WO2022160557A1 - 脑电设备、系统、计算机设备和存储介质 - Google Patents

脑电设备、系统、计算机设备和存储介质 Download PDF

Info

Publication number
WO2022160557A1
WO2022160557A1 PCT/CN2021/099399 CN2021099399W WO2022160557A1 WO 2022160557 A1 WO2022160557 A1 WO 2022160557A1 CN 2021099399 W CN2021099399 W CN 2021099399W WO 2022160557 A1 WO2022160557 A1 WO 2022160557A1
Authority
WO
WIPO (PCT)
Prior art keywords
stimulation
acquisition
unit
signal
collection
Prior art date
Application number
PCT/CN2021/099399
Other languages
English (en)
French (fr)
Inventor
沈蔚
Original Assignee
博睿康科技(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博睿康科技(常州)股份有限公司 filed Critical 博睿康科技(常州)股份有限公司
Priority to EP21922155.3A priority Critical patent/EP4280033A1/en
Priority to US18/272,806 priority patent/US20240075287A1/en
Publication of WO2022160557A1 publication Critical patent/WO2022160557A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36031Control systems using physiological parameters for adjustment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/015Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7217Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise originating from a therapeutic or surgical apparatus, e.g. from a pacemaker

Definitions

  • the present invention relates to the field of electronic medical technology, and in particular, to an EEG device, a system, a computer device and a storage medium.
  • the physiological electrical signal of the brain has important clinical diagnosis and treatment reference value.
  • the non-stationary and random characteristics of physiological electrical signals in the brain determine that it is a rather difficult thing to study.
  • electrical stimulation therapy also plays a very important role in the study of physiological electrical signals in the brain.
  • the electrical stimulation used in the human body includes direct current, alternating current and other stimulation methods, and the electrical stimulation signal will introduce corresponding noise into the EEG signal.
  • the noise introduced in the stimulation process can lead to signal aliasing and signal saturation, and the aliasing and saturation of noise have a great impact on the acquisition of physiological electrical signals in the brain during stimulation.
  • how to collect effective EEG data during stimulation has long puzzled researchers. Some very important topics and medical research are often unable to continue in-depth because there is no way to obtain clean EEG data during the stimulation process. Deep electrical stimulation), practical medical research such as impact analysis of electronic drugs and chemical drugs, etc.
  • embodiments of the present invention provide a technical solution for collecting effective EEG data during stimulation.
  • an electroencephalogram device which includes:
  • a stimulation unit for generating a stimulation signal and applying the stimulation signal to the human body
  • the acquisition unit is used to collect the physiological electrical signals of the human brain
  • the acquisition of the physiological electrical signal of the human brain by the acquisition unit includes: when the stimulation unit does not apply the stimulation signal to the human body (ie, a non-stimulation process), the acquisition unit acquires the physiological electrical signal of the human brain according to the first acquisition parameter. electrical signal; during the process of applying the stimulation signal to the human body by the stimulation unit (ie, the stimulation process), the acquisition unit collects the physiological electrical signal of the human brain according to the second acquisition parameter; wherein the first acquisition parameter is the same as the first acquisition parameter The two acquisition parameters are different.
  • the acquisition unit adopts different acquisition parameters to acquire the physiological electrical signals of the brain during the stimulation process and the non-stimulation process, so as to reduce the influence of aliasing noise and signal saturation on the collected EEG signals during the stimulation process , and then can collect effective EEG data.
  • the first acquisition parameter includes at least one of a first acquisition frequency and a first signal gain
  • the second acquisition parameter includes at least one of a second acquisition frequency and a second signal gain one.
  • the first collection frequency is lower than the second collection frequency
  • the second signal gain is lower than the first signal gain
  • the EEG device further includes a storage unit for storing the first acquisition parameter and the second acquisition parameter.
  • the collection unit includes the storage unit.
  • the acquisition unit can adjust the acquisition parameters according to the pre-stored parameters, so that different parameters are used to acquire the physiological electrical signals of the brain during the non-stimulation process and the stimulation process.
  • the collection unit for collecting the physiological electrical signals of the human brain further includes: when the collection unit determines that the stimulation unit will perform a stimulation action, the collection unit adjusts the collection frequency to the first 2. Collection frequency;
  • the collection unit collecting the physiological electrical signal of the human brain according to the second collection parameter includes: the collection unit judging whether the signal amplitude of the collected signal is greater than a set threshold ; if it is determined to be yes, the acquisition unit adjusts the signal gain to the second signal gain.
  • the acquisition unit determining that the stimulation unit will perform a stimulation action includes:
  • the acquisition unit determines to request the stimulation unit to perform a stimulation action according to the collected physiological electrical signals of the brain;
  • the acquisition unit determines that the stimulation unit will perform the stimulation action according to the received notification that the stimulation unit performs the stimulation action.
  • the notification may be from the stimulation unit, or may be from a device other than the acquisition unit and the stimulation unit.
  • the acquisition unit adjusts the acquisition parameters in the stimulation process in real time according to the acquisition signal, so that different parameters are used to acquire the physiological electrical signals of the brain during the non-stimulation process and the stimulation process.
  • an embodiment of the present invention is an EEG system, comprising:
  • a stimulation unit for generating a stimulation signal and applying the stimulation signal to the human body
  • the acquisition unit is used to collect the physiological electrical signals of the human brain
  • control unit configured to: when the stimulation unit does not apply the stimulation signal to the human body (ie, a non-stimulation process), control the acquisition unit to collect the physiological electrical signal of the human brain according to the first acquisition parameter; During the process of applying the stimulation signal to the human body (ie, the stimulation process), the acquisition unit is controlled to acquire the physiological electrical signal of the human brain according to the second acquisition parameter; wherein the first acquisition parameter is different from the second acquisition parameter.
  • the acquisition unit is controlled by the control unit, so that it uses different acquisition parameters to acquire the physiological electrical signals of the brain during the stimulation process and the non-stimulation process, so as to reduce aliasing noise and noise during the stimulation process.
  • the influence of signal saturation on the collected EEG signals, and then effective EEG data can be collected.
  • the first acquisition parameter includes at least one of a first acquisition frequency and a first signal gain
  • the second acquisition parameter includes at least one of a second acquisition frequency and a second signal gain one.
  • the first collection frequency is lower than the second collection frequency
  • the second signal gain is lower than the first signal gain
  • the EEG system further includes a storage unit for storing the first acquisition parameter and the second acquisition parameter.
  • the control unit includes the storage unit.
  • control unit can adjust the acquisition parameters of the acquisition unit according to the pre-stored parameters, so that the acquisition unit uses different parameters to collect physiological electrical signals of the brain during the non-stimulation process and the stimulation process.
  • control unit is further configured to: adjust the acquisition frequency of the acquisition unit to the second acquisition frequency when it is determined that the stimulation unit will perform a stimulation action;
  • the control unit controlling the acquisition unit to acquire the physiological electrical signal of the human brain according to the second acquisition parameter includes: judging whether the signal amplitude of the acquired signal is greater than a set value Threshold; if it is determined to be yes, the signal gain of the acquisition unit is adjusted to the second signal gain.
  • control unit determining that the stimulation unit will perform a stimulation action includes:
  • the control unit determines to request the stimulation unit to perform a stimulation action according to the physiological electrical signals of the brain collected by the collection unit;
  • the control unit determines that the stimulation unit will perform the stimulation action according to the received notification that the stimulation unit performs the stimulation action.
  • the notification may come from the stimulation unit or a device other than the acquisition unit, the stimulation unit, and the control unit.
  • control unit adjusts the acquisition parameters in the stimulation process in real time according to the acquisition signal, so that different parameters are used to acquire the physiological electrical signals of the brain during the non-stimulation process and the stimulation process.
  • embodiments of the present invention provide a computer-readable storage medium having computer-readable instructions stored thereon, wherein the computer-readable instructions can be executed by a processor to implement the following processes :
  • the stimulation unit does not apply the stimulation signal to the human body, causing the acquisition unit to acquire the physiological electrical signal of the human brain according to the first acquisition parameter;
  • the acquisition unit is made to acquire the physiological electrical signal of the human brain according to the second acquisition parameter
  • the first collection parameter is different from the second collection parameter.
  • the first acquisition parameter includes at least one of a first acquisition frequency and a first signal gain
  • the second acquisition parameter includes at least one of a second acquisition frequency and a second signal gain one.
  • the first collection frequency is lower than the second collection frequency
  • the second signal gain is lower than the first signal gain
  • the computer-readable instructions are also executable by a processor to perform the following processes:
  • the collection frequency of the collection unit is adjusted to the second collection frequency
  • the signal gain of the collection unit is adjusted to the second signal gain.
  • determining that the stimulation unit will perform a stimulation action includes:
  • the stimulation unit will perform the stimulation action according to the received notification that the stimulation unit performs the stimulation action.
  • an embodiment of the present invention provides a computer device including a memory and a processor, wherein the memory includes the above-mentioned computer-readable storage medium, and the processor can execute the Computer readable instructions stored on the memory to perform the various processes, operations, steps described in the various embodiments above.
  • the technical solution proposed by the present invention adaptively increases the acquisition frequency and reduces the signal gain during the stimulation process, without manual intervention, and can effectively reduce the confusion during the stimulation process under the condition of continuous acquisition.
  • the influence of overlapping noise and signal saturation on the physiological electrical signals of the brain ensures high readability of the physiological electrical signals of the brain. Therefore, it is ensured that the physiological electrical signals of the brain collected in the whole process can meet the needs of scientific research and medical treatment.
  • FIG. 1 is a schematic block diagram of an EEG device according to an embodiment of the present invention.
  • Fig. 2 is a process flow diagram according to Embodiment 1 of the present invention.
  • Fig. 3 is a processing flow chart according to Embodiment 2 of the present invention.
  • Fig. 4 is a processing flow chart according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic block diagram of an EEG system according to another embodiment of the present invention.
  • FIG. 8 is a process flow diagram according to Embodiment 6 of the present invention.
  • FIG. 9 is a process flow diagram according to Embodiment 7 of the present invention.
