WO2022160346A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022160346A1
WO2022160346A1 PCT/CN2021/074695 CN2021074695W WO2022160346A1 WO 2022160346 A1 WO2022160346 A1 WO 2022160346A1 CN 2021074695 W CN2021074695 W CN 2021074695W WO 2022160346 A1 WO2022160346 A1 WO 2022160346A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
qos information
transmission path
link
upf
Prior art date
Application number
PCT/CN2021/074695
Other languages
English (en)
French (fr)
Inventor
蒋成堃
周汉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180009625.2A priority Critical patent/CN115211169A/zh
Priority to PCT/CN2021/074695 priority patent/WO2022160346A1/zh
Publication of WO2022160346A1 publication Critical patent/WO2022160346A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • a key part of 5GS adaptation to industrial Ethernet is the adaptation of quality of service (QoS). If 5GS is compatible with industrial Ethernet, the QoS of industrial Ethernet needs to be converted to QoS of 5GS. At present, 5GS is regarded as a node in the industrial Ethernet, then the QoS obtained by 5GS is the overall QoS for the node. However, 5GS also includes multiple devices. When data is transmitted in 5GS, it will be transmitted between these devices, which may lead to the inability to accurately control the transmission process of industrial Ethernet data in 5GS, reducing the communication quality.
  • QoS quality of service
  • Embodiments of the present application provide a communication method and apparatus, which are used to enable 5GS to adapt to industrial Ethernet.
  • a first communication method is provided, and the method can be executed by a network device, or executed by a chip system, and the chip system can realize the function of the network device.
  • the network device is a core network device, such as an application function (application function, AF), a session management function (session management function, SMF), or a policy control function (policy control function, PCF), etc.
  • the method includes: the first network device obtains first QoS information of the first communication network, and the first network device determines, according to the first QoS information, the QoS of the data transmitted through the first transmission path in the second communication network information.
  • the QoS information of the data transmitted through the first transmission path in the second communication network includes QoS information of multiple links on the first transmission path, wherein the QoS information of each link in the multiple links
  • An endpoint is a terminal device in the second communication network, and the multiple links are all located in the second communication network.
  • the first network device sends the QoS information of the first link to the communication device, and the QoS information of the first link is included in the QoS information of the data transmitted through the first transmission path in the second communication network,
  • the first link is a link between the communication device and a next-hop device on the first transmission path, where the communication device is a second network device or a first terminal device.
  • the first communication network is, for example, an industrial Ethernet, or may also be other networks.
  • the second communication network is, for example, 5GS, or other networks.
  • the first network device may determine, according to the first QoS information of the first communication network, the QoS information of the data transmitted through the first transmission path in the second communication network, wherein what the first network device determines is the number of data transmitted on the first transmission path.
  • the QoS information of each link that is to say, the first network device can decompose the QoS information of the Industrial Ethernet into each link on the first transmission path, so that each link can specify which QoS should be followed.
  • This provides a specific implementation method for 5GS to adapt to industrial Ethernet, so that 5GS can adapt to industrial Ethernet.
  • the QoS information is decomposed into each link, so that the entire transmission path can be better controlled to improve the transmission quality.
  • the first network device determines, according to the first QoS information, the QoS information of the data transmitted through the first transmission path in the second communication network, including: the first network The device maps the first QoS information to second QoS information, and the second QoS information is the QoS information applied to the second communication network; the first network device determines, according to the second QoS information, the Describe the QoS information of the data transmitted through the first transmission path in the second communication network.
  • the first QoS information is the QoS information in the industrial Ethernet, and the first network device is located in the 5GS, and what the first network device needs to determine is the QoS information of the data in the 5GS, so the first network device can use the first QoS information.
  • the QoS information of the data transmitted through the first transmission path in the second communication network may include QoS information of each of the one or more links on the first transmission path. That is to say, the first network device can decompose the second QoS information by link, so that QoS information can be set for each link on the first transmission path.
  • the QoS information of the industrial Ethernet can be adapted to the 5GS, and the data of the industrial Ethernet can be transmitted in the 5GS in a manner that meets the QoS information of the industrial Ethernet.
  • the first network device determines, according to the first QoS information, the QoS information of the data transmitted through the first transmission path in the second communication network, including: the first network The device determines the QoS information of the data transmitted through the first transmission path in the second communication network according to the first QoS information and the connection state information, and the connection state information is used to indicate that the data is located in the second communication network
  • the connection status of multiple terminal devices the multiple terminal devices can transmit data for the devices located in the first communication network, and the terminal device serving as an endpoint of each link in the multiple links belongs to the multiple end devices.
  • the first network device may determine that the first transmission path is the path through the UPF (in various embodiments of the present application, it will also be referred to as "the path through the UPF" called “path forwarded through UPF"), or D2D transmission path.
  • the connection state information includes delay information between the UE and each device connected to the UE, then the first network device may determine, according to the first QoS information and the connection state information, whether the data transmitted through the first transmission path is in the 5GS. QoS information.
  • the first network device may consider delay information between the UE and each device connected to the UE. By considering the connection state information, the first network device can be made to determine a transmission path that is more in line with the actual transmission situation of the data, and can also determine more accurate QoS information.
  • the connection status information includes delay information between the first terminal device and each device connected to the first terminal device, and/or includes whether the first terminal device supports D2D information about the connection mode, the first terminal device is one terminal device among the plurality of terminal devices.
  • the connection state information may represent the connection states of multiple terminal devices located in the 5GS, or in other words, the connection state information may include the connection state information of multiple terminal devices located in the 5GS.
  • the connection state information of a terminal device may be referred to as sub-connection state information. Taking the first terminal device as an example, the sub-connection state information of the first terminal device may include the information between the first terminal device and each device connected to the first terminal device.
  • the delay information (or referred to as time delay information), or the information including whether the first terminal device supports the D2D connection mode, or the delay information between the first terminal device and each device connected to the terminal device, and including Information about whether the first terminal device supports the D2D connection mode. Therefore, the first network device can better determine the transmission path of the data in the 5GS according to the connection state information.
  • the QoS information of the data transmitted through the first transmission path in the second communication network includes one or more pieces of decomposition information, and each of the one or more pieces of decomposition information is decomposed
  • the information includes QoS information of multiple links on the first transmission path, wherein, in different decomposition information, the QoS information of at least one link on the first transmission path is different. It can be considered that when allocating the second QoS information to the first transmission path, the first network device may use one decomposition method or multiple decomposition methods, and in each decomposition method, the first transmission path may be included.
  • the QoS information of at least one link on the path, and the sum of the delays corresponding to the QoS information of at least one link on the first transmission path corresponding to each decomposition mode may be less than or equal to the value included in the second QoS information.
  • the at least one link on the first transmission path may include some or all of the links on the first transmission path. Setting multiple decomposition methods of QoS information for the first transmission path can facilitate the selection of different decomposition methods for the first transmission path according to network conditions.
  • Decomposition mode 2 can be selected for the first transmission path, which makes the decomposition of the QoS information of the link more flexible, and can improve the quality and success rate of data transmission.
  • the sending, by the first network device, the QoS information of the first link to the communication device includes: the first network device sending the communication device through the first transmission path to the communication device QoS information of the data in the second communication network.
  • the communication device may include the second network device, or the first terminal device, or the second network device and the first terminal device.
  • the second network device includes, for example, the UPF, or the (R)AN, or both the UPF and the (R)AN.
  • the first network device can only send the QoS information of the first link to the communication device without sending the QoS information of other links in the first transmission path, which can reduce signaling overhead, and the communication device can also The QoS information of the channel is used to send the data packet of the first UE.
  • the first network device may also send the QoS information of the data transmitted through the first transmission path in 5GS to the communication device (the first network device sends the QoS information of the data transmitted through the first transmission path in 5GS to the UPF, also It is considered that the QoS information of the first link is sent to the communication device), so that the communication device can not only obtain the QoS information of the first link, but also obtain the QoS information of other links on the first transmission path.
  • the method further includes: the first network The device determines the first decomposition information corresponding to the communication device from among the one or more decomposition information included in the QoS information of the data transmitted through the first transmission path in the second communication network; the first network The device sends an index of the first decomposition information to the communication device.
  • the first network device may select one piece of disassembly information for the first UE from the multiple pieces of disassembly information, for example, the first network device selects one piece of disassembly information for the first UE.
  • the first decomposition information If the first network device sends the QoS information of the data transmitted through the first transmission path in the 5GS to the communication device, the first network device may also send the index of the first decomposition information to the communication device, so that the communication device can know that the Which decomposition information in the QoS information in 5GS of the data transmitted through the first transmission path is used.
  • some or all of the links on the first transmission path are D2D links.
  • the first transmission path is, for example, a transmission path through the UPF, and the transmission path through the UPF may not include a D2D link; or, the first transmission path is, for example, a D2D transmission path, and the D2D transmission path may include one or more D2D links link.
  • the method further includes: sending, by the first network device, information of a terminal device that does not support D2D connection communication to the second network device. If there are terminal devices that do not support D2D connection communication, the communication of these terminal devices needs to go through the second network device, and the first network device can send the information of these terminal devices to the second network device, so that the second network device It is clear for which end devices the data needs to be forwarded.
  • the method further includes: the first network device determining, according to the first QoS information, QoS information of the data transmitted through the second transmission path in the second communication network , wherein the QoS information of the data transmitted through the second transmission path in the second communication network includes the QoS information of multiple links on the second transmission path; Second, the network device sends switching delay information, where the switching delay information is used to indicate the time required for the first terminal device to switch from the first transmission path to the second transmission path, wherein the first transmission path In the second transmission path, between the first terminal device and the third terminal device is through the second network device, or, in the first transmission path, the link between the first terminal device and the third terminal device is a link passing through the second network device, and in the second transmission path, the There is a D2D link between the first terminal device and the third terminal device.
  • terminal equipment is supported to switch between different transmission paths. For example, if a transmission path cannot satisfy corresponding QoS information, the terminal equipment on the transmission path may consider switching transmission paths. However, if the time delay required for switching the transmission path is long, the service of the terminal equipment may be interrupted due to the switching, or the system may be affected, etc., which is not desirable. Therefore, to switch the transmission path, the switching delay can be considered, and the first network device can send the switching delay information to the second network device, so that the second network device can determine whether the first terminal device can switch the transmission path according to the switching delay information. , so as to reduce the impact on the system caused by switching the transmission path.
  • the method further includes: receiving, by the first network device, a determination result from the second network device; when the determination result indicates a time period indicated by the handover delay information In the case that the time to live is less than or equal to the data survival time of the first terminal device, the first network device instructs the first terminal device to switch to the second transmission path.
  • the second network device determines whether the first terminal device can perform path switching according to the switching delay information. The second network device may determine whether the duration indicated by the handover delay information is less than or equal to the survival time of the data of the first terminal device.
  • the second network device determines that the first terminal device can perform the path switching.
  • the second network device determines that the first terminal device cannot Perform path switching.
  • the second network device can send the determination result to the first network device, and the first network device can determine whether the first terminal device can switch the transmission path according to the determination result.
  • the method further includes: sending, by the first network device, the data transmitted through the second transmission path to the second network device and/or the first terminal device in a QoS information in the second communication network. If the data has other transmission paths besides the first transmission path in the 5GS, the first network device can determine the QoS information of the data transmitted through the first transmission path in the second communication network according to the second QoS information, and also It is possible to determine the QoS information of other transmission paths, eg the first network device also determines the QoS information of the data transmitted through the second transmission path in the second communication network.
  • the first network device may also send the QoS information of the data transmitted through the second transmission path in the second communication network to the second network device and/or the first terminal device, so that the second network device and/or the first terminal device
  • the device can apply the QoS information in the second communication network for the data transmitted through the second transmission path, and transmit the data of the first terminal device on the second transmission path.
  • a second communication method is provided, the method being executable by a communication device, or by a chip system, or by a larger device including the communication device, the chip system capable of implementing the functions of the communication device.
