WO2022160720A1 - Acier pour dispositif de retenue de joint universel de type cage à billes et son procédé de production - Google Patents

Acier pour dispositif de retenue de joint universel de type cage à billes et son procédé de production Download PDF

Info

Publication number
WO2022160720A1
WO2022160720A1 PCT/CN2021/116576 CN2021116576W WO2022160720A1 WO 2022160720 A1 WO2022160720 A1 WO 2022160720A1 CN 2021116576 W CN2021116576 W CN 2021116576W WO 2022160720 A1 WO2022160720 A1 WO 2022160720A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
molten steel
universal joint
class
continuous casting
Prior art date
Application number
PCT/CN2021/116576
Other languages
English (en)
Chinese (zh)
Inventor
陈敏
白云
罗元东
吴小林
尹青
李文彬
华刘开
刘烨
Original Assignee
江阴兴澄特种钢铁有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴兴澄特种钢铁有限公司 filed Critical 江阴兴澄特种钢铁有限公司
Priority to JP2023537250A priority Critical patent/JP2024502743A/ja
Priority to EP21922314.6A priority patent/EP4186990A4/fr
Publication of WO2022160720A1 publication Critical patent/WO2022160720A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below

Definitions

  • the invention belongs to the technical field of special steel smelting, and particularly relates to a steel for a cage type universal joint cage and a production method thereof.
  • the constant velocity joints commonly used in cars are spherical joints.
  • the function of the spherical joints is to transmit the power of the engine from the transmission to the two front wheels to drive the car at high speed. It is mainly composed of spherical shell, star-shaped sleeve, cage (ball cage), steel ball and other main parts. Because the constant velocity universal joint transmits heavy driving torque, bears heavy load, has high transmission accuracy, and is in great demand, and is also used as a safety component of automobiles, it has high requirements on the quality of products.
  • the cage material is required to have good thermal conductivity, good wear resistance, small friction coefficient, small density, a certain combination of strength and toughness, good elasticity and stiffness, expansion coefficient similar to the rolling element, and good processing performance.
  • the cage is also subjected to chemical media, such as lubricants, lubricant additives, organic solvents and coolants, so it is also required to have certain corrosion resistance.
  • the current ball cage type universal joint cage is usually made of 20CrMnTi. After carburizing, the grains of the steel are refined and uniform, and it has good surface tensile and bending fatigue strength. The core has sufficient strength and toughness to improve wear resistance. But the cost is high, and the strength and toughness margin is not high.
  • the steel of the invention is redesigned on the basis of 20CrMnTi, and the content of alloy elements Mn and Cr is optimized. At the same time, by adding B and Mo elements, and improving the production process, the hardenability similar to 20CrMnTi can be achieved under the premise of optimizing the cost.
  • the strength and toughness are better than 20CrMnTi, which finally meets the requirements of steel for ball cage type universal joint cage and belongs to carburized steel.
  • the microstructure of the steel developed in this application is bainite, and the austenite grain size is greater than or equal to grade 6.
  • the hardenability of the steel end is evaluated according to the method of GB/T 225, which meets the J5 point: 35-42HRC, the J9 point: 25-35HRC, and the J13 point: 20-30HRC.
  • the strip structure of steel is graded according to GB/T 13299, and the strip structure does not exceed grade 2.0.
  • ASTM E381 is used to grade the low-magnification structure of steel, meeting C ⁇ 2.0, R ⁇ 2.0, S ⁇ 2.0 .
  • the steel of the present application meeting the above properties finally meets the use requirements of steel for ball cage type universal joint cage.
  • the technical solution adopted by the present invention to solve the above problems is: a steel for ball cage type universal joint cage, characterized in that the chemical composition wt% of the steel is C: 0.10-0.25%, Si: 0.20-0.40 %, Mn: 0.40-0.65%, Cr: 0.40-0.70%, B: 0.0003-0.0025%, Ti: 0.010-0.035%, Mo: 0.30-0.45%, N: 0.0050-0.0100%, S ⁇ 0.015%, P ⁇ 0.025%, Ni ⁇ 0.25%, Cu ⁇ 0.30%, Al: 0.015 ⁇ 0.035%, O ⁇ 0.0010%, As ⁇ 0.04%, Sn ⁇ 0.03%, Sb ⁇ 0.005%, Pb ⁇ 0.002%, the balance is Fe and inevitable impurities.
  • the chemical composition wt% of the steel is C: 0.10-0.25%, Si: 0.20-0.40 %, Mn: 0.40-0.65%, Cr: 0.40-0.70%, B: 0.0003-0.0025%, Ti: 0.010-0.035%, Mo: 0.3
  • C is an element necessary to ensure the wear resistance of steel. Increasing the carbon content in the steel will increase its martensitic transformation ability, thereby increasing its hardness and strength, thereby improving wear resistance. But too high C content is detrimental to the toughness of steel. In addition, too high C content will also lead to severe central C segregation and thus affect the core toughness of the steel.