  • FIG. 10 is a schematic diagram showing the technical idea of the present invention.
  • FIG. 1 shows an electroencephalographic device according to an embodiment of the present invention.
  • the EEG device may include, but is not limited to, a stimulation unit 101 and an acquisition unit 102 .
  • the stimulation unit 101 is used for generating stimulation signals, such as alternating current stimulation, pulse electric stimulation, etc., and applying the stimulation signals to the human body, for example, the human brain.
  • the stimulation signal further includes auditory stimulation, tactile stimulation and visual stimulation.
  • the acquisition unit 102 is configured to acquire physiological electrical signals of the human brain, including response signals to the stimulation.
  • the collecting unit 102 collects the physiological electrical signal of the human brain includes: when the stimulation unit 101 does not apply the stimulation signal to the human body (ie, a non-stimulation process), the collecting unit 102 according to the first A collection parameter collects physiological electrical signals of the human brain; during the process of applying the stimulation signal to the human body by the stimulation unit 101 (ie, the stimulation process), the collection unit 102 collects physiological electrical signals of the human brain according to the second collection parameter.
  • the first collection parameter is different from the second collection parameter.
  • the first collection parameter may include at least one of a first collection frequency (ie, a sampling rate) and a first signal gain; the second collection parameter may include at least one of a second collection frequency and a second signal gain one.
  • the first collection frequency may be lower than the second collection frequency, and the second signal gain may be lower than the first signal gain.
  • the acquisition unit adopts different acquisition parameters to acquire the physiological electrical signals of the brain during the stimulation process and the non-stimulation process, so as to reduce the influence of aliasing noise and signal saturation on the collected EEG signals during the stimulation process , and then can collect effective EEG data.
  • the processing procedure of the EEG device according to the embodiment of the present invention will be described in detail below with specific examples.
  • FIG. 2 shows the processing flow of Embodiment 1 of the present invention.
  • the acquisition unit adjusts the acquisition operations in the stimulation process and the non-stimulation process according to the pre-stored acquisition parameters.
  • the EEG device may further include a storage unit for storing the first acquisition parameter and the second acquisition parameter.
  • the acquisition unit may include the storage unit.
  • the processing of the EEG device may include:
  • the acquisition unit 102 collects the human body according to the pre-stored first acquisition parameters (for example, the sampling rate is 1 kHz (ie, the first acquisition frequency), and the gain is 100 times (ie, the first signal gain)). Brain physiological electrical signals.
  • the sampling rate is 1 kHz (ie, the first acquisition frequency)
  • the gain is 100 times (ie, the first signal gain)). Brain physiological electrical signals.
  • the acquisition unit 102 prepares to request the stimulation unit 101 to perform a stimulation action.
  • the acquisition unit 102 adjusts the acquisition parameters to the second acquisition parameters, for example, the sampling rate is 16 kHz (ie, the second acquisition frequency), and the gain is 1 times (ie, the second acquisition frequency). second signal gain).
  • the stimulation unit 101 performs a stimulation action.
  • the acquisition unit performs acquisition of physiological electrical signals of the brain according to the adjusted acquisition parameters. That is, brain physiological electrical signals are collected at a sampling rate of 16 kHz and a signal gain of 1 times.
  • the stimulation unit 101 ends the stimulation and enters the non-stimulation process, and the acquisition unit 102 restores the acquisition parameters, that is, the acquisition is performed according to the first acquisition parameters with a sampling rate of 1 kHz and a gain of 100 times.
  • the acquisition unit 102 initiates stimulation, and adjusts the acquisition parameters of the stimulation process and the non-stimulation process according to the pre-stored parameters.
  • FIG. 3 shows the processing flow of Embodiment 2 of the present invention.
  • the difference between Embodiment 2 and Embodiment 1 is that, in Embodiment 2, stimulation is actively initiated by the stimulation unit 101 .
  • the processing of the EEG device may include:
  • the acquisition unit 102 collects the human body according to the pre-stored first acquisition parameters (for example, the sampling rate is 1 kHz (that is, the first acquisition frequency), and the gain is 100 times (that is, the first signal gain)). Brain physiological electrical signals.
  • the sampling rate is 1 kHz (that is, the first acquisition frequency)
  • the gain is 100 times (that is, the first signal gain)). Brain physiological electrical signals.
  • the stimulation unit 101 starts the stimulation action, and notifies the acquisition unit 102.
  • the acquisition unit 102 adjusts the acquisition parameters to the second acquisition parameters, for example, the sampling rate is 16 kHz (ie the second acquisition frequency) and the gain is 1 times (ie the second signal gain).
  • the acquisition unit 102 performs the acquisition of the physiological electrical signals of the brain according to the adjusted acquisition parameters. That is, brain physiological electrical signals are collected at a sampling rate of 16 kHz and a signal gain of 1 times.
  • the stimulation unit 101 ends the stimulation and enters the non-stimulation process, and the acquisition unit 102 restores the acquisition parameters, and resumes performing the acquisition according to the first acquisition parameters with a sampling rate of 1 kHz and a gain of 100 times.
  • the collection unit performs the collection operation according to the pre-stored parameters.
  • the present invention is not limited to this, and the acquisition parameters can also be adjusted according to real-time feedback. Specifically, when the acquisition unit determines that the stimulation unit will perform a stimulating action, the acquisition unit adjusts the acquisition frequency to the second acquisition frequency, and during the stimulation process, the acquisition unit determines the signal amplitude of the acquisition signal Whether it is greater than the set threshold; if it is determined to be yes, the acquisition unit adjusts the signal gain to the second signal gain.
  • the acquisition unit determining that the stimulation unit will perform the stimulation action may include: the acquisition unit determines to request the stimulation unit to perform the stimulation action according to the collected physiological electrical signals of the brain;
  • the notification of the stimulation unit to perform the stimulation action determines that the stimulation unit will perform the stimulation action.
  • the notification may be from the stimulation unit, or may be from a device other than the acquisition unit and the stimulation unit. This will be described in detail below with specific examples.
  • FIG. 4 shows the processing flow of Embodiment 3 of the present invention.
  • the processing of the EEG device includes:
  • the acquisition unit 102 collects the human brain according to a first acquisition parameter (for example, the sampling rate is 1 kHz (ie, the first acquisition frequency), and the gain is 100 times (ie, the first signal gain)).
  • a first acquisition parameter for example, the sampling rate is 1 kHz (ie, the first acquisition frequency), and the gain is 100 times (ie, the first signal gain)).
  • the acquisition unit 102 prepares to request the stimulation unit 101 to perform a stimulation action, and adjusts the acquisition frequency to the acquisition frequency of the second acquisition parameter different from the first acquisition parameter, for example, the maximum value supported by the system of the EEG device.
  • the collection frequency of the second collection parameter may also be other values higher than the first collection frequency.
  • the stimulation unit 101 starts stimulation according to the request.
  • the acquisition unit 102 performs acquisition of physiological electrical signals of the brain according to the adjusted acquisition parameters. For example, the acquisition operation is performed at a maximum sampling rate and a gain of 100 times.
  • the acquisition unit 102 determines in real time whether the signal is close to saturation according to the acquired signal, for example, determines whether the signal amplitude is greater than a set threshold. If it is determined to be yes, execute the process S305, otherwise, continue to execute the process S303.
  • the acquisition unit 102 reduces the signal gain, that is, the acquisition operation is performed with a gain lower than 100 times (for example, 1 time) and a maximum sampling rate.
  • the stimulation unit 101 ends the stimulation, then the acquisition unit 102 restores the acquisition parameters, and returns to performing the acquisition operation according to the first acquisition parameters.
  • the acquisition unit adjusts the acquisition parameters in real time according to the acquisition signal, which can also reduce the influence of aliasing noise and signal gain on the acquisition signal during the stimulation process.
  • FIG. 5 shows the processing flow of Embodiment 4 of the present invention.
  • the main difference between Embodiment 4 and Embodiment 3 is that stimulation is actively initiated by the stimulation unit 101 .
  • the processing of the EEG device may include:
  • the acquisition unit 102 acquires the human brain according to a first acquisition parameter (for example, the sampling rate is 1 kHz (that is, the first acquisition frequency), and the gain is 100 times (that is, the first signal gain)).
  • a first acquisition parameter for example, the sampling rate is 1 kHz (that is, the first acquisition frequency), and the gain is 100 times (that is, the first signal gain)).
  • the stimulation unit 101 starts the stimulation action and notifies the acquisition unit 102.
  • the collection unit 102 adjusts the collection frequency to the collection frequency of the second collection parameter different from the first collection parameter, which may be, for example, the maximum value supported by the system of the EEG device.
  • the collection frequency of the second collection parameter may also be other values higher than the first collection frequency.
  • the acquisition unit 102 performs acquisition of the physiological electrical signals of the brain according to the adjusted acquisition parameters. For example, the acquisition operation is performed at a maximum sampling rate and a gain of 100 times.
  • the acquisition unit 102 determines in real time whether the signal is close to saturation according to the acquired signal, for example, determines whether the signal amplitude is greater than a set threshold. If it is determined to be yes, execute the process S405, otherwise, continue to execute the process S403.
  • the acquisition unit 102 reduces the signal gain, that is, the acquisition operation is performed with a gain lower than 100 times (for example, 1 time) and a maximum sampling rate.
  • the stimulation unit 101 ends the stimulation, then the acquisition unit 102 restores the acquisition parameters, and returns to performing the acquisition operation according to the first acquisition parameters.
  • control operations in the above-mentioned process may also be performed by a separate control system.
  • a brain electrical system which may include:
  • a stimulation unit 101 for generating a stimulation signal and applying the stimulation signal to the human body;
  • the collection unit 102 is used to collect physiological electrical signals of the human brain
  • the control unit 203 is configured to: when the stimulation unit 101 does not apply the stimulation signal to the human body (ie, a non-stimulation process), control the acquisition unit 102 to collect the physiological electrical signal of the human brain according to the first acquisition parameter; During the process of applying the stimulation signal to the human body (that is, the stimulation process), the stimulation unit 101 controls the acquisition unit 102 to collect the physiological electrical signal of the human brain according to the second acquisition parameter; The acquisition parameters are not the same.
  • the first collection parameter may include at least one of a first collection frequency and a first signal gain
  • the second collection parameter may include at least one of a second collection frequency and a second signal gain
  • the first acquisition frequency may be lower than the second acquisition frequency
  • the second signal gain may be lower than the first signal gain
  • the stimulation unit 101 , the acquisition unit 102 , and the control unit 203 may be configured in the same device, for example, the control unit 203 may be configured in the EEG device shown in FIG. 1 . In other embodiments of the present invention, the control unit 203 may be disposed outside the EEG device shown in FIG. 1 , that is, the control unit 203 is an external control system.