  • the communication device is a network device, exemplarily, the network device is a core network device, such as a user plane function (user plane function, UPF), etc., or, exemplarily, the network device is an access network device , such as (R)AN, etc.
  • the communication device is a terminal device, such as a first terminal device.
  • the method includes: a communication device receiving QoS information of a first link, where the first link is a link between the communication device and a next-hop device on a first transmission path, wherein the first transmission
  • the path includes a plurality of links in the second communication network, and one end point of each link in the plurality of links is a terminal device, and the one terminal device can transmit data for the device located in the first communication network, so the first link is one of the multiple links;
  • the communication device receives a first data packet, and the first data packet corresponds to the first terminal device; the communication device follows the first link and send the first data packet to the next-hop device through the first link.
  • the communication device receiving the QoS information of the first link includes: receiving, by the communication device, the QoS information of the data transmitted through the first transmission path in the second communication network, wherein, the QoS information of the data transmitted through the first transmission path in the second communication network includes QoS information of multiple links in the second communication network on the first transmission path, The QoS information of the multiple links includes the QoS information of the first link.
  • the method further includes: receiving, by the communication device, an index of the first decomposition information, wherein the QoS of the data transmitted through the first transmission path in the second communication network
  • the information includes one or more decomposition information, each of the one or more decomposition information includes QoS information of a plurality of links in the second communication network on the first transmission path, in different In the decomposition information, the QoS information of at least one link on the first transmission path is different, and the first decomposition information is one of the one or more decomposition information.
  • the QoS information of the first link is the QoS information of the first link corresponding to the index of the first decomposition information.
  • the method further includes: obtaining, by the communication device, actual QoS information of the data of the first terminal device; the communication device, according to the first decomposition information, and the first The actual QoS information of the data of a terminal device determines whether to reselect the decomposition information for the first terminal device.
  • the communication device obtains the first decomposition information, and also obtains the actual QoS information of the data of the first terminal device, so that the degree of conformity between the first decomposition information and the actual QoS information of the data of the first terminal device can be determined to determine whether it is the first
  • a terminal device reselects the decomposition information, so that decomposition information more suitable for the actual QoS information of the data of the first terminal device can be selected for the first terminal device.
  • the communication device determines whether to reselect the decomposition information for the first terminal device according to the first decomposition information and the actual QoS information of the data of the first terminal device, Including: when the difference between the delay corresponding to the actual QoS information of the data of the first terminal device and the delay corresponding to the QoS information of the second link included in the first decomposition information is greater than a first threshold , the communication device reselects the decomposition information for the first terminal device, and the second link is a link corresponding to the actual QoS information of the data of the first terminal device.
  • the communication device can reselect the decomposition information for the first terminal device to select the decomposition information that is more suitable for the second link.
  • the communication device reselecting the decomposition information for the first terminal device includes: the communication device, according to the actual QoS information of the data of the first terminal device, selects the decomposition information for the first terminal device.
  • a terminal device reselects the decomposition information, wherein the delay corresponding to the QoS information of the second link included in the reselected decomposition information is greater than or equal to the delay corresponding to the actual QoS information of the data of the first terminal device .
  • the decomposition information reselected by the communication device may conform to the actual QoS information of the data of the first terminal device as much as possible.
  • obtaining, by the communication device, the actual QoS information of the data of the first terminal device includes: obtaining, by the communication device, first accumulated QoS information, where the first accumulated QoS information includes all The sum of the actual QoS information of all links experienced by the data of the first terminal device being transmitted from the first device in the first transmission path to the communication device.
  • the actual QoS information of the data of the first terminal device obtained by the communication device is, for example, the actual QoS information of the second link, or may also be the first accumulated QoS information.
  • the first accumulated QoS information can better indicate that the first transmission path is on the first transmission path. QoS information for the link preceding the communication device.
  • the communication device determines whether to reselect the decomposition information for the first terminal device according to the first decomposition information and the actual QoS information of the data of the first terminal device, Including: when the difference between the delay corresponding to the first accumulated QoS information and the delay corresponding to the second accumulated QoS information is greater than a second threshold, the communication device reselects decomposition information for the first terminal device .
  • the delay corresponding to the second accumulated QoS information includes the sum of the delays corresponding to the QoS information of the N links included in the first decomposition information, and the N links are the All links through which data is transmitted from the first device in the first transmission path to the communication device, and N is a positive integer.
  • the communication device can reselect the decomposition information for the first terminal device to select decomposition information more suitable for the second link.
  • the method further includes: the communication device reselecting decomposition information for the first terminal device, including: the communication device according to the first accumulated QoS information and the first 2. Accumulate QoS information, reselect decomposition information for the first terminal device, wherein the sum of delays corresponding to the QoS information of the N links included in the reselected decomposition information is greater than or equal to the first accumulated QoS information Delay corresponding to QoS information.
  • the communication device reselects the decomposition information, it may consider that the link before the communication device on the first transmission path is not affected, so as to improve the success rate of data transmission.
  • the method further includes: receiving, by the communication device, QoS information in the second communication network of the data transmitted through the second transmission path, the data transmitted through the second transmission path.
  • the QoS information of the data in the second communication network includes the QoS information of the link on the second transmission path, and the second transmission path is the transmission path corresponding to the first terminal device.
  • the method further includes: determining, by the communication device, that the QoS information of the data transmitted through the first transmission path in the second communication network cannot satisfy the data of the first terminal device However, the QoS information of the data transmitted through the second transmission path in the second communication network can satisfy the actual QoS information of the data of the first terminal device, and the second QoS information is the second communication network.
  • the communication device determines whether the duration indicated by the handover delay information is less than or equal to the duration of the first terminal device.
  • the survival time of the data, the switching delay information is used to indicate the time required for the first terminal device to switch from the first transmission path to the second transmission path; the communication device sends to the first network device Determine the result.
  • the determination result is used to indicate that the duration indicated by the handover delay information is less than or equal to the survival time of the data of the first terminal device, or to indicate that the handover delay information
  • the indicated time period is longer than the survival time of the data of the first terminal device; or, the determination result is used to indicate that the state is normal, or the state is abnormal; or, the determination result is used to indicate that the switching path is allowed, or not Allows switching paths.
  • the communication device sending the first data packet to the next-hop device through the first link includes: the communication device sending the first data packet to the next-hop device through the first link.
  • the next-hop device sends the first data packet carrying the index of the decomposition information of the data of the first terminal device.
  • the communication device may not be the last hop device on the first transmission path, and the communication device may re-select the decomposition information for the first terminal device. Therefore, optionally, the communication device is sent to the next device through the first link.
  • the hopping device When the hopping device sends a data packet, it can carry the index of the decomposition information used by the communication device in the data packet, so that other devices on the first transmission path can determine which decomposition information is used by the communication device, so as to make the first transmission path clear.
  • the decomposition information used by each device on the transmission path can be consistent to meet the requirements of the QoS information of the industrial Ethernet.
  • a communication device in a third aspect, may be the first network device described in the first aspect or the second aspect, or may be an electronic device (eg, a chip system) configured in the first network device, or may include the first network The larger device of the device.
  • the first network device includes corresponding means or modules for performing the above method.
  • the communication device includes a processing unit (sometimes also referred to as a processing module) and a transceiving unit (sometimes also referred to as a transceiving module).
  • the processing unit is configured to obtain the first quality of service QoS information of the first communication network
  • the processing unit is further configured to determine, according to the first QoS information, QoS information of the data transmitted through the first transmission path in the second communication network, wherein the data transmitted through the first transmission path is in the second communication network.
  • the QoS information in the communication network includes the QoS information of multiple links on the first transmission path, wherein an endpoint of each link in the multiple links is a terminal device in the second communication network, and the multiple links are all located in the second communication network;
  • the transceiver unit is configured to send the QoS information of the first link to the communication device, where the QoS information of the first link is included in the QoS information of the data transmitted through the first transmission path in the second communication network , the first link is a link between the communication device and a next-hop device on the first transmission path, where the communication device is a second network device or a first terminal device.
  • the communication apparatus includes a storage unit, and the processing unit can be coupled with the storage unit and execute a program or an instruction in the storage unit to enable the communication apparatus to execute the above-mentioned first network device function.
  • the communication apparatus includes: a processor, coupled to the memory, for executing instructions in the memory, so as to implement the first network device in the first aspect or the second aspect.
  • the communication device further includes other components, such as an antenna, an input and output module, an interface, and the like. These components may be hardware, software, or a combination of software and hardware.
  • a communication device is provided.
  • the communication apparatus may be the communication device described in the first aspect or the second aspect.
  • the communication device has the function of the above-mentioned communication device.
  • the communication device is, for example, a network device, such as a second network device, and the second network device is, for example, a core network device, such as UPF, etc., or the second network device is, for example, an access network device, such as (R)AN, or The baseband device in (R)AN.
  • the communication device is, for example, a terminal device, such as a first terminal device.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication apparatus includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • the transceiver unit is configured to receive QoS information of a first link, where the first link is a link between the communication device and a next-hop device on the first transmission path, wherein the The first transmission path includes a plurality of links in the second communication network, and one end point of each link in the plurality of links is a terminal device, and the one terminal device can transmit the transmission for a device located in the first communication network data, the first link is one of the multiple links;
  • the transceiver unit is further configured to receive a first data packet, where the first data packet corresponds to the first terminal device;
  • the processing unit is further configured to send the first data packet to the next-hop device via the first link through the transceiver unit according to the QoS information of the first link.
  • the communication apparatus includes a storage unit, and the processing unit can be coupled with the storage unit and execute a program or an instruction in the storage unit to enable the communication apparatus to perform the function of the above communication device .
  • the communication apparatus includes: a processor, coupled to a memory, for executing instructions in the memory, so as to implement the method performed by the communication device in the first aspect or the second aspect.
  • the communication device further includes other components, such as an antenna, an input and output module, an interface, and the like. These components may be hardware, software, or a combination of software and hardware.
  • a communication system may include the communication device of the third aspect and the communication device of the fourth aspect.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store a computer program or an instruction that, when executed, enables the method performed by the communication device or the first network device in the above aspects is realized.
  • a computer program product comprising instructions which, when run on a computer, cause the methods of the above aspects to be implemented.
  • Figure 1 is a schematic diagram of a 5G network architecture
  • Figure 2 shows the combined architecture of 5GS and TSN in a layer 2 network
  • FIG. 3 is a structural diagram of a 5GS adaptation industrial Ethernet designed in an embodiment of the application.
  • FIG. 4 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 5 and FIG. 7 to FIG. 10 are flowcharts of several communication methods provided by the embodiments of the present application.
  • 6A is a schematic diagram of mapping first QoS information to second QoS information in an embodiment of the present application
  • FIG. 6B is a schematic diagram of another application scenario of an embodiment of the present application.
  • FIG. 6C is a schematic diagram of another application scenario of an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • a terminal device is a device with a wireless transceiver function, which may be a fixed device, a mobile device, a handheld device, a wearable device, a vehicle-mounted device, or a wireless device (for example, a communication module or a wireless device) built into the above-mentioned device. system-on-chip, etc.).
  • the terminal device is used to connect people, things, machines, etc., and can be widely used in various scenarios, such as but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), vehicle-to-everything (vehicle to everything, V2X), machine-to-machine/machine-type communications (M2M/MTC), Internet of things (internet of things, IoT), virtual reality (virtual reality, VR) , Augmented reality (AR), industrial control (industrial control), unmanned driving (self driving), telemedicine (remote medical), smart grid (smart grid), smart furniture, smart office, smart wear, smart transportation , terminal equipment for smart city, drone, robot and other scenarios.
  • cellular communication device-to-device communication
  • vehicle-to-everything vehicle to everything, V2X
  • M2M/MTC machine-to-machine/machine-type communications
  • IoT Internet of things
  • virtual reality virtual reality
  • AR Augmented reality
  • the terminal equipment may sometimes be referred to as user equipment (user equipment, UE), a terminal, an access station, a UE station, a remote station, a wireless communication device, or a user equipment, etc.
