WO2022161115A1 - 电源适配器、手机自助快速充电系统、快速充电使用方法 - Google Patents

电源适配器、手机自助快速充电系统、快速充电使用方法 Download PDF

Info

Publication number
WO2022161115A1
WO2022161115A1 PCT/CN2022/000019 CN2022000019W WO2022161115A1 WO 2022161115 A1 WO2022161115 A1 WO 2022161115A1 CN 2022000019 W CN2022000019 W CN 2022000019W WO 2022161115 A1 WO2022161115 A1 WO 2022161115A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
interface
communication
power adapter
user
Prior art date
Application number
PCT/CN2022/000019
Other languages
English (en)
French (fr)
Other versions
WO2022161115A9 (zh
Inventor
郝韵涵
Original Assignee
郝韵涵
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110158579.4A external-priority patent/CN114928122A/zh
Application filed by 郝韵涵 filed Critical 郝韵涵
Publication of WO2022161115A1 publication Critical patent/WO2022161115A1/zh
Publication of WO2022161115A9 publication Critical patent/WO2022161115A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the invention discloses a power adapter with a communication and on-off system, which belongs to the technical field of power adapters. At the same time, a mobile phone self-service fast charging system is also disclosed, and a fast charging method is also disclosed.
  • smartphone penetration rates are: South Korea 67%, China 66%, Australia 65%, Italy 62%, UK 61%, US 53%, Russia 37%, Brazil 36%, Turkey 19%, India 10%.
  • Smartphones are still rapidly gaining popularity.
  • the screen of the smartphone is large, and the screen itself consumes a lot of power
  • the mobile network is not turned off or the WIFI search is not turned off;
  • the PD charging protocol is a power transmission protocol announced by the USB-IF organization. It can increase the type-c interface with the current default maximum power of 5V/2A to 100W. At the same time, Google announced that the fast charging protocol carried by mobile phones above Android 7.0 must support PD. The agreement is intended to unify the fast charging market.
  • USB-Power Delivery is one of the mainstream fast charging protocols. It is a fast charging specification developed by the USB-IF organization. . USBPD increases power delivery through USB cables and connectors, extending cable bus power capabilities in USB applications. This specification enables higher voltages and currents, delivers up to 100 watts of power, and can freely change the direction of power delivery.
  • USBPD is a fast charging protocol
  • Type-C is a new interface specification.
  • the Type-C interface supports a maximum of 5V/3A by default, but after implementing the USBPD protocol, the output power can be supported to a maximum of 100W as mentioned above. So now many devices with practical Type-C interface will support the USBPD protocol.
  • USBPD has now developed to USBPD3.0 version. Under the promotion of Google, USBPD has incorporated Qualcomm's QC fast charging protocol, and has received support from the Ministry of Industry and Information Technology of China. It is expected to unify the currently chaotic fast charging market in the near future.
  • the USB-PD fast charging protocol can increase power transmission through USB cables and connectors, expand the cable bus power supply capability in USB applications, so as to achieve the purpose of increasing the charging voltage or current, and can freely change the direction of power transmission.
  • the Type-C interface supports a maximum of 15W (5V/3A) by default, but after implementing the USB-PD protocol, the output power can be supported to a maximum of 100W (20V/5A). Therefore, many devices with practical Type-C interface now support the USB PD protocol.
  • One of the objectives of the present invention is to provide a power adapter with a communication and on-off system to meet the needs of building a fast charging system.
  • the second purpose of the present invention is to provide a mobile phone self-service fast charging system, which connects the power adapter with the communication and on-off system, the user's smart phone, the remote server, and the manager's smart phone to meet the needs of the user at any time. Anywhere fast charging needs.
  • the third purpose of the present invention is to provide a method for using fast charging, which satisfies the user for calculating and paying electricity charges and service charges after fast charging and charging are completed.
  • a power adapter with a communication and on-off system including a power adapter, is characterized in that it also includes a communication and on-off system, the communication and on-off system includes a communication module, an on-off module and a microcontroller, and the The communication module and the on-off module are electrically connected with the microcontroller; the on-off module is connected to the main circuit, and the input end of the power adapter is connected with the output end of the communication and on-off system.
  • a mobile phone self-service fast charging system A characterized in that it includes:
  • a power adapter with a communication and on-off system the input end of the power adapter with a communication and on-off system is connected to a 220V power supply, and the output end of the power adapter with a communication and on-off system is connected to a cable one end of the connection;
  • a cable, the USB interface at one end of the cable is connected to the output end of the power adapter with the communication and on-off system, and the MicroUSB interface at the other end, or the USB Type-C interface, or the Lightning interface and the charging interface of the mobile phone connection; or, the wireless charging interface at the other end is in contact with the wireless charging interface of the mobile phone;
  • the charging interface of the user smartphone is connected to the MicroUSB interface, or the USB Type-C interface, or the Lightning interface at the other end of the cable; or, the wireless charging interface of the user smartphone is connected to the cable Connect the wireless charging interface on the other end of the cable to the other end;
  • a remote server, the power adapter with a communication and on-off system and the user's smart phone establish a signal connection relationship with the remote server through a network system.
  • a mobile phone self-service fast charging system B characterized in that it includes:
  • a smart socket the input end of the smart socket is connected to the 220V power supply;
  • the input end of the power adapter is connected with the output end of the smart socket, and the output end of the power adapter is connected with one end of the cable;
  • a cable, the USB interface at one end of the cable is connected to the output end of the power adapter, and the MicroUSB interface at the other end, or the USB Type-C interface, or the Lightning interface is connected with the charging interface of the mobile phone; or, the wireless interface at the other end is connected
  • the charging interface is in contact with the wireless charging interface of the mobile phone;
  • the charging interface of the user smartphone is connected to the MicroUSB interface, or the USB Type-C interface, or the Lightning interface at the other end of the cable; or, the wireless charging interface of the user smartphone is connected to the cable Connect the wireless charging interface on the other end of the cable to the other end;
  • a remote server, the smart socket and the user's smart phone establish a signal connection relationship with the remote server through a network system.
  • a method for using fast charging comprising a mobile phone self-service fast charging system A as claimed in claim 6 or 7, including a mobile phone self-service fast charging system B as claimed in claim 8 or 9, comprising the following steps:
  • Step S1 the user's smartphone and the cable establish a physical connection, and the physical connection is to connect the charging interface of the user's smartphone with the MicroUSB interface, or the USB Type-C interface, or the Lightning interface at the other end of the cable ; Or, contact and connect the wireless charging interface of the user's smartphone with the wireless charging interface at the other end of the cable;
  • Step S2 establishing a signal connection between the user's smartphone and the remote server
  • Step S3 setting the charging end mode
  • Step S4 the charging ends and the fee is paid.
  • the communication module is one of WIFI communication module, Bluetooth communication module, ZigBee communication module, GPRS wireless communication module, 3G communication module, 4G communication module, 5G communication module, 6G communication module and 7G communication module.
  • the on-off module includes at least one relay, or at least one field effect transistor.
  • the electric energy measurement unit includes a sampling resistor and an electric energy measurement chip, the sampling resistor is connected with the electric energy measurement chip in an electrical signal, and the electric energy measurement chip is connected with the microcontroller with an electric signal signal , the sampling resistor is connected with the main circuit in a voltage division manner.
  • a key switch and an LED indicator light are also included, and the key switch and the LED indicator light are electrically connected to the microcontroller, or connected to the microcontroller via a current limiting resistor.
  • it also includes a management terminal, which can exchange information with the remote server, and can also exchange information with the power adapter with a communication and on-off system.
  • a management terminal which can exchange information with the remote server, and can also exchange information with the power adapter with a communication and on-off system.
  • establishing a signal connection between the user's smartphone and the remote server includes the following steps:
  • Step S21 open the mobile phone self-service fast charging APP
  • Step S22 click the icon in the APP to open the camera
  • Step S23 acquiring the power adapter with the communication and on-off system or the two-dimensional code information or one-dimensional code information on the surface of the power adapter;
  • Step S24 the APP identifies the ID number of the power adapter with the communication and on-off system, or the ID number of the power adapter, or the ID number of the smart socket;
  • Step S25 the APP sends the ID number to the remote server
  • Step S26 the remote server sends an instruction to the power adapter with the ID number or the smart socket, so that the power adapter obtains power input.
  • the setting of the charging end mode includes the following modes to choose from: or setting the charging time; or setting the percentage of the charging power of the mobile phone battery to reach the set value; or setting the charging interface of the user's smartphone to match the The MicroUSB port on the other end of the cable, or the USB Type-C port, or the Lightning port is separated.
  • determining that the percentage of charging power of the mobile phone battery reaches the set value includes the following steps:
  • Step K1 start charging to obtain the current power value of the mobile phone battery and save it in "levelStart”;
  • Step K2 the charging starts to obtain the total power value of the mobile phone battery and save it in "ScaleTotal";
  • Step K4 after the charging is completed, the current power value of the mobile phone battery is obtained and stored in "levelEnd";
  • the charging is completed and the fee is paid, including the following steps:
  • Step S41 after the charging is completed, the power adapter with the communication and on-off system or the smart socket sends the charging power statistics information to the mobile phone self-service fast charging APP or the remote server;
  • Step S42 after the remote server processes the statistical information of the charging electric energy, sends the cost information to the mobile phone self-service fast charging APP of the user's smart phone;
  • Step S43 after the user confirms the fee information, the user pays the fee through the mobile phone self-service fast charging APP.