  • the present invention controls its content to be 0.10-0.25%.
  • Si is a key element in the present invention.
  • Si is solid-dissolved in the ferrite phase and has a strong solid solution strengthening effect, which can significantly improve the strength of the ferrite, but at the same time reduce the plasticity and toughness of the ferrite.
  • the setting range of the Si content in the present invention is 0.20-0.40% .
  • Mn is an element effective in strengthening steel and plays a role in solid solution strengthening. Moreover, Mn can improve the hardenability of steel and improve the hot workability of steel. Mn can eliminate the influence of S (sulfur): Mn can form high melting point MnS with S in iron and steel smelting, thereby weakening and eliminating the adverse effects of S. However, high Mn content will reduce the toughness of steel.
  • the Mn content of the present invention is controlled at 0.40-0.65%.
  • Cr is a carbide-forming element that can improve the hardenability, wear resistance and corrosion resistance of steel. However, if the Cr content is too high, the hardness of the steel is too large, which is unfavorable for customers to process and use. In summary, the range of the Cr content in the present invention is determined to be 0.40-0.70%.
  • Al is added as a deoxidizing element in steel.
  • Al and N form finely dispersed aluminum nitride inclusions to refine grains.
  • brittle inclusions such as large particles of Al 2 O 3 are easily formed during the molten steel smelting process, which reduces the purity of the molten steel and affects the service life of the finished product.
  • the range of the Al content in the present invention is determined to be 0.015 to 0.035%.
  • B can improve the hardenability of the steel and the high-temperature strength of the steel, and can strengthen the grain boundary in the steel.
  • Molybdenum can refine the grain of steel, improve hardenability and thermal strength, and maintain sufficient strength and creep resistance at high temperatures.
  • the addition of molybdenum to the steel can improve the mechanical properties and also inhibit the brittleness of the alloy steel due to tempering.
  • molybdenum is a ferrite-forming element. When the molybdenum content is large, ferrite delta phase or other brittle phases are prone to appear, which reduces the toughness.
  • the present invention determines the range of Mo content to be 0.30-0.45%
  • Titanium is a strong deoxidizer in steel. It can make the internal structure of the steel dense and refine the grains. However, Ti will form titanium carbonitride inclusions in steel, which are hard and angular, and seriously affect the fatigue life of the material.
  • Nitrogen can improve the strength, low temperature toughness and weldability of steel and increase the sensitivity to aging. Adding an appropriate amount of aluminum to the steel can generate stable AlN, which can suppress the formation and precipitation of Fe 4 N, which not only improves the aging of the steel, but also prevents the growth of austenite grains and refines the grains. However, nitrogen will form nitride non-metallic inclusions with alloying elements in steel, and more importantly, reduce the effect of alloying elements. When the nitrogen content in the steel is high, the strength of the steel increases and the impact toughness decreases.
  • the N content of the present invention is determined to be 0.0050 to 0.0100%
  • the oxygen content represents the total amount of oxide inclusions.
  • the limitation of oxide brittle inclusions affects the service life of the finished product.
  • a large number of experiments show that the reduction of oxygen content is significantly beneficial to improving the purity of steel, especially reducing the content of oxide brittle inclusions in steel.
  • the range of the oxygen content of the present invention is determined to be ⁇ 0.0010%.
  • the range of the P content in the present invention is determined to be ⁇ 0.025%.
  • S causes hot brittleness of steel and reduces the ductility and toughness of steel, but S can improve the cutting performance of steel, and the range of S content in the present invention is determined to be ⁇ 0.015%.
  • Sn, Sb, Pb and other trace elements are all non-ferrous metals with low melting point. They exist in steel, causing soft spots on the surface of parts and uneven hardness. Therefore, they are regarded as harmful elements in steel.
  • the content of these elements in the present invention The range of As ⁇ 0.04%, Sn ⁇ 0.03%, Sb ⁇ 0.005%, Pb ⁇ 0.002%.
  • the production process of the above steel for ball cage type universal joint cage is that the manufacturing process is electric furnace or converter (primary smelting) ⁇ LF refining outside the furnace ⁇ VD or RH vacuum degassing ⁇ continuous casting ⁇ rolling ⁇ finishing ⁇ driving library.
