WO2022160571A1 - 一种体外生命培养系统和方法 - Google Patents

一种体外生命培养系统和方法 Download PDF

Info

Publication number
WO2022160571A1
WO2022160571A1 PCT/CN2021/101003 CN2021101003W WO2022160571A1 WO 2022160571 A1 WO2022160571 A1 WO 2022160571A1 CN 2021101003 W CN2021101003 W CN 2021101003W WO 2022160571 A1 WO2022160571 A1 WO 2022160571A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
chamber
module
exchange
premixing
Prior art date
Application number
PCT/CN2021/101003
Other languages
English (en)
French (fr)
Inventor
王玄
陈睿
Original Assignee
上海睿钰生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110124996.7A external-priority patent/CN112940935A/zh
Priority claimed from CN202110126471.7A external-priority patent/CN112831417A/zh
Application filed by 上海睿钰生物科技有限公司 filed Critical 上海睿钰生物科技有限公司
Publication of WO2022160571A1 publication Critical patent/WO2022160571A1/zh
Priority to US18/361,812 priority Critical patent/US20230365910A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/10Perfusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/24Gas permeable parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/16Vibrating; Shaking; Tilting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M37/00Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/22Heat exchange systems, e.g. heat jackets or outer envelopes in contact with the bioreactor walls
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements

Definitions

  • the present application relates to the field of in vitro life culture, in particular to an in vitro life culture system and method.
  • Organoids as 3D cellular tissues, have a very high accuracy in evaluating the efficacy of tumor drugs.
  • the culture method of organoids is mainly static culture in well plates. The operator cuts the obtained primary samples into pieces, then coats them in Matrigel at low temperature, and then adds culture medium and puts them into an incubator for culture. Perform 3 medium changes and passages every 7-10 days.
  • One of the embodiments of the present specification provides an in vitro life culture system, including: a culture module for culturing culture, the culture module at least includes a culture chamber for holding culture fluid; a culture fluid supply module for culturing culture The culture module provides culture fluid; a liquid output module is used for discharging the culture fluid from the culture module.
  • the system further includes a culture fluid circulation module for realizing the recycling of culture fluid in the culture chamber.
  • the culture fluid circulation module includes a first exchange unit located outside the culture chamber, the first exchange unit receives the culture fluid flowing out of the culture chamber, and organizes the culture fluid points exchange.
  • the first exchange unit includes a first exchange cavity and a second exchange cavity, and a membrane assembly is disposed between the first exchange cavity and the second exchange cavity, and the membrane assembly is used for intercepting and/or through at least part of the components in the culture medium.
  • the first exchange chamber includes a first interface and a second interface, the first interface communicates with the culture chamber, and the second interface communicates with the culture solution supply module and/or the wherein, the first interface is used to receive the culture fluid flowing into the first exchange chamber; the second interface is used to flow out the culture fluid from the first exchange chamber.
  • the liquid output module further includes a collection unit with which the second exchange chamber communicates.
  • a metabolite concentration detection unit is disposed in the first exchange chamber, for detecting the metabolite concentration of the culture solution in the first exchange chamber.
  • the first exchange unit opens or closes the second interface based on the detection result of the metabolite concentration detection unit.
  • the liquid circulation module further includes a power unit for controlling the flow rate of the culture fluid in the first exchange chamber and/or the second exchange chamber.
  • the flow rate of the culture fluid in the first exchange chamber is lower than the flow rate of the culture fluid in the second exchange chamber.
  • the culture fluid circulation module includes a rehydration unit for delivering one or more components required by the culture to the first exchange unit.
  • the rehydration unit communicates with the second exchange chamber.
  • the culture fluid circulation module includes a second exchange unit located in the culture chamber, for exchanging components of the culture fluid in the culture chamber and transferring at least part of the culture fluid Component recycling.
  • the second exchange unit includes a first culture chamber of the culture chambers, a second culture chamber, and a first culture chamber located between the first culture chamber and the second culture chamber A membrane module through which at least part of the components of the culture fluid can pass through the first membrane module by osmosis.
  • the first culture chamber includes at least one liquid inlet and at least one discharge port, at least one of the liquid inlets communicates with the culture liquid supply module, and at least one of the liquid discharge ports communicates with the The culture medium supply module can be selectively communicated.
  • At least one of the drains is also in selective communication with the collection unit.
  • the first culture chamber includes at least one liquid inlet
  • the second culture chamber includes at least one liquid outlet; wherein, at least one of the liquid inlets communicates with the culture solution supply module, At least one of the drain ports is selectively communicated with the culture solution supply module.
  • the second culture chamber includes at least one liquid inlet and at least one liquid discharge port; wherein, at least one of the liquid inlet ports communicates with the culture liquid supply module, and at least one of the liquid discharge ports In selective communication with the medium supply module.
  • a third membrane assembly is disposed in the first culture chamber, and the third membrane assembly divides the first culture chamber into a first sub-culture chamber and a second sub-culture chamber; the first sub-culture chamber
  • the culture cavity includes a first liquid inlet and a first liquid discharge port, the culture liquid supply module is communicated with the first liquid inlet, and the second culture cavity is communicated with the first liquid discharge port;
  • the two sub-cultivation chambers include a second liquid discharge port, and the second liquid discharge port communicates with the collection unit.
  • the culture fluid circulation module includes a rehydration unit for delivering one or more components required by the culture to the second exchange unit.
  • the rehydration unit is in communication with the first culture chamber for delivering one or more components required by the culture to the first culture chamber.
  • the culture solution providing module includes a premix unit including a premix chamber for mixing the nutrient solution and gas to form a culture solution, and mixing the culture solution delivered to the culture module.
  • the premixing unit further includes a liquid supplementing chamber, which is communicated with the premixing chamber, and is used for delivering nutrient solution into the premixing chamber.
  • the premixing unit further includes a pH detector, a dissolved oxygen detector, and a signal detector, the pH detector and the dissolved oxygen detector are both disposed in the premix chamber, and the signal detector The device can sense the feedback signals of the pH detector and the dissolved oxygen detector, so as to obtain the pH value and dissolved oxygen amount of the culture medium in the premix chamber.
  • the pH detection element is a pH electrode sheet, and the dissolved oxygen detection element is a dissolved oxygen electrode sheet; the pH electrode sheet is disposed on the inner wall of the premixing chamber or the premixing chamber In the chamber, the dissolved oxygen detector is arranged on the inner wall of the premixing chamber or immersed in the liquid in the premixing chamber.
  • the premixing unit further includes a gas premixing control unit, which is in communication with the premixing chamber and is used for delivering gas into the premixing chamber.
  • the number of the premixing chambers is at least two
  • the gas premixing control unit is communicated with a plurality of the premixing chambers, and can control the gas concentration in the at least two premixing chambers .
  • the culture module includes a temperature control unit for controlling the temperature in the chamber to a first preset temperature.
  • the first temperature corresponds to the liquefaction temperature of the culture support structure.
  • the temperature control unit is further configured to control the temperature in the chamber to switch between a first preset temperature and a second preset temperature; wherein the second temperature corresponds to the culture physiological temperature.
  • the first temperature is lower than the second temperature.
  • the temperature control unit includes a refrigeration component and a temperature control module, the refrigeration component is electrically connected to the temperature control module, and the temperature control module is configured to control the refrigeration component to cool the temperature inside the chamber. temperature to the first preset temperature.
  • the temperature control unit further includes a heating component, the heating component is electrically connected to the temperature control module, and the temperature control module is configured to control the heating component to heat the chamber.
  • the heating assembly includes a plurality of heating fins
  • the cooling assembly includes a plurality of cooling fins
  • energy of the plurality of heating fins can be transferred to the plurality of cooling fins.
  • a plurality of the heating fins are arranged at intervals, a plurality of the cooling fins are arranged at intervals, one cooling fin is arranged between two adjacent heating fins, and two adjacent cooling fins are arranged There is a heating plate in between.
  • the culture module includes a microscopic observation module including an observation assembly for observing the culture in the culture module.
  • the culture module includes a mixing module for shaking the culture fluid in the culture chamber.
  • the mixing module includes a stage and a frame, the chamber is placed on the stage, and the stage can drive the cavity to shake.
  • the culture module further includes an autosampler module for automatically adding culture to the culture chamber.
  • the autosampler module further comprises an autosampler and a sample injection track, the autosampler track is arranged on the rack, and the autosampler is slidably arranged on the inlet on the sample track.
  • the culturing module includes a sterile control module, which includes a sterile working chamber, a filter assembly and a sterilization assembly, at least the culturing chamber is arranged in the aseptic working chamber, and the filtration assembly uses The sterilization component is used for sterilizing the aseptic working chamber for filtering the gas passed into the aseptic working chamber.
  • a sterile control module which includes a sterile working chamber, a filter assembly and a sterilization assembly, at least the culturing chamber is arranged in the aseptic working chamber, and the filtration assembly uses The sterilization component is used for sterilizing the aseptic working chamber for filtering the gas passed into the aseptic working chamber.
  • At least one device in the culture module, the culture solution supply module, the liquid output module and the culture solution circulation module is a disposable consumable.
  • One of the embodiments of the present specification provides a control method for an in vitro life culture system, including the in vitro life culture system in the embodiments of the present specification, the method includes: acquiring the growth condition of the culture in the culture module; controlling the growth condition based on the growth condition The culture fluid provides the module and the culture module.
  • acquiring the growth condition of the culture in the culture module includes: acquiring an image of the culture through a microscopic observation module; and determining the growth condition of the culture based on the image and a preset algorithm.
  • the preset algorithm includes a machine learning model.
  • the culturing module includes a swing drive mechanism
  • the controlling the culture solution supply module based on the growth condition and the culture module includes: controlling the movement of the swing drive mechanism based on the growth condition.
  • controlling the culture solution supply module and the culture module based on the growth situation includes: controlling the speed of the culture solution supply module to provide culture solution based on the growth situation.
  • the culturing module includes a temperature control unit
  • the controlling the culture solution providing module based on the growth condition and the culturing module include: controlling the temperature control unit to heat or cool the temperature control unit based on the growth condition Cultures.
  • One of the embodiments of this specification provides a control method for an in vitro life culture system, including the in vitro life culture system in the embodiments of this specification, the method includes: obtaining the concentration of each component of the culture liquid in the culture module; based on the concentration The speed at which the culture solution supplying module provides the culture solution is controlled.
  • One of the embodiments of the present specification provides an in vitro life culture system, including: a premixing unit, which includes a premixing chamber, into which nutrient solution and gas are added, and mixing is performed in the premixing chamber to form a A culture fluid; a culture unit, which includes a culture chamber, the culture chamber communicates with the premix chamber, the culture fluid in the premix chamber can be transported into the culture chamber, and the culture chamber uses to hold the culture, and cultivate the culture; the exchange unit includes an exchange chamber and a membrane assembly, the exchange chamber includes a first exchange chamber and a second exchange chamber, the first exchange chamber and the The membrane assembly is disposed between the second exchange chambers and communicated through the membrane assembly, the first exchange chamber communicates with the culture chamber, and the first exchange chamber can receive the outflow from the culture chamber
  • the culture medium can be backflowed to the culture chamber or the pre-mixing chamber, and the membrane module is used for intercepting and/or permeating some components in the culture medium.
  • the premixing unit further includes a fluid replacement chamber, which communicates with the premixed chamber and is used for delivering nutrient solution into the premixed chamber, and the fluid replacement chamber is capable of supplying the fluid to the premixing chamber.
  • a fluid replacement chamber which communicates with the premixed chamber and is used for delivering nutrient solution into the premixed chamber, and the fluid replacement chamber is capable of supplying the fluid to the premixing chamber.
  • One or more components required for the culture are directed into the premix chamber.
  • the first exchange chamber is provided with a first interface and a second interface, the first interface communicates with the culture chamber, and the second interface communicates with the premix chamber and/or or the culture chambers are connected; the first exchange chamber can receive the culture fluid flowing out of the culture chamber through the first interface, and the first exchange chamber can communicate with the culture chamber and the culture chamber through the second interface. /or the premixed chamber backflow culture medium.
  • a power unit is further included, and the power unit is provided between the premixing chamber and the culture chamber; and/or, the power unit is provided between the culture chamber and the first interface There is the power unit; and/or, the power unit is provided between the culture chamber or the premix chamber and the second interface.
  • One of the embodiments of the present specification provides an in vitro life culture system, including: a premixing unit, which includes a premixing chamber, into which nutrient solution and gas are added, and mixing is performed in the premixing chamber to form a A culture fluid; a culture unit, which includes a culture chamber, the culture chamber communicates with the premix chamber, the culture fluid in the premix chamber can be transported into the culture chamber, and the culture chamber uses to hold the culture, and cultivate the culture; the exchange unit includes an exchange chamber and a membrane assembly, the exchange chamber includes a first exchange chamber and a second exchange chamber, the first exchange chamber and the The membrane assembly is disposed between the second exchange chambers and communicated through the membrane assembly, the culture chamber and the premixing chamber are both communicated with the first exchange chamber, and the first exchange chamber Not only can receive the culture fluid flowing out of the culture chamber, but also can deliver the culture fluid to the premixing chamber and/or the culture chamber, and the membrane module is used for retaining and/or permeating the culture fluid A part of
  • the first exchange chamber is provided with a first interface and a second interface, the first interface communicates with the culture chamber, and the second interface communicates with the premix chamber and/or or the culture chambers are connected; the culture fluid in the culture chamber can flow to the first exchange chamber through the first interface, and the culture fluid in the first exchange chamber can flow to the pre-treatment chamber through the second interface mixing chamber and/or the culture chamber.
  • a power unit is further included, the power unit is arranged between the premix chamber and the culture chamber, and the power unit is arranged between the culture chamber and the first interface The power unit is arranged between the premixing chamber and the second interface and/or between the culture chamber and the second interface.
  • a collection unit is further included, the collection unit communicates with the second exchange chamber, and is used for collecting the liquid in the second exchange chamber.
  • At least one of the premix unit, the culture chamber, the exchange unit, and the collection unit is a disposable consumable.
  • each of the culture chambers is connected with one of the exchange units, or All of the culture chambers are connected to one of the exchange units.
  • One of the embodiments of the present specification provides an in vitro life culture system, including: a premixing unit, which includes a premixing chamber, into which nutrient solution and gas are added, and mixing is performed in the premixing chamber to form a A culture fluid; a culture unit, which includes a culture chamber, the culture chamber communicates with the premix chamber, the culture fluid in the premix chamber can be transported into the culture chamber, and the culture chamber uses A temperature control unit includes a refrigeration component and a temperature control module, the refrigeration component is electrically connected with the temperature control module, and the temperature control module is used to control the refrigeration
  • the assembly cools the culture chamber to a first preset temperature, where the first preset temperature is the liquefaction temperature of the culture support structure; the culture chamber is provided with a sampling port, and the sampling port is used for the culture The culture was removed after the support structure had liquefied.
  • the temperature control unit further includes a heating component, the heating component is electrically connected with the temperature control module, and the temperature control module is configured to control the heating component to heat the culture chamber and/or the premix chamber.
  • the heating assembly includes a plurality of heating fins
  • the cooling assembly includes a plurality of cooling fins
  • the plurality of the heating fins are arranged at intervals
  • the plurality of the cooling fins are arranged at intervals
  • two adjacent fins are arranged at intervals.
  • a cooling fin is arranged between the heating fins
  • a heating fin is arranged between two adjacent cooling fins, and the energy of the heating fins can be transferred to the cooling fins.
  • the temperature control unit further includes a temperature detection member electrically connected to the temperature control module, and the temperature detection member is used for detecting the temperature of the culture liquid in the culture chamber.
  • One of the embodiments of the present specification provides an in vitro life culture system, including: a premixing unit, which includes a premixing chamber, into which nutrient solution and gas are added, and mixing is performed in the premixing chamber to form a A culture fluid; a culture unit, which includes a culture chamber, the culture chamber communicates with the premix chamber, the culture fluid in the premix chamber can be transported into the culture chamber, and the culture chamber uses A microscopic observation module, which includes a stage and an observation assembly, the culture chamber is placed on the stage, and the stage can place at least one In the culture chamber, the observation assembly is used to observe the culture in the culture chamber; the microscopic observation module further comprises a frame, the stage is oscillatingly arranged on the frame, and the The stage can drive the culture chamber to swing synchronously.
  • a premixing unit which includes a premixing chamber, into which nutrient solution and gas are added, and mixing is performed in the premixing chamber to form a A culture fluid
  • a culture unit which
  • the microscopic observation module further comprises an automatic sampler and a sample introduction track, the automatic sample introduction track is arranged on the frame, and the automatic sampler is slidably arranged on the inlet On the sample track, the autosampler is used to add samples to the culture chamber.
  • an in vitro life culture system comprising: a premixing unit, which includes a premixing chamber, into which nutrient solution and gas are added, and mixing is performed in the premixing chamber forming a culture fluid; a culture unit comprising a culture chamber, the culture chamber is in communication with the premix chamber, the culture fluid in the premix chamber can be transported into the culture chamber, the culture chamber For holding culture, and cultivating the culture; a sterile control module, which includes a sterile work room, a filter assembly and a sterilization component, at least the culture chamber is arranged in the sterile work room, and the The filter assembly is used for filtering the gas introduced into the sterile working chamber, and the sterilizing assembly is used for sterilizing the aseptic working chamber.
  • the premixing unit further includes a pH detector, a dissolved oxygen detector, and a signal detector, the pH detector and the dissolved oxygen detector are both disposed in the premix chamber, and the signal detector The device can sense the feedback signals of the pH detector and the dissolved oxygen detector, so as to obtain the pH value and dissolved oxygen amount of the culture medium in the premix chamber.
  • the pH detection element is a pH electrode sheet, and the dissolved oxygen detection element is a dissolved oxygen electrode sheet; the pH electrode sheet is disposed on the inner wall of the premixing chamber or the premixing chamber In the chamber, the dissolved oxygen detector is arranged on the inner wall of the premixing chamber or immersed in the liquid in the premixing chamber.
  • the premixing unit further includes a gas premixing control unit, which is in communication with the premixing chamber and is used for delivering gas into the premixing chamber.
  • the gas premixing control unit communicates with multiple premixing chambers at the same time, and can control multiple premixing chambers. gas concentration in the premix chamber.
  • the culture unit further includes a mixing module for shaking the culture fluid in the culture chamber.
  • One of the embodiments of the present specification provides a control method for an in vitro life culture system, which is aimed at the above-mentioned in vitro life culture system, including the following steps: detecting the concentration of the components required for the culture in the culture chamber and/or determining The growth condition of the culture is controlled according to the detected concentration and/or the determined growth condition of the culture.
  • One of the embodiments of the present specification provides a control method for an in vitro life culture system, which is aimed at the above-mentioned in vitro life culture system, and includes the following steps: detecting the concentration of the components required for the culture in the culture medium of the culture chamber and /or determine the growth condition of the culture, and control the speed at which the premix chamber delivers the culture solution to the culture chamber and the liquid replenishing unit according to the detected concentration and/or the determined growth condition of the culture The speed at which the nutrient solution is delivered to the second exchange chamber.
  • One of the embodiments of the present specification provides an in vitro life culture system, including: a premixing unit, which includes a premixing chamber, into which nutrient solution and gas are added, and mixing is performed in the premixing chamber to form a A culture liquid; a culture unit comprising a culture chamber, a first membrane assembly is arranged in the culture chamber, the first membrane assembly divides the culture chamber into a first culture chamber and a second culture chamber, the The first membrane assembly is used for intercepting and/or permeating part of the components in the culture fluid; the first culture chamber is communicated with the premix chamber, and the premix chamber can be transported to the first culture chamber The culture fluid, the culture fluid in the first culture chamber can be returned to the premixed chamber, the second culture chamber is used to hold the culture, and the culture is cultivated; or the first culture chamber communicated with the premixing chamber, the premixing chamber is capable of delivering culture fluid to the first culture chamber, the second culture chamber is communicated with the premixing chamber, and the second culture chamber
  • the first culture chamber is provided with a liquid inlet
  • the first culture chamber or the second culture chamber is provided with a discharge port
  • both the liquid inlet and the liquid discharge port are configured with the same
  • the premix chambers are in communication.
  • a collection unit is further included, the collection unit communicates with the liquid discharge port, and the collection unit is used for collecting the culture liquid discharged from the culture chamber.
  • a three-way valve is further included, and three ports of the three-way valve are respectively communicated with the liquid discharge port, the collection unit and the premixing chamber through pipelines.
  • a power unit is further included, and the power unit is disposed between the premixing chamber and the liquid inlet; and/or a power unit is disposed between the three-way valve and the liquid discharge port the power unit.
  • the premixing unit further includes a fluid replacement chamber, which communicates with the premixed chamber and is used for delivering nutrient solution into the premixed chamber, and the fluid replacement chamber is capable of supplying the fluid to the premixing chamber.
  • a fluid replacement chamber which communicates with the premixed chamber and is used for delivering nutrient solution into the premixed chamber, and the fluid replacement chamber is capable of supplying the fluid to the premixing chamber.
  • One or more components required for the culture are directed into the premix chamber.
  • the first culture chamber is provided with a liquid inlet, the liquid inlet communicates with the premixing chamber, and the first culture chamber or the second culture chamber is provided with a drain port ;
  • the in vitro life culture system also includes: an exchange unit, which includes an exchange chamber and a second membrane assembly, the exchange chamber includes a first exchange chamber and a second exchange chamber, the first exchange chamber and the first exchange chamber The second membrane assembly is disposed between the two exchange chambers and communicated through the second membrane assembly, the liquid discharge port and the premixing unit are both communicated with the first exchange chamber; the liquid replenishing unit is connected to the The second exchange chamber communicates with each other, and is used for delivering supplementary nutrient solution to the second exchange chamber, and the liquid replenishing unit is capable of directionally delivering one or more kinds of culture required to the second exchange chamber.
  • the components in the supplementary nutrient solution can penetrate into the first exchange chamber through the second membrane module.
  • a collection unit is further included, the collection unit communicates with the second exchange chamber, and the collection unit is used for collecting the culture fluid discharged from the second exchange chamber.
  • One of the embodiments of the present specification provides an in vitro life culture system, including: a premixing unit, which includes a premixing chamber, into which nutrient solution and gas are added, and mixing is performed in the premixing chamber to form a A culture liquid; a culture unit comprising a culture chamber, a first membrane assembly is arranged in the culture chamber, the first membrane assembly divides the culture chamber into a first culture chamber and a second culture chamber, the The first culturing chamber is communicated with the premixing chamber, the premixing chamber is capable of delivering culture fluid to the first culturing chamber, and the first culturing chamber is used for holding culture and culturing the culture
  • a liquid replenishing unit which is communicated with the second culture chamber and is used for providing nutrient solution to the second culture chamber, and the liquid replenishing unit can directionally deliver the required amount of the culture into the second exchange chamber.
  • One or more components, at least part of the components in the nutrient solution in the second culture cavity can penetrate into the first culture cavity
  • a collection unit is further included, and among the first culture chamber and the second culture chamber, at least the second culture chamber communicates with the collection unit.
  • a third membrane assembly is disposed in the first culture chamber, and the third membrane assembly divides the first culture chamber into a first sub-cultivation chamber and a second sub-cultivation chamber, and the third
  • the three membrane modules are used to intercept and/or permeate the components in the culture medium, the third membrane module can also intercept the culture, and the first sub-culture chamber communicates with the first membrane module through the first membrane module.
  • the two culturing chambers are connected; the premixing chamber is communicated with the first subculturing chamber, the culture fluid in the premixing chamber can be transported to the first subculturing chamber, and the second subculturing chamber uses for placing the culture and culturing the culture; or the premixing chamber is communicated with the second sub-cultivation chamber, and the culture fluid in the pre-mixing chamber can be transported to the second sub-cultivation chamber, The first sub-cultivation chamber is used for placing the culture and culturing the culture.
  • a third membrane assembly is disposed in the first culture chamber, and the third membrane assembly divides the first culture chamber into a first sub-cultivation chamber and a second sub-cultivation chamber, and the third The three-membrane assembly is used to intercept and/or permeate the components in the culture medium, and the third membrane assembly can also intercept the culture; the first sub-culture chamber and the second sub-culture chamber pass through the The first membrane assembly is communicated with the second culture chamber, the premix chamber is communicated with the first sub-cultivation chamber, and the culture fluid in the pre-mix chamber can be transported to the first sub-cultivation chamber , the second sub-cultivation cavity is used for placing the culture and culturing the culture.
  • the first sub-culture chamber and/or the second sub-culture chamber are capable of delivering the culture fluid to the premixing unit.
  • the first sub-cultivation chamber when the premix chamber is in communication with the second sub-cultivation chamber, the first sub-cultivation chamber is used for placing a culture and culturing the culture, the first sub-cultivation chamber
  • the culture fluid in the cavity can be delivered to the second sub-cultivation cavity; when the premixing chamber is communicated with the first sub-cultivation cavity, the second sub-cultivation cavity is used for placing the culture, and culturing the
  • the culture fluid in the second sub-cultivation chamber can be transported into the first sub-cultivation chamber.
  • the premixing unit further includes a pH detector, a dissolved oxygen detector, and a signal detector, the pH detector and the dissolved oxygen detector are both disposed in the premix chamber, and the signal detector The device can sense the feedback signals of the pH detector and the dissolved oxygen detector, so as to obtain the pH value and dissolved oxygen amount of the culture medium in the premix chamber.
  • the pH detection element is a pH electrode sheet
  • the dissolved oxygen detection element is a dissolved oxygen electrode sheet
  • the pH electrode sheet is disposed on the inner wall of the premixing chamber or immersed in the premixing chamber.
  • the dissolved oxygen detector is arranged on the inner wall of the premixing chamber or immersed in the liquid in the premixing chamber.
  • the premixing unit further includes a gas premixing control unit, which is in communication with the premixing chamber and is used for delivering gas into the premixing chamber.
  • At least one of the premix unit, the culture chamber, and the collection unit is a disposable consumable.
  • a temperature control unit which includes a refrigeration component and a temperature control module, the refrigeration component is electrically connected to the temperature control module, and the temperature control module is used for controlling the refrigeration component to cool the temperature control module.
  • the culture chamber is brought to a first preset temperature, where the first preset temperature is the liquefaction temperature of the culture support structure; a sampling port is provided on the culture chamber, and the sampling port is used for the liquefaction of the culture support structure The culture was then removed.
  • the temperature control unit further includes a heating component, the heating component is electrically connected with the temperature control module, and the temperature control module is configured to control the heating component to heat the culture chamber and/or the premix chamber.
  • the heating assembly includes a plurality of heating fins
  • the cooling assembly includes a plurality of cooling fins
  • the plurality of the heating fins are arranged at intervals
  • the plurality of the cooling fins are arranged at intervals
  • two adjacent fins are arranged at intervals.
  • a cooling fin is arranged between the heating fins
  • a heating fin is arranged between two adjacent cooling fins, and the energy of the heating fins can be transferred to the cooling fins.
  • the temperature control unit further includes a temperature detection member electrically connected to the temperature control module, and the temperature detection member is used for detecting the temperature of the culture liquid in the culture chamber.
  • a microscopic observation module including a stage and a viewing assembly, the culture chamber is placed on the stage, and the stage is capable of placing at least one of the culture chambers
  • the observation assembly is used to observe the culture in the culture chamber
  • the microscopic observation module further includes a rack, the object stage is oscillatingly arranged on the rack, and the object stage
  • the culturing chamber can be driven to swing synchronously.
  • the microscopic observation module further comprises an automatic sampler and a sample introduction track, the automatic sample introduction track is arranged on the frame, and the automatic sampler is slidably arranged on the inlet On the sample track, the autosampler is used to add samples to the culture chamber.
  • a sterile control module which includes a sterile working chamber, a filter assembly and a sterilization assembly, at least the culture chamber is arranged in the aseptic working chamber, and the filter assembly is used for filtering The gas is passed into the sterile working chamber, and the sterilizing assembly is used for sterilizing the sterile working chamber.
  • the culture unit further includes a mixing module for shaking the culture fluid in the culture chamber.
  • the gas premixing control unit communicates with multiple premixing chambers at the same time, and can control multiple premixing chambers. gas concentration in the premix chamber.
  • One of the embodiments of the present specification provides a control method for an in vitro life culture system, which is aimed at the above-mentioned in vitro life culture system, including the following steps: detecting the concentration of the components required for the culture in the culture chamber and/or determining The growth condition of the culture is controlled according to the detected concentration and/or the determined growth condition of the culture.
  • One of the embodiments of the present specification provides a control method for an in vitro life culture system, which is aimed at the above-mentioned in vitro life culture system, and includes the following steps: detecting the required components of the culture in the culture solution in the first culture chamber. concentration and/or determining the growth condition of the culture, and controlling the speed at which the premix chamber delivers the culture solution to the first culture chamber according to the detected concentration and/or the determined growth condition of the culture and the speed at which the liquid replenishing unit delivers the nutrient solution to the second culture cavity.
  • FIG. 1 is a schematic diagram of a module of an in vitro life culture system provided according to some embodiments of the present specification
  • FIG. 2A is a schematic structural diagram of an in vitro life culture system provided according to some embodiments of the present specification.
  • 2B is a schematic structural diagram of an in vitro life culture system provided according to other embodiments of the present specification.
  • FIG. 3 is a schematic structural diagram of an in vitro life culture system provided according to other embodiments of the present specification.
  • FIG. 4 is a schematic structural diagram of an in vitro life culture system provided according to other embodiments of the present specification.
  • FIG. 5 is a schematic structural diagram of an in vitro life culture system provided according to other embodiments of the present specification.
  • FIG. 6 is a schematic structural diagram of an in vitro life culture system provided according to other embodiments of the present specification.
  • FIG. 7 is a schematic structural diagram of an in vitro life culture system provided according to other embodiments of the present specification.
  • FIG. 8 is a schematic structural diagram of an in vitro life culture system provided according to other embodiments of the present specification.
  • FIG. 9 is a schematic structural diagram of an in vitro life culture system provided according to other embodiments of the present specification.
  • FIG. 10 is a schematic structural diagram of an in vitro life culture system provided according to other embodiments of the present specification.
  • FIG. 11 is a schematic structural diagram of an in vitro life culture system provided according to other embodiments of the present specification.
  • FIG. 12 is a schematic structural diagram of an in vitro life culture system provided according to other embodiments of the present specification.
  • FIG. 13 is a schematic structural diagram of an in vitro life culture system provided according to other embodiments of the present specification.
  • FIG. 14 is a schematic structural diagram of a culture chamber provided according to some embodiments of the present specification.
  • 15 is a schematic structural diagram of an in vitro life culture system provided according to other embodiments of the present specification.
  • 16 is a schematic structural diagram of an in vitro life culture system provided according to other embodiments of the present specification.
  • 17 is a schematic structural diagram of an in vitro life culture system provided according to other embodiments of the present specification.
  • FIG. 18 is a schematic structural diagram of a culture chamber provided according to other embodiments of the present specification.
  • FIG. 19 is a schematic structural diagram of an in vitro life culture system provided according to other embodiments of the present specification.
  • 20 is a schematic structural diagram of an in vitro life culture system provided according to other embodiments of the present specification.
  • Figure 21 is a schematic structural diagram of an in vitro life culture system provided according to other embodiments of the present specification.
  • 22 is a schematic structural diagram of a temperature control unit provided according to some embodiments of the present specification.
  • FIG. 23 is a schematic structural diagram of a temperature control unit provided according to other embodiments of the present specification.
  • 24 is a schematic structural diagram of a temperature control unit provided according to other embodiments of the present specification.
  • 25 is a schematic structural diagram of a microscopic observation module provided according to some embodiments of the present specification.
  • 26 is a schematic structural diagram of a microscopic observation module provided according to other embodiments of the present specification.
  • FIG. 27 is a schematic structural diagram of a microscopic observation module provided according to other embodiments of the present specification.
  • FIG. 28 is a schematic structural diagram of a microscopic observation module provided according to other embodiments of the present specification.
  • 29 is a schematic structural diagram of a microscopic observation module provided according to other embodiments of the present specification.
  • FIG. 30 is a schematic structural diagram of a sterile control module provided according to some embodiments of the present specification.
  • 31 is a schematic flowchart of a control method of an in vitro life culture system provided according to some embodiments of the present specification.
  • 32 is a schematic flowchart of a control method of an in vitro life culture system provided according to other embodiments of the present specification.
  • Fig. 33 is a schematic flowchart of a control method of an in vitro life culture system provided according to other embodiments of the present specification.
  • system means for distinguishing different components, elements, parts, parts or assemblies at different levels.
  • device means for converting signals into signals.
  • unit means for converting signals into signals.
  • module means for converting signals into signals.
  • the in vitro life culture system of one or more embodiments of the present specification can be applied to the culture of various in vitro life.
  • Various in vitro life can include, but are not limited to, ordinary human cells, ordinary animal somatic cells, human organ tumor cells, animal body tumor cells, bacterial cells, virus cells, antibody cells, microbial cell populations, and the like.
  • the in vitro life culture system can provide perfusion culture for the in vitro life to be cultured, so that the in vitro life grows in the culture medium in a flowing state.
  • FIG. 1 is one of the schematic diagrams of modules of an in vitro life culture system 100 provided according to some embodiments of the present specification.
  • the in vitro life culture system 100 may include a culture module 110 , a culture fluid supply module 120 and a fluid output module 130 .
  • the culture module 110 can be used to grow the culture.
  • the culture module 110 may include a culture chamber for containing culture fluid.
  • the culture can be grown in a culture medium in a culture chamber.
  • cultures can include, but are not limited to, organoid tissue cells, organoid tumor cells, microbial cell populations, and the like.
  • the culture mode of the culture may include, but is not limited to, support culture, suspension culture, or flat culture, etc.
  • the supported culture can be cultured by confining the culture within a certain spatial area by a support structure (eg, Matrigel).
  • suspension culture may be a culture method in which the culture medium is suspended in the culture medium during the culture process.
  • flat cultivation can be a cultivation method in which the culture is attached to a cultivation plane.
  • the culture fluid can be a fluid used for the growth and maintenance of a culture (eg, a cell population or growth of a microorganism).
  • the culture medium contains nutrients required for the growth of the culture.
  • nutrients may include, but are not limited to, at least one of culture medium, culture factors, drugs, enzymes, carbohydrates, nitrogenous substances, inorganic salts (including trace elements), vitamins, and the like.
  • the culture medium also contains a gas (eg, oxygen) required for the growth of the culture, and the gas can be dissolved in the culture medium.
  • the shape of the culture chamber may be arbitrary, including but not limited to cuboid, cube, sphere, cylinder, cone, hetero-shaped body, and the like.
  • the culture fluid supply module 120 may be used to provide culture fluid for the culture chamber in the culture module 110 .
  • the culture solution providing module 120 may include a structure that directly or indirectly provides a culture solution that meets the growth requirements of the culture.
  • the culture solution supply module 120 may include a container storing the desired culture solution, and the container can directly input the culture solution stored therein into the culture chamber.
  • the culture solution supply module 120 may also include a premix unit capable of configuring the culture solution.
  • the premixing unit can mix oxygen and nutrients to prepare the culture fluid, and input the prepared culture fluid into the culture chamber.
  • the culture fluid supply module 120 may be disposed inside the culture chamber or outside the culture chamber.
  • the culture fluid supply module 120 disposed inside the culture chamber can be provided with corresponding openings or pipes, through which the culture fluid flows into the interior of the culture chamber.
  • the culture fluid supply module 120 disposed outside the culture chamber can be communicated with the culture chamber through a liquid circulation pipe, and the culture fluid is input into the culture chamber through the liquid circulation pipe.
  • the culture solution supply module 120 can be used to provide a flowing culture solution for the culture module 110 , so that the culture solution in the culture module 110 is in a continuous flow state, so as to provide perfusion culture for the culture in the culture module 110 .
  • the culture can be kept in the flowing culture medium during the culture process, which can effectively increase the contact between the culture medium and the culture medium, and make the growth of the culture more sufficient.
  • the culture fluid in the culture module 110 may not flow, and after the culture fluid is injected into the culture module 110 through the fluid supply module 120, the culture is cultured in a static culture manner. In this way, the consumption of the culture solution during the culture process can be effectively reduced, and the culture cost can be saved.
  • the liquid output module 130 can be used to drain the culture fluid from the culture chamber.
  • the fluid output module 130 may include structures for draining the culture fluid.
  • the liquid output module 130 may be an opening or a pipe provided in the culture chamber, and the culture fluid may be directly discharged from the culture chamber to the in vitro life culture system 100.
  • the liquid output module 130 may collect the culture fluid that needs to be discharged, and determine whether to discharge the collected culture fluid from the in vitro life culture system 100 .
  • a preset threshold eg, 0.5 g/ml
  • the culture fluid is discharged from the in vitro life culture system 100 .
  • the collected culture fluid is judged to have a metabolite concentration that does not exceed a preset threshold (eg, 0.5 g/ml)
  • the culture fluid is recycled.
  • the in vitro life culture system 100 may further include a control module 150 for controlling other modules of the in vitro life culture system 100 (eg, the culture module 110 , the culture liquid supply module 120 , the liquid discharge module 130 , etc.) .
  • the control module 150 can control the culture temperature within the culture chamber in the culture module 110 .
  • the control module 150 can control the flow rate and the like of the culture fluid in the culture chamber in the culture module 110 .
  • the control module 150 can control the supply speed and the like of the culture solution in the culture solution supply module 120 .
  • the control module 150 may control the discharge speed of the culture solution in the culture solution discharge module 130, and the like.
  • control module 150 may include a processor with data processing functions.
  • the processor may acquire data generated by each module or unit in the in vitro life culture system 100 and process the data.
  • the processor may also generate control instructions for the control module 150 to control the actions of other modules or units in the system.
  • the culture fluid supply module 120 may include a premix unit 1 .
  • the premix unit 1 can be used to prepare the culture medium.
  • the premixing unit 1 may include a premixing chamber 101 for mixing a nutrient solution and a gas to form a culture solution, and delivering the culture solution to the culture module 110 .
  • a nutrient solution refers to a liquid material containing nutrients required for growth of a culture.
  • the nutrient solution may contain nutrients required for the growth of the culture, such as culture medium, factors, drugs, and enzymes.
  • gas may be used to increase the amount of dissolved oxygen in the nutrient solution and to adjust the pH (expressed as pH) of the nutrient solution.
  • the gases may include oxygen, carbon dioxide, and inert gases.
  • the inert gas includes but is not limited to nitrogen, helium, neon, argon, xenon or radon.
  • oxygen is used to increase the amount of dissolved oxygen in the nutrient solution, and other gases are used to adjust the pH of the nutrient solution.
  • the nutrient solution and the gas are mixed to form a culture solution.
  • the nutrient solution may also be a prepared nutrient solution pre-stored by the nutrient solution provided to the storage structure in the module 120 .
  • the nutrients required for culturing different cultures are different, and the components contained in the culture medium are also different.
  • the culture can be liver tumor organoid cells, and the components of the culture medium can include additives, serum replacement, dual resistance to penicillin and streptomycin (Penicillin-Streptomycin, P/S) and the like.
  • additives may include, but are not limited to, L-glutamine, Glutamax TM , and the like.
  • serum replacements may include, but are not limited to, N2, B27, and the like.
  • the concentration of some components in the culture medium can be represented by the dilution ratio of the components.
  • the dilution ratio may be the ratio of the volume of the dilution liquid (eg, water) to the stock solution of the component.
  • the concentration of Glutamax TM in the culture medium may be 100:3 to 100:0.1 expressed as a dilution ratio, that is, 0.1 to 3 volumes of Glutamax TM stock solution is added to every 100 volumes of the diluted solution in the culture medium.
  • the concentration of Glutamax TM in the culture medium may be 100:2 to 100:0.1 in terms of dilution ratio.
  • the concentration of Glutamax TM in the culture medium can be 100:3 to 100:0.5 in terms of dilution ratio. In some embodiments, the concentration of Glutamax TM in the culture medium may be 100:1.5 to 100:0.5 in terms of dilution ratio. In some embodiments, the concentration of Glutamax TM in the culture medium may be 100:1 to 100:0.5 in terms of dilution ratio. In some embodiments, the concentration of Glutamax TM in the culture medium can be 100:1.5 to 100:1 in terms of dilution ratio. In some embodiments, the concentration of N2 in the culture medium may be 100:3 to 100:0.1 in terms of dilution ratio.
  • the concentration of N2 in the culture medium may be 100:2 ⁇ 100:0.1 in terms of dilution ratio. In some embodiments, the concentration of N2 in the culture medium may be 100:3 ⁇ 100:0.5 in terms of dilution ratio. In some embodiments, the concentration of N2 in the culture medium may be 100:1.5 to 100:0.5 in terms of dilution ratio. In some embodiments, the concentration of N2 in the culture medium may be 100:1 to 100:0.5 in terms of dilution ratio. In some embodiments, the concentration of N2 in the culture medium may be 100:1.5 to 100:1 in terms of dilution ratio.
  • the concentration of B27 in the culture medium can be 50:3 to 50:0.1 in terms of dilution ratio. In some embodiments, the concentration of B27 in the culture medium may be 50:2 to 50:0.1 in terms of dilution ratio. In some embodiments, the concentration of B27 in the culture medium may be 50:3 to 50:0.5 in terms of dilution ratio. In some embodiments, the concentration of B27 in the culture medium may be 50:1.5 to 50:0.5 in terms of dilution ratio. In some embodiments, the concentration of B27 in the culture medium may be 50:1 to 50:0.5 in terms of dilution ratio. In some embodiments, the concentration of B27 in the culture medium may be 50:1.5 to 50:1 in terms of dilution ratio.
  • the concentration of P/S in the culture medium can be 100:3 ⁇ 100:0.1 in terms of dilution ratio. In some embodiments, the concentration of P/S in the culture medium may be 100:2 ⁇ 100:0.1 in terms of dilution ratio. In some embodiments, the concentration of P/S in the culture medium may be 100:3-100:0.5 in terms of dilution ratio. In some embodiments, the concentration of P/S in the culture medium may be 100:1.5 ⁇ 100:0.5 in terms of dilution ratio. In some embodiments, the concentration of P/S in the culture medium may be 100:1 to 100:0.5 in terms of dilution ratio. In some embodiments, the concentration of P/S in the culture medium can be 100:1.5-100:1 in terms of dilution ratio.
  • the components of the culture medium of liver tumor organoid cells may further include epidermal growth factor (Epidermal Growth Factor, EGF), secreted protein (RSPO1), stem cell growth factor (HGF), fibroblast growth factor 10 (FGF-10), an important protein of Wnt signaling pathway (Wnt3a), etc.
  • EGF epidermal growth factor
  • RSPO1 secreted protein
  • HGF stem cell growth factor
  • FGF-10 fibroblast growth factor 10
  • Wnt3a an important protein of Wnt signaling pathway
  • the concentration of a component in the culture solution can be expressed as the mass of the component contained in each milliliter of culture solution (eg, nanograms/mL, ng/ml).
  • the concentration of EGF in the culture medium may range from 20ng/ml to 80ng/ml.
  • the concentration of EGF in the culture medium may range from 30 ng/ml to 70 ng/ml.
  • the concentration of EGF in the culture medium may range from 40 ng/ml to 60 ng/ml.
  • the concentration of EGF in the culture medium may range from 45 ng/ml to 50 ng/ml.
  • the concentration of EGF in the culture medium may range from 50 ng/ml to 55 ng/ml. In some embodiments, the concentration of RSPO1 in the culture medium may range from 200ng/ml to 800ng/ml. In some embodiments, the concentration of RSPO1 in the culture medium may range from 300ng/ml to 700ng/ml. In some embodiments, the concentration of RSPO1 in the culture medium may range from 400 ng/ml to 600 ng/ml. In some embodiments, the concentration of RSPO1 in the culture medium may range from 450ng/ml to 500ng/ml. In some embodiments, the concentration of RSPO1 in the culture medium may range from 500 ng/ml to 550 ng/ml.
  • the concentration of HGF in the culture medium may range from 5 ng/ml to 45 ng/ml. In some embodiments, the concentration of HGF in the culture medium may range from 15 ng/ml to 35 ng/ml. In some embodiments, the concentration of HGF in the culture medium may range from 20 ng/ml to 30 ng/ml. In some embodiments, the concentration of HGF in the culture medium may range from 20ng/ml to 25ng/ml. In some embodiments, the concentration of HGF in the culture medium may range from 25ng/ml to 30ng/ml. In some embodiments, the concentration of FGF10 in the culture medium may range from 100 ng/ml to 300 ng/ml.
  • the concentration of FGF10 in the culture medium may range from 150 ng/ml to 250 ng/ml. In some embodiments, the concentration of FGF10 in the culture medium may range from 180 ng/ml to 220 ng/ml. In some embodiments, the concentration of FGF10 in the culture medium may range from 180 ng/ml to 200 ng/ml. In some embodiments, the concentration of FGF10 in the culture medium may range from 200 ng/ml to 220 ng/ml. In some embodiments, the concentration of Wnt3a in the culture medium may range from 10 ng/ml to 50 ng/ml.
  • the concentration of Wnt3a in the culture medium may range from 20ng/ml to 40ng/ml. In some embodiments, the concentration of Wnt3a in the culture medium may range from 25ng/ml to 35ng/ml. In some embodiments, the concentration of Wnt3a in the culture medium may range from 25ng/ml to 30ng/ml. In some embodiments, the concentration of Wnt3a in the culture medium may range from 30 ng/ml to 35 ng/ml.
  • the culture medium of liver tumor organoid cells may also include other nutrients.
  • other nutrients may include, but are not limited to, 4-hydroxyethylpiperazineethanesulfonic acid (HEPES), N-Acetyl-L-cysteine, gastrin ), nicotinamide (Nicotinamide), small molecule compounds (A83.01) and adenylate cyclase activator (Forskolin).
  • the culture can be gastric organoid cells.
  • the nutritional components of the culture medium of gastric organoid cells may include additives, serum replacement, dual resistance to penicillin and streptomycin (P/S).
  • additives may include, but are not limited to, L-glutamine, Glutamax TM , and the like.
  • serum replacements may include, but are not limited to, N2, B27, and the like.
  • concentrations of Glutamax TM , N2, B27, and P/S in the culture medium can be the same as those in the culture medium for culturing liver tumor organoid cells, which will not be repeated here.
  • the nutrient components of the culture medium of gastric organoid cells may further include epidermal growth factor (Epidermal Growth Factor, EGF), secreted protein (RSPO1), recombinant protein (noggin), recombinant human fibroblast growth factor 10 (hFGF-10) and the like.
  • EGF epidermal growth factor
  • RSPO1 secreted protein
  • noggin recombinant protein
  • hFGF-10 recombinant human fibroblast growth factor 10
  • the concentrations of EGF and RSPO1 in the culture medium may be the same as those in the culture medium for culturing liver tumor organoid cells, which will not be repeated here.
  • the concentration of hFGF10 in the culture medium may range from 100 ng/ml to 400 ng/ml. In some embodiments, the concentration of hFGF10 in the culture medium may range from 150 ng/ml to 350 ng/ml. In some embodiments, the concentration of hFGF10 in the culture medium may range from 150 ng/ml to 300 ng/ml. In some embodiments, the concentration of hFGF10 in the culture medium may range from 150 ng/ml to 250 ng/ml.
  • the concentration of hFGF10 in the culture medium may range from 200 ng/ml to 500 ng/ml. In some embodiments, the concentration of noggin in the culture medium may range from 5 ng/ml to 45 ng/ml. In some embodiments, the concentration of noggin in the culture medium may range from 15 ng/ml to 35 ng/ml. In some embodiments, the concentration of noggin in the culture medium may range from 20ng/ml to 50ng/ml. In some embodiments, the concentration of noggin in the culture medium may range from 20ng/ml to 60ng/ml. In some embodiments, the concentration of noggin in the culture medium may range from 25 ng/ml to 50 ng/ml.
  • the culture fluid of gastric organoid cells may also include other nutrients.
  • other nutrients may include, but are not limited to, 4-hydroxyethylpiperazineethanesulfonic acid (HEPES), N-Acetyl-L-cysteine, Nicotinamide , small molecule compounds (A83.01), selective ROCK1 inhibitors (Y27632), gastrin (gastrin) and primary cell antibiotics (Primocin).
  • the culture can be colonic organoid cells.
  • the nutritional components of colonic organoid cells may include supplements, serum replacements, dual resistance to penicillin and streptomycin (P/S).
  • additives may include, but are not limited to, L-glutamine, Glutamax TM , and the like.
  • serum replacements may include, but are not limited to, N2, B27, and the like.
  • the concentrations of Glutamax TM , N2, B27, and P/S in the culture medium can be the same as those in the culture medium for culturing liver tumor organoid cells, which will not be repeated here.
  • the nutrient components of the culture medium of colon organoids can include epidermal growth factor (Epidermal Growth Factor, EGF), secreted protein that activates Wnt signaling (RSPO1), recombinant protein (noggin), Wnt signaling pathway Important protein (Wnt3a) and so on.
  • EGF epidermal growth factor
  • RSPO1 secreted protein that activates Wnt signaling
  • noggin recombinant protein
  • Wnt3a Wnt signaling pathway Important protein
  • the component concentrations of EGF, RSPO1, noggin and Wnt3a in the culture medium of colon organoids may be the same as those of the culture medium for culturing liver tumor organoid cells, which will not be repeated here.
  • the culture fluid of the colonic organoid medium may also include other nutrients.
  • other nutrients may include, but are not limited to, 4-hydroxyethylpiperazineethanesulfonic acid (HEPES), N-Acetyl-L-cysteine, Nicotinamide , small molecule compounds (A83.01), selective p38MAPK inhibitors (SB202190), selective ROCK1 inhibitors (Y27632), gastrin (gastrin), hormone-like substances (Prostaglandine E2) and primary cell antibiotics ( Primocin).
  • HEPES 4-hydroxyethylpiperazineethanesulfonic acid
  • N-Acetyl-L-cysteine N-Acetyl-L-cysteine
  • Nicotinamide small molecule compounds
  • SB202190 selective p38MAPK inhibitors
  • selective ROCK1 inhibitors Y27632
  • gastrin gastrin
  • hormone-like substances Prostaglandine E2
  • the premixing unit 1 may also include a rehydration chamber 104 .
  • the rehydration chamber 104 may communicate with the premix chamber 101 for delivering nutrient solution into the premix chamber 101 .
  • the rehydration chamber 104 may also be used to store nutrient fluid.
  • the liquid supplementing chamber 104 can transfer the stored nutrient solution to the premixing chamber 101 according to the actual condition of the culture solution in the premixing chamber 101 .
  • the actual condition of the culture fluid in the premix chamber 101 may be that during the process of the premix chamber 101 delivering the culture fluid to the culture module 110 , there is too little culture fluid to meet the next delivery. situation of demand.
  • a power unit 5 may be disposed between the rehydration chamber 104 and the premix chamber 101 .
  • the power unit 5 can control the delivery amount and the delivery speed of the nutrient solution, and the nutrient solution in the rehydration chamber 104 can be delivered to the premix chamber 101 by using the power unit 5 according to usage requirements.
  • the premixing unit 1 further includes a gas premixing control unit 105, which communicates with the premixing chamber 101 and is used for delivering gas (eg, oxygen, carbon dioxide, or nitrogen, etc.) into the premixing chamber 101 .
  • gas eg, oxygen, carbon dioxide, or nitrogen, etc.
  • the premixing unit 1 may add nutrient solution and gas to the premixing chamber 101 through the liquid replenishing chamber 104 and the gas premixing control unit 105 , and the introduced nutrient solution and gas are carried out in the premixing chamber 101 . mixed to form a culture medium.
  • the introduction of oxygen can increase the dissolved oxygen in the culture medium to meet the growth requirements of the culture.
  • the dissolved oxygen amount may be the dissolved amount of oxygen in the culture medium.
  • the dissolved oxygen content of the culture fluid may range from 0% to 100% of the air saturation of the culture fluid.
  • the dissolved oxygen content of the culture fluid may range from 20% to 80% of the air saturation of the culture fluid.
  • the dissolved oxygen content of the culture medium may be 20%-60% of the air saturation of the culture medium.
  • the introduced carbon dioxide can adjust the pH value of the culture solution, so that the culture solution can meet the growth requirements of the culture.
  • the nitrogen gas can be used to dilute the culture medium to reduce the amount of dissolved oxygen in the culture medium.
  • the gas premixing control unit 105 may also introduce other inert gases to achieve the purpose of diluting the dissolved oxygen in the culture medium.
  • one gas premixing control unit 105 can respectively control the inflow amount of the gas in the plurality of premixing chambers 101 .
  • a gas premixing control unit 105 can respectively control the oxygen supply amount in the plurality of premix chambers 101 , and further control the dissolved oxygen amount of the culture solution in the plurality of premix chambers 101 .
  • a gas premixing control unit 105 can respectively control the amount of carbon dioxide introduced into the plurality of premixing chambers 101, thereby controlling the carbon dioxide concentration of the culture solution in the plurality of premixing chambers 101, and further controlling the culture pH of the liquid.
  • one gas premixing control unit 105 can respectively control the amount of nitrogen gas introduced into the plurality of premixing chambers 101 , so as to achieve a method of diluting the amount of dissolved oxygen in the culture medium in each premixing chamber 101 . Purpose.
  • the premixing unit 1 may further include a pH detector 102, a dissolved oxygen detector 103 and a signal detector.
  • pH probe 102 and dissolved oxygen probe 103 may be disposed within premix chamber 101 .
  • the signal detector may be located inside or outside the premix chamber 101 . The signal detector can sense the signals fed back by the pH detector 102 and the dissolved oxygen detector 103 to obtain the pH value and dissolved oxygen amount of the culture solution in the premix chamber 101 .
  • the signals detected by the pH detector 102 and the dissolved oxygen detector 103 change as the pH and dissolved oxygen levels in the premix chamber 101 change.
  • pH detector 102 and dissolved oxygen detector 103 may include optical detection components that generate optical signals.
  • the optical signals of the pH detector 102 and the dissolved oxygen detector 103 will change, and the signal detectors will periodically receive the pH detector. 102 and the light signal on the surface of the dissolved oxygen detector 103 to obtain data feedback, and calculate the pH value and dissolved oxygen amount according to the feedback data.
  • pH probe 102 and dissolved oxygen probe 103 may include electrical detection components that generate electrical signals.
  • the pH detector 102 is a pH electrode sheet
  • the dissolved oxygen detector 103 is a dissolved oxygen electrode sheet.
  • the pH electrode sheet is arranged on the inner wall of the premixing chamber 101 or in the premixing chamber 101
  • the dissolved oxygen detector 103 is arranged on the inner wall of the premixing chamber 101 or immersed in the liquid in the premixing chamber 101 .
  • the electrical signals of the pH electrode pad and the dissolved oxygen electrode pad will change, and the signal detector will periodically receive the pH electrode pad and the dissolved oxygen pad.
  • the electrical signal sent by the oxygen electrode sheet is used to obtain data feedback, and the pH value and dissolved oxygen amount of the culture solution are calculated according to the feedback data.
  • the signal detector can feed the detected information back to the processor, so that the processor can generate control instructions based on the detected information to control the amount of dissolved oxygen in the culture medium by the rehydration chamber 104 and the gas premix control unit 105 and pH adjustment.
  • the processor may cause the rehydration chamber 104 to deliver more nutrient solution into the premix chamber 101 for dilution, so as to reduce the culture in the premix chamber 101 If the dissolved oxygen content is too low, the processor can make the gas premixing control unit 105 pass oxygen into the premixing chamber 101 to increase the dissolved oxygen content of the culture solution in the premixing chamber 101 .
  • the processor can control the gas premixing control unit 105 to pass carbon dioxide to reduce the pH value of the culture medium in the premixing chamber 101; if the pH value is lower than the second threshold value, the processor The liquid replenishing chamber 104 can be controlled to deliver more nutrient solution to the premix chamber 101 for dilution or to pass alkaline solution into the premix chamber 101 to increase the pH value of the culture solution in the premix chamber 101 .
  • the first threshold may be 7.6-8.
  • the first threshold may be 7.6, 7.8 or 8.
  • the second threshold may be 6.6-7.
  • the second threshold may be 6.6, 6.8 or 7.
  • the premixing chamber 101 is further provided with an air outlet, which can discharge the gas in the premixing chamber 101 to ensure the stability of the air pressure of the premixing chamber 101 .
  • a stirring component is disposed in the premixing chamber 101, and the stirring component can agitate the liquid in the premixing chamber 101 to make it evenly mixed, and make the gas fully enter the liquid.
  • the premixing chamber 101 is further provided with an alkali adding port, and alkali liquid can be added into the premixing chamber 101 through the alkali adding port to adjust the pH value of the culture solution in the premixing chamber 101 .
  • the nutrient solution is premixed with oxygen and the like in the premixing chamber 101 to form a culture solution, and the culture solution formed by mixing the nutrient solution with oxygen and the like is more stable by controlling corresponding variables (such as pH and dissolved oxygen). It is suitable for the growth of the culture, and the nutrients required for the growth can be sufficiently supplied to the culture. Compared with the direct feeding of nutrient solution and oxygen into the culture chamber, the design of complicated pipelines, valves and probes is saved, and the system cost is reduced.
  • the culture solution supplying module 120 may also not include the premixing unit 1, but may include a storage structure for storing the prepared culture solution.
  • the storage structure can directly pass the prepared culture solution into the culture chamber 2 for use when cultivating the culture.
  • the composition of the culture medium and the concentration of each component can be referred to the descriptions elsewhere in this specification, which will not be repeated here.
  • the culture module 110 may include a culture unit.
  • the culture unit may include a culture chamber 2 for holding culture fluid and culture.
  • the culture chamber 2 communicates with the premix chamber 101 , and the culture fluid in the premix chamber 101 can be transported into the culture chamber 2 .
  • a culture fluid delivery pipeline may be provided between the premixing chamber 101 and the culture chamber 2 .
  • the culture fluid delivery conduit may be a hose made of an air-tight material.
  • the material with airtightness can be obtained by coating a polymer material with an airtight coating.
  • the hermetic coating may be a multi-layer polymeric coating, each layer having a different molecular orientation.
  • the airtight coating can also be a multi-layer laminated film layer prepared with clay material as the main material and resin material as the additive.
  • the above-mentioned airtight coating has strong bonding performance, and is not easy to fall off the hose when the shape of the hose is changed. It can be decided whether to set the power unit 5 between the premix chamber 101 and the culture chamber 2 according to the relative installation positions of the premix chamber 101 and the culture chamber 2 and the requirements of the conveying speed and volume of the culture solution, and use the power unit 5
  • the culture fluid in the premix chamber 101 is transported into the culture chamber 2 .