  • UE user equipment
  • the device is described by taking the UE as an example.
  • the network devices in the embodiments of the present application include, for example, access network devices and/or core network devices.
  • the access network device is a device with a wireless transceiver function, and is used to communicate with the terminal device.
  • the access network equipment includes but is not limited to the base station (BTS, Node B, eNodeB/eNB, or gNodeB/gNB), transceiver point (t(R)ANsmission reception point, TRP) in the above-mentioned communication system, 3GPP subsequent evolution.
  • Base station access node in wireless fidelity (WiFi) system, wireless relay node, wireless backhaul node, etc.
  • the base station may be: a macro base station, a micro base station, a pico base station, a small base station, a relay station, and the like.
  • Multiple base stations may support the aforementioned networks of the same access technology, or may support the aforementioned networks of different access technologies.
  • a base station may contain one or more co-sited or non-co-sited transmission reception points.
  • the network device may also be a wireless controller, a centralized unit (centralized unit, CU), and/or a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, C(R)AN) scenario.
  • the network device can also be a server, a wearable device, or a vehicle-mounted device.
  • a network device in a vehicle to everything (V2X) technology can be a road side unit (RSU).
  • the multiple network devices in the communication system may be base stations of the same type, or may be base stations of different types.
  • the base station can communicate with the terminal equipment, and can also communicate with the terminal equipment through the relay station.
  • a terminal device can communicate with multiple base stations in different access technologies.
  • the core network equipment is used to implement at least one of functions such as mobility management, data processing, session management, policy and charging.
  • functions such as mobility management, data processing, session management, policy and charging.
  • the names of devices implementing core network functions in systems with different access technologies may be different, which are not limited in this embodiment of the present application.
  • the core network equipment includes: access and mobility management function (AMF), SMF, or user plane function (UPF), etc.
  • the apparatus for implementing the function of the network device may be the network device, or may be an apparatus capable of supporting the network device to implement the function, such as a chip system, and the apparatus may be installed in the network device.
  • the technical solutions provided by the embodiments of the present application are described by taking the device for realizing the function of the network device being a network device as an example.
  • the number of nouns means “singular nouns or plural nouns", ie "one or more". "At least one” means one or more, and “plurality” means two or more. "And/or”, which describes the relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, it can indicate that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/" generally indicates that the associated objects are an "or” relationship. For example, A/B, means: A or B.
  • At least one item(s) below or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • the 3rd generation partnership project (3GPP) standard organization has formulated the next generation mobile communication network architecture (next generation system), which is called the 5G network architecture.
  • the 5G network architecture supports the wireless technologies defined by the 3GPP standard organization (such as long-term Evolution (long term evolution, LTE) or 5G radio access network (radio access network, (R)AN), etc.).
  • LTE long-term Evolution
  • R radio access network
  • FIG. 1 is a schematic diagram of a 5G network architecture.
  • the UE accesses the core network through the (R)AN, and the core network includes user plane network elements and control plane network elements.
  • the user plane network elements of the core network include UPF; the control plane network elements of the core network include authentication server functions (authentication server function, AUSF), AMF, SMF, network slice selection function (network slice selection function, NSSF), network open At least one of network exposure function (NEF), network function repository function (NRF), unified data management (UDM), PCF, and AF, etc.
  • authentication server function authentication server function, AUSF
  • AMF authentication server function
  • SMF network slice selection function
  • NSSF network slice selection function
  • NEF network exposure function
  • NRF network function repository function
  • UDM unified data management
  • PCF unified data management
  • User plane network elements are mainly responsible for packet data packet forwarding, QoS control, and charging information statistics.
  • the network element of the control plane is mainly responsible for the interaction of the business process, the delivery of the data packet forwarding policy and the QoS control policy to the user plane.
  • devices such as sensors can access the core network through devices such as UE and (R)AN, so that the controller connected to devices such as sensors in the industrial Ethernet can perform industrial operations on the user plane through UPF. data communication.
  • the core network control plane may adopt a service-oriented architecture, that is, the interaction between the network elements of the control plane adopts a service invocation manner to replace the point-to-point communication manner in the traditional architecture.
  • a control plane network element will open services to other control plane network elements for other control plane network elements to call; in point-to-point communication, there will be a set of specific messages on the communication interface between control plane network elements. It can only be used by the control plane NEs at both ends of the interface during communication.
  • the UPF performs user data packet forwarding according to the routing rules of the SMF, such as sending uplink data to DN or other UPFs, and forwarding downlink data to other UPFs or (R)ANs.
  • AUSF which performs security authentication of the UE.
  • AMF Access management and mobility management of UE.
  • UE state maintenance UE reachability management
  • MM non-mobility management
  • NAS non-access-stratum
  • SM session management
  • SMF Session Management Function
  • UE session management allocates resources for UE sessions and releases resources.
  • the resources include session quality of service (QoS), session paths, and forwarding rules.
  • QoS session quality of service
  • NSSF selects network slice for UE.
  • NEF opens network functions to third parties in the form of northbound application programming interface (API) interfaces.
  • API application programming interface
  • NRF provides other network elements with the storage function and selection function of network function entity information.
  • PCF User Policy Management
  • User Policy Management is used to generate and manage user, session, and QoS flow processing policies.
  • AF application management
  • a functional network element that provides various business services, can interact with the core network through the NEF, and can interact with the policy management framework for policy management.
  • N1 The interface between the UE and the core network control plane.
  • N2 The communication interface between the access network (access network, AN) network element and the core network control plane.
  • N3 The communication interface between the network element of the access network and the UPF, used to transmit user data.
  • N4 The communication interface between the SMF and the UPF, used for policy configuration on the UPF, etc.
  • N6 The communication port between the UPF and the data network (DN).
  • the protocol of industrial Ethernet is an Ethernet protocol customized for industrial production scenarios on the basis of Ethernet.
  • the protocol mainly improves the contention-based channel transmission method in traditional Ethernet, and ensures that data transmission between devices has real-time control characteristics and deterministic characteristics, including at least one of delay determination and jitter determination. Therefore, the definition of QoS of industrial Ethernet is relatively simple, and it is mainly used to describe the characteristics of data transmission, such as describing at least one of packet delay, packet jitter, periodic data period, data volume, and survival time. .
  • the survival time of data means that as long as the data is successfully transmitted within the survival time of the data, the system will not be affected, and if the data is not successfully transmitted within the survival time of the data, the system will be affected.
  • the QoS of 5GS is defined based on data flow, which is more complicated than industrial Ethernet.
  • the QoS of 5GS defines three data flow types of non-guaranteed bit rate (GBR), GBR, and critical (critical)-GBR, and defines the priority of data flow scheduling and packet delay budget. , at least one of packet error rate, mean window, maximum data burst size, and guaranteed maximum stream bit rate.
  • the 3GPP standard provides a combined architecture of 5GS and time sensitive networking (TSN) in a layer 2 network, please refer to Figure 2 for this.
  • TSN bridge TSN bridge node
  • 5GS logical bridge node 5GS logical bridge
  • AF AF
  • a TSN translator (translator) module is added on the UPF and the UE side to adapt to the data transmission of the user plane.
  • the TSN CNC can configure the relevant routing configuration and QoS between the two TSN nodes (for example, the TSN node in the lower right corner and the TSN node in the lower left corner in Figure 2), and configure the 5GS logical bridge node through the AF.
  • the relevant information of TSN CNC is converted into information corresponding to 5GS.
  • the user plane adaptation function on the UE and UPF side is used to provide necessary decision information for the control plane.
  • the TSN also includes the network element of TSN centralized user configuration (CUC). Configuration requirements for TSN nodes are calculated by the TSN CNC.
  • CRC TSN centralized user configuration
  • TSN defines time sensitive communication assistance information (TSCAI) to describe the traffic characteristics of industrial Ethernet.
  • TSCAI can include at least one of the direction of data flow, data period, burst data arrival time, etc.
  • the SMF can deduce the TSCAI based on each data stream accordingly, and send the TSCAI based on each data stream to (R )AN and (R)AN can perform data scheduling of industrial Ethernet according to the TSCAI based on each data stream.
  • TSC time sensitive communication
  • MDBV maximum data burst volume
  • PDB packet delay budget
  • 5GS obtains the end-to-end QoS of 5GS.
  • 5GS also includes multiple devices.
  • 5GS is adapted to industrial Ethernet
  • the QoS obtained by 5GS is only the overall QoS of data from entering 5GS to leaving 5GS, and it is impossible to know what QoS should be used between these devices in 5GS, which will lead to industrial Ethernet data in 5GS.
  • the transmission process cannot be controlled more accurately, which reduces the communication quality, and may even cause the industrial Ethernet data to fail to be transmitted in the 5GS, that is to say, the 5GS cannot adapt to the industrial Ethernet.
  • FIG. 3 is a structural diagram of a 5GS adaptation to an industrial Ethernet designed for an embodiment of the present application.
  • Figure 3 includes the primary (primary) station, 5GS, secondary (secondary) station 1, secondary station 2 and secondary station 3. Both the primary station and the secondary station are devices in the Industrial Ethernet.
  • Both the secondary station 2 and the secondary station 3 can be understood as UEs, and these UEs are located in the industrial Ethernet.
  • the master station has data that needs to be sent to the auxiliary station 1, it can be sent through 5GS, and the data transmission needs to go through the master station-5GS-secondary station 1.
  • the data may also go through one or more devices, for example, the data may be forwarded by devices such as (R)AN, UPF, or one or more UEs in 5GS, that is to say, the data in 5GS may also experience one or more links. Since 5GS only obtains the end-to-end QoS of 5GS, 5GS cannot know how to accurately control the QoS of the link experienced by data in 5GS, which may lead to the inability to accurately control the data transmission process and reduce communication. quality.
  • the first network device may determine, according to the first QoS information of the first communication network, the QoS information of the data transmitted through the first transmission path in the second communication network, wherein the QoS information determined by the first network device is the QoS information of multiple links on the first transmission path, that is to say, the first network device can decompose the QoS information of the industrial Ethernet into each link on the first transmission path, so that each link is It can be clear what kind of QoS information should be transmitted, which provides a specific implementation method for 5GS to adapt to industrial Ethernet, so that 5GS can adapt to industrial Ethernet. Moreover, the QoS information is decomposed into each link, so that the entire transmission path can be better controlled to improve the transmission quality.
  • the technical solutions provided in the embodiments of this application can be applied to a 5G system, such as an NR system, or can also be applied to a next-generation mobile communication system or other similar communication systems, which are not specifically limited.
  • FIG. 4 it is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the main station and the auxiliary station in Fig. 4 are all located in the industrial Ethernet, and other network elements are located in the 5GS.
  • FIG. 4 takes the example that the primary station directly accesses the 5GS and the secondary station accesses the 5GS through the UE.
  • Figure 4 only shows one master station and one slave station.
  • the master station may also be connected to one or more slave stations in the Industrial Ethernet.
  • the slave station in Figure 4 There may also be one or more secondary stations connected to it.
  • the master station is, for example, a UE, or may also be other devices in the industrial Ethernet;
  • the secondary station is, for example, a UE, or may also be other devices in the industrial Ethernet.
  • the (R)AN in FIG. 4 is implemented by, for example, an access network device, and the access network device is, for example, a base station.
  • the first communication network described in the various embodiments herein is, for example, industrial Ethernet, or may also be other networks, such as TSN and the like.
  • the second communication network described in the various embodiments herein is, for example, 5GS, or may also be other networks, such as a next-generation mobile communication system.
  • the first communication network is industrial Ethernet and the second communication network is 5GS as an example.
  • the D2D transmission path refers to a transmission path including a D2D connection.
  • the D2D connection refers to a connection between two UEs on the connection transmission path, and through this connection, the two UEs communicate directly without going through the network side.
  • a D2D transmission path may or may not pass through the UPF.
  • the transmission path is called a D2D transmission path.