  • the main production process features are as follows:
  • the primary smelting adopts high-quality molten iron, scrap steel and raw and auxiliary materials to reduce the content of harmful elements in molten steel.
  • deoxidation should be strengthened, and the carbon at the end of tapping in the electric furnace or converter should be controlled.
  • the carbon at the end of tapping should be controlled at 0.05-0.15%.
  • Al iron should be added for pre-deoxidation to create good conditions for subsequent deoxidation. Slag removal technology to remove harmful steel slag.
  • new synthetic slag is added to the LF refining furnace, and at the same time, the deoxidation of the refining process is strengthened.
  • the refining process adopts silicon carbide and aluminum deoxidation to form white slag as soon as possible in the early stage of refining, and maintain the white slag for more than 25min.
  • the aluminum content of the whole refining process It is controlled between 0.025%-0.045% to ensure the deoxidation effect.
  • the steel in this application is a crack-sensitive steel, and vacuum degassing should be strengthened, and the treatment time under high vacuum (below 133Pa) is ⁇ 15min to ensure that the harmful gas H ⁇ 2ppm.
  • silicon-calcium wire should be fed for inclusion denaturation treatment.
  • soft argon blowing should be performed for a long time to ensure that the inclusions float up sufficiently. The soft argon blowing time is ⁇ 25min.
  • the whole process of continuous casting is protected against oxidation (ie, isolating molten steel and air) to reduce the number of inclusions in the steel.
  • high-quality refractory materials are selected to reduce the control technology of foreign inclusions on molten steel pollution, and to strengthen the control of the production process.
  • the continuous casting process adopts electromagnetic stirring and light reduction technology. By adjusting the pressure distribution of the light reduction roller, when the molten steel is solidified, the molten steel is fully filled in the center of the steel to avoid shrinkage. At the same time, the electromagnetic stirring of the mold and the end is strengthened to change
  • the solidification flow field of molten steel can improve the internal structure of continuous casting molten steel and reduce segregation.
  • the continuous casting adopts low superheat casting, and the continuous casting superheat is controlled at 10-30°C, which can effectively improve and reduce the composition segregation of the continuous casting billet.
  • the continuous casting billet with a specification of 300mm ⁇ 300mm and above in line with the chemical composition of the finished steel product is continuously cast; the continuous casting billet should be cooled slowly in the pit to prevent the continuous casting billet from cracking, and the slow cooling time should not be less than 24 hours, and then the continuous casting billet should be continuously cast.
  • the billet is sent to the walking furnace for heating and rolled into the target material.
  • the continuous casting billet is heated in the furnace before rolling: the temperature of the preheating section is controlled at 600-850 °C, the temperature of the heating section is controlled at 950-1100 °C, and the temperature of the soaking section is controlled at 1150-1200 °C.
  • the heating time is more than 240min, and the soaking time is more than 180min.
  • the rolling temperature is controlled at 950°C-1050°C, and the final rolling temperature is controlled at 800°C-900°C.
  • the whole rolling process is carried out in the austenite single-phase region.
  • the present invention designs the cooling rate in the cooling interval from the end of the final rolling to the upper cooling bed to be 10-15°C/s, and at the same time, the rolling speed is relatively reduced to control the temperature of the steel in this interval. Through time, the steel can be fully transformed into bainite, and finally the temperature of the cooling bed on the steel is controlled at 600-650 °C.
  • the subsequent cooling on the cooling bed can be done as normal. Speed cooling, the cooling speed is 15-20 °C/min, and then the steel is off the assembly line, and then the target bar product is obtained through subsequent straightening and flaw detection.
  • the steel of the present invention is redesigned on the basis of 20CrMnTi to reduce the content of alloying elements Mn, Cr and harmful elements Ti, because the reduction of the content of Mn and Cr will inevitably affect the hardenability of the steel, so the steel of the present invention simultaneously adds a trace amount of B. element and adding a certain amount of alloying element Mo to improve the hardenability, so that the hardenability of the invention steel is not worse than 20CrMnT.
  • the grain size of the invention steel is comparable to 20CrMnTi.