  • step S1 when the user's smartphone is turned off due to low power, after completing the operation of step S1 (that is, the user's smartphone and the cable establish a physical connection, the physical connection is a charging interface of the user's smartphone Connect to the MicroUSB interface, or the USB Type-C interface, or the Lightning interface at the other end of the cable; or, connect the wireless charging interface of the user's smartphone to the wireless charging interface at the other end of the cable.)
  • Steps Click the button switch of the power adapter with the communication and on-off system at least once, or click the button switch of the smart socket at least once to directly obtain the shutdown and charging time ⁇ t seconds, within ⁇ t seconds the user It should be powered on and complete the operations of step S2, step S3, and step S4 as claimed in claim 10.
  • Figure 1 is a schematic block diagram of a power adapter with a communication and on-off system.
  • Fig. 2 is the second principle block diagram of the power adapter with the communication and on-off system.
  • Fig. 3 is the third principle block diagram of the power adapter with the communication and on-off system.
  • Fig. 4 is the circuit schematic diagram of the connection between the microcontroller and the relay.
  • Figure 5 is a schematic diagram of the power supply unit circuit of the A-type power adapter.
  • Fig. 6 is the circuit schematic diagram of the battery sampling unit of the A-type power adapter.
  • FIG. 7 is a circuit schematic diagram of the logic processing unit of the A-type power adapter.
  • FIG. 8 is a circuit schematic diagram of the battery protection circuit of the A-type power adapter.
  • FIG. 9 is a circuit schematic diagram of a type A power adapter.
  • FIG. 10 is an embodiment of a power adapter with a communication and on-off system.
  • FIG. 11 is a schematic block diagram 1 of the mobile phone self-service fast charging system A.
  • Figure 12 is the physical schematic diagram of the mobile phone self-service fast charging system A (not connected).
  • FIG. 13 is the second principle block diagram of the mobile phone self-service fast charging system A.
  • FIG. 14 is a schematic block diagram 1 of the mobile phone self-service fast charging system B.
  • FIG. 14 is a schematic block diagram 1 of the mobile phone self-service fast charging system B.
  • FIG. 15 is a schematic diagram of the front and back structures of the smart socket.
  • FIG. 16 is a schematic structural diagram of a smart socket and a power adapter (not connected).
  • FIG. 17 is a schematic structural diagram of a smart socket, a power adapter and a cable.
  • Figure 18 is a physical schematic diagram 1 of the mobile phone self-service fast charging system B (not connected).
  • FIG. 19 is the second principle block diagram of the mobile phone self-service fast charging system B.
  • FIG. 19 is the second principle block diagram of the mobile phone self-service fast charging system B.
  • FIG. 20 is the third principle block diagram of the mobile phone self-service fast charging system B.
  • FIG. 20 is the third principle block diagram of the mobile phone self-service fast charging system B.
  • FIG. 21 is a fourth functional block diagram of the mobile phone self-service fast charging system B.
  • the reference numerals are summarized as follows: 1-communication and on-off system; 11-microcontroller; 12-communication module; 13A-on-off module; 13B-on-off module; 2-power adapter; 3-main circuit; 4 -Energy measurement unit; 41-Energy measurement chip; 42-Sampling resistor; 5-Power adapter with communication and on-off system; 5A-Power adapter; 6-Cable; 7-User smartphone; 8-Remote server; 9-smart socket; 10-management terminal.
  • This embodiment takes an A-type power adapter as an example to describe a method for implementing a power adapter with a communication and switching system.
  • circuit schematic diagram of the latest power adapter on the market will be used to provide the latest fast charging protocol for users' smartphones, such as USB-PD fast charging protocol, QC fast charging protocol, etc.
  • FIG. 5 a schematic diagram of the power supply unit circuit of the A-type power adapter.
  • the power supply unit is the energy supply station of each unit, which consists of a transformer, a full-bridge rectifier, and a three-terminal voltage stabilizer.
  • the transformer converts 220V AC into 15V AC, and then converts the AC into DC through a full-bridge rectifier circuit.
  • Two electrolytic capacitors are used as low-frequency filtering for the power supply.
  • the 7809 stabilizes the power supply voltage and outputs a relatively stable DC voltage.
  • FIG. 6 it is a circuit schematic diagram of the battery sampling unit of the A-type power adapter.
  • the battery sampling unit is responsible for sampling the remaining battery power and feeds it back to the logic unit.
  • the decision of the logic unit depends entirely on the battery sampling unit.
  • V5 prevents the battery from discharging and plays a protective role.
  • R7 performs a sampling resistor on the battery, and then the sampling voltage is compared with the reference voltage.
  • FIG. 7 it is a circuit schematic diagram of the logic processing unit of the A-type power adapter.
  • the logic processing unit is the intermediate station of the battery charging circuit. Each process needs to go through the logic processing part of the circuit. It makes a logic decision on the battery sampling unit, and determines whether the battery is charged with constant current or constant voltage according to the sampling value.
  • the logic processing unit compares the voltage sampled by the battery with the reference voltage to determine the charging mode of the battery.
  • the reference voltage is satisfied by the V2 tube. Therefore, the selection of the V2 tube must reach the critical voltage of constant current and constant voltage, and use IN5991 to meet;
  • the discharge tube selects 741 (single integrated op amp) for comparison (sampling voltage and reference voltage); then performs a proportional operation to amplify the voltage difference, the quotient of the sum of R8, R10 and R9 is the magnification multiple, and the same is true , R15, R12 and the quotient of R14 are the multiples of amplification, whether the output voltage meets the voltage of the constant current or constant voltage mode.
  • the sampling voltage is 3V and the reference voltage is 4.3V
  • the output voltage is (3-4.3)*110V, which is a negative value
  • the charging mode is constant current charging mode. Only when the sampling voltage is slightly larger than the reference voltage, the into the constant voltage charging mode.
  • FIG. 8 a circuit schematic diagram of the battery protection circuit of the A-type power adapter.
  • the lithium battery charger protection circuit is an indispensable part of the battery charging circuit. It is mainly to prevent battery overcharge; the circuit is mainly composed of lithium battery protection special integrated circuit DW01, charge and discharge control MOSFET1 (including two N-channel MOSFETs). ) and other parts, the single lithium battery is connected between B+ and B-, and the battery pack outputs voltage from +VCC and -VCC.
  • the output voltage of the charger When charging, the output voltage of the charger is connected between +VCC and -VCC, the current is from +VCC to B+ and B- of the single battery, and then goes through the charging control MOSFET to -VCC.
  • the OC pin output signal of the special integrated circuit DW01 turns off the charging control MOSFET, and the lithium battery stops charging immediately, thereby preventing the lithium battery from being damaged due to overcharging.
  • the output signal of the OD pin of DW01 turns off the discharge control MOSFET, and the lithium battery stops discharging immediately, thereby preventing the lithium battery from being damaged due to overdischarge.
  • the CS pin of DW01 is The current detection pin, when the output is short-circuited, the conduction voltage drop of the charge-discharge control MOSFET increases sharply, the CS pin voltage rises rapidly, and the DW01 output signal turns off the charge-discharge control MOSFET quickly, thereby realizing overcurrent or short-circuit protection.
  • FIG. 9 the circuit schematic diagram of the A-type power adapter.
  • a power adapter with a communication and on-off system including a power adapter 2, is characterized in that it also includes a communication and on-off system 1, and the communication and on-off system 1 includes a communication module 12, on-off modules (13A, 13B) and the microcontroller 11, the communication module 12 and the on-off module (13A, 13B) are electrically connected to the microcontroller 11; the on-off module (13A, 13B) is connected to the main circuit 3.
  • the input end of the power adapter 2 is connected to the output end of the communication and switching system 1.
  • Points X and Y in the schematic circuit diagram of FIG. 1 are the same as points X and Y in FIG. 5 .
  • the microcontroller 11 adopts 88MC200-NAP2 high-integration low-power microcontroller.
  • 88MC200 chip adopts ARM Cortex M3 core, running speed 200M, built-in 1M FlashROM and 512K RAM, 88MC200 microcontroller is mostly used as the main control chip of smart hardware and smart home products.
  • the WiFi communication chip adopts Marvell 88W8801-NMD2 SoC chip, which supports 2.4G frequency band 802.11n wireless protocol.
  • On-off modules (13A, 13B) use 250V 10A mechanical relay OJ-SS-105HM.
  • the on-off module 13A is connected to the main circuit 3, and the on-off module 13B is connected to the neutral line. This connection method ensures the reliability of on-off control.
  • the on-off module uses two relays (J1, J2) to be installed on the live wire and the neutral wire respectively, J1 is 13A; J2 is 13B.
  • FIG. 10 it is an embodiment of a power adapter with a communication and switching system.
  • the circuit diagram in FIG. 1 (the principle block diagram of the power adapter with the communication and on-off system) is connected with the circuit diagram in FIG. 9 (the circuit diagram of the A-type power adapter), that is, the two circuits are The X points are connected together and the Y points are connected together.
  • the circuit diagram in FIG. 9 is replaced by the circuit diagram in FIG. 5 (the circuit schematic diagram of the power supply unit of the A-type power adapter) in FIG. 10 .
  • This embodiment provides an innovative power adapter with a communication and on-off system (the power adapter 5 in the third embodiment), which provides a technical guarantee for the implementation of the third and fourth embodiments.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the technical solution further includes an electric energy measurement unit 4, the electric energy measurement unit 4 includes a sampling resistor 42 and an electric energy measurement chip 41, the sampling resistor 42 is electrically connected to the electric energy measurement chip 41, and the electric energy measurement chip 41 is connected to the electric energy measurement chip 41.
  • the microcontroller 11 is connected with an electrical signal, and the sampling resistor 42 is connected with the main circuit 3 in a voltage division manner.
  • This embodiment enables the "power adapter with a communication and on-off system" to have an energy metering function, and the consumption of the present invention plays an important role in the application scenario of energy saving and emission reduction.
  • FIG. 11 the first schematic diagram of the mobile phone self-service fast charging system A.
  • This embodiment builds a mobile phone self-service fast charging system A, which is characterized in that it includes:
  • a power adapter 5 with a communication and on-off system the input end of the power adapter 5 with a communication and on-off system is connected to a 220V power supply, and the output end of the power adapter 5 with a communication and on-off system Connect with one end of the cable 6;
  • a cable 6, the USB interface at one end of the cable 6 is connected to the output end of the power adapter 5 with the communication and on-off system, and the MicroUSB interface at the other end, or the USB Type-C interface, or the Lightning interface and the mobile phone
  • the wireless charging interface of the other end is connected to the wireless charging interface of the mobile phone