  • the transmission path forwarded by the UPF is, for example, the transmission path that does not include the D2D connection.
  • the method is performed by a network device and a terminal device as an example.
  • the first network device described in the various embodiments herein is, for example, an AF, an SMF, or a PCF.
  • the second network device described in the various embodiments herein is, for example, UPF or (R)AN or the like.
  • the second network device, the (R)AN, the first UE, etc. described in various embodiments herein may be collectively referred to as communication devices.
  • all steps represented by dotted lines are optional steps.
  • FIG. 5 is a flowchart of the method.
  • the method can be applied to the network architecture shown in FIG. 4 .
  • the first network device obtains the QoS information of the industrial Ethernet.
  • the QoS information of the Industrial Ethernet is referred to as the first QoS information.
  • the first network device is the AF, then the AF can obtain the first QoS information from the master station shown in FIG. 4 .
  • the first network device is a PCF
  • the PCF can obtain the first QoS information from the AF.
  • the SMF can obtain the first QoS information from the PCF.
  • the master station shown in FIG. 4 may establish a user plane data channel with the UPF, so as to send the first QoS information to the UPF.
  • the UPF may extract the first QoS information, and send the first QoS information to the SMF.
  • the SMF is used as the first network device
  • the first network device obtains the first QoS information.
  • the first network device is a PCF
  • the PCF may obtain the first QoS information from the SMF.
  • the first network device is an AF
  • the AF may obtain the first QoS information from the PCF.
  • connection state information may represent connection states of multiple UEs located in the 5GS, or the connection state information may include connection state information of multiple UEs located in the 5GS.
  • the connection state information of one UE may be called sub-connection state information, then the connection state information includes the sub-connection information of multiple UEs located in the 5GS.
  • the multiple UEs include, for example, the UE in FIG. 4 , and may also include some or all of the remaining UEs in the 5GS except the UE.
  • These multiple UEs can be connected to devices in the Industrial Ethernet (for example, a master station or a secondary station), and these multiple UEs can forward data for the connected devices in the Industrial Ethernet, which can be understood as the devices in the Industrial Ethernet To send data, the transmission of the data needs to go through 5GS, then the UE connected to the device in the 5GS can forward the data.
  • some of the multiple UEs may be connected to the master station in the industrial Ethernet, and the master station connected to different UEs may be the same master station or different master stations.
  • Some UEs may be connected to secondary stations in Industrial Ethernet, and the secondary stations connected to different UEs may be the same secondary station or different secondary stations; or, these multiple UEs may all be connected to industrial Ethernet.
  • the master station, and the master stations connected to different UEs may be the same master station or different master stations; or, the multiple UEs may all be connected to the slave stations in the industrial
  • the stations may be the same auxiliary station or different auxiliary stations.
  • the sub-connection status information of a UE may include delay information (or referred to as delay information) between the UE and each device connected to the UE, or whether the UE supports device-to-device (device-to-device, D2D) connection mode information, or delay information between the UE and each device connected to the UE, and information including whether the UE supports the D2D connection mode.
  • delay information or referred to as delay information
  • D2D device-to-device
  • one UE may be connected to one or more devices.
  • a UE is connected to a secondary station in Industrial Ethernet and also connected to a UPF in 5GS.
  • the sub-connection status information of the UE may include all the secondary stations or part of the UE and the UE connected to the UE. Delay information of the secondary station, including the delay information between the UE and the UPF.
  • the information about whether the UE supports the D2D connection mode can be understood as including whether the UE supports the D2D connection mode of the PC5 communication interface, or whether the UE supports the D2D connection mode of the Uu communication interface, or whether the UE supports the PC5 communication interface.
  • D2D connection mode information of the communication interface and information including whether the UE supports the D2D connection mode of the Uu communication interface.
  • the information on whether the UE supports the D2D connection mode may include information on whether the UE supports the D2D connection mode with one or some UEs.
  • the sub-connection status information of UE1 may include information that UE1 supports D2D connection with UE2, that is, information of whether a UE supports D2D connection, which may indicate whether the UE supports or does not support D2D connection. And the UE supports or does not support the D2D connection mode, which is generally corresponding.
  • the sub-connection status information of UE1 includes the information that UE1 supports the D2D connection mode between UE1 and UE2, then the sub-connection status information of UE2 can also include UE2 support and UE2.
  • the sub-connection state information of the UE can be maintained, and the UE can also update the sub-connection state information of the UE.
  • the delay information between the UE and some devices is not always constant, but may change with network quality. If the network quality is good, the delay between the UE and some devices may be small, and if the network quality is poor, the delay between the UE and some devices may be large, then the UE can update the UE and the UE accordingly Latency information between some or all of the connected devices.
  • the UE's support for the D2D connection mode may not always be constant. For example, the UE initially supports the D2D connection, but may later change to not support the D2D connection, so the UE can also update whether the UE supports the D2D connection. way information.
  • the first network device obtains the sub-connection state information from multiple UEs, thereby obtaining the connection state information. For example, for a UE, the UE may send the sub-connection status information of the UE to the SMF through non-access stratum (NAS) signaling. If the first network device is an SMF, the first network device The sub-connection state information of the UE is obtained, and if the first network device is an AF or a PCF, the first network device can also obtain the sub-connection state information of the UE from the SMF.
  • NAS non-access stratum
  • a UE may establish a connection between the UE and the UPF, and send the sub-connection status information of the UE to the UPF, and the UPF may extract the sub-connection status information and send it to the SMF.
  • the first network device is the SMF
  • the first network device obtains the sub-connection state information of the UE, and if the first network device is an AF or a PCF, the first network device can also obtain the sub-connection state information of the UE from the SMF.
  • Multiple UEs can send the sub-connection state information to the SMF in the above manner, so that the first network device can obtain the connection state information.
  • the first network device determines, according to the first QoS information, the QoS information in the 5GS of the data transmitted through the first transmission path.
  • the first QoS information obtained by the first network device is the QoS information of the industrial Ethernet
  • the first network device may first obtain the QoS information in the 5GS according to the first QoS information.
  • the first network device maps the first QoS information to the second QoS information
  • the second QoS information is the 5GS QoS information. Equivalently, the first network device converts the QoS information of the industrial Ethernet into the QoS information of 5GS.
  • the first QoS information may include one or more of the following parameters: a packet delay (packet delay) parameter, a packet jitter (packet jitter) parameter, a cycle time (cycle time) parameter, a data volume (data volume) parameter, Or, the survival time parameter.
  • the second QoS information may include one or more of the following: a source type (resource type) parameter, a priority (priority level) parameter, a packet delay budget (packet delay budget, PDB) parameter, and a packet error rate (packet error rate) parameter , the averaging window (averaging window) parameter, the MDBV parameter, the guaranteed flow bit rate (GFBR) parameter, or the maximum flow bit rate (maximum flow bit rate, MFBR) parameter.
  • the first network device may select a corresponding 5GS packet delay budget parameter according to the packet delay parameter in the first QoS information.
  • the first network device may determine the MFBR parameter, the GFBR parameter, etc. in the second QoS information according to the cycle time parameter and the data volume parameter, etc. in the first QoS information.
  • the first network device may calculate the MDBV in the second QoS information according to the data volume parameter of the Industrial Ethernet.
  • the first network device can select a 5G QoS identifier (5G QoS identifier, 5QI) that can satisfy these parameters according to the parameters in the calculated second QoS information, or can also set a new 5QI, which obtains the first 5G QoS identifier. 2.
  • 5G QoS identifier 5G QoS identifier, 5QI
  • the first network device may determine, according to the second QoS information, the QoS information in the 5GS of the data transmitted through the first transmission path.
  • the determination of the QoS information in the 5GS of the data transmitted through the first transmission path may also refer to the above-mentioned connection state information.
  • the first network device can determine one or more transmission paths of the data in the 5GS. As described above, there can be two transmission paths: D2D transmission paths and transmission paths forwarded through UPF. For example, the first network device does not obtain the connection state information, or the connection state information obtained by the first network device does not include information on whether the UE supports the D2D connection mode, then the first network device can determine that the transmission path of the data is the transmission path forwarded by the UPF .
  • the first network device does not obtain connection state information, or the connection state information obtained by the first network device does not include information on whether the UE supports the D2D connection mode, then the first network device determines that the industrial Ethernet A transmission path of data in the network in 5GS is a path forwarded by UPF.
  • the first network device can determine that a transmission path that the data may experience is: Primary Station-UPF-(R)AN-UE-Secondary Station.
  • the secondary station processes the data accordingly, and then sends the processed data to the primary station, then the first network device can determine that a transmission path that the data may go through is : primary station-UPF-(R)AN-UE-secondary station-UE-(R)AN-UPF-primary station.
  • the first network device does not obtain the connection state information, or the connection state information obtained by the first network device does not include information on whether the UE1 or the UE2 supports the D2D connection mode.
  • the first network device can determine that a transmission path that the data may go through is: primary station-UPF-(R)AN-UE1-secondary station 1-UE1 -(R)AN-UPF-(R)AN-UE2-Secondary Station2.
  • the secondary station processes the data accordingly, and then sends the processed data to the primary station, then the first network device can determine that a transmission path that the data may go through is : primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-(R)AN-UE2-secondary station2-UE2-(R)AN-UPF-primary station.
  • the master station directly accesses the 5GS as an example, or there is another way, the master station also accesses the 5GS through the UE.
  • the master station also accesses the 5GS through the UE.
  • UE1 in FIG. 6C. which is a schematic diagram of the scene.
  • the first network device does not obtain the connection state information, or the connection state information obtained by the first network device does not include information on whether the UE1 or the UE2 supports the D2D connection mode. Taking the primary station in FIG.
  • the first network device can determine that a transmission path that the data may experience is: primary station-UE1-(R)AN 1-UPF-(R)AN 2 -UE2-Secondary station. Or, after the primary station sends data to the secondary station, the secondary station processes the data accordingly, and then sends the processed data to the primary station, then the first network device can determine that a transmission path that the data may go through is : Primary Station-UE1-(R)AN 1-UPF-(R)AN 2-UE2-Secondary Station-UE2-(R)AN 2-UPF-(R)AN 1-UE1-Master Station.
  • the first network device may determine the transmission path of the data in the Industrial Ethernet in the 5GS according to the connection state information.
  • the connection state information includes information on whether the UE supports the D2D connection mode, then, if the UE does not support the D2D connection mode, the first network device determines that the transmission path of the data in the Industrial Ethernet in the 5GS is the path forwarded by the UPF; Alternatively, if the UE supports the D2D connection mode, the first network device may determine, in addition to determining that a transmission path of the data in the industrial Ethernet in the 5GS is the path forwarded through the UPF, the first network device may also determine that the data in the industrial Ethernet is in the 5GS.
  • the other transmission path is a transmission path that is not forwarded through the UPF, or the other transmission path is a D2D transmission path.
  • the sub-connection status information of UE1 in FIG. 6B indicates that UE1 supports the D2D connection with UE2, and/or the sub-connection status information of UE2 in FIG. 6B indicates that UE2 supports the D2D connection with UE1. D2D connection.
  • the first network device can determine that another transmission path that the data may go through is: primary station-UPF-(R)AN-UE1-secondary station 1 -UE1-UE2-Secondary station 2, or, after the primary station sends data to the secondary station, the secondary station processes the data accordingly, and then sends the processed data to the primary station, then the first network device can determine A possible transmission path of the data is: primary station-UPF-(R)AN-UE1-secondary station1-UE1-UE2-secondary station2-UE2-(R)AN-UPF-primary station.
  • this transmission path will also experience UPF, this is because D2D transmission cannot be performed between the master station and UE1, but there is a D2D path between UE1 and UE2, so this transmission path can also be regarded as D2D transmission. path.
  • FIG. 6C is a schematic diagram of this scenario.
  • the sub-connection status information of UE1 in FIG. 6C indicates that UE1 supports D2D connection with UE2
  • the sub-connection status information of UE2 in FIG. 6C indicates that UE2 supports D2D connection with UE1.