  • the transformation of the metallographic structure during the manufacturing process ensures that the finished steel forms a bainite structure, so as to ensure that the strength and toughness of the invented steel are not lower than 20CrMnTi, and finally meet the requirements of steel for ball cage universal joint cages.
  • Fig. 1 is the typical metallographic structure diagram of the embodiment of the present invention ⁇ 100;
  • Figure 2 is a typical metallographic structure diagram of the comparative example ⁇ 100.
  • Example C Si Mn P S Cr Cu Ni Al Mo this invention 1 0.15 0.29 0.56 0.015 0.004 0.6 0.02 0.02 0.027 0.34 this invention 2 0.17 0.30 0.57 0.016 0.002 0.59 0.04 0.02 0.023 0.38 this invention 3 0.19 0.30 0.60 0.015 0.001 0.62 0.02 0.03 0.025 0.35 contrast steel 0.20 0.26 0.95 0.016 0.004 1.16 0.02 0.02 0.024 0.01
  • Example B As Sn Sb Pb N Ti O this invention 1 0.0011 0.002 0.003 0.002 0.001 0.0071 0.0229 0.00092 this invention 2 0.0014 0.003 0.002 0.002 0.001 0.0080 0.025 0.00088 this invention 3 0.0013 0.002 0.002 0.001 0.002 0.0078 0.027 0.00085 contrast steel 0.0001 0.005 0.002 0.001 0.002 0.0035 0.0515 0.0013
  • Fig. 1 The typical structures of the steels of the embodiments of the present invention and the comparative examples are shown in Fig. 1 and Fig. 2.
  • the structure shown in Fig. 1 is a bainite structure
  • the structure shown in Fig. 2 is ferrite + pearlite + bainite.
  • Table 6 shows the comparison of the inclusions of the steels of each embodiment and the comparative example.
  • the impact and tensile properties of the present invention are better than those of 20CrMnTi of the comparative example, so the strength and toughness of the final product of the present application are better than those of 20CrMnTi.
  • Other performance indicators of the present invention include hardenability, grain size, Inclusions, strips, low magnifications, etc. are close to the comparison steel, and all properties can meet the steel requirements for ball cage type universal joint cages.
  • Production process electric furnace or converter ⁇ LF refining outside the furnace ⁇ VD or RH vacuum degassing ⁇ continuous casting ⁇ continuous rolling ⁇ finishing ⁇ punching and storage.
  • the tapping end point C of the three embodiments is controlled within 0.05-0.15% respectively, and the end point P is controlled below 0.020%.
  • the electric furnace or converter tapping end point carbon is controlled. The carbon at the end of tapping is controlled at 0.05-0.15%.
  • Al iron is added for pre-deoxidation to create good conditions for subsequent deoxidation.
  • slag removal technology is used to remove harmful steel slag.
  • new synthetic slag is added to the LF refining furnace, and at the same time, the deoxidation of the refining process is strengthened.
  • the refining process adopts silicon carbide and aluminum deoxidation to form white slag as soon as possible in the early stage of refining, and maintain the white slag for more than 25min.
  • the aluminum content of the whole refining process It is controlled between 0.025%-0.045% to ensure the deoxidation effect.
  • the steel of the embodiment is a crack-sensitive steel, and vacuum degassing should be strengthened, and the treatment time under high vacuum (below 133Pa) is ⁇ 15min to ensure that the harmful gas H ⁇ 2ppm.
  • silicon-calcium wire should be fed for inclusion denaturation treatment.
  • soft argon blowing should be performed for a long time to ensure that the inclusions float up sufficiently. The soft argon blowing time is ⁇ 25min.
  • the superheat degree of continuous casting is controlled within 10-30°C, and the pulling speed of continuous casting is 0.45-0.75m/min.
  • the specification of the continuous casting billet is 300mm ⁇ 300mm.
  • the continuous casting billet is slowly cooled in the pit for more than 24 hours, and then the slowly cooled continuous casting billet is sent to the heating furnace to be rolled into the target steel.
  • the specific rolling process is as follows: : The temperature of the preheating section is controlled at 600-850°C, the temperature of the heating section is controlled at 950-1100°C, and the temperature of the soaking section is controlled at 1150-1200°C. The period of time is more than 3h.
  • the rolling temperature is controlled at 950°C-1050°C, and the final rolling temperature is controlled at 800°C-900°C.
  • the steel After finishing rolling, the steel is controlled to cool at a cooling rate of 10-15°C/min to drive the austenite structure to be completely transformed into Bainite, the temperature of the cooling bed on the steel is controlled at 600-650 °C, and then the target bar product is obtained through subsequent straightening and flaw detection.
  • the present invention also includes other embodiments, and all technical solutions formed by equivalent transformation or equivalent replacement shall fall within the protection scope of the claims of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Continuous Casting (AREA)

