WO2022161091A1 - 机械剥离制备石墨烯的方法及其应用 - Google Patents

机械剥离制备石墨烯的方法及其应用 Download PDF

Info

Publication number
WO2022161091A1
WO2022161091A1 PCT/CN2021/142386 CN2021142386W WO2022161091A1 WO 2022161091 A1 WO2022161091 A1 WO 2022161091A1 CN 2021142386 W CN2021142386 W CN 2021142386W WO 2022161091 A1 WO2022161091 A1 WO 2022161091A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
graphene
foaming agent
aqueous solution
grinding
Prior art date
Application number
PCT/CN2021/142386
Other languages
English (en)
French (fr)
Inventor
许建锋
林倩
吴小锋
王苑
阮丁山
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to MA61504A priority Critical patent/MA61504A1/fr
Priority to ES202390065A priority patent/ES2956882A2/es
Priority to DE112021005576.3T priority patent/DE112021005576T5/de
Priority to HU2200273A priority patent/HUP2200273A1/hu
Priority to GB2310069.6A priority patent/GB2617023A/en
Publication of WO2022161091A1 publication Critical patent/WO2022161091A1/zh
Priority to US18/212,680 priority patent/US20230339760A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • C01B32/196Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of graphene, and in particular relates to a method for preparing graphene by mechanical exfoliation and application thereof.
  • Graphene a carbon structural material in which carbon atoms are arranged in a SP hybridized form into a planar two -dimensional honeycomb structure, is considered to be the thinnest material in the world.
  • the special structure endows graphene with excellent optical, electrical, mechanical and other properties, which can be used in many fields such as anti-corrosion coatings, thermal conductive coatings, and conductive additives. It is a revolutionary new material in the future.
  • the preparation methods of graphene can be divided into two categories: exfoliation preparation and in situ generation.
  • the exfoliation preparation uses graphite as the raw material, and under the action of force, the graphite is exfoliated layer by layer.
  • This force can be a mechanical force, a chemical force, or even a force generated by a fluid or gas.
  • the first piece of graphene was peeled off from highly oriented pyrolytic graphite by two scientists from the University of Manchester in the United Kingdom. It can be seen that the force generated by the adhesive is enough to peel off the graphene from the graphite. , the two scientists jointly won the 2010 Nobel Prize in Physics.
  • In-situ generation of graphene refers to the pyrolysis of carbon sources (carbides such as alkanes and alkenes) at high temperature to grow graphene on the basal plane.
  • Typical preparation methods are: vapor chemical deposition (CVD), Joule flash evaporation (FJH).
  • CVD vapor chemical deposition
  • FJH Joule flash evaporation
  • Graphene prepared by CVD method has high quality, thin lamellae and controllable size, but the development of its back-end applications is limited due to the high preparation cost and the difficulty in transferring graphene out of the basal plane.
  • the related art discloses a method for preparing graphene by viscous mechanical shear exfoliation.
  • the method is to disperse the graphite raw material in a viscous solution, and through the viscous shearing force of the viscous solution, the graphite is peeled off layer by layer during the stirring process to prepare graphene.
  • the main component of the viscous solution is a water-soluble polymer.
  • it is usually necessary to add a large amount of water-soluble polymer. It needs a lot of water washing or high temperature pyrolysis to remove non-graphene components.
  • the graphene preparation method reduces the preparation cost, but increases the difficulty and processing cost of graphene extraction from viscous substances, which is disadvantageous for large-scale production.
  • the related art discloses a method for rapidly preparing high-quality graphene.
  • the graphite powder is mixed with a solid intercalation agent which can be completely decomposed into gas after being heated, and the intercalation is properly heated, and then heated by microwave.
  • the gas is decomposed, and the gas molecules penetrate into the graphite sheet, and overcome the van der Waals force between the layers to exfoliate the graphite.
  • the method has simple preparation process and low manufacturing cost, but the graphite layer spacing is 0.335 nm, and the gas molecules generated by heating the solid intercalation agent can only penetrate into the graphite layers in a small part, and cannot achieve effective exfoliation.
  • the quality of the graphene exfoliated by this method is unstable and the yield is low, which is not conducive to wide-scale promotion.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art. To this end, the present invention proposes a simple, green and economical method for preparing graphene by mechanical exfoliation and its application.
  • a method for preparing graphene by mechanical exfoliation comprising the following steps:
  • the foaming agent aqueous solution includes the following components: sodium alpha-alkenyl sulfonate, sodium aliphatic alcohol polyoxyethylene ether sulfate, coconut oil diethanol amide, polyethylene glycol and water.
  • the components of the foaming agent aqueous solution are calculated in the following parts by weight: 1-10 parts of sodium ⁇ -alkenyl sulfonate, 1-10 parts of sodium aliphatic alcohol polyoxyethylene ether sulfate, coconut oil 5-15 parts of diethanolamide, 10-20 parts of polyethylene glycol and 60-80 parts of water.
  • the molecular weight of the polyethylene glycol is 2000-6000.
  • the solid-to-liquid ratio of the graphite raw material and the foaming agent aqueous solution is 10-15 mg/mL.
  • the graphite raw material is at least one of natural flake graphite, microcrystalline graphite, graphite oxide, expandable graphite, artificial graphite or highly oriented pyrolytic graphite.
  • the process of centrifugal classification is as follows: the graphene upper layer solution is obtained by treating for 1-10 min at a centrifugal speed of 1000-3000 rmp. Centrifugal fractionation can remove non-graphene fractions.