  • the medium delivery tubing in order to prevent possible insufficient air tightness of the medium delivery tubing (eg, wear of the hermetic coating), the medium delivery tubing can be placed in a sealed environment that can The gas with the same composition and concentration as the gas provided by the gas premixing control unit 105 is introduced, so that the gas concentration inside and outside the culture fluid delivery pipeline is balanced, so that the gas in the culture fluid in the culture fluid delivery pipeline will not be transported through the culture fluid. Pipe escapes.
  • perfusion culture of the culture in the culture chamber 2 can be achieved by inputting the culture medium into the culture chamber 2 through the premix chamber 101 .
  • the culture in the culture chamber 2 in order to prevent the culture from being unsuitable for perfusion culture in the early stage of culture, can be statically cultured for a first preset time, when the first preset time After the set time, perfusion culture was performed.
  • the first preset time may be set according to the type of culture.
  • the culture may be organoid cells, and the first predetermined time may be 1 hour to 72 hours.
  • the gas premix control unit 105 can communicate with the culture chamber 2, and the culture can be supplemented with oxygen or adjusted pH to the culture solution in the culture chamber 2 through the gas premix control unit 105 during static culture. value.
  • the gas premixing control unit 105 can communicate with the cavity above the culture medium in the premixing chamber 101 , and the cavity can also communicate with the culturing chamber 2 at the same time, through which the gas can pass.
  • a gas delivery pipe 1011 may be provided between the cavity above the culture fluid in the premix chamber 101 and the culture chamber 2 .
  • a valve may be installed on the gas delivery pipe for opening or closing the gas delivery pipe 1011 .
  • a culture fluid delivery pipeline 1012 may also be disposed between the premixing chamber 101 and the culture chamber 2 .
  • the gas delivery pipeline 1011 and the culture fluid delivery pipeline 1012 can communicate with the culture chamber 2 through the same interface.
  • a three-way valve may be provided between the interfaces of the gas delivery pipeline 1011 and the culture fluid delivery pipeline 1012 and the culture chamber 2, and the three-way valve can control the gas delivery pipeline 1011 and the culture fluid delivery pipeline 1012. Either one communicates with the culture chamber 2 .
  • a power unit 5 may be provided between the gas delivery conduit 1011 and the culture chamber 2 .
  • a power unit 5 may also be provided between the culture fluid delivery pipeline 1012 and the culture chamber 2.
  • the power unit 5 can also be disposed at the interface of the culture chamber 2, so that the power unit 5 can control the gas or culture delivered to the culture chamber 2 in the gas delivery pipeline 1011 and/or the culture fluid delivery pipeline 1012 fluid velocity.
  • the gas premixing control unit 105 may not communicate with the premixing chamber 101, but directly communicate with the culturing chamber 2, that is, the gas in the gas premixing control unit 105 may directly pass into the culturing chamber 2 in.
  • the in vitro life culture system 100 may also include a plurality of gas premix control units 105, and each culture chamber 2 and each premix chamber 101 in the in vitro life culture system 100 may be premixed with a gas The hybrid control unit 105 is connected.
  • the number of culture chambers 2 is one, that is, one premix chamber 101 corresponds to one culture chamber 2 . In some other embodiments, there are multiple culturing chambers 2 , and the multiple culturing chambers 2 are all communicated with the premixing chamber 101 . In some embodiments, a plurality of culturing chambers 2 can be connected in parallel, either each culturing chamber 2 is connected to a premixing chamber 101, or all the culturing chambers 2 can be connected to one premixing chamber 101 , or several culture chambers 2 are commonly connected to a premixing chamber 101 .
  • a plurality of culture chambers 2 can also be connected in series, and the culture fluid flows through the plurality of culture chambers 2 in sequence.
  • multiple cultures can be simultaneously cultured, which is convenient to ensure the consistency of the cultures in the subsequent test process, and can ensure the accuracy of the comparison of test results.
  • the culture chamber 2 is provided with a sample introduction port 201 and a sampling port 202 .
  • the culture can be added to the culture chamber 2 through the injection port 201 .
  • growth factors, drugs, etc. can be added to the culture chamber 2 through the sample feeding port 201 to promote or inhibit the growth of the culture according to the culture requirements during the culture process, and enzymes and matrigel can also be added to the system when the culture is completed.
  • Reagents, staining reagents, etc. used to collect, process or characterize cultures.
  • samples of culture or culture fluid can be taken for analysis during the culture process.
  • the culturing module 110 may further include a temperature control unit 6 .
  • the temperature control unit 6 can control the temperature of the culture fluid to be at the physiological temperature of the culture, so as to incubate the culture.
  • the temperature control unit 6 can control the temperature of the culture fluid to be at the liquefaction temperature of the culture support structure, so that the culture can be removed when the culture is finished. Further description of the temperature control unit 6 can be found elsewhere in this specification.
  • the culture module 110 may further include a microscopic observation module 8 .
  • the culture personnel can observe the culture in the culture chamber 2 through the microscopic observation module 8 .
  • the microscopic observation module 8 can acquire image data of the culture, so as to judge the growth of the culture, and then the culture personnel or the in vitro life culture system 100 can make adjustments to the culture of the culture. Further description of the microscopic observation module 8 can be found elsewhere in this specification.
  • the liquid output module 130 may include the collection unit 4 .
  • the collection unit 4 may communicate with the culture chamber 2 for discharging and collecting the culture fluid in the culture chamber 2 .
  • the liquid output module 130 may also not include the collection unit 4, but may include a waste liquid discharge port disposed in the culture chamber 2, and the waste liquid discharge port is used to discharge the culture liquid of the culture chamber 2 out of the in vitro life
  • the waste liquid discharge port may be a structure of any shape that can conduct flow, and the shape and structure of the waste liquid discharge port are not limited in this specification.
  • the culture eg, organoid cells, etc.
  • the culture can be placed in a dynamic perfusion culture environment to ensure a fast growth rate of the culture,
  • the short culture period ensures the degree of growth of the culture during the culture period.
  • the in vitro life culture system 100 may further include a culture fluid circulation module 140 .
  • the culture solution circulation module 140 can be used to realize the recycling of the culture solution in the culture chamber 2, so as to improve the utilization rate of the culture solution and reduce the waste of the culture solution.
  • the culture fluid circulation module 140 may include a component exchange structure for component exchange of metabolites in the culture fluid. In some embodiments, the culture fluid circulation module 140 may further include a structure for controlling the circulation of the fluid for circulating the culture fluid. In some embodiments, the culture fluid circulation module 140 may be disposed inside and/or outside the culture chamber 2 .
  • the culture fluid circulation module 140 disposed inside the culture chamber 2 may include a component exchange structure.
  • the component exchange structure can exchange the components of the culture solution that needs to be discharged in the culture chamber 2, and guide the recyclable culture solution obtained after the component exchange to the culture solution supply module 120 or the culture module 110 for reuse.
  • the exchange of components may be the flow of some components of the culture fluid in different chambers from one chamber to another.
  • the exchangeable components of the culture fluid may include nutrients and metabolites, ie, nutrients in the first chamber flow into the second chamber, and in exchange, the second chamber The metabolites can enter the first chamber.
  • the component exchange structure may include, but is not limited to, permeable membranes or unidirectional component exchange membranes, and the like.
  • the culture fluid circulation module 140 disposed outside the culture chamber 2 may also include a component exchange structure.
  • the culture fluid circulation module 140 disposed outside the culture chamber 2 can receive the culture fluid flowing out of the culture chamber 2, and after performing component exchange on the received culture fluid, the obtained recyclable The culture solution is led to the culture solution supply module 120 or the culture module 110 for reuse.
  • the culture fluid circulation module 140 may include the first exchange unit 3 located outside the culture chamber 2 .
  • the first exchange unit 3 may be communicated with the culture chamber 2, and the first exchange unit 3 receives the culture fluid flowing out of the culture chamber 2, and performs component exchange on the culture fluid.
  • the components of the culture fluid flowing out of the culture chamber 2 may include nutrients and metabolites. After the culture fluid flows into the first exchange unit 3, the nutrients and metabolites in the culture fluids in different chambers can be Component exchange is performed between different chambers of the first exchange unit 3, so that the concentrations of metabolites and nutrients in the culture medium in the different chambers of the first exchange unit 3 are changed.
  • the first exchange unit 3 may include a plurality of exchange chambers and membrane modules disposed between the plurality of exchange chambers.
  • the exchange chamber can be used to receive and contain the culture fluid flowing out of the culture chamber 2 .
  • the membrane module can be used to exchange components in the culture solution, and filter out the non-reusable and reusable substances in the culture solution components, so that the first exchange unit 3 can remove the non-reusable substances.
  • the used material is discharged, and the reusable material is transported into the culture chamber 2 .
  • the reusable material can include nutrients.
  • non-reusable substances may include metabolites.
  • setting the first exchange unit 3 can enable the in vitro life culture system 100 to retain useful components in the culture solution through a plurality of exchange chambers and membrane components while implementing perfusion culture, and reflux to the culture medium
  • the inside of the chamber 2 is for reabsorption and utilization, which improves the utilization rate of the culture solution and reduces the culture cost.
  • the first exchange unit 3 can be arranged outside the culture chamber 2, so that the effective area of the membrane assembly can be set larger and the structure is more flexible, thereby improving the exchange efficiency.
  • the first exchange unit 3 can be arranged inside the culture chamber 2, so that the in vitro life culture system 100 does not need to add new structures, so that the structure of the in vitro life culture system 100 is simpler and the cost is lower.
  • the exchange chamber of the first exchange unit 3 may include a first exchange chamber 302 and a second exchange chamber 303, and a membrane module 301 is disposed between the first exchange chamber 302 and the second exchange chamber 303, and the membrane module 301 is used to retain and/or permeate at least part of the components in the culture medium.
  • the first exchange chamber 302 can receive the culture fluid flowing out of the culture chamber 2, and communicate with the second exchange chamber 303 through the membrane assembly 301, and the metabolites in the culture fluid can be exchanged to the second exchange chamber 303, so that the culture The metabolite concentration in the fluid decreased.
  • the first exchange chamber 302 can backflow the culture fluid to the culture chamber 2 or the premixing unit 1.
  • the membrane module 301 can also trap nutrients required by the culture in the culture medium in the first exchange chamber 302, such as serum, growth factors and enzymes, etc., and the culture in the first exchange chamber 302 grows
  • the generated metabolites, such as urea, carbon dioxide, etc. can permeate through the membrane module 301 into the second exchange chamber 303 and then be discharged from the second exchange chamber 303 .
  • the first exchange chamber 302 includes a first interface and a second interface, wherein the first interface is used for receiving the culture medium flowing into the first exchange chamber 302 ; The culture medium flows out.
  • the first interface communicates with the culture chamber 2 to receive the culture fluid flowing out of the culture chamber 2 .
  • the second interface may be in communication with the culture chamber 2 for backflow of culture fluid to the culture chamber 2 .
  • the second interface may be in communication with one of the chambers in the culture fluid supply module 120 so as to reflow the culture fluid into the culture fluid supply module 120 .
  • the second port may be in communication with the premix chamber 101 for backflow of the culture fluid into the premix chamber 101 .
  • the second port may also be in communication with the rehydration chamber 104 for backflow of the culture fluid into the rehydration chamber 104 .
  • a metabolite concentration detection unit is disposed in the first exchange chamber 302 for detecting the metabolite concentration of the culture solution in the first exchange chamber 302 .
  • the metabolite concentration can be used to judge the proportion of metabolites in the culture medium, and determine whether it is necessary to continue filtering metabolites in the culture medium.
  • a preset threshold eg, 2%; 3%; 5%, etc.
  • the metabolite concentration detection unit may adopt sampling detection or in situ detection.
  • in situ detection may be a detection of the substance or component (eg, metabolite) being detected in its original location.
  • in situ detection may include, but is not limited to, infrared spectroscopy techniques, fluorescence detection techniques, and the like.
  • the fluorescence detection technology may be to label a part of the substance or component (such as a metabolite) to be detected with a fluorescent dye, and irradiate the labeled substance with an excitation beam (such as a laser) to make the substance Fluorescence is emitted, and concentration detection is performed by collecting a fluorescent light beam.
  • the infrared spectroscopy technique may be performed by irradiating the culture solution to be detected with infrared light, and measuring the absorption of the culture solution to characteristic peak wavelengths in the spectrum of infrared light to perform concentration detection.
  • the second interface may be a selectively communicable interface with the function of opening or closing the interface.
  • the first exchange unit 3 may open or close the second interface based on the detection result of the metabolite concentration detection unit.
  • the detection result of the metabolite concentration detection unit may be that the metabolite concentration in the culture solution is lower than a preset threshold (eg, 2%; 3%; 5%, etc.), where the lower than the preset threshold may be Indicates that the metabolite concentration in the culture medium does not affect the reuse of the culture medium.
  • the detection result of the metabolite concentration detection unit when the detection result of the metabolite concentration detection unit is that the metabolite concentration in the culture solution is lower than the preset threshold, it means that the culture solution in the first exchange chamber 302 can be reused, and the first exchange unit 3 is turned on
  • the second interface is used to introduce the culture solution into the culture solution supply module 120 or the culture chamber 2 .
  • the detection result of the metabolite concentration detection unit indicates that the concentration of metabolites in the culture solution is higher than the preset threshold, it means that the concentration of metabolites contained in the culture solution in the first exchange chamber 302 is too high to fail.
  • the first exchange unit 3 closes the second interface, so that the culture medium continues to perform component exchange in the first exchange chamber 302 .
  • the second exchange chamber 303 includes a third interface for discharging the culture fluid in the second exchange chamber 303 .
  • the third interface may communicate with the collection unit 4 , so that the collection unit 4 may collect the culture fluid in the second exchange chamber 303 .
  • the third interface may not communicate with the collection unit 4 , but directly discharge the culture liquid in the second exchange chamber 303 out of the in vitro life culture system 100 .
  • the exchange chambers of the first exchange unit 3 may include a first exchange chamber 302 , a second exchange chamber 303 and a third exchange chamber 304 .
  • the first exchange chamber 302 communicates with the second exchange chamber 303 and the third exchange chamber 304, respectively.
  • a first one-way membrane assembly 3011 is disposed between the first exchange chamber 302 and the second exchange chamber 303, and the first one-way membrane assembly 3011 is used to permeate nutrients in the culture medium and retain metabolites.
  • a second one-way membrane assembly 3012 is disposed between the first exchange chamber 302 and the third exchange chamber 304. The second one-way membrane assembly 3012 is used to permeate metabolites in the culture medium and retain nutrients.
  • the first exchange chamber 302 can receive the culture fluid flowing out of the culture chamber 2, and communicate with the second exchange chamber 303 through the first one-way membrane assembly 3011, so that the culture fluid in the second exchange chamber 303 does not contain Metabolites.
  • the metabolites permeate into the third exchange chamber 304 through the second one-way membrane assembly 3012 , and are further discharged from the extracorporeal living system 100 through the collection unit 4 connected to the third exchange chamber 304 .
  • the first exchange chamber 302 includes a first interface, wherein the first interface is used to receive the culture fluid flowing into the first exchange chamber 302 .
  • the first interface communicates with the culture chamber 2 to receive the culture fluid flowing out of the culture chamber 2 .
  • the second exchange chamber 303 includes a second interface, wherein the second interface can communicate with the culture chamber 2 so as to deliver a reusable culture fluid that does not contain or contains a small amount of metabolites to the culture chamber 2 .
  • the second interface in the second exchange chamber 303 may be in communication with one of the chambers in the culture fluid supply module 120 , so as to deliver the culture fluid into the culture fluid supply module 120 .
  • the second interface may be in communication with the premix chamber 101 for delivering culture fluid into the premix chamber 101 .
  • the second interface may also be in communication with the rehydration chamber 104 for delivering culture fluid into the rehydration chamber 104 .
  • the third exchange chamber 304 includes a third interface, wherein the third interface can communicate with the outside of the system for expelling metabolites to the outside of the system.
  • the third interface may be in communication with the collection unit 4 for expelling the metabolites into the collection unit for collection.
  • the number of the first exchange unit 3 may be one, and a plurality of culture chambers 2 connected in parallel are communicated with one first exchange unit 3 at the same time. In some embodiments, there may be a plurality of first exchange units 3 , and each of the plurality of culture chambers 2 connected in parallel communicates with one exchange unit 3 .
  • the first exchange unit 3 may be one, and the first exchange unit 3 may communicate with one (eg, the last) culture chamber 2 of the plurality of culture chambers 2 connected in series.
  • the "front" of the serial connection refers to the part through which the culture solution flows first
  • the "back” of the serial connection refers to the part through which the culture solution flows later.
  • there may be multiple first exchange units 3 and each culture chamber 2 of the multiple culture chambers 2 connected in series communicates with a first exchange unit 3 located behind the culture chamber 2 .
  • each culture chamber 2 of the plurality of culture chambers 2 connected in series can communicate with a first exchange unit 3 located behind the culture chamber 2 through the first interface, so as to flow the culture fluid into To the first exchange chamber 302, the second interface of the first exchange chamber 302 can be communicated with the latter culture chamber 2 connected in series, so that the culture fluid in the first exchange chamber 302 flows into the latter culture chamber connected in series 2 to carry out the cultivation of the culture.
  • the metabolites produced in each culture chamber 2 can be discharged through the second exchange chamber 303 of the first exchange unit 3 located behind it.
  • the liquid circulation module 140 may further include a power unit 5 for controlling the flow rate of the culture fluid in the first exchange chamber 302 or the second exchange chamber 303 .
  • the power unit 5 may be disposed inside or outside the exchange unit, so as to control the flow rate of the culture fluid in the first exchange chamber 302 and/or the second exchange chamber 303 in the exchange unit.
  • the power unit 5 can also be arranged inside any chamber containing the culture solution (eg, the premix chamber 101, the culture chamber 2, etc.), so as to realize the flow rate control of the culture solution in the chamber .
  • the power unit 5 can also be arranged between any two communicating chambers to control the flow rate of the culture fluid.
  • any one or more interfaces (eg, the first interface, the second interface or the third interface) of the first switching unit 3 may be provided with a power unit 5 .
  • a power unit 5 may be provided between the culture chamber 2 and the first interface, so as to transport the culture fluid in the culture chamber 2 to the first exchange chamber 302 through the first interface.
  • a power unit 5 may also be disposed between the culture chamber 2 and the second interface, so as to transport the culture fluid in the first exchange chamber 302 into the culture chamber 2 through the second interface.
  • a power unit 5 may also be provided between the first exchange chamber 302 and the premix chamber 101, and the power unit 5 is used to connect the first exchange chamber 302 The culture medium in it is delivered to the premixing chamber 101 .
  • the power unit 5 may be disposed at the second interface, so as to control the on-off and flow rate of the liquid flowing from the first exchange chamber 302 to the premixing chamber 101 from the second interface.
  • the switching unit 5 may be controlled by the control module 150 .
  • the control module 150 may control the switching of the first interface, the second interface or the third interface by controlling the switching unit 5 .
  • the control module 150 can also control the flow rate of the culture solution at each interface (the first interface, the second interface or the third interface) through the exchange unit 5 .
  • the flow rate of the culture fluid in the first exchange chamber 302 is different from the flow rate of the culture fluid in the second exchange chamber 303 . In some embodiments, the flow rate of the culture solution in the first exchange chamber 302 is lower than the flow rate of the culture solution in the second exchange chamber 303 . In some embodiments, the metabolite concentration of the culture solution in the first exchange chamber 302 is higher than the metabolite concentration of the culture solution in the second exchange chamber 303, and the metabolites can permeate into the second exchange chamber 303 through the membrane module 301.
  • the flow rate of the culture solution in the second exchange chamber 303 is higher than the flow rate of the culture solution in the first exchange chamber 302, the osmotic effect of metabolites can be effectively promoted, and the flow rate of metabolites between the first exchange chamber 302 and the second exchange chamber 303 can be improved. exchange efficiency.
  • the flow rate of the culture solution in the first exchange chamber 302 may be higher than the flow rate of the culture solution in the second exchange chamber 303 .
  • the concentration of nutrients in the culture solution in the second exchange chamber 303 is higher than the concentration of nutrients in the culture solution in the first exchange chamber 302, and the nutrients can permeate into the first exchange chamber 302 through the membrane module 301.
  • the flow rate of the culture solution in the first exchange chamber 302 and the second exchange chamber 303 may also be controlled not by the power unit 5 but by the pore size of the permeation pores of the membrane module 301 .
  • the membrane modules 301 with different pore sizes can make the culture fluid in the first exchange chamber 302 and the second exchange chamber 303 have different flow rates.
  • the larger the pore size of the membrane module 301 is, the faster the permeation speed of the culture medium between the first exchange chamber 302 and the second exchange chamber 303 is, and the culture medium in the first exchange chamber 302 and the second exchange chamber 303 is faster.
  • the culture fluid circulation module 140 may further include a fluid replenishing unit 11 .
  • the rehydration unit 11 may be used to deliver one or more components required for the culture to other chambers.
  • the rehydration unit 11 may communicate with any chamber in the first exchange unit 3 (eg, the first exchange chamber 302 , the second exchange chamber 303 or the third exchange chamber 304 ) for supplying the first exchange unit Any chamber of 3 delivers one or more components required for the culture.
  • the control module 150 may determine, according to the content of nutrients or metabolites in the culture fluid in each chamber of the first exchange unit 3, whether to deliver one or more types of culture fluids required by the fluid replenishing unit 11 to it. components.
  • the fluid replacement unit 11 may communicate with the second exchange chamber 303 , and the fluid replacement unit 11 may deliver one or more components required by the culture to the second exchange chamber 303 .
  • the fluid replacement unit 11 may deliver the nutrient solution with nutrient components to the second exchange chamber 303 .
  • each component of the nutrient solution delivered by the liquid replenishing unit 11 into the second exchange chamber 303 can permeate into the first exchange chamber 302 through the membrane module 301 .
  • a power unit 5 is provided between the liquid replenishment unit 11 and the second exchange chamber 303 , and the power unit 5 can be used to control the speed at which the liquid replenishment unit 11 delivers the nutrient solution into the second exchange chamber 303 . Since the concentration of nutrients contained in the nutrient solution input into the second exchange chamber 303 is greater than that of the culture solution in the first exchange chamber 302, the difference in concentration between the two can drive the nutrients in the nutrient solution The components move into the first exchange chamber 302 through the membrane module 301 . In some embodiments, the culture fluid in the first exchange chamber 302 can be delivered to the culture chamber 2 for consumption by the culture growth.
  • the nutrient solution in the first exchange chamber 302 can also be sent to the premixing chamber 101 , and the nutrient solution and the gas premixing control unit 105 input in the premixing chamber 101 and the supplementation chamber 104 The gases are further mixed to form a medium more suitable for the growth of the culture.
  • one or more components can be added in a direction through the liquid replenishing unit 11, so as to ensure the balance of each component and reduce the overall medium exchange step, Reduce costs and reduce the chance of culture contamination.
  • the liquid replenishment unit 11 replenishes the second exchange chamber 303, and then the first exchange cavity 302 delivers the nutrient solution to the culture chamber 2; therefore, the concentration of the nutrients in the nutrient solution in the liquid replenishment unit 11 and the components of the nutrients do not need to be adjusted
  • the volume of the liquid replenishing unit 11 can be made smaller.
  • the perfusion speed of the premix chamber 101 can be higher without worrying that the culture medium will be consumed too quickly due to the increase of the perfusion speed, which improves the culture efficiency and increases the types of cultures that can be cultured.
  • the rehydration unit 11 can also communicate with the first exchange chamber 302, and the rehydration unit 11 can deliver one or more components required by the culture to the first exchange chamber 302.
  • the liquid replenishing unit 11 delivers the nutrient solution with nutrients to the first exchange chamber 302. In this way, the metabolite concentration of the culture solution in the first exchange chamber 302 can be reduced to below the preset threshold, so that the culture solution in the first exchange chamber 302 can be transported to the culture chamber 2 or the premixing chamber 101 for re-production use.
  • the culture fluid circulation module 140 may further include a second exchange unit located in the culture chamber 2, for exchanging components of the culture fluid in the culture chamber 2, and exchanging at least part of the culture fluid Recycle.
  • the culture chamber 2 may comprise a plurality of culture chambers. In some embodiments, multiple culture chambers may be used to form the second exchange unit. In some embodiments, the second exchange unit may perform component exchange on the culture fluid in the chamber containing the culture, and reuse part of the culture fluid after the component exchange. In some embodiments, a portion of the culture fluid after component exchange can be backflowed to the premixing chamber 101 . In some embodiments, part of the culture solution after component exchange can also be refluxed to the culture chamber for holding the culture.
  • the second exchange unit includes a first culture chamber 205 and a second culture chamber 206 disposed in the culture chamber 2 , and the first culture chamber 205 and the second culture chamber are located in the first culture chamber 205 and the second culture chamber.
  • the first membrane module 203 between 206, at least part of the components of the culture fluid can pass through the first membrane module 203 through osmosis.
  • the first culture chamber 205 and the second culture chamber 206 may be arranged one above the other in the culture chamber 2 .
  • the first culturing chamber 205 and the second culturing chamber 206 may be arranged in the culturing chamber 2 left and right.
  • first culturing chamber 205 and the second culturing chamber 206 may be arranged in the culturing chamber 2 in a tandem arrangement. In some embodiments, the first culture chamber 205 and the second culture chamber 206 may be arranged inside and outside the culture chamber 2 .
  • the second culture chamber 206 is used to hold the culture and cultivate the culture.
  • the first culture chamber 205 can communicate with the premix chamber 101 , and the premix chamber 101 can deliver the culture fluid to the first culture chamber 205 .
  • the nutrients in the culture fluid can permeate into the second culture chamber 206 through the first membrane assembly 203 for absorption and utilization by the culture.
  • the metabolic waste produced by the growth of the culture can penetrate into the first culture chamber 205 through the first membrane assembly 203 .
  • the culture fluid is transported to the first culture cavity 205 to prevent the culture fluid from directly flushing the culture.
  • the pore size of the permeation pores of the first membrane assembly 203 is smaller than the outer diameter of a single cell in the culture, so that the first membrane assembly 203 can also retain the culture, so that the single dispersed cells in the culture do not have any effect during the culturing process. be washed away, so that the system can be applied to the cultivation of more kinds or ways of culture.
  • the pore size of the permeation pores of the first membrane module 203 may range from 0.0001 ⁇ m to 10 ⁇ m.
  • the pore size of the permeation pores of the first membrane module 203 may range from 0.0001 microns to 100 microns. In some embodiments, the pore size of the permeation pores of the first membrane module 203 may range from 0.0001 micrometers to 50 micrometers. In some embodiments, the pore size of the permeation pores of the first membrane module 203 may range from 0.0001 micrometers to 30 micrometers. In some embodiments, the pore size of the permeation pores of the first membrane module 203 may range from 0.0001 micrometers to 20 micrometers.
  • the first culture chamber 205 may include a liquid inlet port and a liquid drain port.
  • the liquid inlet can be used to receive the culture medium flowing into other chambers, and the drain port can be used to deliver the culture medium to other chambers.
  • the liquid inlet may be communicated with the premixing chamber 101 in the culture solution supplying module 120 , so that the first culture chamber 205 can receive the culture solution flowing into the culture solution supplying module 120 .
  • the drain port may selectively communicate with the premix chamber 101 in the culture solution supply module 120 , so that the culture solution in the first culture chamber 205 can controllably flow into the culture solution supply module 120 .
  • the optional connectivity may be to select connectivity or non-communication based on preset conditions.
  • the preset condition may be whether the concentration of metabolites in the culture medium is higher than a preset threshold (eg, 5 mg/mL).
  • a preset threshold eg, 5 mg/mL
  • the drain port is disconnected from the premixing chamber 101 in the culture solution supply module 120; when the concentration of metabolites in the culture solution is not high
  • the liquid discharge port communicates with the premixing chamber 101 in the culture liquid supply module 120 .
  • the preset threshold for the concentration of metabolites in the culture medium may be 0.1 mg/mL to 10 mg/mL.
  • the selective communication may be achieved through a valve.
  • a metabolite concentration detection unit may be provided in the first culture chamber 205 for detecting the metabolite concentration of the culture solution in the first culture chamber 205 .
  • the control module 150 may control the second exchange unit to open or close the drain port (eg, valve) based on the detection result of the metabolite concentration detection unit.
  • a power unit 5 is disposed between the liquid inlet of the first culture chamber 205 and the premix chamber 101 . In some embodiments, the power unit 5 can control the flow rate of the culture fluid through the fluid inlet. In some embodiments, the power unit 5 can deliver the culture fluid in the premix chamber 101 to the first culture chamber 205 . In some embodiments, a power unit 5 is disposed between the liquid outlet and the premix chamber 101 . In some embodiments, the power unit 5 can control the flow rate of the culture fluid through the drain. In some embodiments, the power unit 5 can deliver the culture fluid in the first culture chamber 205 to the premix chamber 101 .
  • the culture cultured in the second culture chamber 206 may be immune cells, and the immune cells may be cultured in suspension in the second culture chamber 206 .
  • immune cells may include, but are not limited to, T cells, NK cells, and the like. In some embodiments, referring to FIG.
  • the second culture chamber 206 does not include a liquid inlet and a discharge port, and the culture solution in the second culture chamber 206 is supplemented and exchanged by the osmosis of the first membrane module 203 , and the flow rate of the Smaller, it can prevent the culture in the second culture chamber 206 from being washed away, and can simulate the microenvironment in which the immune cells are located in the patient's body, thereby improving the accuracy of the growth of the culture.
  • the second culture chamber 206 and the first culture chamber 205 can simultaneously culture cultures.
  • the cultures cultured in the second culture chamber 206 and the first culture chamber 205 may be different.
  • the culture cultured in the second culture chamber 206 may be immune cells, and the culture method may be suspension culture.
  • the culture cultured in the first culture chamber 205 may be organoid cells, and the culture method may be support culture (eg, placing the culture in Matrigel for culture). In some embodiments, referring to FIG.
  • the second culture chamber 206 does not include a liquid inlet and a liquid discharge port, and the flow rate of the culture solution in the second culture chamber 206 is slow, which can simulate the microenvironment in which immune cells are located in a patient;
  • the first culture cavity 205 includes a liquid inlet and a liquid discharge port.
  • the flow rate of the culture liquid in the first culture cavity 205 is relatively fast, which can simulate the blood flow environment of organoid cells in a patient, and improve the accuracy of culture growth.
  • the first culture chamber 205 may include two drains. In some embodiments, one of the two drains can be selectively communicated with the premix chamber 101 , and the other drain can be selectively communicated with the collection unit 4 .
  • the collection unit 4 is used to collect the culture fluid discharged from the first culture chamber 205 .
  • the control module 150 can control the second exchange unit to open a drain port that can selectively communicate with the collection unit 4, and The drain port that can selectively communicate with the premixing chamber 101 is closed, so that the culture solution flowing out of the first culture chamber 205 is discharged into the collection unit 4 .
  • the control module 150 can control the second exchange unit to close the drain port that is selectively communicated with the collection unit 4, And open the drain port that can be selectively communicated with the premixing chamber 101 , so that the culture solution flowing out of the first culture chamber 205 is input into the premixing chamber 101 .
  • the preset threshold for the concentration of metabolites in the culture medium may be 0.1 mg/mL to 10 mg/mL.
  • the first culture chamber 205 may also include only one drain port, and the drain port can selectively communicate with the premix chamber 101 and the collection unit 4 at the same time.
  • the liquid discharge port can be selectively communicated with the premixing chamber 101 and the collection unit 4 at the same time by setting a three-way valve.
  • the three ports of the three-way valve 204 are respectively communicated with the drain port, the collection unit 4 and the premixing chamber 101 through pipelines. By switching the three-way valve, the first culture chamber 205 can be communicated with the collection unit 4 , or the first culture chamber 205 can be communicated with the premix chamber 101 .
  • the interface of the three-way valve connected to the collection unit 4 when the metabolite concentration of the culture solution in the first culture chamber 205 is higher than a preset threshold, the interface of the three-way valve connected to the collection unit 4 is opened, the interface connected to the premixing chamber 101 is closed, and the first The culture liquid in the culture chamber 205 can be sent to the collection unit 4 through the three-way valve 204 .
  • the interface of the three-way valve connected to the collection unit 4 is closed, the interface connected to the premixing chamber 101 is opened, and the first The culture solution in a culture chamber 205 can be transported into the premixing chamber 101 through the three-way valve 204 .
  • a power unit 5 may be provided between the three-way valve 204 and the liquid discharge port to control the flow rate of the culture liquid through the liquid discharge port.
  • the first culture chamber 205 may include a liquid inlet
  • the second culture chamber 206 may include a drain.
  • the liquid inlet is communicated with the premix chamber 101 in the culture solution supply module 120 , so that the first culture chamber 205 can receive the culture solution flowed into the premix chamber 101 .
  • the drain port can selectively communicate with the premix chamber 101 in the culture solution supply module 120 .
  • the liquid outlet can also be selectively communicated with the collection unit 4 .
  • the metabolite concentration of the culture fluid in the second culture chamber 206 when the metabolite concentration of the culture fluid in the second culture chamber 206 is not higher than the threshold value, the culture fluid in the second culture chamber 206 may flow into the premix chamber 101 .
  • the metabolite concentration of the culture fluid in the second culture chamber 206 when the metabolite concentration of the culture fluid in the second culture chamber 206 is higher than a threshold value, the culture fluid in the second culture chamber 206 may flow into the collection unit 4 .
  • the first culture chamber 205 may include two liquid inlets, and the second culture chamber 206 may include a drain port.
  • one of the liquid inlets can be communicated with the premix chamber 101 in the culture solution supply module 120 , so that the first culture chamber 205 can receive the culture solution flowing from the premix chamber 101 .
  • another liquid inlet can be selectively communicated with the liquid discharge port of the second culturing chamber 206 , so that the first culturing chamber 205 can selectively receive the culturing liquid flowing into the second culturing chamber 206 .
  • the drain port of the second culture chamber 206 can also be selectively communicated with the collection unit 4, so that when the metabolite concentration of the culture fluid in the second culture chamber 206 is higher than a preset threshold, the culture fluid Input to collection unit 4.
  • the first culture chamber 205 may further include a drain port, so that when there is too much culture fluid in the first culture chamber 205, the culture fluid is discharged, so that the input and output of the culture fluid in the first culture chamber 205 can be maintained. balance.
  • the drain port of the first culture chamber 205 can be selectively connected to the collection unit 4 , and when there is too much culture fluid in the first culture chamber 205 , it can be input to the collection unit 4 .
  • the second culture chamber 206 can communicate with the premix chamber 101 , and the premix chamber 101 can deliver culture fluid to the second culture chamber 206 .
  • the second culture chamber 206 may include a liquid inlet, and the premix chamber 101 may deliver the culture liquid to the second culture chamber 206 through the liquid inlet of the second culture chamber 206 .
  • the second culture chamber 206 may include a drain. In some embodiments, the drain port may selectively communicate with the collection unit 4 and the premix chamber 101 at the same time.
  • the culture solution can be input to the collection unit 4; when the metabolite concentration of the culture solution in the second culture chamber 206 is not higher than the preset threshold, The culture fluid can be input into the premix chamber 101 .
  • the first culture chamber 205 may include a liquid inlet port and a liquid drain port. In some embodiments, the liquid inlet of the first culture chamber 205 may be communicated with the premixing chamber 101, and the liquid outlet of the first culture chamber 205 may be communicated with the collection unit 4.
  • the premixing chamber 101 is used to deliver the culture solution to the first culture chamber 205 , so that the concentration of nutrients in the culture solution in the first culture chamber 205 can be higher than the concentration of nutrients in the culture solution in the second culture chamber 206 , the metabolite concentration of the culture solution in the first culture cavity 205 is lower than the metabolite concentration of the culture solution in the second culture cavity 206, so that the nutrients in the culture solution in the first culture cavity 205 are more easily penetrated into the second culture cavity 206.
  • the metabolites in the culture fluid in the second culture chamber 206 are more likely to penetrate into the culture fluid in the first culture chamber 205 .
  • the liquid inlet of the first culture chamber 205 may not communicate with the premixing chamber 101 , but communicate with the liquid replenishing unit 11 .
  • the liquid replenishing unit can deliver a nutrient solution containing nutrients into the first culture chamber 205 . Since the concentration and composition of the nutrient solution in the liquid replenishment unit 11 do not have to be the same as the concentration and composition of the culture liquid required by the culture, the volume of the liquid replenishment unit 11 can be made larger than that of the premixing chamber 101 . Small, making the in vitro life culture system 100 less expensive.
  • the liquid replenishing unit 11 may communicate with the liquid inlet of the first culture cavity 205 , the liquid replenishing unit 11 contains nutrient solution, and the liquid replenishing unit 11 may deliver the nutrient solution to the first culture cavity 205 .
  • the liquid supplement unit 11 and the first culture chamber 205 and the liquid supplement unit 11 are provided with a power unit 5 , and the power unit 5 can control the speed of the liquid supplement unit 11 delivering the nutrient solution into the first culture chamber 205 .
  • the nutrient solution in the first culture chamber 205 can permeate into the second culture chamber 206 through the first membrane assembly 203 .
  • the concentration difference between the two can drive the components in the nutrient solution to move through the first membrane module 203 to the first membrane module 203.
  • the nutrient components required for the growth of the culture in the second culture chamber 206 are supplemented.
  • the functions and structures of the first culture chamber 205 and the second culture chamber 206 may be interchanged.
  • the connection relationship between the first culture chamber 205 and the second culture chamber 206 and other components of the in vitro life culture system 100 can also be interchanged.
  • the first culture chamber 205 can be used for placing and culturing the culture
  • the second culture chamber 206 is used for the exchange of culture fluid components with the first culture chamber 205 .
  • the second culture chamber 206 may include a liquid inlet port and a liquid drain port.
  • the liquid replenishing unit 11 can communicate with the liquid inlet of the second culturing cavity 206 for delivering nutrient solution into the second culturing cavity 206
  • the collection unit 4 can communicate with the liquid outlet of the second culturing cavity 206 , for collecting the culture fluid discharged from the second culture chamber 206 .
  • the first culture chamber 205 is provided with a third membrane assembly 207 , and the third membrane assembly 207 divides the first culture chamber 205 into a first sub-culture chamber 2051 and a second sub-culture chamber 205 .
  • the culture chamber 2052 , the first sub-cultivation chamber 2051 and the second sub-cultivation chamber 2052 can exchange components through the third membrane assembly 207 .
  • the third membrane assembly 207 can also be used to retain and/or permeate components in the culture fluid. In some embodiments, the third membrane assembly 207 can also retain the culture, so that the single dispersed cells of the culture are not washed away, so that the system can be applied to more types or modes of culture cultivation.
  • the second culture chamber 206 may be disposed adjacent to the first sub-culture chamber 2051 and exchange components through the first membrane assembly 203 . In some embodiments, the second culture chamber 206 may be disposed adjacent to the second sub-culture chamber 2052 and exchange components through the first membrane assembly 203 .
  • the second culture chamber 206 can be used to place and grow the culture.
  • the first sub-cultivation chamber 2051 may communicate with the premixing chamber 101 and receive the culture fluid flowing in the premixing chamber 101 .
  • the first sub-cultivation chamber 2051 includes a first liquid inlet for receiving the culture liquid flowing into the first sub-cultivation chamber 2051 .
  • the premix chamber 101 communicates with the first liquid inlet.
  • the concentration of nutrients required by the culture in the culture solution in the second culture chamber 206 is lower than that of the first sub-culture chamber 2051, and the concentration of metabolites is higher than that of the first sub-culture chamber 2051. is higher than that in the first sub-cultivation chamber 2051; the nutrients in the culture solution in the first sub-cultivation chamber 2051 will permeate into the second cultivation chamber 206 through the first membrane assembly 203 for absorption and utilization by the culture. The metabolic waste in the second culture chamber 206 will permeate into the first sub-culture chamber 2051 through the first membrane assembly 203 .
  • the first sub-cultivation chamber 2051 further includes a first liquid discharge port for discharging the culture liquid from the first sub-cultivation chamber 2051 .
  • the first liquid discharge port can selectively communicate with the second culture chamber 206, and when the metabolite concentration of the culture in the first sub-culture chamber 2051 is not higher than a preset threshold, the communication channel is opened, and when When the metabolite concentration of the culture in the first sub-culture chamber 2051 is higher than the preset threshold, the communication channel is closed.
  • the first liquid discharge port can also be selectively communicated with the premixing chamber 101, and when the metabolite concentration of the culture in the first sub-cultivation chamber 2051 is not higher than a preset threshold, the communication channel is opened, When the metabolite concentration of the culture in the first sub-culture chamber 2051 is higher than the preset threshold, the communication channel is closed.
  • the first liquid discharge port can also be selectively communicated with the collection unit 4.
  • the communication channel is closed, and when the first sub-culture chamber 2051 has a metabolite concentration not higher than a preset threshold, the communication channel is opened.
  • the concentration of nutrients in the culture solution in the first sub-culture chamber 2051 is lower than that in the second sub-cultivation chamber 2052, and the concentration of metabolites is higher than that in the second sub-cultivation chamber 2052; the nutrients in the culture medium in the second sub-cultivation chamber 2052 will permeate through the third membrane module 207 to the In the first sub-cultivation chamber 2051 , the metabolic wastes in the first sub-cultivation chamber 2051 will permeate into the second sub-cultivation chamber 2052 through the third membrane assembly 207 .
  • the second sub-cultivation chamber 2052 may include a second liquid outlet for discharging the culture fluid from the second sub-cultivation chamber 2052 .
  • the second liquid outlet may communicate with the collection unit 4 .
  • the second sub-cultivation chamber 2052 may include a second liquid inlet for flowing the culture liquid into the second sub-cultivation chamber 2052.
  • the second liquid inlet may communicate with the premix chamber 101 .
  • the second liquid inlet may not communicate with the premixing chamber 101 , but communicate with the liquid replenishing unit 11 .
  • the liquid replenishing unit 11 can deliver a nutrient solution containing one or more components (such as nutrients) required by the culture to the second sub-cultivation chamber 2052 through the second liquid inlet.
  • the liquid replenishing unit 11 communicates with the first sub-cultivation chamber 2051 and is used to deliver one or more components required by the culture to the first sub-cultivation chamber 2051 to supplement the first sub-cultivation chamber 2051 One or more nutrient components in the culture medium, ensuring that the one or more nutrient components in the culture medium are complete.
  • the rehydration unit 11 may also communicate with the second sub-cultivation chamber 2052 for delivering one or more components required for the culture to the second sub-cultivation chamber 2052 .
  • the concentration of the nutrient solution is greater than the concentration of the nutrient solution in the second sub-cultivation chamber 2052, and the difference between the two concentrations can drive the components in the nutrient solution to move through the third membrane module 207 to the first In a sub-cultivation chamber 2051, the nutrient components required for the growth of the culture in the culture solution in the first sub-cultivation chamber 2051 are supplemented.
  • the metabolite concentration of the culture solution in the second sub-cultivation chamber 2052 can be reduced, the metabolites in the first sub-cultivation chamber 2051 can be promoted to penetrate into the second sub-cultivation chamber 2052, and the group can be improved. exchange efficiency.
  • the liquid replenishing unit 11 can communicate with the first sub-cultivation chamber 2051 and the second sub-cultivation chamber 2052 at the same time, and at the same time deliver one or more required cultures to the first sub-cultivation chamber 2051 and the second sub-cultivation chamber 2052 Various components.
  • a power unit 5 may be disposed between the second liquid inlet and the premixing chamber 101 or the liquid replenishing unit 11 .
  • the power unit 5 can control the flow rate of the culture or nutrient solution in the fluid channel.
  • the power unit 5 may also open or close fluid passages.
  • the power unit 5 when the metabolite concentration of the culture medium in the second sub-culture chamber 2052 is higher than a preset threshold, the power unit 5 can open the fluid channel, so that the pre-mixing chamber 101 or the liquid replenishing unit 11 can feed the second sub-culture
  • the cavity 2052 is input with a certain flow rate (eg, 100 mL, etc.) of culture fluid or nutrient fluid to dilute the metabolite concentration of the culture fluid in the second sub-culture cavity 2052 .
  • the power unit 5 when the metabolite concentration of the culture fluid in the second sub-culture chamber 2052 is not higher than a preset threshold, the power unit 5 can close the fluid channel.
  • a power unit 5 may also be provided between the second liquid outlet and the collection unit 4 for controlling the flow rate of the culture solution in the second liquid outlet.
  • a power unit 5 may also be disposed between the first liquid inlet and the premixing chamber 101 .
  • a first power unit is disposed between the culture solution supply module 120 and the first liquid inlet, and a second power unit is disposed between the second liquid outlet and the collection unit. The first power unit and the second power unit are configured such that the flow rates of the culture fluid in the first sub-cultivation chamber 2051 and the second sub-cultivation chamber 2052 are different.
  • the location, function, and structure of the second culture chamber 206 and the second sub-culture chamber 2052 may be interchanged.
  • a second subculture chamber 2052 may be used to place and grow cultures.
  • the concentration of the components required for the culture in the culture solution in the second sub-culture chamber 2052 is higher than that in the first sub-culture chamber.
  • the concentration of wastes produced by the metabolism of the culture is higher than that in the first sub-cultivation chamber 2051; the useful components in the culture medium in the first sub-cultivation chamber 2051 will permeate through the third membrane module 207 to the second sub-cultivation chamber 207.
  • the sub-cultivation chamber 2052 is used for the culture to absorb and utilize, and the metabolic waste in the second sub-cultivation chamber 2052 will permeate into the first sub-cultivation chamber 2051 through the third membrane assembly 207 .
  • the first sub-cultivation chamber 2051 since the nutrients in the culture fluid in the first sub-cultivation chamber 2051 penetrate into the second sub-cultivation chamber 2052 and are mixed with metabolites from the second sub-cultivation chamber 2052, the first sub-cultivation chamber 2051 The concentration of nutrients required for the culture in the second culture chamber 206 is lower than that of the second culture chamber 206, and the concentration of metabolites is higher than that in the second culture chamber 206; the nutrients in the culture solution in the second culture chamber 206 It will permeate into the first sub-cultivation chamber 2051 through the first membrane assembly 203 , and the metabolic waste in the first sub-cultivation chamber 2051 will permeate into the second cultivation chamber 206 through the first membrane assembly 203 .
  • the rehydration unit 11 may communicate with the second culture chamber 206 .
  • the liquid replenishing unit 11 may also communicate with the first sub-cultivation chamber 2051 .
  • both the first sub-cultivation chamber 2051 and the second sub-cultivation chamber 2052 communicate with the second cultivation chamber 206 through the first membrane assembly 203 .
  • the liquid replenishing unit 11 communicates with the second culturing cavity 206 , and the liquid replenishing unit 11 stores nutrient solution for supplying the nutrient solution to the second culturing cavity 206 .
  • a power unit 5 is provided in the second culture chamber 206 and the liquid replenishing unit 11, and the power unit 5 is used to deliver the nutrient solution.
  • the nutrient solution in the second culture cavity 206 can permeate into the first culture cavity 205 through the first membrane assembly 203 , and specifically into the first sub-culture cavity 2051 and the second sub-culture cavity 2052 . Since the concentration of nutrients in the nutrient solution supplemented by the liquid replenishing unit 11 is larger than the concentrations of nutrients in the culture solutions in the first sub-cultivation chamber 2051 and the second sub-cultivation chamber 2052, the concentration difference between the two can drive the concentration of nutrients in the nutrient solution. The nutrients in the first sub-cultivation chamber 2051 and the second sub-cultivation chamber 2052 are moved through the first membrane assembly 203 to the first sub-cultivation chamber 2051 and the second sub-cultivation chamber 2052. Supplement with required nutrients.
  • the second culture chamber 206 communicates with the collection unit 4 . Due to the difference in concentration between the metabolites in the culture fluid in the first culture chamber 205 and the metabolites in the culture fluid in the second culture chamber 206, the first culture chamber 205 (including the first sub-culture chamber 2051 and the second sub-culture chamber 2052 The wastes produced by the culture metabolism contained in the culture solution in the The waste generated from the metabolism of the internal culture is discharged into the collection unit 4 .
  • the nutrient solution in the second culture chamber 206 is discharged, and then use The replenishing unit 11 replenishes new nutrient solution.
  • the first sub-cultivation chamber 2051 or the second sub-cultivation chamber 2052 can deliver the culture liquid to the premixing unit 1 .
  • the culture fluid of the first sub-culture chamber 2051 can be delivered to the premixing chamber 101, so that the culture fluid of the first sub-culture chamber 2051 can be delivered to the pre-mixing chamber 101, so that it can be mixed with the gas Oxygen is mixed and supplemented, and the pH value can be adjusted by mixing with carbon dioxide or lye, so that the dissolved oxygen and pH value of the culture solution flowing into the first sub-culture chamber 2051 from the premix chamber 101 meet the growth requirements of the culture.
  • a first subculture chamber 2051 can be used to place and grow the culture.
  • the nutrients in the culture medium in the first sub-culture chamber 2051 can permeate into the second sub-culture chamber 2052 through the third membrane module 207, and the metabolites in the culture solution can penetrate into the second culture chamber through the first membrane module 203 206.
  • the third membrane assembly 207 is used for intercepting and/or permeating the components in the culture fluid.
  • the third membrane assembly 207 can also intercept the culture, specifically intercepting the cells of the culture, so that the individual dispersed cells of the culture are not washed away, So that the system can be applied to the cultivation of more cultures.
  • the concentration of the components (such as nutrients) required by the culture in the culture solution in the first sub-cultivation chamber 2051 is higher than that of the second sub-cultivation chamber 2052 is low, the concentration of metabolites produced by the metabolism of the culture is higher than that in the second sub-cultivation chamber 2052; the nutrients in the culture solution in the second sub-cultivation chamber 2052 will permeate through the third membrane module 207 to the first sub-cultivation chamber 207.
  • the metabolites in the first sub-cultivation chamber 2051 will permeate into the second sub-cultivation chamber 2052 through the third membrane assembly 207 for absorption and utilization by the culture.
  • the first sub-culture chamber 2051 communicates with the second culture chamber 206 through the first membrane assembly 203 .
  • the liquid replenishing unit 11 communicates with the second culturing cavity 206 , and the liquid replenishing unit 11 stores nutrient solution for supplying the nutrient solution to the second culturing cavity 206 .
  • a power unit 5 is provided in the second culture chamber 206 and the liquid replenishing unit 11, and the power unit 5 is used to deliver the nutrient solution.
  • the nutrient solution in the second culture chamber 206 can penetrate into the first sub-culture chamber 2051 through the first membrane assembly 203 .
  • the difference in concentration between the two can drive the nutrients in the nutrient solution to pass through the first membrane module 203 Move into the first sub-cultivation chamber 2051 to supplement the nutrients needed for the growth of the culture in the culture solution in the first sub-cultivation chamber 2051 .
  • the second culture chamber 206 communicates with the collection unit 4 . Due to the difference in concentration, the metabolites generated by the metabolism of the culture contained in the culture solution in the first sub-culture chamber 2051 can permeate into the second culture chamber 206 through the first membrane assembly 203 , and the second culture chamber 206 and the collection unit 4 In the second culture chamber 206 , the metabolites produced by the metabolism of the culture in the second culture chamber 206 can be discharged into the collection unit 4 . In some embodiments, when the concentration of metabolites in the culture in the second culture chamber 206 is too high or the concentration of nutrients in the nutrient solution is too low, the culture solution in the second culture chamber 206 is discharged, and then the liquid replenishment unit 11 is used to replenish new ones. of liquid.
  • both the first culture chamber 205 and the second culture chamber 206 may communicate with the collection unit 4, that is, the first sub-cultivation chamber 2051 and/or the second sub-cultivation chamber 2052 communicate with the collection unit 4,
  • the second culture chamber 206 communicates with the collection unit 4 .
  • both the first sub-cultivation chamber 2051 and the second cultivation chamber 206 communicate with the collection unit 4 .
  • the metabolites produced by the metabolism of the culture contained in the culture medium in the first sub-culture chamber 2051 can permeate into the second culture chamber 206 through the first membrane assembly 203 .
  • the metabolites produced by the culture in the first sub-culture chamber 2051 and the second culture chamber 206 can be discharged into the collection unit 4, and the first sub-culture chamber 2051 and the second culture chamber 206 can be supplemented with new liquid .
  • the first sub-cultivation chamber 2051 and/or the second sub-cultivation chamber 2052 can deliver the culture liquid to the premixing unit 1. into the premixing chamber 101 .
  • the culture liquid in the first sub-cultivation chamber 2051 and the second sub-cultivation chamber 2052 can be transported to the premixing chamber 101, so that it can be mixed with gas to supplement oxygen, and can be mixed with carbon dioxide or lye to adjust the pH value,
  • the dissolved oxygen amount and pH value of the culture solution flowing into the second sub-culture chamber 2052 from the premixing chamber 101 can meet the growth requirements of the culture.
  • the culture fluid in the second culture chamber 206 can be transported to the premixing chamber 101, so that the culture fluid is confluenced into the premixing chamber 101 for reuse; or, as As shown in FIG. 21 , the culture fluid in the first sub-culture chamber 2051 can be transported into the premixing chamber 101 so that the culture fluid is confluenced into the premixing chamber 101 for reuse.
  • the culture fluid in the first sub-cultivation chamber 2051 can be transported into the second sub-cultivation chamber 2052.
  • the in vitro life culture system 100 further includes a three-way valve 204.
  • the three ports are respectively connected to the first sub-cultivation chamber 2051 , the second sub-cultivation chamber 2052 and the premix chamber 101 through pipelines.
  • the culture fluid in the first sub-culture chamber 2051 can be delivered to the second sub-culture chamber 2052, or the culture fluid in the second sub-culture chamber 2052 can be delivered to the premixing chamber 101 Alternatively, the culture fluid in the first sub-culture chamber 2051 is delivered to the premixing chamber 101 .
  • the liquid replenishing unit 11 replenishes the second culturing cavity 206, and then the second culturing cavity 206 delivers the nutrient solution to the first culturing cavity 205; therefore, the concentration and composition of the nutrient solution in the replenishing unit 11 do not need to be adjusted to meet the needs of the culture.
  • the concentration and composition of the culture medium are the same, and the volume of the liquid replenishing unit 11 can be made smaller.
  • the perfusion speed of the premix chamber 101 can be higher without worrying that the culture medium will be consumed too quickly due to the increase of the perfusion speed, which improves the culture efficiency and increases the types of cultures that can be cultured.
  • the concentration of each component in the culture fluid flowing out of the first culture chamber 205 can be detected, and supplemented by the liquid replenishing unit 11 in a targeted manner.
  • Concentration detection can be performed by sampling detection or in-situ detection (such as infrared spectroscopy technology, fluorescence detection technology).
  • the in vitro life culture system 100 may also automatically add nutrients to the fluid replacement unit 11 based on the above-mentioned concentration detection results.
  • the sample introduction port 201 and the sampling port 202 may be provided on the chamber where the culture is placed.
  • the culture is placed in the first culture chamber 205 , and the sample introduction port 201 and the sampling port 202 can be disposed on the first culture chamber 205 .
  • the culture is placed in the second culture chamber 206 , and the sample introduction port 201 and the sampling port 202 can be disposed on the second culture chamber 206 .
  • the culture is placed in the first sub-cultivation chamber 2051 , and the sample introduction port 201 and the sampling port 202 may be disposed on the first sub-cultivation chamber 2051 .
  • the culture is placed in the second sub-cultivation chamber 2052 , and the sample introduction port 201 and the sampling port 202 may be disposed on the second sub-cultivation chamber 2052 .
  • the culture fluid circulation module 140 may include a first exchange unit 3 located outside the culture chamber 2 and a second exchange unit located inside the culture chamber 2 .
  • first exchange unit 3 located outside the culture chamber 2
  • second exchange unit located inside the culture chamber 2 .
  • the first exchange unit 3 includes a first exchange cavity 302 and a second exchange cavity 303 , and a membrane module 301 is disposed between the first exchange cavity 302 and the second exchange cavity 303 .
  • the culture chamber 2 includes a first culture chamber 205 and a second culture chamber 206, a first membrane assembly 203 is arranged between the first culture chamber 205 and the second culture chamber 206, and at least part of the components of the culture fluid can pass through through osmosis The first membrane assembly 203 .
  • the second exchange unit corresponds to the first culture cavity 205, and the second culture cavity 206 is used for placing the culture.
  • the first exchange chamber 302 communicates with the first culture chamber 205 for receiving the culture fluid discharged from the first culture chamber 205 .
  • the first exchange chamber 302 is in communication with the second culture chamber 206 and/or the culture solution supplying module 120 , and is used to flow the culture solution into the second culture chamber 206 and/or the culture solution supply module 120 .
  • the first exchange chamber 302 communicates with the second culture chamber 206 for receiving the culture fluid discharged from the second culture chamber 206 .
  • the first exchange chamber 302 is in communication with the second culture chamber 206 and/or the culture solution supplying module 120 , and is used to flow the culture solution into the second culture chamber 206 and/or the culture solution supply module 120 .
  • the first culture chamber 205 or the second culture chamber 206 may include a drain.
  • the drain port of the first culture chamber 205 or the second culture chamber 206 and the premixing unit 1 may communicate with the first exchange chamber 302 .
  • the first exchange chamber 302 is provided with a first interface and a second interface, the drain port of the first culture chamber 205 or the second culture chamber 206 is connected to the first interface, and the premixing unit 1 and the second interface is connected.
  • the culture fluid in the first culture chamber 205 or the second culture chamber 206 can be transported into the first exchange chamber 302 through the drain port and the first interface.
  • the first exchange A power unit 5 is provided between the first interface of the cavity 302 and the liquid drain port, and the power unit 5 is used to transport the culture liquid in the first culture cavity 205 to the first exchange cavity 302 .
  • the culture fluid in the first exchange chamber 302 can flow into the premixing chamber 101 through the second interface, so that the nutrients in the culture fluid in the first exchange chamber 302 can be recycled.
  • the second interface of the first exchange chamber 302 and the premix chamber A power unit 5 is arranged between the chambers 101 , and the culture medium in the first exchange chamber 302 is transported into the premix chamber 101 through the second interface by using the power unit 5 .
  • the collection unit 4 may communicate with the second exchange chamber 303 , and the collection unit 4 is used to collect the culture fluid discharged from the second exchange chamber 303 .
  • the second exchange chamber 303 is provided with a third interface and a fourth interface, and the fourth interface is communicated with the collection unit 4 .