  • FIG. 7 shows the processing flow of Embodiment 5 of the present invention.
  • the control unit controls the acquisition unit according to the pre-stored parameters.
  • the EEG system may further include a storage unit for storing the first acquisition parameter and the second acquisition parameter.
  • the control unit may include the storage unit.
  • the processing performed in the EEG system may include:
  • the acquisition unit 102 collects the human body according to the pre-stored first acquisition parameters (for example, the sampling rate is 1 kHz (that is, the first acquisition frequency), and the gain is 100 times (that is, the first signal gain)). Brain physiological electrical signals.
  • the sampling rate is 1 kHz (that is, the first acquisition frequency)
  • the gain is 100 times (that is, the first signal gain)). Brain physiological electrical signals.
  • the control unit 203 prepares to request or control the stimulation unit 101 to perform a stimulation action, and adjusts the acquisition parameters of the acquisition unit 102 to the second acquisition parameters according to the pre-stored parameters, for example, the sampling rate is 16 kHz (ie, the second acquisition frequency), and the gain is 1 times (ie the second signal gain).
  • the stimulation unit 101 performs a stimulation action, and during the stimulation process, the acquisition unit 102 performs the acquisition of the physiological electrical signals of the brain according to the adjusted acquisition parameters. That is, brain physiological electrical signals are collected at a sampling rate of 16 kHz and a signal gain of 1 times.
  • the stimulation unit 101 ends the stimulation and enters the non-stimulation process
  • the control unit 203 restores the acquisition parameters of the acquisition unit 102
  • the acquisition unit 102 performs the acquisition operation according to the first acquisition parameters with a sampling rate of 1 kHz and a gain of 100 times.
  • control unit 203 adjusts the acquisition parameters of the stimulation process and the non-stimulation process according to the pre-stored parameters, so as to reduce the influence of noise aliasing and signal gain on the acquisition signal during the stimulation process.
  • FIG. 8 shows the processing flow of Embodiment 6 of the present invention.
  • Embodiment 6 adjusts the acquisition parameters according to real-time feedback.
  • the control unit 203 may also be configured to: when it is determined that the stimulation unit will perform a stimulation action, adjust the acquisition frequency of the acquisition unit to the second acquisition frequency; wherein, when the stimulation unit is directed to the human body
  • the control unit controlling the collection unit to collect the physiological electrical signal of the human brain according to the second collection parameter includes: judging whether the signal amplitude of the collected signal is greater than the set threshold; The signal gain of the acquisition unit is adjusted to the second signal gain.
  • the determining by the control unit that the stimulation unit will perform the stimulation action includes: the control unit determining, according to the physiological electrical signals of the brain collected by the collection unit, to request the stimulation unit to perform the stimulation action Or, the control unit determines that the stimulation unit will perform the stimulation action according to the received notification that the stimulation unit performs the stimulation action.
  • the notification may come from the stimulation unit or a device other than the acquisition unit, the stimulation unit, and the control unit.
  • the processing performed in the EEG system may include:
  • the acquisition unit 102 collects the human brain according to the first acquisition parameter (for example, the sampling rate is 1 kHz (ie, the first acquisition frequency), and the gain is 100 times (ie, the first signal gain)).
  • the first acquisition parameter for example, the sampling rate is 1 kHz (ie, the first acquisition frequency), and the gain is 100 times (ie, the first signal gain)).
  • the control unit 203 prepares to request or control the stimulation unit 101 to perform a stimulation action, and adjusts the acquisition frequency to the acquisition frequency of the second acquisition parameter that is different from the first acquisition parameter, for example, can be the maximum supported by the system of the brain electrical equipment value.
  • the collection frequency of the second collection parameter may also be other values higher than the first collection frequency.
  • the acquisition unit 102 performs acquisition of the physiological electrical signals of the brain according to the adjusted acquisition parameters. For example, the acquisition operation is performed at a maximum sampling rate and a gain of 100 times.
  • control unit 203 judges in real time whether the signal is close to saturation according to the collected signal of the collecting unit 102, for example, judges whether the signal amplitude is greater than a set threshold. If it is determined to be yes, execute the process S605, otherwise, continue to execute the process S603.
  • control unit 203 reduces the signal gain of the acquisition unit 102, even if the acquisition unit 102 adopts a gain lower than 100 times (eg, 1 times) and the maximum sampling rate to perform the acquisition operation.
  • the stimulation unit 101 ends the stimulation, and the control unit 203 restores the acquisition parameters, so that the acquisition unit 102 resumes performing the acquisition operation according to the first acquisition parameters.
  • parameter adjustment during stimulation is performed by the control unit 203 .
  • parameter adjustment during stimulation may be performed by acquisition unit 102 .
  • FIG. 9 shows the processing flow of Embodiment 7 of the present invention. Different from Embodiment 6, in Embodiment 7, the parameter adjustment during stimulation is performed by the acquisition unit 102 . Specifically, as shown in FIG. 9 , the processing performed in the EEG system may include:
  • the acquisition unit 102 collects the human brain according to a first acquisition parameter (for example, the sampling rate is 1 kHz (ie, the first acquisition frequency), and the gain is 100 times (ie, the first signal gain)).
  • a first acquisition parameter for example, the sampling rate is 1 kHz (ie, the first acquisition frequency), and the gain is 100 times (ie, the first signal gain)).
  • the control unit 203 prepares to request or control the stimulation unit 101 to perform a stimulation action, and adjusts the acquisition frequency to the acquisition frequency of the second acquisition parameter that is different from the first acquisition parameter, for example, can be the maximum supported by the system of the brain electrical equipment value.
  • the collection frequency of the second collection parameter may also be other values higher than the first collection frequency.
  • the acquisition unit 102 performs acquisition of the physiological electrical signals of the brain according to the adjusted acquisition parameters. For example, the acquisition operation is performed at a maximum sampling rate and a gain of 100 times.
  • the acquisition unit 102 determines in real time whether the signal is close to saturation according to the acquired signal, for example, determines whether the signal amplitude is greater than a set threshold. If it is determined to be yes, execute the process S705, otherwise, continue to execute the process S703.
  • the acquisition unit 102 reduces the signal gain, that is, the acquisition unit 102 adopts a gain lower than 100 times (for example, 1 times) and the maximum sampling rate to perform the acquisition operation.
  • the stimulation unit 101 ends the stimulation, and the control unit 203 restores the acquisition parameters, so that the acquisition unit 102 resumes performing the acquisition operation according to the first acquisition parameters.
  • the EEG device and EEG system of the present invention have been specifically described above through various embodiments. It can be seen from the above that the present invention adjusts the acquisition parameters adaptively when the acquisition unit senses that the stimulation unit generates the stimulation signal and the stimulation signal ends. Real-time feedback to adjust, or can be adjusted according to the system's pre-stored parameter adjustment plan.
  • the principle of the specific implementation method is shown in Figure 10, in which the stimulation unit can generate stimulation signals to the human body, and the acquisition unit can collect physiological electrical signals of the human brain:
  • the acquisition unit uses normal EEG acquisition parameters to acquire EEG signals. At this time, compared with when electrical stimulation occurs, the acquisition frequency is lower and the signal gain is higher.
  • the acquisition unit adjusts the acquisition parameters according to the predefined acquisition parameters or real-time feedback of the acquisition unit, increases the sampling rate of the signal, and reduces the gain of the acquired signal.
  • the acquisition unit automatically restores the acquisition parameters to the non-stimulated state to collect EEG signals.
  • the EEG device and system may include components related to stimulation, acquisition and analysis in addition to the aforementioned stimulation unit and acquisition unit, such as stimulation electrodes, acquisition electrodes, and information processing equipment.
  • the sampling rate of 1 kHz and the gain of 100 times are used as the first acquisition parameters when no stimulation
  • the sampling rate of 16 kHz and the gain of 1 times are used as the second acquisition parameters when stimulated.
  • An exemplary description is given, however, the present invention is not limited to this specific value, and those skilled in the art can set the first acquisition parameter according to the amplitude-frequency characteristics of the acquired signal and system design constraints (such as volume/power consumption, etc.). and the second acquisition parameter.
  • embodiments of the present invention further provide a computer-readable storage medium, on which computer-readable instructions or programs are stored, and when the computer-readable instructions or programs are executed by a processor, the processor is caused to perform the following operations:
  • the operation includes the steps included in the processing method described in any one of the above implementation manners or embodiments.
  • the computer-readable instructions can be executed by a processor to implement the following processes:
  • the stimulation unit does not apply the stimulation signal to the human body, causing the acquisition unit to acquire the physiological electrical signal of the human brain according to the first acquisition parameter;
  • the acquisition unit is made to acquire the physiological electrical signal of the human brain according to the second acquisition parameter
  • the first collection parameter is different from the second collection parameter.
  • the first acquisition parameter includes at least one of a first acquisition frequency and a first signal gain
  • the second acquisition parameter includes at least one of a second acquisition frequency and a second signal gain one.
  • the first collection frequency is lower than the second collection frequency
  • the second signal gain is lower than the first signal gain
  • the computer-readable instructions are also executable by a processor to perform the following processes:
  • the collection frequency of the collection unit is adjusted to the second collection frequency
  • the signal gain of the collection unit is adjusted to the second signal gain.
  • determining that the stimulation unit will perform a stimulation action includes:
  • the stimulation unit will perform the stimulation action according to the received notification that the stimulation unit performs the stimulation action.
  • the storage medium may include, for example, an optical disk, a hard disk, a floppy disk, a flash memory, a magnetic tape, and the like.
  • embodiments of the present invention also provide a computer device including a memory and a processor, the memory is used to store one or more computer instructions or programs, wherein the one or more computer instructions or programs are processed by the The processing method described in any one of the above implementation manners or embodiments can be implemented when the processor is executed.
  • the memory includes or has the computer-readable storage medium described above.
  • the computer device may be, for example, a server, desktop computer, notebook computer, tablet computer, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physiology (AREA)
  • Neurosurgery (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Dermatology (AREA)
  • Neurology (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Psychology (AREA)
  • Psychiatry (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本公开涉及电子医疗技术领域,提供了一种脑电设备、系统、计算机设备和存储介质。脑电设备包括:刺激单元,用于产生刺激信号;采集单元,用于采集人体脑部生理电信号;其中,采集单元采集人体脑部生理电信号包括:在所述刺激单元未向人体施加所述刺激信号时,采集单元根据第一采集参数采集人体脑部生理电信号;在刺激单元向人体施加所述刺激信号过程中,采集单元根据第二采集参数采集人体脑部生理电信号;其中,第一采集参数与第二采集参数不相同。采用本公开的技术方案,采集单元在刺激过程和非刺激过程中采用不同的采集参数进行脑部生理电信号的采集,以在刺激过程中降低混叠噪声与信号饱和对采集信号的影响,进而可采集到有效的脑电数据。