  • a sand mill is used for the grinding, and the stirring speed of the sand mill is 500-2000 rmp.
  • the sand mill is easy to operate and highly portable.
  • a ball mill may be used for the milling.
  • the grinding time of the sand mill is 0.1-10 h.
  • the particle size of the grinding media of the sand mill is 0.3-3 mm, and the filling amount is 70-80%.
  • the temperature of the sand mill is 30-80°C.
  • the present invention also provides the application of the method in the preparation of catalyst or battery active material.
  • the present invention uses graphite as the raw material, the graphite is infiltrated in the foaming agent aqueous solution, and then ground, and the high-speed stirring action of the grinding equipment drives the high-speed movement of the grinding medium to produce impact, friction and shear force on the graphite.
  • the foaming agent produces a large amount of stable and fine foam in the closed grinding chamber, and a large amount of foam can produce a pushing effect, support the graphite, and increase the contact surface between the graphite and the grinding medium, so as to achieve a good peeling effect.
  • the foaming agent configured in the present invention is a compound system composed of multiple surfactants, and its foaming performance is better than that of a single surfactant, and can generate a large number of stable foams, which cannot be achieved by common surfactants.
  • the present invention is prepared in a purely physical manner, does not involve chemical redox processes, retains the intrinsic structure of graphite to the greatest extent, and obtains graphene sheets with thin layers, few defects, and certain dispersion stability.
  • the preparation process of the present invention is simple, the source of raw materials is wide, the cost is low, the environmental pollution is small, the prepared graphene is easily separated from the matrix, and the high-speed grinding equipment that can provide continuous shearing force is used to realize the continuous and large-scale graphene. chemical preparation.
  • Fig. 1 is the SEM topography of the raw material graphite of Example 1 of the present invention
  • Fig. 2 is the SEM topography of graphene prepared in Example 1 of the present invention
  • Fig. 3 is the TEM image of the graphene prepared by the embodiment of the present invention 1;
  • Example 4 is a TEM image of the edge of the graphene sheet prepared in Example 1 of the present invention.
  • Fig. 5 is the XRD diffractogram of graphene prepared by the embodiment of the present invention and raw material graphite;
  • Fig. 6 is the graphene Raman spectrogram prepared by the embodiment of the present invention 1;
  • Fig. 7 is the dispersion effect diagram of graphene prepared in the embodiment of the present invention 1 in water/isopropanol mixed solvent;
  • FIG. 8 is a SEM image of the graphene prepared in Comparative Example 1 of the present invention.
  • the present embodiment prepares a kind of graphene, and the specific process is:
  • artificial graphite is uniformly pre-dispersed in the foaming agent aqueous solution of the above-mentioned configuration, to obtain artificial graphite pre-dispersed liquid, and its concentration is 10 mg/mL;
  • the artificial graphite has an obvious graphite stacking structure, and its thickness is close to 6 ⁇ m, which can be called a bulk or granular material.
  • the graphene shown in Figure 2 is obtained after peeling off by the above method. The thickness of the graphite is obviously reduced, and its thickness reaches the nanometer level. vector.
  • TEM analysis of the exfoliated graphene sheet, as shown in Figure 3, and local amplification of the graphene edge, as shown in Figure 4 it can be found that the graphene lattice fringes are at 3.8 nm, indicating that Its thickness value is less than 5nm.
  • the stacking of graphite along the C-axis direction is the 002 crystal plane, and the corresponding XRD pattern (Fig. 5) is around 26.4°, with a very strong diffraction peak.
  • the stacked structure of graphite along the C-axis direction is destroyed, and the lamellae are thinned, showing a weak peak at 26.4° as shown in Figure 3.
  • the defect value generated can be analyzed by Raman. The results are shown in Figure 6.
  • the graphene peeled off by this scheme has a defect concentration ID/IG of 0.2326 , which is slightly larger than that of the raw material (ID ) .
  • the present embodiment prepares a kind of graphene, and the specific process is:
  • the present embodiment prepares a kind of graphene, and the specific process is:
  • the present embodiment prepares a kind of graphene, and the specific process is:
  • This comparative example has prepared a kind of Graphene, and the difference with embodiment 1 is that the composition of the foaming agent aqueous solution is different, and the concrete process is:
  • artificial graphite is uniformly pre-dispersed in the foaming agent aqueous solution of the above-mentioned configuration, to obtain artificial graphite pre-dispersed liquid, and its concentration is 10 mg/mL;
  • Comparative Example 1 The biggest difference between Comparative Example 1 and Example 1 is that the components of the aqueous foaming agent are different.
  • the graphene prepared in Comparative Example 1 is graphene nanosheets or graphite microsheets.
  • the system contrasted the key indicators of the graphene in Comparative Example 1 and the graphite raw material and Example 1, and the results are shown in Table 1:
  • Comparative Example 1 show that when the foaming agent aqueous solution is a single-component surfactant with a certain foaming effect, although foam can be generated, the foam is unstable and easy to rupture, resulting in poor mechanical peeling effect of graphite.
  • the invention makes the foam stable and delicate by compounding, and maintains the effect of surfactant, thereby increasing the mechanical peeling effect of graphite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Lubricants (AREA)

Abstract

提供了一种机械剥离制备石墨烯的方法及其应用,包括以下步骤:(1)将石墨原料分散于泡沫剂水溶液中,得到石墨预分散液;(2)将石墨预分散液进行研磨,再通过水洗、离心分级,即得石墨烯;泡沫剂水溶液包括以下组分:α-烯基磺酸钠、脂肪醇聚氧乙烯醚硫酸钠、椰子油二乙醇基酰胺、聚乙二醇和水。采用石墨为原料,石墨浸润于泡沫剂水溶液中,然后进行研磨,研磨设备的高速搅拌作用,带动研磨介质高速运动从而对石墨产生冲击、磨擦和剪切力,泡沫剂在封闭的研磨腔中产生大量稳定、细腻的泡沫,大量的泡沫可产生推挤作用,并支撑石墨,增大石墨与研磨介质的接触面,从而达到很好的剥离效果。

Description

机械剥离制备石墨烯的方法及其应用 技术领域
本发明属于石墨烯技术领域,具体涉及一种机械剥离制备石墨烯的方法及其应用。
背景技术
石墨烯,一种碳结构材料,碳原子以SP 2杂化形式排列成平面二维蜂窝状结构,被认为是世界上最薄的材料。特殊的结构赋予石墨烯优异的光学、电学、力学等特性,可应用于防腐涂层、导热涂层、导电添加剂等众多领域,是一种未来具有革命性的新材料。
石墨烯的制备方法可以分为两大类:剥离制备与原位生成。剥离制备是以石墨为原料,在力的作用下,对石墨进行逐层剥离。这种力可以是机械力、化学力、甚至是流体、气体所产生的力。第一片石墨烯就是由英国的曼切斯特大学的两位科学家通过胶带在高定向热解石墨上剥离得到,可见胶黏所产生的力也足以从石墨上剥离出石墨烯,因这一创举,两位科学家共同获得了2010年诺贝尔物理学奖。原位生成石墨烯指碳源(烷、烯烃等碳化物)经高温裂解,在基面上生长出石墨烯。典型制备方法如:气相化学沉积(CVD)、焦耳闪蒸技术(FJH)。CVD法所制备的石墨烯质量高、片层薄、尺寸可控,但由于制备成本高、石墨烯难以转移出基面等问题限制其后端应用的开发。
相关技术公开了一种通过粘性机械剪切剥离制备石墨烯的方法。该方法是将石墨原料分散于粘性溶液中,通过胶粘性溶液的粘性剪切力,在搅拌过程中将石墨逐层剥离制备石墨烯。然而所述的粘性溶液的主体成分为水溶性聚合物,为了使粘性溶液具有较好的粘性,通常需要添加大量的水溶性聚合物,从而导致石墨逐层剥离成石墨烯后,难以从粘性溶液中直接分离出来,需要大量的水清洗或高温热解去除非石墨烯成分。该石墨烯的制备方法降低了制备成本,但是增加了石墨烯从粘性物质中提取的难度和处理成本,不利与规模化生产。
相关技术公开了一种快速制备高质量石墨烯的方法。该方法是将石墨粉与受热后能完全分解成气体的固态插层剂混合球磨并适当加热插层,然后通过微波加热。插层剂受热后分解气体,气体分子渗入石墨片层中,并克服层间范德华力,使石墨剥离。该方法制备过程简单、制造成本低,但石墨层间距为0.335nm,加热固体插层剂生成的气体分子只能少部分渗入石墨层间,无法实现有效的剥离。通过该方法所剥离的石墨烯质量不 稳定、产率低,不利于大范围推广。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种实施简便、绿色经济的机械剥离制备石墨烯的方法及其应用。
根据本发明的一个方面,提出了一种机械剥离制备石墨烯的方法,包括以下步骤:
(1)将石墨原料分散于泡沫剂水溶液中,得到石墨预分散液;
(2)将所述石墨预分散液进行研磨,再通过水洗、离心分级,即得所述石墨烯;
所述泡沫剂水溶液包括以下组分:α-烯基磺酸钠、脂肪醇聚氧乙烯醚硫酸钠、椰子油二乙醇基酰胺、聚乙二醇和水。
在本发明的一些实施方式中,所述泡沫剂水溶液的组分按以下重量份计:α-烯基磺酸钠1-10份、脂肪醇聚氧乙烯醚硫酸钠1-10份、椰子油二乙醇基酰胺5~15份、聚乙二醇10~20份和水60~80份。
在本发明的一些实施方式中,所述聚乙二醇的分子量为2000-6000。
在本发明的一些实施方式中,所述石墨原料和泡沫剂水溶液的固液比为10-15mg/mL。
在本发明的一些实施方式中,所述石墨原料为天然鳞片石墨、微晶石墨、氧化石墨、可膨胀石墨、人造石墨或高定向热解石墨中的至少一种。
在本发明的一些实施方式中,所述离心分级的过程为:在离心速度1000-3000rmp下处理1-10min获得石墨烯上层液。离心分级可以去除非石墨烯部分。
在本发明的一些实施方式中,所述研磨采用砂磨机,所述砂磨机的搅拌速度为500-2000rmp。砂磨机操作简单,可移植性高。
在本发明的一些实施方式中,所述研磨可以采用球磨机。
在本发明的一些实施方式中,所述砂磨机的研磨时间为0.1-10h。
在本发明的一些实施方式中,所述砂磨机的研磨介质的粒径为0.3-3mm,填充量为70-80%。
在本发明的一些实施方式中,所述砂磨机的温度为30-80℃。
本发明还提供所述方法在制备催化剂或电池活性物质中的应用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明采用石墨为原料,石墨浸润于泡沫剂水溶液中,然后进行研磨,研磨设备的高速搅拌作用,带动研磨介质高速运动从而对石墨产生冲击、磨擦和剪切力。同时,在高速搅拌下,泡沫剂在封闭的研磨腔中产生大量稳定、细腻的泡沫,大量的泡沫可产生推挤作用,并支撑石墨,增大石墨与研磨介质的接触面,从而达到很好的剥离效果。
2、本发明配置的泡沫剂是由多种表面活性剂组成的复配体系,其泡沫性能优于单一表面活性剂,可以产生大量稳定的泡沫,这是普通表面活性剂所达不到的。
3、本发明以纯物理的方式进行制备,不涉及化学氧化还原过程,最大限度的保留了石墨的本征结构,获得的石墨烯片层薄、缺陷少、且具有一定分散稳定性。
4、本发明制备过程简单,原料来源广泛,成本低,对环境污染小,所制备的石墨烯易从基体中分离,使用能提供连续剪切力的高速研磨设备,实现石墨烯连续化、规模化制备。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的原料石墨的SEM形貌图;
图2为本发明实施例1制备的石墨烯的SEM形貌图;
图3为本发明实施例1制备的石墨烯的TEM图;
图4为本发明实施例1制备的石墨烯片层边缘的TEM图;
图5为本发明实施例1制备的石墨烯与原料石墨的XRD衍射图;
图6为本发明实施例1制备的石墨烯Raman谱图;
图7为本发明实施例1制备的石墨烯在水/异丙醇混合溶剂中的分散效果图;
图8为本发明对比例1制备的石墨烯的SEM形貌图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种石墨烯,具体过程为:
(1)将α-烯基磺酸钠、脂肪醇聚氧乙烯醚硫酸钠、椰子油二乙醇基酰胺、聚乙二醇5000、水按照质量比为4:4:8:15:69配置泡沫剂水溶液;
(2)将人造石墨均匀预分散于上述配置的泡沫剂水溶液中,获得人造石墨预分散液,其浓度为10mg/mL;
(3)将人造石墨预分散液加入棒销砂磨机中,研磨介质粒径0.5mm,填充量80%,搅拌速度1500rmp,搅拌时间2h;
(4)通过水洗,并在离心速度为1000rmp下处理10min获得石墨烯上层液,即得石墨烯。
从图1所示原料石墨的SEM形貌可以观察到,人造石墨出现明显的石墨堆叠结构,其厚度接近6μm,可以称其为块体或颗粒材料。经上述方法剥离后得到如图2所示的石墨烯,石墨厚度明显减薄,其厚度达到纳米级别,可作为纳米材料,加上特殊的二维导电性,使其成为催化剂、活性物质的优良载体。进一步探究其厚度大小,通过对剥离的石墨烯片进行TEM分析,如图3所示,并对石墨烯边缘进行局部放大,如图4所示,可以发现石墨烯晶格条纹在3.8nm,表明其厚度值小于5nm。
石墨沿C轴方向的堆叠为002晶面,对应XRD图谱(图5)在26.4°左右,具有非常强的衍射峰。经过剥离后,石墨沿C轴方向堆叠的结构被破坏,片层减薄,表现出图三所示的26.4°的弱峰。石墨经砂磨剥离后,产生的缺陷值可以使用Raman进行分析,其结果如图6所示,经该方案剥离的石墨烯,其缺陷浓度I D/I G为0.2326,略大于原料(I D/I G<0.1),但小于氧化还原法制备的石墨烯(I D/I G>0.5)。对剥离后的石墨烯进行分散性测试,如图7所示,通过超声处理获得1mg/mL的石墨烯分散液(水/异丙醇),将其静置一周后,容器倒置,观察容器底部沉淀,可以发现,静置7天后,石墨烯仍保持良好分散性,容器底部仅有少量石墨烯,这是因为石墨烯片层较薄,可较稳定的分散在与自身表面张力相匹配的溶剂当中。
上述结果表明人造石墨经本实施例的方案可得到有效剥离,获得片层薄、缺陷少、且具有一定分散稳定性的石墨烯。
实施例2
本实施例制备了一种石墨烯,具体过程为:
(1)将α-烯基磺酸钠、脂肪醇聚氧乙烯醚硫酸钠、椰子油二乙醇基酰胺、聚乙二醇4000、水按照质量比为5:2.5:7.5:15:70配置泡沫剂水溶液;
(2)将鳞片石墨均匀预分散于上述配置的泡沫剂水溶液中,获得鳞片石墨预分散液,其浓度为10mg/mL;
(3)将鳞片石墨预分散液加入棒销砂磨机中,研磨介质粒径0.3mm,填充量80%,搅拌速度1500rmp,搅拌时间2h;
(4)通过水洗,并在离心速度为2000rmp下处理7min获得石墨烯上层液,即得石墨烯。
实施例3
本实施例制备了一种石墨烯,具体过程为:
(1)将α-烯基磺酸钠、脂肪醇聚氧乙烯醚硫酸钠、椰子油二乙醇基酰胺、聚乙二醇3000、水按照质量比为3:2:5:15:75配置泡沫剂水溶液;
(2)将可膨胀石墨均匀预分散于上述配置的泡沫剂水溶液中,获得可膨胀石墨预分散液,其浓度为10mg/mL;
(3)将可膨胀石墨预分散液加入棒销砂磨机中,研磨介质粒径0.8mm,填充量80%,搅拌速度1000rmp,搅拌时间3h;
(4)通过水洗,并在离心速度为2500rmp下处理5min获得石墨烯上层液,即得石墨烯。
实施例4
本实施例制备了一种石墨烯,具体过程为:
(1)将α-烯基磺酸钠、脂肪醇聚氧乙烯醚硫酸钠、椰子油二乙醇基酰胺、聚乙二醇4000、水按照质量比为3:2:5:15:75配置泡沫剂水溶液;
(2)将微晶石墨均匀预分散于上述配置的泡沫剂水溶液中,获得微晶石墨预分散液,其浓度为10mg/mL;
(3)将微晶石墨预分散液加入棒销砂磨机中,研磨介质粒径2mm,填充量80%,搅拌速度1000rmp,搅拌时间4h;
(4)通过水洗,并在离心速度为3000rmp下处理5min获得石墨烯上层液,即得石墨烯。
对比例1
本对比例制备了一种石墨烯,与实施例1的区别在于泡沫剂水溶液的组成不同,具 体过程为:
(1)将α-烯基磺酸钠、水按照质量比为4:96配置泡沫剂水溶液;
(2)将人造石墨均匀预分散于上述配置的泡沫剂水溶液中,获得人造石墨预分散液,其浓度为10mg/mL;
(3)将人造石墨预分散液加入棒销砂磨机中,研磨介质粒径0.5mm,填充量80%,搅拌速度1500rmp,搅拌时间2h;
(4)通过水洗,并在离心速度为1000rmp下处理10min获得石墨烯上层液,即得石墨烯。
对比例1与实施例1最大区别在于泡沫剂水溶液液组分不同,实施例1中的泡沫水分散液组分:椰子油二乙醇基酰胺、聚乙二醇5000具有增稠及泡沫稳定作用。由于对比例1泡沫剂水溶液缺少高分子增稠及泡沫稳定作用,所产生的泡沫不稳定、容易破裂,造成机械剥离效果差,石墨烯得率低。进一步的观察对比例1中制备的石墨烯SEM形貌图,可以发现所剥离的石墨烯依然保持较厚的片层,其片层厚度在10-100nm,与实施例1制备的石墨烯存在明显差别。跟据石墨烯的定义及分类,可认为对比例1所制备的石墨烯为石墨烯纳米片或石墨微片。相应的,系统对比了对比例1与石墨原料、实施例1中的石墨烯的关键指标,其结果如表1所示:
表1
  得率 BET(m 2/g) I D/I G 厚度(nm)
石墨原料 0 2.6 0.03 5-10μm
对比例1 10% 13.5 0.12 10-100nm
实施例1 65% 80.5 0.23 5-10nm
由表1可以看出,由于对比例1的泡沫剂水溶液缺少发泡助剂、增稠剂、泡沫稳定剂,所产生的泡沫不稳定,细腻度不够,造成所剥离的石墨烯在得率、厚度、形貌上均不如实施例1的石墨烯。
对比例1的结果表明,泡沫剂水溶液为单组分、具有一定发泡作用的表面活性剂时,虽然可以产生泡沫,但泡沫不稳定、容易破裂,造成石墨机械剥离效果差。本发明通过复配的方式,使泡沫稳定、细腻,并且保持表面活性剂的作用,从而增益石墨的机械剥离效果。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所 属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种机械剥离制备石墨烯的方法,其特征在于,包括以下步骤:
    (1)将石墨原料分散于泡沫剂水溶液中,得到石墨预分散液;
    (2)将所述石墨预分散液进行研磨,再通过水洗、离心分级,即得所述石墨烯;
    所述泡沫剂水溶液包括以下组分:α-烯基磺酸钠、脂肪醇聚氧乙烯醚硫酸钠、椰子油二乙醇基酰胺、聚乙二醇和水。
  2. 根据权利要求1所述的方法,其特征在于,所述泡沫剂水溶液的组分按以下重量份计:α-烯基磺酸钠1-10份、脂肪醇聚氧乙烯醚硫酸钠1-10份、椰子油二乙醇基酰胺5~15份、聚乙二醇10~20份和水60~80份。
  3. 根据权利要求1所述的方法,其特征在于,所述聚乙二醇的分子量为2000-6000。
  4. 根据权利要求1所述的方法,其特征在于,所述石墨原料和泡沫剂水溶液的固液比为10-15mg/mL。
  5. 根据权利要求1所述的方法,其特征在于,所述石墨原料为天然鳞片石墨、微晶石墨、氧化石墨、可膨胀石墨、人造石墨或高定向热解石墨中的至少一种。
  6. 根据权利要求1所述的方法,其特征在于,所述研磨采用砂磨机,所述砂磨机的搅拌速度为500-2000rmp。
  7. 根据权利要求6所述的方法,其特征在于,所述砂磨机的研磨时间为0.1-10h。
  8. 根据权利要求6所述的方法,其特征在于,所述砂磨机的研磨介质的粒径为0.3-3mm,填充量为70-80%。
  9. 根据权利要求1所述的方法,其特征在于,所述离心分级的过程为:在离心速度1000-3000rmp下处理1-10min获得石墨烯上层液。
  10. 权利要求1-9任一项所述的方法在制备催化剂或电池活性物质中的应用。
PCT/CN2021/142386 2021-01-27 2021-12-29 机械剥离制备石墨烯的方法及其应用 WO2022161091A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MA61504A MA61504A1 (fr) 2021-01-27 2021-12-29 Méthode de préparation de graphène par exfoliation mécanique et son application
ES202390065A ES2956882A2 (es) 2021-01-27 2021-12-29 Metodo para la preparacion de grafeno mediante exfoliacion mecanica y aplicacion del mismo
DE112021005576.3T DE112021005576T5 (de) 2021-01-27 2021-12-29 Verfahren zum herstellen von graphen durch mechanische exfoliation und anwendung davon
HU2200273A HUP2200273A1 (hu) 2021-01-27 2021-12-29 Grafén mechanikus hámlasztással történõ elõállításának eljárása és annak felhasználása
GB2310069.6A GB2617023A (en) 2021-01-27 2021-12-29 Method for preparing graphene by mechanical exfoliation and application thereof
US18/212,680 US20230339760A1 (en) 2021-01-27 2023-06-21 Method for preparing graphene by mechanical exfoliation and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110111522.9A CN112777588B (zh) 2021-01-27 2021-01-27 机械剥离制备石墨烯的方法及其应用
CN202110111522.9 2021-01-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/212,680 Continuation US20230339760A1 (en) 2021-01-27 2023-06-21 Method for preparing graphene by mechanical exfoliation and application thereof

Publications (1)

Publication Number Publication Date
WO2022161091A1 true WO2022161091A1 (zh) 2022-08-04

Family

ID=75758325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142386 WO2022161091A1 (zh) 2021-01-27 2021-12-29 机械剥离制备石墨烯的方法及其应用

Country Status (8)

Country Link
US (1) US20230339760A1 (zh)
CN (1) CN112777588B (zh)
DE (1) DE112021005576T5 (zh)
ES (1) ES2956882A2 (zh)
GB (1) GB2617023A (zh)
HU (1) HUP2200273A1 (zh)
MA (1) MA61504A1 (zh)
WO (1) WO2022161091A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112777588B (zh) * 2021-01-27 2022-10-18 广东邦普循环科技有限公司 机械剥离制备石墨烯的方法及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080279756A1 (en) * 2007-05-08 2008-11-13 Aruna Zhamu Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets
CN103466608A (zh) * 2013-09-11 2013-12-25 中南大学 一种石墨烯的球磨制备法
US20160009561A1 (en) * 2013-03-14 2016-01-14 The Provost, Fellows, Foundation Scholars, & the Other Members of Board, of The College of the Holy A Scalable Process for Producing Exfoliated Defect-Free, Non-Oxidised 2-Dimensional Materials in Large Quantities
CN105523549A (zh) * 2016-01-28 2016-04-27 成都新柯力化工科技有限公司 一种用于机械剥离法制备石墨烯的剥离剂及应用
CN106542526A (zh) * 2016-11-08 2017-03-29 成都新柯力化工科技有限公司 一种利用流体加速搅拌剥离石墨烯浆体的装置和方法
CN107879332A (zh) * 2017-10-27 2018-04-06 中南民族大学 时空同步超声球磨法剥离石墨制备石墨烯的方法
CN108367926A (zh) * 2015-11-26 2018-08-03 意大利学院科技基金会 通过湿喷射研磨技术剥离层状材料
CN109941992A (zh) * 2019-04-09 2019-06-28 广东墨睿科技有限公司 一种涂料用的机械法剥离石墨烯及其制备方法
CN112777588A (zh) * 2021-01-27 2021-05-11 广东邦普循环科技有限公司 机械剥离制备石墨烯的方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106976870B (zh) * 2017-03-29 2018-12-25 天津工业大学 高效剥离石墨粉制备大尺寸石墨烯的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080279756A1 (en) * 2007-05-08 2008-11-13 Aruna Zhamu Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets
US20160009561A1 (en) * 2013-03-14 2016-01-14 The Provost, Fellows, Foundation Scholars, & the Other Members of Board, of The College of the Holy A Scalable Process for Producing Exfoliated Defect-Free, Non-Oxidised 2-Dimensional Materials in Large Quantities
CN103466608A (zh) * 2013-09-11 2013-12-25 中南大学 一种石墨烯的球磨制备法
CN108367926A (zh) * 2015-11-26 2018-08-03 意大利学院科技基金会 通过湿喷射研磨技术剥离层状材料
CN105523549A (zh) * 2016-01-28 2016-04-27 成都新柯力化工科技有限公司 一种用于机械剥离法制备石墨烯的剥离剂及应用
CN106542526A (zh) * 2016-11-08 2017-03-29 成都新柯力化工科技有限公司 一种利用流体加速搅拌剥离石墨烯浆体的装置和方法
CN107879332A (zh) * 2017-10-27 2018-04-06 中南民族大学 时空同步超声球磨法剥离石墨制备石墨烯的方法
CN109941992A (zh) * 2019-04-09 2019-06-28 广东墨睿科技有限公司 一种涂料用的机械法剥离石墨烯及其制备方法
CN112777588A (zh) * 2021-01-27 2021-05-11 广东邦普循环科技有限公司 机械剥离制备石墨烯的方法及其应用