Abstract

La présente invention concerne le domaine technique de la fusion d'acier spécial, et concerne un acier pour un dispositif de retenue de joint universel de type cage à billes et son procédé de production. L'acier comprend les ingrédients chimiques suivants en % en poids : 0,10 à 0,25 % de C, 0,20 à 0,40 % de Si, 0,40 à 0,65 % de Mn, 0,40 à 0,70 % de Cr, 0,0003 à 0,0025 % de B, 0,010 à 0,035 % de Ti, 0,30 à 0,45 % de Mo, 0,0050 à 0,0100 % de N, ≤ 0,015 % de S, ≤ 0,025 % de P, ≤ 0,25 % de Ni, ≤ 0,30 % de Cu, 0,015 à 0,035 % d'Al, ≤ 0,0010 % d'O, ≤ 0,04 % d'As, ≤ 0,03 % de Sn, ≤ 0,005 % de Sb et ≤ 0,002 % de Pb, le reste étant du Fe et des impuretés inévitables. La microstructure de l'acier est de la bainite, et la taille de grain de l'austénite est supérieure ou égale à 6 degrés. Le procédé de production comprend une fusion primaire d'acier fondu, un affinage d'acier fondu, un dégazage sous vide d'acier fondu, une coulée continue, un laminage à chaud et une finition. Dans la présente demande, les ingrédients chimiques sont optimisés, et les coûts d'alliage sont réduits. En outre, une aptitude au durcissement similaire à celle du 20CrMnTi est obtenue, la résistance et la ténacité de l'acier fabriqués par combinaison des ingrédients chimiques avec le procédé de production sont meilleures que la résistance et la ténacité du 20CrMnTi, et les performances globales satisfont aux exigences de l'acier pour le dispositif de retenue de joint universel de type cage à billes.
PCT/CN2021/116576 2021-01-28 2021-09-05 Acier pour dispositif de retenue de joint universel de type cage à billes et son procédé de production WO2022160720A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023537250A JP2024502743A (ja) 2021-01-28 2021-09-05 ゼッパ型ユニバーサルジョイントリテーナ用鋼及びその製造方法
EP21922314.6A EP4186990A4 (fr) 2021-01-28 2021-09-05 Acier pour dispositif de retenue de joint universel de type cage à billes et son procédé de production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110117968.2 2021-01-28
CN202110117968.2A CN112981237B (zh) 2021-01-28 2021-01-28 一种球笼式万向节保持架用钢及其生产方法

Publications (1)

Publication Number Publication Date
WO2022160720A1 true WO2022160720A1 (fr) 2022-08-04

Family

ID=76345651

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/116576 WO2022160720A1 (fr) 2021-01-28 2021-09-05 Acier pour dispositif de retenue de joint universel de type cage à billes et son procédé de production
PCT/CN2022/071755 WO2022161180A1 (fr) 2021-01-28 2022-01-13 Acier pour cage de joint universel de type cage à billes et son procédé de production

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071755 WO2022161180A1 (fr) 2021-01-28 2022-01-13 Acier pour cage de joint universel de type cage à billes et son procédé de production

Country Status (4)