Description

脑电设备、系统、计算机设备和存储介质 技术领域
本发明涉及一种电子医疗技术领域,具体而言,涉及一种脑电设备、系统、计算机设备和存储介质。
背景技术
脑部生理电信号作为人体的基本生理信号之一,具有重要的临床诊断和治疗参考价值。但是,脑部生理电信号的非平稳性随机的特点,决定了对它的研究是一项有相当难度的事情。
电刺激疗法作为科研与医疗的一个重要领域,在针对脑部生理电信号的研究中也发挥着相当重要的作用。通过对人体特定部位进行针对性的、特定的、有目的性的电刺激,再根据脑电信号的反馈进行分析,在癫痫等常见病症中发挥着重要的作用。使用于人体的电刺激有直流电、交流电等多种刺激方式,电刺激信号均会在脑电信号中引入相应的噪声。
然而,刺激过程中引入的噪声会导致信号混叠和信号饱和,噪声的混叠和饱和对刺激过程中脑部生理电信号的采集产生极大的影响。科研和医疗过程中,如何在刺激过程中采集到有效的脑电数据,长期以来一直困扰着研究人员。一些很重要的课题及医学研究往往因为没有办法在刺激的过程中获得干净的脑电数据而无法继续深入,例如,进行刺激过程对大脑的影响的基础研究,如帕金森病人在使用DBS(脑深部电刺激)电子药物和化学药物时影响性分析等实用医疗研究等等。
因此,如何在刺激过程中采集有效的脑电数据成为本领域亟需解决的技术问题。
发明内容
为了解决上述技术问题,本发明实施方式提供了一种在刺激过程中采集有效的脑电数据的技术方案。
根据本发明的一方面,本发明的实施方式提供了一种脑电设备,其包括:
刺激单元,用于产生刺激信号并将所述刺激信号施加于人体;
采集单元,用于采集人体脑部生理电信号;
其中,所述采集单元采集人体脑部生理电信号包括:在所述刺激单元未向人体施加所述刺激信号时(即非刺激过程),所述采集单元根据第一采集参数采集人体脑部生理电信号;在所述刺激单元向人体施加所述刺激信号过程中(即刺激过程),所述采集单元根据第二采集参数采集人体脑部生理电信号;其中,所述第一采集参数与第二采集参数不相同。
根据本发明实施方式,采集单元在刺激过程和非刺激过程中采用不同的采集参数进行脑部生理电信号的采集,从而在刺激过程中降低混叠噪声与信号饱和对采集的脑电信号的影响,进而能够采集到有效的脑电数据。
在本发明的一些实施方式中,所述第一采集参数包括第一采集频率、第一信号增益中的至少一者;所述第二采集参数包括第二采集频率、第二信号增益中的至少一者。其中,所述第一采集频率低于所述第二采集频率,所述第二信号增益低于所述第一信号增益。
在本发明的一些实施方式中,所述脑电设备还包括存储单元,用于存储所述第一采集参数和第二采集参数。可选的,所述采集单元包含所述存储单元。
根据本发明实施方式,采集单元可以根据预存的参数进行采集参数的调整,从而在非刺激过程和刺激过程中采用不同的参数进行脑部生理电的信号采集。
在本发明的一些实施方式中,所述采集单元采集人体脑部生理电信号还包括:所述采集单元确定所述刺激单元将进行刺激动作时,所 述采集单元将采集频率调整为所述第二采集频率;
其中,在所述刺激单元向人体施加所述刺激信号过程中,所述采集单元根据第二采集参数采集人体脑部生理电信号包括:所述采集单元判断采集信号的信号幅度是否大于设定阈值;若判断为是,则所述采集单元将信号增益调整为所述第二信号增益。
在本发明的一些实施方式中,所述采集单元确定所述刺激单元将进行刺激动作包括:
所述采集单元根据采集到的脑部生理电信号确定请求所述刺激单元进行刺激动作;或者
所述采集单元根据收到的所述刺激单元进行刺激动作的通知来确定所述刺激单元将进行刺激动作。其中,所述通知可以是来自于所述刺激单元,也可以是来自除所述采集单元、刺激单元之外的设备。
根据本发明实施方式,采集单元根据采集信号实时调整刺激过程中的采集参数,从而在非刺激过程和刺激过程中采用不同的参数进行脑部生理电的信号采集。
根据本发明的另一方面,本发明的实施方式一种脑电系统,其包括:
刺激单元,用于产生刺激信号并将所述刺激信号施加于人体;
采集单元,用于采集人体脑部生理电信号;
控制单元,被配置成:在所述刺激单元未向人体施加所述刺激信号时(即非刺激过程),控制所述采集单元根据第一采集参数采集人体脑部生理电信号;在所述刺激单元向人体施加所述刺激信号过程中(即刺激过程),控制所述采集单元根据第二采集参数采集人体脑部生理电信号;其中,所述第一采集参数与第二采集参数不相同。
根据本发明实施方式,通过控制单元来对采集单元进行控制,使其在刺激过程和非刺激过程中采用不同的采集参数进行脑部生理电信号的采集,从而在刺激过程中降低混叠噪声与信号饱和对采集的脑电信号的影响,进而能够采集到有效的脑电数据。
在本发明的一些实施方式中,所述第一采集参数包括第一采集频 率、第一信号增益中的至少一者;所述第二采集参数包括第二采集频率、第二信号增益中的至少一者。其中,所述第一采集频率低于所述第二采集频率,所述第二信号增益低于所述第一信号增益。
在本发明的一些实施方式中,所述脑电系统还包括存储单元,用于存储所述第一采集参数和第二采集参数。可选的,所述控制单元包含所述存储单元。
根据本发明实施方式,控制单元可以根据预存的参数对采集单元的采集参数进行调整,从而使采集单元在非刺激过程和刺激过程中采用不同的参数进行脑部生理电的信号采集。
在本发明的一些实施方式中,所述控制单元还被配置成:确定所述刺激单元将进行刺激动作时,将所述采集单元的采集频率调整为所述第二采集频率;
其中,在所述刺激单元向人体施加所述刺激信号过程中,所述控制单元控制所述采集单元根据第二采集参数采集人体脑部生理电信号包括:判断采集信号的信号幅度是否大于设定阈值;若判断为是,则将所述采集单元的信号增益调整为所述第二信号增益。
在本发明的一些实施方式中,所述控制单元确定所述刺激单元将进行刺激动作包括:
所述控制单元根据所述采集单元采集到的脑部生理电信号确定请求所述刺激单元进行刺激动作;或者
所述控制单元根据收到的所述刺激单元进行刺激动作的通知来确定所述刺激单元将进行刺激动作。其中,所述通知可以来自于所述刺激单元或除所述采集单元、刺激单元、控制单元之外的设备。
根据本发明实施方式,控制单元根据采集信号实时调整刺激过程中的采集参数,从而在非刺激过程和刺激过程中采用不同的参数进行脑部生理电的信号采集。
根据本发明的再一方面,本发明的实施方式提供了一种计算机可读存储介质,其上存储有计算机可读指令,其中,所述计算机可读指令能够被处理器执行以实现下述处理:
判断刺激单元是否在向人体施加所述刺激信号;
在所述刺激单元未向人体施加所述刺激信号时,则使采集单元根据第一采集参数采集人体脑部生理电信号;
在所述刺激单元向人体施加所述刺激信号过程中,则使所述采集单元根据第二采集参数采集人体脑部生理电信号;
其中,所述第一采集参数与第二采集参数不相同。
在本发明的一些实施方式中,所述第一采集参数包括第一采集频率、第一信号增益中的至少一者;所述第二采集参数包括第二采集频率、第二信号增益中的至少一者。其中,所述第一采集频率低于所述第二采集频率,所述第二信号增益低于所述第一信号增益。
在本发明的一些实施方式中,所述计算机可读指令还能够被处理器执行以实现下述处理:
确定所述刺激单元将进行刺激动作时,将所述采集单元的采集频率调整为所述第二采集频率;
并且,在所述刺激单元向人体施加所述刺激信号过程中,判断采集信号的信号幅度是否大于设定阈值;若判断为是,则将所述采集单元的信号增益调整为所述第二信号增益。
在本发明的一些实施方式中,确定所述刺激单元将进行刺激动作包括:
根据所述采集单元采集到的脑部生理电信号确定请求所述刺激单元进行刺激动作;或者
根据收到的所述刺激单元进行刺激动作的通知来确定所述刺激单元将进行刺激动作。
根据本发明的又一方面,本发明的实施方式提供了一种计算机设备,其包括存储器和处理器,其特征在于,所述存储器包含上述计算机可读存储介质,所述处理器能够执行所述存储器上存储的计算机可读指令以执行上面各个实施方式中所述的各种处理、操作、步骤。
根据本发明的各个方面可知,本发明提出的技术方案自适应地在刺激过程中提高采集频率并降低信号增益,无需人工介入,能够在持 续的采集的情况下,有效的降低在刺激过程中混叠噪声和信号饱和对脑部生理电信号的影响,保证脑部生理电信号高可读性。由此,确保整个过程中采集到的脑部生理电信号均能满足科研和医疗的需要。
附图说明
图1是根据本发明的一种实施方式的脑电设备的示意框图;
图2是根据本发明的实施例1的处理流程图;
图3是根据本发明的实施例2的处理流程图;
图4是根据本发明的实施例3的处理流程图;
图5是根据本发明的实施例4的处理流程图;
图6是根据本发明的另一种实施方式的脑电系统的示意框图;
图7是根据本发明的实施例5的处理流程图;
图8是根据本发明的实施例6的处理流程图;
图9是根据本发明的实施例7的处理流程图;
图10是示出本发明的技术构思的示意图。
具体实施方式
以下结合附图和具体实施方式对本发明的各个方面进行详细阐述。其中,众所周知的部件、模块、单元及其相互之间的连接、链接、通信或操作没有示出或未作详细说明。并且,所描述的特征、结构或功能可在一个或一个以上实施方式中以任何方式组合。本领域技术人员应当理解,下述的各种实施方式只用于举例说明,而非用于限制本发明的保护范围。还可以容易理解,本文所述和附图所示的各实施方式中的模块或单元或处理方式可以按各种不同配置进行组合和设计。