  • a user smartphone 7, the charging interface of the user smartphone 7 is connected to the MicroUSB interface, or the USB Type-C interface, or the Lightning interface at the other end of the cable 6; or, the wireless charging interface of the user smartphone 7 contact and connect with the wireless charging interface at the other end of the cable 6;
  • the remote server 8, the power adapter 5 with the communication and on-off system and the user's smart phone 7 establish a signal connection relationship with the remote server 8 through the network system.
  • FIG. 12 The physical schematic diagram of the self-service fast charging system A for mobile phones (not connected).
  • the power adapter 5 and the cable 6 with the communication and on-off system are arranged in the shopping mall (a QR code identifying the mobile phone self-service fast charging system A is placed next to it).
  • a QR code identifying the mobile phone self-service fast charging system A is placed next to it.
  • the power adapter 5 with the communication and on-off system controls the "on-off system" to be in the "on state", and the user's smart phone is in the start of charging; when the charging time ends, the power adapter 5 with the communication and on-off system is in the "on state”.
  • the control "on-off system” is in the "off state", and the charging of the user's smartphone ends.
  • a mobile phone self-service fast charging system A built in this embodiment adopts an integrated power adapter 5 with a communication and on-off system, so that the system structure of the mobile phone self-service fast charging system A is simple, the cost is low, and it is convenient for large-scale market expansion.
  • the use of an integrated power adapter 5 with a communication and on-off system also ensures the reliability of the mobile phone self-service fast charging system A.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 13 the second principle block diagram of the mobile phone self-service fast charging system A.
  • this embodiment further includes a management terminal 10, which can exchange information with the remote server 8, and can also exchange information with the power adapter 5 with the communication and on-off system. information exchange.
  • the management terminal 10 is arranged in the shopping mall and is the supervisor of the mobile phone self-service fast charging system A. The order information and cost information of the mobile phone self-service fast charging system A can be obtained through the remote server 8 .
  • the management terminal 10 in this embodiment can control the power adapter 5 with a communication and on-off system through the remote server 8, or can directly control the power adapter 5 with a communication and on-off system. Take control.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • This embodiment builds a mobile phone self-service fast charging system B, which is characterized in that it includes:
  • a smart socket 9, the input end of the smart socket 9 is connected to the 220V power supply;
  • a power adapter 2 the input end of the power adapter 2 is connected with the output end of the smart socket 9, and the output end of the power adapter 2 is connected with one end of the cable 6;
  • a cable 6, the USB interface at one end of the cable 6 is connected with the output end of the power adapter 2, and the MicroUSB interface at the other end, or the USB Type-C interface, or the Lightning interface is connected with the charging interface of the mobile phone; or, in addition
  • the wireless charging interface at one end is in contact with the wireless charging interface of the mobile phone;
  • a user smartphone 7, the charging interface of the user smartphone 7 is connected to the MicroUSB interface, or the USB Type-C interface, or the Lightning interface at the other end of the cable 6; or, the wireless charging interface of the user smartphone 7 contact and connect with the wireless charging interface at the other end of the cable 6;
  • the remote server 8, the smart socket 9 and the user's smart phone 7 establish a signal connection relationship with the remote server 8 through a network system.
  • FIG. 15 it is a schematic diagram of the front and back structures of the smart socket.
  • FIG. 16 it is a schematic diagram of the structure of the smart socket and the power adapter (not connected).
  • FIG. 17 it is a schematic structural diagram of a smart socket, a power adapter and a cable.
  • FIG. 18 it is a physical schematic diagram of the mobile phone self-service fast charging system B.
  • a mobile phone self-service fast charging system B built in this embodiment adopts the existing product smart socket 9 on the market, and also adopts the existing product "switching power supply adapter" on the market.
  • the existing product "switching power supply adapter” It belongs to “fast charger” and is equipped with the latest fast charging protocol (such as USB-PD fast charging protocol).
  • the use of existing mature smart sockets 9 and “switching power adapters” in the market facilitates system construction, shortens the system development cycle, and shortens the system market expansion cycle.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • FIG. 19 the second principle block diagram of the mobile phone self-service fast charging system B.
  • This embodiment uses two types of servers: a control server 8A and a management server 8B, and the two types are connected in a "cloud-cloud connection" manner.
  • the mobile phone self-service fast charging system B shown in Figure 19 Arrange the mobile phone self-service fast charging system B shown in Figure 19 in the shopping mall (a QR code identifying the mobile phone self-service fast charging system B is placed next to it).
  • the user opens the APP and scans the code, sends out a charging application (or submits a charging order) and sends it to the management server 8B.
  • the management server 8B After processing by the management server 8B, the management server 8B sends an application to the control server 8A, and the control server 8A processes the application to the smart socket.
  • 9 issues a control command, the smart socket 9 is in the "on state", and the user's smart phone starts charging; when the charging time ends, the smart socket 9 is in the "off state", and the charging of the user's smart phone ends.
  • the servers are divided into: a control server 8A and a management server 8B. Through the division of functions, reliable control and efficient management are achieved.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • FIG. 20 the third principle block diagram of the self-service fast charging system B for mobile phones.
  • a management terminal 10 is added on the basis of the system of the sixth embodiment.
  • the user scans the code after opening the APP, and sends a charging application (or submitting a charging order) to the management server 8B;
  • the management server 8B After processing by the management server 8B, the management server 8B sends 10 an instruction to the management terminal 10;
  • the management terminal 10 After confirmation by the management terminal 10, the user's application is confirmed, and the order is officially generated; at the same time, the management terminal 10 sends an application to the control server 8A, and the control server 8A sends a control command to the smart socket 9 after processing, and the smart socket 9 is in the "open state". , the user's smartphone is charging;
  • the smart socket 9 is in the "off state", and the charging of the user's smart phone ends.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • this embodiment further includes a management terminal 10 , and the management terminal 10 can exchange information with the remote server 8 and also exchange information with the smart socket 9 .
  • the management terminal 10 can control the smart socket 9 through the remote server 8 , or can directly control the smart socket 9 .
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • this embodiment provides a method for using fast charging:
  • a method for using fast charging comprising a mobile phone self-service fast charging system A as claimed in claim 6 or 7, including a mobile phone self-service fast charging system B as claimed in claim 8 or 9, comprising the following steps:
  • Step S1 the user's smartphone and the cable establish a physical connection, and the physical connection is to connect the charging interface of the user's smartphone with the MicroUSB interface, or the USB Type-C interface, or the Lightning interface at the other end of the cable ; Or, contact and connect the wireless charging interface of the user's smartphone with the wireless charging interface at the other end of the cable;
  • Step S2 establishing a signal connection between the user's smartphone and the remote server
  • Step S3 setting the charging end mode
  • Step S4 the charging ends and the fee is paid.
  • a method for using fast charging characterized in that establishing a signal connection between the user's smartphone and the remote server includes the following steps:
  • Step S21 open the mobile phone self-service fast charging APP
  • Step S22 click the icon in the APP to open the camera
  • Step S23 acquiring the power adapter with the communication and on-off system or the two-dimensional code information or one-dimensional code information on the surface of the power adapter;
  • Step S24 the APP identifies the ID number of the power adapter with the communication and on-off system, or the ID number of the power adapter, or the ID number of the smart socket;
  • Step S25 the APP sends the ID number to the remote server
  • Step S26 the remote server sends an instruction to the power adapter with the ID number or the smart socket, so that the power adapter obtains power input.
  • a method for using fast charging characterized in that, the setting of the charging end mode includes the following modes for selection; or setting the charging time;
  • the charging interface of the smartphone is separated from the MicroUSB interface, or the USB Type-C interface, or the Lightning interface at the other end of the cable.
  • a method for using fast charging characterized in that judging that the percentage of charging power of a mobile phone battery reaches a set value, comprising the following steps:
  • Step K1 start charging to obtain the current power value of the mobile phone battery and save it in "levelStart”;
  • Step K2 the charging starts to obtain the total power value of the mobile phone battery and save it in "ScaleTotal";
  • Step K4 after the charging is completed, the current power value of the mobile phone battery is obtained and stored in "levelEnd";
  • a method for using fast charging characterized in that, the charging is completed and a fee is paid, comprising the following steps:
  • Step S41 after the charging is completed, the power adapter with the communication and on-off system or the smart socket sends the charging power statistics information to the mobile phone self-service fast charging APP or the remote server;
  • Step S42 after the remote server processes the statistical information of the charging electric energy, sends the cost information to the mobile phone self-service fast charging APP of the user's smart phone;
  • Step S43 after the user confirms the fee information, the user pays the fee through the mobile phone self-service fast charging APP.
  • a method for using fast charging characterized in that, when the user's smartphone is shut down due to low power, after completing the operation of step S1 (that is, the user's smartphone and the cable establish a physical connection, the physical connection It is to connect the charging interface of the user's smartphone with the MicroUSB interface, or the USB Type-C interface, or the Lightning interface at the other end of the cable; or, connect the wireless charging interface of the user's smartphone with the wireless charging interface at the other end of the cable Interface contact connection.) also includes the following steps: click the button switch of the power adapter with the communication and on-off system at least once, or click the button switch of the smart socket at least once to directly obtain the shutdown charging time ⁇ t seconds, within ⁇ t seconds, the user should power on and complete the operations of step S2 , step S3 , and step S4 as described in claim 10 .
  • the present invention has one of the following advantages;

