摆动使第一连接曲杆513和第二连接曲杆523分别绕转动轴线A和转动轴线B转动的过程中,第一连接曲杆513与第一连接直杆512的连接端位置以及第二连接曲杆523与第二连接直杆522的连接端位置与末端控制组件210会发生相对运动,使得第一连接直杆512和第二连接直杆522之间的夹角α逐渐增大。
回到图5,在一些实施例中,主手操控装置500还可以包括第三信息采集装置和第四信息采集装置,第三信息采集装置可以检测第一机构的转动角度,并传输到通信装置,第四信息采集装置可以检测第二机构的转动角度,并传输到通信装置。在一些实施例中,第三信息采集装置可以包括第三编码器551,第四信息采集装置可以包括第四编码器561。
编码器为将信号或数据进行编制、转换为用于通讯、传输和存储的信号形式的设备。第三编码器551和第四编码器561可以包括磁盘以及读数头,通过磁盘与读数头的配合可以实现第一连接部件514和第二连接部件524转动角度的检测。第三编码器551和第四编码器561可以通过通信装置120将转动角度反馈至机器人本体110,通过机器人本体110控制末端执行器130按照旋转角度调节空间姿态,完成操作需要。
在一些实施例中,主手操控装置500还可以包括第三反馈组件和第四反馈组件,第三反馈组件可以基于第三反馈信息对第一机构施加调姿阻力,第四反馈组件可以基于第四反馈信息对第二机构施加调姿阻力。在一些实施例中,第三反馈组件可以连接于第一转动轴511,第三反馈组件包括第三反馈电机552和第三传动组件,第三反馈电机552通过第三传动组件与第一转动轴511连接;第三编码器551可以设置于第一转动轴511端部。第四反馈组件可以连接于第二转动轴521,第四反馈组件包括第四反馈电机562和第四传动组件,第四反馈电机562通过第四传动组件与第二转动轴521连接;第四编码器561可以设置于第二转动轴521端部。在一些实施例中,第三传动组件可以包括第五同步轮710和第六同步轮720,第四传动组件可以包括第七同步轮730和第八同步轮740。
反馈组件为用于施加调姿阻力的部件,第三反馈组件和第四反馈组件能够基于第三反馈信息和第四反馈信息分别向第一转动轴511和第二转动轴521施加调姿阻力。第三反馈信息和第四反馈信息为末端执行器130进行调姿操作时受到的不同方向的阻力信息。当末端执行器130存在调姿阻力时,通过通信装置120反馈给主手操控装置500,第三反馈电机552和第四反馈电机562能够接收到第三反馈信息和第四反馈信息,并通过第三传动组件和第四传动组件向第一转动轴511和第二转动轴521施加与末端执行器130的调姿阻力相当的阻力,以实现末端执行器130的调姿力反馈。这样,操作者带动末端控制组件210转动时能够感受到与转动方向相反的阻力,由此实现调姿时的力反馈。
图11是根据本说明书一些实施例所示的第三传动组件和第四传动组件的结构示意图。如图11所示,第三传动组件包括第五同步轮710和第六同步轮720,第五同步轮710与第一转动轴511连接(图11中未显示),第六同步轮720固定设置于第三反馈电机552的输出轴,第五同步轮710与第六同步轮720 传动连接;第四传动组件包括第七同步轮730和第八同步轮740(图11中未显示),第七同步轮730与第二转动轴521连接,第八同步轮740固定设置于第四反馈电机562的输出轴,第七同步轮730与第八同步轮740传动连接。在一些实施例中,第五同步轮710和第六同步轮720可以通过套设在其上的同步带、钢丝绳等实现传动连接,第七同步轮730与第八同步轮740可以通过套设在其上的同步带、钢丝绳等实现传动连接。第一转动轴511和第二转动轴521可以分别驱使第五同步轮710和第七同步轮730转动,进而带动第六同步轮720和第八同步轮740的转动。
在一些实施例中,第三传动组件和第四传动组件还可以采用精密齿轮之间的配合,也可以采用其他方式配合传动,对此不做限定。
在一些实施例中,第五同步轮710的半径可以大于第六同步轮720的半径;第七同步轮730的半径可以大于第八同步轮740的半径。在一具体实施例中,第五同步轮710和第六同步轮720的半径比可以为10:1;第七同步轮730和第八同步轮740的半径比为10:1。半径比即为传动比,传动比可以根据调姿负载确定。并联机构相对于串联机构而言,可以尽可能的增大同步轮之间的传动比,使得在同样调姿负载需求下能够选择尽可能小的电机,力反馈优选直流有刷电机。