  • the first network device may determine that another transmission path the data may go through is: primary station-UE1-UE2-secondary station.
  • the secondary station processes the data accordingly, and then sends the processed data to the primary station, then the first network device can determine that a transmission path that the data may go through is : primary station-UE1-UE2-secondary station-UE2-UE1-primary station.
  • a transmission path that the data may go through is : primary station-UE1-UE2-secondary station-UE2-UE1-primary station.
  • the data in the industrial Ethernet is transmitted in the 5GS, and there may be other transmission paths besides the above two transmission paths, which are not limited in this embodiment of the present application.
  • the first transmission path is, for example, a transmission path forwarded through UPF, or may also be a D2D transmission path, or may also be other transmission paths. No matter what the first transmission path is, the first transmission path may include one link or multiple links. For example, if the embodiment of the present application is applied to the scenario shown in FIG. 4 , the first transmission path is the primary station-UPF-(R)AN-UE-secondary station-UE-(R)AN-UPF-primary station in FIG. 4 .
  • the first transmission path includes two links, one of which is the link from the UPF to the UE (that is, the UPF- (R)AN-UE) and the other link is the link from the UE to the UPF (ie, UE-(R)AN-UPF).
  • the first transmission path is the primary station-UPF-(R)AN-UE1-secondary station1-UE1-UE2-secondary station2- in FIG. 6B .
  • UE2-(R)AN-UPF-master station then the first transmission path includes three links, and one of the three links is the link from UPF to UE1 (ie, UPF-(R)AN-UE1) , the other link of the three links is the link from UE1 to UE2 (ie, UE1-UE2), and the other link of the three links is the link from UE2 to the UPF (ie, UE2-(R )AN-UPF).
  • one endpoint device of the link is a UE in the 5GS
  • the other endpoint device of the link is the UPF in the 5GS or another UE in the 5GS.
  • a link may be a direct connection channel between two devices (for example, if a link is UE1-UE2, the link refers to a direct connection channel between UE1 and UE2), or a link may also experience multiple devices, the link includes a direct connection channel between two of the multiple devices (for example, if one link is UE2-(R)AN-UPF, the link includes the direct connection between UE2 and (R)AN) connecting channels, and including direct connecting channels between (R)AN and UPF).
  • the link is directional, and the direction of the link is the same as the direction of data transmission. Even if the devices experienced are the same, but the data transmission direction is different, then it is regarded as two links. For example, UE2-(R)AN-UPF is considered as one link, and UPF-(R)AN-UE2 is considered as another link.
  • the second QoS information described in this embodiment of the present application may include QoS information of each link in the first transmission path.
  • the first network device may first obtain third QoS information according to the first QoS information, and the third QoS information includes not only the QoS information of each link in the first transmission path, but also the QoS information of each link in the first transmission path.
  • other connections may be the connection between the UE and the slave in FIG. 4 , or the connection between the UE1 and the slave 1 in FIG. 6B , the connection between the UE2 and the slave 2 , or the connection between the UE2 and the slave in FIG. 6C . connections between stations.
  • the QoS information of other connections other than the links defined in the embodiments of the present application are known to the first network device, then the first network device removes the first transmission path from the third QoS information except those specified in the embodiments of the present application.
  • the second QoS information can be obtained by obtaining the QoS information of other connections outside the defined link. That is to say, the third QoS information can be regarded as the end-to-end QoS information of the 5GS, or can be understood as the overall QoS information of the data from entering the 5GS to leaving the 5GS.
  • the first transmission path does not include other connections except the links defined in the embodiments of the present application, that is, the connections included in the first transmission path are all links, then the third QoS information and the second QoS information are the same However, if the first transmission path includes other connections other than the links defined in the embodiments of this application, the second QoS information cannot be simply regarded as 5GS end-to-end QoS information strictly speaking.
  • the first network device first obtains the second QoS information according to the third QoS information, and then decomposes the second QoS information into each link included in the first transmission path, and obtains the data transmitted through the first transmission path in 5GS. Therefore, the QoS information of the data transmitted through the first transmission path in the 5GS also includes the QoS information of each link in the first transmission path.
  • the first transmission path is primary station-UPF-(R)AN-UE1-secondary station1-UE1-UE2-secondary station2-UE2-(R)AN-UPF-primary station in FIG. 6B
  • the third The QoS information can include the QoS information of the data packet entering the UPF from the primary station until the data packet leaving the UPF to the primary station, which passes through the link of UPF-(R)AN-UE1, the connection between UE1 and the secondary station 1, and the secondary station.
  • the QoS information of the secondary station 1-UE1 connection, the QoS information of the UE2-secondary station 2 connection, and the QoS information of the secondary station 2-UE2 are known by the first network device, so the first network device
  • the QoS information of the UE1-SS1 connection, the QoS information of the SE1-UE1 connection, the QoS information of the UE2-SS2 connection, and the QoS information of the SE2-UE2 can be removed from the third QoS information , so that the first network device can obtain the second QoS information, and the second QoS information includes the QoS information of each link in the first transmission path.
  • the first network device then decomposes the second QoS information into each link included in the first transmission path, and obtain
  • the first network device may determine, according to the second QoS information, to pass QoS information in 5GS for data transmitted by the first transmission path.
  • the information may include QoS information of multiple links in the 5GS on the first transmission path. That is to say, the first network device can decompose the second QoS information by link, so that QoS information can be set for each link of the 5GS on the first transmission path.
  • the second QoS information includes at least one of parameters such as MDBV, MFBR, and GFBR.
  • the first network device can make the MDBV parameters of each link included in the first transmission path equal to The value is greater than or equal to the value of the MDBV parameter of the second QoS information, so that the value of the MFBR parameter of each link included in the first transmission path is greater than or equal to the value of the MFBR parameter of the second QoS information, or,
  • the value of the GFBR parameter of each link included in the first transmission path may be greater than or equal to the value of the GFBR parameter of the second QoS information.
  • the second QoS information includes a packet error rate parameter
  • the sum of the packet error rate parameters of the links included in the first transmission path may be less than or equal to the value of the packet error rate parameter included in the second QoS information.
  • the first network device may allocate corresponding delays to each link included in the first transmission path (or, may also "Delay” is referred to as "delay"), then the sum of the delays of the links included in the first transmission path may be less than or equal to the value of the packet delay budget parameter included in the second QoS information.
  • delay may be less than or equal to the value of the packet delay budget parameter included in the second QoS information.
  • the first network device can Determine the QoS information in 5GS of the data transmitted through the first transmission path. For example, when decomposing the second QoS information, the first network device may consider delay information between the UE and each device connected to the UE.
  • an endpoint device of a link on the first transmission path is a UE
  • the sub-connection status information of the UE includes delay information between the UE and a device connected to the UE, and the device belongs to the link (For example, the device is another end-point device of the link, or the device is located between the UE and another end-point device of the link), then the first network device decomposes the link according to the second QoS information.
  • the delay corresponding to the QoS information may be greater than or equal to the delay between the UE and the device included in the sub-connection state information of the UE, thereby improving the transmission success rate on the link.
  • the value of the packet delay budget parameter included in the second QoS information is 40ms
  • the first transmission path is the primary station-UE1-(R)AN1-UPF-(R)AN2-UE2-secondary in FIG. 6C .
  • station-UE2-(R)AN2-UPF-(R)AN1-UE1-master station then the first transmission path includes link 1 from UE1 to UPF, link 2 from UPF to UE2, and link 3 from UE2 to UPF , and UPF to link 4 of UE1.
  • the first network device may determine, according to the second QoS information, the QoS information in the 5GS of the data transmitted through the first transmission path.
  • a way to decompose the second QoS information is to allocate a delay of 10 ms to the four links respectively. Then the QoS information of the data transmitted through the first transmission path in the 5GS includes the QoS information of the four links, the delays corresponding to the QoS information of the four links are all 10ms, and the QoS information of the four links corresponds to The sum of the delays is equal to the value of the packet delay budget parameter of the second QoS information.
  • the first network device may determine according to the second QoS information and the connection state information QoS information in 5GS for data transmitted through the first transmission path.
  • the first transmission path is the primary station-UE1-(R)AN1-UPF-(R)AN2-UE2-secondary station-UE2-(R)AN2-UPF-(R)AN1-UE1- in FIG.
  • the first transmission path includes a link 1 from the UE1 to the UPF, a link 2 from the UPF to the UE2, a link 3 from the UE2 to the UPF, and a link 4 from the UPF to the UE1.
  • the sub-connection status information of UE1 includes that the delay from UE1 to (R)AN1 is 11ms, and the delay from (R)AN1 to UE1 is 7ms, so the delay corresponding to the QoS information allocated by the first network device for link 1 needs to be greater than or equal to 11ms , the delay corresponding to the QoS information allocated for link 4 needs to be greater than or equal to 7ms.
  • one way to decompose the second QoS information is to assign link 1 a delay of 12ms, link 2 with a delay of 10ms, link 3 with a delay of 10ms, and link 4 with a delay of 8ms.
  • the QoS information of the data transmitted through the first transmission path in the 5GS includes the QoS information of the four links, and the sum of the delays corresponding to the QoS information of the four links is equal to the value of the packet delay budget parameter of the second QoS information. value.
  • the first network device may set one or more decomposition methods for the first transmission path, or in other words, the QoS information in the 5GS of the data transmitted through the first transmission path may include one or more decomposition information.
  • the QoS information in the 5GS of the data transmitted through the first transmission path includes a decomposition information
  • the QoS information of the data transmitted through the first transmission path in the 5GS is a whole, and the whole is called QoS information in 5GS for data transmitted through the first transmission path.
  • One piece of decomposition information may include QoS information of one or more links on the first transmission path.
  • each of the one or more decomposition information may include one or more links on the first transmission path.
  • the first network device can use one decomposition method or multiple decomposition methods, and in each decomposition method, the first transmission path can be obtained.
  • the QoS information of multiple links on the path, and the sum of the delays corresponding to the QoS information of each link on the first transmission path corresponding to each decomposition method may be less than or equal to the second QoS information.
  • the value of the packet delay budget parameter can facilitate the selection of different decomposition methods for the first transmission path according to network conditions.
  • Decomposition mode 2 can be selected for the first transmission path, which makes the decomposition of the QoS information of the link more flexible, and can improve the quality and success rate of data transmission. This will be described in detail later.
  • the master station needs to send data to the slave station 1 and the slave station 2, and the data will be returned to the master station after being processed by the slave station 1, and the data will also be returned to the master station after being processed by the slave station 2.
  • data may be transmitted using a first transmission path, such as the primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF- in FIG. 6B .
  • the first transmission path includes four links, specifically the link of UPF-(R)AN-UE1, the link of UE1-(R)AN-UPF, the link of UPF-(R)AN-UE2 and the link of UE2- (R)AN-UPF link.
  • the packet delay budget parameter of the second QoS information as 40ms as an example, please refer to Table 1, which is an implementation manner of the QoS information in the 5GS of the data transmitted through the first transmission path.
  • indicates the transmission direction of data, and also indicates a link.
  • Each row in Table 1 represents a piece of decomposition information for the first transmission path.
  • 0, 1, and 2 in the first column represent the index of the decomposition information, because the QoS information in the 5GS of the data transmitted through the first transmission path includes multiple decomposition information.
  • the first network The device may set an index for decomposition information. It can be seen that Table 1 adopts three decomposition modes. Under different decomposition modes, the delays corresponding to the QoS information of the same link on the first transmission path may be the same or may be different.
  • the delay corresponding to the QoS information of the link is 10ms, and in decomposition mode 3, the delay corresponding to the QoS information of the link is also 10ms.
  • the delay corresponding to the QoS information of the link is 10ms, while in decomposition mode 1, the delay corresponding to the QoS information of the link is 11ms.
  • Table 1 takes the value of the packet delay budget parameter included in the second QoS information as 40ms as an example.
  • each decomposition mode the sum of the delays corresponding to the QoS information of each link on the first transmission path is equal to 40ms.
  • Table 1 takes the example that the QoS information of the data transmitted through the first transmission path in the 5GS includes 3 pieces of decomposition information.
  • the QoS information of a transmission path may include less or more decomposition information, and the table
  • the numerical value in 1 is also only an example, and is not a limitation on the solutions of the embodiments of the present application.
  • the first network device may also set QoS information for the other transmission paths. For example, there is a second transmission path for data in 5GS, for example, the first transmission path is a path transmitted through UPF, the second transmission path is a D2D transmission path, or the second transmission path is a path transmitted through UPF, and the first transmission path is D2D transmission path, etc. Then, the first network device may also set the QoS information of the data transmitted through the second transmission path in the 5GS.
  • the first network device may determine, according to the second QoS information, or optionally, the connection state information, the QoS information of the data in the 5GS and the data transmitted through the second transmission path in the 5GS.
  • the manner in which the first network device determines the QoS information of the data transmitted through the second transmission path in the 5GS may refer to the manner in which the first network device determines the QoS information of the data transmitted through the first transmission path in the 5GS.
  • the master station needs to send data to the slave station 1 and the slave station 2, and the data will be returned to the master station after being processed by the slave station 1, and the data will also be returned to the master station after being processed by the slave station 2.
  • data can also be transmitted using the second transmission path, and the second transmission path is the primary station-UPF-(R)AN-UE1-secondary station1-UE1-UE2-secondary station2- in FIG. 6B UE2-(R)AN-UPF-master station, and taking the value of the packet delay budget parameter of the second QoS information as 40ms as an example, please refer to Table 2 for the QoS of data transmitted through the second transmission path in 5GS A form of realization of information.
  • Table 2 indicates the transmission direction of data, and also indicates a link.
  • Each row in Table 2 represents a piece of decomposition information for the second transmission path.
  • the 0 and 1 in the first column represent the index of the decomposition information. It can be seen that Table 2 adopts two decomposition modes, and in different decomposition modes, the delays corresponding to the QoS information of the same link on the second transmission path may be the same or may be different.
  • Table 2 takes the value of the packet delay budget parameter included in the second QoS information as 40ms as an example. It can be seen that in each decomposition mode, the sum of the delays corresponding to the QoS information of each link on the second transmission path is equal to 40ms.
  • Table 2 takes the example that the QoS information of the data transmitted through the second transmission path in the 5GS includes two decomposition information.
  • the QoS information of one transmission path may include less or more decomposition information, and the table
  • the numerical values in 2 are also only examples, and are not limitations on the solutions of the embodiments of the present application.
  • the delay between two UEs will be smaller than the delay between two UEs in the path forwarded by the UPF.
  • it takes 20ms (corresponding to index 0 or index 2) or 16ms (corresponding to index 1) from UE1 to UE2, but according to Table 2, it only takes 4ms (corresponding to index 0) or 6ms (corresponding to index 0) from UE1 to UE2 ( Corresponding to index 1), under the condition that the total delay remains unchanged, if the data is transmitted through the D2D transmission path, more delays can be allocated to other links in the D2D transmission path except for the D2D connection, thereby improving the data in these Transmission success rate on the link.
  • the transmission information of the multiple paths may be located in one information.
  • the QoS information of the transmission paths is implemented in a table form, and the QoS information of multiple transmission paths can be located in one table.
  • the number of corresponding links under different transmission paths is the same, then the QoS information of different transmission paths can be located in a table; or, even if the number of corresponding links under different transmission paths is the same
  • the QoS information of different transmission paths can also be located in one table.
  • the QoS information of different transmission paths can be regarded as different sub-tables in one table.
  • Table 1 and Table 2 can be located in one table, which is convenient for Unified management.
  • the decomposition information can also be indexed separately, that is, the indexes of the decomposition information included in the QoS information of different transmission paths may be the same, but due to The transmission paths are different, so even if the indexes of the decomposition information are the same, the different decomposition information will not be confused with each other.
  • the transmission information of multiple paths can also be located in different information.
  • the QoS information of the transmission path is implemented in the form of a table, and the QoS information of the multiple transmission paths can be located in different tables, so as to avoid confusing different transmissions. QoS information of the path.
  • the first network device determines that the first UE has established a protocol data unit (protocol data unit, PDU) session.
  • the first UE is, for example, one of the multiple UEs, or in other words, the connection state information may include sub-connection state information of the first UE.
  • the first UE is, for example, the UE in FIG. 4 .
  • the first UE is, for example, UE1 or UE2 in FIG. 6B .
  • the first UE is, for example, UE1 or UE2 in FIG. 6C .
  • the first UE may initiate a PDU session establishment procedure.
  • a UE registers with the core network, both the UE and the core network equipment can determine which devices the UE may communicate with. Therefore, a UE can determine whether it needs to go through the UPF if it communicates. If it needs to go through the UPF, it needs to be established. PDU session.
  • the technical solutions of the embodiments of the present application are applied to the embodiment shown in FIG. 6B , and the transmission path is, for example, the primary station-UPF-(R)AN-UE1-secondary station1-UE1-UE2-secondary station2-UE2-( R)AN-UPF-Master.
  • UE1 can know that if UE1 wants to communicate, UE1 needs to communicate with UPF, so UE1 can establish a PDU session, which is similar for UE2.
  • S504 can also be changed to: the first network device determines that the first UE has established a D2D session. Because the embodiment of the present application mainly discusses the transmission path forwarded through the UPF, the content will be introduced in the following embodiments.
  • the first network device can determine that the first UE needs to transmit data, or, in other words, the first network The device may determine that data needs to be transmitted between the primary station and the secondary station, that is, the first network device may determine the sending end and the final receiving end of the data.
  • the first UE can notify the first network device, and the first network device can determine that data needs to be transmitted between the primary station and the secondary station, that is, the first network device can determine the sender and the final receiver of the data.
  • the first network device may be a participant in the process of establishing a PDU session of the first UE, then the first network device may determine that the first UE has established a PDU session; or, if the first network device is not a PDU session established by the first UE Participant of the process, the first network device can determine through other network devices that the first UE has established a PDU session.
  • the first network device allocates a transmission path to the first UE.
  • the first network device After the first network device determines the sending end and the receiving end of the data, it can allocate a transmission path for the first UE accordingly. For example, the first network device determines one or more transmission paths for the sender and the receiver through S503, and the first network device may allocate a transmission path for the first UE from the one or more transmission paths. Since not all UEs support the D2D transmission path, for example, some UEs may not support establishing a D2D connection, the first network device may assign a transmission path forwarded through UPF by default when allocating a transmission path to the UE. Of course, it is not limited to this, for example, the first network device may also allocate a D2D transmission path for the first UE. In the embodiment of the present application, the first network device allocates the path forwarded through the UPF to the first UE as an example. For example, the first transmission path is the path forwarded by the UPF.
  • S503 may also occur after S505. That is, after learning that the first UE needs to transmit data, the first network device allocates a transmission path to the first UE. After the transmission path is allocated, the first network device obtains the QoS information in the 5GS of the data transmitted through the first transmission path.
  • the first network device may directly allocate a transmission path forwarded through the UPF to the first UE; or, if the first network device obtains connection state information, and the connection state information includes information on whether the UE supports the D2D connection mode, then if If the first UE does not support the D2D connection mode, the first network device may allocate a transmission path forwarded through the UPF to the first UE, and if the first UE supports the D2D connection mode, the first network device may allocate D2D transmission to the first UE path.
  • the first network device first allocates the first transmission path to the first UE, the first network device then obtains the QoS information in 5GS of the data transmitted through the first transmission path, and the first network device obtains the QoS information transmitted through the first transmission path.
  • QoS information of data in 5GS please refer to the description of S503.
  • the first network device sends the QoS information of the first link to the UPF, and accordingly, the UPF receives the QoS information of the first link from the first network device.
  • the first link is a link included in the first transmission path, and the QoS information of the first link may be included in the QoS information in the 5GS of the data transmitted through the first transmission path.
  • the first link is the link between the UPF and the next-hop device on the first transmission path, for example, the first transmission path is the master station-UE1-(R)AN1-UPF-(R) in FIG. 6C AN 2-UE2-secondary station, then the first link may be the link from the UPF to UE2.
  • the "previous hop device” or “next hop device” described in the various embodiments of this application is relative to a link.
  • the first transmission path is the primary station-UE1-(R)AN1-UPF-(R)AN2-UE2-secondary station in Fig. 6C
  • the actual next-hop device of the UPF is (R)AN2, but due to The link refers to the link between the UPF and the UE2. Therefore, in this embodiment of the present application, the UE2 is regarded as the next-hop device of the UPF.
  • the actual previous-hop device should be (R)AN1.
  • the link refers to the link between the UPF and the UE1
  • the UPF is regarded as the last hop device of the UE1 in this embodiment of the present application.
  • the first network device needs to send the QoS information of the first link to the UPF, so that the UPF can send the first link according to the QoS information of the first link.
  • the first network device can only send the QoS information of the first link to the UPF without sending the QoS information of other links in the first transmission path, which can reduce signaling overhead, and the UPF can also The QoS information sends the data packet of the first UE.
  • the first link may include one or more links, so the QoS information of the first link sent by the first network device to the UPF may include the QoS information of one link , or include QoS information of multiple links.
  • the first transmission path is the primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-(R)AN-UE2-secondary station2-UE2-( R)AN-UPF-master
  • the next hop device can be UE1 or UE2
  • the QoS information of the first link sent by the first network device to UPF may include the link from UPF to UE1 QoS information of the path, and/or, including the QoS information of the link of the UPF to UE2.
  • the first network device may send the QoS information of each link in the first transmission path to the UPF (the first network device sends the QoS information of the data transmitted through the first transmission path in 5GS to the UPF, and also It is considered that the QoS information of the first link is sent to the UPF), so that the UPF can not only obtain the QoS information of the first link, but also obtain the QoS information of other links on the first transmission path.
  • the first network device may select one piece of disassembly information for the first UE from the multiple pieces of disassembly information, for example, the first network device selects one piece of disassembly information for the first UE.
  • the first decomposition information If the first network device sends the QoS information of the data transmitted through the first transmission path in the 5GS to the UPF, the first network device may also send the index of the first decomposition information to the UPF, so that the UPF can know that the first network device should use the Which decomposition information is included in the QoS information in 5GS for the data transmitted by a transmission path.
  • the first network device may select one decomposition information for the first UE from the multiple decomposition information, and This decomposition information is sent to the UPF.
  • the first network device sends the decomposition information to the UPF, that is, it is considered that the QoS information of the first link is sent to the UPF.
  • the first network device may also send the QoS information of the first link to the first UE, and the first network device to send the QoS information of the first link to the first UE may refer to the first network device to send the QoS information of the first link to the first UE.
  • the manner in which the UPF sends the QoS information of the first link if the (R)AN is also included on the first transmission path, then optionally, the first network device may also send the QoS information of the first link to the (R)AN, and the first network device sends the (R)AN
  • the manner of sending the QoS information of the first link reference may be made to the manner in which the first network device sends the QoS information of the first link to the UPF.
  • the first link may include different links.
  • the origin of the first link involved in the QoS information of the first link sent to the UPF is the UPF.
  • the first link involved in the QoS information of the first link sent to the first UE starts from the first UE.
  • the UPF receives the first data packet, where the first data packet corresponds to the first UE.
  • the UPF may receive the first data packet on the first transmission path.
  • the first transmission path is the primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-(R)AN-UE2-secondary station2-UE2-( R)AN-UPF-Master
  • the first data packet is eg from the master, or from the (R)AN.
  • the UPF will send the first data packet to UE1 through the (R)AN, and if the first data packet is from the (R)AN, the UPF will send the first data packet through the (R)AN.
  • (R)AN is sent to UE2 or the primary station.
  • the first data packet corresponds to the first UE, which means that the first data packet will pass through the first UE during the transmission process, and the first UE may be the receiver of the first data packet or the sender of the first data packet.
  • the first data packet corresponds to the first UE, which means that UE2 will receive the first data packet from the UPF, and in addition, UE2 will also send the first data packet Then send it to the secondary station.
  • a device receives a data packet and then forwards the data packet.
  • the data packet received by the device and the data packet re-forwarded by the device may be the same data packet, or may be the same data packet. They are not the same data packet.
  • the device may process the received data packet and then forward it. Strictly speaking, the two data packets are not the same data packet.
  • a data packet received and a data packet sent by a device both use the same name.
  • the UPF receives the first data packet, and the UPF forwards it is also called the first data packet.
  • the UPF sends the first data packet to the next-hop device on the first transmission path through the first link according to the QoS information of the first link.
  • the first transmission path is the primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-(R)AN-UE2-secondary station2-UE2-(R) in FIG. 6B ) AN-UPF-Master.
  • the first link is, for example, the link from the UPF to UE1 (or the first link is the link from UPF-(R)AN-UE1)
  • the next-hop device of the UPF is, for example, UE1.
  • the first link is, for example, the link from the UPF to the UE2 (or the first link is the link of the UPF-(R)AN-UE2).
  • link the next-hop device of the UPF on the first transmission path is, for example, UE2.
  • the UPF can directly use the QoS information of the first link.
  • the UPF may determine the QoS information of the first link from the QoS information of the data transmitted through the first transmission path in the 5GS. QoS information.
  • the UPF determines from the QoS information of the data transmitted through the first transmission path in the 5GS the index of the first decomposition information corresponds to and determine the QoS information of the first link according to the first decomposition information.
  • steps S502, S504, S505, S507, and S508 are all optional steps.
  • the first network device can determine, according to the first QoS information of the first communication network, the QoS information in the 5GS of the data transmitted through the first transmission path, where the first network device determines the QoS information on the first transmission path QoS information of each link in the multiple links, that is, the first network device can decompose the QoS information of the Industrial Ethernet to each link on the first transmission path, so that each link can It is clear what kind of QoS information should be transmitted, which provides a specific implementation method for 5GS to adapt to industrial Ethernet, so that 5GS can adapt to industrial Ethernet. Moreover, the QoS information is decomposed into each link, so that the entire transmission path can be better controlled to improve the transmission quality.
  • the embodiment shown in FIG. 5 may further include the following steps:
  • the UPF obtains the actual QoS information of the data of the first UE.
  • the communication device may obtain the actual QoS information of the data of the first UE according to the third information, where the third information includes, for example, the first information, the second information, or the first information and the second information .
  • the third information includes the first information and the second information.
  • the UPF can determine the first information and the second information, so that the actual QoS information of the data of the first UE can be obtained according to the first information and the second information.
  • the actual QoS information of the data of the first UE obtained by the UPF according to the first information and the second information is, for example, the actual QoS information of the second link
  • the second link includes, for example, the first transmission path.
  • the actual QoS information of the data of the first UE obtained by the UPF according to the first information and the second information is, for example, accumulated QoS information
  • the accumulated QoS information is called, for example, the first accumulated QoS information
  • the first accumulated QoS information includes, for example, the first accumulated QoS information.
  • the second link may include one or more links, so the actual QoS information of the second link obtained by the UPF may include the actual QoS information of one link, or include Actual QoS information for multiple links.
  • the first transmission path is the primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-(R)AN-UE2-secondary station2-UE2-( R) AN-UPF-master station, if the current location of the UPF on the first transmission path is after the master station, then the UPF on the first transmission path is the first occurrence, and the UPF cannot obtain the actual QoS information of the data of the first UE at this time .
  • the actual QoS information of the second link includes the QoS information of the link from UPF to UE1 (or the link from UPF-(R)AN-UE1), and the link from UE1 to UPF (or the link from UPF-(R)AN-UE1). , UE1-(R)AN-UPF link) QoS information.
  • the actual QoS information of the second link obtained by the UPF is actually the first accumulated QoS information.
  • the last location of the UPF on the first transmission path is between two (R)ANs
  • the UPF obtains the actual location of the second link QoS information then the actual QoS information of the second link UPF points to the QoS information of the link of UE2 (or the link of UPF-(R)AN-UE2), and includes the link of UE2 pointing to UPF (or, in other words, The QoS information of UE2-(R)AN-UPF link); and if UPF obtains the first accumulated QoS information, the first accumulated QoS information includes the link of UPF to UE1 (or UPF-(R)AN- The QoS information of the link of UE1), the QoS information of the link of UE1 to UPF (or the link of UE1-(R)AN-UPF), the link of UPF to UE2 (or UPF-(R) The QoS information of
  • the content of a data packet is identifiable by UPF, or the identifier of the data packet (such as the serial number of the data packet, or other identifiers of the data packet) carried in the header of the data packet is also identifiable by UPF, and
  • the UPF is also known to the first transmission path, and the UPF can determine the location of the UPF in the first transmission path according to the identification of the data packet.
  • the first transmission path is the primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-(R)AN-UE2-secondary station2-UE2-(R) in Fig.
  • UPF receives a data packet, if UPF determines that the data packet is received for the first time, it can determine that the current position of UPF is behind the master station, and If it is determined that the data packet is received for the second time, it can be determined that the current position of the UPF is between two (R)ANs, and so on. If other communication devices (eg, (R)AN or corresponding UE) want to identify the position of the communication device in the first transmission path, a similar method can also be used, which will not be described in detail later.
  • R radio access point
  • the QoS information corresponding to the connection between the master station and the UPF is not It is not within the scope of consideration of the embodiments of the present application, so there is no link defined in the embodiments of the present application between the master station and the UPF, so the master station is not regarded as the last hop device of the UPF. This is the case between the secondary station and the UE, and between the (R)AN and the UPF. For connections with relatively fixed QoS information, the QoS information is not considered in the embodiments of the present application.
  • the QoS information to be considered in this embodiment of the present application may include one or more of the following: QoS information of the Uu interface between the UE and the (R)AN, QoS information of the PC5 interface between the UE and the UE, or, the UE and the (R)AN QoS information between UPFs.
  • the first information includes one or more of the following: the sending time of one or more data packets of the first UE, the total amount of data sent by the first UE, or, in units of The data amount of the data of the first UE sent within the time.
  • the UPF can obtain the first information by sending the data packet of the first UE.
  • the first transmission path is the primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-(R)AN-UE2-secondary station2-UE2-(R) in FIG.
  • the UPF can send the data packet of the first UE to the (R)AN (or UE1), and can also send the data packet of the first UE to the (R)AN (or UE2). Every time the UPF sends a data packet of the first UE, it can record the sending time stamp of the data packet, so as to obtain the sending time of the data packet, then the UPF can obtain the sending time of one or more data packets of the first UE.
  • the one or more data packets are, for example, all or part of the data packets transmitted by the first UE through the first transmission path.
  • the UPF can obtain the sending time of the data packet of the first UE sent to UE1, and can also obtain the sending time of the data packet of the first UE sent to UE2.
  • the UPF can obtain the total data volume of the data of the first UE sent by the UPF, for example, the UPF can obtain the total data volume of the data sent to the UE1 by the first UE, and can also obtain the data volume of the first UE sent to the UE2. total data volume.
  • the UPF can also obtain the data amount of the data of the first UE sent in a unit time (it can also be understood as the sending rate of the data of the first UE by the UPF), for example, for example, the UPF can obtain the first UE sent to the UE1
  • the sending rate of the data of the first UE can also be obtained, and the sending rate of the data of the first UE sent to the UE2 can also be obtained.
  • the data packet of the first UE refers to a data packet corresponding to the first UE, for which reference may be made to the foregoing introduction.
  • the second information includes one or more of the following: the receiving time of one or more data packets of the first UE, the total amount of data received by the first UE, or, in units The amount of data received by the first UE within a time period.
  • the UPF can obtain the second information by receiving the data packet of the first UE.
  • the first transmission path is the primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-(R)AN-UE2-secondary station2-UE2-(R) in FIG.
  • UPF can receive data packets from the first UE of (R)AN (or UE1), and can also receive data packets from the first UE of (R)AN (or UE2). . Every time the UPF receives a data packet of the first UE, it can record the reception timestamp of the data packet, so as to obtain the reception time of the data packet, then the UPF can obtain the reception time of one or more data packets of the first UE.
  • the one or more data packets are, for example, all or part of the data packets transmitted by the first UE through the first transmission path.
  • the UPF may obtain the reception time of the data packet of the first UE received from UE1, and may also obtain the reception time of the data packet of the first UE received from UE2.
  • the UPF can obtain the total data volume of the data of the first UE received by the UPF.
  • the UPF can obtain the total data volume of the data of the first UE received from UE1, and it can also obtain the total data volume of the data of the first UE received from UE2. total data volume.
  • the UPF can also obtain the data volume of the data of the first UE received in a unit time (it can also be understood as the rate of receiving the data of the first UE by the UPF), for example, the UPF can obtain the data received from the UE1 by the first UE
  • the transmission rate of the data of the first UE can also be obtained from the transmission rate of the data of the first UE received from the UE2.
  • the UPF records the data packets with the time stamp of reception, and the data packets with the time stamp of the UPF record can be the same batch of data packets.
  • the UPF records the time 1 for sending each data packet in the batch of data packets to UE1; if the UPF is on the first transmission path The current location is between two (R)ANs, and the UPF can record the time 2 when each packet in this batch of packets is received from UE1, and the time when each packet in this batch of packets is sent to UE2.
  • Time 3 if the current location of the UPF on the first transmission path is before the master station, the UPF may record the time 4 when each data packet in the batch of data packets is received from the UE2. It should be noted that time 1, time 2, time 3 and time 4 can all refer to time, not duration. If the current location of the UPF on the first transmission path is between two (R)ANs, the delay from UE1 to secondary station 1 and the delay from secondary station 1 to UE1 are relatively fixed delays known to UPF , the UPF can obtain the actual QoS information of the second link according to time 1 and time 2.
  • the delay corresponding to the actual QoS information of the second link is the time interval between time 2 and time 1, and then subtracts UE1 to The delay of the secondary station 1, and the time length obtained by subtracting the delay from the secondary station 1 to UE1, at this time, the actual QoS information of the second link includes the actual QoS of the link of UPF-(R)AN-UE1 information, and the actual QoS information of the link of the UE1-(R)AN-UPF, at this time, the first accumulated QoS information and the actual QoS information of the second link are the same QoS information.
  • the UPF The actual QoS information of the second link can be obtained according to time 3 and time 4.
  • the delay corresponding to the actual QoS information of the second link is the time interval between time 4 and time 3, minus UE2 to secondary station 2.
  • the actual QoS information of the second link at this time includes the actual QoS information of the UPF-(R)AN-UE2 link, and the UE2 - Actual QoS information of the link of the (R)AN-UPF.
  • the UPF may obtain the first accumulated QoS information according to time 1 and time 4, where the first accumulated QoS information includes the actual QoS information of the UPF-(R)AN-UE1 link and the UE1-(R)AN-UPF link.
  • the actual QoS information of the UPF-(R)AN-UE2 link, and the actual QoS information of the UE2-(R)AN-UPF link may also be necessary to consider the amount of data and the sending rate or the receiving rate.
  • the UPF determines whether to reselect the decomposition information for the first UE according to the first decomposition information and the actual QoS information of the data of the first UE.
  • the UPF may determine whether to reselect the decomposition information according to the delay corresponding to the QoS information.
  • the actual QoS information of the data of the first UE is the actual QoS information of the second link. If the delay corresponding to the actual QoS information of the second link and the delay corresponding to the QoS information of the second link included in the first decomposition information are combined The difference (or the absolute value of the difference) is greater than the second threshold, indicating that the difference between the actual QoS information of the second link and the QoS information of the second link included in the first decomposition information is relatively large, or, in other words, Indicates that the first disassembly information is not very suitable for the second link, then the UPF can reselect the disassembly information for the first UE.