Abstract

本发明公开了一种带有通讯及通断系统的电源适配器,属于电源适配器技术领域:一种带有通讯及通断系统的电源适配器,包括电源适配器,其特征在于,还包括通讯及通断系统,所述通讯及通断系统包括通讯模块、通断模块和微控制器,所述通讯模块和所述通断模块与所述微控制器电信号连接;将所述通断模块连接到主回路,所述电源适配器的输入端与所述通讯及通断系统的输出端连接;本发明具有如下优点之一:使用方便,用户可以随时随地进行充电;充电迅速,节省用户充电时间,用户可以使用碎片化时间为自己的智能手机补充电量;本发明同时也公开了一种手机自助快速充电系统,还公开了一种快速充电使用方法。

Description

电源适配器、手机自助快速充电系统、快速充电使用方法 技术领域
本发明公开了一种带有通讯及通断系统的电源适配器,属于电源适配器技术领域。同时也公开了一种手机自助快速充电系统,还公开了一种快速充电使用方法。
背景技术
一、智能手机快速普及
近来谷歌公司发布了一份名为The Consumer Barometer的报告,调查了全球46个国家地区的用户。报告显示,亚洲用户更喜欢使用智能手机上网,而不是电脑。新加坡和韩国在全球拥有最高的智能手机普及率,分别是85%和80%。
在尼尔森选取研究的10个国家中,智能手机普及率分别为:韩国67%、中国66%、澳大利亚65%、意大利62%、英国61%、美国53%、俄罗斯37%、巴西36%、土耳其19%、印度10%。
智能手机还在快速普及中。
二、智能手机耗电快,很多人存在电池续航焦虑:
1、智能手机的屏幕大,屏幕本身耗电多;
2、未关闭移动网络或者未关闭WIFI搜索;
3、GPS耗电大,开启GPS后,不断主动搜索卫星,耗电增加;
4、后台应用程序过多;
5、电信网络不佳导致耗电增大;
6、随着电池本身耗损,容量减小,电池续航时间也减小。
三、快速充电是近期解决智能手机电池续航短的方案之一:
说到快充,很多人都会想到高通公司的QC快充、vivo基于QC2.0的VOOC双引擎快充,华为的Super Change和苹果的PD快充。其中QC快充大家比较熟悉,因为高通芯片在安卓市场保有量相当高;而PD快充大家最为陌生,虽然多款iPhone设备都支持快充,但是其官方并没有赠送PD充电器。本文小编就带大家来了解一下什么PD充电协议?
PD充电协议是什么?
PD充电协议是USB-IF组织公布的功率传输协议,它可以使目前默认最大功率5V/2A的type-c接口提高到100W,同时谷歌宣布Android7.0以上的手机搭载的快充协议必须支持PD协议,意在统一快充市场。
PD协议快充什么意思
USB-PowerDelivery(USBPD)是目前主流的快充协议之一。是由USB-IF组织制定的一种快速充电规范。。USBPD透过USB电缆和连接器增加电力输送,扩展USB应用中的电缆总线供电能力。该规范可实现更高的电压和电流,输送的功率最高可达100瓦,并可以自由的改变电力的输送方向。
USBPD和Type-C的关系。经常会有人把USBPD和Type-C放在一起谈,甚至就把Type-C充电器叫做PD充电器。USBPD和Type-C其实是两码事,USBPD是一种快速充电协议,而Type-C则是一种新的接口规范。Type-C接口默认最大支持5V/3A,但在实现了USBPD协议以后,能够使输出功率最大支持到前文提到的100W。所以现在许多实用Type-C接口的设备都会支持USBPD协议。
USBPD的发展前景。USBPD现在已经发展到了USBPD3.0版本。在谷歌的推动下目USBPD已经收编了高通的QC快充协议,并获得了中国工信部的支持。有望在不久统一目前混乱的快充市场。
PD协议快充优势明显:
USB-PD快充协议可以透过USB电缆和连接器增加电力的输送,扩展USB应用中的电缆总线供电能力,从而达到提高充电电压或电流的目的,并且可以自由改变电力的输送方向。
Type-C接口默认最大支持15W(5V/3A),但是在实现了USB-PD协议以后,能够使输出功率最大支持到100W(20V/5A)。所以现在许多实用Type-C接口的设备都会支持USB PD协议。
随着智能手机的普及,解决用户的电池续航焦虑,延长电池的使用寿命是一个难题。
发明内容
本发明的目的之一是提供一种带有通讯及通断系统的电源适配器,满足搭建快速充电系统的需要。
本发明的目的之二是提供一种手机自助快速充电系统,将所述带有通讯及通断系统的电源适配器、用户的智能手机、远程服务器、管理者的智能手机连接到一起,满足用户随时随地快速充电的需要。
本发明的目的之三是提供一种快速充电使用方法,满足用户快速充电和充电完成后用于计算和支付电费和服务费。
为达到上述目的之一,本发明的技术方案是这样实现的:
一种带有通讯及通断系统的电源适配器,包括电源适配器,其特征在于,还包括通讯及通断系统,所述通讯及通断系统包括通讯模块、通断模块和微控 制器,所述通讯模块和所述通断模块与所述微控制器电信号连接;将所述通断模块连接到主回路,所述电源适配器的输入端与所述通讯及通断系统的输出端连接。
为达到上述目的之二,本发明的第一种技术方案是这样实现的:
一种手机自助快速充电系统A,其特征在于,包括:
一个带有通讯及通断系统的电源适配器,所述带有通讯及通断系统的电源适配器的输入端与220V电源连接,所述带有通讯及通断系统的电源适配器的输出端与线缆的一端连接;
一条线缆,所述线缆一端的USB接口与所述带有通讯及通断系统的电源适配器的输出端连接,另外一端的MicroUSB接口,或者USBType-C接口,或者Lightning接口与手机的充电接口连接;或者,另外一端的无线充电接口与手机的无线充电接口接触连接;
一个用户智能手机,所述用户智能手机的充电接口与所述线缆另外一端的MicroUSB接口,或者USBType-C接口,或者Lightning接口连接;或者,所述用户智能手机的无线充电接口与所述线缆另外一端的无线充电接口接触连接;
远程服务器,所述带有通讯及通断系统的电源适配器和所述用户智能手机与所述远程服务器通过网络系统建立信号连接关系。
为达到上述目的之二,本发明的第二种技术方案是这样实现的:
一种手机自助快速充电系统B,其特征在于,包括:
一个智能插座,所述智能插座的输入端与220V电源连接;
一个电源适配器,所述电源适配器的输入端与所述智能插座的输出端连接,所述电源适配器的输出端与线缆的一端连接;
一条线缆,所述线缆一端的USB接口与所述电源适配器的输出端连接,另外一端的MicroUSB接口,或者USBType-C接口,或者Lightning接口与手机的充电接口连接;或者,另外一端的无线充电接口与手机的无线充电接口接触连接;
一个用户智能手机,所述用户智能手机的充电接口与所述线缆另外一端的MicroUSB接口,或者USBType-C接口,或者Lightning接口连接;或者,所述用户智能手机的无线充电接口与所述线缆另外一端的无线充电接口接触连接;
远程服务器,所述智能插座和所述用户智能手机与所述远程服务器通过网络系统建立信号连接关系。
为达到上述目的之三,本发明的技术方案是这样实现的:
一种快速充电使用方法,包括如权力要求6或7所述的一种手机自助快速充电系统A,包括如权力要求8或9所述的一种手机自助快速充电系统B,包括如下步骤:
步骤S1,所述用户智能手机和所述线缆建立物理连接,所述物理连接是将用户智能手机的充电接口与所述线缆另外一端的MicroUSB接口,或者USBType-C接口,或者Lightning接口连接;或者,将用户智能手机的无线充电接口与所述线缆另外一端的无线充电接口接触连接;
步骤S2,所述用户智能手机和所述远程服务器建立信号连接;
步骤S3,设定充电结束模式;
步骤S4,充电结束并支付费用。
优选地,所述通讯模块为WIFI通信模块、蓝牙通信模块、ZigBee通信模块、GPRS无线通信模块、3G通信模块、4G通信模块、5G通信模块、6G通信模块、7G通信模块之一种。
优选地,所述通断模块至少包括一个继电器,或者至少包括一个场效应晶体管。
优选地,还包括电能计量单元,所述电能计量单元包括采样电阻和电能计量芯片,所述采样电阻与所述电能计量芯片电信号连接,所述电能计量芯片与所述微控制器电信号连接,所述采样电阻与主回路采用分压方式连接。
优选地,还包括按键开关和LED指示灯,所述按键开关和所述LED指示灯与所述微控制器电信号连接,或者通过限流电阻与所述微控制器电信号连接。
优选地,还包括管理终端,所述管理终端能够与所述远程服务器进行信息交换,也能够与所述带有通讯及通断系统的电源适配器进行信息交换。
优选地,所述用户智能手机和所述远程服务器建立信号连接,包括如下步骤:
步骤S21,打开手机自助快速充电APP;
步骤S22,点击APP中的图标,打开摄像头;
步骤S23,获取所述带有通讯及通断系统的电源适配器或者所述电源适配器表面上的二维码信息或者一维码信息;
步骤S24,APP识别出所述带有通讯及通断系统的电源适配器的ID号,或者所述电源适配器的ID号,或者所述智能插座的ID号;
步骤S25,APP向所述远程服务器发送所述ID号;
步骤S26,所述远程服务器向具有所述ID号的所述电源适配器或者所述智能插座发送指令,使所述电源适配器获得电能输入。
优选地,所述设定充电结束模式,包括如下模式可供选择:或者设定充电时间;或者设定手机电池的充电电量百分比达到设定值;或者设定用户智能手机的充电接口与所述线缆另外一端的MicroUSB接口,或者USBType-C接口,或者Lightning接口分离。
优选地,判定手机电池的充电电量百分比达到设定值,包括如下步骤:
步骤K1,充电开始获取手机电池当前电量值并保存在“levelStart”中;
步骤K2,充电开始获取手机电池总电量值并保存在“ScaleTotal”中;
步骤K3,计算充电开始电池电量百分比为a1=levelStart/ScaleTotal;