  • the collection unit 4 communicates with the second exchange chamber 303 for collecting the culture fluid in the second exchange chamber 303 .
  • a power unit 5 is provided between the collection unit 4 and the second exchange chamber 303 , and the power unit 5 is used to transport the culture fluid in the second exchange chamber 303 to the collection unit 4 .
  • a power unit 5 may be provided between the second exchange chamber 303 and the collection unit 4, and the power unit 5 to transport the culture fluid in the second exchange chamber 303 to the collection unit 4 .
  • the fluid replacement unit 11 communicates with the second exchange chamber 303 .
  • the third interface is communicated with the fluid replacement unit 11 .
  • the liquid replenishing unit 11 is used to deliver the supplementary nutrient solution to the second exchange chamber 303 , and at least part of the components in the supplementary nutrient solution in the second exchange chamber 303 can permeate into the first exchange chamber 302 through the membrane module 301 .
  • a power unit 5 is arranged between the liquid replenishment unit 11 and the second exchange chamber 303 , and it can be determined whether to use the liquid replenishment unit 11 according to the relative position of the second exchange chamber 303 and the liquid replenishment unit 11 and the demand for the delivery speed and delivery volume of the supplementary nutrient solution.
  • a power unit 5 is arranged between the second exchange chamber 303 and the power unit 5 is used to supply supplementary nutrient solution.
  • the nutrient concentration of the supplementary nutrient solution is larger than that of the culture solution in the first exchange chamber 302, and the difference in concentration between the two can drive the nutrients in the supplementary nutrient solution to move through the membrane module 301 to the first exchange chamber 302, and then transported to the premixing chamber 101 to supplement the nutrient solution, where the nutrient solution and gas are mixed in the premixing chamber 101 to form a culture solution.
  • the solution of this embodiment can directionally add one or more components through the liquid replenishing unit 11, so as to ensure the balance of each component and reduce the overall medium exchange steps, reducing the cost and reduce the chance of culture contamination.
  • the liquid replenishment unit 11 replenishes the second exchange chamber 303, and then the first exchange cavity 302 delivers the nutrient solution to the culture chamber 2; therefore, the concentration and composition of the nutrient solution in the liquid replenishment unit 11 do not need to be adjusted to those required by the culture.
  • the concentration and composition of the culture medium are the same, and the volume of the liquid replenishing unit 11 can be made smaller.
  • the perfusion speed of the premix chamber 101 can be higher without worrying that the culture medium will be consumed too quickly due to the increase of the perfusion speed, which improves the culture efficiency and increases the types of cultures that can be cultured.
  • the culturing module 110 may include a temperature control unit 6 .
  • the temperature control unit 6 may be used to control the temperature within the culture chamber 2 to a first preset temperature.
  • the first preset temperature may correspond to a liquefaction temperature of the culture support structure.
  • Liquefaction temperature refers to the temperature at which the culture support structure begins to change from a solid to a liquid.
  • the value range of the first preset temperature may be 0°C to 40°C; in some embodiments, the value range of the first preset temperature may be 0°C to 35°C; in some embodiments , the value range of the first preset temperature may be 0°C to 30°C; in some embodiments, the value range of the first preset temperature may be 0°C to 25°C; in some embodiments, the first The value range of the preset temperature may be 0°C to 20°C; in some embodiments, the value range of the first preset temperature may be 0°C to 15°C; in some embodiments, the value of the first preset temperature The value range may be 0°C to 10°C; in some embodiments, the value range of the first preset temperature may be 0°C to 5°C.
  • the culture support structure can be used to form a network support for the culture, facilitating 3D growth of the culture.
  • culture support structures can include, but are not limited to, Matrigel and synthetic gels.
  • the matrigel can be a basement membrane matrix extracted from extracellular matrix protein-rich EHS mouse tumors.
  • the liquefaction temperature of the matrigel may be in the range of 2°C to -8°C. When the temperature decreases from a high temperature to 2°C to -8°C, the matrigel changes from a solid state to a liquid state, and when the temperature increases from a low temperature to At 2°C to -8°C, Matrigel solidifies.
  • the synthetic gel is a synthetic gel
  • the liquefaction temperature of the synthetic gel can be room temperature 25°C.
  • the synthetic gel is transformed from a solid state to a liquid state.
  • the synthetic gel solidified.
  • synthetic gels may include, but are not limited to, block copolymers of poly-N-isopropylacrylamide and polyethylene glycol (PNIPAM-PEG), polyethylene glycol (PEG), and polylactic acid- Glycolic acid copolymer (PLGA) block copolymer (PEG-PLGA), PLGA-PEG-PLGA triblock polymer, PCLA–PEG–PCLA triblock polymer (PCLA is ⁇ -caprolactone and L- Lactide copolymer, PCLA-PEG-PCLA grafted RGD polypeptide.
  • PIPAM-PEG poly-N-isopropylacrylamide and polyethylene glycol
  • PEG polyethylene glycol
  • PLGA polylactic acid- Glycolic acid copolymer
  • PEG-PLGA polylactic acid- Glycolic acid copolymer
  • PLGA-PEG-PLGA triblock polymer PCLA–PEG–PCLA triblock polymer
  • PCLA is ⁇ -caprolactone
  • the temperature control unit 6 may also be used to control the temperature in the culture chamber 2 to switch between the first preset temperature and the second preset temperature.
  • the second preset temperature may correspond to the physiological temperature of the culture.
  • Physiological temperature refers to the temperature suitable for biological growth.
  • the value range of the second preset temperature may be 20°C to 40°C; in some embodiments, the value range of the second preset temperature may be 25°C to 40°C; in some embodiments , the value range of the second preset temperature may be 30°C to 40°C.
  • the temperature control unit 6 may control the temperature in the chamber to increase from the first preset temperature to the second preset temperature.
  • the temperature control unit 6 may control the temperature in the chamber to decrease from the second preset temperature to the first preset temperature.
  • the first preset temperature may be lower than the second preset temperature.
  • the culture fluid supply module 120 may also include a temperature control unit 6 .
  • the premixing chamber 101 is used to mix nutrient solution and gas to form a culture solution
  • the temperature control unit 6 can be used to control the temperature in the premixing chamber 101 to a second preset temperature, so that the culture solution can be The temperature is raised to the physiological temperature suitable for the growth of the culture to carry out the cultivation of the culture.
  • the temperature control unit 6 may be used to control the temperature of the premix chamber 101 and the culture chamber 2 . In some embodiments, the temperature control unit 6 may be used to heat the temperature of the premix chamber 101 and the culture chamber 2 . The temperature control unit 6 can heat the premixing chamber 101 and the culturing chamber 2 when the temperature of the premixing chamber 101 and the culturing chamber 2 is too low to increase the temperature, so as to make the culture liquid in the premixing chamber 101 And the temperature of the culture medium in the culture chamber 2 is raised to a physiological temperature suitable for the growth of the culture, so as to carry out the culture of the culture. In some embodiments, the temperature control unit 6 may be used to cool the temperature of the premix chamber 101 and the culture chamber 2 .
  • the temperature control unit 6 can cool the premixing chamber 101 and the culturing chamber 2 when the temperature of the premixing chamber 101 and the culturing chamber 2 is too high, so that the temperature of the premixing chamber 101 and the culturing chamber 2 is lowered, so that the culture liquid in the premixing chamber 101 and the culturing chamber 2 can be cooled down.
  • the temperature of the culture medium in the culture chamber 2 is lowered to a physiological temperature suitable for the growth of the culture, so that the culture can be cultured.
  • the temperature control unit 6 may be used to control the temperature of the premix chamber 101 and the culture chamber 2 to switch between the first preset temperature and the second preset temperature.
  • the temperature control unit 6 can control the temperature of the culture solution in the culture chamber 2 to the first preset temperature, and the culture support structure The culture can be removed through the sampling port 202 after liquefaction.
  • the temperature control unit 6 may include a refrigeration assembly and a temperature control module, wherein the refrigeration assembly is electrically connected to the temperature control module.
  • the temperature control module may be used to control the refrigeration assembly to cool the temperature within the culture chamber 2 to a first preset temperature.
  • the temperature within the incubation chamber 2 may return to ambient temperature when the refrigeration assembly is deactivated.
  • ambient temperature may refer to room temperature (eg, 25°C).
  • the ambient temperature may be the same as the physiological temperature of the culture in the set culture environment, and its value range is equal to the value range of the physiological temperature of the culture.
  • the ambient temperature may be the same as the first preset temperature, and the cooling speed of the temperature in the culture chamber 2 can be accelerated by arranging the cooling assembly, thereby improving the cooling efficiency.
  • the temperature control module can manually set the temperature control time period for the temperature control module to control the temperature in the refrigeration component to cool the temperature in the culture chamber 2 to the first preset temperature, for example, set the temperature control module to cool the culture chamber within 30 minutes 2 to the first preset temperature.
  • the temperature control duration can be set according to the time of day. In some embodiments, when the temperature is higher during the day, the temperature control time period is set to be longer than when the temperature is lower, so that the temperature in the culture chamber 2 can be lowered to the first preset temperature more quickly.
  • the temperature control unit 6 may further include a heating component, wherein the heating component is electrically connected with the temperature control module.
  • a temperature control module may be used to control the heating assembly to heat the chamber.
  • the temperature control module can be used to control the heating component to heat the temperature in the culture chamber 2 to the second preset temperature.
  • the temperature within the incubation chamber 2 may return to ambient temperature when the heating assembly is deactivated.
  • the ambient temperature may be the same as the second preset temperature, and by arranging the heating component, the speed of heating the temperature in the culture chamber 2 can be accelerated, thereby improving the heating efficiency.
  • the temperature control module can be manually set to control the working time of the heating component to heat the temperature in the culture chamber 2 to the second preset temperature.
  • the temperature control module can be set to heat the culture chamber within 30 minutes. 2 to the second preset temperature.
  • the heating assembly may include a plurality of heating fins 61 .
  • the refrigeration assembly may include a plurality of refrigeration fins 62 .
  • heating components and cooling components may be provided on the outer walls of both the premixing chamber 101 and the culturing chamber 2 .
  • the heating assembly includes a plurality of heating fins 61 , and the heating fins 61 are disposed on the outer wall of the culture chamber 2 .
  • the heating plate 61 may be at least one of a transparent heating plate, a metal heating plate, a semiconductor heating plate, a heating blanket or a heating plate.
  • the cooling sheet 62 may be disposed on the outer wall of the culture chamber 2 .
  • the cooling sheet 62 may be a semiconductor cooling sheet or other cooling materials.
  • the heating fins 61 and the cooling fins 62 may be located at different positions in the culture chamber 2, respectively.
  • the heating sheet 61 may be located at the bottom of the culture chamber 2
  • the cooling sheet 62 may be located at the side of the culture chamber 2 .
  • the heating sheet 61 may be located on the side of the culture chamber 2
  • the cooling sheet 62 may be located at the bottom of the culture chamber 2 .
  • the heating fins 61 and the cooling fins 62 may also be located at the same position of the culture chamber 2 , for example, both are located at the same side or bottom of the culture chamber 2 .
  • the energy of the plurality of heating fins 61 may be transferred to the plurality of cooling fins 62 .
  • the heating fins 61 and the cooling fins 62 may be disposed on the same side or bottom wall of the culture chamber 2 at intervals. Specifically, a plurality of heating fins 61 are arranged at intervals, a plurality of cooling fins 62 are arranged at intervals, a cooling fin 62 is arranged between two adjacent heating fins 61 , and a cooling fin 62 is arranged between two adjacent cooling fins 62 Heater 61.
  • the heating fins 61 can be in close contact with the adjacent cooling fins 62, and the cooling fins 62 can be in close contact with the adjacent heating fins 61, so that the energy of the plurality of heating fins 61 can be transferred to a plurality of cooling fins 62 .
  • the heating fins 61 and the cooling fins 62 may be embedded in each other.
  • both the heating fins 61 and the cooling fins 62 are made of materials with good thermal conductivity, and are structurally processed into an inlaid structure, so that the heating fins 61 can be embedded between the cooling fins 62, and the cooling fins 62 can be embedded in the between the heating fins 61, so as to realize the transfer of energy between the heating fins and the cooling fins.
  • the heating fins 61 and the cooling fins 62 may jointly heat or cool the culture chamber 2 .
  • the heating sheet 61 when the culture chamber 2 needs to be heated, the heating sheet 61 is heated to a specified temperature under the control of the temperature control module. Since the cooling sheet 62 is a thermally conductive material, the heat of the heating sheet 61 can be transferred to the The cooling sheet 62 heats the cooling sheet 62 while heating the culture chamber 2. The temperature of the cooling sheet 62 rises rapidly to a specified temperature, and then the heating sheet 61 and the cooling sheet 62 jointly heat the culture chamber 2; When the chamber 2 is cooled down, the cooling fins 62 are lowered to a specified temperature under the control of the temperature control module.
  • the cooling fins 62 can affect the culture chamber.
  • the heating fins 61 are thermally conductive materials, and the heat of the heating fins 61 can be transferred to the cooling fins 62, the cooling fins 62 can affect the culture chamber.
  • the heating fins 61 are cooled at the same time, so that the temperature of the heating fins 61 is rapidly reduced to a specified temperature, and then the culture chamber 2 is cooled by the cooling fins 62 and the heating fins 61 together.
  • the heating fins 61 and the cooling fins 62 are arranged alternately and can transfer heat, so that they can jointly heat and cool the culture chamber 2 , thereby increasing the heat exchange area and improving the heat exchange efficiency.
  • the refrigeration assembly may further include at least one cryogenic medium device.
  • the low temperature culture medium device can be used for injecting the low temperature culture medium into the chamber, so that the temperature in the chamber is cooled to the first preset temperature.
  • the heating assembly may also include at least one thermal radiation emitting device. The thermal radiation emitting device may be used for emitting thermal radiation to the chamber to heat the temperature in the chamber to the second preset temperature.
  • the cryogenic medium device and the thermal radiation emitting device may be located at different positions in the culture chamber 2, respectively.
  • the low-temperature culture medium device may be located inside the culture chamber 2
  • the thermal radiation emitting device may be located at the side of the culture chamber 2 .
  • the low temperature culture medium device may be located at the top of the culture chamber 2
  • the thermal radiation emitting device may be located at the bottom of the culture chamber 2 .
  • the cryogenic medium device and the thermal radiation emitting device may also be located at the same position of the culture chamber 2 , eg, both are located on the same side or top of the culture chamber 2 .
  • the temperature control unit 6 may further include a temperature detector 63 .
  • the temperature detection member 63 may be a temperature sensor.
  • the temperature detection member 63 is electrically connected to the temperature control module, and the temperature detection member 63 may be arranged on the inner wall of the culture chamber 2 or may be arranged on the outer wall of the culture chamber 2 .
  • the temperature detection element 63 can be used to detect the temperature of the culture liquid in the culture chamber, and feed back the detected value to the temperature control module.
  • the set values are compared to control the heating component to heat the culture chamber 2 or control the refrigeration component to cool the culture chamber 2.
  • the temperature control module controls the heating component to heat the temperature incubation chamber 2 to the set value.
  • the temperature control module controls the heating component to cool the temperature incubation chamber 2 to the set value.
  • the structure and arrangement of the heating component, the cooling component and the temperature detection component 63 on the premixing chamber 101 are the same as those of the culturing chamber 2, and will not be repeated here.
  • the culture module 110 may further include a microscopic observation module 8 .
  • the microscopic observation module 8 can observe and record the growth of the culture in the culture chamber 2 .
  • the culture fluid supply module 120 and the fluid output module 130 may be operated to adjust the culture fluid in the culture chamber 2 according to the growth of the culture.
  • the microscopic observation module 8 can be fixedly arranged outside the culture chamber 2 and can observe the culture chamber 2 .
  • the microscopic viewing module 8 may include a viewing assembly for viewing the culture within the culture chamber 2 .
  • the microscopic viewing module 8 may also include a stage 801 and a frame 802 .
  • the culture chamber 2 is placed on the stage 801 so that the culture in the culture chamber 2 can be observed through the observation assembly.
  • the frame 802 is used to provide a platform for mounting the fixed stage 801 .
  • the viewing assembly may include an objective lens 803 and an eyepiece 804 through which the observer may observe the culture.
  • the objective lens 803 may be provided on the gantry 802, which is movable in a vertical direction.
  • an eyepiece 804 may also be provided on the rack 802 through which the culture in the culture chamber 2 can be observed.
  • a first mechanical rail 805 is provided on the rack 802
  • a second mechanical rail 806 is slidably provided on the first mechanical rail 805 .
  • the first mechanical rail 805 and the second mechanical rail 806 are arranged perpendicular to each other, and both are located in a horizontal plane.
  • the stage 801 is slidably arranged on the second mechanical track 806, and the stage 801 can be placed on a horizontal plane by sliding the stage 801 relative to the second mechanical track 806 and sliding the second mechanical track 806 relative to the first mechanical track 805. Any position in the interior is adjusted so that the objective lens 803 is directly facing the culture chamber 2, and the eyepiece 804 is used to focus on the culture in the culture chamber 2 to observe the culture.
  • the camera 807 can be used to take pictures and record the image data.
  • the culture chamber 2 can be shaken during the observation process, so that the culture is in a better observation state for easy observation.
  • the viewing assembly may include an image acquisition device for acquiring image data of the culture.
  • the image acquisition device mainly includes a camera 807 (eg, a CCD or CMOS camera). If image data needs to be recorded during the observation process, the camera 807 can be used to take pictures and record the image data.
  • the culture module 110 further includes a mixing module 7 , which is used to shake the culture fluid in the culture chamber 2 to provide the culture fluid and the culture with More sufficient exchange opportunities to improve the absorption efficiency of the culture medium.
  • the mixing module 7 may include, but is not limited to, one or more of a shaking structure and a stirring structure.
  • the shaking structure may be a structure capable of shaking the culture chamber 2 .
  • the stirring structure may be a structure capable of stirring the culture liquid in the culture chamber 2 .
  • the mixing module may include a shaking structure.
  • a shaking structure may be attached to the culture chamber 2 .
  • the rocking structure can be manually controlled. In some embodiments, the user can observe the growth of the culture in the culture chamber 2 through the observation component, and manually control the shaking structure to shake the culture chamber 2 according to the growth of the culture.
  • the rocking structure can also be controlled automatically.
  • the mixing module 7 may further include a driver controlled by the processor, and the processor may control the driver to drive the shaking structure to the culture chamber 2 according to the input information (eg, image data obtained by the observation component). Shake.
  • the processor may initiate shaking of the culture chamber 2 when the culture is not sufficiently grown based on observations. In some embodiments, insufficient growth of the culture may be that some or all of the culture has not reached a predetermined growth maturity.
  • the processor may control the shaking structure to continuously shake the culture chamber 2 throughout the incubation of the culture, and adjust the speed and magnitude of shaking based on observations.
  • the shaking amplitude and speed of the shaking structure can be matched with the speed of delivering the culture solution into the culture chamber 2 .
  • Higher medium delivery speed combined with small shaking can promote the exchange of medium and culture, but it will cause excessive consumption of medium.
  • the lower conveying speed of the culture solution and the large-scale mechanical shaking can simultaneously achieve the purpose of updating the culture solution, increasing the exchange opportunities between the nutrient solution and the culture, and promoting the exchange of nutrients between the chambers in the culture chamber 2.
  • the rocking structure may comprise a rocking shaker.
  • the oscillating shaker may be the stage 801 on which the culture chamber 2 is placed.
  • the culture chamber 2 may be located in the center of a shaker (eg, stage 801 ), the width of the shaker matching the width of the culture chamber 2 .
  • the culturing chamber 2 can move with the oscillating shaker after being placed in the oscillating shaker, that is, there is no relative movement between the culturing chamber 2 and the oscillating shaker.
  • the culture chamber 2 may be removably secured to a swinging shaker.
  • the rocking mode of the shaker may be pulsed rocking (ie, periodic rapid rocking to a specified position for a short period of time).
  • the swing amplitude of the shaker is an inclination angle of 1° to 15°. In some embodiments, the swing amplitude of the shaker is an inclination angle of 1° to 10°. In some embodiments, the swing amplitude of the shaker is an inclination angle of 1° to 5°. In some embodiments, the swing amplitude of the shaker is an inclination angle of 5° to 15°. In some embodiments, the swing of the shaker is an inclination angle of 5° to 10°.
  • the rocking process of the rocker may be tilted to one side first, and after reaching the specified tilt angle quickly, returning to the middle equilibrium position at a certain time interval t1, and then tilting to the other side after a certain time interval t2, at a certain interval After time t3, it returns to the middle equilibrium position.
  • the value range of t1, t2, and t3 may be 1 s to 1800 s.
  • the value range of t1, t2, and t3 may be 1 s to 500 s.
  • the value range of t1, t2, and t3 may be 1s ⁇ 300s. In some embodiments, the value range of t1, t2, and t3 may be 1 s to 200 s. In some embodiments, the value range of t1, t2, and t3 may be 1s ⁇ 100s. In some embodiments, the value range of t1, t2, and t3 may be 1 s to 80 s. In some embodiments, the value range of t1, t2, and t3 may be 1s ⁇ 50s. In some embodiments, the value range of t1, t2, and t3 may be 1s ⁇ 10s.
  • the value range of t1, t2, and t3 may be 300s ⁇ 1800s. In some embodiments, the value range of t1, t2, and t3 may be 500s to 1800s. In some embodiments, the value range of t1, t2, and t3 may be 1000s ⁇ 1800s. In some embodiments, the value range of t1, t2, and t3 may be 1500s ⁇ 1800s. In some embodiments, the value range of t1, t2, and t3 may be 1700s ⁇ 1800s.
  • the value range of t1, t2, and t3 may be 1750s ⁇ 1800s. In some embodiments, the values of t1, t2, and t3 can be values that can promote nutrient exchange and less damage to cells. In some embodiments, the value range of t1, t2, and t3 may be 200s ⁇ 500s. In some embodiments, the value range of t1, t2, and t3 may be 200s ⁇ 400s. In some embodiments, the value range of t1, t2, and t3 may be 250s ⁇ 300s. In some embodiments, the value range of t1, t2, and t3 may be 300s ⁇ 350s.
  • the swinging amplitude and inclination angle of the shaking table may be 5° ⁇ 20°. In some embodiments, the swinging amplitude and inclination angle of the shaking table may be 7° ⁇ 20°. In some embodiments, the swinging amplitude and inclination angle of the shaking table may be 10° ⁇ 20°. In some embodiments, the smaller the shaking amplitude of the shaker, the less damage to the cells. In some embodiments, the swinging amplitude and inclination angle of the shaking table may be 1° ⁇ 10°. In some embodiments, the swinging amplitude and inclination of the shaking table may be 1° ⁇ 7°.
  • the swinging amplitude and inclination angle of the shaking table may be 1° ⁇ 5°.
  • the rocking amplitude of the shaker can facilitate nutrient exchange with less damage to cells.
  • the swinging amplitude and inclination angle of the shaking table may be 5° ⁇ 10°.
  • the swinging amplitude and inclination angle of the shaking table may be 6° ⁇ 8°.
  • the swinging amplitude and inclination of the shaking table may be 6° ⁇ 7°.
  • the swinging amplitude and inclination of the shaking table may be 7° ⁇ 8°.
  • the shaking mode of the shaker may also be continuous shaking.
  • the rocking table is rocked from the lowest position on one side to the lowest position on the other side, and back to the lowest position on the original side to achieve continuous rocking.
  • the frequency of continuous rocking depends on the speed of rocking, the faster the rocking speed, the shorter the time required for one rocking and the higher the frequency.
  • reference may be made to the inclination angle of the swing amplitude of the swinging shaking table, which will not be repeated here.
  • the time of one swing of the swinging table can also refer to the time of one swing of the swinging table, which will not be repeated here.
  • the movement mode of the shaker may also be a circular motion, that is, the shaker performs a circular motion around a certain circle center.
  • the rocking structure may also include a circular motion rocker.
  • the culture chamber 2 after the culture chamber 2 is placed in the circular motion shaker, it can move with the circular motion shaker, that is, there is no relative movement between the culture chamber 2 and the circular motion shaker.
  • the culture chamber 2 may be removably secured to a circular motion shaker.
  • the shaking parameters of the circular motion shaker may include the amplitude of the circular motion and the shaking rate of the shaker.
  • the circular motion amplitude of the shaking table can be understood as the circular motion amplitude and shaking rate of the central axis of the shaking table.
  • the central axis of the shaker may be an axis that is perpendicular to the plane of the shaker and that passes through the geometric center of the shaker.
  • the central axis of the shaker can perform a circular motion around a center of a circle on the plane where the shaker is located, so as to realize the movement of the shaker.
  • the amplitude of the circular motion of the central axis of the shaker refers to the distance from the center of the circle to the central axis of the shaker.
  • the shaking rate refers to the rotational speed at which the central axis of the shaker performs a circular motion about the center of the circumference.
  • the circular motion range of the central axis of the shaker is 10mm ⁇ 30mm. In some embodiments, the amplitude of the circular motion is 10mm-20mm. In some embodiments, the amplitude of the circular motion is 15mm-20mm. In some embodiments, the magnitude of the circular motion is 20mm to 30mm. In some embodiments, the amplitude of the circular motion is 20mm-25mm. In some embodiments, the magnitude of the circular motion is 21 mm to 22 mm. In some embodiments, the shaking rate of the circular motion shaker is 10 r/min to 300 r/min. In some embodiments, the shaking rate of the circular motion shaker is from 10 r/min to 200 r/min.
  • the shaking rate of the circular motion shaker is 50 r/min to 200 r/min. In some embodiments, the shaking rate of the circular motion shaker is 50 r/min to 100 r/min. In some embodiments, the shaking rate of the circular motion shaker is 100 r/min to 150 r/min. In some embodiments, the shaking rate of the circular motion shaker is 90 r/min to 100 r/min. In some embodiments, the shaking rate of the circular motion shaker is 100 r/min to 110 r/min. In some embodiments, the shaking rate of the circular motion shaker is 99 r/min to 101 r/min.
  • a rocking structure may be placed on stage 801 and culture chamber 2 is placed on the rocking structure.
  • the stage 801 is provided with one placement station, and the shaking structure is placed on the placement station; in other embodiments, the stage 801 is provided with multiple placement stations (refer to FIG. 27), a shaking structure can be placed on each placement station.
  • the mixing module 7 may include a stirring structure.
  • the agitation structure may include one or more agitation modes.
  • agitation modes include, but are not limited to, mechanical agitation.
  • the mechanical stirring structure may include a mechanical stirring component, and the mechanical stirring component can agitate the culture solution in the culture chamber 2, thereby improving the exchange opportunity between the culture solution and the culture.
  • a mechanical stirring assembly is installed within the culture chamber 2 .
  • the mechanical stirring component can also be installed outside the culture chamber 2 , and can extend from the outside of the culture chamber 2 into the culture chamber 2 to stir the culture liquid in the culture chamber 2 .
  • the mechanical agitation assembly includes an agitation member.
  • the mechanical stirring assembly can stir the culture medium through the circular motion of the stirring member.
  • the stirring speed of the mechanical stirring component refers to the stirring speed of the stirring member, that is, the rotational speed of the stirring member during circular motion.
  • the stirring speed of the mechanical stirring assembly may not be higher than 500 r/min.
  • the stirring speed of the mechanical stirring assembly may not be higher than 400 r/min.
  • the stirring speed of the mechanical stirring assembly may not be higher than 300 r/min.
  • the stirring speed of the mechanical stirring assembly may be no higher than 200 r/min.
  • the stirring speed of the mechanical stirring assembly may not be higher than 100 r/min.
  • the stirring speed of the mechanical stirring assembly may be 80r/min-100r/min. In some embodiments, the stirring speed of the mechanical stirring assembly may be 90r/min-100r/min. In some embodiments, the stirring speed of the mechanical stirring assembly may be 95r/min-105r/min. In some embodiments, the stirring speed of the mechanical stirring assembly may be 100r/min-105r/min. In some embodiments, the mechanical agitation assembly has a lower agitation speed that can agitate the culture into suspension in the culture fluid. In some embodiments, the mechanical stirring assembly has a higher stirring speed, and the higher stirring speed can make the contact between the culture and the culture medium more sufficient.
  • the mechanical stirring assembly can stir the culture medium through the reciprocating linear motion of the stirring member.
  • the frequency of the reciprocating linear motion of the stirring member of the mechanical stirring assembly may be 20 times/min-100 times/min, wherein the mechanical stirring assembly completes one round trip of the reciprocating linear motion once.
  • the mixing module 7 may also be a part of the structure of the microscopic observation module 8 . 28, in some embodiments, the mixing module 7 may include a stage 801 and a rack 802, the culture chamber 2 is placed on the stage 801, and the stage 801 can drive the culture chamber 2 to shake.
  • the frame 802 is used to provide a platform for mounting the fixed stage 801 .
  • the stage 801 is capable of placing at least one culture chamber 2 .
  • the stage 801 is provided with a placement station, and the culture chamber 2 is placed on the placement station.
  • the stage 801 is provided with a plurality of placement stations, and each placement station can place a culture chamber 2 .
  • the mixing module 7 and the temperature control unit 6 may be independent structural modules.
  • the mixing module 7 and the temperature control unit 6 can also be integrated into a structural module, and the integrated structural module can be a mixing temperature control module, which is used to control the temperature of the culture chamber 2 and shake the culture chamber Culture medium in chamber 2.
  • the mixing temperature control module includes a mechanical shaking mechanism and a temperature control component.
  • the mechanical shaking mechanism is provided with a mounting surface for placing the culture chamber 2. After the culture chamber 2 is installed on the mounting surface, it is fixed relative to the mechanical shaking mechanism, and is installed by shaking. surface, can drive the culture chamber 2 to shake.
  • the culture chamber 2 is also removable from this mounting surface.
  • the installation surface is further provided with a temperature control component.
  • the installation surface can be a plane of the mechanical shaking structure, the upper surface of the plane is provided with a temperature control component, when the culture chamber 2 is installed on the installation surface, the lower surface of the culture chamber 2 can be installed with contact with the temperature control components on the upper surface of the surface.
  • the mounting surface may be a plurality of planes of the mechanical shaking structure, and one or more planes on the mounting surface may be provided with temperature control components. When the culture chamber 2 is installed on the mounting surface, the culture chamber 2 The lower surface and/or side surfaces of the mounting surface may be in contact with temperature control components on one or more planes of the mounting surface.
  • the temperature control component is used to control the temperature of the culture chamber 2, specifically, the premix chamber 101 and the culture chamber 2 can be heated, so that the temperature of the culture solution in the premix chamber 101 and the culture solution in the culture chamber 2 rises. to the physiological temperature suitable for the growth of the culture, in order to cultivate the culture; after the end of the culture, when it is necessary to remove the matrigel and collect the culture, the temperature control assembly can make the culture medium in the culture chamber 2 drop to the culture medium Matrigel liquefaction temperature in order to collect the culture.
  • the temperature control component includes a heating component, a cooling component, and a temperature control module. Both the heating component and the cooling component are electrically connected to the temperature control module.
  • the temperature control module is used to control the heating component to heat the culture chamber 2, and is also used for The refrigeration assembly is controlled to cool the culture chamber 2 .
  • the mixing module 7 may further include a driving member.
  • the drives may include, but are not limited to, linear motors, rotary motors, cam motors, and the like.
  • the driver includes an output.
  • the motion form output by the output terminal may include, but is not limited to, linear motion, rotational motion, circular motion, and the like.
  • the output end is connected to the shaking structure for driving the shaking structure to shake, so as to shake the culture medium in the culture chamber 2, and provide a more sufficient exchange opportunity for the culture medium and the culture.
  • the output can be connected to stage 801 .
  • the output end may be connected to a mechanical stirring assembly (eg, a stirring member) for driving the mechanical stirring assembly to move.
  • the processor may obtain image data recorded by the camera 807 from the viewing component.
  • the image data recorded by the camera 807 may include type information of the culture, the culture time of the culture, the culture degree of the culture, and the like.
  • the type information of the culture, the culture time of the culture, and the culture degree of the culture may be information manually input by the operator before the camera 807 captures the image of the culture or after the camera 807 captures the image of the culture.
  • the type information of the culture, the culture time of the culture, and the culture degree of the culture may also be information automatically obtained by the processor from a preset image library after the camera 807 captures an image of the culture.
  • the preset image library can be stored in a storage device that can interact with the processor.
  • the preset image library contains images with different types of culture, culture time of culture, and culture degree of culture. The closest preset image, and the type information of the culture in the preset image, the culture time of the culture, and the culture degree of the culture, etc. are added to the currently captured image data.
  • the processor may control the driver based on image data of the culture. In some embodiments, the processor may control the driver to drive the stage (801) to shake based on the image data. In some embodiments, the processor may include a trained machine learning model. In some embodiments, the machine learning model may include, but is not limited to, a Convolutional Neural Network (CNN) model and a Recurrent Neural Network (RNN) model. In some embodiments, the processor may input the image data into a machine learning model, and the machine learning model may output corresponding control parameters of the drive mechanism. In some embodiments, the control parameter may be a shaking parameter (such as shaking amplitude, time, frequency, etc.), or may be several preset shaking modes. In some embodiments, the machine learning model can be obtained by training.
  • CNN Convolutional Neural Network
  • RNN Recurrent Neural Network
  • the processor may input the image data into a machine learning model, and the machine learning model may output corresponding control parameters of the drive mechanism.
  • the control parameter may be a shaking parameter (such
  • the training input to the machine learning model may be sample images of cultures.
  • the sample image of the culture may include information on the type of the culture, the culture time of the culture, the degree of culture of the culture, and the like.
  • the training labels of the machine learning model may include control parameters corresponding to each image data in the sample images.
  • the control parameters may include preset shaking patterns.
  • the control parameters may also include shaking amplitude, shaking speed, shaking frequency, shaking time, and the like.
  • a sample image of a culture that has been cultured for a long time and a low degree of culture corresponds to a more vigorous shaking pattern; a sample image of a highly cultured culture corresponds to a milder shaking pattern.
  • a sample image of a culture with a long incubation time and a low degree of incubation may correspond to a larger shaking amplitude (eg, the edge of the incubation chamber 2 is 5 cm away from the original position).
  • the sample image is input to the initial machine learning model, and the initial machine learning model is trained with the control parameters relative to the sample image as training labels, and the trained machine learning model can be obtained.
  • the microscopic observation module 8 further includes an automatic sample injection module for automatically adding culture to the culture chamber 2 .
  • the autosampler module may include an autosampler 809 and an injection track 810 .
  • the autosampler track 810 is provided on the rack 802, the autosampler 809 is slidably provided on the sample feeder track 810, and the autosampler 809 is driven on the sample feeder track 810 by the sample feed drive Slide for injection work.
  • the automatic sampler 809 is mainly used to add samples using the automatic sampler 809 when the culture chamber 2 needs to be added with culture, reagents or drugs, so as to avoid manual sample addition, ensure the hygienic conditions of the culture chamber 2, and make the Cultures are less prone to contamination.
  • the operator can place the prepared cell sample in the sample addition tank, the autosampler 809 moves along the sample introduction track 810 to the position of the sample addition tank, sucks a certain amount of cell sample, and then moves to the culture tank The position of the chamber 2, add the cell sample to the culture chamber 2, and complete the sample addition.
  • the in vitro life culture system 100 further includes a sterile control module 9 , which includes a sterile working chamber 901 , a filter assembly 903 and a sterilization assembly 904 .
  • sterile studio 901 may be used to place culture chamber 2 in a sterile culture environment.
  • at least the culture chamber 2 is disposed within the sterile working chamber 901 .
  • the culture module 110 , the culture solution supply module 120 and the liquid output module 130 are all arranged in the aseptic studio 901 , that is, the culture culture system 100 except the aseptic control module 9 is all located in the sterile working chamber 901 . Inside the bacteria studio 901.
  • the sterile working room 901 is provided with a vent, the filter assembly 903 is provided at the vent, and an air intake fan 902 is provided on the vent, and gas is introduced into the sterile working room 901 through the intake fan 902 .
  • the filter assembly 903 is used to filter the particles in the gas passed into the sterile working chamber 901 , so that particles such as dust and impurities cannot enter the aseptic working chamber 901 .
  • the sterilization component 904 is used for sterilizing and sterilizing the sterile studio 901 .
  • the sterilization component 904 is an ultraviolet lamp, which is arranged at the air inlet.
  • the sterilization component 904 can not only sterilize the sterile working room 901 , but also sterilize the gas introduced into the sterile working room 901 . Sterilization, which can prevent bacteria gas from entering into the sterile working chamber 901 .
  • At least one of the structures of the culture module 110 , the culture solution supply module 120 , the liquid output module 130 and the culture solution circulation module 140 is a disposable consumable.
  • Disposable consumables refer to being disposed of as waste after being used once. The use of disposable consumables can ensure sanitary conditions during the perfusion culture process and avoid problems caused by the culture module 110, the culture solution supply module 120, the liquid output module 130 and the culture solution circulation. Module 140 is contaminated, which affects normal perfusion culture.
  • the disposable consumables may include culture medium disposable consumables, glass disposable consumables, plastic disposable consumables, and the like.
  • At least one vessel in the culture module 110 containing the culture fluid or culture may be a disposable consumable.
  • at least one vessel (eg, the premix chamber 101 ) in the culture solution supply module 120 containing the culture solution or gas may be a disposable consumable.
  • at least one vessel (eg, the collection unit 4 ) in the liquid output module 130 containing the culture fluid may be a disposable consumable.
  • at least one vessel (eg, the exchange unit 3 ) in the culture solution circulation module 140 containing the culture solution may be a disposable consumable.
  • control method of the in vitro life culture system 100 can be applied to the above-mentioned in vitro life system 100 .
  • control method of the in vitro life culture system 100 may be performed by a processor of the in vitro life system 100 .
  • the control method of the in vitro life culture system 100 may include a process 1000, and the process 1000 may include the following steps:
  • step 1010 the growth of the culture in the culture module is acquired.
  • the processor may obtain the growth of the culture in the culture module 110 . In some embodiments, the processor may determine the growth of the culture from information entered by the operator. In some embodiments, the processor may acquire images of the culture through the microscopic observation module 8, and determine the growth of the culture based on the acquired images and a preset algorithm.
  • the processor may perform geometric correction, resizing, and grayscale processing on the acquired images of the culture. In some embodiments, the processor may also perform Gaussian filtering on the acquired images of the culture to eliminate and suppress noise. In some embodiments, the processor may further perform MorpHology morphological transformation processing on the acquired image of the culture to further eliminate noise.
  • the stage 801 may be tilted, causing the acquired image to be in a deflected position.
  • the processor can perform rotation correction on the stage 801 when acquiring the image area, thereby improving the positioning of the acquired image. precision.
  • the color of the culture itself will change under different light conditions, and the electronic device itself cannot correct itself according to the change of light, so the acquired image may appear color distorted, reddish or bluish.
  • the processor may perform white balance processing on the acquired image. White balance is the main processing method for correcting color cast images, thereby improving the accuracy of acquiring image colors.
  • the processor may acquire images of the culture in the culture module 110 via the microscopic viewing module 8 in real time.
  • the image acquired by the processor can be imported into a computer or other device having a display function for display.
  • the preset algorithm may include an image comparison algorithm, and the processor may use the image comparison algorithm to determine the growth of the culture.
  • the extracorporeal life system 100 may include a storage device capable of data interaction with the processor, and a preset image library is stored in the storage device.
  • the preset image library stores preset images corresponding to different types of cultures and growth conditions of the cultures.
  • the processor may determine a preset image that is closest to the currently acquired image through an image comparison algorithm, and obtain information on the species of the culture, the growth of the culture, and the like from the preset image.
  • the preset algorithm may include a machine learning model.
  • the machine learning model may be a convolutional neural network model.
  • the processor may perform image recognition on images of the culture through a machine learning model to determine the growth of the culture.
  • the growth condition of the culture may include the growth time of the culture, the degree of growth of the culture, the growth stage of the culture, the growth rate of the culture, the growth stability of the culture, and the like.
  • the growth time of the culture may be the total length of time the culture has grown when the image of the culture is taken.
  • the degree of growth of the culture can be whether the culture is growing well.
  • the growth stages of the culture can be stages differentiated by the degree of maturity during the growth and development of the culture.
  • the growth rate of the culture can be how fast or slow the culture grows.
  • the growth stability of the culture can be the speed of the growth degree of the culture changing with time. The slower the growth degree of the culture changes with time, the higher the stability, and the more the growth degree of the culture changes with time. Faster means lower stability.
  • the training process of the machine learning model may include: taking culture images of different growth conditions as sample images, and labeling the sample images.
  • the different stages according to the growth conditions may be marked as “stage 1", "stage 2".
  • the growth condition can be marked as “better condition” and “poor condition”.
  • stability by growth conditions may be labeled “stable”, “unstable.”
  • the rate of growth may be marked as "faster growth”, “slower growth”.
  • Step 1020 controlling the culture medium supply module and/or the culture module based on the growth condition.
  • the processor may control the culture fluid supply module 120 and the culture module 110 based on growth conditions. In some embodiments, the processor may control the culture fluid supply module 120 and/or the culture module 110 based on different growth conditions of the culture.
  • the culture module 110 may include an oscillating drive mechanism.
  • the swing driving mechanism is used to drive the mixing module 7 to shake the culture fluid in the culture chamber 2, thereby driving the exchange opportunity between the culture fluid and the culture.
  • the rocking drive mechanism can control the rocking mode of the mixing module 7, such as milder, more violent.
  • the swing driving mechanism can also control the shaking parameters of the mixing module 7, including but not limited to at least one of shaking amplitude, shaking speed, shaking frequency, and shaking time.
  • the swing driving mechanism may be a forward drive, that is, the mixing module 7 is accelerated to shake the culture solution in the culture chamber 2 .
  • the swing drive mechanism may also be driven in a negative direction, that is, to slow down the mixing module 7 from shaking the culture fluid in the culture chamber 2 .
  • the processor may control movement of the swing drive mechanism based on growth conditions.
  • the processor can control the oscillating drive mechanism to accelerate the movement, such as controlling the oscillating drive mechanism to make the mixing module 7 increase the shaking speed, increase the shaking amplitude, and lengthen the shaking time and frequency, etc.;
  • the processor can control the swing drive mechanism to slow down the movement, such as controlling the swing drive mechanism to make the mixing module 7 slow down the shaking speed, reduce the shaking amplitude, and reduce the shaking time and frequency.
  • the processor may control the rate at which the culture fluid supply module 120 provides culture fluid based on growth conditions.
  • the processor may control the power pack 5 to control the delivery rate of the nutrient solution, i.e., the flow rate of the nutrient solution from the rehydration chamber 104 to the premix chamber 101, based on growth conditions.
  • the processor can control the culture solution supply module 120 to increase the speed of supplying the culture solution, such as increasing the liquid flow rate and/or increasing the conveying power; when the growth condition exceeds the preset condition, processing
  • the controller can control the medium supply module 120 to slow down the rate of supplying the medium, such as reducing the liquid flow and/or reducing the delivery power.
  • the processor may control the speed of the culture solution supply module 120 of each interface to provide the culture solution in real time based on the growth situation.
  • the processor may control the rate at which the gas premix control unit 105 passes gas into the culture chamber 2 based on the growth conditions. In some embodiments, the processor may control the power unit 5 to control the flow rate of the gas in the gas delivery conduit 1011 based on the growth conditions. In some embodiments, when the growth condition is poor growth caused by hypoxia, the processor can control the power unit 5 to increase the gas delivery speed to increase the oxygen content of the culture solution in the culture chamber 2 . In some embodiments, the processor can also well control the valve between the gas delivery conduit 1011 and the culture chamber 2 to close based on the growth conditions, so that the culture in the culture chamber 2 maintains the current culture environment.
  • the culture module 110 may include a temperature control unit.
  • the temperature control unit is used to control the temperature of the culture, and the temperature of the culture can be raised or lowered.
  • the processor may control the temperature control unit to heat or cool the culture based on growth conditions. In some embodiments, when the growth condition is poor, the processor can control the temperature control unit to heat the culture to a preset temperature; when the growth condition exceeds the preset condition, the processor can control the temperature control unit to cool the culture to the preset temperature . In some embodiments, the temperature control unit may control the temperature of the culture to the first preset temperature after the cultivation is completed.
  • control method of the in vitro life culture system 100 may include a process 2000, and the process 2000 may include the following steps:
  • Step 2010 Obtain the concentration of each component of the culture solution in the culture module.
  • the processor may obtain the concentration of each component of the culture fluid in the culture module 110 .
  • the culture chamber 2 of the culture module 110 is provided with a concentration detection unit for detecting the concentration of each component of the culture solution in the culture chamber 2 .
  • the concentration detection unit may adopt sampling detection or in-situ detection.
  • the detection method of the concentration detection unit may be the same as that of the metabolite concentration detection unit. For the specific method, reference may be made to the description elsewhere in this specification, which will not be repeated here.
  • Step 2020 controlling the speed at which the culture solution providing module provides culture solution based on the concentration.
  • the processor may control the speed at which the culture solution providing module 120 provides the culture solution based on the obtained concentration of each component of the culture solution in the culture module 110 and the preset concentration. For example, when the obtained concentration of each component of the culture solution in the culture module 110 is higher than the preset concentration, the processor can control the culture solution supply module 120 to slow down the speed of supplying the culture solution; When the concentration of the component is lower than the preset concentration, the processor may control the culture solution supply module 120 to increase the speed of supplying the culture solution. In some embodiments, the processor may further control the speed at which the culture solution providing module 120 provides the culture solution based on the obtained percentage values of the concentrations of the components of the culture solution in the culture module 110 and the preset concentration. For example, when the obtained concentration of each component of the culture solution in the culture module 110 is 80% of the preset concentration, the processor may control the culture solution supply module 120 to increase the current speed of supplying the culture solution by 20%.
  • the processor may also control the speed at which the culture solution providing module 120 provides the culture solution based on the consumption of each component in the culture solution in the culture chamber 2 .
  • the consumption of each component in the culture solution may be determined based on the original concentration of the component in the culture solution and the concentration detected by the concentration detection unit.
  • consumption conditions may include, but are not limited to, at least one of consumption rate, consumption amount, and consumption rate.
  • the processor may control the speed at which the culture solution supplying module 120 provides the culture solution based on the difference between the consumption situation of the culture solution in the culture chamber 2 and the preset consumption situation.
  • the processor can control the culture solution supply module 120 to increase the speed of supplying the culture solution to supplement the culture solution.
  • the processor may control the culture solution supply module 120 to slow down the speed of supplying the culture solution.
  • control method of the in vitro life culture system 100 may include a process 3000, and the process 3000 may include the following steps:
  • Step 3010 Obtain at least one kind of information among the culture information, the organism information related to the culture, and the environment information where the culture is located.
  • the processor may obtain at least one of culture information, organism information related to the culture, and information about the environment in which the culture is located.
  • the operator may input one or more of culture information, organism information related to the culture, or information about the environment in which the culture is located into the in vitro life culture system 100 before starting the culture or during the culture , the processor can obtain at least one kind of information based on the user's input.
  • the culture information can include, but is not limited to, the source information of the culture (for example, the source information of organoids: differentiated from pluripotent stem cells (Pluripotent Stem Cells, PSCs), induced pluripotent stem cells (Induced Pluripotent Stem Cells, iPSCs), etc.
  • Organoids or patient-driven tumor organoids (Patient-driven Organoids, PODs)
  • the type of culture such as the type of organoid: digestive tract organoids, liver organoids, pancreas organoids, brain organoids, kidney organoids, etc.
  • the organism information related to the culture may include, but is not limited to, the organism's gender, age, blood pressure, physical health, and other information that can reflect individual differences between different organisms.
  • Information about the environment where the culture is located may include, but is not limited to, time, latitude and longitude, temperature, altitude, and the like. Based on this information, the processor can simulate the growth environment of the organism from which the culture is derived, so that the growth condition of the culture is closer to the growth condition of the real organism.
  • Step 3020 Control the culture solution supply module and/or the culture module based on at least one of the culture information, the organism information related to the culture, and the environment information where the culture is located.
  • the processor may control the speed and speed of supplying the culture solution by the culture solution providing module based on at least one of the culture information, the organism information related to the culture, and the environment information where the culture is located. / or regularity.
  • cultures from different sources may have different requirements for dissolved oxygen.
  • the processor can control the culture solution supply module, such as reducing the dissolved oxygen concentration in the premixing chamber 101, to simulate the hypoxic environment at the core of the tumor tissue.
  • the processor can determine the oxygen content of the culture when the culture grows in the body based on the location of the core part of the tumor tissue in the patient, and control the gas premixing control unit 105 to flow oxygen into the premixing chamber 101 according to the oxygen content
  • the amount of dissolved oxygen in the premix chamber 101 is the same as or similar to the oxygen content (eg, the difference between the dissolved oxygen amount and the oxygen content is within ⁇ 1%).
  • different types of cultures in the organism transport oxygen and nutrients through blood vessels but in different blood flow environments (eg, blood flow velocity, blood pressure).
  • the processor can control the culture solution supply module to provide culture solution at different speeds based on the type of culture (such as liver organoids, pancreatic organoids, brain organoids, kidney organoids, etc.) to simulate the blood flow environment in the organism .
  • the processor can determine the blood flow velocity of the culture in the patient based on the type of culture, and control the power unit 5 to drive the flow velocity of the culture fluid in the culture chamber 2 to be the same as or close to the blood flow velocity (eg, the flow rate of the culture fluid). Flow velocity and blood flow velocity differed within ⁇ 1%).
  • different organisms may have different blood supply rhythms (ie, heart beat frequency or pulse) in their bodies due to differences in age, gender, physical health, or environmental information (such as day and night, altitude differences)
  • the heart beat frequency of infants is 120-140 beats per minute, young children 90-100 beats per minute, school-age children 80-90 beats per minute, adults 70-80 beats per minute; exercise and emotional agitation during the day can make the heart beat faster, And sleep at night is a slow heartbeat; some clinical diseases, especially heart disease, can change the heartbeat).
  • the processor can control the culture fluid supply module 120 to input and discharge the culture fluid according to the blood supply rule of the culture medium in the patient.
  • the culture module 110 may include an oscillating drive mechanism.
  • the processor may control the movement of the swing drive mechanism based on at least one of culture information, organism information related to the culture, and information about the environment in which the culture is located.
  • the processor may know that the culture is derived from infants (eg, 11-month-old, 24-month-old) based on the biological information, or that it is currently daytime based on information about the environment in which the culture is located, and the processor may control the swing
  • the drive mechanism accelerates movement, such as controlling the swing drive mechanism to make the mixing module 7 accelerate the shaking speed, increase the shaking amplitude, and lengthen the shaking time and frequency, etc., to simulate the faster in vivo metabolism of infants or organisms during the day.
  • the processor may know that the culture is from an elderly person (eg, 65 years old, 75 years old) based on the biological information or know that it is night based on the information of the environment where the culture is located, and the processor may control the swing driving mechanism Slowing down the movement, such as controlling the swing drive mechanism to make the mixing module 7 slow down the shaking speed, reduce the shaking amplitude, reduce the shaking time and frequency, etc., to simulate the lower metabolic rate in the body of the elderly or living organisms at night.
  • the processor may know that the culture is from an elderly person (eg, 65 years old, 75 years old) based on the biological information or know that it is night based on the information of the environment where the culture is located, and the processor may control the swing driving mechanism Slowing down the movement, such as controlling the swing drive mechanism to make the mixing module 7 slow down the shaking speed, reduce the shaking amplitude, reduce the shaking time and frequency, etc., to simulate the lower metabolic rate in the body of the elderly or living organisms at night.
  • the culture module 110 may include a temperature control unit.
  • the temperature control unit is used to control the temperature of the culture, and the temperature of the culture can be raised or lowered.
  • the processor may control the temperature control unit to heat or cool the culture based on at least one of the culture information, organism information related to the culture, and information about the environment in which the culture is located. For example, the processor may control the temperature control unit to heat or cool the culture by simulating the body temperature pattern of organisms of different genders, ages, or the body temperature pattern within a single day based on the organism information related to the culture.
  • the culture fluid in the premixing chamber can be transported to the culture chamber, the culture fluid in the culture chamber can flow out into the first exchange chamber, and the culture fluid in the first exchange chamber can be backflowed into the culture chamber or the pre-exchange chamber.
  • the perfusion culture of the culture was realized.
  • the membrane module can trap part of the components required for the growth of the culture in the first exchange chamber, and the waste generated by the metabolism of the culture in the culture solution can permeate into the second exchange chamber through the membrane module, and the first exchange chamber
  • the culture solution in the system can be backflowed into the culture chamber for the continued use of the culture, that is, the recycling of the culture solution is realized, the utilization rate of the culture solution is improved, and the culture cost is reduced.
  • the culture solution in the premixing chamber can be transported into the culture chamber, the culture solution in the culture chamber can flow out into the first exchange chamber, and the culture solution in the first exchange chamber can also flow back into the premix chamber , the circulation of the culture medium is realized, and the perfusion culture of the culture is realized.
  • the membrane module can trap part of the components required for the growth of the culture in the first exchange chamber, and the waste generated by the metabolism of the culture in the culture solution can permeate into the second exchange chamber through the membrane module, and the first exchange chamber
  • the culture solution in the system can be backflowed to the premixing chamber, and then transported to the culture chamber for continued use of the culture, that is, the recycling of the culture solution is realized, the utilization rate of the culture solution is improved, and the culture cost is reduced.
  • the nutrient solution provided by the liquid replenishing unit to the second exchange chamber at least part of the components in the nutrient solution can permeate into the first exchange chamber through the membrane module, and can be directed to the replenishment group according to the consumption of the components in the culture solution
  • the amount of nutrient solution used is reduced, and the cost of cultivation is reduced.
  • the premixing chamber can transport the culture fluid to the first culture chamber, and the culture fluid in the first culture chamber or the second culture chamber can be returned to the premixing chamber, which not only realizes the perfusion culture of the culture, but also realizes the The recycling of the culture solution improves the utilization rate of the culture solution and reduces the culture cost.
  • the nutrient solution in the premixing chamber can be delivered to the first culturing chamber, the liquid replenishing unit can deliver nutrient solution to the second culturing chamber, and the nutrient solution in the first culturing chamber and/or the second culturing chamber can be delivered to
  • the components in the nutrient solution in the second culture chamber permeate into the first culture chamber through the membrane module for absorption and utilization by the culture;
  • the components are trapped in the first culture chamber, the wastes generated by the culture in the culture medium can permeate into the second culture chamber through the membrane module, and the culture fluid in the first culture chamber and/or the second culture chamber flows back into the second culture chamber.
  • the premixed chamber is then transported to the first culture chamber for continued use of the culture, that is, the recycling of the culture solution is realized, the utilization rate of the culture solution is improved, and the culture cost is reduced.
  • the components in the nutrient solution in the second culture chamber permeate into the first culture chamber through the membrane module for absorption and utilization by the culture. According to the consumption of the components in the culture solution, the components can be oriented towards the culture and can also be supplemented. The usage amount of nutrient solution is reduced, and the cultivation cost is reduced.
  • the gas premixing control unit can introduce gas into the premixing chamber to realize the adjustment of the dissolved oxygen concentration of the culture solution; the temperature control unit can control the temperature of the premixing chamber and the culture chamber.
  • the temperature, pH and dissolved oxygen concentration of the culture solution can be controlled in the premix chamber, so that the system can get rid of the constraints of the carbon dioxide incubator, and the scale of the culture can be expanded arbitrarily.
  • a temperature control component is arranged in the culture module, which can quickly and accurately adjust the temperature in the culture chamber to the physiological temperature of the culture or the liquefaction temperature of the matrigel, which is convenient for the cultivation of the culture and convenient for the cultivation of the culture. Remove the culture from the culture chamber upon completion.
  • a plurality of sub-chambers are arranged inside the culture chamber, and the plurality of sub-chambers can filter the culture solution in the culture chamber, reduce the concentration of metabolites in the culture solution, and enable the culture solution in the culture chamber to be recycled. , which greatly saves costs.
  • a mixing module is arranged in the culture module, which can make the contact between the culture liquid in the culture chamber and the culture more sufficient, improve the growth efficiency of the culture, and improve the growth of the culture.
  • the exchange unit set in the culture fluid circulation module includes two or more chambers, and the flow rate of the culture fluid in each chamber is different, which can effectively promote the exchange of substances in the culture fluid between the chambers, and effectively improve the culture
  • the filtration efficiency of the liquid can be better recycled.
  • the culture module is provided with a microscopic observation module, which can obtain the image of the culture in real time, and further obtain the growth of the culture, and then control other units or modules in the culture module, which can effectively improve the growth of the culture. happening.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