在一些实施例中,第五同步轮710和第六同步轮720通过绳索(例如,钢丝绳等)传动连接,第五同步轮710边沿其绕绳方向设置有第五张紧件750,用于张紧和固定绳索;第七同步轮730和第八同步轮740通过绳索传动连接,第七同步轮730边沿其绕绳方向设置有第六张紧件(图中未示出),用于张紧和固定绳索。
以第五同步轮710和第六同步轮720传动连接为例,第五同步轮710可以为扇形片状结构,其两直角边均设置有第五张紧件750,钢丝绳的两端分别经过两个第五张紧件750固定,钢丝绳的外侧与第六同步轮720的外侧耦合。在一些实施例中,第五张紧件750和第六张紧件可以包括张紧螺栓、锁紧螺母等紧固件。通过调节张紧件可以调整绳的工作长度,使得绳能够以合适的压力在同步轮上工作,防止绳在工作时打滑。
图12是根据本说明书一些实施例所示的双绳传动的示意图。在一些实施例中,第五同步轮710和第六同步轮720可以采用双绳传动连接;第七同步轮730和第八同步轮740可以采用双绳传动连接,如图12所示。以钢丝绳为例,如果采用一根钢丝绳传动,若需要提高传动刚度则需要增加钢丝绳的直径,钢丝绳的素线线径(组成钢丝绳的最小单位的直径)也会同步增大,那么第六同步轮720和第八同步轮740的直径也需要同步增大(素线线径与第六同步轮720和第八同步轮740直径存在线性关系,以满足使用寿命和),进而影响传动比。而采用双绳传动的方式不改变第六同步轮720和第八同步轮740的直径,因此在保持传动比不变的情况下,能够实现传动刚度提高两倍。
在一些实施例中,第五同步轮710上边沿其绕绳方向设置有导向件760,使得第五同步轮710上的绳索(例如,钢丝绳等)能够按照预定螺距绕入第六同步轮720上;第七同步轮730上边沿其绕绳方向设置有导向件,使得第七同步轮730上的绳索能够按照预定螺距绕入第八同步轮740上。导向件760可以导向柱等结构。
图13是根据本说明书一些实施例所示的主手操控装置的俯视图。如图13所示,调姿部件220可以包括锁定机构,用于锁定或解锁末端控制组件210的姿态。锁定机构解锁时,末端控制组件210能够运动。在一些实施例中,锁定机构能够实现末端控制组件210的锁定与解锁。锁定机构可以固定设置于调姿部件220内,也可以固定安装在基座230上。在一些实施例中,锁定机构能够通过与末端控制组件210接触/分离实现锁定/解锁。当锁定机构锁定时,末端控制组件210无法发生运动,进而无法调整末端执行器130(如穿刺针等)的空间姿态。具体的,锁定机构可以分别对末端控制组件210相对于第一机构和第二机构进行锁定。例如,锁定机构可以使得末端控制组件210无法绕第一机构的转动轴线A进行转动,此时,第二机构绕其转动轴线B的运动不受影响。又例如,锁定机构可以使得末端控制组件210无法绕第二机构的转动轴线B进行旋转,此时,第一机构绕其转动轴线A的运动不受影响。又例如,锁定机构可以使得末端控制组件210无法绕第一机构的转动轴线A以及第二机构的转动轴线B进行旋转,此时,末端控制组件210相对于第一机构和第二机构形成一固定整体。在一些实施例中,末端控制组件210相对于第一机构和第二机构形成的整体可以相对于基座230绕基座230所在平面的垂线进行旋转,通过锁定机构可以限制该旋转。在一些实施例中,末端控制组件210本身可以绕其中心轴旋转,通过锁定机构可以限制该旋转。当需要调整末端执行器130的空间姿态时,锁定机构解锁。此时,末端控制组件210能够发生运动,以调整末端执行器130的空间姿态。当末端执行器130对准目标靶点时,锁定机构可以锁定,使得末端执行器130的空间姿态不再发生变化,避免末端控制组件210继续运动而影响末端执行器130的空间姿态。
回到图5,在一些实施例中,锁定机构可以包括第一制动件553和第二制动件563,第一制动件553可以锁定/解锁第一机构的转动,第二制动件563可以锁定/解锁第二机构的转动。第一制动件553和第二制动件563可以分别设置在第三反馈电机552和第四反馈电机562的输出轴上,用于对第三反馈电机 552和/或第四反馈电机562的输出轴进行锁定,不让第三反馈电机552和/或第四反馈电机562的输出轴转动,从而限制第一机构绕其转动轴线转动和/或限制第二机构绕其转动轴线转动。在一些实施例中,第一制动件553和第二制动件563可以为抱闸。
在一些实施例中,锁定机构可以包括多个电磁铁1321以及与多个电磁铁1321对应的多个状态检测单元1322,多个电磁铁1321可以沿末端控制组件210的周侧设置,多个电磁铁1321可以通过通电/断电与末端控制组件210连接/分离,从而锁定/解锁末端控制组件210的姿态,多个状态检测单元1322可以检测多个电磁铁1321的状态并传输到通信装置120。
在一些实施例中,电磁铁1321能够控制伸出与末端控制组件210抵接的伸出轴,从而以限制末端控制组件210运动,伸出轴的伸出和回缩可以通过电磁铁1321通电或断电控制,具体的,可以设置为电磁铁1321通电伸出轴伸出,也可以设置为电磁铁1321断电时伸出轴伸出;状态检测单元1322可以用于检测电磁铁1321的工作状态,即检测电磁铁1321处于通电还是断电状态,从而能够对应获知伸出轴是否伸出。仅作为示例,当电磁铁1321通电时,伸出轴能够与末端控制组件210接触,限制末端控制组件210朝向伸出轴的方向转动。当电磁铁1321断电时,伸出轴回缩,不再抵接末端控制组件210,此时末端控制组件210朝向伸出轴方向的束缚被解除,末端控制组件210能够朝向伸出轴所在的方向运动。
在一些实施例中,电磁铁1321的数量为多个,多个电磁铁1321可以沿末端控制组件210的周侧均匀分布。仅作为示例,电磁铁1321的数量为四个,四个电磁铁1321可以均匀分布在末端控制组件210的周侧。当四个电磁铁1321伸出时即可实现末端控制组件210的锁定。在一些实施例中,电磁铁1321可以通过螺纹等部件固定。在一些实施例中,末端控制组件210周侧可以设置弹性支撑件1330(例如,弹簧等),弹性支撑件1330在电磁铁1321的回缩状态下能够保持末端控制组件210处于竖直状态并为调姿时提供移动的回复力。
在一些实施例中,状态检测单元1322能够实时检测电磁铁1321的工作状态,并反馈给机器人本体110。通过状态检测单元1322能够检测电磁铁1321是否正常工作,提高整机的安全性。仅作为示例,当电磁铁1321断电时,状态检测单元1322检测到电磁铁1321使得伸出轴处于伸出状态,此时,状态检测单元1322反馈末端控制组件210被锁定的信号至机器人本体110,表明末端控制组件210无法运动。当电磁铁1321通电时,状态检测单元1322检测到电磁铁1221使得伸出轴处于回缩状态,此时,状态检测单元1322反馈末端控制组件210解锁的信号至机器人本体110,表明末端控制单元210能够运动。在一些实施例中,状态检测单元1322可以为光电开关,或者其他能够实现电磁铁1321状态检测的部件。
在一些实施例中,调姿部件220还可以包括多个调姿触动开关1310,多个调姿触动开关1310可以沿末端控制组件210的周侧设置,可以用于控制锁定机构。
在一些实施例中,调姿触动开关1310可以用于控制锁定机构,调姿触动开关1310可以与电磁铁1321电连接,调姿触动开关1310能够控制电磁铁1310通断电。调姿触动开关1310可以与机器人本体110电连接。仅作为示例,操作调姿触动开关1310时,调姿触动开关1310能够控制电磁铁1321通电,使得电磁铁1321控制的伸出轴脱离末端控制组件210,末端控制组件210被解锁,可以发生运动。再次操作调姿触动开关1310时,调姿触动开关1310控制电磁铁1321断电,电磁铁1321的伸出轴伸出,以锁定末端控制组件210。通过电磁铁1321的通断电可以实现末端控制组件210的锁定与解锁控制。
在一些实施例中,调姿动作执行之前,先通过调姿触动开关1310解锁电磁铁1321,控制电磁铁1321的伸出轴回缩,此时,末端控制组件210可以运动,实现末端执行器130的空间姿态的调节。再次操作调姿触动开关1310,控制电磁铁1321的伸出轴伸出,末端控制组件210无法运动,以避免在执行手术操作等动作时误触发调姿动作,例如,末端控制组件210对应末端执行器130为穿刺针时,基于临床要求穿刺过程中不能转动,以保证穿刺过程稳定,保证穿刺效果。所以在执行穿刺动作之前要先执行调姿动作,待调姿动作执行完成后,再通过调姿触动开关1310将末端控制组件210锁定,最后执行穿刺动作。当然,调姿动作也可与穿刺动作轮流执行,只要保证调姿动作执行之前解锁,穿刺动作执行前锁定即可。
在一些实施例中,调姿部件220还可以包括多个倾角检测件(图中未示出),多个倾角检测件可以沿末端控制组件210的周侧设置,多个倾角检测件可以检测末端控制组件210的倾角并传输到通信装置120。当末端控制组件210朝向某一方向倾斜时,对应于该方向的倾角检测件能够检测到末端控制组件210的倾斜,进而检测末端控制组件210的倾斜角度。倾角检测件可以与机器人本体110电连接,倾角检测件可以将末端控制组件210的倾斜角度反馈给机器人本体110,机器人本体110可以根据倾斜角度调节末端执行器130的空间姿态,使得其能够对准目标靶点。
在一些实施例中,末端控制组件210倾斜时可能未对应任何一个倾角检测件,而是对应两个倾角检测件之间的位置,此时,两个倾角检测件共同检测末端控制组件210的倾斜角度。通过两个倾角检测件共同检测末端控制组件210的倾斜角度与一个倾角检测件检测的原理实质相同,在此不再赘述。
仅作为示例,倾角检测件的数量可以为四个,四个倾角检测件均匀分布于末端控制组件210的周 侧。末端控制组件210通过四个倾角检测件实现末端执行器130的空间姿态调节。也就是说,末端控制组件210朝向任一倾角检测件运动时,通过该方向的倾角检测件实现调节,当还需要向其他方向运动时,末端控制组件210再朝向其他的倾角检测件运动。
在一些实施例中,还可以设置急停开关、整机开关等,急停开关与整机开关可以分别电连接机器人本体110。急停开关可以进行急停操作,避免出现意外时无法停止操作。整机开关用于实现设备的开关操作。
在一些实施例中,还可以设置多个指示灯以及其对应的状态指示单元,多个指示灯包括但不限于末端控制组件210转动指示灯等。状态指示单元可以用于控制各个指示灯的亮灭。当末端控制组件210转动指示灯处于闪烁状态时,机器人本体110即可接收触发的信号,否则屏蔽该信号。锁定机构解锁,电磁铁1321的状态可由状态检测单元1322检测并上报给机器人本体110,末端控制组件210的方向可由倾角检测件识别并上报给机器人本体110。
图14是根据本说明书一些实施例所示的基座230的结构示意图。以下将对本说明书实施例所涉及的基座230进行详细说明。需要注意的是,以下实施例仅用于解释本申请,并不构成对本申请的限定。
在一些实施例中,主手操控装置200(500)还包括基座230,基座230可以设置于调姿部件220的底部,用于支撑和承载。在一些实施例中,基座230上可以设置质量较大的配重块,在操作时不会引起整个装置的晃动,整个装置能够保持稳定。需要说明的是,基座230作为用于支撑和承载的平台,可以应用于主手操控装置200,也可以应用于主手操控装置500,还可以应用于其他结构的设备作为底座平台,以下描述以应用于主手操控装置200为例,仅为说明基座230的结构,而非对其进行限制。
在一些实施例中,基座230可以呈平板状,有利于放置于水平的台面上进行操作。在一些实施例中,基座230中间部分可以挖空,用于放置其他设备,例如,末端控制组件210及调姿部件220可以设置在基座230中间的挖空部位,并与基座230连接。在一些实施例中,基座230上可以设置有孔洞,便于活动安装于基座230上的装置进行活动,例如,可转动安装在基座230上的同步轮可以通过孔洞转动到基座230的台面以下。在一些实施例中,基座230自身可以是能够转动的,从而带动设置在其上的调姿部件220及末端控制组件210与其一同转动,以映射机器臂末端功能组件所在的调姿平面。
在一些实施例中,基座230可以包括座体1420和转动平台1410。通过设置转动平台1410,使得调姿部件220增加了一个映射机器人姿态的自由度,且该自由度能够映射末端执行器130的调姿平面,以使主手操控装置200能够与机器人之间形成一一映射关系。如图14所示,转动平台1410可以与调姿部件220的第二旋转机构固定连接,转动平台1410可以与座体1420可转动连接,转动平台1410相对于座体1420的转动平面平行于座体1420所在的平面,且转动平台1410与机器人的至少一个关节运动相关联。在一些实施例中,转动平台1410相对于座体1420的转动平面也可以不平行于座体1420所在的平面,只要能够保证主手操控装置200对于机器人至少一个关节的映射关系即可。
在一些实施例中,座体1420可以为框架结构,形状可以为方形、圆形、多边形等,在此不做限制,其中部设有安装空间,该安装空间的尺寸可以对应匹配转动平台1410的尺寸。转动平台1410可以设置于座体1420的安装空间内并与座体1420转动连接,转动平台1410上可以安装调姿部件220。
在一些实施例中,基座230还可以包括驱动件1430和传动组件,驱动件1430可以为电机等与转动平台1410所需动力相适配的驱动件,驱动件1430可以直接与转动平台1410连接,也可以通过传动组件与转动平台1410连接,从而驱动转动平台1410转动。在一些实施例中,驱动件1430可以通过通信装置120与机器人本体110实现通信。
在一些实施例中,传动组件可以包括相互啮合的蜗杆1440及蜗轮,蜗杆1340与驱动件1430的输出端连接,蜗轮与转动平台1410固定连接。当驱动件1330带动蜗杆1440转动时,蜗轮能够相应随蜗杆的转动而转动,同时驱动转动平台1410绕其所在平面的垂线转动;转动平台1410的转动会调整调姿部件220整体的姿态朝向,即同时改变第一机构和第二机构的方向;但第一机构和第二机构之间的角度不变,能够实现精准控制转动平台1410与座体1420之间的转动角度。
在一些实施例中,传动组件可以包括主动轮和从动轮,主动轮和从动轮上套设同步带,主动轮与驱动件的输出端连接,从动轮与转动平台固定连接。当驱动件1430带动主动轮转动时,主动轮能够通过同步带带动从动轮转动,同时驱动转动平台1410绕其所在平面的垂线转动。在一些实施例中,传动组件还可以为齿轮等,只要能够实现与驱动件1430连接,并驱动转动平台1410转动即可。
在一些实施例中,转动平台1410可以设置第五编码器,第五编码器可以检测转动平台1410的转动角度并传输到通信装置120。第五编码器检测的转动角度能够通过通信装置120传输至机器人本体110,机器人本体110根据该转动角度控制机器人的至少一个关节整体所在对应的调姿平面转动相同的角度,从而实现两者的同步变化。在一些实施例中转动平台1410可以主动同步于机器人至少一个关节所在的调姿平面。
图15是根据本说明书一些实施例所示的主手操控装置200(500)关联运动的机器人多自由度调姿的原理示意图。如图15所示,主手操控装置200与机器人至少一个关节所在的调姿平面的对应关系可以通过检测第一调节关节1530和第二调节关节1540转动的角度,并将两者矢量叠加形成的转角信息,反馈给机器人本体110,再经过通信装置120传输控制命令给驱动件1430转动相应的角度,从而驱动转动平台1410旋转相应的角度(第一调节关节1530和第二调节关节1540的矢量和),即可实现主手操控装置200对机器人调姿平面的映射(即转动平台1410相对于座体1420的转动与机器人的至少一个关节运动相关联)。该过程可在机器人调姿关节摆位(操作者自由调姿)完成后进行。如此设置,转动平台1410相对于座体1420的转动自由度设置为主动映射关节,无需人力拖动即可实现与机器人姿态相同的映射。需要说明的是,基座230应用于主手操控装置500也具有相同的映射关系,在此不再赘述。
机器人调姿关节所在的调姿平面是通过第一调节关节1530和第二调节关节1540转动的矢量和来实现的;而对于末端执行器130的调姿关节分别对应于第一机构和第二机构。术前准备阶段,需要首先标定机器人的位姿为图15左图所示,此时,机器人的机械臂末端的姿态垂直于水平面,定义为零位;然后根据需要对机器人的各个调姿关节(调姿关节1510及调姿关节1520分别对应于第一机构及第二机构)、第一调节关节1530及第二调节关节1540分别进行调整,如图15右图所示,该调整信息被一一记录下来,传递到主手操控装置200。主手操控装置200分别控制与第一机构、第二机构以及基座230转动相应的角度,以实现各个关节姿态的同步。当机器人机械臂的末端自摆位过程中改变调姿平面时,主手操控装置200的转动平台1410的转角等于机器人第一调节关节1530和第二调节关节1540的矢量和(因为第一调节关节1530和第二调节关节1540的转角分为图15中正负(左右)两个方向)。当机器人在摆位过程中调整与第一机构及第二机构相对应的调姿关节时,对应调姿关节相对于零位的转角信息会分别传递给机器人本体110,并控制与第一机构及第二机构相对于零位转动对应的角度。机器人完成摆位后,主手操控装置200经过上述映射过程使末端控制组件210的姿态与末端执行器130姿态实现一一映射关系,即两者完全同步;然后再根据CT成像通过主手操控装置200对末端执行器130姿态进行微调。需要说明的是,末端控制组件210的姿态也可以不与末端执行器130姿态完全一一映射,而可以根据需求仅实现部分不完全的映射关系。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的申请历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲 突的地方,以本说明书的描述、定义和/或术语的使用为准。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (39)

  1. 一种用于机器人的主手操控装置,其特征在于,所述主手操控装置包括:
    末端控制组件;以及
    调姿部件,所述调姿部件包括第一机构和第二机构,所述第一机构和所述第二机构分别连接于所述末端控制组件,所述末端控制组件通过与所述第一机构和所述第二机构的对应连接控制所述第一机构和所述第二机构运动。
  2. 根据权利要求1所述的主手操控装置,其特征在于,
    所述第一机构包括第一转动传输条;
    所述第二机构包括第二转动传输条;
    所述第一转动传输条的转动轴线和所述第二转动传输条的转动轴线的夹角大于10°。
  3. 根据权利要求2所述的主手操控装置,其特征在于,所述第一转动传输条的转动轴线和所述第二转动传输条的转动轴线的夹角大于85°。
  4. 根据权利要求2所述的主手操控装置,其特征在于,所述第一转动传输条的转动轴线和所述第二转动传输条的转动轴线相交。
  5. 根据权利要求2所述的主手操控装置,其特征在于,
    所述末端控制组件可直接对第一转动传输条,和/或第二转动传输条施加作用力。
  6. 根据权利要求5所述的主手操控装置,其特征在于,
    所述第一转动传输条上开设有第一导向孔,
    所述第二转动传输条上开设有第二导向孔,
    所述末端控制组件穿过所述第一导向孔和所述第二导向孔。
  7. 根据权利要求6所述的主手操控装置,其特征在于,所述末端控制组件与基座转动连接。
  8. 根据权利要求2所述的主手操控装置,其特征在于,还包括:
    第一信息采集装置,所述第一信息采集装置检测所述第一机构的转动角度,并传输到通信装置;
    第二信息采集装置,所述第二信息采集装置检测所述第二机构的转动角度,并传输到通信装置。
  9. 根据权利要求8所述的主手操控装置,其特征在于,
    所述第一信息采集装置包括第一编码器;
    所述第二信息采集装置包括第二编码器。
  10. 根据权利要求8所述的主手操控装置,其特征在于,还包括:
    第一反馈组件,所述第一反馈组件基于第一反馈信息对所述第一机构施加调姿阻力;
    第二反馈组件,所述第二反馈组件基于第二反馈信息对所述第二机构施加调姿阻力。
  11. 根据权利要求10所述的主手操控装置,其特征在于,
    所述第一转动传输条端部连接所述第一反馈组件,所述第一反馈组件包括第一传动组件和第一反馈电机,所述第一反馈电机通过所述第一传动组件与所述第一转动传输条连接;
    所述第二转动传输条端部连接所述第二反馈组件,所述第二反馈组件包括第二传动组件和第二反馈电机,所述第二反馈电机通过所述第二传动组件与所述第二转动传输条连接。
  12. 根据权利要求11所述的主手操控装置,其特征在于,
    所述第一传动组件包括第一同步轮和第二同步轮,所述第一同步轮与所述第一转动传输条连接,所述第二同步轮固定设置于所述第一反馈电机的输出轴,所述第一同步轮与所述第二同步轮传动连接;
    所述第二传动组件包括第三同步轮和第四同步轮,所述第三同步轮与所述第二转动传输条连接,所述第四同步轮固定设置于所述第二反馈电机的输出轴,所述第三同步轮与所述第四同步轮传动连接。
  13. 根据权利要求12所述的主手操控装置,其特征在于,
    所述第一同步轮和所述第二同步轮通过第一绳索传动连接,所述第一同步轮边沿其绕绳方向设置有第 一张紧件和第二张紧件,所述绳索两端分别通过第一张紧件和第二张紧件固定;
    所述第三同步轮和所述第四同步轮通过第二绳索传动连接,所述第三同步轮边沿其绕绳方向设置有第三张紧件和第四张紧件,所述绳索两端分别通过第三张紧件和第四张紧件固定。
  14. 根据权利要求1所述的主手操控装置,其特征在于,
    所述第一机构包括第一转动轴和第一连接部件,所述第一连接部件一端与所述第一转动轴连接,所述第一连接部件另一端活动连接所述末端控制组件;
    所述第二机构包括第二转动轴和第二连接部件,所述第二连接部件一端与所述第二转动轴连接,所述第二连接部件另一端活动连接所述末端控制组件;
    所述第一转动轴的轴线和所述第二转动轴的轴线间的夹角大于10°。
  15. 根据权利要求14所述的主手操控装置,其特征在于,所述第一连接部件和第二连接部件沿周向围绕所述末端控制组件。
  16. 根据权利要求14所述的主手操控装置,其特征在于,
    所述第一连接部件包括第一连接直杆和第一连接曲杆,所述第一连接曲杆一端与所述第一转动轴连接,所述第一连接曲杆另一端连接所述第一连接直杆,所述第一连接直杆活动连接所述末端控制组件;
    所述第二连接部件包括第二连接直杆和第二连接曲杆,所述第二连接曲杆一端与所述第二转动轴连接,所述第二连接曲杆另一端连接所述第二连接直杆,所述第二连接直杆活动连接所述末端控制组件。
  17. 根据权利要求14所述的主手操控装置,其特征在于,所述第一转动轴轴线和所述第二转动轴轴线的夹角大于85°。
  18. 根据权利要求14所述的主手操控装置,其特征在于,所述第一转动轴轴线和所述第二转动轴轴线相交。
  19. 根据权利要求14所述的主手操控装置,其特征在于,还包括:
    第三信息采集装置,所述第三信息采集装置检测所述第一机构的转动角度,并传输到通信装置;
    第四信息采集装置,所述第四信息采集装置检测所述第二机构的转动角度,并传输到通信装置。
  20. 根据权利要求19所述的主手操控装置,其特征在于,
    所述第三信息采集装置包括第三编码器;
    所述第四信息采集装置包括第四编码器。
  21. 根据权利要求14所述的主手操控装置,其特征在于,还包括:
    第三反馈组件,所述第三反馈组件基于第三反馈信息对所述第一机构施加调姿阻力;
    第四反馈组件,所述第四反馈组件基于第四反馈信息对所述第二机构施加调姿阻力。
  22. 根据权利要求21所述的主手操控装置,其特征在于,
    所述第一转动轴连接所述第三反馈组件,所述第三反馈组件包括第三反馈电机和第三传动组件,所述第三反馈电机通过所述第三传动组件与所述第一转动轴连接;
    所述第二转动轴连接所述第四反馈组件,所述第四反馈组件包括第四反馈电机和第四传动组件,所述第四反馈电机通过所述第四传动组件与所述第二转动轴连接。
  23. 根据权利要求22所述的主手操控装置,其特征在于,
    所述第三传动组件包括第五同步轮和第六同步轮,所述第五同步轮的半径大于所述第六同步轮的半径,所述第五同步轮与所述第一转动轴连接,所述第六同步轮固定设置于所述第三反馈电机的输出轴,所述第五同步轮与所述第六同步轮传动连接;
    所述第四传动组件包括第七同步轮和第八同步轮,所述第七同步轮的半径大于所述第八同步轮的半径,所述第七同步轮与所述第二转动轴连接,所述第八同步轮固定设置于所述第四反馈电机的输出轴,所述第七同步轮与所述第八同步轮传动连接。
  24. 根据权利要求23所述的主手操控装置,其特征在于,
    所述第五同步轮和所述第六同步轮通过绳索传动连接,所述第五同步轮边沿其绕绳方向设置有第五张紧件;
    所述第七同步轮和所述第八同步轮通过绳索传动连接,所述第七同步轮边沿其绕绳方向设置有第六张紧件。
  25. 根据权利要求24所述的主手操控装置,其特征在于,所述第五同步轮和所述第六同步轮采用双绳传动连接;所述第七同步轮和所述第八同步轮采用双绳传动连接。
  26. 根据权利要求24所述的主手操控装置,其特征在于,
    所述第五同步轮上边沿其绕绳方向设置有导向件,使得第五同步轮上的绳索能够按照预定螺距绕入所述第六同步轮上;
    所述第七同步轮上边沿其绕绳方向设置有导向件,使得第七同步轮上的绳索能够按照预定螺距绕入所述第八同步轮上。
  27. 根据权利要求1所述的主手操控装置,其特征在于,所述调姿部件还包括锁定机构。
  28. 根据权利要求27所述的主手操控装置,其特征在于,所述锁定机构包括:
    第一制动件,所述第一制动件锁定/解锁所述第一机构的转动;
    第二制动件,所述第二制动件锁定/解锁所述第二机构的转动。
  29. 根据权利要求27所述的主手操控装置,其特征在于,
    所述锁定机构包括多个电磁铁以及与所述多个电磁铁对应的多个状态检测单元,所述多个电磁铁沿所述末端控制组件的周侧设置,所述多个电磁铁通过通电/断电与所述末端控制组件连接/分离,从而锁定/解锁所述末端控制组件的姿态,所述多个状态检测单元检测所述多个电磁铁的状态并传输到通信装置。
  30. 根据权利要求29所述的主手操控装置,其特征在于,所述调姿部件还包括多个调姿触动开关,所述多个调姿触动开关沿所述末端控制组件的周侧设置。
  31. 根据权利要求29所述的主手操控装置,其特征在于,所述调姿部件还包括多个倾角检测件,所述多个倾角检测件沿所述末端控制组件的周侧设置,所述多个倾角检测件检测所述末端控制组件的倾角并传输到通信装置。
  32. 根据权利要求1所述的主手操控装置,其特征在于,
    还包括基座,所述基座包括座体和转动平台,所述转动平台和所述调姿部件的所述第一机构及所述第二机构连接,所述转动平台和所述座体可转动连接,所述转动平台相对于所述座体的转动平面平行于所述座体所在的平面,且所述转动平台与所述机器人的至少一个关节运动相关联。
  33. 根据权利要求32所述的主手操控装置,其特征在于,所述基座还包括驱动件和传动组件,所述驱动件通过所述传动组件驱动所述转动平台转动。
  34. 根据权利要求33所述的主手操控装置,其特征在于,
    所述传动组件包括相互啮合的蜗杆及涡轮,所述蜗杆与所述驱动件的输出端连接,所述涡轮与所述转动平台固定连接。
  35. 根据权利要求33所述的主手操控装置,其特征在于,所述传动组件包括主动轮和从动轮,所述主动轮和所述从动轮上套设同步带,所述主动轮与所述驱动件的输出端连接,所从动轮与所述转动平台固定连接。
  36. 根据权利要求32所述的主手操控装置,其特征在于,所述转动平台设置第五编码器,所述第五编码器检测所述转动平台的转动角度,并传输到通信装置。
  37. 根据权利要求1所述的主手操控装置,其特征在于,所述末端控制组件包括末端控制力反馈组件,所述末端控制力反馈组件基于末端控制力反馈信息对所述末端控制组件施加阻力。
  38. 根据权利要求1所述的主手操控装置,其特征在于,所述末端控制组件为穿刺针组件、手术剪切组件或缝合组件中至少之一。
  39. 一种机器人,其特征在于,包括机器人本体、末端执行器以及如权利要求1-38任一项所述的主手操控装置;所述末端执行器与所述机器人本体连接,所述机器人本体电连接通信装置,所述主手操控装置电连接所述通信装置和所述末端执行器。
PCT/CN2022/075244 2021-02-01 2022-01-30 一种用于机器人的主手操控装置及机器人 WO2022161498A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280012047.2A CN116829096A (zh) 2021-02-01 2022-01-30 一种用于机器人的主手操控装置及机器人
EP22745369.3A EP4272684A1 (en) 2021-02-01 2022-01-30 Master arm control device for robot, and robot
US18/363,689 US20230372043A1 (en) 2021-02-01 2023-08-01 Robot and master manipulator thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110135533.0 2021-02-01
CN202110135533.0A CN114831702A (zh) 2021-02-01 2021-02-01 穿刺机器人及主手控制器
CN202110454129.X 2021-04-26
CN202110454129.XA CN113116519B (zh) 2021-04-26 2021-04-26 一种力反馈主操作手及穿刺手术机器人系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/363,689 Continuation US20230372043A1 (en) 2021-02-01 2023-08-01 Robot and master manipulator thereof

Publications (1)

Publication Number Publication Date
WO2022161498A1 true WO2022161498A1 (zh) 2022-08-04

Family

ID=82653034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075244 WO2022161498A1 (zh) 2021-02-01 2022-01-30 一种用于机器人的主手操控装置及机器人

Country Status (4)

Country Link
US (1) US20230372043A1 (zh)
EP (1) EP4272684A1 (zh)
CN (1) CN116829096A (zh)
WO (1) WO2022161498A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377011B1 (en) * 2000-01-26 2002-04-23 Massachusetts Institute Of Technology Force feedback user interface for minimally invasive surgical simulator and teleoperator and other similar apparatus
CN103386687A (zh) * 2013-07-16 2013-11-13 河北工业大学 一种具有力觉临场感的2-dof机器人遥操作装置
CN103565529A (zh) * 2013-11-11 2014-02-12 哈尔滨工程大学 一种机器人辅助微创外科手术多功能器械臂
CN104690708A (zh) * 2014-01-16 2015-06-10 北京航空航天大学 一种力操作器平衡机构
CN107496031A (zh) * 2017-09-22 2017-12-22 山东电子职业技术学院 远程手术用多轴机械手及远程手术装置
CN107595395A (zh) * 2017-09-22 2018-01-19 山东电子职业技术学院 带有力反馈的远程手术操作系统
CN109009447A (zh) * 2017-06-08 2018-12-18 美好罗伯特有限公司 医疗器具的远程操作装置
US20200015917A1 (en) * 2016-12-15 2020-01-16 Intuitive Surgical Operations, Inc. Actuated grips for controller
CN111449758A (zh) * 2020-04-09 2020-07-28 山东大学 一种用于连续体手术机器人的主操作手及手术机器人
CN111604874A (zh) * 2020-05-22 2020-09-01 中国核工业电机运行技术开发有限公司 一种主从机械手的力反馈主手
CN112349191A (zh) * 2020-10-14 2021-02-09 北京众绘虚拟现实技术研究院有限公司 一种腹腔镜手术模拟并联力反馈机构
CN113116519A (zh) * 2021-04-26 2021-07-16 武汉联影智融医疗科技有限公司 一种力反馈主操作手及穿刺手术机器人系统
CN113208738A (zh) * 2021-04-26 2021-08-06 武汉联影智融医疗科技有限公司 穿刺机器人、主手控制器及力反馈穿刺进针控制器

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377011B1 (en) * 2000-01-26 2002-04-23 Massachusetts Institute Of Technology Force feedback user interface for minimally invasive surgical simulator and teleoperator and other similar apparatus
CN103386687A (zh) * 2013-07-16 2013-11-13 河北工业大学 一种具有力觉临场感的2-dof机器人遥操作装置
CN103565529A (zh) * 2013-11-11 2014-02-12 哈尔滨工程大学 一种机器人辅助微创外科手术多功能器械臂
CN104690708A (zh) * 2014-01-16 2015-06-10 北京航空航天大学 一种力操作器平衡机构
US20200015917A1 (en) * 2016-12-15 2020-01-16 Intuitive Surgical Operations, Inc. Actuated grips for controller
CN109009447A (zh) * 2017-06-08 2018-12-18 美好罗伯特有限公司 医疗器具的远程操作装置
CN107595395A (zh) * 2017-09-22 2018-01-19 山东电子职业技术学院 带有力反馈的远程手术操作系统
CN107496031A (zh) * 2017-09-22 2017-12-22 山东电子职业技术学院 远程手术用多轴机械手及远程手术装置
CN111449758A (zh) * 2020-04-09 2020-07-28 山东大学 一种用于连续体手术机器人的主操作手及手术机器人
CN111604874A (zh) * 2020-05-22 2020-09-01 中国核工业电机运行技术开发有限公司 一种主从机械手的力反馈主手
CN112349191A (zh) * 2020-10-14 2021-02-09 北京众绘虚拟现实技术研究院有限公司 一种腹腔镜手术模拟并联力反馈机构
CN113116519A (zh) * 2021-04-26 2021-07-16 武汉联影智融医疗科技有限公司 一种力反馈主操作手及穿刺手术机器人系统
CN113208738A (zh) * 2021-04-26 2021-08-06 武汉联影智融医疗科技有限公司 穿刺机器人、主手控制器及力反馈穿刺进针控制器

Also Published As

Publication number Publication date
CN116829096A (zh) 2023-09-29
EP4272684A1 (en) 2023-11-08
US20230372043A1 (en) 2023-11-23

Similar Documents

Publication Publication Date Title
CN108210070B (zh) 机械臂及其工作方法与手术机器人
US20210401518A1 (en) Control of computer-assisted tele-operated systems
US6723106B1 (en) Surgical manipulator
EP3342389B1 (en) Robotic operating table and hybrid operating system
CN111084661A (zh) 手术辅助装置及其控制方法、以及记录介质
CN116940299A (zh) 一种用于机器人的主手操控装置及机器人
US11266475B2 (en) Repositioning system for a remotely controllable manipulator and related methods
JP7393084B2 (ja) 触覚フィードバックを有する内視鏡カプセルシステム
WO2023046185A1 (zh) 穿刺手术主控台及穿刺机器人
EP1843713A1 (en) Robotized system for the control and micrometric actuation of an endoscope
CN109171967A (zh) 一种可灵活弯曲的手术机器人装置
WO2022161498A1 (zh) 一种用于机器人的主手操控装置及机器人
WO2017151850A1 (en) Input device handle for robotic surgical systems capable of large rotations about a roll axis
US20210212779A1 (en) Surgical robot based on ball-and-socket joint and tactile feedback and control device thereof
US11839518B2 (en) Treatment assistance equipment
CN114259301B (zh) 穿刺结构、主手控制器及穿刺机器人
WO2022161497A1 (zh) 一种用于机器人的主手操控装置及机器人
US20210290466A1 (en) Systems and methods for moving a surgical table
CN219306926U (zh) 一种用于机器人的主手操控装置及其手术机器人
CN217040293U (zh) 手术机器人从端操纵装置
CN217219055U (zh) 远程操作手及远程超声系统
EP4299032A1 (en) Master hand control device for robot, and robot
AU2021102466A4 (en) Surgical robot based on ball-and-socket joint and tactile feedback and control device thereof
US20230346378A1 (en) Surgical robotic systems and reloading modules thereof
WO2022001224A1 (zh) 手术机器人系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745369

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280012047.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022745369

Country of ref document: EP

Effective date: 20230801

NENP Non-entry into the national phase

Ref country code: DE