图1示出了根据本发明的一种实施方式的脑电设备。所述脑电设备可以包括,但不限于,刺激单元101和采集单元102。其中,刺激单元101用于产生刺激信号,例如,交流电刺激、脉冲电刺激等,并将所述刺激信号施加于人体,例如,人体大脑。在本发明的可选实施方式中,所述刺激信号还包括听觉刺激、触觉刺激以及视觉刺激。
所述采集单元102用于采集人体脑部生理电信号,包括对所述刺激的响应信号。
在本发明实施方式中,所述采集单元102采集人体脑部生理电信号包括:在所述刺激单元101未向人体施加所述刺激信号时(即非刺激过程),所述采集单元102根据第一采集参数采集人体脑部生理电信号;在所述刺激单元101向人体施加所述刺激信号过程中(即刺激过程),所述采集单元102根据第二采集参数采集人体脑部生理电信号。其中,所述第一采集参数与第二采集参数不相同。其中,所述第一采集参数可以包括第一采集频率(即采样率)、第一信号增益中的至少一者;所述第二采集参数可以包括第二采集频率、第二信号增益中的至少一者。其中,所述第一采集频率可以低于所述第二采集频率,所述第二信号增益可以低于所述第一信号增益。
根据本发明实施方式,采集单元在刺激过程和非刺激过程中采用不同的采集参数进行脑部生理电信号的采集,从而在刺激过程中降低混叠噪声与信号饱和对采集的脑电信号的影响,进而能够采集到有效的脑电数据。下面以具体实施例对本发明实施方式的脑电设备的处理过程进行详细说明。
【实施例1】
图2示出了本发明的实施例1的处理流程。在实施例1中,采集单元根据预存的采集参数调整刺激过程和非刺激过程中的采集操作。相应的,所述脑电设备还可包括存储单元,用于存储所述第一采集参数和第二采集参数。在可选的实施方式中,所述采集单元可以包含所述存储单元。
在实施例1中,所述脑电设备的处理可以包括:
S101,在没有刺激的非刺激过程中,采集单元102根据预存的第一采集参数(例如,采样率为1kHz(即第一采集频率),增益为100倍(即第一信号增益))采集人体脑部生理电信号。
S102,采集单元102准备请求刺激单元101进行刺激动作,此时,采集单元102将采集参数调整为第二采集参数,例如,采样率为16kHz (即第二采集频率),增益为1倍(即第二信号增益)。
S103,刺激单元101进行刺激动作,在刺激过程中,采集单元根据调整后的采集参数执行脑部生理电信号的采集。即,按照16kHz的采样率和1倍的信号增益采集脑部生理电信号。
S104,刺激单元101结束刺激,进入非刺激过程,采集单元102恢复采集参数,即根据采样率为1kHz和增益为100倍的第一采集参数执行所述采集。
由上述可知,在实施例1中,由采集单元102发起刺激,并按照预存参数对刺激过程和非刺激过程的采集参数进行调整。
【实施例2】
图3示出了本发明的实施例2的处理流程。实施例2与实施例1的区别在于,在实施例2中,由刺激单元101主动发起刺激。具体地,所述脑电设备的处理可以包括:
S201,在没有刺激的非刺激过程中,采集单元102根据预存的第一采集参数(例如,采样率为1kHz(即第一采集频率),增益为100倍(即第一信号增益))采集人体脑部生理电信号。
S202,刺激单元101开始刺激动作,并通知采集单元102。采集单元102收到刺激单元101发起刺激的通知后,将采集参数调整为第二采集参数,例如,采样率为16kHz(即第二采集频率),增益为1倍(即第二信号增益)。
S203,在刺激单元101对人体进行刺激的过程中,采集单元102根据调整后的采集参数执行脑部生理电信号的采集。即,按照16kHz的采样率和1倍的信号增益采集脑部生理电信号。
S204,刺激单元101结束刺激,进入非刺激过程,采集单元102恢复采集参数,恢复根据采样率为1kHz和增益为100倍的第一采集参数执行所述采集。
由上述可知,实施例1和实施例2均是采集单元根据预存参数执行采集操作。本发明不限于此,还可以根据实时反馈来调整采集参数。具体而言,采集单元确定所述刺激单元将进行刺激动作时,所述采集 单元将采集频率调整为所述第二采集频率,并且,在刺激过程中,所述采集单元判断采集信号的信号幅度是否大于设定阈值;若判断为是,则所述采集单元将信号增益调整为所述第二信号增益。其中,所述采集单元确定所述刺激单元将进行刺激动作可以包括:所述采集单元根据采集到的脑部生理电信号确定请求所述刺激单元进行刺激动作;或者,所述采集单元根据收到的所述刺激单元进行刺激动作的通知来确定所述刺激单元将进行刺激动作。其中,所述通知可以是来自于所述刺激单元,也可以是来自除所述采集单元、刺激单元之外的设备。下面以具体的例子对此进行详细说明。
【实施例3】
图4示出了本发明的实施例3的处理流程。在实施例3中,所述脑电设备的处理包括:
S301,在没有刺激的非刺激过程中,采集单元102根据第一采集参数(例如,采样率为1kHz(即第一采集频率),增益为100倍(即第一信号增益))采集人体脑部生理电信号。
S302,采集单元102准备请求刺激单元101进行刺激动作,并将采集频率调整到与第一采集参数不同的第二采集参数的采集频率,例如可以是所述脑电设备的系统支持的最大值。在可选的实施方式中,第二采集参数的采集频率也可以是高于第一采集频率的其他值。
S303,刺激单元101根据所述请求开始刺激,在刺激过程中,采集单元102按照调整后的采集参数执行对脑部生理电信号的采集。例如,按照最大采样率和100倍的增益进行所述采集操作。
S304,采集单元102根据采集信号实时判断信号是否接近饱和,例如,判断信号幅度是否大于设定阈值。若判断为是,则执行处理S305,否则,继续执行处理S303。
S305,采集单元102降低信号增益,即采取低于100倍的增益(例如,1倍)和最大采样率执行所述采集操作。
S306,刺激单元101结束刺激,则采集单元102恢复采集参数,回到根据第一采集参数执行所述采集操作。
由此可见,在实施例3中,采集单元根据采集信号实时调整采集参数,同样可以降低刺激过程中混叠噪声与信号增益对采集信号的影响。
【实施例4】
图5示出了本发明的实施例4的处理流程。实施例4与实施例3的主要区别在于由刺激单元101主动发起刺激。如图5所示,所述脑电设备的处理可以包括:
S401,在没有刺激的非刺激过程中,采集单元102根据第一采集参数(例如,采样率为1kHz(即第一采集频率),增益为100倍(即第一信号增益))采集人体脑部生理电信号。
S402,刺激单元101开始刺激动作,并通知采集单元102。采集单元102收到该通知后将采集频率调整到与第一采集参数不同的第二采集参数的采集频率,例如可以是所述脑电设备的系统支持的最大值。在可选的实施方式中,第二采集参数的采集频率也可以是高于第一采集频率的其他值。
S403,在刺激过程中,采集单元102按照调整后的采集参数执行对脑部生理电信号的采集。例如,按照最大采样率和100倍的增益进行所述采集操作。
S404,采集单元102根据采集信号实时判断信号是否接近饱和,例如,判断信号幅度是否大于设定阈值。若判断为是,则执行处理S405,否则,继续执行处理S403。
S405,采集单元102降低信号增益,即采取低于100倍的增益(例如,1倍)和最大采样率执行所述采集操作。
S406,刺激单元101结束刺激,则采集单元102恢复采集参数,回到根据第一采集参数执行所述采集操作。
以上各个实施例或实施方式,描述了脑电设备的采集单元在没有外部控制下的处理过程。然而,在可选的实施方式中,上述处理过程中的控制操作也可以由单独的控制系统来执行。
如图6所示,本发明的另一种实施方式提出了一种脑电系统,其 可以包括:
刺激单元101,用于产生刺激信号并将所述刺激信号施加于人体;
采集单元102,用于采集人体脑部生理电信号;
控制单元203,被配置成:在所述刺激单元101未向人体施加所述刺激信号时(即非刺激过程),控制所述采集单元102根据第一采集参数采集人体脑部生理电信号;在所述刺激单元101向人体施加所述刺激信号过程中(即刺激过程),控制所述采集单元102根据第二采集参数采集人体脑部生理电信号;其中,所述第一采集参数与第二采集参数不相同。例如,所述第一采集参数可以包括第一采集频率、第一信号增益中的至少一者;所述第二采集参数可以包括第二采集频率、第二信号增益中的至少一者;其中,所述第一采集频率可以低于所述第二采集频率,所述第二信号增益可以低于所述第一信号增益。
在本发明的一些实施方式中,刺激单元101、采集单元102、控制单元203可以配置在同一设备中,例如,控制单元203可以设置在图1所示的脑电设备中。在本发明的其他实施方式中,控制单元203可以设置在图1所示的脑电设备的外部,即控制单元203为外部控制系统。
下面通过具体实施例对本发明的脑电系统中进行的处理进行说明。
【实施例5】
图7示出了本发明的实施例5的处理流程。在实施例5中,控制单元根据预存参数对采集单元进行控制。所述脑电系统还可以包括存储单元,用于存储所述第一采集参数和第二采集参数。可选的,所述控制单元可以包含所述存储单元。