提供的是一种体外生命培养系统,包括:培养模块,用于培育培养物,所述培养模块至少包括用于盛放培养液的培养腔室;培养液提供模块,用于为所述培养模块提供培养液;液体输出模块,用于将所述培养液从所述培养腔室中排出。

Description

一种体外生命培养系统和方法
交叉引用
本申请要求2021年01月29日提交的中国申请号202110124996.7的优先权,以及2021年01月29日提交的中国申请号202110126471.7的优先权,全部内容通过引用并入本文。
技术领域
本申请涉及体外生命培养领域,特别涉及一种体外生命培养系统和方法。
背景技术
类器官作为一种3D细胞组织,在肿瘤药物的药效评价方面具有相当高的准确率。目前,类器官的培养方式主要是孔板内的静态培养,操作人员将获得的原代样本剪碎,接着在低温下包被在基质胶中,之后加培养基放入培养箱培养,每周进行3次换液,每7-10天进行一次传代。
现需提供一种能够自动更换培养箱中培养液的体外生命培养系统,以改进现有的培养方式。
发明内容
本说明书实施例之一提供一种体外生命培养系统,包括:培养模块,用于培育培养物,所述培养模块至少包括用于盛放培养液的培养腔室;培养液提供模块,用于为所述培养模块提供培养液;液体输出模块,用于将所述培养液从所述培养模块中排出。
在一些实施例中,所述系统还包括培养液循环模块,用于实现所述培养腔室中培养液的循环利用。
在一些实施例中,所述培养液循环模块包括位于所述培养腔室外的第一交换单元,所述第一交换单元接收所述培养腔室流出的培养液,并对所述培养液进行组分交换。
在一些实施例中,所述第一交换单元包括第一交换腔和第二交换腔,所述第一交换腔和所述第二交换腔之间设置有膜组件,所述膜组件用于截留和/或透过培养液内的至少部分组份。
在一些实施例中,所述第一交换腔包括第一接口和第二接口,所述第一接口与所述培养腔室连通,所述第二接口与所述培养液提供模块和/或所述培养腔室连通;其中,所述第一接口用于接收流入所述第一交换腔的培养液;所述第二接口用于从所述第一交换腔中流出培养液。
在一些实施例中,所述液体输出模块还包括收集单元,所述第二交换腔与所述收集单元连通。
在一些实施例中,所述第一交换腔内设置有代谢物浓度检测单元,用于检测所述第一交换腔中培养液的代谢物浓度。
在一些实施例中,所述第一交换单元基于所述代谢物浓度检测单元的检测结果打开或关闭所述第二接口。
在一些实施例中,所述液体循环模块还包括动力单元,所述动力单元用于控制所述第一交换腔和/或所述第二交换腔内培养液的流速。
在一些实施例中,所述第一交换腔内培养液的流速低于所述第二交换腔内培养液的流速。
在一些实施例中,所述培养液循环模块包括补液单元,用于向所述第一交换单元输送所述培养物所需的一种或多种组份。
在一些实施例中,所述补液单元与所述第二交换腔连通。
在一些实施例中,所述培养液循环模块包括位于所述培养腔室内的第二交换单元,用于对所述培养腔室内的培养液进行组分交换,并将所述培养液的至少部分组分循环利用。
在一些实施例中,所述第二交换单元包括所述培养腔室中的第一培养腔、第二培养腔,以及位于所述第一培养腔和所述第二培养腔之间的第一膜组件,培养液的至少部分组分能够经渗透作用通过所述第一膜组件。
在一些实施例中,所述第一培养腔包括至少一个进液口和至少一个排液口,至少一个所述进液口与所述培养液提供模块连通,至少一个所述排液口与所述培养液提供模块可选择性连通。
在一些实施例中,至少一个所述排液口还与收集单元可选择性连通。
在一些实施例中,所述第一培养腔包括至少一个进液口,所述第二培养腔包括至少一个排液口;其中,至少一个所述进液口与所述培养液提供模块连通,至少一个所述排液口与所述培养液提供模块可选择性连通。
在一些实施例中,所述第二培养腔包括至少一个进液口和至少一个排液口;其中,至少一个所述进液口与所述培养液提供模块连通,至少一个所述排液口与所述培养液提供模块可选择性连通。
在一些实施例中,所述第一培养腔内设置有第三膜组件,所述第三膜组件将第 一培养腔分割为第一子培养腔和第二子培养腔;所述第一子培养腔包括第一进液口和第一排液口,所述培养液提供模块与所述第一进液口连通,所述第二培养腔与所述第一排液口连通;所述第二子培养腔包括第二排液口,所述第二排液口与收集单元连通。
在一些实施例中,所述培养液循环模块包括补液单元,所述补液单元用于向所述第二交换单元输送所述培养物所需的一种或多种组份。
在一些实施例中,所述补液单元与所述第一培养腔连通,用于向所述第一培养腔输送所述培养物所需的一种或多种组份。
在一些实施例中,所述培养液提供模块包括预混单元,所述预混单元包括预混腔室,所述预混腔室用于混合营养液和气体以形成培养液,并将培养液输送至所述培养模块。
在一些实施例中,所述预混单元还包括补液腔室,所述补液腔室与所述预混腔室相连通,用于向所述预混腔室内输送营养液。
在一些实施例中,所述预混单元还包括pH探测件、溶氧探测件和信号探测器,所述pH探测件和溶氧探测件均设置在所述预混腔室内,所述信号探测器能够感测所述pH探测件和所述溶氧探测件反馈的信号,以得到所述预混腔室内培养液的pH值和溶氧量。
在一些实施例中,所述pH探测件为pH电极片,所述溶氧探测件为溶氧电极片;所述pH电极片设置在所述预混腔室的内壁上或所述预混腔室内,所述溶氧探测件设置在所述预混腔室的内壁上或浸于所述预混腔室内的液体内。
在一些实施例中,所述预混单元还包括气体预混控制单元,其与所述预混腔室相连通,用于向所述预混腔室内输送气体。
在一些实施例中,所述预混腔室为至少两个,所述气体预混控制单元与多个所述预混腔室相连通,能够控制至少两个所述预混腔室内的气体浓度。
在一些实施例中,所述培养模块包括温控单元,所述温控单元用于控制所述腔室内的温度至第一预设温度。
在一些实施例中,所述第一温度对应于培养物支撑结构的液化温度。
在一些实施例中,所述温控单元还用于控制所述腔室内的温度在第一预设温度和第二预设温度之间转换;其中,所述第二温度对应于所述培养物的生理温度。
在一些实施例中,所述第一温度低于所述第二温度。
在一些实施例中,所述温控单元包括制冷组件和温度控制模块,所述制冷组件 与所述温度控制模块电连接,所述温度控制模块用于控制所述制冷组件冷却所述腔室内的温度至第一预设温度。
在一些实施例中,所述温控单元还包括制热组件,所述制热组件与所述温度控制模块电连接,所述温度控制模块用于控制所述制热组件加热所述腔室。
在一些实施例中,所述制热组件包括多个制热片,所述制冷组件包括多个制冷片,多个所述制热片的能量能够传递至多个所述制冷片。
在一些实施例中,多个所述制热片间隔设置,多个所述制冷片间隔设置,相邻两个所述制热片之间设置有一个所述制冷片,相邻两个制冷片之间设置有一个制热片。
在一些实施例中,所述培养模块包括显微观察模块,所述显微观察模块包括观察组件,所述观察组件用于观察所述培养模块中的培养物。
在一些实施例中,所述培养模块包括混匀模块,用于晃动所述培养腔室内的培养液。
在一些实施例中,所述混匀模块包括载物台和机架,所述腔室放置在所述载物台上,所述载物台能够带动所述腔室摇晃。
在一些实施例中,所述培养模块还包括自动进样模块,所述自动进样模块用于自动为所述培养腔室中添加培养物。
在一些实施例中,所述自动进样模块还包括自动进样器和进样轨道,所述自动进样轨道设置在所述机架上,所述自动进样器滑动地设置在所述进样轨道上。
在一些实施例中,所述培养模块包括无菌控制模块,其包括无菌工作室、过滤组件和灭菌组件,至少所述培养腔室设置在所述无菌工作室内,所述过滤组件用于过滤通入所述无菌工作室内的气体,所述灭菌组件用于对所述无菌工作室灭菌。
在一些实施例中,所述培养模块、所述培养液提供模块、所述液体输出模块和所述培养液循环模块中的至少一个器材为一次性耗材。
本说明书实施例之一提供一种体外生命培养系统的控制方法,包括本说明书实施例中的体外生命培养系统,所述方法包括:获取培养模块中培养物的生长情况;基于所述生长情况控制培养液提供模块以及所述培养模块。
在一些实施例中,所述获取培养模块中培养物的生长情况包括:通过显微观察模块获取所述培养物的图像;基于所述图像以及预设算法确定所述培养物的生长情况。
在一些实施例中,所述预设算法包括机器学习模型。
在一些实施例中,所述培养模块包括摆动驱动机构,所述基于所述生长情况控 制培养液提供模块以及所述培养模块包括:基于所述生长情况控制所述摆动驱动机构的运动。
在一些实施例中,所述基于所述生长情况控制培养液提供模块以及所述培养模块包括:基于所述生长情况控制所述培养液提供模块提供培养液的速度。
在一些实施例中,所述培养模块包括温度控制单元,所述基于所述生长情况控制培养液提供模块以及所述培养模块包括:基于所述生长情况控制所述温度控制单元加热或冷却所述培养物。
本说明书实施例之一提供一种体外生命培养系统的控制方法,包括本说明书实施例中的体外生命培养系统,所述方法包括:获取培养模块中培养液各组分的浓度;基于所述浓度控制所述培养液提供模块提供培养液的速度。
本说明书实施例之一提供一种体外生命培养系统,包括:预混单元,其包括预混腔室,向所述预混腔室加入营养液和气体,在所述预混腔室内进行混合形成培养液;培养单元,其包括培养腔室,所述培养腔室与所述预混腔室连通,所述预混腔室内的培养液能够输送至所述培养腔室内,所述培养腔室用于盛放培养物,并培养所述培养物;交换单元,其包括交换腔室和膜组件,所述交换腔室包括第一交换腔和第二交换腔,所述第一交换腔和所述第二交换腔之间设置有所述膜组件,且通过所述膜组件连通,所述第一交换腔与所述培养腔室连通,所述第一交换腔既能够接收所述培养腔室流出的培养液,又能够向所述培养腔室或所述预混腔室反流培养液,所述膜组件用于截留和/或透过培养液内的部分组份。
在一些实施例中,所述预混单元还包括补液腔室,其与所述预混腔室相连通,用于向所述预混腔室内输送营养液,所述补液腔室能够向所述预混腔室内定向输送所述培养物所需的一种或多种组份。
在一些实施例中,所述第一交换腔上设置有第一接口和第二接口,所述第一接口与所述培养腔室连通,所述第二接口与所述预混腔室和/或所述培养腔室连通;所述第一交换腔能够通过所述第一接口接收所述培养腔室流出的培养液,所述第一交换腔能够通过第二接口向所述培养腔室和/或所述预混腔室反流培养液。
在一些实施例中,还包括动力单元,所述预混腔室和所述培养腔室之间设置有所述动力单元;和/或,所述培养腔室和所述第一接口之间设置有所述动力单元;和/或,所述培养腔室或所述预混腔室与所述第二接口之间设置有所述动力单元。
本说明书实施例之一提供一种体外生命培养系统,包括:预混单元,其包括预 混腔室,向所述预混腔室加入营养液和气体,在所述预混腔室内进行混合形成培养液;培养单元,其包括培养腔室,所述培养腔室与所述预混腔室连通,所述预混腔室内的培养液能够输送至所述培养腔室内,所述培养腔室用于盛放培养物,并培养所述培养物;交换单元,其包括交换腔室和膜组件,所述交换腔室包括第一交换腔和第二交换腔,所述第一交换腔和所述第二交换腔之间设置有所述膜组件,且通过所述膜组件连通,所述培养腔室和所述预混腔室均与所述第一交换腔相连通,所述第一交换腔既能够接收所述培养腔室流出的培养液,又能够向所述预混腔室和/或所述培养腔室输送所述培养液,所述膜组件用于截留和/或透过培养液内的部分组份;补液单元,其与所述第二交换腔相连通,用于向所述第二交换腔输送营养液,所述补液单元能够向所述第二交换腔内定向输送所述培养物所需的一种或多种组份,所述营养液内至少部分组份能够透过所述膜组件渗透至所述第一交换腔内。
在一些实施例中,所述第一交换腔上设置有第一接口和第二接口,所述第一接口与所述培养腔室连通,所述第二接口与所述预混腔室和/或所述培养腔室连通;所述培养腔室内的培养液能够经所述第一接口流向所述第一交换腔,所述第一交换腔内的培养液能够经第二接口流向所述预混腔室和/或所述培养腔室。
在一些实施例中,还包括动力单元,所述预混腔室和所述培养腔室之间设置有所述动力单元,所述培养腔室和所述第一接口之间设置有所述动力单元,所述预混腔室与所述第二接口之间和/或所述培养腔室与所述第二接口之间设置有所述动力单元。
在一些实施例中,还包括收集单元,所述收集单元与所述第二交换腔连通,用于收集所述第二交换腔内的液体。
在一些实施例中,所述预混单元、所述培养腔室、所述交换单元和所述收集单元至少其中之一为一次性耗材。
在一些实施例中,所述培养腔室为多个,多个所述培养腔室均与所述预混腔室相连通;每一个所述培养腔室均连接有一个所述交换单元,或所有的所述培养腔室均连接于一个所述交换单元。
本说明书实施例之一提供一种体外生命培养系统,包括:预混单元,其包括预混腔室,向所述预混腔室加入营养液和气体,在所述预混腔室内进行混合形成培养液;培养单元,其包括培养腔室,所述培养腔室与所述预混腔室连通,所述预混腔室内的培养液能够输送至所述培养腔室内,所述培养腔室用于盛放培养物,并培养所述培养物;温控单元,其包括制冷组件和温度控制模块,所述制冷组件与所述温度控制模块电连接, 所述温度控制模块用于控制所述制冷组件冷却所述培养腔室至第一预设温度,所述第一预设温度为培养物支撑结构的液化温度;所述培养腔室上设置取样口,所述取样口用于待所述培养物支撑结构液化后将所述培养物取出。
在一些实施例中,所述温控单元还包括制热组件,所述制热组件与所述温度控制模块电连接,所述温度控制模块用于控制所述制热组件加热所述培养腔室和/或所述预混腔室。
在一些实施例中,所述制热组件包括多个制热片,所述制冷组件包括多个制冷片,多个所述制热片间隔设置,多个所述制冷片间隔设置,相邻两个所述制热片之间设置有一个所述制冷片,相邻两个制冷片之间设置有一个制热片,所述制热片的能量能够传递至所述制冷片。
在一些实施例中,所述温控单元还包括温度检测件,其与所述温度控制模块电连接,所述温度检测件用于检测所述培养腔内的所述培养液的温度。
本说明书实施例之一提供一种体外生命培养系统,包括:预混单元,其包括预混腔室,向所述预混腔室加入营养液和气体,在所述预混腔室内进行混合形成培养液;培养单元,其包括培养腔室,所述培养腔室与所述预混腔室连通,所述预混腔室内的培养液能够输送至所述培养腔室内,所述培养腔室用于盛放培养物,并培养所述培养物;显微观察模块,其包括载物台和观察组件,所述培养腔室放置在所述载物台上,所述载物台能够放置至少一个所述培养腔室,所述观察组件用于观察所述培养腔室内的培养物;所述显微观察模块还包括机架,所述载物台摆动地设置在所述机架上,且所述载物台能够带动所述培养腔室同步摆动。
在一些实施例中,所述显微观察模块还包括自动进样器和进样轨道,所述自动进样轨道设置在所述机架上,所述自动进样器滑动地设置在所述进样轨道上,所述自动进样器用于向所述培养腔室加样。
本说明书实施例之一,提供一种体外生命培养系统,包括:预混单元,其包括预混腔室,向所述预混腔室加入营养液和气体,在所述预混腔室内进行混合形成培养液;培养单元,其包括培养腔室,所述培养腔室与所述预混腔室连通,所述预混腔室内的培养液能够输送至所述培养腔室内,所述培养腔室用于盛放培养物,并培养所述培养物;无菌控制模块,其包括无菌工作室、过滤组件和灭菌组件,至少所述培养腔室设置在所述无菌工作室内,所述过滤组件用于过滤通入所述无菌工作室内的气体,所述灭菌组件用于对所述无菌工作室灭菌。
在一些实施例中,所述预混单元还包括pH探测件、溶氧探测件和信号探测器,所述pH探测件和溶氧探测件均设置在所述预混腔室内,所述信号探测器能够感测所述pH探测件和所述溶氧探测件反馈的信号,以得到所述预混腔室内培养液的pH值和溶氧量。
在一些实施例中,所述pH探测件为pH电极片,所述溶氧探测件为溶氧电极片;所述pH电极片设置在所述预混腔室的内壁上或所述预混腔室内,所述溶氧探测件设置在所述预混腔室的内壁上或浸于所述预混腔室内的液体内。
在一些实施例中,所述预混单元还包括气体预混控制单元,其与所述预混腔室相连通,用于向所述预混腔室内输送气体。
在一些实施例中,所述预混腔室为多个,所述气体预混控制单元为一个,所述气体预混控制单元同时与多个所述预混腔室相连通,能够控制多个所述预混腔室内的气体浓度。
在一些实施例中,所述培养单元还包括混匀模块,其用于摇晃所述培养腔室内的培养液。
本说明书实施例之一提供一种体外生命培养系统的控制方法,其针对如上所述的体外生命培养系统,包括如下步骤:检测所述培养腔室培养物所需组份的浓度和/或确定所述培养物的生长情况,根据所检测的浓度和/或所确定的所述培养物的生长情况控制所述预混腔室向所述培养腔室输送培养液的速度。
本说明书实施例之一提供一种体外生命培养系统的控制方法,其针对如上所述的体外生命培养系统,包括如下步骤:检测所述培养腔室培养液中培养物所需组份的浓度和/或确定所述培养物的生长情况,根据所检测的浓度和/或所确定的所述培养物的生长情况控制所述预混腔室向培养腔室输送培养液的速度及所述补液单元向所述第二交换腔输送营养液的速度。
本说明书实施例之一提供一种体外生命培养系统,包括:预混单元,其包括预混腔室,向所述预混腔室加入营养液和气体,在所述预混腔室内进行混合形成培养液;培养单元,其包括培养腔室,所述培养腔室内设置有第一膜组件,所述第一膜组件将所述培养腔室分割为第一培养腔和第二培养腔,所述第一膜组件用于截留和/或透过培养液内的部分组份;所述第一培养腔与所述预混腔室连通,所述预混腔室能够向所述第一培养腔输送培养液,所述第一培养腔内的培养液能够回流至所述预混腔室内,所述第二培养腔用于盛放培养物,并培养所述培养物;或所述第一培养腔与所述预混腔室连通, 所述预混腔室能够向所述第一培养腔输送培养液,所述第二培养腔与所述预混腔室相连通,所述第二培养腔内的培养液能够回流至所述预混腔室内,所述第一培养腔或所述第二培养腔用于盛放培养物,并培养所述培养物。
在一些实施例中,所述第一培养腔设置有进液口,所述第一培养腔或所述第二培养腔设置有排液口,所述进液口和所述排液口均与所述预混腔室连通。
在一些实施例中,还包括收集单元,所述收集单元与排液口连通,所述收集单元用于收集所述培养腔室排出的培养液。
在一些实施例中,还包括三通阀,所述三通阀的三个接口分别通过管路连通所述排液口、所述收集单元和所述预混腔室。
在一些实施例中,还包括动力单元,所述预混腔室和所述进液口之间设置有所述动力单元;和/或所述三通阀和所述排液口之间设置有所述动力单元。
在一些实施例中,所述预混单元还包括补液腔室,其与所述预混腔室相连通,用于向所述预混腔室内输送营养液,所述补液腔室能够向所述预混腔室内定向输送所述培养物所需的一种或多种组份。
在一些实施例中,所述第一培养腔设置有进液口,所述进液口与所述预混腔室连通,所述第一培养腔或所述第二培养腔设置有排液口;所述体外生命培养系统还包括:交换单元,其包括交换腔室和第二膜组件,所述交换腔室包括第一交换腔和第二交换腔,所述第一交换腔和所述第二交换腔之间设置有所述第二膜组件,且通过所述第二膜组件连通,所述排液口和所述预混单元均与所述第一交换腔连通;补液单元,其与所述第二交换腔相连通,用于向所述第二交换腔输送补充营养液,所述补液单元能够向所述第二交换腔内定向输送所述培养物所需的一种或多种组份,所述补充营养液内的组份能够透过所述第二膜组件渗透至所述第一交换腔内。
在一些实施例中,还包括收集单元,所述收集单元与所述第二交换腔连通,所述收集单元用于收集所述第二交换腔排出的培养液。
本说明书实施例之一提供一种体外生命培养系统,包括:预混单元,其包括预混腔室,向所述预混腔室加入营养液和气体,在所述预混腔室内进行混合形成培养液;培养单元,其包括培养腔室,所述培养腔室内设置有第一膜组件,所述第一膜组件将所述培养腔室分割为第一培养腔和第二培养腔,所述第一培养腔与所述预混腔室相连通,所述预混腔室能够向所述第一培养腔输送培养液,所述第一培养腔用于盛放培养物,并培养所述培养物;补液单元,其与所述第二培养腔连通,用于向所述第二培养腔提供营 养液,所述补液单元能够向所述第二交换腔内定向输送所述培养物所需的一种或多种组份,所述第二培养腔内营养液中至少部分组份能够透过所述第一膜组件渗透至所述第一培养腔内;所述第一培养腔和/或所述第二培养腔内的培养液能够输送至所述预混腔室内。
在一些实施例中,还包括收集单元,所述第一培养腔和所述第二培养腔中,至少所述第二培养腔与所述收集单元连通。
在一些实施例中,所述第一培养腔内设置有第三膜组件,所述第三膜组件将所述第一培养腔分割为第一子培养腔和第二子培养腔,所述第三膜组件用于截留和/或透过培养液内的组份,所述第三膜组件还能够截留所述培养物,所述第一子培养腔通过所述第一膜组件与所述第二培养腔连通;所述预混腔室与所述第一子培养腔连通,所述预混腔室内的培养液能够输送至所述第一子培养腔内,所述第二子培养腔用于放置培养物,并培养所述培养物;或所述预混腔室与所述第二子培养腔连通,所述预混腔室内的培养液能够输送至所述第二子培养腔内,所述第一子培养腔用于放置培养物,并培养所述培养物。
在一些实施例中,所述第一培养腔内设置有第三膜组件,所述第三膜组件将所述第一培养腔分割为第一子培养腔和第二子培养腔,所述第三膜组件用于截留和/或透过培养液内的组份,所述第三膜组件还能够截留所述培养物;所述第一子培养腔和所述第二子培养腔均通过所述第一膜组件与所述第二培养腔连通,所述预混腔室与所述第一子培养腔连通,所述预混腔室内的培养液能够输送至所述第一子培养腔内,所述第二子培养腔用于放置培养物,并培养所述培养物。
在一些实施例中,所述第一子培养腔和/或所述第二子培养腔能够向所述预混单元输送所述培养液。
在一些实施例中,当所述预混腔室与所述第二子培养腔连通,所述第一子培养腔用于放置培养物,并培养所述培养物时,所述第一子培养腔内的培养液能够输送至所述第二子培养腔内;当所述预混腔室与所述第一子培养腔连通,所述第二子培养腔用于放置培养物,并培养所述培养物时,所述第二子培养腔内的培养液能够输送至所述第一子培养腔内。
在一些实施例中,所述预混单元还包括pH探测件、溶氧探测件和信号探测器,所述pH探测件和溶氧探测件均设置在所述预混腔室内,所述信号探测器能够感测所述pH探测件和所述溶氧探测件反馈的信号,以得到所述预混腔室内培养液的pH值和溶 氧量。
在一些实施例中,所述pH探测件为pH电极片,所述溶氧探测件为溶氧电极片;所述pH电极片设置在所述预混腔室的内壁上或浸于所述预混腔室的液体内,所述溶氧探测件设置在所述预混腔室的内壁上或浸于所述预混腔室的液体内。
在一些实施例中,所述预混单元还包括气体预混控制单元,其与所述预混腔室相连通,用于向所述预混腔室内输送气体。
在一些实施例中,所述预混单元、所述培养腔室和所述收集单元至少其中之一为一次性耗材。
在一些实施例中,所述培养腔室为多个,多个所述培养腔室均与所述预混腔室相连通。
在一些实施例中,还包括:温控单元,其包括制冷组件和温度控制模块,所述制冷组件与所述温度控制模块电连接,所述温度控制模块用于控制所述制冷组件冷却所述培养腔室至第一预设温度,所述第一预设温度为培养物支撑结构的液化温度;所述培养腔室上设置取样口,所述取样口用于待所述培养物支撑结构液化后将所述培养物取出。
在一些实施例中,所述温控单元还包括制热组件,所述制热组件与所述温度控制模块电连接,所述温度控制模块用于控制所述制热组件加热所述培养腔室和/或所述预混腔室。
在一些实施例中,所述制热组件包括多个制热片,所述制冷组件包括多个制冷片,多个所述制热片间隔设置,多个所述制冷片间隔设置,相邻两个所述制热片之间设置有一个所述制冷片,相邻两个制冷片之间设置有一个制热片,所述制热片的能量能够传递至所述制冷片。
在一些实施例中,所述温控单元还包括温度检测件,其与所述温度控制模块电连接,所述温度检测件用于检测所述培养腔内的所述培养液的温度。
在一些实施例中,还包括:显微观察模块,其包括载物台和观察组件,所述培养腔室放置在所述载物台上,所述载物台能够放置至少一个所述培养腔室,所述观察组件用于观察所述培养腔室内的培养物;所述显微观察模块还包括机架,所述载物台摆动地设置在所述机架上,且所述载物台能够带动所述培养腔室同步摆动。
在一些实施例中,所述显微观察模块还包括自动进样器和进样轨道,所述自动进样轨道设置在所述机架上,所述自动进样器滑动地设置在所述进样轨道上,所述自动进样器用于向所述培养腔室加样。
在一些实施例中,还包括:无菌控制模块,其包括无菌工作室、过滤组件和灭菌组件,至少所述培养腔室设置在所述无菌工作室内,所述过滤组件用于过滤通入所述无菌工作室内的气体,所述灭菌组件用于对所述无菌工作室灭菌。
在一些实施例中,所述培养单元还包括混匀模块,其用于摇晃所述培养腔室内的培养液。
在一些实施例中,所述预混腔室为多个,所述气体预混控制单元为一个,所述气体预混控制单元同时与多个所述预混腔室相连通,能够控制多个所述预混腔室内的气体浓度。
本说明书实施例之一提供一种体外生命培养系统的控制方法,其针对如上所述的体外生命培养系统,包括如下步骤:检测所述培养腔室培养物所需组份的浓度和/或确定所述培养物的生长情况,根据所检测的浓度和/或所确定的所述培养物的生长情况控制所述预混腔室向所述培养腔室输送培养液的速度。
本说明书实施例之一提供一种体外生命培养系统的控制方法,其针对如上所述的体外生命培养系统,包括如下步骤:检测所述第一培养腔内培养液中培养物所需组份的浓度和/或确定所述培养物的生长情况,根据所检测的浓度和/或所确定的所述培养物的生长情况控制所述预混腔室向所述第一培养腔输送培养液的速度及所述补液单元向所述第二培养腔输送营养液的速度。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例提供的一种体外生命培养系统的模块示意图;
图2A是根据本说明书一些实施例提供的一种体外生命培养系统结构示意图;
图2B是根据本说明书另一些实施例提供的一种体外生命培养系统结构示意图;
图3是根据本说明书另一些实施例提供的一种体外生命培养系统结构示意图;
图4是根据本说明书另一些实施例提供的一种体外生命培养系统结构示意图;
图5是根据本说明书另一些实施例提供的一种体外生命培养系统结构示意图;
图6是根据本说明书另一些实施例提供的一种体外生命培养系统结构示意图;
图7是根据本说明书另一些实施例提供的一种体外生命培养系统结构示意图;
图8是根据本说明书另一些实施例提供的一种体外生命培养系统结构示意图;
图9是根据本说明书另一些实施例提供的一种体外生命培养系统结构示意图;
图10是根据本说明书另一些实施例提供的一种体外生命培养系统结构示意图;
图11是根据本说明书另一些实施例提供的一种体外生命培养系统结构示意图;
图12是根据本说明书另一些实施例提供的一种体外生命培养系统结构示意图;
图13是根据本说明书另一些实施例提供的一种体外生命培养系统结构示意图;
图14是根据本说明书一些实施例提供的培养腔室的结构示意图;
图15是根据本说明书另一些实施例提供的一种体外生命培养系统结构示意图;
图16是根据本说明书另一些实施例提供的一种体外生命培养系统结构示意图;
图17是根据本说明书另一些实施例提供的一种体外生命培养系统结构示意图;
图18是根据本说明书另一些实施例提供的培养腔室的结构示意图;
图19是根据本说明书另一些实施例提供的一种体外生命培养系统结构示意图;
图20是根据本说明书另一些实施例提供的一种体外生命培养系统结构示意图;
图21是根据本说明书另一些实施例提供的一种体外生命培养系统结构示意图;
图22是根据本说明书一些实施例提供的温控单元的结构示意图;
图23是根据本说明书另一些实施例提供的温控单元的结构示意图;
图24是根据本说明书另一些实施例提供的温控单元的结构示意图;
图25是根据本说明书一些实施例提供的显微观察模块的结构示意图;
图26是根据本说明书另一些实施例提供的显微观察模块的结构示意图;
图27是根据本说明书另一些实施例提供的显微观察模块的结构示意图;
图28是根据本说明书另一些实施例提供的显微观察模块的结构示意图;
图29是根据本说明书另一些实施例提供的显微观察模块的结构示意图;
图30是根据本说明书一些实施例提供的无菌控制模块的结构示意图;
图31是根据本说明书一些实施例提供的一种体外生命培养系统的控制方法的流程示意图;
图32是根据本说明书另一些实施例提供的一种体外生命培养系统的控制方法的流程示意图;
图33是根据本说明书另一些实施例提供的一种体外生命培养系统的控制方法的流程示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
本说明书一个或多个实施例的体外生命培养系统可以应用于各种体外生命的培养。各种体外生命可以包括但不限于普通人体细胞、普通动物体细胞、人体器官肿瘤细胞、动物体肿瘤细胞、细菌细胞、病毒细胞、抗体细胞、微生物细胞群等等。在一些实施例中,体外生命培养系统可以为待培养的体外生命提供灌流培养,使体外生命在处于流动状态的培养液中生长。
图1是根据本说明书一些实施例提供的一种体外生命培养系统100的模块示意图之一。
在一些实施例中,体外生命培养系统100可以包括培养模块110、培养液提供模块120和液体输出模块130。
培养模块110可以用于对培养物进行培育。培养模块110可以包括用于盛放培养液的培养腔室。在一些实施例中,培养物可以放置于培养腔室内的培养液中进行培育。在一些实施例中,培养物可以包括但不限于类器官组织细胞、类器官肿瘤细胞、微生物细胞群等。在一些实施例中,培养物的培养方式可以包括但不限于支撑培养、悬浮培养 或平面培养等。在一些实施例中,支撑培养可以是通过支撑结构(如基质胶)将培养物限制在一定空间区域以内进行培养的方式。在一些实施例中,悬浮培养可以是在培养过程中悬浮于培养液中的培养方式。在一些实施例中,平面培养可以是将培养物依附在一个培养平面上的培养方式。在一些实施例中,培养液可以是用于供培养物(例如,微生物的细胞群或生长物)生长和维持用的液体。在一些实施例中,培养液中含有培养物生长所需的营养成分。在一些实施例中,营养成分可以包括但不限于培养基、培养因子、药物、酶、碳水化合物、含氮物质、无机盐(包括微量元素)以及维生素等中的至少一种。在一些实施例中,培养液中还含有培养物生长所需的气体(如氧气),气体可以溶于培养液中。在一些实施例中,培养腔室的形状可以是任意的,包括但不限于长方体、正方体、球形、圆柱体、圆锥体、异形体等等。
培养液提供模块120可以用于为培养模块110中的培养腔室提供培养液。在一些实施例中,培养液提供模块120可以包括直接或间接提供符合培养物生长需求的培养液的结构。在一些实施例中,培养液提供模块120可以包括存储有符合要求的培养液的容器,该容器能够直接将其中存储的培养液输入培养腔室。在一些实施例中,培养液提供模块120也可以包括能够配置培养液的预混单元。在一些实施例中,预混单元可以将氧气与营养成分混合配置培养液,并将配置好的培养液输入培养腔室。在一些实施例中,培养液提供模块120可以设置于培养腔室内部或者培养腔室外部。在一些实施例中,设置于培养腔室内部的培养液提供模块120,可以通过设置相应的开口或管道,通过该开口或管道将培养液流入培养腔室内部。在一些实施例中,设置于培养腔室外部的培养液提供模块120,可以通过液体流通管道与培养腔室连通,并通过液体流通管道将培养液输入培养腔室。
在一些实施例中,培养液提供模块120可以用于为培养模块110提供流动的培养液,使培养模块110中的培养液处于持续流动状态,以便为培养模块110中的培养物提供灌流培养。通过该方式,使培养物在培养过程中处于流动的培养液中,能够有效增加培养物与培养液之间的接触,使培养物的生长更充分。
在一些实施例中,培养模块110中的培养液也可以不流动,通过液提供模块120向培养模块110中注入培养液后,采用静态培养的方式对培养物进行培育。通过该方式,能够有效减少培养过程中培养液的消耗量,节约培养成本。
液体输出模块130可以用于将培养液从培养腔室中排出。在一些实施例中,液体输出模块130可以包括排出培养液的结构。在一些实施例中,液体输出模块130可以 为培养腔室中设置的开口或管道,可以直接将培养液从培养腔室中排出体外生命培养系统100。在一些实施例中,液体输出模块130可以将需要排出的培养液进行收集,并对收集到的培养液进行判断,确定是否排出体外生命培养系统100。在一些实施例中,当收集到的培养液被判断为代谢物浓度超过预设阈值(如0.5g/ml)时,则将培养液排出体外生命培养系统100。在一些实施例中,当收集到的培养液被判断为代谢物浓度未超过预设阈值(如0.5g/ml)时,则将培养液回收利用。
在一些实施例中,体外生命培养系统100还可以包括控制模块150,用于对体外生命培养系统100的其它模块(如,培养模块110、培养液提供模块120、液体排出模块130等)进行控制。在一些实施例中,控制模块150可以控制培养模块110中培养腔室内的培养温度。在一些实施例中,控制模块150可以控制培养模块110中培养腔室中培养液的流速等。在一些实施例中,控制模块150可以控制培养液提供模块120中培养液的提供速度等。在一些实施例中,控制模块150可以控制培养液排出模块130中培养液的排出速度等。在一些实施例中,控制模块150可以包括具有数据处理功能的处理器。在一些实施例中,处理器可以获取体外生命培养系统100中各模块或单元产生的数据,并对这些数据进行处理。在一些实施例中,处理器也可以生成控制指令,以便控制模块150控制该系统中的其它模块或单元进行动作。
在一些实施例中,参见图2A,培养液提供给模块120可以包括预混单元1。预混单元1可以用于配置培养液。
在一些实施例中,预混单元1可以包括预混腔室101,预混腔室101用于混合营养液和气体以形成培养液,并将培养液输送至培养模块110。在一些实施例中,营养液是指包含培养物生长所需的营养成分的液体材料。在一些实施例中,营养液内可以包含培养基、因子、药物及酶等培养物生长所需的营养物质。在一些实施例中,气体可以用于增加营养液中的溶氧量并调整营养液的酸碱度(以pH值表示)。在一些实施例中,气体可以包括氧气、二氧化碳以及惰性气体。其中,惰性气体包括但不限于氮气、氦气、氖气、氩气、氙气或氡气等。在一些实施例中,氧气用于增加营养液中的溶氧量,其他气体用于调整营养液的酸碱度。
在一些实施例中,营养液和气体混合后即可被配置为培养液。在一些实施例中,培养液也可以是由培养液提供给模块120中的存储结构预先存储的已调配好的培养液。在一些实施例中,培养不同的培养物时所需的营养成分不同,培养液所含的组分也不同。
在一些实施例中,培养物可以是肝肿瘤类器官细胞,培养液的组分可以包括添 加剂、血清替代物、双抗青霉素和链霉素(Penicillin-Streptomycin,P/S)等。在一些实施例中,添加剂可以包括但不限于L-谷氨酰胺、Glutamax TM等。在一些实施例中,血清替代物可以包括但不限于N2、B27等。
在一些实施例中,培养液中部分组分的浓度可以以该组分的稀释比例表示。在一些实施例中,稀释比例可以是稀释液体(例如水)与该组分的原液所占体积的比例。在一些实施例中,培养液中Glutamax TM的浓度以稀释比例表示可以是100:3~100:0.1,即培养液中每100份体积稀释液中加入0.1~3份体积Glutamax TM原液。在一些实施例中,培养液中Glutamax TM的浓度以稀释比例表示可以是100:2~100:0.1。在一些实施例中,培养液中Glutamax TM的浓度以稀释比例表示可以是100:3~100:0.5。在一些实施例中,培养液中Glutamax TM的浓度以稀释比例表示可以是100:1.5~100:0.5。在一些实施例中,培养液中Glutamax TM的浓度以稀释比例表示可以是100:1~100:0.5。在一些实施例中,培养液中Glutamax TM的浓度以稀释比例表示可以是100:1.5~100:1。在一些实施例中,培养液中N2的浓度以稀释比例表示可以是100:3~100:0.1。在一些实施例中,培养液中N2的浓度以稀释比例表示可以是100:2~100:0.1。在一些实施例中,培养液中N2的浓度以稀释比例表示可以是100:3~100:0.5。在一些实施例中,培养液中N2的浓度以稀释比例表示可以是100:1.5~100:0.5。在一些实施例中,培养液中N2的浓度以稀释比例表示可以是100:1~100:0.5。在一些实施例中,培养液中N2的浓度以稀释比例表示可以是100:1.5~100:1。在一些实施例中,培养液中B27的浓度以稀释比例表示可以是50:3~50:0.1。在一些实施例中,培养液中B27的浓度以稀释比例表示可以是50:2~50:0.1。在一些实施例中,培养液中B27的浓度以稀释比例表示可以是50:3~50:0.5。在一些实施例中,培养液中B27的浓度以稀释比例表示可以是50:1.5~50:0.5。在一些实施例中,培养液中B27的浓度以稀释比例表示可以是50:1~50:0.5。在一些实施例中,培养液中B27的浓度以稀释比例表示可以是50:1.5~50:1。在一些实施例中,培养液中P/S的浓度以稀释比例表示可以是100:3~100:0.1。在一些实施例中,培养液中P/S的浓度以稀释比例表示可以是100:2~100:0.1。在一些实施例中,培养液中P/S的浓度以稀释比例表示可以是100:3~100:0.5。在一些实施例中,培养液中P/S的浓度以稀释比例表示可以是100:1.5~100:0.5。在一些实施例中,培养液中P/S的浓度以稀释比例表示可以是100:1~100:0.5。在一些实施例中,培养液中P/S的浓度以稀释比例表示可以是100:1.5~100:1。
在一些实施例中,肝肿瘤类器官细胞的培养液的组分还可以包括表皮细胞生长 因子(Epidermal Growth Factor、EGF)、分泌蛋白(RSPO1)、干细胞生长因子(HGF)、成纤维细胞生长因子10(FGF-10)、Wnt信号通路的重要蛋白(Wnt3a)等。
在一些实施例中,培养液中部分组分的浓度可以以每毫升培养液中所含的该组分的质量表示(如,纳克/毫升,ng/ml)。在一些实施例中,培养液中EGF的浓度范围可以是20ng/ml~80ng/ml。在一些实施例中,培养液中EGF的浓度范围可以是30ng/ml~70ng/ml。在一些实施例中,培养液中EGF的浓度范围可以是40ng/ml~60ng/ml。在一些实施例中,培养液中EGF的浓度范围可以是45ng/ml~50ng/ml。在一些实施例中,培养液中EGF的浓度范围可以是50ng/ml~55ng/ml。在一些实施例中,培养液中RSPO1的浓度范围可以是200ng/ml~800ng/ml。在一些实施例中,培养液中RSPO1的浓度范围可以是300ng/ml~700ng/ml。在一些实施例中,培养液中RSPO1的浓度范围可以是400ng/ml~600ng/ml。在一些实施例中,培养液中RSPO1的浓度范围可以是450ng/ml~500ng/ml。在一些实施例中,培养液中RSPO1的浓度范围可以是500ng/ml~550ng/ml。在一些实施例中,培养液中HGF的浓度范围可以是5ng/ml~45ng/ml。在一些实施例中,培养液中HGF的浓度范围可以是15ng/ml~35ng/ml。在一些实施例中,培养液中HGF的浓度范围可以是20ng/ml~30ng/ml。在一些实施例中,培养液中HGF的浓度范围可以是20ng/ml~25ng/ml。在一些实施例中,培养液中HGF的浓度范围可以是25ng/ml~30ng/ml。在一些实施例中,培养液中FGF10的浓度范围可以是100ng/ml~300ng/ml。在一些实施例中,培养液中FGF10的浓度范围可以是150ng/ml~250ng/ml。在一些实施例中,培养液中FGF10的浓度范围可以是180ng/ml~220ng/ml。在一些实施例中,培养液中FGF10的浓度范围可以是180ng/ml~200ng/ml。在一些实施例中,培养液中FGF10的浓度范围可以是200ng/ml~220ng/ml。在一些实施例中,培养液中Wnt3a的浓度范围可以是10ng/ml~50ng/ml。在一些实施例中,培养液中Wnt3a的浓度范围可以是20ng/ml~40ng/ml。在一些实施例中,培养液中Wnt3a的浓度范围可以是25ng/ml~35ng/ml。在一些实施例中,培养液中Wnt3a的浓度范围可以是25ng/ml~30ng/ml。在一些实施例中,培养液中Wnt3a的浓度范围可以是30ng/ml~35ng/ml。
在一些实施例中肝肿瘤类器官细胞的培养液还可以包括其他营养成分。在一些实施例中,其他营养成分可以包括但不限于4-羟乙基哌嗪乙磺酸(HEPES)、N-乙酰半胱氨酸(N-Acetyl-L-cysteine)、胃泌素(gastrin)、烟酰胺(Nicotinamide)、小分子化合物(A83.01)以及腺苷酸环化酶激活剂(Forskolin)等。
在一些实施例中,培养物可以是胃类器官细胞。在一些实施例中,胃类器官细 胞的培养液的营养成分可以包括添加剂、血清替代物、双抗青霉素和链霉素(Penicillin-Streptomycin,P/S)。在一些实施例中,添加剂可以包括但不限于L-谷氨酰胺、Glutamax TM等。在一些实施例中,血清替代物可以包括但不限于N2、B27等。在一些实施例中,培养液中Glutamax TM、N2、B27以及P/S的浓度可以与培养肝肿瘤类器官细胞的培养液相同,此处不再赘述。
在一些实施例中,胃类器官细胞的培养液的营养成分还可以包括表皮细胞生长因子(Epidermal Growth Factor、EGF)、分泌蛋白(RSPO1)、重组蛋白(noggin)、重组人成纤维细胞生长因子10(hFGF-10)等。
在一些实施例中,培养液中EGF、RSPO1的浓度可以与培养肝肿瘤类器官细胞的培养液相同,此处不再赘述。在一些实施例中,培养液中hFGF10的浓度范围可以是100ng/ml~400ng/ml。在一些实施例中,培养液中hFGF10的浓度范围可以是150ng/ml~350ng/ml。在一些实施例中,培养液中hFGF10的浓度范围可以是150ng/ml~300ng/ml。在一些实施例中,培养液中hFGF10的浓度范围可以是150ng/ml~250ng/ml。在一些实施例中,培养液中hFGF10的浓度范围可以是200ng/ml~500ng/ml。在一些实施例中,培养液中noggin的浓度范围可以是5ng/ml~45ng/ml。在一些实施例中,培养液中noggin的浓度范围可以是15ng/ml~35ng/ml。在一些实施例中,培养液中noggin的浓度范围可以是20ng/ml~50ng/ml。在一些实施例中,培养液中noggin的浓度范围可以是20ng/ml~60ng/ml。在一些实施例中,培养液中noggin的浓度范围可以是25ng/ml~50ng/ml。
在一些实施例中,胃类器官细胞的培养液还可以包括其他营养成分。在一些实施例中,其他营养成分可以包括但不限于4-羟乙基哌嗪乙磺酸(HEPES)、N-乙酰半胱氨酸(N-Acetyl-L-cysteine)、烟酰胺(Nicotinamide)、小分子化合物(A83.01)、选择性的ROCK1抑制剂(Y27632)、胃泌素(gastrin)以及原代细胞抗生素(Primocin)等。
在一些实施例中,培养物可以是结肠类器官细胞。在一些实施例中,结肠类器官细胞的营养成分可以包括添加剂、血清替代物、双抗青霉素和链霉素(Penicillin-Streptomycin,P/S)。在一些实施例中,添加剂可以包括但不限于L-谷氨酰胺、Glutamax TM等。在一些实施例中,血清替代物可以包括但不限于N2、B27等。在一些实施例中,培养液中Glutamax TM、N2、B27以及P/S的浓度可以与培养肝肿瘤类器官细胞的培养液相同,此处不再赘述。
在一些实施例中,结肠类器官的培养液的营养成分可以包括表皮细胞生长因子 (Epidermal Growth Factor、EGF)、激活Wnt信号传导的分泌蛋白(RSPO1)、重组蛋白(noggin)、Wnt信号通路的重要蛋白(Wnt3a)等。在一些实施例中,结肠类器官的培养液中,EGF、RSPO1、noggin以及Wnt3a的组分浓度可以与培养肝肿瘤类器官细胞的培养液相同,此处不再赘述。
在一些实施例中,结肠类器官培养基的培养液还可以包括其他营养成分。在一些实施例中,其他营养成分可以包括但不限于4-羟乙基哌嗪乙磺酸(HEPES)、N-乙酰半胱氨酸(N-Acetyl-L-cysteine)、烟酰胺(Nicotinamide)、小分子化合物(A83.01)、选择性的p38MAPK抑制剂(SB202190)、选择性的ROCK1抑制剂(Y27632)、胃泌素(gastrin)、激素样物质(Prostaglandine E2)以及原代细胞抗生素(Primocin)。
在一些实施例中,预混单元1还可以包括补液腔室104。在一些实施例中,补液腔室104可以与预混腔室101相连通,用于向预混腔室101内输送营养液。在一些实施例中,补液腔室104还可以用于存储营养液。在一些实施例中,补液腔室104可以将存储的营养液根据预混腔室101中培养液的实际情况,向预混腔室101中输送营养液。在一些实施例中,预混腔室101中培养液的实际情况可以是预混腔室101将培养液输送至培养模块110过程中,所存有的培养液过少,不足以满足下一次的输送需求的情况。
在一些实施例中,补液腔室104和预混腔室101之间可以设置有动力单元5。在一些实施例,动力单元5可以控制营养液的输送量以及输送速度,使用动力单元5可以将补液腔室104内的营养液按照使用需求输送至预混腔室101内。
在一些实施例中,预混单元1还包括气体预混控制单元105,其与预混腔室101相连通,用于向预混腔室101内输送气体(例如,氧气、二氧化碳或氮气等)。
在一些实施例中,预混单元1可以通过补液腔室104和气体预混控制单元105向预混腔室101加入营养液和气体,通入的营养液和气体在预混腔室101内进行混合形成培养液。在一些实施例中,通入的氧气可以增加培养液的溶氧量,使之满足培养物的生长需求。在一些实施例中,溶氧量可以是培养液中氧气的溶解量。在一些实施例中,培养液的溶氧量范围可以是培养液空气饱和度的0%-100%。在一些实施例中,培养液的溶氧量范围可以是培养液空气饱和度的20%-80%。在一些实施例中,培养液的溶氧量可以是培养液空气饱和度的20%-60%。
在一些实施例中,通入的二氧化碳可以调节培养液的pH值,使培养液满足培养物的生长需求。
在一些实施例中,通入的氮气可以用于稀释培养液,以减小培养液中的溶氧量。 在一些实施例中,气体预混控制单元105还可以通入其他惰性气体,以达到对培养液中的溶氧量进行稀释的目的。
在一些实施例中,预混腔室101可以为一个,气体预混控制单元105为一个,气体预混控制单元105与预混腔室101相连通。在一些实施例中,预混腔室101可以为至少两个,气体预混控制单元105为一个,气体预混控制单元105同时与多个预混腔室101相连通。在一些实施例中,一个气体预混控制单元105能够分别控制多个预混腔室101内的气体的通入量。在一些实施例中,一个气体预混控制单元105可以分别控制多个预混腔室101内的氧气通入量,进而控制多个预混腔室101内的培养液的溶氧量。在一些实施例中,一个气体预混控制单元105可以分别控制多个预混腔室101内的二氧化碳通入量,进而控制多个预混腔室101内的培养液的二氧化碳浓度,进而控制培养液的酸碱度。在一些实施例中,一个气体预混控制单元105可以分别控制多个预混腔室101内的氮气通入量,进而达到对各预混腔室101内培养液中的溶氧量进行稀释的目的。
在一些实施例中,预混单元1还可以包括pH探测件102、溶氧探测件103和信号探测器。在一些实施例中,pH探测件102和溶氧探测件103可以设置在预混腔室101内。在一些实施例中,信号探测器可以设置在预混腔室101内部或外部。信号探测器能够感测pH探测件102和溶氧探测件103反馈的信号,以得到预混腔室101内培养液的pH值和溶氧量。
在一些实施例中,随着预混腔室101内的pH值和溶氧量的变化,pH探测件102和溶氧探测件103所探测的信号会改变。在一些实施例中,pH探测件102和溶氧探测件103可以包括光学探测组件,产生光信号。在一些实施例中,随着预混腔室中培养液的pH值和溶氧量的变化,pH探测件102和溶氧探测件103的光信号会改变,信号探测器会定期接收pH探测件102和溶氧探测件103表面的光信号,以获得数据反馈,根据反馈的数据计算得到pH值和溶氧量。在一些实施例中,pH探测件102和溶氧探测件103可以包括电学探测组件,产生电信号。
在一些实施例中,pH探测件102为pH电极片,溶氧探测件103为溶氧电极片。其中,pH电极片设置在预混腔室101的内壁上或预混腔室101内,溶氧探测件103设置在预混腔室101的内壁上或浸于预混腔室101内的液体内。在一些实施例中,随着预混腔室中培养液的pH值和溶氧量的变化,pH电极片和溶氧电极片的电信号会改变,信号探测器会定期接收pH电极片和溶氧电极片发出的电信号,以获得数据反馈,根据反馈的数据计算得到培养液的pH值和溶氧量。
在一些实施例中,信号探测器能够将所探测的信息反馈至处理器,以便处理器基于探测的信息生成控制指令,控制补液腔室104和气体预混控制单元105对培养液的溶氧量和pH值进行调节。在一些实施例中,如果培养液的溶氧量过高,则处理器可以使补液腔室104向预混腔室101内输送更多的营养液进行稀释,以降低预混腔室101内培养液的溶氧量,如果溶氧量过低,则处理器可以使气体预混控制单元105向预混腔室101内通入氧气,以增加预混腔室101内培养液的溶氧量。如果pH值高于第一阈值,则处理器可以控制气体预混控制单元105通入二氧化碳,以降低预混腔室101内培养液的pH值;如果pH值低于第二阈值,则处理器可以控制补液腔室104向预混腔室101内输送更多的营养液进行稀释或者向预混腔室101内通入碱液,以提高预混腔室101内培养液的pH值。在一些实施例中,第一阈值可以是7.6~8。在一些实施例中,第一阈值可以是7.6、7.8或8。在一些实施例中,第二阈值可以是6.6~7。在一些实施例中,第二阈值可以是6.6、6.8或7。
在一些实施例中,预混腔室101上还设置有排风口,其可以排出预混腔室101内的气体,保证预混腔室101气压的稳定性。在一些实施例中,预混腔室101内设置有搅拌组件,搅拌组件可以搅动预混腔室101内的液体使之混合均匀,以及使气体充分地进入到液体内。在一些实施例中,预混腔室101上还设置有加碱口,可以通过加碱口向预混腔室101内加入碱液,以调节预混腔室101内培养液的pH值。
在一些实施例中,在预混腔室101将营养液与氧气等预混形成培养液,并通过控制相应变量(如pH值和溶氧量)使得营养液与氧气等混合形成的培养液更适合培养物的生长,可以充分地向培养物提供生长所需的养分。相对于直接向培养腔室通入营养液和氧气等,节省了复杂的管路、阀门及探测件的设计,降低了系统成本。
在一些实施例中,培养液提供给模块120也可以不包括预混单元1,而是包括存储有已调配好的培养液的存储结构。存储结构可以直接将已调配好的培养液通入培养腔室2中,供培育培养物时使用。在一些实施例中,培养液的组成成分以及各组分的浓度可以参见本说明书其他地方的描述,此处不在赘述。