Also Published As

Publication number Publication date
GB202310069D0 (en) 2023-08-16
ES2956882A2 (es) 2023-12-29
GB2617023A (en) 2023-09-27
MA61504A1 (fr) 2023-12-29
DE112021005576T5 (de) 2023-08-31
CN112777588A (zh) 2021-05-11
US20230339760A1 (en) 2023-10-26
CN112777588B (zh) 2022-10-18
HUP2200273A1 (hu) 2022-11-28

Similar Documents

Publication Publication Date Title
Tian et al. Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode
Zhao et al. Fabrication of Co 3 O 4/graphene oxide composites using supercritical fluid and their catalytic application for the decomposition of ammonium perchlorate
CN106470941B (zh) 制备原始石墨烯纳米片的连续方法
US10472243B2 (en) Industrial method for preparing large-sized graphene
US10081550B2 (en) Direct ultrasonication production of graphene sheets from coke or coal
CN103253656B (zh) 一种石墨烯分散液制备方法
CN106660802A (zh) 制备石墨烯纳米片的方法
JP2017502900A (ja) グラフェンの製造方法
WO2022161091A1 (zh) 机械剥离制备石墨烯的方法及其应用
CN105271170A (zh) 一种纳米碳及其复合材料的制备方法
Tang et al. Formation of graphene oxide nanoscrolls in organic solvents: toward scalable device fabrication
Ding et al. Efficient exfoliation of layered materials by waste liquor
Yen et al. Using different ions to tune graphene stack structures from sheet-to onion-like during plasma exfoliation, with supercapacitor applications
Singh et al. Synthesis of colloidal graphene by electrochemical exfoliation of graphite in lithium sulphate
Guo et al. Preparation of graphene via liquid-phase exfoliation with high gravity technology from edge-oxidized graphite
Wen et al. Preparation of graphene by exfoliation and its application in lithium-ion batteries
Huang et al. High-efficiency, self-grinding exfoliation of small graphene nanosheets from microcrystalline graphite driven by microbead milling as conductive additives
US9845244B2 (en) Method of forming graphene material by graphite exfoliation
Hyo-Guk et al. Fabrication of low defect multi-layer graphene using electrochemical intercalation of graphite electrode and its application for graphene/Al nanocomposites
KR20160131454A (ko) 염료를 이용한 그래핀의 제조 방법
Kwon et al. The preparation of flaky layered carbon by using layered silicate template
CN111591982B (zh) 一种以鳞片石墨为原料的石墨烯物理制备方法
TW201638164A (zh) 複合材料的製造方法及複合材料
Al-Jadir et al. Improving Crude Oil Flow Using Graphene Flakes under an Applied Electric Field.
Yi et al. Research and Numerical Simulation of Preparation of Graphene by Supercritical Carbon Dioxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202310069

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20211229

122 Ep: pct application non-entry in european phase

Ref document number: 21922679

Country of ref document: EP

Kind code of ref document: A1