步骤K4,充电结束获取手机电池当前电量值并保存在“levelEnd”中;
步骤K5,计算充电结束电池电量百分比为a2=levelEnd/ScaleTotal。
优选地,所述充电结束并支付费用,包括如下步骤:
步骤S41,充电结束后所述带有通讯及通断系统的电源适配器或者所述智能插座向手机自助快速充电APP或者所述远程服务器发送充电电能统计信息;
步骤S42,所述远程服务器对所述充电电能统计信息进行处理后,将费用信息发送给所述用户智能手机的所述手机自助快速充电APP;
步骤S43,用户对所述费用信息确认后,通过所述手机自助快速充电APP支付费用。
优选地,当用户智能手机因电量低而关机时,在完成步骤S1的操作后(即:所述用户智能手机和所述线缆建立物理连接,所述物理连接是将用户智能手机的充电接口与所述线缆另外一端的MicroUSB接口,或者USBType-C接口,或者Lightning接口连接;或者,将用户智能手机的无线充电接口与所述线缆另外一端的无线充电接口接触连接。)还包括如下步骤:至少点击一次所述带有通讯及通断系统的电源适配器的所述按键开关,或者至少点击一次所述智能插座的所述按键开关,直接获取关机充电时间Δt秒,在Δt秒内用户应开机并完成如权利要求10所述的步骤S2、步骤S3、步骤S4的操作。
本发明具有如下优点之一:
(1)使用方便,用户可以随时随地进行充电;
(2)充电迅速,节省用户充电时间,用户可以使用碎片化时间为自己的智能手机补充电量;
(3)节省用户使用费用。
附图说明
图1为带有通讯及通断系统的电源适配器的原理框图一。
图2为带有通讯及通断系统的电源适配器的原理框图二。
图3为带有通讯及通断系统的电源适配器的原理框图三。
图4为微控制器与继电器连接的电路原理图。
图5为A型电源适配器的电源单元电路原理图。
图6为A型电源适配器的电池采样单元电路原理图。
图7为A型电源适配器的逻辑处理单元电路原理图。
图8为A型电源适配器的电池保护电路的电路原理图。
图9为A型电源适配器的电路原理图。
图10为带有通讯及通断系统的电源适配器一种实施例。
图11为手机自助快速充电系统A的原理框图一。
图12为手机自助快速充电系统A的实物原理图(未连接)。
图13为手机自助快速充电系统A的原理框图二。
图14为手机自助快速充电系统B的原理框图一。
图15为智能插座的正面和背面结构示意图。
图16为智能插座和电源适配器的结构示意图(未连接)。
图17为智能插座、电源适配器和线缆的结构示意图。
图18为手机自助快速充电系统B的实物原理图一(未连接)。
图19为手机自助快速充电系统B的原理框图二。
图20为手机自助快速充电系统B的原理框图三。
图21为手机自助快速充电系统B的原理框图四。
其中附图标记汇总表示为:1-通讯及通断系统;11-微控制器;12-通讯模块;13A-通断模块;13B-通断模块;2-电源适配器;3-主回路;4-电能计量单元;41-电能计量芯片;42-采样电阻;5-带有通讯及通断系统的电源适配器;5A-电源适配器;6-线缆;7-用户智能手机;8-远程服务器;9-智能插座;10-管理终端。
具体实施方式
下面结合附图详细说明本发明的具体实施方式。
实施例一:
本实施例以A型电源适配器为例,说明一种带有通讯及通断系统的电源适配器的实现方法。
在实际产品开发中将采用市场上最新的电源适配器的电路原理图,为用户的智能手机提供最新的快充协议,例如USB-PD快充协议、QC快充协议等。
参考图5:为A型电源适配器的电源单元电路原理图。
电源单元是各个单元的能量供应站,它由变压器,全桥整流,三端稳压器构成。变压器把220V交流电变成交流15V,然后通过全桥整流电路将交流电变成直流电,两个电解电容器作为电源的低频滤波,此处的无极性电容作电源的高频滤波,而三端稳压器7809把电源电压稳压输出一个比较稳定的直流电压。理论分析2端口为2U=9V电压,1端口为1.22U压。
参考图6:为A型电源适配器的电池采样单元电路原理图。
电池采样单元承担着电池剩余电量的采样,回馈给逻辑单元,逻辑单元的决策完全取决于电池采样单元。V5防止电池放电,起到了保护作用,R7对电池进行采样电阻,然后采样电压与基准电压进行比较。
参考图7:为A型电源适配器的逻辑处理单元电路原理图。
逻辑处理单元是电池充电电路的中间站,每个过程都需要经过逻辑处理部分电路,它是对电池采样单元做出逻辑决定,根据采样值来决定电池进行的是恒流充电还是恒压充电。
逻辑处理单元对电池采样的电压与基准电压比较,来决定电池的充电模式的,基准电压通过V2管来满足,因而V2管选择上要达到恒流恒压临界电压,采用IN5991来满足;而运放管选用741(单集成运放)来进行比较(采样电压与基准电压);然后进行比列运算来对电压差进行放大,R8,R10的和与R9的商即为放大的倍数,同理,R15,R12和与R14的商为放大的倍数,输出的电压是否满足恒流或恒压模式的电压。设采样电压为3V,而基准电压为4.3V,则此时输出电压为(3-4.3)*110V,为负值,充电模式为恒流充电模式,只有当采样电压稍大于基准电压,便转入到恒压充电模式。
参考图8:为A型电源适配器的电池保护电路的电路原理图。
锂电池充电器保护电路是电池充电电路不可或缺的部分,它主要是防范电池过充;该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从+VCC和-VCC输出电压。
充电时,充电器输出电压接在+VCC和-VCC之间,电流从+VCC到单体电池的B+和B-,再经过充电控制MOSFET到-VCC。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。
放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通 压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。
参考图9:为A型电源适配器的电路原理图。
充电电路是由电源单元,电池采样单元,逻辑处理单元,恒流恒压转换单元,电池过充保护电路构成;电源通过变压器降压然后经整流管整流把交流变直流,然后经LM317三端调整管,保持输出一个稳定的电流,即输出电流为恒流I=1.25×(1+R3/R4)+Iq;Iq为三端调整管输出电流可忽略。
以上是A型电源适配器的电路原理图的说明。为说明本实施例的实现方法,下面的电源适配器2采用了A型电源适配器的电路原理。
参考图1:
一种带有通讯及通断系统的电源适配器,包括电源适配器2,其特征在于,还包括通讯及通断系统1,所述通讯及通断系统1包括通讯模块12、通断模块(13A、13B)和微控制器11,所述通讯模块12和所述通断模块(13A、13B)与所述微控制器11电信号连接;将所述通断模块(13A、13B)连接到主回路3,所述电源适配器2的输入端与所述通讯及通断系统1的输出端连接,图1电路原理图中的X点、Y点与图5中的X点、Y点是同一点。
微控制器11采用88MC200-NAP2高集成度低功耗微控制器。88MC200芯片采用ARM Cortex M3核心,运行速度200M,内置1M FlashROM和512K RAM,88MC200微控制器多用于智能硬件和智能家居产品的主控制芯片。WiFi通讯芯片采用Marvell 88W8801-NMD2 SoC芯片,芯片支持2.4G频段802.11n无线协议。通断模块(13A、13B)采用250V 10A机械继电器OJ-SS-105HM。
参考图2:
在图2中,在主回路3上连接了通断模块13A,在零线上连接了通断模块13B。这种连接方式,保证了通断控制的可靠性。
参考图4:
在图4中,通断模块使用了两个继电器(J1、J2)分别安装到火线和零线上,J1即13A;J2即13B。
参考图10:为带有通讯及通断系统的电源适配器一种实施例。
本实施例将图1中的电路图(带有通讯及通断系统的电源适配器的原理框图-)与图9中的电路图(A型电源适配器的电路原理图)连接都一起,即将两个电路中X点连接到一起,Y点连接到一起。为图示清晰,图10中用图5中电路图(A型电源适配器的电源单元电路原理图)代替了图9中的电路图。
本实施例提供了一个创新的带有通讯及通断系统的电源适配器(在实施例三中是电源适配器5),为实施例三和实施例四的实施提供了技术保证。
从智能手机电池的技术发展趋势看必然采用快速充电,快速充电节约了充电时间,虽然快速充电对电池有损伤,用户也是“接受了快速充电带来的好处,容忍了快速充电对电池带来的损伤。”
目前的5G手机几乎都采用了快充系统,但是用户也意识到:反复充电和放电对锂电池有害,晚上睡前在家里给手机充电,充电到90%-95%也就可以了,不必要充电到100%。如何实现呢?可以这样实现:采用本实用新型的“带有通讯及通断系统的电源适配器”,结合编制的手机APP,在APP中进行设定:或者实时采集手机电池的充电量,或者达到95%后,或者充电1小时后,本实用新型的电源适配器自动断电即可。
实施例二:
本实施例引用“实施例一”的全部内容。新增内容如下:
参考图3:
本技术方案还包括电能计量单元4,所述电能计量单元4包括采样电阻42和电能计量芯片41,所述采样电阻42与所述电能计量芯片41电信号连接,所述电能计量芯片41与所述微控制器11电信号连接,所述采样电阻42与主回路3采用分压方式连接。
本实施例使“带有通讯及通断系统的电源适配器”具有能量计量功能,食用本发明在节能减排应用场景中发挥重要作用。
实施例三:
参考图11:手机自助快速充电系统A的原理框图一。
本实施例搭建了一种手机自助快速充电系统A,其特征在于,包括:
一个带有通讯及通断系统的电源适配器5,所述带有通讯及通断系统的电源适配器5的输入端与220V电源连接,所述带有通讯及通断系统的电源适配器5的输出端与线缆6的一端连接;