具体地,如图7所示,在所述脑电系统中进行的处理可以包括:
S501,在没有刺激的非刺激过程中,采集单元102根据预存的第一采集参数(例如,采样率为1kHz(即第一采集频率),增益为100倍(即第一信号增益))采集人体脑部生理电信号。
S502,控制单元203准备请求或控制刺激单元101进行刺激动作,并按照预存参数将采集单元102的采集参数调整为第二采集参数,例 如,采样率为16kHz(即第二采集频率),增益为1倍(即第二信号增益)。
S503,刺激单元101进行刺激动作,在刺激过程中,采集单元102根据调整后的采集参数执行脑部生理电信号的采集。即,按照16kHz的采样率和1倍的信号增益采集脑部生理电信号。
S504,刺激单元101结束刺激,进入非刺激过程,控制单元203恢复采集单元102的采集参数,采集单元102根据采样率为1kHz和增益为100倍的第一采集参数执行所述采集操作。
由上述可知,在实施例5中,控制单元203按照预存参数对刺激过程和非刺激过程的采集参数进行调整,以降低刺激过程中噪声混叠和信号增益对采集信号的影响。
【实施例6】
图8示出了本发明的实施例6的处理流程。与实施例5不同的是,实施例6根据实时反馈来调整采集参数。例如,所述控制单元203还可被配置成:确定所述刺激单元将进行刺激动作时,将所述采集单元的采集频率调整为所述第二采集频率;其中,在所述刺激单元向人体施加所述刺激信号过程中,所述控制单元控制所述采集单元根据第二采集参数采集人体脑部生理电信号包括:判断采集信号的信号幅度是否大于设定阈值;若判断为是,则将所述采集单元的信号增益调整为所述第二信号增益。在本发明的一些实施方式中,所述控制单元确定所述刺激单元将进行刺激动作包括:所述控制单元根据所述采集单元采集到的脑部生理电信号确定请求所述刺激单元进行刺激动作;或者,所述控制单元根据收到的所述刺激单元进行刺激动作的通知来确定所述刺激单元将进行刺激动作。其中,所述通知可以来自于所述刺激单元或除所述采集单元、刺激单元、控制单元之外的设备。
如图8所示,在所述脑电系统中执行的处理可以包括:
S601,在没有刺激的非刺激过程中,采集单元102根据第一采集参数(例如,采样率为1kHz(即第一采集频率),增益为100倍(即 第一信号增益))采集人体脑部生理电信号。
S602,控制单元203准备请求或控制刺激单元101进行刺激动作,并将采集频率调整到与第一采集参数不同的第二采集参数的采集频率,例如可以是所述脑电设备的系统支持的最大值。在可选的实施方式中,第二采集参数的采集频率也可以是高于第一采集频率的其他值。
S603,在刺激单元101的刺激过程中,采集单元102按照调整后的采集参数执行对脑部生理电信号的采集。例如,按照最大采样率和100倍的增益进行所述采集操作。
S604,控制单元203根据采集单元102的采集信号实时判断信号是否接近饱和,例如,判断信号幅度是否大于设定阈值。若判断为是,则执行处理S605,否则,继续执行处理S603。
S605,控制单元203降低采集单元102的信号增益,即使采集单元102采取低于100倍的增益(例如,1倍)和最大采样率执行所述采集操作。
S606,刺激单元101结束刺激,则控制单元203恢复采集参数,使采集单元102恢复根据第一采集参数执行所述采集操作。
在实施例6中,由控制单元203来执行刺激过程中的参数调整。在可选的实施方式中,可以由采集单元102来执行刺激过程中的参数调整。
【实施例7】
图9示出了本发明的实施例7的处理流程。与实施例6不同的是,在实施例7中,由采集单元102来执行刺激过程中的参数调整。具体地,如图9所示,在所述脑电系统中执行的处理可以包括:
S701,在没有刺激的非刺激过程中,采集单元102根据第一采集参数(例如,采样率为1kHz(即第一采集频率),增益为100倍(即第一信号增益))采集人体脑部生理电信号。
S702,控制单元203准备请求或控制刺激单元101进行刺激动作,并将采集频率调整到与第一采集参数不同的第二采集参数的采集频 率,例如可以是所述脑电设备的系统支持的最大值。在可选的实施方式中,第二采集参数的采集频率也可以是高于第一采集频率的其他值。
S703,在刺激单元101的刺激过程中,采集单元102按照调整后的采集参数执行对脑部生理电信号的采集。例如,按照最大采样率和100倍的增益进行所述采集操作。
S704,采集单元102根据采集信号实时判断信号是否接近饱和,例如,判断信号幅度是否大于设定阈值。若判断为是,则执行处理S705,否则,继续执行处理S703。
S705,采集单元102降低信号增益,即,采集单元102采取低于100倍的增益(例如,1倍)和最大采样率执行所述采集操作。
S706,刺激单元101结束刺激,则控制单元203恢复采集参数,使采集单元102恢复根据第一采集参数执行所述采集操作。
以上通过各种实施例对本发明的脑电设备、脑电系统进行了具体说明。由上述可知,本发明在采集单元感知到刺激单元产生刺激信号和刺激信号结束时,对采集参数进行自适应的调整,刺激参数的调整方式可由系统在采集/刺激过程中根据采集/刺激信号的实时反馈进行调整,或可根据系统预存的参数调整方案进行调整。具体实现方法的原理如图10所示,其中刺激单元可对人体产生刺激信号,采集单元可采集人体脑部生理电信号:
1.无刺激信号时
采集单元使用正常的脑电采集参数进行脑电信号的采集,此时相对于发生电刺激时,采集频率较低,信号增益较高。
2.开始刺激时
采集单元根据预定义的采集参数或采集单元的实时反馈来对采集参数进行调整,提高信号的采样率,并降低采集信号的增益。
3.刺激结束时
刺激结束后,采集单元自动恢复到无刺激状态时的采集参数进行脑电信号的采集。
本领域技术人员应当理解,所述脑电设备、系统除了包括前述的刺激单元、采集单元外还可以包括实现刺激、采集和分析相关的部件,例如,刺激电极、采集电极、信息处理设备等。并且,在以上实施例或实施方式中,以1kHz的采样率和100倍的增益作为无刺激时的第一采集参数,16kHz的采样率和1倍的增益作为刺激时的第二采集参数对本发明进行了示例性的说明,然而,本发明不局限于该特定的数值,本领域技术人员可以根据所采集信号的幅频特性以及系统设计约束(如体积/功耗等)来设置第一采集参数和第二采集参数。
此外,通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明可借助软件结合硬件的方式来实现。基于这样的理解,本发明的技术方案对背景技术做出贡献的全部或者部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施方式或者实施方式的某些部分所述的方法。
对应的,本发明实施方式还提供一种计算机可读存储介质,其上存储有计算机可读指令或程序,所述计算机可读指令或程序被处理器执行时,使得处理器执行如下操作:所述操作包括如上任意一种实施方式或实施例所述处理方法所包含的步骤。例如,所述计算机可读指令能够被处理器执行以实现下述处理:
判断刺激单元是否在向人体施加所述刺激信号;
在所述刺激单元未向人体施加所述刺激信号时,则使采集单元根据第一采集参数采集人体脑部生理电信号;
在所述刺激单元向人体施加所述刺激信号过程中,则使所述采集单元根据第二采集参数采集人体脑部生理电信号;
其中,所述第一采集参数与第二采集参数不相同。
在本发明的一些实施方式中,所述第一采集参数包括第一采集频率、第一信号增益中的至少一者;所述第二采集参数包括第二采集频率、第二信号增益中的至少一者。其中,所述第一采集频率低于所述第二采集频率,所述第二信号增益低于所述第一信号增益。
在本发明的一些实施方式中,所述计算机可读指令还能够被处理器执行以实现下述处理:
确定所述刺激单元将进行刺激动作时,将所述采集单元的采集频率调整为所述第二采集频率;
并且,在所述刺激单元向人体施加所述刺激信号过程中,判断采集信号的信号幅度是否大于设定阈值;若判断为是,则将所述采集单元的信号增益调整为所述第二信号增益。
在本发明的一些实施方式中,确定所述刺激单元将进行刺激动作包括:
根据所述采集单元采集到的脑部生理电信号确定请求所述刺激单元进行刺激动作;或者
根据收到的所述刺激单元进行刺激动作的通知来确定所述刺激单元将进行刺激动作。
在本发明的一些实施方式中,所述存储介质可以包括:例如,光盘、硬盘、软盘、闪存、磁带等。
另外,本发明实施方式还提供一种包括存储器和处理器的计算机设备,所述存储器用于存储一条或多条计算机指令或程序,其中,所述一条或多条计算机指令或程序被所述处理器执行时能够实现如上任意一种实施方式或实施例所述的处理方法。例如,所述存储器包括或具有上述计算机可读存储介质。所述计算机设备可以是,例如,服务器、台式计算机、笔记本计算机、平板电脑等。
以上通过各种实施方式对本发明的各个方面进行了详细阐述。本领域技术人员应当理解,以上所公开的仅为本发明的实施方式而已,当然不能以此来限定本发明之权利范围,依本发明实施方式所作的等同变化,仍属本发明权利要求所涵盖的范围。

Claims (19)

  1. 一种脑电设备,其特征在于,所述脑电设备包括:
    刺激单元,用于产生刺激信号并将所述刺激信号施加于人体;
    采集单元,用于采集人体脑部生理电信号;
    其中,所述采集单元采集人体脑部生理电信号包括:在所述刺激单元未向人体施加所述刺激信号时,所述采集单元根据第一采集参数采集人体脑部生理电信号;在所述刺激单元向人体施加所述刺激信号过程中,所述采集单元根据第二采集参数采集人体脑部生理电信号;
    其中,所述第一采集参数与第二采集参数不相同。
  2. 如权利要求1所述的脑电设备,其特征在于,
    所述第一采集参数包括第一采集频率、第一信号增益中的至少一者;
    所述第二采集参数包括第二采集频率、第二信号增益中的至少一者;
    其中,所述第一采集频率低于所述第二采集频率,所述第二信号增益低于所述第一信号增益。
  3. 如权利要求2所述的脑电设备,其特征在于,所述脑电设备还包括存储单元,用于存储所述第一采集参数和第二采集参数。
  4. 如权利要求3所述的脑电设备,其特征在于,所述采集单元包含所述存储单元。
  5. 如权利要求2所述的脑电设备,其特征在于,
    所述采集单元采集人体脑部生理电信号还包括:所述采集单元确定所述刺激单元将进行刺激动作时,所述采集单元将采集频率调整为所述第二采集频率;
    其中,在所述刺激单元向人体施加所述刺激信号过程中,所述采集单元根据第二采集参数采集人体脑部生理电信号包括:所述采集单元判断采集信号的信号幅度是否大于设定阈值;若判断为是,则所述采集单元将信号增益调整为所述第二信号增益。
  6. 如权利要求5所述的脑电设备,其特征在于,所述采集单元确定所述刺激单元将进行刺激动作包括:
    所述采集单元根据采集到的脑部生理电信号确定请求所述刺激单元进行刺激动作;或者
    所述采集单元根据收到的所述刺激单元进行刺激动作的通知来确定所述刺激单元将进行刺激动作。
  7. 如权利要求6所述的脑电设备,其特征在于,所述通知来自于所述刺激单元或除所述采集单元、刺激单元之外的设备。
  8. 一种脑电系统,其特征在于,所述脑电系统包括如权利要求1所述的脑电设备:还包括
    刺激单元,用于产生刺激信号并将所述刺激信号施加于人体;
    采集单元,用于采集人体脑部生理电信号;
    控制单元,被配置成:在所述刺激单元未向人体施加所述刺激信号时,控制所述采集单元根据第一采集参数采集人体脑部生理电信号;在所述刺激单元向人体施加所述刺激信号过程中,控制所述采集单元根据第二采集参数采集人体脑部生理电信号;
    其中,所述第一采集参数与第二采集参数不相同。
  9. 如权利要求8所述的脑电系统,其特征在于,
    所述第一采集参数包括第一采集频率、第一信号增益中的至少一者;
    所述第二采集参数包括第二采集频率、第二信号增益中的至少一者;
    其中,所述第一采集频率低于所述第二采集频率,所述第二信号增益低于所述第一信号增益。
  10. 如权利要求9所述的脑电系统,其特征在于,所述脑电系统还包括存储单元,用于存储所述第一采集参数和第二采集参数。
  11. 如权利要求10所述的脑电系统,其特征在于,所述控制单元包含所述存储单元。
  12. 如权利要求11所述的脑电系统,其特征在于,所述控制单元 还被配置成:确定所述刺激单元将进行刺激动作时,将所述采集单元的采集频率调整为所述第二采集频率;
    其中,在所述刺激单元向人体施加所述刺激信号过程中,所述控制单元控制所述采集单元根据第二采集参数采集人体脑部生理电信号包括:判断采集信号的信号幅度是否大于设定阈值;若判断为是,则将所述采集单元的信号增益调整为所述第二信号增益。
  13. 如权利要求12所述的脑电系统,其特征在于,所述控制单元确定所述刺激单元将进行刺激动作包括:
    所述控制单元根据所述采集单元采集到的脑部生理电信号确定请求所述刺激单元进行刺激动作;或者
    所述控制单元根据收到的所述刺激单元进行刺激动作的通知来确定所述刺激单元将进行刺激动作。
  14. 如权利要求13所述的脑电系统,其特征在于,所述通知来自于所述刺激单元或除所述采集单元、刺激单元、控制单元之外的设备。
  15. 一种计算机可读存储介质,其上存储有计算机可读指令,其特征在于,采用如权利要求14中所述的脑电系统,所述计算机可读指令能够被处理器执行以实现下述处理:
    判断刺激单元是否在向人体施加所述刺激信号;
    在所述刺激单元未向人体施加所述刺激信号时,则使采集单元根据第一采集参数采集人体脑部生理电信号;
    在所述刺激单元向人体施加所述刺激信号过程中,则使所述采集单元根据第二采集参数采集人体脑部生理电信号;
    其中,所述第一采集参数与第二采集参数不相同。
  16. 如权利要求15所述的计算机可读存储介质,其特征在于,
    所述第一采集参数包括第一采集频率、第一信号增益中的至少一者;
    所述第二采集参数包括第二采集频率、第二信号增益中的至少一者;
    其中,所述第一采集频率低于所述第二采集频率,所述第二信号 增益低于所述第一信号增益。
  17. 如权利要求16所述的计算机可读存储介质,其特征在于,所述计算机可读指令还能够被处理器执行以实现下述处理:
    确定所述刺激单元将进行刺激动作时,将所述采集单元的采集频率调整为所述第二采集频率;
    并且,在所述刺激单元向人体施加所述刺激信号过程中,判断采集信号的信号幅度是否大于设定阈值;若判断为是,则将所述采集单元的信号增益调整为所述第二信号增益。
  18. 如权利要求17所述的计算机可读存储介质,其特征在于,确定所述刺激单元将进行刺激动作包括:
    根据所述采集单元采集到的脑部生理电信号确定请求所述刺激单元进行刺激动作;或者
    根据收到的所述刺激单元进行刺激动作的通知来确定所述刺激单元将进行刺激动作。
  19. 一种计算机设备,其包括存储器和处理器,其特征在于,所述存储器包含权利要求15至18中任意一项所述的计算机可读存储介质,所述处理器能够执行所述存储器上存储的计算机可读指令。
PCT/CN2021/099399 2021-01-27 2021-06-10 脑电设备、系统、计算机设备和存储介质 WO2022160557A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21922155.3A EP4280033A1 (en) 2021-01-27 2021-06-10 Electroencephalograph device and system, computer device, and storage medium
US18/272,806 US20240075287A1 (en) 2021-01-27 2021-06-10 Electroencephalograph device and system, computer device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110106891.9 2021-01-27
CN202110106891.9A CN112445343B (zh) 2021-01-27 2021-01-27 脑电设备、系统、计算机设备和存储介质

Publications (1)

Publication Number Publication Date
WO2022160557A1 true WO2022160557A1 (zh) 2022-08-04

Family

ID=74740595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099399 WO2022160557A1 (zh) 2021-01-27 2021-06-10 脑电设备、系统、计算机设备和存储介质

Country Status (4)

Country Link
US (1) US20240075287A1 (zh)
EP (1) EP4280033A1 (zh)
CN (1) CN112445343B (zh)
WO (1) WO2022160557A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117298448A (zh) * 2023-10-31 2023-12-29 首都医科大学宣武医院 脑电异常捕捉及节律调控方法、系统、设备和存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112445343B (zh) * 2021-01-27 2021-05-04 博睿康科技(常州)股份有限公司 脑电设备、系统、计算机设备和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090319004A1 (en) * 2006-12-22 2009-12-24 Ebs Technologles Gmbh Apparatus and method for stimulating a brain of a person
CN104874102A (zh) * 2015-04-02 2015-09-02 中国科学院苏州生物医学工程技术研究所 一种多通道无线闭环脑深部神经感知调控系统
WO2016097937A1 (en) * 2014-12-16 2016-06-23 Koninklijke Philips N.V. Device and method for influencing brain activity
CN106407733A (zh) * 2016-12-12 2017-02-15 兰州大学 基于虚拟现实场景脑电信号的抑郁症风险筛查系统和方法
CN109009887A (zh) * 2018-07-17 2018-12-18 东北大学 一种基于脑机接口的人机交互式导航系统及方法
CN109464131A (zh) * 2019-01-09 2019-03-15 浙江强脑科技有限公司 睡眠质量改善方法、装置及计算机可读存储介质
CN110720900A (zh) * 2019-09-10 2020-01-24 深圳大学 一种脑状态监测与调控装置、方法、处理器及终端设备
CN112445343A (zh) * 2021-01-27 2021-03-05 博睿康科技(常州)股份有限公司 脑电设备、系统、计算机设备和存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11940765B2 (en) * 2020-04-16 2024-03-26 Electro Standards Laboratories Intelligent closed-loop feedback control for transcranial stimulation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090319004A1 (en) * 2006-12-22 2009-12-24 Ebs Technologles Gmbh Apparatus and method for stimulating a brain of a person
WO2016097937A1 (en) * 2014-12-16 2016-06-23 Koninklijke Philips N.V. Device and method for influencing brain activity
CN104874102A (zh) * 2015-04-02 2015-09-02 中国科学院苏州生物医学工程技术研究所 一种多通道无线闭环脑深部神经感知调控系统
CN106407733A (zh) * 2016-12-12 2017-02-15 兰州大学 基于虚拟现实场景脑电信号的抑郁症风险筛查系统和方法
CN109009887A (zh) * 2018-07-17 2018-12-18 东北大学 一种基于脑机接口的人机交互式导航系统及方法
CN109464131A (zh) * 2019-01-09 2019-03-15 浙江强脑科技有限公司 睡眠质量改善方法、装置及计算机可读存储介质
CN110720900A (zh) * 2019-09-10 2020-01-24 深圳大学 一种脑状态监测与调控装置、方法、处理器及终端设备
CN112445343A (zh) * 2021-01-27 2021-03-05 博睿康科技(常州)股份有限公司 脑电设备、系统、计算机设备和存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117298448A (zh) * 2023-10-31 2023-12-29 首都医科大学宣武医院 脑电异常捕捉及节律调控方法、系统、设备和存储介质
CN117298448B (zh) * 2023-10-31 2024-04-19 首都医科大学宣武医院 脑电异常捕捉及节律调控方法、系统、设备和存储介质

Also Published As

Publication number Publication date
EP4280033A1 (en) 2023-11-22
US20240075287A1 (en) 2024-03-07
CN112445343A (zh) 2021-03-05
CN112445343B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
US20230130556A1 (en) Method, system and apparatus for automated termination of a therapy for an epileptic event upon a determination of effects of a therapy
JP6961576B2 (ja) ガルバニック前庭刺激(gvs)装置
EP1583464B1 (en) Clustering of recorded patient neurological activity to determine length of a neurological event
WO2022160557A1 (zh) 脑电设备、系统、计算机设备和存储介质
Williams et al. The relationship between oscillatory activity and motor reaction time in the parkinsonian subthalamic nucleus
US9072832B2 (en) Clustering of recorded patient neurological activity to determine length of a neurological event
US8579786B2 (en) Screening techniques for management of a nervous system disorder
US7136695B2 (en) Patient-specific template development for neurological event detection
US7976465B2 (en) Phase shifting of neurological signals in a medical device system
US7079977B2 (en) Synchronization and calibration of clocks for a medical device and calibrated clock
US7715919B2 (en) Control of treatment therapy during start-up and during operation of a medical device system
US20200155061A1 (en) Neuromodulation method and system for sleep disorders
US20040138518A1 (en) Medical device system with relaying module for treatment of nervous system disorders
US20040138517A1 (en) Multi-modal operation of a medical device system
JP2008500074A5 (zh)
US20190261881A1 (en) Biomarkers for Determining Susceptibility to SUDEP
US20140277255A1 (en) Optimization of cranial nerve stimulation to treat seizure disorders during sleep
US20230050715A1 (en) Minimum neuronal activation threshold transcranial magnetic stimulation at personalized resonant frequency
EP2432395A2 (en) Method and apparatus for neural signal determination and therapy enhancement
Bialer et al. Seizure detection and neuromodulation: A summary of data presented at the XIII conference on new antiepileptic drug and devices (EILAT XIII)
JP2024508685A (ja) 刺激内リクルートメント制御
EP3744386B1 (en) Electrical stimulation controlling device and electrical stimulation system
US20220395690A1 (en) Methods and systems for estimating neural activation by stimulation using a stimulation system
US20230413161A1 (en) Push notification for medical devices
KR20240059466A (ko) 신경 신호 분석에 기반한 적응형 뇌자극 조절 시스템, 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922155

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18272806

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021922155

Country of ref document: EP

Effective date: 20230814

NENP Non-entry into the national phase

Ref country code: DE