WO2022161192A1 - 一种spect三维重建图像左心室自动分割的方法 - Google Patents
一种spect三维重建图像左心室自动分割的方法 Download PDFInfo
- Publication number
- WO2022161192A1 WO2022161192A1 PCT/CN2022/072199 CN2022072199W WO2022161192A1 WO 2022161192 A1 WO2022161192 A1 WO 2022161192A1 CN 2022072199 W CN2022072199 W CN 2022072199W WO 2022161192 A1 WO2022161192 A1 WO 2022161192A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- spect
- segmentation
- left ventricle
- network
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 210000005240 left ventricle Anatomy 0.000 title claims abstract description 28
- 230000011218 segmentation Effects 0.000 claims abstract description 60
- 238000002603 single-photon emission computed tomography Methods 0.000 claims abstract description 42
- 230000002861 ventricular Effects 0.000 claims abstract description 40
- 238000000605 extraction Methods 0.000 claims abstract description 16
- 230000009466 transformation Effects 0.000 claims abstract description 14
- 238000012549 training Methods 0.000 claims abstract description 10
- 230000006870 function Effects 0.000 claims description 47
- 239000011159 matrix material Substances 0.000 claims description 12
- 238000013519 translation Methods 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 5
- 238000011176 pooling Methods 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 238000012952 Resampling Methods 0.000 claims description 2
- 230000000747 cardiac effect Effects 0.000 abstract description 16
- 238000013135 deep learning Methods 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 3
- 230000009467 reduction Effects 0.000 abstract description 2
- 238000004458 analytical method Methods 0.000 description 7
- 230000004913 activation Effects 0.000 description 3
- 238000003709 image segmentation Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000004217 heart function Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000003064 k means clustering Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 208000031225 myocardial ischemia Diseases 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 238000009206 nuclear medicine Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
- G06V10/267—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10108—Single photon emission computed tomography [SPECT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30048—Heart; Cardiac
Definitions
- the invention relates to the field of medical imaging and deep learning, in particular to a method for automatic segmentation of the left ventricle of a SPECT three-dimensional reconstructed image based on a deep learning network.
- SPECT cardiac imaging is currently the gold standard for clinical diagnosis of coronary heart disease, myocardial ischemia and other cardiovascular diseases, as well as for efficacy evaluation and prognosis judgment. lesions, providing more detailed functional activity information of myocardial tissue.
- clinical SPECT examination a series of operations and analysis are required on the reconstructed SPECT images.
- the calculation of the left ventricular ejection coefficient is an important indicator for evaluating cardiac function, which requires segmentation of the left ventricular cavity and ventricular wall. , calculated by extracting the left ventricular cavity volume at different heartbeat cycles.
- the clinical standard SPECT view of the heart is in the short axis SA direction, and since the long axis of the left ventricle is not parallel to the long axis of the human body, it is usually necessary to manually rotate the reconstructed SPECT image to obtain the standard SA view, and image in this view. Segmentation was used to calculate left ventricular ejection coefficient. At the same time, left ventricular images based on standard SA views can be used to prepare cardiac polar maps for activity analysis of left ventricular myocardium.
- Transferring images from the conventional RA view to the cardiac standard SA view for clinical analysis often requires manual operations by physicians. This subjective operation easily introduces random errors and affects the accuracy of analysis, and consumes a long manual operation time.
- the current common clinical nuclear medicine cardiac image analysis software mostly adopts conventional image processing segmentation methods, such as segmentation method based on left ventricular wall centerline, segmentation method based on left ventricular model, segmentation method based on cardiac atlas method, segmentation method based on threshold or k-means clustering, etc. Due to the low resolution of SPECT images and the fact that cardiac images are easily affected by breathing and heartbeat motion, the image motion boundary is blurred, and the current segmentation methods often have low segmentation accuracy when performing segmentation.
- the purpose of the present invention is to provide a method for automatic segmentation of the left ventricle of a SPECT three-dimensional reconstructed image based on a deep learning network in view of the deficiencies of the prior art.