一条线缆6,所述线缆6一端的USB接口与所述带有通讯及通断系统的电源适配器5的输出端连接,另外一端的MicroUSB接口,或者USBType-C接口,或者Lightning接口与手机的充电接口连接;或者,另外一端的无线充电接口与手机的无线充电接口接触连接;
一个用户智能手机7,所述用户智能手机7的充电接口与所述线缆6另外一端的MicroUSB接口,或者USBType-C接口,或者Lightning接口连接;或者, 所述用户智能手机7的无线充电接口与所述线缆6另外一端的无线充电接口接触连接;
远程服务器8,所述带有通讯及通断系统的电源适配器5和所述用户智能手机7与所述远程服务器8通过网络系统建立信号连接关系。
参见图12:为手机自助快速充电系统A的实物原理图(未连接)。
带有通讯及通断系统的电源适配器5、线缆6布置在商场(旁边放置有识别手机自助快速充电系统A的二维码),当用户有充电需求时将自己的智能手机与线缆6的另外一端连接,打开APP后扫码,发出充电申请(或者提交一个充电订单)发送到远程服务器8,经过远程服务器8的处理,向带有通讯及通断系统的电源适配器5发出充电指令,所述带有通讯及通断系统的电源适配器5控制“通断系统”处于“打开状态”,用户的智能手机处于充电开始;充电时间结束,所述带有通讯及通断系统的电源适配器5控制“通断系统”处于“关闭状态”,用户的智能手机充电结束。
本实施例搭建的一种手机自助快速充电系统A,采用了一体化的带有通讯及通断系统的电源适配器5,使手机自助快速充电系统A的系统结构简单,费用较低,便于大规模市场拓展。采用一体化的带有通讯及通断系统的电源适配器5也保证了手机自助快速充电系统A的可靠性。
实施例四:
参考图13:为手机自助快速充电系统A的原理框图二。
在实施例三的基础上,本实施例还包括管理终端10,所述管理终端10能够与所述远程服务器8进行信息交换,也能够与所述带有通讯及通断系统的电源适配器5进行信息交换。所述管理终端10布置在商场现场,是该手机自助快速充电系统A的监管者,通过所述远程服务器8可以获得该手机自助快速充电系统A的订单信息和费用信息。
本实施例的所述管理终端10可以通过所述远程服务器8对所述带有通讯及通断系统的电源适配器5进行控制,也可以直接对所述带有通讯及通断系统的电源适配器5进行控制。
实施例五:
参考图14:
本实施例搭建了一种手机自助快速充电系统B,其特征在于,包括:
一个智能插座9,所述智能插座9的输入端与220V电源连接;
一个电源适配器2,所述电源适配器2的输入端与所述智能插座9的输出端连接,所述电源适配器2的输出端与线缆6的一端连接;
一条线缆6,所述线缆6一端的USB接口与所述电源适配器2的输出端连接,另外一端的MicroUSB接口,或者USBType-C接口,或者Lightning接口与手机的充电接口连接;或者,另外一端的无线充电接口与手机的无线充电接口接触连接;
一个用户智能手机7,所述用户智能手机7的充电接口与所述线缆6另外一端的MicroUSB接口,或者USBType-C接口,或者Lightning接口连接;或者,所述用户智能手机7的无线充电接口与所述线缆6另外一端的无线充电接口接触连接;
远程服务器8,所述智能插座9和所述用户智能手机7与所述远程服务器8通过网络系统建立信号连接关系。
参考图15:为智能插座的正面和背面结构示意图。
参考图16:为智能插座和电源适配器的结构示意图(未连接)。
参考图17:为智能插座、电源适配器和线缆的结构示意图。
参考图18;为手机自助快速充电系统B的实物原理图一。
本实施例搭建的一种手机自助快速充电系统B,采用了市场上现有产品智能插座9,同时也采用了市场上现有产品“开关电源适配器”,所述现有产品“开关电源适配器”属于“快速充电器”,搭载有最新的快充协议(例如USB-PD快充协议)。采用市场上现有成熟的智能插座9和“开关电源适配器”方便了系统搭建,缩短了系统开发周期,缩短了系统市场拓展周期。
实施例六:
参考图19:为手机自助快速充电系统B的原理框图二。
本实施例使用两种服务器:控制服务器8A和管理服务器8B,两种采用“云云对接”方式连接。
将图19所示的手机自助快速充电系统B布置在商场(旁边放置有识别手机自助快速充电系统B的二维码),当用户有充电需求时将自己的智能手机与线缆6的另外一端连接,用户打开APP后扫码,发出充电申请(或者提交一个充电订单)发送到管理服务器8B,经过管理服务器8B的处理,管理服务器8B向控制服务器8A发出申请,控制服务器8A经过处理向智能插座9发出控制指令,智能插座9处于“打开状态”,用户的智能手机处于充电开始;充电时间结束,智能插座9处于“关闭状态”,用户的智能手机充电结束。
将服务器分为:控制服务器8A和管理服务器8B,通过功能分工,实现控制可靠,管理高效。
实施例七:
参考图20:为手机自助快速充电系统B的原理框图三。
本实施例在实施例六的系统基础上,增加了管理终端10。
将图20所示的手机自助快速充电系统B布置在商场(旁边放置有识别手机自助快速充电系统B的二维码);
当用户有充电需求时将自己的智能手机与线缆6的另外一端连接;
用户打开APP后扫码,将一个充电申请(或者提交一个充电订单)发送到管理服务器8B;
经过管理服务器8B的处理,管理服务器8B将指令发送10管理终端10;
经过管理终端10的确认,用户的申请被确认,订单正式生成;同时经过管理终端10向控制服务器8A发出申请,控制服务器8A经过处理向智能插座9发出控制指令,智能插座9处于“打开状态”,用户的智能手机处于充电开始;
充电时间结束,智能插座9处于“关闭状态”,用户的智能手机充电结束。
用户支付费用。
实施例八:
在实施例五的基础上,本实施例还包括管理终端10,所述管理终端10能够与所述远程服务器8进行信息交换,也能够与所述智能插座9进行信息交换。
本实施例的所述管理终端10可以通过所述远程服务器8对所述智能插座9进行控制,也可以直接对所述智能插座9进行控制。
实施例九:
在实施例二至实施例八的基础上,本实施例提供了一种快速充电使用方法:
一种快速充电使用方法,包括如权力要求6或7所述的一种手机自助快速充电系统A,包括如权力要求8或9所述的一种手机自助快速充电系统B,包括如下步骤:
步骤S1,所述用户智能手机和所述线缆建立物理连接,所述物理连接是将用户智能手机的充电接口与所述线缆另外一端的MicroUSB接口,或者USBType-C接口,或者Lightning接口连接;或者,将用户智能手机的无线充电接口与所述线缆另外一端的无线充电接口接触连接;
步骤S2,所述用户智能手机和所述远程服务器建立信号连接;
步骤S3,设定充电结束模式;
步骤S4,充电结束并支付费用。
一种快速充电使用方法,其特征在于,所述用户智能手机和所述远程服务器建立信号连接,包括如下步骤:
步骤S21,打开手机自助快速充电APP;
步骤S22,点击APP中的图标,打开摄像头;
步骤S23,获取所述带有通讯及通断系统的电源适配器或者所述电源适配器表面上的二维码信息或者一维码信息;
步骤S24,APP识别出所述带有通讯及通断系统的电源适配器的ID号,或者所述电源适配器的ID号,或者所述智能插座的ID号;
步骤S25,APP向所述远程服务器发送所述ID号;
步骤S26,所述远程服务器向具有所述ID号的所述电源适配器或者所述智能插座发送指令,使所述电源适配器获得电能输入。
一种快速充电使用方法,其特征在于,所述设定充电结束模式,包括如下模式可供选择;或者设定充电时间;或者设定手机电池的充电电量百分比达到设定值;或者设定用户智能手机的充电接口与所述线缆另外一端的MicroUSB接口,或者USBType-C接口,或者Lightning接口分离。
一种快速充电使用方法,其特征在于,判定手机电池的充电电量百分比达到设定值,包括如下步骤:
步骤K1,充电开始获取手机电池当前电量值并保存在“levelStart”中;
步骤K2,充电开始获取手机电池总电量值并保存在“ScaleTotal”中;
步骤K3,计算充电开始电池电量百分比为a1=levelStart/ScaleTotal;
步骤K4,充电结束获取手机电池当前电量值并保存在“levelEnd”中;
步骤K5,计算充电结束电池电量百分比为a2=levelEnd/ScaleTotal。
一种快速充电使用方法,其特征在于,所述充电结束并支付费用,包括如下步骤:
步骤S41,充电结束后所述带有通讯及通断系统的电源适配器或者所述智能插座向手机自助快速充电APP或者所述远程服务器发送充电电能统计信息;
步骤S42,所述远程服务器对所述充电电能统计信息进行处理后,将费用信息发送给所述用户智能手机的所述手机自助快速充电APP;
步骤S43,用户对所述费用信息确认后,通过所述手机自助快速充电APP支付费用。
实施例十:
当用户智能手机因电量低而关机时,通过本实施例用户也可以使用一种手机自助快速充电系统:
一种快速充电使用方法,其特征在于,当用户智能手机因电量低而关机时,在完成步骤S1的操作后(即:所述用户智能手机和所述线缆建立物理连接,所述物理连接是将用户智能手机的充电接口与所述线缆另外一端的MicroUSB接口, 或者USBType-C接口,或者Lightning接口连接;或者,将用户智能手机的无线充电接口与所述线缆另外一端的无线充电接口接触连接。)还包括如下步骤:至少点击一次所述带有通讯及通断系统的电源适配器的所述按键开关,或者至少点击一次所述智能插座的所述按键开关,直接获取关机充电时间Δt秒,在Δt秒内用户应开机并完成如权利要求10所述的步骤S2、步骤S3、步骤S4的操作。
本发明具有如下优点之一;
(1)使用方便,用户可以随时随地进行充电;
(2)充电迅速,节省用户充电时间,用户可以使用碎片化时间为自己的智能手机补充电量;
(3)节省用户使用费用。
以上