Country Link
EP (1) EP4186990A4 (fr)
JP (1) JP2024502743A (fr)
CN (1) CN112981237B (fr)
WO (2) WO2022160720A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981237B (zh) * 2021-01-28 2022-10-11 江阴兴澄特种钢铁有限公司 一种球笼式万向节保持架用钢及其生产方法
CN114959457A (zh) * 2022-05-05 2022-08-30 万向钱潮股份有限公司 一种高性能钢铁材料
CN115386796B (zh) * 2022-08-15 2023-03-03 马鞍山钢铁股份有限公司 一种ct150级连续油管用热轧钢带及其生产方法
CN115229453B (zh) * 2022-09-23 2022-12-06 万向钱潮股份公司 三柱槽壳加工方法
CN115505852B (zh) * 2022-10-26 2023-04-07 河北普阳钢铁有限公司 一种耐蚀农机用钢材及其制造方法
CN117107153B (zh) * 2023-07-27 2024-06-11 江苏沙钢集团淮钢特钢股份有限公司 一种高淬透性、高硬度硼钛微合金化磨球钢及其生产方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1950530A (zh) * 2004-07-16 2007-04-18 杰富意钢铁株式会社 机械结构用部件,其制造方法和高频淬火材料
CN101481780A (zh) * 2008-12-06 2009-07-15 燕山大学 超高强度高韧性易焊接超细奥氏体晶粒钢及其制造方法
CN101812635A (zh) * 2010-04-28 2010-08-25 南京钢铁股份有限公司 一种80mm厚Q345F级钢板及其制造方法
US20170314107A1 (en) * 2014-11-18 2017-11-02 Nippon Steel & Sumitomo Metal Corporation Rolled steel bar or rolled wire rod for cold-forged component
CN109182901A (zh) * 2018-09-17 2019-01-11 江阴兴澄特种钢铁有限公司 一种直线导轨用钢及其热轧生产方法
CN110100032A (zh) * 2016-12-23 2019-08-06 Posco公司 屈服比低且均匀延伸率优异的回火马氏体钢及其制造方法
CN110475890A (zh) * 2017-03-31 2019-11-19 日本制铁株式会社 热轧钢板和钢制锻造部件及其制造方法
WO2020104437A1 (fr) * 2018-11-19 2020-05-28 Ssab Technology Ab Produit en acier à haute résistance et son procédé de fabrication
CN111334796A (zh) * 2020-03-23 2020-06-26 首钢集团有限公司 热冲压用钢制造方法、热冲压用钢及热冲压部件制造方法
US10837080B2 (en) * 2014-11-18 2020-11-17 Nippon Steel Corporation Rolled steel bar or rolled wire rod for cold-forged component
CN112267074A (zh) * 2020-10-12 2021-01-26 马鞍山钢铁股份有限公司 一种大功率发动机曲轴用高强韧性贝氏体非调质钢及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3741078B2 (ja) * 2002-05-30 2006-02-01 住友金属工業株式会社 疲労亀裂進展抵抗性に優れた高強度鋼材およびその製造法
JP4291711B2 (ja) * 2004-03-03 2009-07-08 新日本製鐵株式会社 焼付け硬化性を有する高バーリング熱延鋼板およびその製造方法
JP4995111B2 (ja) * 2007-02-09 2012-08-08 新日本製鐵株式会社 溶接熱影響部のクリープ特性に優れたフェライト系耐熱鋼材及び耐熱構造体
CN101646788B (zh) * 2007-03-29 2011-04-13 住友金属工业株式会社 加工性优良的渗碳钢管及其制造方法
JP6031022B2 (ja) * 2013-12-02 2016-11-24 株式会社神戸製鋼所 耐遅れ破壊性に優れたボルト用鋼線および高強度ボルト並びにそれらの製造方法
CN103898413B (zh) * 2014-03-18 2016-01-20 莱芜钢铁集团有限公司 钒氮微合金化磨棒用钢及其制备方法
CN105525213A (zh) * 2016-01-21 2016-04-27 东北大学 一种高强韧性高温热轧钢板及其制备方法
CN107058882A (zh) * 2017-04-26 2017-08-18 山东钢铁股份有限公司 一种特厚规格耐磨钢板及其制备方法
CN108796364B (zh) * 2018-05-21 2020-07-28 中国石油天然气集团有限公司 一种适用低温的x80大口径厚壁直缝埋弧焊管及其制造方法
CN108486475A (zh) * 2018-05-23 2018-09-04 山东钢铁股份有限公司 一种具有良好心部硬度的厚规格耐磨钢板及其制备方法
CN112981237B (zh) * 2021-01-28 2022-10-11 江阴兴澄特种钢铁有限公司 一种球笼式万向节保持架用钢及其生产方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1950530A (zh) * 2004-07-16 2007-04-18 杰富意钢铁株式会社 机械结构用部件,其制造方法和高频淬火材料
CN101481780A (zh) * 2008-12-06 2009-07-15 燕山大学 超高强度高韧性易焊接超细奥氏体晶粒钢及其制造方法
CN101812635A (zh) * 2010-04-28 2010-08-25 南京钢铁股份有限公司 一种80mm厚Q345F级钢板及其制造方法
US20170314107A1 (en) * 2014-11-18 2017-11-02 Nippon Steel & Sumitomo Metal Corporation Rolled steel bar or rolled wire rod for cold-forged component
US10837080B2 (en) * 2014-11-18 2020-11-17 Nippon Steel Corporation Rolled steel bar or rolled wire rod for cold-forged component
CN110100032A (zh) * 2016-12-23 2019-08-06 Posco公司 屈服比低且均匀延伸率优异的回火马氏体钢及其制造方法
CN110475890A (zh) * 2017-03-31 2019-11-19 日本制铁株式会社 热轧钢板和钢制锻造部件及其制造方法
CN109182901A (zh) * 2018-09-17 2019-01-11 江阴兴澄特种钢铁有限公司 一种直线导轨用钢及其热轧生产方法
WO2020104437A1 (fr) * 2018-11-19 2020-05-28 Ssab Technology Ab Produit en acier à haute résistance et son procédé de fabrication
CN111334796A (zh) * 2020-03-23 2020-06-26 首钢集团有限公司 热冲压用钢制造方法、热冲压用钢及热冲压部件制造方法
CN112267074A (zh) * 2020-10-12 2021-01-26 马鞍山钢铁股份有限公司 一种大功率发动机曲轴用高强韧性贝氏体非调质钢及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4186990A4 *