在一些实施例中,培养模块110可以包括培养单元。在一些实施例中,培养单元可以包括培养腔室2,培养腔室2用于盛放培养液和培养物。在一些实施例中,培养腔室2与预混腔室101连通,预混腔室101内的培养液能够输送至培养腔室2内。在一些实施例中,预混腔室101与培养腔室2之间可以设置有培养液输送管道。在一些实施例中,培养液输送管道可以是由具有气密性的材料制成的软管。在一些实施例中,具有 气密性的材料可以由高分子材料涂覆气密性涂层获得。在一些实施例中,气密性涂层可以是多层高分子涂层,其各层具有不同的分子取向。在一些实施例中,气密性涂层也可以是以黏土材料为主材,以树脂材料为添加料制备的多层层叠膜层。上述气密性涂层同时具有较强的粘结性能,在软管形状改变时不易从软管上脱落。根据预混腔室101和培养腔室2的相对设置位置以及培养液的输送速度和输送量的需求可以决定是否在预混腔室101培养腔室2之间设置动力单元5,使用动力单元5将预混腔室101内的培养液输送至培养腔室2内。在一些实施例中,为防止可能存在的培养液输送管道的气密性不足的情况(例如,气密性涂层磨损),培养液输送管道可以放置于一密封环境中,该密封环境中可以通入与气体预混控制单元105提供的气体的成分及浓度相同的气体,以使得培养液输送管道内外的气体浓度达到平衡,使培养液输送管道内培养液中的气体不会通过培养液输送管道逸出。
在一些实施例中,通过预混腔室101向培养腔室2中输入培养液,可以实现培养腔室2中培养物的灌流培养。在一些实施例中,为了防止在培养物的培养初期,培养物可能不适应灌流培养的情况,培养腔室2中的培养物可以在第一预设时间内进行静置培养,当第一预设时间结束后,进行灌流培养。在一些实施例中,第一预设时间可以根据培养物的种类进行设置。在一些实施例中,培养物可以是类器官细胞,第一预设时间可以是1小时~72小时。在一些实施例中,气体预混控制单元105可以与培养腔室2连通,培养物在进行静置培养期间可以通过气体预混控制单元105向培养腔室2中的培养液补充氧气或调解pH值。
在一些实施例中,参见图2B,气体预混控制单元105可以与预混腔室101中培养液上方的空腔连通,该空腔还可以同时与培养腔室2连通,气体可以经过该空腔后流动至培养腔室2中。在一些实施例中,预混腔室101中培养液上方的空腔与培养腔室2之间可以设置有气体输送管道1011。在一些实施例中,气体输送管道上可以安装有阀门,阀门用于打开或关闭气体输送管道1011。在一些实施例中,预混腔室101与培养腔室2之间还可以设置有培养液输送管道1012。在一些实施例中,气体输送管道1011和培养液输送管道1012可以通过同一个接口与培养腔室2连通。在一些实施例中,气体输送管道1011和培养液输送管道1012与培养腔室2的接口之间可以设置由三通阀,通过三通阀可以控制气体输送管道1011和培养液输送管道1012中的任意一个与培养腔室2连通。在一些实施例中,气体输送管道1011与培养腔室2之间可以设置有动力单元5。在一些实施例中,培养液输送管道1012与培养腔室2之间也可以设置有动力 单元5。在一些实施例中,动力单元5也可以设置于培养腔室2的接口处,使得动力单元5可以控制气体输送管道1011和/或培养液输送管道1012中向培养腔室2输送的气体或培养液的速度。
在一些实施例中,气体预混控制单元105也可以不与预混腔室101连通,而是直接与培养腔室2连通,即气体预混控制单元105中的气体可以直接通入培养腔室2中。在一些实施例中,体外生命培养系统100也可以包括多个气体预混控制单元105,体外生命培养系统100中的每个培养腔室2以及每个预混腔室101均可以与一个气体预混控制单元105连通。
在一些实施例中,培养腔室2为一个,即一个预混腔室101对应一个培养腔室2。在其它一些实施例中,培养腔室2为多个,多个培养腔室2均与预混腔室101相连通。在一些实施例中,多个培养腔室2可以并联连接,既可以每一个培养腔室2均连接有一个预混腔室101,又可以所有的培养腔室2均连接于一个预混腔室101,或者是几个培养腔室2共同连接一个预混腔室101。在一些实施例中,多个培养腔室2也可以串联连接,培养液依次流过多个培养腔室2。在一些实施例中,通过设置多个培养腔室2,可以同时培养多个培养物,便于在后续试验过程中保证培养物的一致性,可以保证试验结果对比的准确性。
在一些实施例中,培养腔室2上设置有加样口201和取样口202。可以通过加样口201将培养物加入培养腔室2内。而且还可以根据培养需求在培养过程中通过加样口201向培养腔室2内加入生长因子、药物等促进或抑制培养物的生长,也可在培养完成时向体系内加入酶、基质胶处理试剂、染色试剂等,用来收集、处理或表征培养物。通过取样口202可以在培养过程中取培养物或培养液样本进行分析。
在培养过程中,为了控制培养腔室2中培养液的温度,以便在不同的温度下对培养物执行不同的操作,本说明书一些实施例中,培养模块110还可以包括温控单元6。在一些实施例中,温控单元6可以控制培养液的温度处于培养物的生理温度,以便对培养物进行培育。在一些实施例中,温控单元6可以控制培养液的温度处于培养物支撑结构的液化温度,以便在结束培养时取出培养物。关于温控单元6的更多描述,可参见本说明书的其他部分。
为了在培养物的培养过程中,实时获取培养物的生长情况信息,本说明书一些实施例中,培养模块110还可以包括显微观察模块8。在一些实施例中,培养人员可以通过显微观察模块8观察培养腔室2内的培养物。在一些实施例中,显微观察模块8可 以获取培养物的图像数据,以用于判断培养物的生长情况,进而培养人员或体外生命培养系统100可以对培养物的培养做出调整。关于显微观察模块8的更多描述,可参见本说明书的其他部分。
在一些实施例中,液体输出模块130可以包括收集单元4。在一些实施例中,收集单元4可以与培养腔室2连通,用于排出并收集培养腔室2中的培养液。
在一些实施例中,液体输出模块130也可以不包括收集单元4,而是包括设置在培养腔室2的废液排出口,废液排出口用于将培养腔室2的培养液排出体外生命培养系统100,在一些实施例中,废液排出口可以是任意形状的可以导流的结构,在本说明书中不对废液排出口的形状、结构进行限定。
在一些实施例中,通过培养液提供模块120、培养模块110以及液体排出模块的配合,可以使培养物(如,类器官细胞等)处于动态灌流的培养环境下,保证培养物生长速度快,培养周期短,确保了培养周期内培养物的生长程度。
在一些实施例中,由于培养腔室2中的培养液在使用后即通过液体排出模块排出,导致培养液利用率较低,致使培养成本较高。在本说明书一些实施例中,参见图3,体外生命培养系统100还可以包括培养液循环模块140。在一些实施例中,培养液循环模块140可以用于实现培养腔室2中培养液的循环利用,以提高培养液的利用率,减少培养液浪费。
由于培养液在培养单元中对培养物进行培养后,会混入培养物产生的代谢物,在将培养液循环利用之前,需要将代谢物的浓度控制在预设范围内。在一些实施例中,培养液循环模块140可以包括组分交换结构,用于对培养液中的代谢物进行组分交换。在一些实施例中,培养液循环模块140还可以包括控制液体流通的结构,用于将培养液进行流通。在一些实施例中,培养液循环模块140可以设置于培养腔室2的内部和/或外部。
在一些实施例中,设置于培养腔室2内部的培养液循环模块140可以包括组分交换结构。组分交换结构可以将培养腔室2内需要排出的培养液进行组分交换,将组分交换后获得的可循环利用的培养液导流至培养液提供模块120或培养模块110中进行再次利用。在一些实施例中,组分交换可以是不同腔室中的培养液中的部分组分从一个腔室流动到另一个腔室。在一些实施例中,培养液中可进行组分交换的组分可以包括营养成分和代谢物,即第一个腔室中的营养成分流入第二个腔室,作为交换,第二个腔室的代谢物可以进入第一个腔室。在一些实施例中,组分交换结构可以包括但不限于渗透 膜或单向组分交换膜等。在一些实施例中,设置于培养腔室2外部的培养液循环模块140也可以包括组分交换结构。在一些实施例中,设置于培养腔室2外部的培养液循环模块140可以接收从培养腔室2中流出的培养液,对接收的培养液进行组分交换后,将获得的可循环利用的培养液导流至培养液提供模块120或培养模块110中进行再次利用。
参见图3~6,在一些实施例中,培养液循环模块140可以包括位于培养腔室2外的第一交换单元3。在一些实施例中,第一交换单元3可以与培养腔室2连通,第一交换单元3接收培养腔室2流出的培养液,并对培养液进行组分交换。在一些实施例中,从培养腔室2中流出的培养液的组分可以包括营养成分和代谢物,培养液流入第一交换单元3后,不同腔室内培养液中的营养成分和代谢物能够在第一交换单元3的不同腔室之间进行组分交换,使第一交换单元3的不同腔室中培养液中的代谢物和营养成分的浓度发生改变。在一些实施例中,第一交换单元3可以包括多个交换腔室和设置于多个交换腔室之间的膜组件。交换腔室可以用于接收并容纳培养腔室2流出的培养液。在一些实施例中,膜组件可以用于对培养液中的组分进行组分交换,过滤出培养液组分中不可再次利用以及可再次利用的物质,以使第一交换单元3把不可再次利用的物质排出,把可再次利用的物质输送到培养腔室2中。在一些实施例中,可再次利用的物质可以包括营养成分。在一些实施例中,不可再次利用的物质可以包括代谢物。
在一些实施例中,设置第一交换单元3可以使体外生命培养系统100在实现灌流培养的同时,通过多个交换腔室和膜组件将培养液内有用的组份截留,并反流至培养腔室2内供再次吸收利用,提高了培养液的利用率,降低了培养成本。
在一些实施例中,第一交换单元3可以设置在培养腔室2外部,使膜组件的有效面积可以设置得更大,结构更灵活,进而提高交换效率。
在一些实施例中,第一交换单元3可以设置在培养腔室2内部,使体外生命培养系统100不需要额外增加新的结构,使体外生命培养系统100的结构更简单、成本更低。
在一些实施例中,第一交换单元3的交换腔室可以包括第一交换腔302和第二交换腔303,第一交换腔302和第二交换腔303之间设置有膜组件301,膜组件301用于截留和/或透过培养液内的至少部分组份。在一些实施例中,第一交换腔302能够接收培养腔室2流出的培养液,通过膜组件301连通第二交换腔303,培养液中的代谢物可以交换至第二交换腔303,使培养液中的代谢物浓度降低。在一些实施例中,第一交 换腔302中培养液的代谢物浓度降低后,第一交换腔302能够向培养腔室2或预混单元1反流培养液。在一些实施例中,膜组件301还可以将培养液中培养物所需的营养成分截留在第一交换腔302内,比如,血清、生长因子和酶等,第一交换腔302内培养物生长产生的代谢物,比如尿素、二氧化碳等可以透过膜组件301渗透至第二交换腔303内,然后由第二交换腔303排出。
在一些实施例中,第一交换腔302包括第一接口和第二接口,其中,第一接口用于接收流入第一交换腔302的培养液;第二接口用于从第一交换腔302中流出培养液。在一些实施例中,第一接口与培养腔室2连通,以接收从培养腔室2中流出的培养液。在一些实施例中,第二接口可以与培养腔室2连通,以便向培养腔室2反流培养液。在一些实施例中,第二接口可以与培养液提供模块120中的其中一个腔室连通,以便将培养液反流至培养液提供模块120中。在一些实施例中,第二接口可以与预混腔室101连通,以便将培养液反流至预混腔室101中。在一些实施例中,第二接口也可以与补液腔室104连通,以便将培养液反流至补液腔室104中。
在一些实施例中,第一交换腔302内设置有代谢物浓度检测单元,用于检测第一交换腔302中培养液的代谢物浓度。在一些实施例中,代谢物浓度可以用于判断培养液中代谢物的占比,确定培养液中是否需要继续过滤代谢物。在一些实施例中,当培养液中代谢物浓度低于预设阈值(如,2%;3%;5%等)时,培养液能够进行循环利用。
在一些实施例中,代谢物浓度检测单元可以采用取样检测,也可以采用原位检测的方式。在一些实施例中,原位检测可以是被检测物质或组分(如代谢物)在其原有位置时进行的检测。在一些实施例中,原位检测可以包括但不限于红外光谱技术、荧光检测技术等。在一些实施例中,荧光检测技术可以是将待检测的部分物质或组分(如代谢物)使用荧光染料进行标记,并通过激发光束(如激光)对标记后的物质进行照射,使该物质发出荧光,进而通过采集荧光光束进行浓度检测。在一些实施例中,红外光谱技术可以是通过红外光照射待检测的培养液,并测量培养液对红外光的光谱中的特征峰值波长的吸收情况,来进行浓度检测。
在一些实施例中,第二接口可以是可选择性连通接口,具有打开或关闭接口的功能。在一些实施例中,第一交换单元3可以基于代谢物浓度检测单元的检测结果打开或关闭第二接口。在一些实施例中,代谢物浓度检测单元的检测结果可以是培养液中的代谢物浓度低于预设阈值(如,2%;3%;5%等),其中低于预设阈值可以是表示培养液中的代谢物浓度不会影响培养液的再次利用。在一些实施例中,代谢物浓度检测单元 的检测结果为培养液中的代谢物浓度低于预设阈值时,则说明第一交换腔302中的培养液可以再次利用,第一交换单元3打开第二接口,以使培养液导入培养液提供模块120或培养腔室2。在另一些实施例中,代谢物浓度检测单元的检测结果表示培养液中代谢物的浓度高于预设阈值时,则说明第一交换腔302中的培养液含有的代谢物浓度过高,无法再次利用,则第一交换单元3关闭第二接口,以使培养液继续在第一交换腔302中进行组分交换。
在一些实施例中,第二交换腔303包括第三接口,用于将第二交换腔303中的培养液排出。在一些实施例中,第三接口可以与收集单元4连通,使得收集单元4可以收集第二交换腔303内的培养液。在一些实施例中,第三接口也可以不与收集单元4连通,而是直接将第二交换腔303内的培养液排出体外生命培养系统100。
在一些实施例中,参见图7,第一交换单元3的交换腔室可以包括第一交换腔302、第二交换腔303和第三交换腔304。在一些实施例中,第一交换腔302分别与第二交换腔303和第三交换腔304连通。第一交换腔302与第二交换腔303之间均设置有第一单向膜组件3011,第一单向膜组件3011用于透过培养液内的营养成分,并截留代谢物。第一交换腔302与第三交换腔304之间均设置有第二单向膜组件3012,第二单向膜组件3012用于透过培养液内的代谢物,并截留营养组分。
在一些实施例中,第一交换腔302能够接收培养腔室2流出的培养液,通过第一单向膜组件3011连通至第二交换腔303,使第二交换腔303内的培养液不包含代谢物。代谢物通过第二单向膜组件3012渗透至第三交换腔304内,并进一步通过与第三交换腔304连接的收集单元4排出体外生命系统100。
在一些实施例中,第一交换腔302包括第一接口,其中第一接口用于接收流入第一交换腔302的培养液。在一些实施例中,第一接口与培养腔室2连通,以接收从培养腔室2中流出的培养液。
在一些实施例中,第二交换腔303包括第二接口,其中第二接口可以与培养腔室2连通,以便向培养腔室2输送不包含或少量包含代谢物、可再次利用的培养液。在一些实施例中,第二交换腔303中的第二接口可以与培养液提供模块120中的其中一个腔室连通,以便将培养液输送培养液提供模块120中。在一些实施例中,第二接口可以与预混腔室101连通,以便将培养液输送至预混腔室101中。在一些实施例中,第二接口也可以与补液腔室104连通,以便将培养液输送至补液腔室104中。
在一些实施例中,第三交换腔304包括第三接口,其中第三接口可以与系统外 部连通,以便将代谢物排至系统外部。在一些实施例中,第三接口可以与收集单元4连通,以便将代谢物排至收集单元中进行收集。
在一些实施例中,培养腔室2为一个,第一交换单元3也为一个,一个第一交换单元3与一个培养腔室2连通。
在一些实施例中,培养腔室2为多个,多个培养腔室2可以并联连接。在一些实施例中,第一交换单元3可以为一个,并联连接的多个培养腔室2同时与一个第一交换单元3连通。在一些实施例中,第一交换单元3可以为多个,并联连接的多个培养腔室2中的每一个均与一个交换单元3连通。
在一些实施例中,培养腔室2为多个,多个培养腔室2可以串联连接。在一些实施例中,第一交换单元3可以为一个,第一交换单元3可以与串联连接的多个培养腔室2中的其中一个(例如,最后一个)培养腔室2连通。当多个培养腔室2串联连接时,串联连接的“前”是指培养液率先流过的部分,串联连接的“后”是指培养液后流过的部分。在一些实施例中,第一交换单元3可以为多个,串联连接的多个培养腔室2中的每一个培养腔室2均与一个位于该培养腔室2之后的第一交换单元3连通。在一些实施例中,串联连接的多个培养腔室2中的每一个培养腔室2可以通过第一接口与一个位于该培养腔室2之后的第一交换单元3连通,以便将培养液流入至第一交换腔302,第一交换腔302的第二接口可以与串联连接的后一个培养腔室2连通,以便将第一交换腔302中的培养液流入至串联连接的后一个培养腔室2中进行培养物的培养。在一些实施例中,每一个培养腔室2中产生的代谢物均可以通过位于其后的第一交换单元3的第二交换腔303排出。
参见图4,在一些实施例中,液体循环模块140还可以包括动力单元5,动力单元5用于控制第一交换腔302或第二交换腔303内培养液的流速。在一些实施例中,动力单元5可以设置于交换单元内部或者外部,以使控制交换单元中的第一交换腔302和/或第二交换腔303内培养液的流速。在一些实施例中,动力单元5也可以设置于任意一个盛放有培养液的腔室(如预混腔室101、培养腔室2等)内部,以实现对该腔室内培养液的流速控制。在一些实施例中,动力单元5也可以设置于任意两个连通的腔室之间,以控制培养液的流速。
在一些实施例中,第一交换单元3的任意一个或多个接口(如第一接口、第二接口或第三接口)都可以设置有动力单元5。在一些实施例中,培养腔室2和第一接口之间可以设置动力单元5,以将培养腔室2内的培养液经第一接口输送至第一交换腔 302内。在一些实施例中,培养腔室2和第二接口之间也可以设置动力单元5,以将第一交换腔302内的培养液经第二接口输送至培养腔室2内。
在一些实施例中,第一交换腔302和预混腔室101连通时,第一交换腔302和预混腔室101之间也可以设置动力单元5,使用动力单元5将第一交换腔302内的培养液输送至预混腔室101内。在一些实施例中,动力单元5可以设置于第二接口处,以便从第二接口控制第一交换腔302向预混腔室101流入液体的开关及流速。
在一些实施例中,交换单元5可以由控制模块150控制。在一些实施例中,控制模块150可以通过控制交换单元5实现对第一接口、第二接口或第三接口的开关控制。在一些实施例中,控制模块150也可以通过交换单元5控制各接口(第一接口、第二接口或第三接口)培养液的流速。
在一些实施例中,第一交换腔302内培养液的流速与第二交换腔303内培养液的流速不同。在一些实施例中,第一交换腔302内培养液的流速低于第二交换腔303内培养液的流速。在一些实施例中,第一交换腔302内培养液的代谢物浓度高于第二交换腔303内培养液的代谢物浓度,代谢物可以通过膜组件301向第二交换腔303渗透,当第二交换腔303内培养液的流速高于第一交换腔302内培养液的流速时,可以有效促进代谢物的渗透作用,提高代谢物在第一交换腔302和第二交换腔303之间的交换效率。在一些实施例中,第一交换腔302内培养液的流速可以高于第二交换腔303内培养液的流速。在一些实施例中,第二交换腔303内培养液的营养成分浓度高于第一交换腔302内培养液的营养成分浓度,营养成分可以通过膜组件301向第一交换腔302渗透,当第一交换腔302内培养液的流速高于第二交换腔303内培养液的流速时,可以有效促进营养成分的渗透作用,提高营养成分在第一交换腔302和第二交换腔303之间的交换效率。
在一些实施例中,第一交换腔302和第二交换腔303内培养液的流速也可以不通过动力单元5控制,而是通过膜组件301的渗透孔的孔径大小进行控制。在一些实施例中,具有不同孔径大小的膜组件301可以使得第一交换腔302和第二交换腔303内的培养液具有不同的流速。在一些实施例中,膜组件301的孔径越大,培养液在第一交换腔302和第二交换腔303之间的渗透速度越快,第一交换腔302和第二交换腔303中培养液的流速越快;膜组件301的孔径越小,培养液在第一交换腔302和第二交换腔303之间的渗透速度越慢,第一交换腔302和第二交换腔303中培养液的流速越慢。
在一些实施例中,培养液循环模块140还可以包括补液单元11。补液单元11可 以用于向其他腔室输送培养物所需的一种或多种组分。在一些实施例中,补液单元11可以与第一交换单元3中的任意腔室(如第一交换腔302、第二交换腔303或第三交换腔304)连通,用于向第一交换单元3的任意腔室输送培养物所需的一种或多种组分。在一些实施例中,第一交换单元3中各腔室(如第一交换腔302、第二交换腔303或第三交换腔304)中的培养液由于渗透作用,培养液中的营养成分往往不能直接满足再次利用的浓度需求,因此需要向这些腔室的培养液中补充营养成分,以使培养液中的营养组分可以更直接地被再次利用。在一些实施例中,控制模块150可以根据第一交换单元3各腔室中培养液的营养成分或代谢物的含量,确定是否通过补液单元11对其输送培养物所需的一种或多种组分。
在一些实施例中,参见图5~图6,补液单元11可以与第二交换腔303连通,补液单元11可以向第二交换腔303输送培养物所需的一种或多种组分。在一些实施例中,补液单元11可以向第二交换腔303输送具有营养成分的营养液。在一些实施例中,补液单元11向第二交换腔303内输送的营养液的各组份能够透过膜组件301渗透至第一交换腔302内。在一些实施例中,补液单元11与第二交换腔303之间设置有动力单元5,使用动力单元5可以控制补液单元11向第二交换腔303内输送营养液的速度。由于输入至第二交换腔303中的营养液所含的营养成分的浓度比第一交换腔302内的培养液的营养成分的浓度大,二者之间的浓度差可以驱使营养液中的营养成分透过膜组件301运动至第一交换腔302内。在一些实施例中,第一交换腔302中的培养液可以输送至培养腔室2内供培养物生长消耗。在一些实施例中,第一交换腔302中的培养液还可以输送至预混腔室101内,在预混腔室101内与补液腔室104输入的营养液以及气体预混控制单元105输入的气体进一步混合形成更适合培养物生长的培养液。
在一些实施例中,由于培养过程中培养液中各个组份的消耗速度不一,可以通过补液单元11定向增加一种或多种组份,保证各个组份均衡的同时减少整体换液步骤,降低成本,降低培养物污染几率。补液单元11向第二交换腔303补液,然后再由第一交换腔302向培养腔室2输送营养液;因此,补液单元11中营养液中营养成分的浓度、营养成分的各组分不必调配得与培养物所需的培养液的浓度和组份相同,补液单元11的体积可以做得更小。同时,预混腔室101灌流速度可以更高而无需担忧由于灌流速度的提升而过快地消耗培养液,提高了培养效率,增加了可以培养的培养物的种类。
在一些实施例中,补液单元11也可以与第一交换腔302连通,补液单元11可以向第一交换腔302输送培养物所需的一种或多种组分。在一些实施例中,当第一交换 腔302内培养液的代谢物浓度高于预设阈值时,补液单元11向第一交换腔302输送具有营养成分的营养液。通过该方式可以使第一交换腔302内培养液的代谢物浓度降低至预设阈值以下,以便将第一交换腔302中的培养液输送至培养腔室2或预混腔室101内进行再次利用。
在一些实施例中,培养液循环模块140还可以包括位于培养腔室2内的第二交换单元,用于对培养腔室2内的培养液进行组分交换,并将培养液的至少部分组分循环利用。
在一些实施例中,培养腔室2可以包括多个培养腔。在一些实施例中,多个培养腔中可以用于构成第二交换单元。在一些实施例中,第二交换单元可以以对盛放培养物的腔室中的培养液进行组分交换,并将组分交换后的部分培养液再次利用。在一些实施例中,组分交换后的部分培养液可以反流至预混腔室101。在一些实施例中,组分交换后的部分培养液也可以反流至用于盛放培养物的培养腔。
在一些实施例中,参见图8~图9,第二交换单元包括设置于培养腔室2中的第一培养腔205、第二培养腔206,以及位于第一培养腔205和第二培养腔206之间的第一膜组件203,培养液的至少部分组分能够经渗透作用通过第一膜组件203。在一些实施例中,第一培养腔205和第二培养腔206可以在培养腔室2中呈上下设置。在一些实施例中,第一培养腔205和第二培养腔206可以在培养腔室2中呈左右设置。在一些实施例中,第一培养腔205和第二培养腔206可以在培养腔室2中呈前后设置。在一些实施例中,第一培养腔205和第二培养腔206可以在培养腔室2中呈内外设置。
在一些实施例中,第二培养腔206用于盛放培养物,并培养培养物。在一些实施例中,第一培养腔205可以与预混腔室101连通,预混腔室101能够向第一培养腔205输送培养液。预混腔室101内的培养液输送至第一培养腔205内之后,培养液内的营养成分可以透过第一膜组件203渗透至第二培养腔206内,供培养物吸收利用。培养物生长产生的代谢废物可以透过第一膜组件203渗透至第一培养腔205内。由于第一培养腔205和第二培养腔206之间设置有第一膜组件203,因此,将培养液输送到第一培养腔205可以避免培养液直接冲刷培养物。在一些实施例中,第一膜组件203的渗透孔的孔径小于培养物单个细胞的外径,使得第一膜组件203还可以截留培养物,使培养物中单个分散的细胞在培养过程中不被冲走,使该系统可以应用于更多种类或方式的培养物的培养。在一些实施例中,第一膜组件203的渗透孔的孔径范围可以是0.0001微米~10微米。在一些实施例中,第一膜组件203的渗透孔的孔径范围可以是0.0001微米 ~100微米。在一些实施例中,第一膜组件203的渗透孔的孔径范围可以是0.0001微米~50微米。在一些实施例中,第一膜组件203的渗透孔的孔径范围可以是0.0001微米~30微米。在一些实施例中,第一膜组件203的渗透孔的孔径范围可以是0.0001微米~20微米。
在一些实施例中,第一培养腔205可以包括进液口和排液口。进液口可以用于接收其他腔室流入的培养液,排液口可以用于向其他腔室输送培养液。在一些实施例中,进液口可以与培养液提供模块120中的预混腔室101连通,使第一培养腔205能够接收培养液提供模块120流入的培养液。在一些实施例中,排液口可以与培养液提供模块120中的预混腔室101可选择性连通,使第一培养腔205中的培养液能够可控地流入培养液提供模块120。
在一些实施例中,可选择性连通可以是基于预设条件选择连通或者不连通。在一些实施例中,预设条件可以是培养液中代谢物的浓度是否高于预设阈值(如5mg/mL)。在一些实施例中,当培养液中代谢物的浓度高于预设阈值时,排液口与培养液提供模块120中的预混腔室101不连通;当培养液中代谢物的浓度不高于预设阈值时,排液口与培养液提供模块120中的预混腔室101连通。在一些实施例中,培养液中代谢物的浓度的预设阈值可以是0.1mg/mL~10mg/mL。
在一些实施例中,可选择性连通可以通过阀门实现。在一些实施例中,第一培养腔205中可以设置有代谢物浓度检测单元,用于检测第一培养腔205中培养液的代谢物浓度。在一些实施例中,控制模块150可以基于代谢物浓度检测单元的检测结果控制第二交换单元打开或关闭排液口(如阀门)。
在一些实施例中,第一培养腔205的进液口和预混腔室101之间设置有动力单元5。在一些实施例中,动力单元5可以控制通过进液口的培养液的流速。在一些实施例中,动力单元5可以将预混腔室101内的培养液输送至第一培养腔205内。在一些实施例中,排液口和预混腔室101之间设置有动力单元5。在一些实施例中,动力单元5可以控制通过排液口的培养液的流速。在一些实施例中,动力单元5可以将第一培养腔205内的培养液输送至预混腔室101内。
在一些实施例中,第二培养腔206内培养的培养物可以是免疫细胞,免疫细胞在第二培养腔206中可以进行悬浮培养。在一些实施例中,免疫细胞可以包括但不限于T细胞,NK细胞等。在一些实施例中,参见图8,第二培养腔206不包括进液口和排液口,第二培养腔206中的培养液通过第一膜组件203的渗透作用进行补充和交换,其 流速较小,可以防止第二培养腔206内的培养物被冲走,并能模拟免疫细胞在病人体内所处的微环境,提高培养物生长的准确度。
在一些实施例中,第二培养腔206和第一培养腔205可以同时培养培养物。在一些实施例中,第二培养腔206和第一培养腔205内培养的培养物可以不同。在一些实施例中,第二培养腔206内培养的培养物可以是免疫细胞,培养方式可以是悬浮培养。在一些实施例中,第一培养腔205内培养的培养物可以是类器官细胞,培养方式可以是支撑培养(如,将培养物放入基质胶中进行培养)。在一些实施例中,参见图8,第二培养腔206不包括进液口和排液口,第二培养腔206内的培养液流速缓慢,可以模拟免疫细胞在病人体内所处的微环境;第一培养腔205包括进液口和排液口,第一培养腔205内的培养液流速较快,可以模拟类器官细胞在病人体内所处的血流环境,提高培养物生长的准确度。
在一些实施例中,第一培养腔205可以包括两个排液口。在一些实施例中,两个排液口的其中一个可以与预混腔室101可选择性连通,另一个排液口可以与收集单元4可选择性连通。收集单元4用于收集第一培养腔205排出的培养液。在一些实施例中,当第一培养腔205内培养液的代谢物浓度高于预设阈值时,控制模块150可以控制第二交换单元打开与收集单元4可选择性连通的排液口,并关闭与预混腔室101可选择性连通的排液口,使第一培养腔205流出的培养液排至收集单元4内。在一些实施例中,当第一培养腔205内培养液的代谢物浓度不高于预设阈值时,控制模块150可以控制第二交换单元关闭与收集单元4可选择性连通的排液口,并打开与预混腔室101可选择性连通的排液口,使第一培养腔205流出的培养液输入至预混腔室101内。在一些实施例中,培养液中代谢物的浓度的预设阈值可以是0.1mg/mL~10mg/mL。
在一些实施例中,第一培养腔205也可以只包括一个排液口,该排液口同时与预混腔室101以及收集单元4可选择性连通。在一些实施例中,排液口可以通过设置三通阀实现同时与预混腔室101以及收集单元4可选择性连通。在一些实施例中,三通阀204的三个接口分别通过管路连通排液口、收集单元4和预混腔室101。通过三通阀的切换可以使第一培养腔205与收集单元4连通,或者使第一培养腔205与预混腔室101连通。在一些实施例中,当第一培养腔205内培养液的代谢物浓度高于预设阈值时,三通阀连接收集单元4连的接口打开,连接预混腔室101的接口关闭,第一培养腔205内的培养液能够经三通阀204,输送至收集单元4内。在一些实施例中,当第一培养腔205内培养液的代谢物浓度不高于预设阈值时,三通阀连接收集单元4连的接口关闭,连接 预混腔室101的接口打开,第一培养腔205内的培养液能够经三通阀204,输送至预混腔室101内。在一些实施例中,在三通阀204和排液口之间可以设置有动力单元5,以控制通过排液口的培养液的流速。
在一些实施例中,第一培养腔205可以包括进液口,第二培养腔206可以包括排液口。在一些实施例中,进液口与培养液提供模块120中的预混腔室101连通,使第一培养腔205可以接收预混腔室101流入的培养液。在一些实施例中,排液口与培养液提供模块120中的预混腔室101可选择性连通。在一些实施例中,排液口还可以与收集单元4可选择性连通。在一些实施例中,当第二培养腔206内的培养液的代谢物浓度不高于阈值时,第二培养腔206中的培养液可以流入预混腔室101。在一些实施例中,当第二培养腔206内的培养液的代谢物浓度高于阈值时,第二培养腔206中的培养液可以流入收集单元4内。
在一些实施例中,第一培养腔205可以包括两个进液口,第二培养腔206可以包括排液口。在一些实施例中,其中一个进液口可以与培养液提供模块120中的预混腔室101连通,使第一培养腔205可以接收预混腔室101流入的培养液。在一些实施例中,另一个进液口可以与第二培养腔206的排液口可选择性连通,使第一培养腔205可以可选择地接收第二培养腔206流入的培养液。在一些实施例中,第二培养腔206的排液口还可以与收集单元4可选择性连通,以便当第二培养腔206中培养液的代谢物浓度高于预设阈值时,将培养液输入至收集单元4。在一些实施例中,第一培养腔205还可以包括排液口,以便当第一培养腔205内培养液过多时,排出培养液,使第一培养腔205内的培养液的输入和输出保持平衡。在一些实施例中,第一培养腔205的排液口可以与收集单元4可选择性连接,当第一培养腔205内培养液过多时,可以输入至收集单元4。
在一些实施例中,第二培养腔206可以与预混腔室101连通,预混腔室101能够向第二培养腔206输送培养液。在一些实施例中,第二培养腔206可以包括进液口,预混腔室101可以通过第二培养腔206的进液口向第二培养腔206输送培养液。在一些实施例中,第二培养腔206可以包括排液口。在一些实施例中,排液口可以同时与收集单元4和预混腔室101可选择性连通。当第二培养腔206中培养液的代谢物浓度高于预设阈值时,培养液可以输入至收集单元4;当第二培养腔206中培养液的代谢物浓度不高于预设阈值时,培养液可以输入至预混腔室101。在一些实施例中,第一培养腔205可以包括进液口和排液口。在一些实施例中,第一培养腔205的进液口可以与预混腔室 101连通,第一培养腔205的排液口可以与收集单元4连通。在一些实施例中,通过预混腔室101向第一培养腔205输送培养液,可以使第一培养腔205中培养液的营养成分浓度高于第二培养腔206中培养液的营养成分浓度,第一培养腔205中培养液的代谢物浓度低于第二培养腔206中培养液的代谢物浓度,从而使第一培养腔205中培养液的营养成分更易渗透至第二培养腔206的培养液中,第二培养腔206中培养液的代谢物更易渗透至第一培养腔205的培养液中。
在一些实施例中,参见图12,第一培养腔205的进液口也可以不与预混腔室101连通,而是与补液单元11连通。在一些实施例中,补液单元能够向第一培养腔205内输送含有营养成分的营养液。由于补液单元11中营养液的浓度、组分不必调配得与培养物所需的培养液的浓度和组份相同,因此,相比于预混腔室101,补液单元11的体积可以做得更小,使体外生命培养系统100的成本更低。
在一些实施例中,补液单元11可以与第一培养腔205的进液口连通,补液单元11内存有营养液,补液单元11可以向第一培养腔205输送营养液。在一些实施例中,补液单元11与第一培养腔205与补液单元11设置有动力单元5,动力单元5可以控制补液单元11向第一培养腔205中输送营养液的速度。在一些实施例中,第一培养腔205内的营养液能够透过第一膜组件203渗透至第二培养腔206内。由于营养液中营养成分的浓度比第二培养腔206内的培养液中营养成分的浓度大,二者之间的浓度差可以驱使营养液中的组分透过第一膜组件203运动至第二培养腔206内,对第二培养腔206内的培养物生长所需的营养组分进行补充。
在一些实施例中,第一培养腔205和第二培养腔206的功能及结构可以互换。在一些实施例中,第一培养腔205和第二培养腔206与体外生命培养系统100的其他组件之间的连接关系也可以互换。在一些实施例中,参见图12,第一培养腔205可以用于放置并培育培养物,第二培养腔206用于与第一培养腔205进行培养液组分交换。在一些实施例中,第二培养腔206可以包括进液口和排液口。在一些实施例中,补液单元11可以与第二培养腔206的进液口连通,用于向第二培养腔206内输送营养液,收集单元4可以与第二培养腔206的排液口连通,用于收集第二培养腔206排出的培养液。
在一些实施例中,参见图13~图16,第一培养腔205内设置有第三膜组件207,第三膜组件207将第一培养腔205分割为第一子培养腔2051和第二子培养腔2052,第一子培养腔2051和第二子培养腔2052可以通过第三膜组件207进行组分交换。
在一些实施例中,第三膜组件207还可以用于截留和/或透过培养液内的组份。 在一些实施例中,第三膜组件207还能够截留培养物,使培养物单个分散的细胞不被冲走,使该系统可以应用于更多种类或方式的培养物培育。
在一些实施例中,第二培养腔206可以与第一子培养腔2051相邻设置,并通过第一膜组件203进行组分交换。在一些实施例中,第二培养腔206可以与第二子培养腔2052相邻设置,并通过第一膜组件203进行组分交换。
在一些实施例中,第二培养腔206可以用于放置并培育培养物。在一些实施例中,第一子培养腔2051可以与预混腔室101连通,接收预混腔室101中流入的培养液。在一些实施例中,第一子培养腔2051包括第一进液口,用于接收流入第一子培养腔2051中的培养液。在一些实施例中,预混腔室101与第一进液口连通。由于培养过程中第二培养腔206内的培养物的消耗,第二培养腔206内的培养液内培养物所需的营养成分的浓度要比第一子培养腔2051低,代谢物的浓度要比第一子培养腔2051内的高;第一子培养腔2051内的培养液中的营养成分会透过第一膜组件203渗透至第二培养腔206内,以供培养物吸收利用,第二培养腔206内的代谢废物会透过第一膜组件203渗透至第一子培养腔2051内。在一些实施例中,第一子培养腔2051还包括第一排液口,用于从第一子培养腔2051流出培养液。在一些实施例中,第一排液口可以与第二培养腔206可选择性连通,当第一子培养腔2051中培养物的代谢物浓度不高于预设阈值时,打开连通通道,当第一子培养腔2051中培养物的代谢物浓度高于预设阈值时,关闭连通通道。在一些实施例中,第一排液口也可以与预混腔室101可选择性连通,当第一子培养腔2051中培养物的代谢物浓度不高于预设阈值时,打开连通通道,当第一子培养腔2051中培养物的代谢物浓度高于预设阈值时,关闭连通通道。在一些实施例中,第一排液口还可以与收集单元4可选择性连通,当第一子培养腔2051中培养物的代谢物浓度不高于预设阈值时,关闭连通通道,当第一子培养腔2051中培养物的代谢物浓度高于预设阈值时,打开连通通道。由于第一子培养腔2051内的培养液的营养成分渗透至第二培养腔206,并且混入了来自第二培养腔206的代谢物,第一子培养腔2051内的培养液的营养成分的浓度要比第二子培养腔2052低,代谢物的浓度要比第二子培养腔2052内的高;第二子培养腔2052内的培养液中的营养成分会透过第三膜组件207渗透至第一子培养腔2051内,第一子培养腔2051内的代谢废物会透过第三膜组件207渗透至第二子培养腔2052内。在一些实施例中,第二子培养腔2052可以包括第二排液口,用于从第二子培养腔2052流出培养液。在一些实施例中,第二排液口可以与收集单元4连通。
在一些实施例中,第二子培养腔2052可以包括第二进液口,用于向第二子培养 腔2052流入培养液。在一些实施例中,第二进液口可以与预混腔室101连通。在一些实施例中,第二进液口也可以不与预混腔室101连通,而是与补液单元11连通。补液单元11可以通过第二进液口向第二子培养腔2052输送含有培养物所需的一种或多种组分(如营养成分)的营养液。
在一些实施例中,补液单元11与第一子培养腔2051连通,用于向第一子培养腔2051输送培养物所需的一种或多种组分,以补充第一子培养腔2051内的培养液中的一种或多种营养组分,保证培养液中的一种或多种营养组分完整。
在一些实施例中,补液单元11也可以与第二子培养腔2052连通,用于向第二子培养腔2052输送培养物所需的一种或多种组分。在一些实施例中,营养液的浓度比第二子培养腔2052内的培养液的浓度大,二者之间的浓度差可以驱使营养液中的组分透过第三膜组件207运动至第一子培养腔2051内,对第一子培养腔2051内的培养液内培养物生长所需的营养组分进行补充。通过向第二子培养腔2052输送营养液,可以降低第二子培养腔2052内培养液的代谢物浓度,促进第一子培养腔2051内的代谢物向第二子培养腔2052渗透,提高组分交换效率。
在一些实施例中,补液单元11可以同时第一子培养腔2051和第二子培养腔2052连通,同时向第一子培养腔2051和第二子培养腔2052输送培养物所需的一种或多种组分。
在一些实施例中,第二进液口与预混腔室101或补液单元11之间可以设置动力单元5。在一些实施例中,动力单元5可以控制流体通道中培养液或营养液的流速。在一些实施例中,动力单元5也可以打开或关闭流体通道。在一些实施例中,当第二子培养腔2052中培养液的代谢物浓度高于预设阈值时,动力单元5可以打开流体通道,使预混腔室101或补液单元11向第二子培养腔2052输入一定流量(例如,100mL等)的培养液或营养液,对第二子培养腔2052中培养液的代谢物浓度进行稀释。在一些实施例中,当第二子培养腔2052中培养液的代谢物浓度不高于预设阈值时,动力单元5可以关闭流体通道。
在一些实施例中,第二排液口与收集单元4之间也可以设置动力单元5,用于控制第二排液口的培养液流速。在一些实施例中,第一进液口与预混腔室101之间也可以设置动力单元5。在一些实施例中,培养液提供模块120与第一进液口之间设置有第一动力单元,第二排液口与收集单元之间设置有第二动力单元。其中,第一动力单元和第二动力单元被配置为使得第一子培养腔2051和第二子培养腔2052中培养液的流速 不同。
在一些实施例中,第二培养腔206和第二子培养腔2052的位置、功能及结构可以互换。在一些实施例中,参见图17~图20,第二子培养腔2052可以用于放置并培育培养物。在一些实施例中,由于培养过程中第二子培养腔2052内的培养物的消耗,第二子培养腔2052内的培养液内培养物所需的组份的浓度要比第一子培养腔2051低,培养物代谢产生的废物的浓度要比第一子培养腔2051内的高;第一子培养腔2051内的培养液中的有用组份会透过第三膜组件207渗透至第二子培养腔2052内,以供培养物吸收利用,第二子培养腔2052内的代谢废物会透过第三膜组件207渗透至第一子培养腔2051内。在一些实施例中,由于第一子培养腔2051内的培养液的营养成分渗透至第二子培养腔2052,并且混入了来自第二子培养腔2052的代谢物,第一子培养腔2051内的培养液内培养物所需的营养成分的浓度要比第二培养腔206低,代谢物的浓度要比第二培养腔206内的高;第二培养腔206内的培养液中的营养成分会透过第一膜组件203渗透至第一子培养腔2051内,第一子培养腔2051内的代谢废物会透过第一膜组件203渗透至第二培养腔206内。在一些实施例中,补液单元11可以与第二培养腔206连通。在一些实施例中,补液单元11也可以与第一子培养腔2051连通。
在一些实施例中,参见图20,第一子培养腔2051和第二子培养腔2052均通过第一膜组件203与第二培养腔206连通。补液单元11与第二培养腔206连通,补液单元11内存有营养液,用于向第二培养腔206提供营养液。在一些实施例中,在第二培养腔206和补液单元11设置有动力单元5,使用动力单元5来输送营养液。第二培养腔206内的营养液能够透过第一膜组件203渗透至第一培养腔205内,具体渗透至第一子培养腔2051和第二子培养腔2052内。由于补液单元11补充的营养液中营养成分的浓度比第一子培养腔2051和第二子培养腔2052内的培养液中营养成分的浓度大,二者之间的浓度差可以驱使营养液中的营养成分透过第一膜组件203运动至第一子培养腔2051和第二子培养腔2052内,对第一子培养腔2051和第二子培养腔2052内的培养液内培养物生长所需的营养成分进行补充。在一些实施例中,第二培养腔206与收集单元4连通。由于第一培养腔205内培养液中的代谢物与第二培养腔206内培养液中的代谢物的浓度差,第一培养腔205(包括第一子培养腔2051和第二子培养腔2052)内的培养液中所含的培养物代谢产生的废物可以通过第一膜组件203渗透至第二培养腔206内,第二培养腔206与收集单元4相连通,可以将第二培养腔206内培养物代谢产生的废物排至收集单元4内。在一些实施例中,在第二培养腔206内培养物代谢废物浓度过 高或者营养液内的培养物所需的营养组分浓度过低时排出第二培养腔206内的营养液,然后使用补液单元11补充新的营养液。第一子培养腔2051或第二子培养腔2052能够向预混单元1输送培养液。在一些实施例中,第一子培养腔2051的培养液能够输送至预混腔室101内,可以使第一子培养腔2051的培养液能够输送至预混腔室101内,使之与气体进行混合补充氧气,并可以与二氧化碳或碱液混合调节pH值,使预混腔室101流入第一子培养腔2051内的培养液的溶氧量和pH值满足培养物的生长需求。
在一些实施例中,参见图21,第一子培养腔2051可以用于放置并培育培养物。第一子培养腔2051内培养液中的营养成分可以通过第三膜组件207渗透至第二子培养腔2052内,培养液中的代谢物可以透过第一膜组件203渗透至第二培养腔206内。
第三膜组件207用于截留和/或透过培养液内的组份,第三膜组件207还能够截留培养物,具体截留培养物的细胞,使培养物单个分散的细胞不被冲走,使该系统可以应用于更多的培养物的培养。由于第一子培养腔2051内的培养物对营养成分的消耗,第一子培养腔2051内的培养液内培养物所需的组份(如营养成分)的浓度要比第二子培养腔2052低,培养物代谢产生的代谢物的浓度要比第二子培养腔2052内的高;第二子培养腔2052内的培养液中的营养成分会透过第三膜组件207渗透至第一子培养腔2051内,以供培养物吸收利用,第一子培养腔2051内的代谢物会透过第三膜组件207渗透至第二子培养腔2052内。
第一子培养腔2051通过第一膜组件203与第二培养腔206连通。补液单元11与第二培养腔206连通,补液单元11内存有营养液,用于向第二培养腔206提供营养液。在一些实施例中,在第二培养腔206和补液单元11设置有动力单元5,使用动力单元5来输送营养液。第二培养腔206内的营养液能够透过第一膜组件203渗透至第一子培养腔2051内。由于补充的营养液中营养成分的浓度比第一子培养腔2051内的培养液中营养成分的浓度大,二者之间的浓度差可以驱使营养液中的营养成分透过第一膜组件203运动至第一子培养腔2051内,对第一子培养腔2051内的培养液内培养物生长所需的营养成分进行补充。
在一些实施例中,第二培养腔206与收集单元4连通。由于浓度差,第一子培养腔2051内的培养液中所含的培养物代谢产生的代谢物可以通过第一膜组件203渗透至第二培养腔206内,第二培养腔206与收集单元4相连通,可以将第二培养腔206内培养物代谢产生的代谢物排至收集单元4内。在一些实施例中,在第二培养腔206内培养物代谢物浓度过高或者营养液内的营养成分浓度过低时,排出第二培养腔206内的培 养液,然后使用补液单元11补充新的液体。
在其它实施例中,还可以是第一培养腔205和第二培养腔206均与收集单元4相连通,即第一子培养腔2051和/或第二子培养腔2052与收集单元4连通,第二培养腔206与收集单元4连通。在一些实施例中,第一子培养腔2051和第二培养腔206均与收集单元4相连通。第一子培养腔2051内的培养液中所含的培养物代谢产生的代谢物可以通过第一膜组件203渗透至第二培养腔206内。第一子培养腔2051和第二培养腔206内的培养物产生的代谢物,均可以被排至收集单元4内,并在第一子培养腔2051和第二培养腔206内补充新的液体。
第一子培养腔2051和/或第二子培养腔2052能够向预混单元1输送培养液,作为优选,本实施例中,第一子培养腔2051和第二培养腔206内的培养液能够输送至预混腔室101内。可以使第一子培养腔2051和第二子培养腔2052内的培养液能够输送至预混腔室101内,使之与气体进行混合补充氧气,并可以与二氧化碳或碱液混合调节pH值,使预混腔室101流入第二子培养腔2052内的培养液的溶氧量和pH值满足培养物的生长需求。
在其它实施例中还可以是,第二培养腔206内的培养液能够输送至预混腔室101内,以使培养液汇流至预混腔室101内,进行再次利用;又或者是,如图21所示,第一子培养腔2051的培养液能够输送至预混腔室101内,以使培养液汇流至预混腔室101内,进行再次利用。
在一些实施例中,第一子培养腔2051内的培养液能够输送至第二子培养腔2052内,在一些实施例中,体外生命培养系统100还包括三通阀204,三通阀204的三个接口分别通过管路连通第一子培养腔2051、第二子培养腔2052和预混腔室101。可以通过三通阀204的调节,来使第一子培养腔2051内的培养液输送至第二子培养腔2052内,或者,第二子培养腔2052内的培养液输送至预混腔室101内,又或者,第一子培养腔2051内的培养液输送至预混腔室101内。
由于培养过程中培养液中各个组份的消耗速度不一,通过补液单元11定向增加一种或多种组份,保证各个组份均衡的同时减少整体换液步骤,降低成本,降低培养物污染几率。补液单元11向第二培养腔206补液,然后再由第二培养腔206向第一培养腔205输送营养液;因此,补液单元11中营养液的浓度、组分不必调配得与培养物所需的培养液的浓度和组份相同,补液单元11的体积可以做得更小。同时,预混腔室101灌流速度可以更高而无需担忧由于灌流速度的提升而过快地消耗培养液,提高了培养效 率,增加了可以培养的培养物的种类。
在一些实施例中,可以检测第一培养腔205(如第一子培养腔2051、第二子培养腔2052)流出的培养液中各组分的浓度,针对性地通过补液单元11补充。浓度检测可以采用取样检测,也可以采用原位检测的方式(如红外光谱技术、荧光检测技术)。在一些实施例中,体外生命培养系统100还可以基于上述的浓度检测结果自动添加营养成分至补液单元11中。
在一些实施例中,当培养腔室2具有多个培养腔时,加样口201和取样口202可以设置于放置培养物的腔室上。在一些实施例中,培养物放置于第一培养腔205,加样口201和取样口202可以设置于第一培养腔205上。在一些实施例中,培养物放置于第二培养腔206,加样口201和取样口202可以设置于第二培养腔206上。在一些实施例中,培养物放置于第一子培养腔2051,加样口201和取样口202可以设置于第一子培养腔2051上。在一些实施例中,培养物放置于第二子培养腔2052,加样口201和取样口202可以设置于第二子培养腔2052上。
在一些实施例中,培养液循环模块140可以包括位于培养腔室2外的第一交换单元3和位于培养腔室2内的第二交换单元。在一些实施例中,关于第一交换单元3的具体结构,可以参见图3~图7的相关描述,此处不再赘述。
在一些实施例中,参见图10-图11,第一交换单元3包括第一交换腔302和第二交换腔303,第一交换腔302和第二交换腔303之间设置有膜组件301。培养腔室2包括第一培养腔205和第二培养腔206,第一培养腔205和第二培养腔206之间设置有第一膜组件203,培养液的至少部分组分能够经渗透作用通过第一膜组件203。其中,第二交换单元对应于第一培养腔205,第二培养腔206用于放置培养物。
在一些实施例中,第一交换腔302与第一培养腔205连通,用于接收第一培养腔205排出的培养液。第一交换腔302与第二培养腔206和/或培养液提供模块120连通,用于向第二培养腔206和/或培养液提供模块120流入培养液。
在一些实施例中,第一交换腔302与第二培养腔206连通,用于接收第二培养腔206排出的培养液。第一交换腔302与第二培养腔206和/或培养液提供模块120连通,用于向第二培养腔206和/或培养液提供模块120流入培养液。