Claims (15)

  1. 一种带有通讯及通断系统的电源适配器,包括电源适配器,其特征在于,还包括通讯及通断系统,所述通讯及通断系统包括通讯模块、通断模块和微控制器,所述通讯模块和所述通断模块与所述微控制器电信号连接;将所述通断模块连接到主回路,所述电源适配器的输入端与所述通讯及通断系统的输出端连接。
  2. 按照权利要求1所述的带有通讯及通断系统的电源适配器,其特征在于,所述通讯模块为WIFI通信模块、蓝牙通信模块、ZigBee通信模块、GPRS无线通信模块、3G通信模块、4G通信模块、5G通信模块、6G通信模块、7G通信模块之一种。
  3. 按照权利要求1所述的带有通讯及通断系统的电源适配器,其特征在于,所述通断模块至少包括一个继电器,或者至少包括一个场效应晶体管。
  4. 按照权利要求1所述的带有通讯及通断系统的电源适配器,其特征在于,还包括电能计量单元,所述电能计量单元包括采样电阻和电能计量芯片,所述采样电阻与所述电能计量芯片电信号连接,所述电能计量芯片与所述微控制器电信号连接,所述采样电阻与主回路采用分压方式连接。
  5. 按照权利要求1-4中任一项所述的带有通讯及通断系统的电源适配器,其特征在于,还包括按键开关和LED指示灯,所述按键开关和所述LED指示灯与所述微控制器电信号连接,或者通过限流电阻与所述微控制器电信号连接。
  6. 一种手机自助快速充电系统A,其特征在于,包括:
    一个带有通讯及通断系统的电源适配器,所述带有通讯及通断系统的电源适配器的输入端与220V电源连接,所述带有通讯及通断系统的电源适配器的输出端与线缆的一端连接;
    一条线缆,所述线缆一端的USB接口与所述带有通讯及通断系统的电源适配器的输出端连接,另外一端的Micro USB接口,或者USB Type-C接口,或者Lightning接口与手机的充电接口连接;或者,另外一端的无线充电接口与手机的无线充电接口接触连接;
    一个用户智能手机,所述用户智能手机的充电接口与所述线缆另外一端的Micro USB接口,或者USB Type-C接口,或者Lightning接口连接;或者,所述用户智能手机的无线充电接口与所述线缆另外一端的无线充电接口接触连接;
    远程服务器,所述带有通讯及通断系统的电源适配器和所述用户智能手机与所述远程服务器通过网络系统建立信号连接关系。
  7. 按照权利要求6所述的一种手机自助快速充电系统A,其特征在于,还包括管理终端,所述管理终端能够与所述远程服务器进行信息交换,也能够与所述带有通讯及通断系统的电源适配器进行信息交换。
  8. 一种手机自助快速充电系统B,其特征在于,包括:
    一个智能插座,所述智能插座的输入端与220V电源连接;
    一个电源适配器,所述电源适配器的输入端与所述智能插座的输出端连接,所述电源适配器的输出端与线缆的一端连接;
    一条线缆,所述线缆一端的USB接口与所述电源适配器的输出端连接,另外一端的Micro USB接口,或者USB Type-C接口,或者Lightning接口与手机的充电接口连接;或者,另外一端的无线充电接口与手机的无线充电接口接触连接;
    一个用户智能手机,所述用户智能手机的充电接口与所述线缆另外一端的Micro USB接口,或者USB Type-C接口,或者Lightning接口连接;或者,所述用户智能手机的无线充电接口与所述线缆另外一端的无线充电接口接触连接;
    远程服务器,所述智能插座和所述用户智能手机与所述远程服务器通过网络系统建立信号连接关系。
  9. 按照权利要求8所述的一种手机自助快速充电系统B,其特征在于,还包括管理终端,所述管理终端能够与所述远程服务器进行信息交换,也能够与所述智能插座进行信息交换。
  10. 一种快速充电使用方法,包括如权力要求6或7所述的一种手机自助快速充电系统A,包括如权力要求8或9所述的一种手机自助快速充电系统B,包括如下步骤:
    步骤S1,所述用户智能手机和所述线缆建立物理连接,所述物理连接是将用户智能手机的充电接口与所述线缆另外一端的Micro USB接口,或者USB Type-C接口,或者Lightning接口连接;或者,将用户智能手机的无线充电接口与所述线缆另外一端的无线充电接口接触连接;
    步骤S2,所述用户智能手机和所述远程服务器建立信号连接;
    步骤S3,设定充电结束模式;
    步骤S4,充电结束并支付费用。
  11. 按照权利要求10所述的一种快速充电使用方法,其特征在于,所述用户智能手机和所述远程服务器建立信号连接,包括如下步骤:
    步骤S21,打开手机自助快速充电APP;
    步骤S22,点击APP中的图标,打开摄像头;
    步骤S23,获取所述带有通讯及通断系统的电源适配器或者所述电源适配器表面上的二维码信息或者一维码信息;
    步骤S24,APP识别出所述带有通讯及通断系统的电源适配器的ID号,或者所述电源适配器的ID号,或者所述智能插座的ID号;
    步骤S25,APP向所述远程服务器发送所述ID号;
    步骤S26,所述远程服务器向具有所述ID号的所述电源适配器或者所述智能插座发送指令,使所述电源适配器获得电能输入。
  12. 按照权利要求10所述的一种快速充电使用方法,其特征在于,所述设定充电结束模式,包括如下模式可供选择:或者设定充电时间;或者设定手机电池的充电电量百分比达到设定值;或者设定用户智能手机的充电接口与所述线缆另外一端的Micro USB接口,或者USB Type-C接口,或者Lightning接口分离。
  13. 按照权利要求12所述的一种快速充电使用方法,其特征在于,判定手机电池的充电电量百分比达到设定值,包括如下步骤:
    步骤K1,充电开始获取手机电池当前电量值并保存在“levelStart”中;
    步骤K2,充电开始获取手机电池总电量值并保存在“ScaleTotal”中;
    步骤K3,计算充电开始电池电量百分比为a1=levelStart/ScaleTotal;
    步骤K4,充电结束获取手机电池当前电量值并保存在“levelEnd”中;
    步骤K5,计算充电结束电池电量百分比为a2=levelEnd/ScaleTotal。
  14. 按照权利要求10所述的一种快速充电使用方法,其特征在于,所述充电结束并支付费用,包括如下步骤:
    步骤S41,充电结束后所述带有通讯及通断系统的电源适配器或者所述智能插座向手机自助快速充电APP或者所述远程服务器发送充电电能统计信息;
    步骤S42,所述远程服务器对所述充电电能统计信息进行处理后,将费用信息发送给所述用户智能手机的所述手机自助快速充电APP;
    步骤S43,用户对所述费用信息确认后,通过所述手机自助快速充电APP支付费用。
  15. 按照权利要求10所述的一种快速充电使用方法,其特征在于,当用户智能手机因电量低而关机时,在完成步骤S1的操作后(即:所述用户智能手机和所述线缆建立物理连接,所述物理连接是将用户智能手机的充电接口与所述线缆另外一端的Micro USB接口,或者USB Type-C接口,或者Lightning接口连接;或者,将用户智能手机的无线充电接口与所述线缆另外一端的无线充电 接口接触连接。)还包括如下步骤:至少点击一次所述带有通讯及通断系统的电源适配器的所述按键开关,或者至少点击一次所述智能插座的所述按键开关,直接获取关机充电时间Δt秒,在Δt秒内用户应开机并完成如权利要求10所述的步骤S2、步骤S3、步骤S4的操作。
PCT/CN2022/000019 2021-02-01 2022-02-07 电源适配器、手机自助快速充电系统、快速充电使用方法 WO2022161115A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202120327337 2021-02-01
CN202110158579.4 2021-02-01
CN202110158579.4A CN114928122A (zh) 2021-02-01 2021-02-01 电源适配器、手机自助快速充电系统、快速充电使用方法
CN202120327337.9 2021-02-01