Also Published As

Publication number Publication date
CN112981237A (zh) 2021-06-18
CN112981237B (zh) 2022-10-11
EP4186990A4 (fr) 2024-06-05
WO2022161180A1 (fr) 2022-08-04
EP4186990A1 (fr) 2023-05-31
JP2024502743A (ja) 2024-01-23

Similar Documents

Publication Publication Date Title
WO2022160720A1 (fr) Acier pour dispositif de retenue de joint universel de type cage à billes et son procédé de production
CN107904492B (zh) 一种低硅高碳铬轴承钢及其热轧生产方法
WO2022160536A1 (fr) Acier pour chemin de roulement interne de joint universel homocinétique et son procédé de production
CN110257717B (zh) 一种机床轴承套圈用高端轴承钢材料及其制造方法
CN110257716B (zh) 一种机床用高端轴承钢材料及其生产工艺
CN111286670B (zh) 中碳非调质钢及其制备工艺和连杆及其制备工艺
CN114134411B (zh) 一种耐低温高强度滚珠丝杠用球化退火钢及其制造方法
WO2017117883A1 (fr) Acier micro-allié pour palier de moyeu de roue de voiture en carbone et son procédé de fabrication
KR102314171B1 (ko) 자동차 휠허브용 베어링강 및 그의 제조방법
CN108998725A (zh) 履带链轨节用35MnBM钢及其制备方法
CN110484837A (zh) 一种滚珠丝杠用钢及其制造方法
CN114293105B (zh) Cr-Mo-Co-V系贝氏体高温轴承钢及其制备方法
WO2022228216A1 (fr) Acier pour arbre d'engrenage cémenté à haute température et procédé de fabrication d'acier
CN114941101A (zh) 一种汽车发动机轴承轴套用钢及其生产方法
CN113462986B (zh) 2000MPa环保耐热农机用钢及其制造方法
CN114134397B (zh) 一种适用于冷挤压滚珠丝母用钢及其生产方法
CN110819901B (zh) 一种高强度制动盘螺栓用钢及其热处理工艺
CN115449704B (zh) 一种新能源汽车轮毂轴承用钢及其生产方法
CN115558870A (zh) 一种经济性高寿命大功率风电偏航轴承圈用钢、轴承圈及生产工艺
CN110230003B (zh) 一种适用于高寒地区的高强度低合金耐热铸钢材料及其制备工艺
CN117385270A (zh) 一种等速万向节球形壳用钢及其生产方法
JP3912186B2 (ja) 耐疲労特性に優れたばね鋼
JP3368556B2 (ja) 耐ころがり疲労損傷性に優れた高強度レールおよびその製造法
CN118256811A (zh) 一种大马力柴油机凸轮轴用钢及其生产方法
CN118422075A (zh) 一种大马力拖拉机发动机轴承用钢及其生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021922314

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021922314

Country of ref document: EP

Effective date: 20230223

WWE Wipo information: entry into national phase

Ref document number: 2023537250

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE