WO2022160522A1 - 偏光片、液晶显示模组以及液晶显示补偿仿真方法 - Google Patents

偏光片、液晶显示模组以及液晶显示补偿仿真方法 Download PDF

Info

Publication number
WO2022160522A1
WO2022160522A1 PCT/CN2021/094826 CN2021094826W WO2022160522A1 WO 2022160522 A1 WO2022160522 A1 WO 2022160522A1 CN 2021094826 W CN2021094826 W CN 2021094826W WO 2022160522 A1 WO2022160522 A1 WO 2022160522A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation film
compensation
liquid crystal
uniaxial
crystal display
Prior art date
Application number
PCT/CN2021/094826
Other languages
English (en)
French (fr)
Inventor
海博
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US17/420,038 priority Critical patent/US20230194919A1/en
Publication of WO2022160522A1 publication Critical patent/WO2022160522A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/03Number of plates being 3

Definitions

  • the present application relates to the field of display technology, and in particular, to a polarizer, a liquid crystal display module and a liquid crystal display compensation simulation method.
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • the level of TFT-LCD contrast largely affects its acceptance in the market.
  • the contrast ratio is the ratio of the brightness of the display to the degree of darkness.
  • the dark state is not dark enough is the main factor affecting the contrast ratio of TFT-LCD.
  • the viewing angle of the TFT-LCD increases, the contrast of the picture continues to decrease, and the sharpness of the picture decreases accordingly. This is because the birefringence of the liquid crystal molecules in the liquid crystal layer of the TFT-LCD changes as the viewing angle changes.
  • the compensation principle of the compensation film is to correct the phase difference generated by the liquid crystal at different viewing angles, so that the birefringence property of the liquid crystal molecules can be symmetrically compensated.
  • the compensation films used in large-size liquid crystal displays are for the vertical alignment (Vertical Alignment, VA) display mode.
  • the N-TAC of Konica (Konica) was used in the early days, and later developed to form the OPOTES (Optics) company's N-TAC.
  • OPOTES Optics
  • the commonly used compensation structure for the VA display mode includes setting a biaxial compensation film between the liquid crystal display panel and the first polarizing film and the second polarizing film. Light leakage and color cast issues.
  • the biaxial compensation film has an in-plane retardation Ro and an out-of-plane retardation Rth, both of which will affect light leakage in the dark state with a large viewing angle.
  • an in-plane retardation Ro and an out-of-plane retardation Rth both of which will affect light leakage in the dark state with a large viewing angle.
  • Do mock designs When simulating the design of the compensation film, it is necessary to change the in-plane retardation Ro and the out-of-plane retardation Rth to simulate the influence of the compensation film on light leakage and color shift at a large viewing angle in the dark state.
  • the in-plane retardation Ro and out-of-plane retardation Rth of the compensation film generally satisfy the following relational expressions with the refractive index (Nx, Ny, Nz) of the compensation film and the thickness of the compensation film:
  • Nx is the refractive index in the X direction of the maximum refractive index given in the compensation film plane
  • Ny is the refractive index in the Y direction orthogonal to the X direction in the compensation film plane
  • Nz is the refractive index in the thickness direction of the compensation film
  • d is the thickness of the compensation film.
  • the compensation value of the compensation film can be changed by the following methods:
  • Method 1 The refractive index Nx, Ny, Nz remain unchanged, and the thickness d is changed to change the compensation value;
  • Method 2 The thickness d remains unchanged, and the refractive index Nx, Ny, and Nz are changed to change the compensation value.
  • the method is to change the thickness directly, which is the simplest and fastest, and can quickly obtain the results of different compensation values.
  • Method 2 By changing the refractive index, the compensation values Ro and Rth can be set arbitrarily for simulation, but to set each compensation value Ro, Rth, the model needs to be rebuilt, and the original refractive index Nx, Ny, Nz settings of the compensation film need to be modified. ,low efficiency.
  • the present application provides a polarizer, a liquid crystal display module and a liquid crystal display compensation simulation method, so as to alleviate the technical problem that the simulation design of the existing compensation film cannot be simple and fast and can set the compensation values Ro and Rth arbitrarily.
  • An embodiment of the present application provides a polarizer, which includes a polarizing film, a compensation film, and a protective film, the compensation film is disposed on one side of the polarizing film, and the compensation film includes a first uniaxial compensation film, a second uniaxial compensation film, and a second uniaxial compensation film.
  • the second uniaxial compensation film is located between the first uniaxial compensation film and the third uniaxial compensation film, and the in-plane retardation of the first uniaxial compensation film
  • the in-plane retardation of the third uniaxial compensation film and the out-of-plane retardation of the second uniaxial compensation film are the first preset values
  • the protective film is disposed on the polarizing film away from the compensation film. side.
  • the slow axis angles of the first uniaxial compensation film, the second uniaxial compensation film and the third uniaxial compensation film are the same, and the first uniaxial compensation film and the second uniaxial compensation film have the same slow axis angle.
  • the angle between the slow axis of the compensation film and the third uniaxial compensation film and the absorption axis of the polarizing film is a second preset value.
  • the first preset value is 0.
  • the second preset value is 90 degrees.
  • Embodiments of the present application further provide a liquid crystal display module, which includes a liquid crystal display panel, a first polarizer, and a second polarizer, wherein the first polarizer is disposed on one side of the liquid crystal display panel; the second polarizer is disposed on A side of the liquid crystal display panel away from the first polarizer.
  • the first polarizer includes the polarizer described in the foregoing embodiments, and the absorption axis of the polarizing film of the first polarizer and the absorption axis of the polarizing film of the second polarizer are perpendicular to each other.
  • the absorption axis of the polarizing film of the first polarizer is 0 degrees.
  • the absorption axis of the polarizing film of the first polarizer is 90 degrees.
  • the second polarizer also includes the polarizer according to claim 1 .
  • the first preset value is 0.
  • the second preset value is 90 degrees.
  • the embodiment of the present application also provides a liquid crystal display compensation simulation method, which includes:
  • a target compensation film structure is selected according to the simulation request;
  • the target compensation film structure includes a first uniaxial compensation film, a second uniaxial compensation film and a third uniaxial compensation film, and the second uniaxial compensation film is located in the first uniaxial compensation film Between the compensation film and the third uniaxial compensation film, the in-plane retardation of the first uniaxial compensation film, the in-plane retardation of the third uniaxial compensation film, the in-plane retardation of the second uniaxial compensation film
  • the external phase difference is a first preset value; the slow axis angles of the first uniaxial compensation film, the second uniaxial compensation film and the third uniaxial compensation film are the same;
  • a target liquid crystal display compensation structure is constructed;
  • the target liquid crystal display compensation structure includes a liquid crystal display panel, a first polarizing film, a second polarizing film, a liquid crystal display panel located on the first polarizing film and the liquid crystal display panel
  • a first target compensation film structure between, a second target compensation film structure located between the second polarizing film and the liquid crystal display panel, the slow axis of the film layer in the first target compensation film structure and the
  • the included angle between the absorption axis of the first polarizing film, the included angle between the slow axis of the film layer in the second target compensation film structure and the absorption axis of the second polarizing film is a second preset value;
  • the simulation result is output.
  • the first preset value is 0.
  • the second preset value is 90 degrees.
  • the absorption axis of the first polarizing film and the absorption axis of the second polarizing film are perpendicular to each other.
  • the absorption axis of the first polarizing film is 0 degrees or 90 degrees.
  • the method before the step of selecting the target compensation film structure according to the simulation request, the method further includes:
  • a target compensation film structure is determined from at least two of the preset compensation film simulation structures.
  • both the standard liquid crystal display compensation simulation structure and the preset liquid crystal display compensation simulation structure include a liquid crystal display panel, and the liquid crystal display panel of the standard liquid crystal display compensation simulation structure
  • the standard panel parameters are related to the preset panel parameters of the liquid crystal display panel of the preset liquid crystal display compensation simulation architecture.
  • the polarizer, the liquid crystal display module, and the compensation film in the liquid crystal display compensation simulation method provided by the present application include three layers of uniaxial compensation films, wherein the three layers of uniaxial compensation films have the same slow axis angle and are perpendicular to the absorption axis of the polarizing film, and Each layer in the three-layer uniaxial compensation film has only in-plane retardation or out-of-plane retardation. Based on this, the in-plane retardation and out-of-plane retardation of the compensation film can be set arbitrarily by simply adjusting the thickness of each layer of the compensation film when simulating the design of the compensation film or preparing the polarizer, which is very simple and fast. The problem that the simulation design of the existing compensation film cannot be implemented simply and quickly and can set the compensation values Ro and Rth arbitrarily is solved.
  • FIG. 1 is a schematic cross-sectional view of a film structure of a polarizer provided in an embodiment of the present application
  • FIG. 2 is a schematic cross-sectional structure diagram of a liquid crystal display module according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a liquid crystal display simulation simulation method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the relationship between the in-plane phase difference Ro and luminance according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the relationship between the in-plane phase difference Ro and the chromaticity X according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the relationship between the in-plane phase difference Ro and the chromaticity Y according to an embodiment of the present application.
  • the embodiments of the present application provide a polarizer, a liquid crystal display module, and a liquid crystal display compensation simulation method to resolve this issue.
  • FIG. 1 is a schematic diagram of a film layer structure of a polarizer provided by an embodiment of the present application.
  • the polarizer 100 includes a polarizer film 10 , a compensation film 20 , and a protective film 30 .
  • the polarizer 100 may also include an adhesive film 40 , wherein the compensation film 20 is disposed on one side of the polarizer film 10 .
  • the protective film is disposed on the side of the polarizer film 10 away from the compensation film, and the adhesive film 40 is disposed on the side of the compensation film 20 away from the polarizer film 10 .
  • the polarizing film 10 that is, the PVA layer, is made of polyvinyl alcohol, and mainly plays the role of polarizing light in the polarizing film 100 .
  • the protective film 30 is also a Triacetyl Cellulose (TAC) layer, which is mainly used to protect the PVA layer, improve the mechanical properties of the PVA layer, and prevent the PVA layer from shrinking.
  • the adhesive film 40 includes pressure sensitive adhesive (PSA), which mainly plays the role of adhesive connection.
  • the compensation film 20 includes a first uniaxial compensation film 21, a second uniaxial compensation film 22 and a third uniaxial compensation film 23, and the second uniaxial compensation film 22 is located on the first uniaxial compensation film 21 and the third uniaxial compensation film 23.
  • the disparity is the first preset value.
  • the slow axis angles of the first uniaxial compensation film 21 , the second uniaxial compensation film 22 and the third uniaxial compensation film 23 are the same, and the first uniaxial compensation film of the compensation film 20 21.
  • the angle between the slow axis of the second uniaxial compensation film 22 and the third uniaxial compensation film 23 and the absorption axis of the polarizing film 10 is a second preset value.
  • the first preset value is 0, and the second preset value is 90 degrees.
  • the compensation film 20 of the polarizer 100 includes three layers of uniaxial compensation films, the slow axis angles of the three layers of uniaxial compensation films are the same and perpendicular to the absorption axis of the polarizer film 10 , and the three layers of uniaxial compensation films
  • Each layer in the film has only in-plane retardation or out-of-plane retardation. Therefore, when designing the compensation film, it is only necessary to adjust the thickness of each layer of the compensation film to arbitrarily set the in-plane retardation and out-of-plane retardation of the compensation film, without adjusting the refractive index by changing the material of the compensation film to achieve compensation.
  • the in-plane retardation and the out-of-plane retardation of the film are set arbitrarily, respectively.
  • a liquid crystal display module is provided. Please refer to FIG. 2 , which is a schematic cross-sectional structure diagram of the liquid crystal display module provided by the embodiment of the application.
  • the liquid crystal display module 1000 includes a liquid crystal display panel 200 , a first polarizer 101 and a second polarizer 102 .
  • the first polarizer 101 is disposed on one side of the liquid crystal display panel 200 .
  • the second polarizer 102 is disposed on a side of the liquid crystal display panel 200 away from the first polarizer 101 .
  • the first polarizer 101 and the second polarizer 102 includes the polarizer 100 of the above embodiment, and the compensation films of the first polarizer 101 and/or the second polarizer 102 are close to
  • the absorption axis of the polarizing film of the first polarizer 101 and the absorption axis of the polarizing film of the second polarizer 102 are perpendicular to each other, that is, the angle between the two is 90 degrees.
  • the absorption axis of the polarizing film of the first polarizer 101 is 0 degrees or 90 degrees.
  • the liquid crystal display module 1000 also includes structures such as the backlight module 300 and the cover plate 400 , but these structures are not the focus of the present application, so they will not be repeated here.
  • the polarizer of the liquid crystal display module 1000 is provided with a compensation film
  • the compensation film includes three layers of uniaxial compensation films.
  • the three layers of uniaxial compensation films have the same slow axis angle and are mutually aligned with the absorption axis of the polarizing film.
  • Vertical, and each layer in the three-layer uniaxial compensation film has only in-plane retardation or out-of-plane retardation. Therefore, when designing the compensation film, it is only necessary to adjust the thickness of each layer of the compensation film to arbitrarily set the in-plane retardation and out-of-plane retardation of the compensation film, without adjusting the refractive index by changing the material of the compensation film to achieve compensation.
  • the in-plane retardation and the out-of-plane retardation of the film are set arbitrarily, respectively.
  • FIG. 3 is a schematic flowchart of a liquid crystal display compensation simulation method provided by an embodiment of the present application.
  • the liquid crystal display compensation simulation method includes the following steps:
  • the structure of the target compensation film is shown in Table 1:
  • the first uniaxial compensation film Ro 0
  • the second uniaxial compensation film Rth 0
  • the third uniaxial compensation film Ro 0
  • the target compensation film structure includes a first uniaxial compensation film, a second uniaxial compensation film and a third uniaxial compensation film, and the second uniaxial compensation film is located between the first uniaxial compensation film and the third uniaxial compensation film
  • the in-plane retardation of the first uniaxial compensation film, the in-plane retardation of the third uniaxial compensation film, and the out-of-plane retardation of the second uniaxial compensation film are the first.
  • the desired target compensation film structure needs to be screened out from a plurality of preset compensation film simulation structures through a simulation comparison.
  • the simulation comparison can be realized by simulation simulation software, and the simulation simulation software includes liquid crystal professional simulation simulation software such as LCD master. Therefore, before this step S301, it also includes:
  • the standard compensation film simulation architecture includes a biaxial compensation film, and the biaxial compensation film has an in-plane retardation Ro and an out-of-plane retardation Rth, both of which will affect light leakage at a large viewing angle in a dark state.
  • the standard compensation film simulation framework can also select other types of compensation films, and the present application is not limited to this.
  • a standard liquid crystal display compensation simulation structure is constructed.
  • first polarizing film Absorption axis 90 degrees First Standard Compensation Film Simulation Architecture Slow axis 0 degrees LCD panel
  • Second Standard Compensation Film Simulation Architecture Slow axis 90 degrees
  • the standard liquid crystal display compensation simulation structure includes a liquid crystal display panel, a first polarizing film, a second polarizing film, and a first standard compensation film simulation structure between the first polarizing film and the liquid crystal display panel.
  • the second standard compensation film simulation structure between the second polarizing film and the liquid crystal display panel that is, the standard liquid crystal display compensation simulation structure adopts a double-layer biaxial compensation film, wherein the liquid crystal display panel is Configured for VA display mode.
  • the angle between the slow axis of the simulation structure of the first standard compensation film and the absorption axis of the first polarizing film, the angle between the slow axis of the simulation structure of the second standard compensation film and the absorption axis of the second polarizing film are all a second preset value, the second preset value is 90 degrees, and the absorption axes of the first polarizing film and the second polarizing film are perpendicular to each other.
  • the absorption axis angle of the first polarizing film is the absorption axis 90 degrees
  • the absorption axis angle of the second polarizing film is the absorption axis 0 degrees
  • the simulation of the first standard compensation film can be determined
  • the slow axis angle of the structure is 0 degrees on the slow axis
  • the slow axis angle of the second standard compensation film simulation structure is 90 degrees on the slow axis.
  • the standard liquid crystal display compensation simulation architecture is simulated to obtain a standard simulation target curve.
  • the standard liquid crystal display compensation simulation architecture adopts a double-layer biaxial compensation film, and the double-layer biaxial compensation film jointly compensates for the large viewing angle dark state light leakage and color shift problems of the VA display mode. Different liquid crystal optical path differences need to be compensated with different types of compensation films and compensation values.
  • the double-layer biaxial compensation film in the standard liquid crystal display compensation simulation structure has a good compensation effect on a specific liquid crystal optical path difference. .
  • a specific dark state large viewing angle can be selected, for example, the standard liquid crystal display compensation simulation structure can be set under a dark state large viewing angle (45, 60) degrees
  • the out-of-plane retardation Rth of the biaxial compensation film remains unchanged, and the corresponding luminance and chromaticity are obtained by changing the in-plane retardation Ro of the biaxial compensation film.
  • the features that determine the chromaticity include chromaticity X and chromaticity Y, and
  • the standard simulation target curve is output according to the relationship between the in-plane phase difference Ro and luminance and chromaticity.
  • the relationship between the in-plane phase difference Ro and luminance and chromaticity means that different in-plane phase differences Ro correspond to different luminance values and chromaticity values.
  • the standard simulation target curve includes a luminance curve, a chrominance X curve, and a chrominance Y curve.
  • FIGS. 4 to 6 the schematic diagram of the relationship between the in-plane phase difference Ro and the brightness as shown in FIG. 4 , the abscissa is the value of the in-plane phase difference Ro, the ordinate is the brightness value, and the brightness curve O1 represents the standard compensation film simulation Different luminance values corresponding to different in-plane phase differences Ro of the architecture.
  • the in-plane retardation Ro and the out-of-plane retardation Rth of the biaxial compensation film cannot be set separately, so try to design a compensation film composed of multiple layers for simulation, for example, it can be a two-layer uniaxial compensation film or The compensation film structure composed of three-layer uniaxial compensation film is used as the preset compensation film simulation structure. Accordingly, a variety of preset compensation film simulation architectures can be constructed, and at least two preset compensation film simulation architectures can be obtained from them to facilitate simulation comparison with the standard compensation film simulation architecture.
  • a preset liquid crystal display compensation simulation structure is respectively constructed.
  • the constructed preset liquid crystal display compensation simulation structures each include a liquid crystal display panel, a first polarizing film, a second polarizing film, a first preset compensation film simulation structure located between the first polarizing film and the liquid crystal display panel, and a second polarizing film.
  • the second preset compensation film between the film and the liquid crystal display panel simulates a structure, wherein the absorption axis angle of the first polarizing film is 90 degrees, and the absorption axis angle of the second polarizing film is 0 degrees.
  • the first preset liquid crystal display compensation simulation architecture is shown in Table 3:
  • the second uniaxial compensation film (Rth 0) Slow axis 0 degrees LCD panel
  • the second uniaxial compensation film (Rth 0) Slow axis 90 degrees
  • the first uniaxial compensation film (Ro 0) Slow axis 90 degrees second polarizing film Absorption axis 0 degrees
  • the first preset compensation film simulation structure of the first preset liquid crystal display compensation simulation structure includes a first uniaxial compensation film and a second uniaxial compensation film, and a first uniaxial compensation film and a second uniaxial compensation film.
  • the second uniaxial compensation film
  • the second preset LCD compensation simulation architecture is shown in Table 4:
  • the first uniaxial compensation film (Ro 0) Slow axis 0 degrees LCD panel
  • the first uniaxial compensation film (Ro 0) Slow axis 90 degrees
  • the second uniaxial compensation film (Rth 0) Slow axis 90 degrees second polarizing film Absorption axis 0 degrees
  • the first preset compensation film simulation structure of the second preset liquid crystal display compensation simulation structure includes a first uniaxial compensation film and a second uniaxial compensation film, and a first uniaxial compensation film and a second uniaxial compensation film.
  • the first uniaxial compensation film is close to the liquid crystal display
  • the third preset LCD compensation simulation architecture is shown in Table 5:
  • the first uniaxial compensation film (Ro 0) Slow axis 0 degrees
  • Second polarizing film Absorption axis 0 degrees
  • the second preset compensation film simulation structure of the third preset liquid crystal display compensation simulation structure includes a first uniaxial compensation film and a second uniaxial compensation film, the slow axis angle of the first uniaxial compensation film is 90 degrees of the slow axis, the first uniaxial compensation film
  • the fourth preset LCD compensation simulation architecture is shown in Table 6:
  • the second uniaxial compensation film (Rth 0) Slow axis 90 degrees LCD panel
  • the second uniaxial compensation film (Rth 0) Slow axis 0 degrees
  • the first uniaxial compensation film (Ro 0) Slow axis 90 degrees second polarizing film Absorption axis 0 degrees
  • the fifth preset LCD compensation simulation architecture is shown in Table 7:
  • the second uniaxial compensation film (Rth 0) Slow axis 0 degrees
  • the third uniaxial compensation film (Ro 0) Slow axis 0 degrees LCD panel
  • the third uniaxial compensation film (Ro 0) Slow axis 90 degrees
  • the second uniaxial compensation film (Rth 0) Slow axis 90 degrees
  • the first uniaxial compensation film (Ro 0) Slow axis 90 degrees second polarizing film Absorption axis 0 degrees
  • the second preset compensation film simulation structure of the fifth preset liquid crystal display compensation simulation structure includes a first uniaxial compensation film, a second uniaxial compensation film, and a third uniaxial compensation film Compensation film, the slow axis angles of the first uniaxial compensation film, the second uniaxial compensation film, and the third uniaxial compensation film are all 90 degrees of the slow axis, and the surfaces of the first uniaxial compensation film and the third un
  • the sixth preset LCD compensation simulation architecture is shown in Table 8:
  • the second uniaxial compensation film (Rth 0) Slow axis 90 degrees
  • the third uniaxial compensation film (Ro 0) Slow axis 0 degrees LCD panel
  • the third uniaxial compensation film (Ro 0) Slow axis 90 degrees
  • the second uniaxial compensation film (Rth 0) Slow axis 0 degrees
  • the first uniaxial compensation film (Ro 0) Slow axis 90 degrees second polarizing film Absorption axis 0 degrees
  • the first preset compensation film simulation structure of the sixth preset liquid crystal display compensation simulation structure includes a first uniaxial compensation film, a second uniaxial compensation film, a third uniaxial compensation film, and a first uniaxial compensation film
  • the slow axis angle of the third uniaxial compensation film is 0 degrees of the slow axis
  • the slow axis angle of the second uniaxial compensation film is 90 degrees of the slow axis
  • the second preset compensation film simulation structure of the sixth preset liquid crystal display compensation simulation structure includes the first uniaxial compensation film, the second preset compensation film simulation structure
  • the uniaxial compensation film, the third uniaxial compensation film, the slow axis angle of the first uniaxial compensation film and the third uniaxial compensation film are all 90 degrees of the slow axis, and the slow axis angle of the
  • the preset liquid crystal display compensation simulation structure may be simulated with reference to the method of simulating the standard liquid crystal display compensation simulation structure
  • you can select a specific dark state with a large viewing angle for example, you can set the out-of-plane phase of the preset compensation film simulation structure in the preset liquid crystal display compensation simulation structure under the dark state large viewing angle (45, 60) degrees
  • the difference Rth remains unchanged, the corresponding brightness and chromaticity are obtained by changing the in-plane phase difference Ro of the preset compensation film simulation structure, and the preset simulation is output according to the correlation between the in-plane phase difference Ro and the brightness and chromaticity. target curve.
  • the preset simulation target curve includes a luminance curve, a chrominance X curve and a chrominance Y curve.
  • FIG. 4 the relationship between the in-plane phase difference Ro and the brightness is shown.
  • the brightness curves A1, B1, C1, D1, E1, and F1 respectively represent the first preset liquid crystal display compensation simulation structure and the second preset liquid crystal display compensation simulation structure.
  • the structure, the third preset LCD compensation simulation structure, the fourth preset LCD compensation simulation structure, the fifth preset LCD compensation simulation structure, and the sixth preset LCD compensation simulation structure correspond to different in-plane phase differences Ro different brightness values.
  • FIG. 5 is a schematic diagram of the relationship between the in-plane phase difference Ro and the chromaticity X, the chromaticity X curves A2, B2, C2, D2, E2, and F2 respectively represent the first preset liquid crystal display compensation simulation structure, the second preset Different in-plane phases of the LCD compensation simulation structure, the third preset LCD compensation simulation structure, the fourth preset LCD compensation simulation structure, the fifth preset LCD compensation simulation structure, and the sixth preset LCD compensation simulation structure The value of the different chromaticity X corresponding to the difference Ro.
  • FIG. 6 is a schematic diagram of the relationship between the in-plane phase difference Ro and the chromaticity Y, the chromaticity Y curves A3, B3, C3, D3, E3, and F3 respectively represent the first preset liquid crystal display compensation simulation structure, the second preset Different in-plane phases of the LCD compensation simulation structure, the third preset LCD compensation simulation structure, the fourth preset LCD compensation simulation structure, the fifth preset LCD compensation simulation structure, and the sixth preset LCD compensation simulation structure
  • the value of the difference Ro corresponds to the value of the different chromaticity Y.
  • a target compensation film structure is determined from at least two of the preset compensation film simulation structures.
  • FIG. 4 to FIG. 6 the relationship between the preset simulation target curve and the standard simulation target curve is shown in FIG. 4 to FIG.
  • both the standard liquid crystal display compensation simulation structure and the preset liquid crystal display compensation simulation structure include a liquid crystal display panel, and the standard panel parameters of the liquid crystal display panel of the standard liquid crystal display compensation simulation structure are the same as the preset liquid crystal display compensation simulation structure.
  • the architecture of the LCD panel is related to the preset panel parameters.
  • the standard panel parameters and the preset panel parameters both include liquid crystal optical path difference and the like, and the standard panel parameters and the preset panel parameters are correlated means that the standard panel parameters and the preset panel parameters are the same. Therefore, when compensating for a specific liquid crystal optical path difference, the preset compensation film simulation structure in the fifth preset liquid crystal display compensation simulation structure can achieve the same compensation effect as the standard compensation film simulation structure in the standard liquid crystal display compensation simulation structure.
  • the first preset compensation film simulation structure and the second preset compensation film simulation structure in the fifth preset liquid crystal display compensation simulation structure are the target compensation film structure, and the target compensation film structure is selected according to the simulation request. .
  • the target compensation film structure is also the first preset compensation film simulation structure and the second preset compensation film simulation structure in the fifth preset liquid crystal display compensation simulation structure in the above steps. Therefore, based on the target compensation film structure, the target liquid crystal display compensation structure is constructed, that is, the fifth preset liquid crystal display compensation simulation structure in the above-mentioned embodiment.
  • the target liquid crystal display compensation structure (the fifth preset liquid crystal display compensation simulation structure) includes a liquid crystal display panel, a first polarizing film, a second polarizing film, and the first polarizing film and the liquid crystal display A first target compensation film structure between the panels, a second target compensation film structure located between the second polarizing film and the liquid crystal display panel, the slow axis of the film layer in the first target compensation film structure and all The angle between the absorption axis of the first polarizing film, the slow axis of the film layer in the second target compensation film structure and the absorption axis of the second polarizing film are 90 degrees; wherein the absorption of the first polarizing film When the axis angle is 90 degrees, the absorption axis angle of the second polarizing film is 0 degrees.
  • S303 Acquire panel setting parameters, and set the liquid crystal display panel in the liquid crystal display compensation structure according to the panel setting parameters.
  • the panel setting parameters are acquired, the panel setting parameters include liquid crystal optical path difference, etc., and the liquid crystal display panel in the liquid crystal display compensation structure is set according to the liquid crystal optical path difference.
  • S304 Adjust the thicknesses of the uniaxial compensation films in the first target compensation film structure and the second target compensation film structure according to a preset adjustment method, and determine corresponding influence parameters.
  • a liquid crystal display compensation simulation interface is displayed; the thickness of the uniaxial compensation film in the first target compensation film structure is obtained through the liquid crystal display compensation simulation interface, so as to adjust the corresponding uniaxial compensation film in the first target compensation film structure
  • the thickness of the compensation film is determined, and the influence parameters of the first target compensation film structure are determined; the thickness of the uniaxial compensation film in the second target compensation film structure is obtained through the liquid crystal display compensation simulation interface to adjust the second target compensation film structure.
  • the thickness of the corresponding uniaxial compensation film in the target compensation film structure is determined, and the influence parameter of the second target compensation film structure is determined.
  • the influence parameter refers to the compensation value of the first target compensation film structure or the second target compensation film structure, that is, the in-plane phase difference Ro and the out-of-plane phase difference Rth.
  • the first target compensation film structure includes a first uniaxial compensation film, a second uniaxial compensation film, and a third uniaxial compensation film
  • the compensation simulation interface is obtained through the liquid crystal display compensation simulation interface.
  • the thickness of the first uniaxial compensation film in the first target compensation film structure is adjusted to adjust the thickness of the first uniaxial compensation film in the first target compensation film structure, and the corresponding surface of the first uniaxial compensation film is determined External retardation; obtain the thickness of the second uniaxial compensation film in the first target compensation film structure through the liquid crystal display compensation simulation interface to adjust the thickness of the second uniaxial compensation film in the first target compensation film structure , and determine the corresponding in-plane retardation of the second uniaxial compensation film, the in-plane retardation of the second uniaxial compensation film is also the in-plane retardation of the first target compensation film structure;
  • the liquid crystal display compensation simulation interface acquires the thickness of the third uniaxial compensation film in the first target compensation film structure to adjust the thickness of the third uniaxial compensation film
  • the second target compensation film structure includes a first uniaxial compensation film, a second uniaxial compensation film, and a third uniaxial compensation film, and the first compensation film structure in the second target compensation film structure is obtained through the liquid crystal display compensation simulation interface.
  • the thickness of the uniaxial compensation film is adjusted to adjust the thickness of the first uniaxial compensation film in the second target compensation film structure, and the corresponding out-of-plane retardation of the first uniaxial compensation film is determined; through the liquid crystal display
  • the compensation simulation interface acquires the thickness of the second uniaxial compensation film in the second target compensation film structure to adjust the thickness of the second uniaxial compensation film in the second target compensation film structure, and determines the corresponding second uniaxial compensation film
  • the in-plane retardation of the uniaxial compensation film, the in-plane retardation of the second uniaxial compensation film is also the in-plane retardation of the second target compensation film structure; the compensation simulation interface is obtained through the liquid crystal display compensation simulation interface.
  • the thickness of the third uniaxial compensation film in the second target compensation film structure is adjusted to adjust the thickness of the third uniaxial compensation film in the second target compensation film structure, and the corresponding thickness of the third uniaxial compensation film is determined.
  • Out-of-plane retardation wherein the sum of the out-of-plane retardation of the first uniaxial compensation film and the out-of-plane retardation of the third uniaxial compensation film is the out-of-plane retardation of the second target compensation film structure .
  • the steps of adjusting the thickness of the uniaxial compensation film in the first target compensation film structure and the second target compensation film structure and determining the corresponding influence parameter according to a preset adjustment method may also be Do this by:
  • Display the liquid crystal display compensation simulation interface obtain the thickness of the uniaxial compensation film in the first target compensation film structure through the liquid crystal display compensation simulation interface, so as to adjust the thickness of the corresponding uniaxial compensation film in the first target compensation film structure thickness, and determine the influence parameters of the first target compensation film structure; based on the thickness of the uniaxial compensation film in the first target compensation film structure, adjust the corresponding uniaxial compensation film in the second target compensation film structure. thickness; determining the influence parameter of the second target compensation film structure based on the influence parameter of the first target compensation film structure.
  • the first target compensation film structure and the second target compensation film structure in the target liquid crystal display compensation structure both include three-layer uniaxial compensation films, and
  • the three-layer uniaxial compensation film of the first target compensation film structure is respectively symmetrical with the three-layer uniaxial compensation film of the second target compensation film structure with respect to the liquid crystal display panel, and the compensation of the first target compensation film structure and the second target compensation film structure the same value.
  • the thickness of the uniaxial compensation film in the first target compensation film structure can be adjusted, and the influence parameters of the first target compensation film structure can be determined, and then based on the first target compensation film structure
  • the thickness of the uniaxial compensation film and the influence parameters of the first target compensation film structure directly determine the thickness of the uniaxial compensation film in the second target compensation film structure and the influence parameters of the second target compensation film structure, which can reduce the acquisition of uniaxial compensation film structure. Compensate the number of operations of the membrane and reduce the workload of calculating the influencing parameters.
  • the simulation target includes minimum, maximum, optimal, or fixed values of luminance and/or chrominance
  • the target parameters are the luminance value and chrominance value corresponding to the simulation target.
  • the compensation value of the target liquid crystal display compensation structure can be adjusted by adjusting the thickness of the uniaxial compensation film in the target compensation film structure.
  • different compensation values correspond to different brightness and chromaticity.
  • luminance is the simulation target
  • different luminance values can be obtained by adjusting the compensation value of the target LCD compensation structure
  • chroma is the simulation target
  • different luminance values can be obtained by adjusting the compensation value of the target LCD compensation structure. Chroma value.
  • S306 Output a simulation result according to the relationship between the target parameter and the influence parameter.
  • the target parameter is the luminance value and the chromaticity value
  • the influencing parameter is also the compensation value of the target liquid crystal display compensation structure.
  • Different compensation values correspond to different luminance values and chromaticity values. Therefore, the target
  • the relationship between the parameter and the influence parameter is the corresponding relationship between the compensation value and the luminance value and the chrominance value, and an appropriate compensation value can be determined by the corresponding relationship between the compensation value and the luminance value and the chrominance value. Taking the corresponding relationship between the compensation value and the luminance value as an example, the larger the luminance value, the more serious the light leakage in the dark state, so the compensation value corresponding to the area with the minimum luminance value needs to be obtained as the simulation result output.
  • the target compensation film structure adopts three-layer uniaxial compensation films, so that when simulating the target liquid crystal display compensation structure constructed with the target compensation film structure, only the single compensation structure of the target compensation film structure needs to be adjusted.
  • the in-plane retardation Ro and the out-of-plane retardation Rth of the target compensation film structure can be quickly simulated and designed separately according to the thickness of the axial compensation film, which solves the problem that the simulation design of the existing compensation film cannot be simple and fast and can adjust the compensation value Ro, Rth is set arbitrarily to simulate the problem.
  • the in-plane retardation and out-of-plane retardation of the simulation structure of the target compensation film can be set arbitrarily and easily through the liquid crystal display compensation simulation method of the above embodiment. Therefore, after obtaining the compensation value of the compensation film of a specific liquid crystal optical path difference configuration simply and quickly through the liquid crystal display compensation simulation method, other types of compensation films, such as biaxial compensation films, can also be designed through the compensation value. However, in this case, the refractive index of the biaxial compensation film needs to be changed.
  • the present application provides a polarizer, a liquid crystal display module, and a liquid crystal display compensation simulation method.
  • the compensation film includes three layers of uniaxial compensation films.
  • the three layers of uniaxial compensation films have the same slow axis angle and are perpendicular to the absorption axis of the polarizing film.
  • each layer in the three-layer uniaxial compensation film has only in-plane retardation or out-of-plane retardation.
  • the application can set the in-plane retardation and out-of-plane retardation of the compensation film arbitrarily by simply adjusting the thickness of each layer of the compensation film when simulating the design of the compensation film or preparing the polarizer, which is very simple and fast to solve the problem of the current situation.
  • the simulation design of the compensation film cannot be achieved simply and quickly, and the simulation can be set arbitrarily for the in-plane phase difference and the out-of-plane phase difference of the compensation value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

本申请提供一种偏光片、液晶显示模组以及液晶显示补偿仿真方法;其补偿膜包括三层单轴补偿膜,三层单轴补偿膜慢轴角度相同且与偏光膜的吸收轴互相垂直,且三层单轴补偿膜中各层只有面内相位差或面外相位差,使得在模拟设计补偿膜或制备偏光片时只需调整补偿膜各层的厚度即可对补偿膜的面内相位差和面外相位差分别任意设置。

Description

偏光片、液晶显示模组以及液晶显示补偿仿真方法 技术领域
本申请涉及显示技术领域,尤其涉及一种偏光片、液晶显示模组以及液晶显示补偿仿真方法。
背景技术
随着液晶显示技术的发展,薄膜晶体管液晶显示器(Thin Film Transistor Liquid Crystal Display,TFT-LCD)成为液晶显示的主流。TFT-LCD对比度的高低很大程度上影响着其在市场上的认可程度,对比度即为显示器亮态程度与暗态程度的比值。一般而言,暗态不够暗是影响TFT-LCD对比度的主要因素。然而随着TFT-LCD的观察角度增大,画面的对比度不断降低,画面的清晰度也会相应下降。这是由于TFT-LCD液晶层中液晶分子的双折射率随观察角度变化而发生改变的结果。采用宽视角补偿膜进行补偿,可以有效降低暗态画面的漏光,在一定视角内可以大幅度提高画面的对比度。通常,补偿膜的补偿原理是将液晶在不同视角下产生的相位差进行修正,让液晶分子的双折射性质得到对称性的补偿。
针对不同的液晶显示模式,使用的补偿膜也不同,且不同的液晶光程差需要搭配不同的补偿膜类型和补偿值进行补偿。大尺寸液晶显示器使用的补偿膜大多是针对垂直配向(Vertical Alignment,VA)显示模式,早期使用的有Konica(柯尼卡)公司的N-TAC,后来不断发展形成OPOTES(奥普士)公司的Zeonor,富士通的F-TAC系列,日东电工的X-plate等。目前针对VA显示模式常用的补偿架构包括在液晶显示面板和第一偏光膜与第二偏光膜之间各设置一层双轴补偿膜,双层双轴补偿膜共同补偿VA显示模式大视角暗态漏光和色偏问题。双轴补偿膜具有面内相位差Ro和面外相位差Rth,两者都会影响暗态大视角漏光。如此在设计补偿膜的补偿值时,需要同时设计补偿膜的面内相位差Ro和面外相位差Rth,而不同的液晶光程差需要不同补偿值的补偿膜进行补偿,故通常对补偿膜做模拟设计。做补偿膜模拟设计时,需要改变面内相位差Ro和 面外相位差Rth来模拟补偿膜对暗态大视角漏光和色偏的影响。
补偿膜的面内相位差Ro和面外相位差Rth通常与补偿膜的折射率(Nx、Ny、Nz)以及补偿膜的厚度之间满足如下关系式:
Ro=(Nx-Ny)*d;
Rth=[(Nx+Ny)/2-Nz]*d;
其中,Nx为补偿膜面内给出的最大折射率的X方向的折射率,Ny为补偿膜面内与X方向正交的Y方向的折射率,Nz为补偿膜厚度方向的折射率,d为补偿膜的厚度。
故可以通过以下方法来改变补偿膜的补偿值:
方法一:折射率Nx,Ny,Nz不变,改变厚度d来改变补偿值;
方法二:厚度d不变,改变折射率Nx,Ny,Nz来改变补偿值。
通过模拟软件模拟可知,方法一直接更改厚度,最简单快速,可以快速得到不同补偿值结果,但补偿值Ro,Rth变化比例相同,无法针对Ro,Rth分别模拟。方法二通过改变折射率可以对补偿值Ro,Rth可分别任意设定模拟,但设定每个补偿值Ro,Rth都需重新建模型,修改补偿膜原始的折射率Nx,Ny,Nz设定,效率很低。
因此,在补偿膜模拟设计时如何实现既简单快速又能对补偿值Ro,Rth分别任意设定模拟的问题需要解决。
技术问题
本申请提供一种偏光片、液晶显示模组以及液晶显示补偿仿真方法,以缓解现有补偿膜模拟设计时不能实现既简单快速又能对补偿值Ro,Rth分别任意设定模拟的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请实施例提供一种偏光片,其包括偏光膜、补偿膜、保护膜,所述补偿膜设置于所述偏光膜的一侧,所述补偿膜包括第一单轴补偿膜、第二单轴补偿膜以及第三单轴补偿膜,所述第二单轴补偿膜位于第一单轴补偿膜和第三单轴补偿膜之间,所述第一单轴补偿膜的面内相位差、所述第三单轴补偿膜的面 内相位差、所述第二单轴补偿膜的面外相位差为第一预设值;所述保护膜设置于所述偏光膜远离所述补偿膜的一侧。其中,所述第一单轴补偿膜、所述第二单轴补偿膜以及所述第三单轴补偿膜的慢轴角度相同,且所述第一单轴补偿膜、所述第二单轴补偿膜以及所述第三单轴补偿膜的慢轴与所述偏光膜的吸收轴的夹角为第二预设值。
在本申请实施例提供的液晶显示补偿架构中,所述第一预设值为0。
在本申请实施例提供的液晶显示补偿架构中,所述第二预设值为90度。
本申请实施例还提供一种液晶显示模组,其包括液晶显示面板、第一偏光片、第二偏光片,第一偏光片设置于所述液晶显示面板的一侧;第二偏光片设置于所述液晶显示面板远离所述第一偏光片的一侧。其中,所述第一偏光片包括前述实施例所述的偏光片,且所述第一偏光片的偏光膜的吸收轴与所述第二偏光片的偏光膜的吸收轴互相垂直。
在本申请实施例提供的液晶显示模组中,所述第一偏光片的偏光膜的吸收轴为0度。
在本申请实施例提供的液晶显示模组中,所述第一偏光片的偏光膜的吸收轴为90度。
在本申请实施例提供的液晶显示模组中,所述第二偏光片也包括如权利要求1所述的偏光片。
在本申请实施例提供的液晶显示模组中,第一预设值为0。
在本申请实施例提供的液晶显示模组中,第二预设值为90度。
本申请实施例还提供一种液晶显示补偿仿真方法,其包括:
根据模拟请求选取目标补偿膜架构;所述目标补偿膜架构包括第一单轴补偿膜、第二单轴补偿膜以及第三单轴补偿膜,所述第二单轴补偿膜位于第一单轴补偿膜和第三单轴补偿膜之间,所述第一单轴补偿膜的面内相位差、所述第三单轴补偿膜的面内相位差、所述第二单轴补偿膜的面外相位差为第一预设值;所述第一单轴补偿膜、所述第二单轴补偿膜以及所述第三单轴补偿膜的慢轴角度相同;
基于所述目标补偿膜架构,构建目标液晶显示补偿架构;所述目标液晶显示补偿架构包括液晶显示面板、第一偏光膜、第二偏光膜、位于所述第一偏光 膜与所述液晶显示面板之间的第一目标补偿膜架构、位于所述第二偏光膜与所述液晶显示面板之间的第二目标补偿膜架构,所述第一目标补偿膜架构中膜层的慢轴与所述第一偏光膜的吸收轴的夹角、所述第二目标补偿膜架构中膜层的慢轴与所述第二偏光膜的吸收轴的夹角为第二预设值;
获取面板设置参数,根据所述面板设置参数设置所述液晶显示补偿架构中的液晶显示面板;
根据预设调整方式,调整所述第一目标补偿膜架构和所述第二目标补偿膜架构中单轴补偿膜的厚度,并确定对应的影响参数;
根据仿真目标,确定目标参数;
根据所述目标参数与所述影响参数的关联关系,输出仿真结果。
在本申请实施例提供的液晶显示补偿仿真方法中,所述第一预设值为0。
在本申请实施例提供的液晶显示补偿仿真方法中,所述第二预设值为90度。
在本申请实施例提供的液晶显示补偿仿真方法中,所述第一偏光膜的吸收轴和所述第二偏光膜的吸收轴互相垂直。
在本申请实施例提供的液晶显示补偿仿真方法中,所述第一偏光膜的吸收轴为0度或90度。
在本申请实施例提供的液晶显示补偿仿真方法中,在所述根据模拟请求选取目标补偿膜架构的步骤之前,还包括:
获取标准补偿膜模拟架构;
基于所述标准补偿膜模拟架构,构建标准液晶显示补偿模拟架构;
模拟所述标准液晶显示补偿模拟架构,获取标准仿真目标曲线;
获取至少两个预设补偿膜模拟架构;
基于至少两个所述预设补偿膜模拟架构,分别构建预设液晶显示补偿模拟架构;
模拟所述预设液晶显示补偿模拟架构,获取至少一个预设仿真目标曲线;
根据所述预设仿真目标曲线与所述标准仿真目标曲线的对比结果,从至少两个所述预设补偿膜模拟架构中确定目标补偿膜架构。
在本申请实施例提供的液晶显示补偿仿真方法中,所述标准液晶显示补偿 模拟架构和所述预设液晶显示补偿模拟架构均包括液晶显示面板,所述标准液晶显示补偿模拟架构的液晶显示面板的标准面板参数与所述预设液晶显示补偿模拟架构的液晶显示面板的预设面板参数相关。
有益效果
本申请提供的偏光片、液晶显示模组以及液晶显示补偿仿真方法中的补偿膜包括三层单轴补偿膜,三层单轴补偿膜慢轴角度相同且与偏光膜的吸收轴互相垂直,且三层单轴补偿膜中各层只有面内相位差或面外相位差。基于此,在模拟设计补偿膜或者制备偏光片时只需调整补偿膜各层的厚度即可对补偿膜的面内相位差和面外相位差分别任意设置,非常简单快速。解决了现有补偿膜模拟设计时不能实现既简单快速又能对补偿值Ro,Rth分别任意设定模拟的问题。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的偏光片的膜层结构剖面示意图;
图2为本申请实施例提供的液晶显示模组的剖面结构示意图。
图3为本申请实施例提供的液晶显示模拟仿真方法的流程示意图。
图4为本申请实施例提供的面内相位差Ro与亮度的关系示意图。
图5为本申请实施例提供的面内相位差Ro与色度X的关系示意图。
图6为本申请实施例提供的面内相位差Ro与色度Y的关系示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以 相同标号表示。在附图中,为了清晰理解和便于描述,夸大了一些层和区域的厚度。即附图中示出的每个组件的尺寸和厚度是任意示出的,但是本申请不限于此。
针对现有补偿膜模拟设计时不能实现既简单快速又能对补偿值Ro,Rth分别任意设定模拟的技术问题,本申请实施例提供一种偏光片、液晶显示模组以及液晶显示补偿仿真方法来解决此问题。
请参照图1,图1为本申请实施例提供的偏光片的膜层结构示意图。所述偏光片100包括偏光膜10、补偿膜20、以及保护膜30,当然的,所述偏光片100还可以包括粘结膜40,其中所述补偿膜20设置于所述偏光膜10的一侧,所述保护膜设置于所述偏光膜10远离所述补偿膜的一侧,所述粘结膜40设置于所述补偿膜20远离所述偏光膜10的一侧。
具体地,所述偏光膜10即PVA层,由聚乙烯醇制成,在偏光片100中主要起偏振光的作用。所述保护膜30也即三醋酸纤维素(Triacetyl Cellulose,TAC)层,主要用于保护PVA层,提升PVA层的机械性能,防止PVA层回缩。所述粘结膜40包括压敏胶(Pressure Sensitive Adhesive,PSA),主要起粘贴连接作用。
所述补偿膜20包括第一单轴补偿膜21、第二单轴补偿膜22以及第三单轴补偿膜23,所述第二单轴补偿膜22位于第一单轴补偿膜21和第三单轴补偿膜23之间,所述第一单轴补偿膜21的面内相位差、所述第三单轴补偿膜23的面内相位差、所述第二单轴补偿膜22的面外相位差为第一预设值。所述第一单轴补偿膜21、所述第二单轴补偿膜22以及所述第三单轴补偿膜23的慢轴角度相同,且所述补偿膜20的所述第一单轴补偿膜21、所述第二单轴补偿膜22以及所述第三单轴补偿膜23的慢轴与所述偏光膜10的吸收轴的夹角为第二预设值。
具体地,所述第一预设值为0,所述第二预设值为90度。
在本实施例中,所述偏光片100的补偿膜20包括三层单轴补偿膜,三层单轴补偿膜慢轴角度相同且与偏光膜10的吸收轴互相垂直,且三层单轴补偿膜中各层只有面内相位差或面外相位差。故在设计补偿膜时只需调整补偿膜各层的厚度即可对补偿膜的面内相位差和面外相位差分别任意设置,而无需通过 更改补偿膜的材质调整其折射率来实现对补偿膜的面内相位差和面外相位差分别任意设置。
在一种实施例中,提供一种液晶显示模组,请参照图2,图2为本申请实施例提供的液晶显示模组的剖面结构示意图。所述液晶显示模组1000包括液晶显示面板200、第一偏光片101以及第二偏光片102。所述第一偏光片101设置于所述液晶显示面板200的一侧。所述第二偏光片102设置于所述液晶显示面板200远离所述第一偏光片101的一侧。其中所述第一偏光片101和所述第二偏光片102中的至少一个包括上述实施例的偏光片100,所述第一偏光片101和/或所述第二偏光片102的补偿膜靠近所述液晶显示面板200,且所述第一偏光片101的偏光膜的吸收轴与所述第二偏光片102的偏光膜的吸收轴互相垂直,也即两者之间的夹角为90度,如所述第一偏光片101的偏光膜的吸收轴为0度或90度。当然的,所述液晶显示模组1000还包括背光模组300、盖板400等结构,但这些结构非本申请重点,故在此不再赘述。
在本实施例中,所述液晶显示模组1000的偏光片中设置有补偿膜,补偿膜包括三层单轴补偿膜,三层单轴补偿膜慢轴角度相同且与偏光膜的吸收轴互相垂直,且三层单轴补偿膜中各层只有面内相位差或面外相位差。故在设计补偿膜时只需调整补偿膜各层的厚度即可对补偿膜的面内相位差和面外相位差分别任意设置,而无需通过更改补偿膜的材质调整其折射率来实现对补偿膜的面内相位差和面外相位差分别任意设置。
下面将具体阐述补偿膜的模拟设计方法:
请参照图3,图3为本申请实施例提供的液晶显示补偿仿真方法的流程示意图。所述液晶显示补偿仿真方法包括以下步骤:
S301:根据模拟请求选取目标补偿膜架构。
所述目标补偿膜架构如表1所示:
第一单轴补偿膜 Ro=0
第二单轴补偿膜 Rth=0
第三单轴补偿膜 Ro=0
表1
参照表1,所述目标补偿膜架构包括第一单轴补偿膜、第二单轴补偿膜以及第三单轴补偿膜,所述第二单轴补偿膜位于第一单轴补偿膜和第三单轴补偿膜之间,所述第一单轴补偿膜的面内相位差、所述第三单轴补偿膜的面内相位差、所述第二单轴补偿膜的面外相位差为第一预设值,所述第一预设值为0,也即第一单轴补偿膜的面内相位差Ro=0,第二单轴补偿膜的面外相位差Rth=0,第三单轴补偿膜的面内相位差Ro=0;所述第一单轴补偿膜、所述第二单轴补偿膜以及所述第三单轴补偿膜的慢轴角度相同。
具体地,在根据模拟请求选取目标补偿膜架构之前,需先通过模拟比较从多个预设补偿膜模拟架构中筛选出需要的所述目标补偿膜架构。其中模拟比较可通过模拟仿真软件来实现,所述模拟仿真软件包括LCD master等液晶专业模拟仿真软件。故在本步骤S301之前,还包括:
获取标准补偿膜模拟架构。
所述标准补偿膜模拟架构包括双轴补偿膜,双轴补偿膜具有面内相位差Ro和面外相位差Rth,两者都会影响暗态大视角漏光。当然的所述标准补偿膜模拟架构也可选取其他类型的补偿膜,本申请不限于此。
基于所述标准补偿膜模拟架构,构建标准液晶显示补偿模拟架构。
所述标准液晶显示补偿模拟架构如表2所示:
第一偏光膜 吸收轴90度
第一标准补偿膜模拟架构 慢轴0度
液晶显示面板  
第二标准补偿膜模拟架构 慢轴90度
第二偏光膜 吸收轴0度
表2
参照表2,所述标准液晶显示补偿模拟架构包括液晶显示面板、第一偏光膜、第二偏光膜、位于所述第一偏光膜与所述液晶显示面板之间的第一标准补偿膜模拟架构、位于所述第二偏光膜与所述液晶显示面板之间的第二标准补偿膜模拟架构,也即所述标准液晶显示补偿模拟架构采用双层双轴补偿膜,其中 所述液晶显示面板被配置为VA显示模式。所述第一标准补偿膜模拟架构的慢轴与所述第一偏光膜的吸收轴的夹角、所述第二标准补偿膜模拟架构的慢轴与所述第二偏光膜的吸收轴的夹角均为第二预设值,所述第二预设值为90度,且所述第一偏光膜与所述第二偏光膜的吸收轴互相垂直。如表2示出的所述第一偏光膜的吸收轴角度为吸收轴90度,则所述第二偏光膜的吸收轴角度为吸收轴0度,进而可确定所述第一标准补偿膜模拟架构的慢轴角度为慢轴0度,所述第二标准补偿膜模拟架构的慢轴角度为慢轴90度。
模拟所述标准液晶显示补偿模拟架构,获取标准仿真目标曲线。
具体地,所述标准液晶显示补偿模拟架构采用双层双轴补偿膜,双层双轴补偿膜共同补偿VA显示模式大视角暗态漏光和色偏问题。不同的液晶光程差需要搭配不同类型的补偿膜和补偿值进行补偿,所述标准液晶显示补偿模拟架构中的双层双轴补偿膜对某一特定的液晶光程差有很好的补偿效果。在对所述标准液晶显示补偿模拟架构进行模拟时,可以选取一特定的暗态大视角下,例如可以在暗态大视角(45,60)度下,设定所述标准液晶显示补偿模拟架构中双轴补偿膜的面外相位差Rth不变,通过改变双轴补偿膜的面内相位差Ro获取对应的亮度、色度,其中决定色度的特征包括色度X和色度Y,并根据所述面内相位差Ro和亮度、色度的关联关系输出所述标准仿真目标曲线。面内相位差Ro和亮度、色度的关联关系是指不同的面内相位差Ro会对应不同的亮度值和色度值。所述标准仿真目标曲线包括亮度曲线、色度X曲线以及色度Y曲线。请参照图4至图6,如图4所示的面内相位差Ro与亮度的关系示意图,横坐标为面内相位差Ro的值,纵坐标为亮度值,亮度曲线O1表示标准补偿膜模拟架构的不同面内相位差Ro对应的不同亮度值。如图5所示的面内相位差Ro与亮度X的关系示意图,横坐标为面内相位差Ro的值,纵坐标为色度X的值,色度X曲线O2表示标准补偿膜模拟架构的不同面内相位差Ro对应的不同色度X的值。如图6所示的面内相位差Ro与色度Y的关系示意图,横坐标为面内相位差Ro的值,纵坐标为色度Y的值,色度Y曲线O3表示标准补偿膜模拟架构的不同面内相位差Ro对应的不同色度Y的值。
获取至少两个预设补偿膜模拟架构。
具体地,双轴补偿膜的面内相位差Ro和面外相位差Rth不能分开单独设 置,故可尝试设计由多层膜层构成的补偿膜进行模拟,例如可以为两层单轴补偿膜或三层单轴补偿膜等组成的补偿膜架构作为预设补偿膜模拟架构。据此可以构建多种预设补偿膜模拟架构,从中获取至少两个预设补偿膜模拟架构以方便与标准补偿膜模拟架构进行模拟对比。
基于至少两个所述预设补偿膜模拟架构,分别构建预设液晶显示补偿模拟架构。
具体构建预设液晶显示补偿模拟架构的方法可参照上述构建标准液晶显示补偿模拟架构的方法。构建的预设液晶显示补偿模拟架构均包括液晶显示面板、第一偏光膜、第二偏光膜、位于第一偏光膜和液晶显示面板之间的第一预设补偿膜模拟架构以及位于第二偏光膜和液晶显示面板之间的第二预设补偿膜模拟架构,其中第一偏光膜的吸收轴角度为90度,则第二偏光膜的吸收轴角度为0度。
下面将具体阐述构建的多个预设液晶显示补偿模拟架构的结构。
具体地,第一预设液晶显示补偿模拟架构如表3所示:
第一偏光膜 吸收轴90度
第一单轴补偿膜(Ro=0) 慢轴0度
第二单轴补偿膜(Rth=0) 慢轴0度
液晶显示面板  
第二单轴补偿膜(Rth=0) 慢轴90度
第一单轴补偿膜(Ro=0) 慢轴90度
第二偏光膜 吸收轴0度
表3
参照表3,第一预设液晶显示补偿模拟架构的第一预设补偿膜模拟架构包括第一单轴补偿膜和第二单轴补偿膜,第一单轴补偿膜和第二单轴补偿膜的慢轴角度均为慢轴0度,且第一单轴补偿膜的面内相位差Ro=0,第二单轴补偿膜的面外相位差Rth=0;第一预设液晶显示补偿模拟架构的第二预设补偿膜模 拟架构包括第一单轴补偿膜和第二单轴补偿膜,第一单轴补偿膜的慢轴角度和第二单轴补偿膜的慢轴角度均为慢轴90度,且第一单轴补偿膜的面内相位差Ro=0,第二单轴补偿膜的面外相位差Rth=0。其中第二单轴补偿膜靠近液晶显示面板侧,第一单轴补偿膜靠近偏光膜侧。
第二预设液晶显示补偿模拟架构如表4所示:
第一偏光膜 吸收轴90度
第二单轴补偿膜(Rth=0) 慢轴0度
第一单轴补偿膜(Ro=0) 慢轴0度
液晶显示面板  
第一单轴补偿膜(Ro=0) 慢轴90度
第二单轴补偿膜(Rth=0) 慢轴90度
第二偏光膜 吸收轴0度
表4
参照表4,第二预设液晶显示补偿模拟架构的第一预设补偿膜模拟架构包括第一单轴补偿膜和第二单轴补偿膜,第一单轴补偿膜和第二单轴补偿膜的慢轴角度均为慢轴0度,且第一单轴补偿膜的面内相位差Ro=0,第二单轴补偿膜的面外相位差Rth=0;第二预设液晶显示补偿模拟架构的第二预设补偿膜模拟架构包括第一单轴补偿膜和第二单轴补偿膜,第一单轴补偿膜和第二单轴补偿膜的慢轴角度均为慢轴90度,且第一单轴补偿膜的面内相位差Ro=0,第二单轴补偿膜的面外相位差Rth=0。其中第一单轴补偿膜靠近液晶显示面板侧,第二单轴补偿膜靠近偏光膜侧。
第三预设液晶显示补偿模拟架构如表5所示:
第一偏光膜 吸收轴90度
第二单轴补偿膜(Rth=0) 慢轴90度
第一单轴补偿膜(Ro=0) 慢轴0度
液晶显示面板  
第一单轴补偿膜(Ro=0) 慢轴90度
第二单轴补偿膜(Rth=0) 慢轴0度
第二偏光膜 吸收轴0度
表5
参照表5,第三预设液晶显示补偿模拟架构的第一预设补偿膜模拟架构包括第一单轴补偿膜和第二单轴补偿膜,第一单轴补偿膜的慢轴角度为慢轴0度,第二单轴补偿膜的慢轴角度为慢轴90度,且第一单轴补偿膜的面内相位差Ro=0,第二单轴补偿膜的面外相位差Rth=0;第三预设液晶显示补偿模拟架构的第二预设补偿膜模拟架构包括第一单轴补偿膜和第二单轴补偿膜,第一单轴补偿膜的慢轴角度为慢轴90度,第二单轴补偿膜的慢轴角度为慢轴0度,且第一单轴补偿膜的面内相位差Ro=0,第二单轴补偿膜的面外相位差Rth=0。其中第一单轴补偿膜靠近液晶显示面板侧,第二单轴补偿膜靠近偏光膜侧。
第四预设液晶显示补偿模拟架构如表6所示:
第一偏光膜 吸收轴90度
第一单轴补偿膜(Ro=0) 慢轴0度
第二单轴补偿膜(Rth=0) 慢轴90度
液晶显示面板  
第二单轴补偿膜(Rth=0) 慢轴0度
第一单轴补偿膜(Ro=0) 慢轴90度
第二偏光膜 吸收轴0度
表6
参照表6,第四预设液晶显示补偿模拟架构的第一预设补偿膜模拟架构包括第一单轴补偿膜和第二单轴补偿膜,第一单轴补偿膜的慢轴角度为慢轴0度,第二单轴补偿膜的慢轴角度为慢轴90度,且第一单轴补偿膜的面内相位 差Ro=0,第二单轴补偿膜的面外相位差Rth=0;第四预设液晶显示补偿模拟架构的第二预设补偿膜模拟架构包括第一单轴补偿膜和第二单轴补偿膜,第一单轴补偿膜的慢轴角度为慢轴90度,第二单轴补偿膜的慢轴角度为慢轴0度,且第一单轴补偿膜的面内相位差Ro=0,第二单轴补偿膜的面外相位差Rth=0。其中第二单轴补偿膜靠近液晶显示面板侧,第一单轴补偿膜靠近偏光膜侧。
第五预设液晶显示补偿模拟架构如表7所示:
第一偏光膜 吸收轴90度
第一单轴补偿膜(Ro=0) 慢轴0度
第二单轴补偿膜(Rth=0) 慢轴0度
第三单轴补偿膜(Ro=0) 慢轴0度
液晶显示面板  
第三单轴补偿膜(Ro=0) 慢轴90度
第二单轴补偿膜(Rth=0) 慢轴90度
第一单轴补偿膜(Ro=0) 慢轴90度
第二偏光膜 吸收轴0度
表7
参照表7,第五预设液晶显示补偿模拟架构的第一预设补偿膜模拟架构包括第一单轴补偿膜、第二单轴补偿膜、第三单轴补偿膜,第一单轴补偿膜、第二单轴补偿膜、第三单轴补偿膜的慢轴角度均为慢轴0度,且第一单轴补偿膜和第三单轴补偿膜的面内相位差Ro=0,第二单轴补偿膜的面外相位差Rth=0;第五预设液晶显示补偿模拟架构的第二预设补偿膜模拟架构包括第一单轴补偿膜、第二单轴补偿膜、第三单轴补偿膜,第一单轴补偿膜、第二单轴补偿膜、第三单轴补偿膜的慢轴角度均为慢轴90度,且第一单轴补偿膜和第三单轴补偿膜的面内相位差Ro=0,第二单轴补偿膜的面外相位差Rth=0。其中第三单轴补偿膜靠近液晶显示面板侧,第一单轴补偿膜靠近偏光膜侧。
第六预设液晶显示补偿模拟架构如表8所示:
第一偏光膜 吸收轴90度
第一单轴补偿膜(Ro=0) 慢轴0度
第二单轴补偿膜(Rth=0) 慢轴90度
第三单轴补偿膜(Ro=0) 慢轴0度
液晶显示面板  
第三单轴补偿膜(Ro=0) 慢轴90度
第二单轴补偿膜(Rth=0) 慢轴0度
第一单轴补偿膜(Ro=0) 慢轴90度
第二偏光膜 吸收轴0度
表8
参照表8,第六预设液晶显示补偿模拟架构的第一预设补偿膜模拟架构包括第一单轴补偿膜、第二单轴补偿膜、第三单轴补偿膜,第一单轴补偿膜、第三单轴补偿膜的慢轴角度均为慢轴0度,第二单轴补偿膜的慢轴角度为慢轴90度,且第一单轴补偿膜和第三单轴补偿膜的面内相位差Ro=0,第二单轴补偿膜的面外相位差Rth=0;第六预设液晶显示补偿模拟架构的第二预设补偿膜模拟架构包括第一单轴补偿膜、第二单轴补偿膜、第三单轴补偿膜,第一单轴补偿膜、第三单轴补偿膜的慢轴角度均为慢轴90度,第二单轴补偿膜的慢轴角度为慢轴0度,且第一单轴补偿膜和第三单轴补偿膜的面内相位差Ro=0,第二单轴补偿膜的面外相位差Rth=0。其中第三单轴补偿膜靠近液晶显示面板侧,第一单轴补偿膜靠近偏光膜侧。
模拟所述预设液晶显示补偿模拟架构,获取至少一个预设仿真目标曲线;具体地,可参照模拟所述标准液晶显示补偿模拟架构的方法,在对所述预设液晶显示补偿模拟架构进行模拟时,可以选取一特定的暗态大视角下,例如可以在暗态大视角(45,60)度下,设定所述预设液晶显示补偿模拟架构中预设补 偿膜模拟架构的面外相位差Rth不变,通过改变预设补偿膜模拟架构的面内相位差Ro获取对应的亮度、色度,并根据所述面内相位差Ro和亮度、色度的关联关系输出所述预设仿真目标曲线。请参照图4至图6,所述预设仿真目标曲线包括亮度曲线、色度X曲线以及色度Y曲线。如图4所示的面内相位差Ro与亮度的关系示意图,亮度曲线A1、B1、C1、D1、E1、F1分别表示第一预设液晶显示补偿模拟架构、第二预设液晶显示补偿模拟架构、第三预设液晶显示补偿模拟架构、第四预设液晶显示补偿模拟架构、第五预设液晶显示补偿模拟架构、第六预设液晶显示补偿模拟架构的不同面内相位差Ro对应的不同亮度值。如图5所示的面内相位差Ro与色度X的关系示意图,色度X曲线A2、B2、C2、D2、E2、F2分别表示第一预设液晶显示补偿模拟架构、第二预设液晶显示补偿模拟架构、第三预设液晶显示补偿模拟架构、第四预设液晶显示补偿模拟架构、第五预设液晶显示补偿模拟架构、第六预设液晶显示补偿模拟架构的不同面内相位差Ro对应的不同色度X的值。如图6所示的面内相位差Ro与色度Y的关系示意图,色度Y曲线A3、B3、C3、D3、E3、F3分别表示第一预设液晶显示补偿模拟架构、第二预设液晶显示补偿模拟架构、第三预设液晶显示补偿模拟架构、第四预设液晶显示补偿模拟架构、第五预设液晶显示补偿模拟架构、第六预设液晶显示补偿模拟架构的不同面内相位差Ro的值对应的不同色度Y的值。
根据所述预设仿真目标曲线与所述标准仿真目标曲线的对比结果,从至少两个所述预设补偿膜模拟架构中确定目标补偿膜架构。
具体地,请继续参照图4至图6,所述预设仿真目标曲线与所述标准仿真目标曲线的关联关系如图4至图6中标准液晶显示补偿模拟架构的亮度曲线、色度X曲线、色度Y曲线与预设液晶显示补偿模拟架构的各曲线的关系,通过比较图4中的亮度曲线、图5中的色度X曲线以及图6中的色度Y曲线,可知第五预设液晶显示补偿模拟架构的亮度曲线E1、色度X曲线E2、色度Y曲线E3与标准液晶模拟结构的亮度曲线O1、色度X曲线O2、色度Y曲线O3最一致。
同时所述标准液晶显示补偿模拟架构和所述预设液晶显示补偿模拟架构均包括液晶显示面板,所述标准液晶显示补偿模拟架构的液晶显示面板的标准 面板参数与所述预设液晶显示补偿模拟架构的液晶显示面板的预设面板参数相关。所述标准面板参数和预设面板参数均包括液晶光程差等,所述标准面板参数和预设面板参数相关是指所述标准面板参数和预设面板参数相同。故在补偿特定的液晶光程差时,第五预设液晶显示补偿模拟架构中的预设补偿膜模拟架构能到达与标准液晶显示补偿模拟架构中标准补偿膜模拟架构相同的补偿效果。
进一步地,第五预设液晶显示补偿模拟架构中的第一预设补偿膜模拟架构和第二预设补偿膜模拟架构即为所述目标补偿膜架构,根据模拟请求选取所述目标补偿膜架构。
S302:基于所述目标补偿膜架构,构建目标液晶显示补偿架构。
具体地,所述目标补偿膜架构也即为上述步骤中的第五预设液晶显示补偿模拟架构中的第一预设补偿膜模拟架构和第二预设补偿膜模拟架构。故基于所述目标补偿膜架构,构建的目标液晶显示补偿架构,也即上述实施例中的第五预设液晶显示补偿模拟架构。请参照表7,所述目标液晶显示补偿架构(第五预设液晶显示补偿模拟架构)包括液晶显示面板、第一偏光膜、第二偏光膜、位于所述第一偏光膜与所述液晶显示面板之间的第一目标补偿膜架构、位于所述第二偏光膜与所述液晶显示面板之间的第二目标补偿膜架构,所述第一目标补偿膜架构中膜层的慢轴与所述第一偏光膜的吸收轴的夹角、所述第二目标补偿膜架构中膜层的慢轴与所述第二偏光膜的吸收轴的夹角为90度;其中第一偏光膜的吸收轴角度为90度,则第二偏光膜的吸收轴角度为0度。
S303:获取面板设置参数,根据所述面板设置参数设置所述液晶显示补偿架构中的液晶显示面板。
具体地,获取面板设置参数,面板设置参数包括液晶光程差等,根据液晶光程差设置所述液晶显示补偿架构中的液晶显示面板。
S304:根据预设调整方式,调整所述第一目标补偿膜架构和所述第二目标补偿膜架构中的单轴补偿膜的厚度,并确定对应的影响参数。
具体地,展示液晶显示补偿仿真界面;通过所述液晶显示补偿仿真界面获取所述第一目标补偿膜架构中单轴补偿膜的厚度,以调整所述第一目标补偿膜架构中对应的单轴补偿膜的厚度,并确定所述第一目标补偿膜架构的影响参 数;通过所述液晶显示补偿仿真界面获取所述第二目标补偿膜架构中单轴补偿膜的厚度,以调整所述第二目标补偿膜架构中对应的单轴补偿膜的厚度,并确定所述第二目标补偿膜架构的影响参数。其中所述影响参数是指所述第一目标补偿膜架构或所述第二目标补偿膜架构的补偿值,也即面内相位差Ro和面外相位差Rth。
具体地,请继续参照表7,所述第一目标补偿膜架构包括第一单轴补偿膜、第二单轴补偿膜、第三单轴补偿膜,通过所述液晶显示补偿仿真界面获取所述第一目标补偿膜架构中第一单轴补偿膜的厚度,以调整所述第一目标补偿膜架构中第一单轴补偿膜的厚度,并确定对应的所述第一单轴补偿膜的面外相位差;通过所述液晶显示补偿仿真界面获取所述第一目标补偿膜架构中第二单轴补偿膜的厚度,以调整所述第一目标补偿膜架构中第二单轴补偿膜的厚度,并确定对应的所述第二单轴补偿膜的面内相位差,所述第二单轴补偿膜的面内相位差也即为所述第一目标补偿膜架构的面内相位差;通过所述液晶显示补偿仿真界面获取所述第一目标补偿膜架构中第三单轴补偿膜的厚度,以调整所述第一目标补偿膜架构中第三单轴补偿膜的厚度,并确定对应的所述第三单轴补偿膜的面外相位差,其中所述第一单轴补偿膜的面外相位差与所述第三单轴补偿膜的面外相位差之和即为所述第一目标补偿膜架构的面外相位差。
所述第二目标补偿膜架构包括第一单轴补偿膜、第二单轴补偿膜、第三单轴补偿膜,通过所述液晶显示补偿仿真界面获取所述第二目标补偿膜架构中第一单轴补偿膜的厚度,以调整所述第二目标补偿膜架构中第一单轴补偿膜的厚度,并确定对应的所述第一单轴补偿膜的面外相位差;通过所述液晶显示补偿仿真界面获取所述第二目标补偿膜架构中第二单轴补偿膜的厚度,以调整所述第二目标补偿膜架构中第二单轴补偿膜的厚度,并确定对应的所述第二单轴补偿膜的面内相位差,所述第二单轴补偿膜的面内相位差也即为所述第二目标补偿膜架构的面内相位差;通过所述液晶显示补偿仿真界面获取所述第二目标补偿膜架构中第三单轴补偿膜的厚度,以调整所述第二目标补偿膜架构中第三单轴补偿膜的厚度,并确定对应的所述第三单轴补偿膜的面外相位差,其中所述第一单轴补偿膜的面外相位差与所述第三单轴补偿膜的面外相位差之和即为所述第二目标补偿膜架构的面外相位差。
在一种实施例中,根据预设调整方式,调整所述第一目标补偿膜架构和所述第二目标补偿膜架构中的单轴补偿膜的厚度,并确定对应的影响参数的步骤还可以通过如下方式实现:
展示液晶显示补偿仿真界面;通过所述液晶显示补偿仿真界面获取所述第一目标补偿膜架构中单轴补偿膜的厚度,以调整所述第一目标补偿膜架构中对应的单轴补偿膜的厚度,并确定所述第一目标补偿膜架构的影响参数;基于所述第一目标补偿膜架构中单轴补偿膜的厚度,调整所述第二目标补偿膜架构中对应的单轴补偿膜的厚度;基于所述第一目标补偿膜架构的影响参数确定所述第二目标补偿膜架构的影响参数。
具体地,请继续参照表7,所述目标液晶显示补偿架构(第五预设液晶架构)中的第一目标补偿膜架构和第二目标补偿膜架构的均包括三层单轴补偿膜,且第一目标补偿膜架构的三层单轴补偿膜分别与第二目标补偿膜架构的三层单轴补偿膜关于液晶显示面板对称,并且第一目标补偿膜架构和第二目标补偿膜架构的补偿值相同。故对目标液晶显示补偿架构进行模拟时,可以只调整第一目标补偿膜架构中单轴补偿膜的厚度,并确定所述第一目标补偿膜架构的影响参数,然后基于第一目标补偿膜架构中单轴补偿膜的厚度及第一目标补偿膜架构的影响参数直接确定第二目标补偿膜架构中单轴补偿膜的厚度及第二目标补偿膜架构的影响参数,以此可以减少获取单轴补偿膜的操作次数以及减少计算影响参数的工作量。
S305:根据仿真目标,确定目标参数。
具体地,仿真目标包括亮度和/或色度最小、最大、最优、或者固定值等,目标参数也即仿真目标对应的亮度值和色度值。
步骤S304中通过调整目标补偿膜架构中单轴补偿膜的厚度可以调整目标液晶显示补偿架构的补偿值,在对目标液晶显示补偿架构进行模拟时,不同的补偿值对应不同的亮度和色度。在以亮度为仿真目标时,通过调整目标液晶显示补偿架构的补偿值可以得出不同的亮度值;在以色度为仿真目标时,通过调整目标液晶显示补偿架构的补偿值可以得出不同的色度值。
S306:根据所述目标参数与所述影响参数的关联关系,输出仿真结果。
具体地,所述目标参数也即亮度值和色度值,所述影响参数也即目标液晶 显示补偿架构的补偿值,不同的补偿值对应着不同的亮度值和色度值,故所述目标参数与所述影响参数的关联关系也即补偿值与亮度值与色度值之间的对应关系,通过补偿值与亮度值与色度值之间的对应关系可以确定合适的补偿值。以补偿值与亮度值的对应关系为例,亮度值越大说明暗态漏光越严重,故需获取亮度值最小区域对应的补偿值作为仿真结果输出。
在本实施例的液晶显示补偿仿真方法中,目标补偿膜架构采用三层单轴补偿膜,使得在模拟以目标补偿膜架构构建的目标液晶显示补偿架构时,仅需调整目标补偿膜架构的单轴补偿膜厚度即可快速的对目标补偿膜架构的面内相位差Ro和面外相位差Rth进行分开模拟设计,解决现有补偿膜模拟设计时不能实现既简单快速又能对补偿值Ro,Rth分别任意设定模拟的问题。
需要说明的是,通过上述实施例的液晶显示补偿仿真方法可以简单快速的对目标补偿膜模拟架构的面内相位差和面外相位差分别任意设置。故通过所述液晶显示补偿仿真方法简单快速的得出某一特定液晶光程差配置的补偿膜的补偿值后,也可以通过该补偿值去设计其他类型的补偿膜,比如双轴补偿膜,不过此时需要改变双轴补偿膜的折射率。
根据上述实施例可知:
本申请提供一种偏光片、液晶显示模组以及液晶显示补偿仿真方法,其补偿膜包括三层单轴补偿膜,三层单轴补偿膜慢轴角度相同且与偏光膜的吸收轴互相垂直,且三层单轴补偿膜中各层只有面内相位差或面外相位差。基于此,本申请在模拟设计补偿膜或者制备偏光片时只需调整补偿膜各层的厚度即可对补偿膜的面内相位差和面外相位差分别任意设置,非常简单快速,以解决现有补偿膜模拟设计时不能实现既简单快速又能对补偿值的面内相位差和面外相位差分别任意设定模拟的问题。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换; 而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种偏光片,其包括:
    偏光膜;
    补偿膜,设置于所述偏光膜的一侧,所述补偿膜包括第一单轴补偿膜、第二单轴补偿膜以及第三单轴补偿膜,所述第二单轴补偿膜位于第一单轴补偿膜和第三单轴补偿膜之间,所述第一单轴补偿膜的面内相位差、所述第三单轴补偿膜的面内相位差、所述第二单轴补偿膜的面外相位差为第一预设值;以及
    保护膜,设置于所述偏光膜远离所述补偿膜的一侧;
    其中,所述第一单轴补偿膜、所述第二单轴补偿膜以及所述第三单轴补偿膜的慢轴角度相同,且所述第一单轴补偿膜、所述第二单轴补偿膜以及所述第三单轴补偿膜的慢轴与所述偏光膜的吸收轴的夹角为第二预设值。
  2. 根据权利要求1所述的偏光片,其中,所述第一预设值为0。
  3. 根据权利要求1所述的偏光片,其中,所述第二预设值为90度。
  4. 一种液晶显示模组,其包括:
    液晶显示面板;
    第一偏光片,设置于所述液晶显示面板的一侧;以及
    第二偏光片,设置于所述液晶显示面板远离所述第一偏光片的一侧;
    其中,所述第一偏光片包括如权利要求1所述的偏光片,且所述第一偏光片的偏光膜的吸收轴与所述第二偏光片的偏光膜的吸收轴互相垂直。
  5. 根据权利要求4所述的液晶显示模组,其中,所述第一偏光片的偏光膜的吸收轴为0度。
  6. 根据权利要求4所述的液晶显示模组,其中,所述第一偏光片的偏光膜的吸收轴为90度。
  7. 根据权利要求4所述的液晶显示模组,其中,所述第二偏光片也包括如权利要求1所述的偏光片。
  8. 根据权利要求7所述的液晶显示模组,其中,第一预设值为0。
  9. 根据权利要求7所述的液晶显示模组,其中,第二预设值为90度。
  10. 一种液晶显示补偿仿真方法,其包括:
    根据模拟请求选取目标补偿膜架构;所述目标补偿膜架构包括第一单轴补 偿膜、第二单轴补偿膜以及第三单轴补偿膜,所述第二单轴补偿膜位于第一单轴补偿膜和第三单轴补偿膜之间,所述第一单轴补偿膜的面内相位差、所述第三单轴补偿膜的面内相位差、所述第二单轴补偿膜的面外相位差为第一预设值;所述第一单轴补偿膜、所述第二单轴补偿膜以及所述第三单轴补偿膜的慢轴角度相同;
    基于所述目标补偿膜架构,构建目标液晶显示补偿架构;所述目标液晶显示补偿架构包括液晶显示面板、第一偏光膜、第二偏光膜、位于所述第一偏光膜与所述液晶显示面板之间的第一目标补偿膜架构、位于所述第二偏光膜与所述液晶显示面板之间的第二目标补偿膜架构,所述第一目标补偿膜架构中膜层的慢轴与所述第一偏光膜的吸收轴的夹角、所述第二目标补偿膜架构中膜层的慢轴与所述第二偏光膜的吸收轴的夹角为第二预设值;
    获取面板设置参数,根据所述面板设置参数设置所述液晶显示补偿架构中的液晶显示面板;
    根据预设调整方式,调整所述第一目标补偿膜架构和所述第二目标补偿膜架构中单轴补偿膜的厚度,并确定对应的影响参数;
    根据仿真目标,确定目标参数;
    根据所述目标参数与所述影响参数的关联关系,输出仿真结果。
  11. 根据权利要求10所述的液晶显示补偿仿真方法,其中,所述第一预设值为0。
  12. 根据权利要求10所述的液晶显示补偿仿真方法,其中,所述第二预设值为90度。
  13. 根据权利要求10所述的液晶显示补偿仿真方法,其中,所述第一偏光膜的吸收轴和所述第二偏光膜的吸收轴互相垂直。
  14. 根据权利要求13所述的液晶显示补偿仿真方法,其中,所述第一偏光膜的吸收轴为0度。
  15. 根据权利要求13所述的液晶显示补偿仿真方法,其中,所述第一偏光膜的吸收轴为90度。
  16. 根据权利要求10所述的液晶显示补偿仿真方法,其特征在于,所述根据预设调整方式,调整所述第一目标补偿膜架构和所述第二目标补偿膜架构 中单轴补偿膜的厚度,并确定对应的影响参数的步骤,包括:
    展示液晶显示补偿仿真界面;
    通过所述液晶显示补偿仿真界面获取所述第一目标补偿膜架构中单轴补偿膜的厚度,以调整所述第一目标补偿膜架构中对应的单轴补偿膜的厚度,并确定所述第一目标补偿膜架构的影响参数;
    通过所述液晶显示补偿仿真界面获取所述第二目标补偿膜架构中单轴补偿膜的厚度,以调整所述第二目标补偿膜架构中对应的单轴补偿膜的厚度,并确定所述第二目标补偿膜架构的影响参数。
  17. 根据权利要求10所述的液晶显示补偿仿真方法,其特征在于,所述根据预设调整方式,调整所述第一目标补偿膜架构和所述第二目标补偿膜架构中单轴补偿膜的厚度,并确定对应的影响参数的步骤,包括:
    展示液晶显示补偿仿真界面;
    通过所述液晶显示补偿仿真界面获取所述第一目标补偿膜架构中单轴补偿膜的厚度,以调整所述第一目标补偿膜架构中对应的单轴补偿膜的厚度,并确定所述第一目标补偿膜架构的影响参数;
    基于所述第一目标补偿膜架构中单轴补偿膜的厚度,调整所述第二目标补偿膜架构中对应的单轴补偿膜的厚度;
    基于所述第一目标补偿膜架构的影响参数确定所述第二目标补偿膜架构的影响参数。
  18. 根据权利要求16或17所述的液晶显示补偿仿真方法,其特征在于,所述通过所述液晶显示补偿仿真界面获取所述第一目标补偿膜架构中单轴补偿膜的厚度,以调整所述第一目标补偿膜架构中对应的单轴补偿膜的厚度,并确定所述第一目标补偿膜架构的影响参数的步骤,包括:
    通过所述液晶显示补偿仿真界面获取所述第一目标补偿膜架构中第一单轴补偿膜的厚度,以调整所述第一目标补偿膜架构中第一单轴补偿膜的厚度,并确定对应的所述第一单轴补偿膜的面外相位差;
    通过所述液晶显示补偿仿真界面获取所述第一目标补偿膜架构中第二单轴补偿膜的厚度,以调整所述第一目标补偿膜架构中第二单轴补偿膜的厚度,并确定对应的所述第二单轴补偿膜的面内相位差,所述第二单轴补偿膜的面内 相位差作为所述第一目标补偿膜架构的面内相位差;
    通过所述液晶显示补偿仿真界面获取所述第一目标补偿膜架构中第三单轴补偿膜的厚度,以调整所述第一目标补偿膜架构中第三单轴补偿膜的厚度,并确定对应的所述第三单轴补偿膜的面外相位差,其中所述第一单轴补偿膜的面外相位差与所述第三单轴补偿膜的面外相位差之和作为所述第一目标补偿膜架构的面外相位差。
  19. 根据权利要求10所述的液晶显示补偿仿真方法,其中,在所述根据模拟请求选取目标补偿膜架构的步骤之前,还包括:
    获取标准补偿膜模拟架构;
    基于所述标准补偿膜模拟架构,构建标准液晶显示补偿模拟架构;
    模拟所述标准液晶显示补偿模拟架构,获取标准仿真目标曲线;
    获取至少两个预设补偿膜模拟架构;
    基于至少两个所述预设补偿膜模拟架构,分别构建预设液晶显示补偿模拟架构;
    模拟所述预设液晶显示补偿模拟架构,获取至少一个预设仿真目标曲线;
    根据所述预设仿真目标曲线与所述标准仿真目标曲线的对比结果,从至少两个所述预设补偿膜模拟架构中确定目标补偿膜架构。
  20. 根据权利要求19所述的液晶显示补偿仿真方法,其中,所述标准液晶显示补偿模拟架构和所述预设液晶显示补偿模拟架构均包括液晶显示面板,所述标准液晶显示补偿模拟架构的液晶显示面板的标准面板参数与所述预设液晶显示补偿模拟架构的液晶显示面板的预设面板参数相关。
PCT/CN2021/094826 2021-01-28 2021-05-20 偏光片、液晶显示模组以及液晶显示补偿仿真方法 WO2022160522A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/420,038 US20230194919A1 (en) 2021-01-28 2021-05-20 Polarizer, liquid crystal display module, and simulation method for liquid crystal display compensation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110118594.6 2021-01-28
CN202110118594.6A CN112748491B (zh) 2021-01-28 2021-01-28 偏光片、液晶显示模组以及液晶显示补偿仿真方法

Publications (1)

Publication Number Publication Date
WO2022160522A1 true WO2022160522A1 (zh) 2022-08-04

Family

ID=75653334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094826 WO2022160522A1 (zh) 2021-01-28 2021-05-20 偏光片、液晶显示模组以及液晶显示补偿仿真方法

Country Status (3)

Country Link
US (1) US20230194919A1 (zh)
CN (1) CN112748491B (zh)
WO (1) WO2022160522A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112748491B (zh) * 2021-01-28 2022-07-26 Tcl华星光电技术有限公司 偏光片、液晶显示模组以及液晶显示补偿仿真方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134545A (ja) * 2006-11-29 2008-06-12 Nitto Denko Corp 積層光学フィルム、積層光学フィルムを用いた液晶パネルおよび液晶表示装置
CN103278962A (zh) * 2013-05-09 2013-09-04 深圳市华星光电技术有限公司 液晶显示器及其光学补偿方法
CN103869539A (zh) * 2014-04-04 2014-06-18 深圳市华星光电技术有限公司 用于液晶面板的双层双轴补偿架构及液晶显示装置
CN104062808A (zh) * 2014-06-25 2014-09-24 深圳市华星光电技术有限公司 液晶显示器及其光学补偿方法
CN112748491A (zh) * 2021-01-28 2021-05-04 Tcl华星光电技术有限公司 偏光片、液晶显示模组以及液晶显示补偿仿真方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004078171A (ja) * 2002-06-18 2004-03-11 Nitto Denko Corp 光学補償層付偏光板およびそれを用いた画像表示装置
US20150378199A1 (en) * 2014-06-25 2015-12-31 Shenzhen China Star Optoelectronics Technology Co., Ltd. Liquid crystal display and optical compensation method applied in liquid crystal display
CN104317105A (zh) * 2014-10-29 2015-01-28 深圳市华星光电技术有限公司 液晶面板补偿架构及液晶显示装置
CN105334670A (zh) * 2015-12-08 2016-02-17 深圳市华星光电技术有限公司 液晶面板补偿架构及其光学补偿方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134545A (ja) * 2006-11-29 2008-06-12 Nitto Denko Corp 積層光学フィルム、積層光学フィルムを用いた液晶パネルおよび液晶表示装置
CN103278962A (zh) * 2013-05-09 2013-09-04 深圳市华星光电技术有限公司 液晶显示器及其光学补偿方法
CN103869539A (zh) * 2014-04-04 2014-06-18 深圳市华星光电技术有限公司 用于液晶面板的双层双轴补偿架构及液晶显示装置
CN104062808A (zh) * 2014-06-25 2014-09-24 深圳市华星光电技术有限公司 液晶显示器及其光学补偿方法
CN112748491A (zh) * 2021-01-28 2021-05-04 Tcl华星光电技术有限公司 偏光片、液晶显示模组以及液晶显示补偿仿真方法

Also Published As

Publication number Publication date
CN112748491A (zh) 2021-05-04
CN112748491B (zh) 2022-07-26
US20230194919A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
JP6266769B2 (ja) 液晶ディスプレイの光学補償方法
CN102798923B (zh) 光学补偿结构及显示装置
KR101112114B1 (ko) 액정 디스플레이용 광학 보상기
CN102854661B (zh) Va显示模式补偿架构及va显示模式液晶显示装置
US9335585B2 (en) Liquid crystal display and optical compensation method therefor
US20160062165A1 (en) Liquid Crystal Display and Optical Compensation Method Therefor
WO2022073280A1 (zh) 液晶显示屏、液晶显示装置
WO2022160522A1 (zh) 偏光片、液晶显示模组以及液晶显示补偿仿真方法
JP2022173251A (ja) 液晶パネルおよび液晶表示装置
KR101557815B1 (ko) 액정 표시 장치와 그 제조 방법
US8970813B2 (en) Optical compensation film group and method for reducing light leakage of vertical alignment LCD using the same
WO2016101339A1 (zh) 液晶显示器
CN103869534B (zh) 用于液晶面板的单层双轴补偿架构及液晶显示装置
CN104317104A (zh) 液晶面板补偿架构及液晶显示装置
CN102854654B (zh) 显示装置
JP6587685B2 (ja) 液晶表示装置
WO2014107886A1 (zh) 用于液晶面板的补偿系统及液晶显示装置
US9011993B2 (en) Optical compensation structure and display device
CN102798922B (zh) 光学补偿结构及显示装置
CN104317105A (zh) 液晶面板补偿架构及液晶显示装置
US20140098329A1 (en) VA Display Mode Compensation Architecture and VA Display Mode Liquid Crystal Display Device
WO2015196501A1 (zh) 液晶显示器及其光学补偿方法
JP2005181368A (ja) 液晶表示装置及びそれに用いる複合偏光板
US8836898B2 (en) Compensation system for liquid crystal panels and liquid crystal display
KR20110101854A (ko) 트위스트네마틱 모드 액정표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922120

Country of ref document: EP

Kind code of ref document: A1