在一些实施例中,第一培养腔205或第二培养腔206可以包括排液口。在一些实施例中,第一培养腔205或第二培养腔206的排液口和预混单元1可以与第一交换腔302连通。在一些实施例中,第一交换腔302上设置有第一接口和第二接口,第一培养 腔205或第二培养腔206的排液口连通于第一接口,预混单元1与第二接口相连通。第一培养腔205或第二培养腔206内的培养液经排液口和第一接口能够输送至第一交换腔302内。在一些实施例中,为了控制第一交换腔302的第一接口和第一培养腔205或第二培养腔206的排液口之间的培养液的输送速度和输送量,可以在第一交换腔302的第一接口和排液口之间设置动力单元5,使用动力单元5将第一培养腔205内的培养液输送至第一交换腔302内。第一交换腔302内的培养液经第二接口能够流至预混腔室101内,使第一交换腔302内的培养液中的营养成分被循环利用。在一些实施例中,为了控制第一交换腔302的第二接口和预混腔室101之间的培养液的输送速度和输送量,可以在第一交换腔302的第二接口和预混腔室101之间设置有动力单元5,使用动力单元5将第一交换腔302内的培养液经第二接口输送至预混腔室101内。
在一些实施例中,收集单元4可以与第二交换腔303连通,收集单元4用于收集第二交换腔303排出的培养液。在一些实施例中,第二交换腔303上设置有第三接口和第四接口,第四接口连通于收集单元4。收集单元4与第二交换腔303连通,用于收集第二交换腔303内的培养液。在一些实施例中,收集单元4和第二交换腔303之间设置有动力单元5,动力单元5用于将第二交换腔303内的培养液输送至收集单元4内。在一些实施例中,为了控制第二交换腔303和收集单元4之间的培养液的输送速度和输送量,可以在第二交换腔303和收集单元4之间设置有动力单元5,使用动力单元5来将第二交换腔303内的培养液输送至收集单元4。
在一些实施例中,补液单元11与第二交换腔303相连通。在一些实施例中,第三接口连通于补液单元11。补液单元11用于向第二交换腔303输送补充营养液,第二交换腔303内的补充营养液内至少部分组份能够透过膜组件301渗透至第一交换腔302内。补液单元11与第二交换腔303之间设置有动力单元5,根据第二交换腔303和补液单元11的相对设置位置以及补充营养液的输送速度和输送量的需求可以决定是否在补液单元11和第二交换腔303之间设置有动力单元5,使用动力单元5来输补充营养液。补充营养液的营养成分浓度比第一交换腔302内的培养液的营养成分浓度大,二者之间的浓度差可以驱使补充营养液中的营养成分透过膜组件301运动至第一交换腔302内,然后再输送至预混腔室101内补充营养液,在预混腔室101内营养液和气体混合形成培养液。
由于培养过程中培养液中各个组份的消耗速度不一,本实施例的方案可通过补液单元11定向增加一种或多种组份,保证各个组份均衡的同时减少整体换液步骤,降 低成本,降低培养物污染几率。补液单元11向第二交换腔303补液,然后再由第一交换腔302向培养腔室2输送营养液;因此,补液单元11中营养液的浓度、组分不必调配得与培养物所需的培养液的浓度和组份相同,补液单元11的体积可以做得更小。同时,预混腔室101灌流速度可以更高而无需担忧由于灌流速度的提升而过快地消耗培养液,提高了培养效率,增加了可以培养的培养物的种类。
在培养过程中,为了控制培养腔室2中培养液的温度,以便在不同的温度下对培养物执行不同的操作,在一些实施例中,培养模块110可以包括温控单元6。在一些实施例中,温控单元6可以用于控制培养腔室2内的温度至第一预设温度。第一预设温度可以对应于培养物支撑结构的液化温度。液化温度是指培养物支撑结构从固体开始变成液体时的温度。在一些实施例中,第一预设温度的取值范围可以为0℃~40℃;在一些实施例中,第一预设温度的取值范围可以为0℃~35℃;在一些实施例中,第一预设温度的取值范围可以为0℃~30℃;在一些实施例中,第一预设温度的取值范围可以为0℃~25℃;在一些实施例中,第一预设温度的取值范围可以为0℃~20℃;在一些实施例中,第一预设温度的取值范围可以为0℃~15℃;在一些实施例中,第一预设温度的取值范围可以为0℃~10℃;在一些实施例中,第一预设温度的取值范围可以为0℃~5℃。在一些实施例中,培养物支撑结构可以用于形成培养物的网络支撑,利于培养物的3D生长。在一些实施例中,培养物支撑结构可以包括但不仅限于基质胶和人工合成凝胶。在一些实施例中,基质胶可以是从富含胞外基质蛋白的EHS小鼠肿瘤中提取出基底膜基质。在一些实施例中,基质胶的液化温度范围可以是2℃~-8℃,当温度由高温降低至2℃~-8℃时,基质胶由固态转变为液态,当温度由低温升高至2℃~-8℃时,基质胶固化,基于基质胶的组成及特性,可以对体外模拟细胞体内生长环境提供非常重要的支持。在一些实施例中,人工合成凝胶是通过人工合成的凝胶,人工合成凝胶的液化温度可以是室温25℃,当温度由高温降低至25℃时,人工合成凝胶由固态转变为液态,当温度由低温升高至25℃时,人工合成凝胶固化。在一些实施例中,人工合成凝胶可以包括但不限于聚N-异丙基丙烯酰胺和聚乙二醇的嵌段共聚物(PNIPAM-PEG)、聚乙二醇(PEG)和聚乳酸-羟基乙酸共聚物(PLGA)的嵌段共聚物(PEG-PLGA)、PLGA-PEG-PLGA三嵌段聚合物、PCLA–PEG–PCLA三嵌段聚合物(PCLA为ε-己内酯与L-丙交酯共聚物、PCLA-PEG-PCLA接枝RGD多肽。
在一些实施例中,温控单元6还可以用于控制培养腔室2内的温度在第一预设温度和第二预设温度之间转换。第二预设温度可以对应于培养物的生理温度。生理温度 是指适合生物生长的温度。在一些实施例中,第二预设温度的取值范围可以为20℃~40℃;在一些实施例中,第二预设温度的取值范围可以为25℃~40℃;在一些实施例中,第二预设温度的取值范围可以为30℃~40℃。在一些实施例中,温控单元6可以控制腔室内的温度从第一预设温度提高至第二预设温度。在一些实施例中,温控单元6可以控制腔室内的温度从第二预设温度降低至第一预设温度。在一些实施例中,第一预设温度可以低于第二预设温度。
在一些实施例中,培养液提供模块120也可以包括温控单元6。在一些实施例中,预混腔室101用于混合营养液和气体以形成培养液,温控单元6可以用于控制预混腔室101内的温度至第二预设温度,以使培养液的温度升至培养物适合生长的生理温度,以进行培养物的培养。
在一些实施例中,温控单元6可以用于控制预混腔室101和培养腔室2的温度。在一些实施例中,温控单元6可以用于加热预混腔室101和培养腔室2的温度。温控单元6可以在预混腔室101和培养腔室2的温度过低时加热预混腔室101和培养腔室2,使之温度升高,以使预混腔室101内的培养液和培养腔室2内的培养液的温度升至培养物适合生长的生理温度,以进行培养物的培养。在一些实施例中,温控单元6可以用于冷却预混腔室101和培养腔室2的温度。温控单元6可以在预混腔室101和培养腔室2的温度过高时冷却预混腔室101和培养腔室2,使之温度降低,以使预混腔室101内的培养液和培养腔室2内的培养液的温度降至培养物适合生长的生理温度,以进行培养物的培养。在一些实施例中,温控单元6可以用于控制控制预混腔室101和培养腔室2的温度在第一预设温度和第二预设温度之间转换。在一些实施例中,在培养结束之后,需要进行基质胶去除并收集培养物时,温控单元6可以控制培养腔室2内的培养液的温度至第一预设温度,待培养物支撑结构液化后可以通过取样口202将培养物取出。
在一些实施例中,温控单元6可以包括制冷组件和温度控制模块,其中,制冷组件与温度控制模块电连接。在一些实施例中,温度控制模块可以用于控制制冷组件冷却培养腔室2内的温度至第一预设温度。在一些实施例中,培养腔室2内的温度可以在制冷组件停止工作时恢复环境温度。在一些实施例中,环境温度可以是指室温(例如,25℃)。在一些实施例中,环境温度可以与培养物在设定的培养环境下的生理温度相同,其取值范围等于培养物的生理温度的取值范围。在一些实施例中,环境温度可以与第一预设温度相同,通过设置制冷组件可以加快冷却培养腔室2内的温度的速度,提高了冷却的效率。在一些实施例中,可以人工设定温度控制模块控制制冷组件冷却培养腔室2 内的温度至第一预设温度的控温时长,例如,设定温度控制模块在30分钟内冷却培养腔室2内的温度至第一预设温度。在一些实施例中,控温时长可以根据每天的时间变化而设置。在一些实施例中,当处于一天中温度较高的时段时,控温时长设置得比温度较低时更长,以便培养腔室2内的温度能够更快的降低到第一预设温度。
在一些实施例中,温控单元6还可以包括制热组件,其中,制热组件与温度控制模块电连接。在一些实施例中,温度控制模块可以用于控制制热组件加热腔室。具体的,温度控制模块可以用于控制制热组件加热培养腔室2内的温度至第二预设温度。在一些实施例中,培养腔室2内的温度可以在制热组件停止工作时恢复环境温度。在一些实施例中,环境温度可以与第二预设温度相同,通过设置制热组件可以加快加热培养腔室2内的温度的速度,提高了升温的效率。在一些实施例中,可以人工设定温度控制模块控制制热组件加热培养腔室2内的温度至第二预设温度的工作时长,例如,设定温度控制模块在30分钟内加热培养腔室2内的温度至第二预设温度。
在一些实施例中,参见图22~图24,制热组件可以包括多个制热片61。在一些实施例中,制冷组件可以包括多个制冷片62。
在一些实施例中,预混腔室101和培养腔室2的外壁上均可以设置有制热组件和制冷组件。在一些实施例中,制热组件包括多个制热片61,制热片61设置在培养腔室2的外壁上。制热片61可以是透明加热板、金属加热板、半导体加热板、加热毯或加热片中的至少一种。
在一些实施例中,制冷片62可以设置在培养腔室2的外壁上。制冷片62可以是半导体制冷片,也可以是其他制冷材料。
在一些实施例中,制热片61和制冷片62可以分别位于培养腔室2的不同位置。例如,制热片61可以位于培养腔室2底部,制冷片62可以位于培养腔室2侧面。又例如,制热片61可以位于培养腔室2侧面,制冷片62可以位于培养腔室2底部。再例如,制热片61和制冷片62还可以位于培养腔室2的相同位置,比如,二者均位于培养腔室2的相同的侧面或底部。
在一些实施例中,多个制热片61的能量可以传递至多个制冷片62。
在一些实施例中,制热片61和制冷片62可以间隔设置于培养腔室2相同的侧面或底壁上。具体的,多个制热片61间隔设置,多个制冷片62间隔设置,相邻两个制热片61之间设置有一个制冷片62,相邻两个制冷片62之间设置有一个制热片61。在一些实施例中,制热片61可以和与其相邻的制冷片62紧密接触,制冷片62可以和与 其相邻的制热片61紧密接触,可以使多个制热片61的能量能够传递至多个制冷片62。
在一些实施例中,制热片61和制冷片62可以相互嵌入。具体的,制热片61和制冷片62均由导热性能良好的材料加工而成,结构上加工成可镶嵌结构,可以使制热片61嵌于制冷片62之间,制冷片62嵌于制热片61之间,从而实现能量在制热片与制冷片之间传递。
在一些实施例中,制热片61和制冷片62可以共同加热或冷却培养腔室2。在一些实施例中,需要对培养腔室2加热升温时,制热片61在温度控制模块的控制下加热至指定温度,由于制冷片62为导热材料,且制热片61的热量可以传递至制冷片62,在对培养腔室2加热的同时加热制冷片62,制冷片62的温度迅速升至指定温,然后由制热片61和制冷片62共同加热培养腔室2;需要对培养腔室2冷却降温时,制冷片62在温度控制模块的控制下降温至指定温度,由于制热片61为导热材料,且制热片61的热量可以传递至制冷片62,制冷片62对培养腔室2冷却降温的同时对制热片61降温,使之温度迅速降至指定温度,然后由制冷片62和制热片61共同冷却培养腔室2。制热片61和制冷片62交错设置,且可以传递热量,可以使二者共同加热和冷却培养腔室2,增大了热交换面积,提高了热交换效率。
在一些实施例中,制冷组件还可以包括至少一个低温培养液装置。低温培养液装置可以用于向腔室注入低温培养液,使腔室内温度冷却至第一预设温度。在一些实施例中,制热组件还可以包括至少一个热辐射发射装置。热辐射发射装置可以用于向腔室发射热辐射,使腔室内温度加热至第二预设温度。
在一些实施例中,低温培养液装置和热辐射发射装置可以分别位于培养腔室2的不同位置。例如,低温培养液装置可以位于培养腔室2内部,热辐射发射装置可以位于培养腔室2侧面。又例如,低温培养液装置可以位于培养腔室2顶部,热辐射发射装置可以位于培养腔室2底部。在一些实施例中,低温培养液装置和热辐射发射装置还可以位于培养腔室2的相同位置,比如,二者均位于培养腔室2的相同的侧面或顶部。
在一些实施例中,温控单元6还可以包括温度检测件63。温度检测件63可以为温度传感器。温度检测件63与温度控制模块电连接,温度检测件63可以设置在培养腔室2的内壁上,也可以设置在培养腔室2的外壁上。
在一些实施例中,温度检测件63可以用于检测培养腔内的培养液的温度,并将检测值反馈至温度控制模块,温度控制模块根据温度检测件63所检测的温度值与实际所需要的设定值进行比较,以控制制热组件加热温度培养腔室2或控制制冷组件冷却培 养腔室2。在一些实施例中,当温度检测件63所检测的温度值低于实际所需要的设定值时,温度控制模块控制制热组件加热温度培养腔室2至设定值。在一些实施例中,当温度检测件63所检测的温度值高于实际所需要的设定值时,温度控制模块控制制热组件冷却温度培养腔室2至设定值。
预混腔室101上的制热组件、制冷组件及温度检测件63的结构和设置方式与培养腔室2的相同,在此不再赘述。
在一些实施例中,参见图25~图27,培养模块110还可以包括显微观察模块8。显微观察模块8可以观察记录培养腔室2中培养物的生长情况。在一些实施例中,根据培养物的生长情况,可以对培养液提供模块120与液体输出模块130进行操作从而对培养腔室2内的培养液进行调节。在一些实施例中,显微观察模块8可以固定设置于培养腔室2外部,并能够对培养腔室2进行观察。
在一些实施例中,显微观察模块8可以包括观察组件,观察组件用于观察培养腔室2内的培养物。在一些实施例中,显微观察模块8还可以包括载物台801和机架802。培养腔室2放置在载物台801上,以便通过观察组件对培养腔室2中的培养物进行观察。机架802用于提供安装固定载物台801的平台。
在一些实施例中,观察组件可以包括物镜803与目镜804,观察者可以通过物镜803和目镜804观察培养物。在一些实施例中,物镜803可以设置在机架802上,其能够沿竖直方向运动。在一些实施例中,目镜804也可以设置在机架802上,通过目镜804可以观察培养腔室2内的培养物。
机架802上设置有第一机械轨道805,在第一机械轨道805上滑动地设置有第二机械轨道806。在一些实施例中,第一机械轨道805和第二机械轨道806相互垂直设置,且均位于水平面内。载物台801滑动地设置在第二机械轨道806上,通过载物台801相对于第二机械轨道806滑动及第二机械轨道806相对于第一机械轨道805滑动可以实现载物台801在水平面内任意位置的调节,以便于物镜803正对地观察培养腔室2,使用目镜804聚焦到培养腔室2内的培养物,观察培养物。在观察过程中如需记录图像数据,可以使用相机807拍照记录图像数据。在一些实施例中,在观察过程中可以摇晃培养腔室2,使培养物处于比较好的观察状态,以便于进行观察。
在一些实施例中,观察组件可以包括图像获取装置,图像获取装置用于获取培养物的图像数据。图像获取装置主要包括相机807(如CCD或CMOS相机),在观察过程中如需记录图像数据,可以使用相机807拍照记录图像数据。
在一些实施例中,请参照图2-12以及图29,培养模块110还包括混匀模块7,混匀模块7用于晃动培养腔室2内的培养液,从而为培养液与培养物提供更加充分的交换机会,提升培养物对培养液的吸收效率。
在一些实施例中,混匀模块7可以包括但不限于摇晃结构和搅拌结构的一种或多种。在一些实施例中,摇晃结构可以是能够摇晃培养腔室2的结构。在一些实施例中,搅拌结构可以是能够对培养腔室2中的培养液进行搅拌的结构。在一些实施例中,混匀模块可以包括摇晃结构。在一些实施例中,摇晃结构可以与培养腔室2相连接。在一些实施例中,摇晃结构可以通过手动控制。在一些实施例中,用户可以通过观察组件观察培养腔室2中培养物的生长情况,并根据培养物的生长情况手动控制摇晃结构对培养腔室2进行晃动。
在一些实施例中,摇晃结构也可以通过自动控制。在一些实施例中,混匀模块7还可以包括由处理器控制的驱动件,处理器可以根据输入的信息(如,观察组件获取的图像数据),控制驱动件驱动摇晃结构对培养腔室2进行摇晃。在一些实施例中,处理器可以根据观察结果,在培养物生长不充分时使培养腔室2开始摇晃。在一些实施例中,培养物生长不充分可以是培养物中的一部分或全部未达到预定的生长成熟度。在一些实施例中,处理器可以控制摇晃结构在培养物的整个培养过程中持续摇晃培养腔室2,并根据观察结果调整摇晃的速度和幅度。在一些实施例中,摇晃结构的摇晃幅度及速度可以与向培养腔室2内输送培养液的速度相配合。较高的培养液输送速度配合小幅度的摇晃能够促进培养液与培养物的交换机会,但会造成培养液过分消耗。较低的培养液输送速度配合大幅度的机械摇晃,可以同时达到更新培养液、增加营养液与培养物交换机会,以及促进培养腔室2中各腔室之间营养物质交换的目的。
在一些实施例中,摇晃结构可以包括摆动式摇床。在一些实施例中,摆动式摇床可以是放置培养腔室2的载物台801。在一些实施例中,培养腔室2可以位于摇床(如载物台801)中心,摇床的宽度与培养腔室2的宽度相匹配。在一些实施例中,培养腔室2放入摆动式摇床后可以随摆动式摇床运动,即培养腔室2与摆动式摇床之间无相对运动。在一些实施例中,培养腔室2可以可拆卸地固定在摆动式摇床上。在一些实施例中,摇床的摇晃模式可以是脉冲式摇摆(即在短暂时间内,周期性的快速摇摆至指定位置)。在一些实施例中,摇床摆动幅度为1°~15°的倾斜角。在一些实施例中,摇床摆动幅度为1°~10°的倾斜角。在一些实施例中,摇床摆动幅度为1°~5°的倾斜角。在一些实施例中,摇床摆动幅度为5°~15°的倾斜角。在一些实施例中,摇床摆动 幅度为5°~10°的倾斜角。在一些实施例中,摇床的摇摆过程可以是先向一侧倾斜,快速到达指定倾斜角后,间隔一定时间t1回到中间平衡位置,间隔一定时间t2之后再向另一侧倾斜,间隔一定时间t3后再回到中间平衡位置。在一些实施例中,t1、t2、t3的取值范围可以为1s~1800s。在一些实施例中,t1、t2、t3的值越小摇摆频率越高,对养分交换越有利。在一些实施例中,t1、t2、t3的取值范围可以为1s~500s。在一些实施例中,t1、t2、t3的取值范围可以为1s~300s。在一些实施例中,t1、t2、t3的取值范围可以为1s~200s。在一些实施例中,t1、t2、t3的取值范围可以为1s~100s。在一些实施例中,t1、t2、t3的取值范围可以为1s~80s。在一些实施例中,t1、t2、t3的取值范围可以为1s~50s。在一些实施例中,t1、t2、t3的取值范围可以为1s~10s。在一些实施例中,t1、t2、t3值越大,摇摆频率越低,对细胞伤害越小。在一些实施例中,t1、t2、t3的取值范围可以为300s~1800s。在一些实施例中,t1、t2、t3的取值范围可以为500s~1800s。在一些实施例中,t1、t2、t3的取值范围可以为1000s~1800s。在一些实施例中,t1、t2、t3的取值范围可以为1500s~1800s。在一些实施例中,t1、t2、t3的取值范围可以为1700s~1800s。在一些实施例中,t1、t2、t3的取值范围可以为1750s~1800s。在一些实施例中,t1、t2、t3的值可以为能够兼顾促进养分交换以及对细胞伤害较小的值。在一些实施例中,t1、t2、t3的取值范围可以为200s~500s。在一些实施例中,t1、t2、t3的取值范围可以为200s~400s。在一些实施例中,t1、t2、t3的取值范围可以为250s~300s。在一些实施例中,t1、t2、t3的取值范围可以为300s~350s。在一些实施例中,摇床的摇摆幅度越大,对养分交换越有利。在一些实施例中,摇床摆动幅度倾角可以为5°~20°。在一些实施例中,摇床摆动幅度倾角可以为7°~20°。在一些实施例中,摇床摆动幅度倾角可以为10°~20°。在一些实施例中,摇床的摇摆幅度越小,对细胞伤害越小。在一些实施例中,摇床摆动幅度倾角可以为1°~10°。在一些实施例中,摇床摆动幅度倾角可以为1°~7°。在一些实施例中,摇床摆动幅度倾角可以为1°~5°。在一些实施例中,摇床的摇摆幅度可以兼顾促进养分交换并对细胞伤害较小。在一些实施例中,摇床摆动幅度倾角可以为5°~10°。在一些实施例中,摇床摆动幅度倾角可以为6°~8°。在一些实施例中,摇床摆动幅度倾角可以为6°~7°。在一些实施例中,摇床摆动幅度倾角可以为7°~8°。
在一些实施例中,摇床的摇晃模式还可以是连续摇摆。在一些实施例中,摇床自一侧最低位置摇摆至另一侧最低位置,并返回至起始一侧的最低位置,实现连续摇摆。在一些实施例中,连续摇摆的频率取决于摇动的速度,摇动速度越快,一次摇摆需要的 时间越短,频率就越高。在一些实施例中,摇床连续摆动幅度倾角可以参见摆动式摇床的摆动幅度倾角,此处不在赘述。在一些实施例中,摇床连续摆动的一次摇摆时间也可以参见摆动式摇床的一次摇摆时间,此处不在赘述。
在一些实施例中,摇床的运动方式还可以是圆周运动,即摇床围绕某一圆周中心做圆周运动。换句话说,摇晃结构也可以包括圆周运动摇床。在一些实施例中,培养腔室2放入圆周运动摇床后可以随圆周运动摇床运动,即培养腔室2与圆周运动摇床之间无相对运动。在一些实施例中,培养腔室2可以可拆卸地固定在圆周运动摇床上。
在一些实施例中,圆周运动摇床的摇晃参数可以包括摇床的圆周运动幅度和摇晃速率。其中,摇床的圆周运动幅度可以理解为摇床中心轴的圆周运动幅度和摇晃速率。在一些实施例中,摇床中心轴可以是垂直于摇床所在平面,并且经过摇床的几何中心重合的轴线。在一些实施例中,摇床中心轴可以在摇床所在平面上绕一圆周中心进行圆周运动,以此实现摇床的运动。在一些实施例中,摇床中心轴的圆周运动幅度是指该圆周中心到摇床中心轴的距离。在一些实施例中,摇晃速率是指摇床中心轴绕该圆周中心进行圆周运动时的转速。
在一些实施例中,摇床中心轴的圆周运动幅度为10mm~30mm。在一些实施例中,圆周运动幅度为10mm~20mm。在一些实施例中,圆周运动幅度为15mm~20mm。在一些实施例中,圆周运动幅度为20mm~30mm。在一些实施例中,圆周运动幅度为20mm~25mm。在一些实施例中,圆周运动幅度为21mm~22mm。在一些实施例中,圆周运动摇床的摇晃速率为10r/min~300r/min。在一些实施例中,圆周运动摇床的摇晃速率为10r/min~200r/min。在一些实施例中,圆周运动摇床的摇晃速率为50r/min~200r/min。在一些实施例中,圆周运动摇床的摇晃速率为50r/min~100r/min。在一些实施例中,圆周运动摇床的摇晃速率为100r/min~150r/min。在一些实施例中,圆周运动摇床的摇晃速率为90r/min~100r/min。在一些实施例中,圆周运动摇床的摇晃速率为100r/min~110r/min。在一些实施例中,圆周运动摇床的摇晃速率为99r/min~101r/min。
在一些实施例中,摇晃结构可以放置于载物台801上,培养腔室2放置在摇晃结构上。在一些实施例中,载物台801上设置有一个放置工位,摇晃结构放置在放置工位上;在另一些实施例中,载物台801上设置有多个放置工位(具体参照图27),每个放置工位上均可放置一个摇晃结构。
在一些实施例中,混匀模块7可以包括搅拌结构。在一些实施例中,搅拌结构 可以包括一种或多种搅拌模式。在一些实施例中,搅拌模式包括但不限于机械搅拌。在一些实施例中,机械搅拌结构可以包括机械搅拌组件,机械搅拌组件能够对培养腔室2内的培养液进行搅拌,从而提升培养液与培养物的交换机会。在一些实施例中,机械搅拌组件安装于培养腔室2内。在一些实施例中,机械搅拌组件也可以安装于培养腔室2外,并能够从培养腔室2外伸入培养腔室2内对培养腔室2内的培养液进行搅拌。
在一些实施例中,机械搅拌组件包括搅拌件。机械搅拌组件可以通过搅拌件的圆周运动对培养液进行搅拌。机械搅拌组件的搅拌速度是指搅拌件的搅拌速度,即搅拌件在做圆周运动时的转动速度。在一些实施例中,机械搅拌组件的搅拌速度可以不高于500r/min。在一些实施例中,机械搅拌组件的搅拌速度可以不高于400r/min。在一些实施例中,机械搅拌组件的搅拌速度可以不高于300r/min。在一些实施例中,机械搅拌组件的搅拌速度可以不高于200r/min。在一些实施例中,机械搅拌组件的搅拌速度可以不高于100r/min。在一些实施例中,机械搅拌组件的搅拌速度可以是80r/min-100r/min。在一些实施例中,机械搅拌组件的搅拌速度可以是90r/min-100r/min。在一些实施例中,机械搅拌组件的搅拌速度可以是95r/min-105r/min。在一些实施例中,机械搅拌组件的搅拌速度可以是100r/min-105r/min。在一些实施例中,机械搅拌组件具有较低的搅拌速度,较低的搅拌速度可以将培养物搅拌至悬浮于培养液中。在一些实施例中,机械搅拌组件具有较高的搅拌速度,较高的搅拌速度可以使培养物与培养液的接触更充分。
在一些实施例中,机械搅拌组件可以通过搅拌件往复直线运动对培养液进行搅拌。在一些实施例中,机械搅拌组件的搅拌件往复直线运动的频率可以是20次/min-100次/min,其中,机械搅拌组件每完成往复直线运动的一个往返为1次。
在一些实施例中,混匀模块7也可以是显微观察模块8中的部分结构。参照图28,在一些实施例中,混匀模块7可以包括载物台801和机架802,培养腔室2放置在载物台801上,载物台801能够带动培养腔室2摇晃。机架802用于提供安装固定载物台801的平台。载物台801能够放置至少一个培养腔室2。在一些实施例中,实施例中载物台801上设置有一个放置工位,培养腔室2放置在放置工位上。在另一些实施例中,载物台801上设置有多个放置工位,每个放置工位上均可放置一个培养腔室2。
在一些实施例中,混匀模块7和温控单元6可以是相互独立的结构模块。在一些实施例中,混匀模块7和温控单元6也可以集成为一个结构模块,集成后的结构模块可以是混匀控温模块,其用于控制培养腔室2的温度并摇晃培养腔室2内的培养液。其中混匀控温模块包括机械摇晃机构和控温组件,机械摇晃机构设置安装面,用于放置培 养腔室2,使培养腔室2安装于该安装面后相对机械摇晃机构固定,通过摇晃安装面,可以带动培养腔室2晃动。在一些实施例中,培养腔室2也可以从该安装面上拆卸。在一些实施例中,安装面还设置有控温组件。在一些实施例中,安装面可以是机械摇晃结构的一个平面,该平面的上表面设置有控温组件,当培养腔室2安装在该安装面时,培养腔室2的下表面可以和安装面的上表面上的控温组件接触。在一些实施例中,安装面可以是机械摇晃结构的多个平面,安装面上的一个或多个平面可以设置有控温组件,当培养腔室2安装在该安装面时,培养腔室2的下表面和/或侧面可以和安装面的一个或多个平面上的控温组件接触。控温组件用于控制培养腔室2的温度,具体可以加热预混腔室101和培养腔室2,使之预混腔室101内的培养液和培养腔室2内的培养液的温度升至培养物适合生长的生理温度,以进行培养物的培养;在培养结束之后,需要进行基质胶去除并收集培养物时,控温组件可以使培养腔室2内的培养液下降至培养液内的基质胶液化温度,以便收集培养物。具体地,控温组件包括制热组件、制冷组件和温度控制模块,制热组件和制冷组件均与温度控制模块电连接,温度控制模块用于控制制热组件加热培养腔室2,还用于控制制冷组件冷却培养腔室2。
在一些实施例中,混匀模块7还可以包括驱动件。在一些实施例中,驱动件可以包括但不限于直线电机、旋转电机、凸轮马达等。在一些实施例中,驱动件包括输出端。在一些实施例中,输出端输出的运动形式可以包括但不限于直线运动、旋转运动、圆周运动等。在一些实施例中,输出端与摇晃结构连接,用于驱使摇晃结构摇晃,以摇晃培养腔室2内的培养液,为培养液和培养物提供更加充分的交换机会。在一些实施例中,输出端可以与载物台801连接。在一些实施例中,输出端可以与机械搅拌组件(例如,搅拌件)连接,用于驱动机械搅拌组件运动。
在一些实施例中,处理器可以从观察组件获取相机807记录的图像数据。在一些实施例中,相机807记录的图像数据中可以包含培养物的种类信息、培养物的培养时间以及培养物的培养程度等。在一些实施例中,培养物的种类信息、培养物的培养时间以及培养物的培养程度可以是相机807拍摄培养物的图像前或者相机807拍摄培养物的图像后,操作人员人为输入的信息。在一些实施例中,培养物的种类信息、培养物的培养时间以及培养物的培养程度也可以是相机807拍摄培养物的图像后,处理器从预设的图像库中自动获取的信息。在一些实施例中,预设的图像库可以存储于可以与处理器进行数据交互的存储设备中。在一些实施例中,预设的图像库中包含具有不同的培养物的种类信息、培养物的培养时间以及培养物的培养程度的图像,处理器可以通过图像比 对算法确定与当前拍摄的图像最接近的预设图像,并将该预设图像的培养物的种类信息、培养物的培养时间以及培养物的培养程度等添加到当前拍摄的图像数据中。
在一些实施例中,处理器可以基于培养物的图像数据对驱动件进行控制。在一些实施例中,处理器可以基于图像数据控制驱动件驱动载物台(801)摇晃。在一些实施例中,处理器可以包括训练好的机器学习模型。在一些实施例中,机器学习模型可以包括但不限于卷积神经网络(Convolutional Neural Network,CNN)模型、循环神经网络(Recurrent Neural Network,RNN)模型。在一些实施例中,处理器可以将图像数据输入机器学习模型,机器学习模型可以输出相应的驱动机构的控制参数。在一些实施例中,控制参数可以是摇晃参数(如摇晃的幅度、时间、频率等),也可以是预设的几种摇晃模式。在一些实施例中,机器学习模型可以通过训练获得。
在一些实施例中,机器学习模型的训练输入可以是培养物的样本图像。在一些实施例中,培养物的样本图像可以包括培养物的种类信息、培养物的培养时间以及培养物的培养程度等。在一些实施例中,机器学习模型的训练标签可以包括与样本图像中的每一个图像数据相对应的控制参数。在一些实施例中,控制参数可以包括预设的摇晃模式。在一些实施例中,控制参数也可以包括摇晃幅度、摇晃速度、摇晃频率以及摇晃时间等。在一些实施例中,培养时间长且培养程度低的培养物的样本图像对应于较猛烈的摇晃模式;培养程度高的培养物的样本图像对应于较轻微的摇晃模式。在一些实施例中,培养时间长且培养程度低的培养物的样本图像可以对应于较大的摇晃幅度(如,培养腔室2边缘向外偏离原位置5厘米)。在一些实施例中,将样本图像输入至初始机器学习模型,以与样本图像相对于的控制参数作为训练标签对初始机器学习模型进行训练,可以获得训练好的机器学习模型。
在一些实施例中,参见图29,显微观察模块8还包括自动进样模块,自动进样模块用于自动为培养腔室2中添加培养物。
在一些实施例中,自动进样模块可以包括自动进样器809和进样轨道810。在一些实施例中,自动进样轨道810设置在机架802上,自动进样器809滑动地设置在进样轨道810上,由进样驱动件驱动自动进样器809在进样轨道810上滑动,以进行进样工作。自动进样器809主要用于在培养腔室2内需要加入培养物、试剂或药物等时,使用自动进样器809加样,避免人工加样,保证了培养腔室2的卫生条件,使培养物不易被污染。在一些实施例中,操作人员可以将准备好的细胞样本放置在加样槽内,自动进样器809沿进样轨道810运动至加样槽位置,吸取一定量的细胞样本,再运动至培养腔 室2的位置,向培养腔室2内加入细胞样本,完成加样。
在一些实施例中,参见图30,体外生命培养系统100还包括无菌控制模块9,其包括无菌工作室901、过滤组件903和灭菌组件904。在一些实施例中,无菌工作室901可以用于使培养腔室2处于无菌的培养环境中。在一些实施例中,至少培养腔室2设置在无菌工作室901内。在一些实施例中,培养模块110、培养液提供模块120与液体输出模块130等均设置在无菌工作室901内,即培养物的培养系统100除无菌控制模块9外的部分全部位于无菌工作室901内。
无菌工作室901设置有通风口,过滤组件903设置在通风口处,且在通风口上设置有进气扇902,通过进气扇902向无菌工作室901内通入气体。过滤组件903用于过滤通入无菌工作室901内气体中的颗粒,使粉尘、杂质等颗粒无法进入无菌工作室901内。灭菌组件904用于对无菌工作室901灭菌杀毒。具体地,灭菌组件904为紫外灯,其设置在进气口处,灭菌组件904既可以为无菌工作室901内进行灭菌,还可以对通入无菌工作室901内的气体进行灭菌,其可以避免有菌的气体进入到无菌工作室901内。
在一些实施例中,培养模块110、培养液提供模块120、液体输出模块130和培养液循环模块140中的至少其中一个结构为一次性耗材。一次性耗材是指在使用一次之后被作为废弃物进行处理,使用一次性耗材可以保证灌流培养过程中的卫生条件,避免因培养模块110、培养液提供模块120、液体输出模块130和培养液循环模块140被污染,而影响正常的灌流培养。在一些实施例中,一次性耗材可以包括培养基一次性耗材、玻璃一次性耗材、塑料一次性耗材等。在一些实施例中,培养模块110中的至少一个盛放培养液或培养物的器皿(如培养腔室2)可以是一次性耗材。在一些实施例中,培养液提供模块120中的至少一个盛放培养液或气体的器皿(如预混腔室101)可以是一次性耗材。在一些实施例中,液体输出模块130中的至少一个盛放培养液的器皿(如收集单元4)可以是一次性耗材。在一些实施例中,培养液循环模块140中的至少一个盛放培养液的器皿(如交换单元3)可以是一次性耗材。
在一些实施例中,体外生命培养系统100的控制方法,可以应用于上述的体外生命系统100。在一些实施例中,体外生命培养系统100的控制方法可以由体外生命系统100的处理器执行。在一些实施例中,参见图31,体外生命培养系统100的控制方法可以包括流程1000,流程1000可以包括以下步骤:
步骤1010,获取培养模块中培养物的生长情况。
在一些实施例中,处理器可以获取培养模块110中培养物的生长情况。在一些实施例中,处理器可以通过操作人员输入的信息确定培养物的生长情况。在一些实施例中,处理器可以通过显微观察模块8获取培养物的图像,并基于获取到的图像以及预设算法确定培养物的生长情况。
在一些实施例中,处理器可以对获取到的培养物的图像进行几何校正、大小调整以及灰度化处理。在一些实施例中,处理器还可以对获取到的培养物的图像进行高斯滤波处理,消除和抑制噪声。在一些实施例中,处理器还可以对获取到的培养物的图像进行MorpHology形态学变换处理,进一步消除噪声。
在一些实施例中,载物台801可能出现倾斜放置的情况,导致获取到的图像处于偏转的位置,处理器可以在获取图像区域时对载物台801进行旋转矫正,从而提高获取图像的定位精度。
在一些实施例中,在不同光线条件下,培养物本身的颜色会发生变化,而电子设备自身不能根据光线的改变进行自我修正,因而获取的图像可能会出现色彩失真、偏红或偏蓝。处理器可以对获取的图像进行白平衡处理。白平衡是针对偏色图像进行校正的主要处理方法,从而提高获取图像色彩的准确度。在一些实施例中,处理器可以实时地通过显微观察模块8获取培养模块110中培养物的图像。在一些实施例中,处理器获取到的图像可以导入计算机或其他具有显示功能的设备进行显示。
在一些实施例中,预设算法可以包括图像比对算法,处理器可以通过图像比对算法确定培养物的生长情况。在一些实施例中,体外生命系统100可以包括能够与处理器进行数据交互的存储设备,存储设备中存储有预设的图像库。在一些实施例中,预设的图像库中存储有对应于不同的培养物的种类、培养物的生长情况的预设图像。在一些实施例中,处理器可以通过图像比对算法确定与当前获取的图像最接近的预设图像,并从该预设图像中获取培养物的种类信息、培养物的生长情况等。
在一些实施例中,预设算法可以包括机器学习模型。在一些实施例中,机器学习模型可以为卷积神经网络模型。在一些实施例中,处理器可以通过机器学习模型对培养物的图像进行图像识别,确定培养物的生长情况。在一些实施例中,培养物的生长情况可以包括培养物的生长时间、培养物的生长程度、培养物的生长阶段、培养物的生长速度、培养物的生长稳定性等。在一些实施例中,培养物的生长时间可以是拍摄培养物图像时,培养物已培育的总时长。在一些实施例中,培养物的生长程度可以是培养物的生长是否良好。在一些实施例中,培养物的生长阶段可以是按培养物生长发育过程中的 成熟度而区分的阶段。在一些实施例中,培养物的生长速度可以是培养物生长的快慢程度。在一些实施例中,培养物的生长稳定性可以是培养物的生长程度随时间变化的快慢程度,培养物的生长程度随时间变化较慢则稳定性高,培养物的生长程度随时间变化较快则稳定性低。
在一些实施例中,机器学习模型的训练过程可以包括:将不同生长情况的培养物图像作为样本图像,并对样本图像进行标注。在一些实施例中,按生长情况的不同阶段可以标注为“阶段1”、“阶段2”。在一些实施例中,按生长情况是否良好可以标注为“情况较好”、“情况较差”。在一些实施例中,按生长情况的稳定性可以标注为“稳定”、“不稳定”。在一些实施例中,按生长情况的速度可以标注为“生长较快”、“生长较慢”。将样本图像及其标签输入至初始机器学习模型进行训练,依据损失值和准确率进行模型评估,若收敛到稳定损失值和准确率则停止试验,否则重复训练与模型评估过程直到符合停止条件,得到训练好的机器学习模型。
步骤1020,基于所述生长情况控制培养液提供模块和/或培养模块。
在一些实施例中,处理器可以基于生长情况控制培养液提供模块120以及培养模块110。在一些实施例中,处理器可以基于培养物不同的生长情况,控制培养液提供模块120和/或培养模块110。
在一些实施例中,培养模块110可以包括摆动驱动机构。摆动驱动机构用于驱动混匀模块7晃动培养腔室2内的培养液,从而驱动培养液与培养物交换机会。在一些实施例中,摆动驱动机构可以控制混匀模块7的摇晃模式,如较轻微、较猛烈。在一些实施例中,摆动驱动机构还可以控制混匀模块7的摇晃参数,包括但不限于摇晃幅度、摇晃速度、摇晃频率以及摇晃时间中的至少一种。在一些实施例中,摆动驱动机构可以为正向驱动,即加快混匀模块7晃动培养腔室2内的培养液。在一些实施例中,摆动驱动机构还可以为负向驱动,即减缓混匀模块7晃动培养腔室2内的培养液。
在一些实施例中,处理器可以基于生长情况控制摆动驱动机构的运动。在一些实施例中,当生长情况不良时,处理器可以控制摆动驱动机构加速运动,如控制摆动驱动机构使混匀模块7加快摇晃速度、加大摇晃幅度、加长摇晃时间和频率等;当生长情况超出预设情况时,处理器可以控制摆动驱动机构减缓运动,如控制摆动驱动机构使混匀模块7减慢摇晃速度、减小摇晃幅度、减少摇晃时间和频率等。
在一些实施例中,处理器可以基于生长情况控制培养液提供模块120提供培养液的速度。在一些实施例中,处理器可以基于生长情况控制动力单元5以控制营养液的 输送速度,即控制营养液由补液腔室104内输送至预混腔室101内的液体流速。在一些实施例中,当生长情况不良时,处理器可以控制培养液提供模块120加快提供培养液的速度,如加大液体流量和/或提高输送功率;当生长情况超出预设情况时,处理器可以控制培养液提供模块120减慢提供培养液的速度,如减小液体流量和/或减弱输送功率。在一些实施例中,处理器可以基于生长情况实时地控制各接口的培养液提供模块120提供培养液的速度。
在一些实施例中,在静置培养阶段,处理器可以基于生长情况控制气体预混控制单元105向培养腔室2内通入气体的速度。在一些实施例中,处理器可以基于生长情况控制动力单元5以控制气体输送管道1011中气体的流速。在一些实施例中,当生长情况为缺氧造成生长不良时,处理器可以控制动力单元5加快气体输送速度,提高培养腔室2内的培养液的氧含量。在一些实施例中,处理器也可以基于生长情况为良好控制气体输送管道1011与培养腔室2之间的阀门关闭,使培养腔室2中的培养物保持当前的培养环境。
在一些实施例中,培养模块110可以包括温度控制单元。温度控制单元用于控制培养物的温度,可以使培养物的温度升高或降低。在一些实施例中,处理器可以基于生长情况控制温度控制单元加热或冷却培养物。在一些实施例中,当生长情况不良时,处理器可以控制温度控制单元加热培养物至预设温度;当生长情况超出预设情况时,处理器可以控制温度控制单元冷却培养物至预设温度。在一些实施例中,温度控制单元可以在培养完成后控制培养物的温度至第一预设温度。
在一些实施例中,参见图32,体外生命培养系统100的控制方法可以包括流程2000,流程2000可以包括以下步骤:
步骤2010,获取培养模块中培养液各组分的浓度。
在一些实施例中,处理器可以获取培养模块110中培养液各组分的浓度。在一些实施例中,培养模块110的培养腔室2中设置有浓度检测单元,用于检测培养腔室2中培养液各组分的浓度。在一些实施例中,浓度检测单元可以采用取样检测,也可以采用原位检测的方式。在一些实施例中,浓度检测单元的检测方式可以与代谢物浓度检测单元相同,具体方式可以参见本说明书其他地方的描述,此处不在赘述。
步骤2020,基于所述浓度控制所述培养液提供模块提供培养液的速度。
在一些实施例中,处理器可以基于获取培养模块110中培养液各组分的浓度与预设浓度的高低,控制培养液提供模块120提供培养液的速度。例如,当获取的培养模 块110中培养液各组分的浓度高于预设浓度时,处理器可以控制培养液提供模块120减慢提供培养液的速度;当获取的培养模块110中培养液各组分的浓度低于预设浓度时,处理器可以控制培养液提供模块120加快提供培养液的速度。在一些实施例中,处理器还可以基于获取的培养模块110中培养液各组分的浓度与预设浓度的百分比值,控制培养液提供模块120提供培养液的速度。例如,当获取的培养模块110中培养液各组分的浓度为预设浓度的80%时,处理器可以控制培养液提供模块120提高当前20%的提供培养液的速度。
在一些实施例中,处理器还可以基于培养腔室2中培养液中各组分的消耗情况,控制培养液提供模块120提供培养液的速度。在一些实施例中,培养液中各组分的消耗情况可以基于培养液中该组分的原始浓度与浓度检测单元检测出的浓度确定。在一些实施例中,消耗情况可以包括但不限于消耗速率、消耗量以及消耗率中的至少一种。在一些实施例中,处理器可以基于培养腔室2中培养液的消耗情况与预设消耗情况中各值的差别,控制培养液提供模块120提供培养液的速度。例如,当培养腔室2中培养液的消耗速率、消耗量或消耗率低于预设值时,处理器可以控制培养液提供模块120加快提供培养液的速度,以对培养液进行补充。又例如,当培养腔室2中培养液的消耗速率、消耗量或消耗率高于预设值时,处理器可以控制培养液提供模块120减慢提供培养液的速度。
在一些实施例中,参见图33,体外生命培养系统100的控制方法可以包括流程3000,流程3000可以包括以下步骤:
步骤3010,获取培养物信息、与培养物相关的生物体信息、培养物所处环境信息中的至少一种信息。
在一些实施例中,处理器可以获取培养物信息、与培养物相关的生物体信息、培养物所处环境信息中的至少一种信息。在一些实施例中,操作人员可以在开始培养之前或培养过程中向体外生命培养系统100输入培养物信息、与培养物相关的生物体信息或培养物所处环境信息中的一种或多种,处理器可以基于用户的输入获取其中的至少一种信息。
培养物信息可以包括但不仅限于培养物的来源信息(例如,类器官的来源信息:由多能干细胞(Pluripotent Stem Cells,PSCs)、诱导多能干细胞(Induced Pluripotent Stem Cells,iPSCs)等分化而来的类器官,或病人来源的肿瘤类器官(Patient-drived Organoids,PODs))、培养物的种类(如类器官的种类:消化道类器官、肝类器官、胰腺类器官、 脑类器官、肾类器官等)、培养物的培养时间以及培养物的培养程度等。与培养物相关的生物体信息可以包括但不仅限于生物体的性别、年龄、血压、身体健康状况等可以体现不同生物体间个体差异的信息。培养物所处环境信息可以包括但不仅限于时间、经纬度、温度、海拔等。处理器可以基于这些信息,模拟培养物所源生物体的生长环境,使得培养物的生长状况更接近其在真实生物体内的生长状况。
步骤3020,基于所述培养物信息、与培养物相关的生物体信息、培养物所处环境信息中的至少一种信息控制所述培养液提供模块和/或培养模块。
在一些实施例中,处理器可以基于所述培养物信息、与培养物相关的生物体信息、培养物所处环境信息中的至少一种信息控制所述培养液提供模块提供培养液的速度和/或规律。在一些实施例中,来源不同的培养物对溶氧量的需求可能不同,当基于培养物信息获知培养物为病人来源的肿瘤类器官时,由于肿瘤组织的核心部位在生物体内生长时体内一般为缺氧环境,处理器可以控制所述培养液提供模块如降低预混腔室101内的氧气溶解浓度,以模拟肿瘤组织核心部位的缺氧环境。处理器可以基于肿瘤组织的核心部位在病人体内所处位置确定该培养物在生物体内生长时的氧含量,并根据该氧含量控制气体预混控制单元105向预混腔室101内通入氧气的量,以使得预混腔室101内培养液的溶氧量与该氧含量相同或相近(如,溶氧量与氧含量相差在±1%以内)。在一些实施例中,不同种类的培养物在生物体内都是通过血管输送氧气和营养成分但所处的血流环境(如血流速度、血液压力)却存在差异。处理器可以基于培养物的种类(如肝类器官、胰腺类器官、脑类器官、肾类器官等)控制所述培养液提供模块以不同的速度提供培养液,以模拟生物体内的血流环境。处理器可以基于培养物的种类确定培养物在病人体内时的血流速度,并控制动力单元5将培养腔室2中培养液的流速驱动至与血流速度相同或相近(如,培养液的流速和血流速度相差在±1%以内)。在一些实施例中,不同生物体由于年龄、性别、身体健康状况,或所处环境信息的不同(如昼夜、海拔高低的差别),其体内供血的节律(即心脏跳动频率或脉搏)可能不同(婴儿心脏跳动频率每分钟120-140次,幼儿每分钟90-100次,学龄期儿童每分钟80-90次,成年人每分钟70-80次;白天运动和情绪激动时可使心跳快,而夜晚睡眠是心跳减慢;临床一些疾病,特别是心脏病可使心跳发生变化)。处理器可以控制培养液提供模块120按照培养物在病人体内时的供血规律输入和排出培养液。
在一些实施例中,培养模块110可以包括摆动驱动机构。在一些实施例中,处理器可以基于培养物信息、与培养物相关的生物体信息、培养物所处环境信息中的至少 一种信息控制摆动驱动机构的运动。在一些实施例中,处理器可以基于所述生物体信息获知培养物来源于婴幼儿(如11月龄、24月龄)或基于培养物所处环境信息获知当前为白天,处理器可以控制摆动驱动机构加速运动,如控制摆动驱动机构使混匀模块7加快摇晃速度、加大摇晃幅度、加长摇晃时间和频率等,以模拟婴幼儿或生物体在白天较快的体内新陈代谢速度。在一些实施例中,处理器可以基于所述生物体信息获知培养物来源于老年人(如65岁、75岁)或基于培养物所处环境信息获知当前为夜晚,处理器可以控制摆动驱动机构减缓运动,如控制摆动驱动机构使混匀模块7减慢摇晃速度、减小摇晃幅度、减少摇晃时间和频率等,以模拟老年人或生物体在夜晚较低的体内新陈代谢速度。
在一些实施例中,培养模块110可以包括温度控制单元。温度控制单元用于控制培养物的温度,可以使培养物的温度升高或降低。在一些实施例中,处理器可以基于所述培养物信息、与培养物相关的生物体信息、培养物所处环境信息中的至少一种信息控制温度控制单元加热或冷却培养物。例如,处理器可以基于与培养物相关的生物体信息,控制温度控制单元模拟不同性别、年龄段生物体的体温规律,或生物体单日内的体温规律来加热或冷却培养物。
本说明书实施例的有益效果如下:
(1)预混腔室内的培养液可以输送至培养腔室内,培养腔室内的培养液既可以流出至第一交换腔内,第一交换腔内的培养液又可以反流至培养腔或预混腔室内,实现了培养物的灌流培养。膜组件可以将培养液中培养物生长所需的部分组份截留在第一交换腔内,培养液中培养物代谢产生的废物可以透过膜组件渗透至第二交换腔内,第一交换腔内的培养液可以反流至培养腔室内供培养物继续使用,也即实现了培养液的循环利用,提高了培养液的利用率,降低了培养成本。
(2)预混腔室内的培养液可以输送至培养腔室内,培养腔室内的培养液既可以流出至第一交换腔内,第一交换腔内的培养液又可以反流至预混腔室内,实现了培养液的循环,进而实现了培养物的灌流培养。膜组件可以将培养液中培养物生长所需的部分组份截留在第一交换腔内,培养液中培养物代谢产生的废物可以透过膜组件渗透至第二交换腔内,第一交换腔内的培养液可以反流至预混腔室,然后输送至培养腔室内供培养物继续使用,也即实现了培养液的循环利用,提高了培养液的利用率,降低了培养成本。而且,补液单元向第二交换腔提供的营养液,营养液内的至少部分组份能够透过膜组件渗透至第一交换腔内,可以根据培养液内的组份的消耗情况定向向补充组份,减少了营 养液的使用量,降低了培养成本。
(3)预混腔室能够向第一培养腔输送培养液,第一培养腔或第二培养腔内的培养液能够回流至预混腔室内,既实现了培养物的灌流培养,又实现了培养液的循环利用,提高了培养液的利用率,降低了培养成本。
(4)预混腔室内的培养液可以输送至第一培养腔内,补液单元可以向第二培养腔内输送营养液,第一培养腔和/或第二培养腔内的培养液能够输送至预混腔室内,第二培养腔内的营养液中的组份透过膜组件渗透至第一培养腔内,供培养物吸收利用;第一膜组件可以将培养液中培养物生长所需的组份截留在第一培养腔内,培养液中培养物代谢产生的废物可以透过膜组件渗透至第二培养腔内,第一培养腔和/或第二培养腔内的培养液反流至预混腔室内,然后在输送至第一培养腔内供培养物继续使用,也即实现了培养液的循环利用,提高了培养液的利用率,降低了培养成本。第二培养腔内的营养液中的组份透过膜组件渗透至第一培养腔内,供培养物吸收利用,可以根据培养液内的组份的消耗情况定向向培养也能补充组份,减少了营养液的使用量,降低了培养成本。
(5)气体预混控制单元可以向预混腔室内通入气体,实现培养液溶氧浓度的调节;温控单元可以控制预混腔室和培养腔室的温度,通过加入营养液的量的大小和碱液来调节培养液的pH值,在预混腔室内可以控制培养液的温度、pH值和溶氧浓度,使该系统摆脱了二氧化碳培养箱的束缚,可任意扩大培养的规模。
(6)培养模块中设置有温控组件,可以快速、准确的将培养腔室内的温度调整到培养物的生理温度或者基质胶的液化温度,即方便培养物的培育,又方便在培养物培育完成后将培养物从培养腔室中取出。
(7)培养腔室内部设置有多个子腔室,多个子腔室可以对培养腔室中的培养液进行过滤,降低培养液中的代谢物浓度,使培养腔室中的培养液能够循环利用,极大的节约了成本。
(8)培养模块中设置有混匀模块,能够使培养腔室中的培养液与培养物的接触更充分,提高培养物的生长效率,改善培养物的生长情况。
(9)培养液循环模块中设置的交换单元包括两个或以上的腔室,并且各腔室中培养液的流速不同,可以有效促进各腔室之间培养液中的物质交换,有效提高培养液的过滤效率,使培养液能更好地循环利用。
(10)培养模块中设置有显微观察模块,可以实时获取培养物的图像,并进一步获取培养物的生长情况,进而对培养模块中的其他单元或模块进行控制,能有效改善 培养物的生长情况。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和 描述的实施例。