Publications (2)

Publication Number Publication Date
WO2022161115A1 true WO2022161115A1 (zh) 2022-08-04
WO2022161115A9 WO2022161115A9 (zh) 2022-09-22

Family

ID=82653007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/000019 WO2022161115A1 (zh) 2021-02-01 2022-02-07 电源适配器、手机自助快速充电系统、快速充电使用方法

Country Status (1)

Country Link
WO (1) WO2022161115A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115296099A (zh) * 2022-10-08 2022-11-04 深圳市联发讯电子科技有限公司 扩展坞连接方法、装置、扩展坞及计算机可读存储介质

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2553349Y (zh) * 2002-07-10 2003-05-28 海尔集团公司 电热水器热水量显示装置
WO2012153975A2 (ko) * 2011-05-09 2012-11-15 Kim Chang Ho 대기전력 차단기능을 갖는 무접점 충전시스템 및 그 제어 방법
CN103311988A (zh) * 2013-06-07 2013-09-18 无锡商业职业技术学院 一种电动车充电器远程控制器
CN104978793A (zh) * 2015-07-14 2015-10-14 邹伟刚 计费充电方法、服务器、插座及计费充电系统
CN205429319U (zh) * 2015-11-26 2016-08-03 南宁富桂精密工业有限公司 智能插座及控制系统
CN206524494U (zh) * 2017-02-24 2017-09-26 深圳一木智能科技有限公司 一种智能分控插座
CN206523945U (zh) * 2017-02-20 2017-09-26 深圳市极客动力科技有限公司 一种基于物联网的手机付费充电设备系统
CN206628878U (zh) * 2017-03-15 2017-11-10 武汉大学 一种基于峰谷电价的智能充电器
CN107710223A (zh) * 2015-06-05 2018-02-16 艾默里·托德 用于为移动装置安全充电的设备、方法和系统
CN108173327A (zh) * 2018-02-12 2018-06-15 塔里木大学 一种自动断电节能保护装置
CN108674230A (zh) * 2018-05-28 2018-10-19 联誉信息股份有限公司 电动自行车的自助充电终端、系统及方法
CN108961573A (zh) * 2018-08-03 2018-12-07 王泰智 一种基于微信的自助式蓝牙智能充电系统和充电方法
CN109302536A (zh) * 2018-11-21 2019-02-01 驿网无际(上海)智能科技有限公司 一种共享手机充电带无线呼叫器的多功能系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2553349Y (zh) * 2002-07-10 2003-05-28 海尔集团公司 电热水器热水量显示装置
WO2012153975A2 (ko) * 2011-05-09 2012-11-15 Kim Chang Ho 대기전력 차단기능을 갖는 무접점 충전시스템 및 그 제어 방법
CN103311988A (zh) * 2013-06-07 2013-09-18 无锡商业职业技术学院 一种电动车充电器远程控制器
CN107710223A (zh) * 2015-06-05 2018-02-16 艾默里·托德 用于为移动装置安全充电的设备、方法和系统
CN104978793A (zh) * 2015-07-14 2015-10-14 邹伟刚 计费充电方法、服务器、插座及计费充电系统
CN205429319U (zh) * 2015-11-26 2016-08-03 南宁富桂精密工业有限公司 智能插座及控制系统
CN206523945U (zh) * 2017-02-20 2017-09-26 深圳市极客动力科技有限公司 一种基于物联网的手机付费充电设备系统
CN206524494U (zh) * 2017-02-24 2017-09-26 深圳一木智能科技有限公司 一种智能分控插座
CN206628878U (zh) * 2017-03-15 2017-11-10 武汉大学 一种基于峰谷电价的智能充电器
CN108173327A (zh) * 2018-02-12 2018-06-15 塔里木大学 一种自动断电节能保护装置
CN108674230A (zh) * 2018-05-28 2018-10-19 联誉信息股份有限公司 电动自行车的自助充电终端、系统及方法
CN108961573A (zh) * 2018-08-03 2018-12-07 王泰智 一种基于微信的自助式蓝牙智能充电系统和充电方法
CN109302536A (zh) * 2018-11-21 2019-02-01 驿网无际(上海)智能科技有限公司 一种共享手机充电带无线呼叫器的多功能系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115296099A (zh) * 2022-10-08 2022-11-04 深圳市联发讯电子科技有限公司 扩展坞连接方法、装置、扩展坞及计算机可读存储介质

Also Published As

Publication number Publication date
WO2022161115A9 (zh) 2022-09-22

Similar Documents

Publication Publication Date Title
CN105576727B (zh) 一种快速充电的方法、装置和系统
CN103259339A (zh) 一种终端设备及终端设备间无线充电的方法
CN201234276Y (zh) 分体式移动终端的充电装置及分体式移动终端
WO2022161115A1 (zh) 电源适配器、手机自助快速充电系统、快速充电使用方法
CN101630859A (zh) 一种移动终端充电器
CN101795014B (zh) 一种移动终端对外部设备的供电装置及方法
CN205453152U (zh) 混合式智能微电网系统
CN202153645U (zh) 一种基于otg接口充电的电子设备
CN206790138U (zh) 一种移动电源
CN203522233U (zh) 一种带3g、无线路由功能的直充式便携移动电源
CN105720674A (zh) 一种基于太阳能采集的移动电源
CN211880144U (zh) 充电器及充电系统
CN205945216U (zh) 电子设备供电系统
CN113659673A (zh) 一种基于储能电源的快速充电和并网连接装置及其工作方法
CN106981903A (zh) 带通信功能的移动电源
CN204290441U (zh) 无线充电器
CN208623372U (zh) 一种手机充电器结构
CN208971248U (zh) 无线充电宝
CN208874002U (zh) 一种智能充电插座
CN203180655U (zh) 无线供电设备
CN103259242B (zh) 自供电合闸瞬间快速保护装置
CN208423854U (zh) 一种移动电源及其放电电路
CN102761143A (zh) 一种便携式手机充电器
CN206775185U (zh) 带通信功能的移动电源
CN206422576U (zh) 一种无线充电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22744993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22744993

Country of ref document: EP

Kind code of ref document: A1