- a method for automatic segmentation of the left ventricle of a SPECT three-dimensional reconstructed image comprising the following steps:
- Step 1 Perform downscaling and resampling on the conventional view RA of the SPECT 3D reconstructed image, and use the resampled downscaled conventional view RA-r as the input of the feature extraction network, which consists of a convolution module and a fully connected layer , utilize the convolution module to perform feature extraction on the reduced conventional view RA-r, and form a 6-dimensional feature vector T-r after the full connection is expanded, and the 6-dimensional feature vector T-r includes translation parameters in 3 directions and rotation parameters in 3 angles;
- Step 2 Adjust T-r to the feature vector T by using the proportional relationship between the regular view RA and the reduced regular view RA-r, wherein the rotation parameter is unchanged and the translation parameter is proportionally enlarged;
- Step 3 applying the feature vector T-r to the reduced conventional view RA-r to obtain a predicted reduced image SA-r' by using the spatial transformation network, and applying the feature vector T to the conventional view RA to obtain the predicted image SA';
- Step 4 Take the center of the predicted image SA' as the center, intercept the extracted heart part in the image to form the predicted heart image SA-H', and at the same time, perform image gradient calculation on the heart image SA-H' to obtain the corresponding gradient map SA-G ;
- Step 5 Integrate the heart image SA-H' and the gradient map SA-G into a two-channel image, extract image features through downsampling and upsampling of the 3D U-NET network, and perform segmentation processing through the softmax layer to obtain the predicted left ventricle Structural segmentation result F;
- L-img is the image loss function between the predicted reduced image SA-r' and the reduced standard view SA-r
- L-par is the difference between the feature vector T-r and the rigid registration parameter P-r
- the parameter loss function, L-seg is the label loss function between the predicted segmentation result F and the SA direction segmentation label G
- the reduced standard view SA-r is manually turned to the conventional view RA of the SPECT three-dimensional reconstructed image and reduced proportionally Obtained
- the rigid registration parameter P-r is the registration parameter between the reduced conventional view RA-r and the reduced standard view SA-r calculated by the rigid registration algorithm, including translation parameters in 3 directions and rotation parameters in 3 angles
- the SA direction segmentation label G includes 3 values of left ventricular cavity, ventricular wall and background, obtained by taking the heart image SA-H intercepted at the center of the standard view SA and manually delineating the ventricular cavity and ventricular wall of the left ventricle of the heart .
- the sizes of the reduced conventional view RA-r and the reduced standard view SA-r are preferably 64*64*64 voxels; the cardiac image SA-H and the predicted cardiac image SA-H' should cover the entire cardiac image. , and at the same time, it is best to include as little other high-intensity organ information as possible, preferably 32*32*32 voxel size.
- g x , g y , g z are the gradients in the x, y, and z directions, respectively, and the calculation formula is:
- i, j, and k are the coordinate indices in the three directions of x, y, and z in the image.
- the gradient image can better provide image boundary information, synchronously reading the gradient image can optimize the recognition of image edges by the network and further improve the effectiveness of the network for image segmentation.
- each convolution module includes a convolution layer and a pooling layer; the downsampling and upsampling of the three-dimensional U-NET network.
- the sampling is 4 times, in which downsampling includes convolutional layers and pooling layers, and upsampling includes convolutional layers and deconvolutional layers.
- the background is set to 0
- the left ventricular cavity is set to 1
- the left ventricular wall is set to 2.
- ⁇ , ⁇ and ⁇ are 1,100 and 10, respectively.
- the image loss function L-img adopts a mean square error function.
- parameter loss function L-par adopts an absolute value loss function L1 or a norm loss function L2.
- the present invention uses the deep learning network of multi-task learning to synchronously extract the position feature and the semantic feature of the image, and uses the mutual supervision of the dual network features to achieve the effect of network integration training to achieve different angles to standard views.
- the integration of automatic steering, cardiac positioning and left ventricular structure segmentation reduces the complexity and human error of manual steering and segmentation, realizes fully automatic image operation and improves accuracy, and the present invention further uses gradient images to increase the accuracy of the image.
- the accuracy of edge segmentation of image data is a deep learning network of multi-task learning to synchronously extract the position feature and the semantic feature of the image, and uses the mutual supervision of the dual network features to achieve the effect of network integration training to achieve different angles to standard views.
- FIG. 1 is a schematic flow chart of the automatic segmentation of the left ventricle of the SPECT three-dimensional image according to the present invention.
- Figure 2 is a schematic diagram of the automatic steering and positioning module in the structure of the SPECT three-dimensional image left ventricle automatic segmentation model.
- FIG. 3 is a schematic diagram of the automatic segmentation module in the structure of the automatic segmentation model of the left ventricle of the SPECT three-dimensional image.
- a method for automatic segmentation of the left ventricle of a SPECT three-dimensional reconstructed image based on a deep learning network proposed by the present invention is specifically: scaling the original SPECT three-dimensional reconstructed image of the chest to a size of 64*64*64 voxels by linear interpolation , using the feature extraction network to extract the rigid registration parameter features from the reduced image, and using the spatial transformation network and the extracted rigid registration parameter features to automatically turn the SPECT 3D reconstructed image to obtain the predicted image of the standard view, from the predicted image of the standard view.
- the central 32*32*32 voxel part is cut to obtain the cardiac image, and the image is automatically segmented through the U-NET network to obtain the segmentation result of the left ventricular structure under the standard view.
- the process is shown in Figure 1.
- the feature extraction network, the spatial transformation network and the U-NET network jointly use multi-task learning and training, and the total loss function of the training image loss function L-img, parameter loss function L-par and label loss function L-seg Joint loss function; through multi-task joint learning, the joint learning of the front and rear parts of the network and the optimization of the target can be guaranteed.
- SPECT three-dimensional image left ventricle automatic segmentation model (structure shown in Figure 2 and Figure 3) is provided to realize the integrated automatic steering, positioning and segmentation of the method of the present invention.
- the construction and training of the model specifically include the following step:
- Step 1 Acquire the conventional view RA of 600 cases of SPECT 3D reconstructed images, and manually turn to the standard view SA for clinical analysis with the left ventricle at the center of the image.
- the standard view SA take the center of the image as the center to intercept 32*32* 32-voxel size image to obtain the heart image SA-H and manually delineate the ventricular cavity and ventricular wall of the left ventricle of the heart to obtain the SA direction segmentation label G, and calculate the rigidity between the conventional view RA and the standard view SA through the rigid registration algorithm
- Both the regular view RA and the standard view SA are resampled to the reduced regular view RA-r and the reduced standard view SA-r with a size of 64*64*64 voxels by linear interpolation, and the rigid registration parameter P is adjusted to reduce the rigidity
- the parameter P-r is registered to form a mapping dataset of RA-r, SA-r and P-r of the SPECT image.
- the reduction rigid registration parameter P-r includes translation parameters in 3 directions and rotation parameters in 3 angles, the rotation parameters of P and P-r are the same, and the translation parameters are proportionally reduced according to the scaling ratio;
- the SA direction segmentation label G includes The 3 values of left ventricular cavity, ventricular wall and background, where the background value is 0, the left ventricular cavity value is 1, and the left ventricular wall value is 2.
- Step 2 Input the reduced regular view RA-r to the feature extraction network, use the convolution module to extract the features of the reduced regular view RA-r, and fully connect and expand to form a 6-dimensional feature vector T-r, using the equal ratio of P-r and P
- the relationship adjusts T-r to the eigenvector T of the same proportion as P, in which the rotation parameter is unchanged and the translation parameter is proportionally enlarged;
- FIG. 2 shows the structure of an embodiment of the automatic steering module, which includes a feature extraction network and a spatial transformation network.
- the convolution module in the feature extraction network consists of 3 ⁇ 3 ⁇ 3 convolution units and Relu activation function units.
- Step 3 The feature vector T-r is applied to the regular view RA-r through the spatial transformation network to obtain the predicted reduced image SA-r', and the feature vector T is applied to the SPECT reconstructed image regular view RA to obtain the predicted image SA' (Fig. 2); Taking the center of the predicted image SA' as the center, intercept an image with a size of 32*32*32 voxels to extract the heart part, and form a heart image SA-H'. Calculate and generate the gradient map SA-G of the SA-r' image ( Figure 3), where the calculation formula obtained by the gradient map SA-G is:
- g x , g y , g z are the gradients in the x, y, and z directions, respectively, and the calculation formula is:
- i, j, and k are the coordinate indices in the three directions of x, y, and z in the image.
- Step 4 Further integrate the cardiac image SA-H' and the gradient map SA-G into a two-channel image and use the three-dimensional U-NET network to obtain the predicted left ventricular structure segmentation result F.
- Figure 3 shows an example structure of the image segmentation module.
- the convolution module is composed of a 3 ⁇ 3 ⁇ 3 convolution unit (Convolution, Conv.) and a Relu activation function unit, and the upsampling module is composed of a 3 ⁇ 3 ⁇ 3 transposed volume.
- the product unit (Transpose Convolution, Trans.Conv.) and the Relu activation function unit are composed.
- the last module is connected to the softmax layer through a 1 ⁇ 1 ⁇ 1 convolution unit to achieve the output of the final segmentation result.
- the dashed lines represent the bi-level information that replicates the cropping operation on the data to combine the image and features.
- Step 5 Build the image loss function L-img between the predicted reduced image SA-r' and the reduced standard view RA-r, the parameter loss function L-par between the feature vector T-r and the rigid registration parameter P-r, and the predicted segmentation result
- the label loss function L-seg between the segmentation labels G in the F and SA directions is used to train and optimize the network to obtain an automatic segmentation model of the left ventricle in SPECT 3D images.
- the specific implementation is subdivided into the following sub-steps:
- the training of the automatic segmentation model is a multi-task learning process, and the loss matrix will contain the constraint information of the RA-r to SA-r steering model and the constraint information of the segmentation model from SA-H to the segmentation result F,
- the learning objectives of multiple tasks together form constraints on the overall network to train this automatic segmentation model.
- the image loss function L-img of the steering model part adopts the mean square error function between the predicted image and the reference image, and the corresponding rigid registration parameter loss function L-par adopts the absolute value loss function L1 or the norm loss function L2.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Quality & Reliability (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
- Nuclear Medicine (AREA)
Abstract
Description
Claims (10)
- 一种SPECT三维重建图像左心室自动分割的方法,其特征在于,包括以下步骤:步骤一:对SPECT三维重建图像的常规视图RA进行缩小重采样,并将重采样后的缩小常规视图RA-r作为特征提取网络的输入,所述特征提取网络由卷积模块和全连接层组成,利用卷积模块对缩小常规视图RA-r进行特征提取,并全连接展开后形成6维特征向量T-r,所述6维特征向量T-r包含3个方向的平移参量和3个角度的旋转参量;步骤二:利用常规视图RA与缩小常规视图RA-r的等比例关系将T-r调整为特征向量T,其中旋转参量不变而平移参量等比例放大;步骤三:利用空间变换网络将特征向量T-r应用于缩小常规视图RA-r中得到预测缩小图像SA-r’,同时将特征向量T应用于常规视图RA中得到预测图像SA’;步骤四:以预测图像SA’的中心为中心,截取图像中的心脏部分,形成预测心脏图像SA-H’,同时,对预测心脏图像SA-H’进行图像梯度计算获得对应梯度图SA-G;步骤五:将预测心脏图像SA-H’和梯度图SA-G融合为双通道图像并经过三维U-NET网络的下采样及上采样提取图像特征并经过softmax层进行分割处理即获得预测的左心室结构分割结果F;其中,所述特征提取网络、空间变换网络和三维U-NET网络联合采用多任务共同学习训练,训练的总损失函数L=δL-par+μL-img+λL-seg;其中δ、μ和λ为权重系数;L-img为预测缩小图像SA-r’与缩小标准视图SA-r之间的图像损失函数、L-par为特征向量T-r与刚性配准参数P-r之间的参数损失函数,L-seg为预测分割结果F与SA方向分割标签G之间的标签损失函数;所述缩小标准视图SA-r通过手动转向SPECT三维重建图像的常规视图RA并按等比例缩小获得;所述刚性配准参数P-r为刚性配准算法计算的缩小常规视图RA-r与缩小标准视图SA-r之间的配准参数,包含3个方向的平移参量和3个角度的旋转参量;所述SA方向分割标签G包含左心室腔、心室壁及背景的3个数值,通过以标准视图SA中心为中心截取的心脏图像SA-H并手动勾画心脏左心室的心室腔及心室壁获得。
- 根据权利要求1所述SPECT三维重建图像左心室自动分割的方法,其特征在于,所述缩小常规视图RA-r、缩小标准视图SA-r的尺寸为64*64*64体素大小;心脏图像SA-H和预测心脏图像SA-H’的尺寸为32*32*32体素大小。
- 根据权利要求1所述SPECT三维重建图像左心室自动分割的方法,其特征在于,所述特征提取网络的卷积模块、全连接层的个数均为3个,每个卷积模块包含卷积层和池化层;所述三维U-NET网络的下采样及上采样均为4个,其中下采样包含卷积层和池化层,上采样包含卷积层和反卷积层。
- 根据权利要求1所述SPECT三维重建图像左心室自动分割的方法,其特征在于,所述SA方向分割标签G中,将背景设置为0,左心室腔设置为1,左心室壁设置为2。
- 根据权利要求1所述SPECT三维重建图像左心室自动分割的方法,其特征在于,所述δ、μ和λ分别取值为1,100和10。
- 根据权利要求1所述SPECT三维重建图像左心室自动分割的方法,其特征在于,所述图像损失函数L-img采用均方差函数。
- 根据权利要求1所述SPECT三维重建图像左心室自动分割的方法,其特征在于,所述参数损失函数L-par采用绝对值损失函数L1或范数损失函数L2。