Claims (49)

  1. 一种体外生命培养系统,其特征在于,包括:
    培养模块,用于培育培养物,所述培养模块至少包括用于盛放培养液的培养腔室;
    培养液提供模块,用于为所述培养模块提供培养液;
    液体输出模块,用于将所述培养液从所述培养腔室中排出。
  2. 根据权利要求1所述的体外生命培养系统,其特征在于,所述系统还包括培养液循环模块,用于实现所述培养腔室中培养液的循环利用。
  3. 根据权利要求2所述的体外生命培养系统,其特征在于,所述培养液循环模块包括位于所述培养腔室外的第一交换单元,所述第一交换单元接收所述培养腔室流出的培养液,并对所述培养液进行组分交换。
  4. 根据权利要求3所述的体外生命培养系统,其特征在于,所述第一交换单元包括第一交换腔和第二交换腔,以及设置在所述第一交换腔和所述第二交换腔之间的膜组件,所述膜组件用于截留和/或透过培养液内的至少部分组份。
  5. 根据权利要求4所述的体外生命培养系统,其特征在于,所述第一交换腔包括第一接口和第二接口,所述第一接口与所述培养腔室连通,所述第二接口与所述培养液提供模块和/或所述培养腔室连通;
    其中,所述第一接口用于接收流入所述第一交换腔的培养液;所述第二接口用于从所述第一交换腔中流出培养液。
  6. 根据权利要求4所述的体外生命培养系统,其特征在于,所述液体输出模块还包括收集单元,所述第二交换腔与所述收集单元连通。
  7. 根据权利要求5所述的体外生命培养系统,其特征在于,所述第一交换腔内设置有代谢物浓度检测单元,用于检测所述第一交换腔中培养液的代谢物浓度。
  8. 根据权利要求7所述的体外生命培养系统,其特征在于,所述第一交换单元基于所述代谢物浓度检测单元的检测结果打开或关闭所述第二接口。
  9. 根据权利要求4所述的体外生命培养系统,其特征在于,所述液体循环模块还包括动力单元,所述动力单元用于控制所述第一交换腔和/或所述第二交换腔内培养液的流速。
  10. 根据权利要求9所述的体外生命培养系统,其特征在于,所述第一交换腔内培养液的流速低于所述第二交换腔内培养液的流速。
  11. 根据权利要求4所述的体外生命培养系统,其特征在于,所述培养液循环模块包括补液单元,用于向所述第一交换单元输送所述培养物所需的一种或多种组份。
  12. 根据权利要求11所述的体外生命培养系统,其特征在于,所述补液单元与所述第二交换腔连通。
  13. 根据权利要求2所述的体外生命培养系统,其特征在于,所述培养液循环模块包括位于所述培养腔室内的第二交换单元,用于对所述培养腔室内的培养液进行组分交换,并将所述培养液的至少部分组分循环利用。
  14. 根据权利要求13所述的体外生命培养系统,其特征在于,所述第二交换单元包括所述培养腔室中的第一培养腔、第二培养腔,以及位于所述第一培养腔和所述第二培养腔之间的第一膜组件,培养液的至少部分组分能够经渗透作用通过所述第一膜组件。
  15. 根据权利要求14所述的体外生命培养系统,其特征在于,所述第一培养腔包括至少一个进液口和至少一个排液口,至少一个所述进液口与所述培养液提供模块连通,至少一个所述排液口与所述培养液提供模块可选择性连通。
  16. 根据权利要求15所述的体外生命培养系统,其特征在于,至少一个所述排液口还与收集单元可选择性连通。
  17. 根据权利要求14所述的体外生命培养系统,其特征在于,所述第一培养腔包括至少一个进液口,所述第二培养腔包括至少一个排液口;
    其中,至少一个所述进液口与所述培养液提供模块连通,至少一个所述排液口与所述培养液提供模块可选择性连通。
  18. 根据权利要求14所述的体外生命培养系统,其特征在于,所述第二培养腔包括至少一个进液口和至少一个排液口;
    其中,至少一个所述进液口与所述培养液提供模块连通,至少一个所述排液口与所述培养液提供模块可选择性连通。
  19. 根据权利要求14所述的体外生命培养系统,其特征在于,所述第一培养腔内设置有第三膜组件,所述第三膜组件将第一培养腔分割为第一子培养腔和第二子培养腔;
    所述第一子培养腔包括第一进液口和第一排液口,所述培养液提供模块与所述第一进液口连通,所述第二培养腔与所述第一排液口连通;
    所述第二子培养腔包括第二排液口,所述第二排液口与收集单元连通。
  20. 根据权利要求14所述的体外生命培养系统,其特征在于,所述培养液循环模块包括补液单元,所述补液单元用于向所述第二交换单元输送所述培养物所需的一种或多种组份。
  21. 根据权利要求20所述的体外生命培养系统,其特征在于,所述补液单元与所述第一培养腔连通,用于向所述第一培养腔输送所述培养物所需的一种或多种组份。
  22. 根据权利要求1所述的体外生命培养系统,其特征在于,所述培养液提供模块包括预混单元,所述预混单元包括预混腔室,所述预混腔室用于混合营养液和气体以形成培养液,并将培养液输送至所述培养模块。
  23. 根据权利要求22所述的体外生命培养系统,其特征在于,所述预混单元还包括补液腔室,所述补液腔室与所述预混腔室相连通,用于向所述预混腔室内输送营养液。
  24. 根据权利要求22所述的体外生命培养系统,其特征在于,所述预混单元还包括pH探测件、溶氧探测件和信号探测器,所述pH探测件和溶氧探测件均设置在所述 预混腔室内,所述信号探测器能够感测所述pH探测件和所述溶氧探测件反馈的信号,以得到所述预混腔室内培养液的pH值和溶氧量。
  25. 根据权利要求24所述的体外生命培养系统,其特征在于,所述pH探测件为pH电极片,所述溶氧探测件为溶氧电极片;
    所述pH电极片设置在所述预混腔室的内壁上或所述预混腔室内,所述溶氧探测件设置在所述预混腔室的内壁上或浸于所述预混腔室内的液体内。
  26. 根据权利要求22所述的体外生命培养系统,其特征在于,所述预混单元还包括气体预混控制单元,其与所述预混腔室相连通,用于向所述预混腔室内输送气体。
  27. 根据权利要求26所述的体外生命培养系统,其特征在于,所述预混腔室为至少两个,所述气体预混控制单元与多个所述预混腔室相连通,能够控制至少两个所述预混腔室内的气体浓度。
  28. 根据权利要求1所述的体外生命培养系统,其特征在于,所述培养模块包括温控单元,所述温控单元用于控制所述腔室内的温度至第一预设温度。
  29. 根据权利要求28所述的体外生命培养系统,其特征在于,所述第一温度对应于培养物支撑结构的液化温度。
  30. 根据权利要求29所述的体外生命培养系统,其特征在于,所述温控单元还用于控制所述腔室内的温度在第一预设温度和第二预设温度之间转换;
    其中,所述第二温度对应于所述培养物的生理温度。
  31. 根据权利要求30所述的体外生命培养系统,其特征在于,所述第一温度低于所述第二温度。
  32. 根据权利要求28所述的体外生命培养系统,其特征在于,所述温控单元包括制冷组件和温度控制模块,所述制冷组件与所述温度控制模块电连接,所述温度控制模块用于控制所述制冷组件冷却所述腔室内的温度至第一预设温度。
  33. 根据权利要求32所述的体外生命培养系统,其特征在于,所述温控单元还包括制热组件,所述制热组件与所述温度控制模块电连接,所述温度控制模块用于控制所述制热组件加热所述腔室。
  34. 根据权利要求33所述的体外生命培养系统,其特征在于,所述制热组件包括多个制热片,所述制冷组件包括多个制冷片,多个所述制热片的能量能够传递至多个所述制冷片。
  35. 根据权利要求34所述的体外生命培养系统,其特征在于,多个所述制热片间隔设置,多个所述制冷片间隔设置,相邻两个所述制热片之间设置有一个所述制冷片,相邻两个制冷片之间设置有一个制热片。
  36. 根据权利要求1所述的体外生命培养系统,其特征在于,所述培养模块包括显微观察模块,所述显微观察模块包括观察组件,所述观察组件用于观察所述培养模块中的培养物。
  37. 根据权利要求36所述的体外生命培养系统,其特征在于,所述培养模块包括混匀模块,用于晃动所述培养腔室内的培养液。
  38. 根据权利要求37所述的体外生命培养系统,其特征在于,所述混匀模块包括载物台和机架,所述腔室放置在所述载物台上,所述载物台能够带动所述腔室运动。
  39. 根据权利要求36所述的体外生命培养系统,其特征在于,所述培养模块还包括自动进样模块,所述自动进样模块用于自动为所述培养腔室中添加培养物。
  40. 根据权利要求39所述的体外生命培养系统,其特征在于,所述自动进样模块还包括自动进样器和进样轨道,所述自动进样轨道设置在所述机架上,所述自动进样器滑动地设置在所述进样轨道上。
  41. 根据权利要求1所述的体外生命培养系统,其特征在于,所述培养模块包括无 菌控制模块,其包括无菌工作室、过滤组件和灭菌组件,至少所述培养腔室设置在所述无菌工作室内,所述过滤组件用于过滤通入所述无菌工作室内的气体,所述灭菌组件用于对所述无菌工作室灭菌。
  42. 根据权利要求2所述的体外生命培养系统,其特征在于,所述培养模块、所述培养液提供模块、所述液体输出模块和所述培养液循环模块中的至少一个器材为一次性耗材。
  43. 一种体外生命培养系统的控制方法,其特征在于,包括如权利要求1-42任意一项所述的体外生命培养系统,所述方法包括:
    获取培养模块中培养物的生长情况;
    基于所述生长情况控制培养液提供模块和/或所述培养模块。
  44. 根据权利要求43所述的方法,其特征在于,所述获取培养模块中培养物的生长情况包括:
    通过显微观察模块获取所述培养物的图像;
    基于所述图像以及预设算法确定所述培养物的生长情况。
  45. 根据权利要求44所述的方法,其特征在于,所述预设算法包括机器学习模型。
  46. 根据权利要求43所述的方法,其特征在于,所述培养模块包括摆动驱动机构,所述基于所述生长情况控制培养液提供模块以及所述培养模块包括:
    基于所述生长情况控制所述摆动驱动机构的运动。
  47. 根据权利要求43所述的方法,其特征在于,所述基于所述生长情况控制培养液提供模块以及所述培养模块包括:
    基于所述生长情况控制所述培养液提供模块提供培养液的速度。
  48. 根据权利要求43所述的方法,其特征在于,所述培养模块包括温度控制单元,所述基于所述生长情况控制培养液提供模块以及所述培养模块包括:
    基于所述生长情况控制所述温度控制单元加热或冷却所述培养物。
  49. 一种体外生命培养系统的控制方法,其特征在于,包括如权利要求1-42任意一项所述的体外生命培养系统,所述方法包括:
    获取培养模块中培养液各组分的浓度;
    基于所述浓度控制所述培养液提供模块提供培养液的速度。
PCT/CN2021/101003 2021-01-29 2021-06-18 一种体外生命培养系统和方法 WO2022160571A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/361,812 US20230365910A1 (en) 2021-01-29 2023-07-28 Systems and methods for in vitro life culture

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110124996.7A CN112940935A (zh) 2021-01-29 2021-01-29 一种体外生命维持灌流培养系统及其控制方法
CN202110126471.7 2021-01-29
CN202110124996.7 2021-01-29
CN202110126471.7A CN112831417A (zh) 2021-01-29 2021-01-29 一种体外生命维持灌流培养系统及其控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/361,812 Continuation-In-Part US20230365910A1 (en) 2021-01-29 2023-07-28 Systems and methods for in vitro life culture

Publications (1)

Publication Number Publication Date
WO2022160571A1 true WO2022160571A1 (zh) 2022-08-04

Family

ID=82654146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101003 WO2022160571A1 (zh) 2021-01-29 2021-06-18 一种体外生命培养系统和方法

Country Status (2)

Country Link
US (1) US20230365910A1 (zh)
WO (1) WO2022160571A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106167763A (zh) * 2016-08-30 2016-11-30 天津大学 腐殖质还原菌的厌氧培养装置
CN106222091A (zh) * 2016-08-30 2016-12-14 天津大学 一种腐殖质还原菌的厌氧培养方法
CN206385161U (zh) * 2016-08-30 2017-08-08 天津大学 一种腐殖质还原菌的厌氧培养装置
CN112779160A (zh) * 2021-01-29 2021-05-11 上海睿钰生物科技有限公司 一种体外生命维持灌流培养系统及其控制方法
CN112831417A (zh) * 2021-01-29 2021-05-25 上海睿钰生物科技有限公司 一种体外生命维持灌流培养系统及其控制方法
CN112831416A (zh) * 2021-01-29 2021-05-25 上海睿钰生物科技有限公司 一种体外生命维持灌流培养系统及其控制方法
CN112940935A (zh) * 2021-01-29 2021-06-11 上海睿钰生物科技有限公司 一种体外生命维持灌流培养系统及其控制方法
CN112940934A (zh) * 2021-01-29 2021-06-11 上海睿钰生物科技有限公司 一种体外生命维持灌流培养系统及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106167763A (zh) * 2016-08-30 2016-11-30 天津大学 腐殖质还原菌的厌氧培养装置
CN106222091A (zh) * 2016-08-30 2016-12-14 天津大学 一种腐殖质还原菌的厌氧培养方法
CN206385161U (zh) * 2016-08-30 2017-08-08 天津大学 一种腐殖质还原菌的厌氧培养装置
CN112779160A (zh) * 2021-01-29 2021-05-11 上海睿钰生物科技有限公司 一种体外生命维持灌流培养系统及其控制方法
CN112831417A (zh) * 2021-01-29 2021-05-25 上海睿钰生物科技有限公司 一种体外生命维持灌流培养系统及其控制方法
CN112831416A (zh) * 2021-01-29 2021-05-25 上海睿钰生物科技有限公司 一种体外生命维持灌流培养系统及其控制方法
CN112940935A (zh) * 2021-01-29 2021-06-11 上海睿钰生物科技有限公司 一种体外生命维持灌流培养系统及其控制方法
CN112940934A (zh) * 2021-01-29 2021-06-11 上海睿钰生物科技有限公司 一种体外生命维持灌流培养系统及其控制方法

Also Published As

Publication number Publication date
US20230365910A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
US8785181B2 (en) Cell expansion system and methods of use
US8507266B2 (en) Apparatus and method for tissue engineering
CN103068962B (zh) 自动培养装置
AU2009202476B8 (en) Automated tissue engineering system
US20060275896A1 (en) Apparatus and method for incubating cell cultures
CN108410797A (zh) 在中空纤维生物反应器中扩增干细胞
KR20160088331A (ko) 연속적으로 조절되는 중공사 생물반응기
CN101300339A (zh) 细胞培养用振荡装置以及细胞培养方法的振荡培养方法
CN104321419A (zh) 细胞培养系统和细胞培养方法
KR20080072022A (ko) 세포배양장치, 세포배양방법, 세포배양프로그램, 및세포배양시스템
US20220333056A1 (en) System and method for creating tissue
CN109153959A (zh) 生长诱导系统、生长诱导控制装置、生长诱导控制方法和生长诱导控制程序
JP2022554178A (ja) 改善された細胞接触面を有する細胞培養チャンバ
CN112779160B (zh) 一种体外生命维持灌流培养系统及其控制方法
WO2022160571A1 (zh) 一种体外生命培养系统和方法
CN112940934B (zh) 一种体外生命维持灌流培养系统及其控制方法
CN112899161A (zh) 一种细胞培养装置
AU2012205259B2 (en) Automated tissue engineering system
CN112831417A (zh) 一种体外生命维持灌流培养系统及其控制方法
CN112831416A (zh) 一种体外生命维持灌流培养系统及其控制方法
CN112940935A (zh) 一种体外生命维持灌流培养系统及其控制方法
CN116042396A (zh) 一种类器官自动化跨膜培养装置
JP2005218368A (ja) 細胞培養装置
CN112940933A (zh) 一种体外生命维持灌流培养系统及其控制方法
JP2020171235A (ja) 細胞培養装置及びバイオリアクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922169

Country of ref document: EP

Kind code of ref document: A1