- 根据权利要求1所述SPECT三维重建图像左心室自动分割的方法,其特征在于,所述标签损失函数L-seg采用Dice-loss损失函数,其中,分别对左心室腔及左心室壁计算标签损失函数L-seg-1及L-seg-2,最终L-seg=L-seg-2+L-seg-1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022564825A JP7270319B2 (ja) | 2021-02-01 | 2022-01-15 | Spectの3次元再構成画像の左心室自動分割方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110135783.4 | 2021-02-01 | ||
CN202110135783.4A CN112508949B (zh) | 2021-02-01 | 2021-02-01 | 一种spect三维重建图像左心室自动分割的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022161192A1 true WO2022161192A1 (zh) | 2022-08-04 |
Family
ID=74953088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/072199 WO2022161192A1 (zh) | 2021-02-01 | 2022-01-15 | 一种spect三维重建图像左心室自动分割的方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7270319B2 (zh) |
CN (1) | CN112508949B (zh) |
WO (1) | WO2022161192A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116934768A (zh) * | 2023-08-16 | 2023-10-24 | 中国人民解放军总医院 | 用于提高cta影像模态中血管分割精度的方法及系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112508949B (zh) * | 2021-02-01 | 2021-05-11 | 之江实验室 | 一种spect三维重建图像左心室自动分割的方法 |
CN113516658B (zh) * | 2021-09-14 | 2021-12-17 | 之江实验室 | 一种pet三维图像左心室自动转向及分割的方法 |
CN113838068A (zh) * | 2021-09-27 | 2021-12-24 | 深圳科亚医疗科技有限公司 | 心肌节段的自动分割方法、装置和存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109584254A (zh) * | 2019-01-07 | 2019-04-05 | 浙江大学 | 一种基于深层全卷积神经网络的心脏左心室分割方法 |
CN110120051A (zh) * | 2019-05-10 | 2019-08-13 | 上海理工大学 | 一种基于深度学习的右心室自动分割方法 |
CN110163876A (zh) * | 2019-05-24 | 2019-08-23 | 山东师范大学 | 基于多特征融合的左心室分割方法、系统、设备及介质 |
WO2020019740A1 (zh) * | 2018-07-24 | 2020-01-30 | 深圳先进技术研究院 | 左心室心肌分割方法、装置及计算机可读存储介质 |
CN111242956A (zh) * | 2020-01-09 | 2020-06-05 | 西北工业大学 | 基于U-Net超声胎心和胎肺深度学习联合分割方法 |
CN112508949A (zh) * | 2021-02-01 | 2021-03-16 | 之江实验室 | 一种spect三维重建图像左心室自动分割的方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150099169A (ko) * | 2014-02-21 | 2015-08-31 | 전남대학교병원 | 심근관류 측정방법 및 그를 이용한 심장 허혈 진단방법 |
CN107545584B (zh) * | 2017-04-28 | 2021-05-18 | 上海联影医疗科技股份有限公司 | 医学图像中定位感兴趣区域的方法、装置及其系统 |
CN107220965B (zh) * | 2017-05-05 | 2021-03-09 | 上海联影医疗科技股份有限公司 | 一种图像分割方法及系统 |
JP6483875B1 (ja) | 2018-01-25 | 2019-03-13 | 日本メジフィジックス株式会社 | 心筋画像表示方法、心筋画像表示処理プログラム及び心筋画像処理装置 |
CN109801294A (zh) * | 2018-12-14 | 2019-05-24 | 深圳先进技术研究院 | 三维左心房分割方法、装置、终端设备及存储介质 |
JP2019128358A (ja) | 2019-02-13 | 2019-08-01 | 日本メジフィジックス株式会社 | 心筋画像表示方法、心筋画像表示処理プログラム及び心筋画像処理装置 |
CN111340186B (zh) * | 2020-02-17 | 2022-10-21 | 之江实验室 | 基于张量分解的压缩表示学习方法 |
CN111369537A (zh) * | 2020-03-05 | 2020-07-03 | 上海市肺科医院(上海市职业病防治院) | 一种肺磨玻璃结节的自动分割系统及方法 |
CN111739161B (zh) * | 2020-07-23 | 2020-11-20 | 之江实验室 | 一种有遮挡情况下的人体三维重建方法、装置及电子设备 |
-
2021
- 2021-02-01 CN CN202110135783.4A patent/CN112508949B/zh active Active
-
2022
- 2022-01-15 JP JP2022564825A patent/JP7270319B2/ja active Active
- 2022-01-15 WO PCT/CN2022/072199 patent/WO2022161192A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020019740A1 (zh) * | 2018-07-24 | 2020-01-30 | 深圳先进技术研究院 | 左心室心肌分割方法、装置及计算机可读存储介质 |
CN109584254A (zh) * | 2019-01-07 | 2019-04-05 | 浙江大学 | 一种基于深层全卷积神经网络的心脏左心室分割方法 |
CN110120051A (zh) * | 2019-05-10 | 2019-08-13 | 上海理工大学 | 一种基于深度学习的右心室自动分割方法 |
CN110163876A (zh) * | 2019-05-24 | 2019-08-23 | 山东师范大学 | 基于多特征融合的左心室分割方法、系统、设备及介质 |
CN111242956A (zh) * | 2020-01-09 | 2020-06-05 | 西北工业大学 | 基于U-Net超声胎心和胎肺深度学习联合分割方法 |
CN112508949A (zh) * | 2021-02-01 | 2021-03-16 | 之江实验室 | 一种spect三维重建图像左心室自动分割的方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116934768A (zh) * | 2023-08-16 | 2023-10-24 | 中国人民解放军总医院 | 用于提高cta影像模态中血管分割精度的方法及系统 |
CN116934768B (zh) * | 2023-08-16 | 2024-05-10 | 中国人民解放军总医院 | 用于提高cta影像模态中血管分割精度的方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN112508949B (zh) | 2021-05-11 |
JP7270319B2 (ja) | 2023-05-10 |
CN112508949A (zh) | 2021-03-16 |
JP2023516227A (ja) | 2023-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022161192A1 (zh) | 一种spect三维重建图像左心室自动分割的方法 | |
US20230104173A1 (en) | Method and system for determining blood vessel information in an image | |
CN109166133B (zh) | 基于关键点检测和深度学习的软组织器官图像分割方法 | |
Lötjönen et al. | Statistical shape model of atria, ventricles and epicardium from short-and long-axis MR images | |
Zheng et al. | Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features | |
Zhuang et al. | A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI | |
US7359538B2 (en) | Detection and analysis of lesions in contact with a structural boundary | |
CN113570627B (zh) | 深度学习分割网络的训练方法及医学图像分割方法 | |
WO2023040628A1 (zh) | 一种pet三维图像左心室自动转向及分割的方法 | |
Cai et al. | A framework combining window width-level adjustment and Gaussian filter-based multi-resolution for automatic whole heart segmentation | |
CN115830016B (zh) | 医学图像配准模型训练方法及设备 | |
US20230394670A1 (en) | Anatomically-informed deep learning on contrast-enhanced cardiac mri for scar segmentation and clinical feature extraction | |
CN114170150A (zh) | 基于曲率损失函数的视网膜渗出液全自动分割方法 | |
CN107909653B (zh) | 一种基于稀疏主成分分析的心脏软组织三维重建方法 | |
CN112164447B (zh) | 图像处理方法、装置、设备及存储介质 | |
CN111862320B (zh) | 一种spect三维重建图像到标准视图的自动转向方法 | |
CN112598669B (zh) | 一种基于数字人技术的肺叶分割方法 | |
Lötjönen et al. | Four-chamber 3-D statistical shape model from cardiac short-axis and long-axis MR images | |
Li et al. | 3D intersubject warping and registration of pulmonary CT images for a human lung model | |
Villard et al. | ISACHI: integrated segmentation and alignment correction for heart images | |
CN111667515A (zh) | 基于流形正则化的血管3d/2d弹性配准方法及装置 | |
Cheng et al. | 3-D Reconstruction of Medical Image Using Wavelet Transform and Snake Model. | |
CN114820754B (zh) | 一种基于模板匹配的心脏四腔心自动定位方法 | |
Saif et al. | Localization of Left Ventricular Epicardium and Endocardium Using Convolutional Neural Network and Transfer Learning | |
CN117422684A (zh) | 一种心脏磁共振左心室心肌自动化分段方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22745069 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022564825 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22745069 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22745069 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12-02-2024) |