  • the UPF It may not be necessary to reselect the decomposition information for the first UE, but the first decomposition information may continue to be applied.
  • the second threshold may be specified by a protocol, or may be determined by a device such as an SMF or AMF, or determined by a UPF, or the like.
  • the second threshold value is 0, or the second threshold value may also be other values greater than 0.
  • the UPF can decompose the information according to the first and second The actual QoS information of one link in the link determines whether to reselect the decomposition information for the first UE, or the UPF can also determine whether to reselect the decomposition information according to the first decomposition information and the actual QoS information of all the links in the second link. The decomposition information is reselected for the first UE.
  • the UPF determines whether to reselect the decomposition information for the first UE according to the first decomposition information and the actual QoS information of one link in the second link, including: Whether the difference between the delay corresponding to the QoS information and the delay corresponding to the QoS information of the link included in the first decomposition information (or, the absolute value of the difference) is greater than the second threshold, to determine whether to reselection for the first UE Break down information.
  • the UPF determines whether to reselect the decomposition information for the first UE according to the first decomposition information and the actual QoS information of all links in the second link, including: the UPF may determine that each link in the second link and determine the delay corresponding to the actual QoS information of all links included in the second link and the delay corresponding to the QoS information of these links included in the first decomposition information.
  • the UPF may reselect the decomposition information for the first UE, otherwise, the UPF may not need to reselect the decomposition information for the first UE.
  • the actual QoS information of the data of the first UE may also be the first accumulated QoS information.
  • the UPF can still determine whether to reselect the decomposition information for the first UE according to the delay corresponding to the QoS information. In this case, if the difference between the delay corresponding to the first accumulated QoS information and the delay corresponding to the second accumulated QoS information (or, the absolute value of the difference) is greater than the second threshold, the UPF may reselect the first UE Break down information.
  • the UPF may not need to reselect the decomposition information for the first UE, but may continue to use the first decomposition information.
  • the second accumulated QoS information includes, for example, the sum of delays corresponding to the QoS information of N links included in the first decomposition information, where N is an integer greater than or equal to 0.
  • the N links may include all the links through which the data of the first UE is transmitted from the first device located in the 5GS on the first transmission path to the UPF.
  • the first transmission path is the primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-(R)AN-UE2-secondary station2-UE2-(R) in FIG.
  • the N links include the link of UPF-(R)AN-UE1 and the link of UE1-(R)AN - UPF link
  • the second accumulated QoS information may include the sum of the QoS information of the UPF-(R)AN-UE1 link and the QoS information of the UE1-(R)AN-UPF link in the first decomposition information .
  • the second threshold may be specified by a protocol, or may be determined by a device such as an SMF or AMF, or determined by a UPF, or the like.
  • the second threshold value is 0, or the second threshold value may also be other values greater than 0.
  • the UPF reselects the decomposition information for the first UE.
  • S511 may be performed, and if the UPF determines according to S510 that it is not necessary to reselect the decomposition information for the first UE, S511 may not be performed.
  • the UPF may select the decomposition information according to the delay corresponding to the QoS information. For example, what the UPF calculates is the actual QoS information of the second link, then the UPF can reselect the decomposition information for the first UE according to the delay corresponding to the actual QoS information of the second link. For example, the delay corresponding to the QoS information of the second link included in the decomposition information reselected by the UPF may be greater than or equal to the delay corresponding to the actual QoS information of the second link.
  • the re-selecting decomposition information for the first UE can be understood as: re-determining QoS information for a link that has not yet transmitted data packets, and then controlling the link to transmit data packets according to the updated QoS information.
  • the first transmission path is primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-(R)AN-UE2-secondary station2-UE2-( R)AN-UPF-Master.
  • the UPF is located between two (R)ANs
  • the second link includes the UPF-(R)AN-UE1 link
  • the UE1-(R)AN-UPF link please refer to Table 1
  • the first decomposition information is the decomposition information corresponding to index 0 in Table 1
  • the delay corresponding to the QoS information of the second link included in the first decomposition information is 20ms
  • the M links include UPF-(R)AN-UE1 , and the link including UE1-(R)AN-UPF
  • the delay corresponding to the QoS information of the link of UPF-(R)AN-UE1 included in the first decomposition information is 10ms
  • the delay corresponding to the actual QoS information of the second link determined by UPF is 18ms. It can be seen that the delay corresponding to the actual QoS information of the second link is smaller than the delay corresponding to the QoS information of the second link included in the first decomposition information , that is to say, a smaller delay can meet the requirements of the second link, then the UPF can consider reselecting the decomposition information for the first UE, and the delay corresponding to the QoS information of the second link included in the reselected decomposition information For example, it can be equal to 18ms as much as possible, which is equivalent to saving 2ms of delay on the second link, and the saved delay can be used by subsequent links to improve the transmission success rate of subsequent links.
  • the UPF reselects the decomposition information for the first UE from the decomposition information included in the QoS information in the 5GS of the data transmitted through the first transmission path.
  • the decomposition information corresponding to index 1 includes The delay corresponding to the actual QoS information of the second link is 19ms, and the delay corresponding to the actual QoS information of the second link included in the decomposition information corresponding to index 2 is also 19ms, then the UPF can select index 1 or index for the first UE The decomposition information corresponding to 2 is not applied, and the decomposition information corresponding to index 0 is no longer applied.
  • the QoS information of M links may also be considered, where M is an integer greater than or equal to 0.
  • M is an integer greater than or equal to 0.
  • the UPF can calculate the delay corresponding to the QoS information of the M links included in the first decomposition information and the corresponding delay according to the actual QoS information of the second link. delay to reselect the disaggregation information for the first UE.
  • the M links include all links except the second link among the links through which the data of the first UE is transmitted from the first device in the first transmission path to the UPF.
  • the sum of the delays corresponding to the QoS information of the M links included in the decomposition information reselected by the UPF may be greater than or equal to the sum of the delays corresponding to the QoS information of the M links included in the first decomposition information, and the UPF
  • the delay corresponding to the QoS information of the second link included in the reselected decomposition information may be greater than or equal to the delay corresponding to the actual QoS information of the second link. In this way, the impact on the link that the packet has traversed can be reduced.
  • the UPF may not be the last hop device on the first transmission path, and the UPF may reselect the disassembly information for the first UE. Therefore, optionally, when sending a data packet to the next hop device, the UPF can The index of the decomposition information used by the UPF is carried in the UPF, so that other devices on the first transmission path can determine which decomposition information is used by the UPF, so that the decomposition information used by each device on the first transmission path can be consistent to meet the needs of QoS information requirements for Industrial Ethernet.
  • the UPF sends the data packet of the first UE to the (R)AN, and the data packet sent by the UPF to the (R)AN may carry the general packet radio services tunnelling protocol-user plane (GTP-U) header and Ethernet header, then the UPF may add an index of the decomposition information used by the UPF in the GTP-U header and/or the Ethernet header.
  • GTP-U general packet radio services tunnelling protocol-user plane
  • the (R)AN may also calculate the actual QoS information of the second link, or calculate the first accumulated QoS information , so as to decide whether to reselect the decomposition information for the first UE.
  • the links included in the second link may be different from the links included in the second link of the UPF.
  • the second link includes, for example, a link between the last occurrence of the (R)AN and the current position of the (R)AN on the first transmission path.
  • the first transmission path is the primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-(R)AN-UE2-secondary station2-UE2-(R) in FIG. 6B )AN-UPF-Master
  • the second link may include the link of UPF-(R)AN-UE1, and the link including UE1-(R) AN-UPF link.
  • (R)AN the actual QoS information of (R)AN-UE1 and the actual QoS information of UE1-(R)AN should be calculated, but because the relationship between UPF-(R)AN The delay of (R)AN-UPF and the delay of (R)AN-UPF are relatively fixed, it can be considered that (R)AN is known, (R)AN can be based on the actual QoS information of (R)AN-UE1, UE1-( The actual QoS information of the R)AN, the time delay between the UPF and the (R)AN, and the time delay between the (R)AN and the UPF are obtained to obtain the actual QoS information of the second link.
  • the second link includes, for example, the link on the first transmission path where the (R)AN is located.
  • the second link may be the UPF-(R)AN-UE1 link.
  • the (R)AN can obtain the actual QoS information of the second link according to the third information.
  • the third information may include the first information, or the second information, or both the first information and the second information.
  • the first information may be the same or different information
  • the second information may also be the same or different information.
  • the second link includes the UPF-(R)AN-UE1 link, the (R)AN can determine the time to send the data packet to the UE1, and the UE1 can send a hybrid automatic repeat request response to the (R)AN after receiving the data packet.
  • (hybrid automatic repeat request-acknowledge, HARQ-ACK) information so that (R)AN can roughly determine the time when UE1 receives the data packet, so (R)AN can determine the actual QoS information between (R)AN-UE1, which is quite The (R)AN can determine the actual QoS information of the second link according to the first information.
  • the QoS information between UPF-(R)AN is relatively fixed, which can be considered as known to (R)AN, so (R)AN can determine UPF-(R)AN-UE1 The actual QoS information of the link.
  • the second link includes the link between UE1-(R)AN-UPF, UE1 sends data packets to (R)AN, which is scheduled in advance by (R)AN, so (R)AN can determine that UE1 sends data packets time, and (R)AN can also determine the time when (R)AN receives the data packet, so (R)AN can determine the actual QoS information between (R)AN and UE1, which is equivalent to (R)AN according to the second The information can determine the actual QoS information of the second link.
  • the (R)AN can information to obtain the actual QoS information of the second link.
  • content such as how to obtain the first information and the second information, and how the (R)AN obtains the actual QoS information of the second link, please refer to the foregoing related introduction.
  • the (R)AN can also obtain the first accumulated QoS information.
  • the (R)AN can also obtain the first accumulated QoS information.
  • the (R)AN may determine whether to reselect the decomposition information for the first UE according to the obtained QoS information of the second link or the first accumulated QoS information.
  • the determination method please refer to the above description of the UPF determination process.
  • the manner of the (R)AN reselection of the disassembly information may also refer to the foregoing description of the method for the UPF to reselect the disassembly information.
  • the (R)AN it may not be the last hop device on the first transmission path, and the (R)AN may reselect the decomposition information for the first UE. Therefore, optionally, the (R)AN is going to When the next-hop device sends a data packet, it can carry the index of the decomposition information used by the (R)AN in the data packet, so that other devices on the first transmission path can determine which decomposition information is used by the (R)AN. Therefore, the decomposition information used by each device on the first transmission path can be consistent, so as to meet the requirements of the QoS information of the industrial Ethernet.
  • (R)AN wants to send the data packet of the first UE to the first UE, and the data packet sent by (R)AN to the first UE can carry an Ethernet header, then (R)AN can add the Ethernet header The index of the decomposition information used by (R)AN.
  • (R)AN wants to send the data packet of the first UE to UPF, and the data packet sent by (R)AN to UPF can carry a GTP-U header, then (R)AN can add ( The index of the decomposition information used by R)AN.
  • the first network device also sends the QoS information of the first link to the first UE, then optionally, the first UE may also calculate the actual QoS information of the second link, or calculate the first accumulated QoS information, so as to A decision is made whether to reselect the disaggregation information for the first UE.
  • the link included in the second link may be different from the link included in the second link of the UPF or the (R)AN.
  • the second link includes, for example, a link between a previous-hop device on the first transmission path and the first UE.
  • the first transmission path is the primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-(R)AN-UE2-secondary station2-UE2-(R) in FIG. 6B ) AN-UPF-Master, if the first UE is UE1, the second link may include the link of UPF-(R)AN-UE1.
  • the actual QoS information of the second link can be obtained according to the third information.
  • the third information includes the second information.
  • the first UE is UE1
  • the second link includes the link of UPF-(R)AN-UE1
  • (R)AN will schedule UE1 to receive data packets, and UE1 can determine the time when (R)AN sends data packets through the scheduling information , UE1 can also determine the time when UE1 receives the data packet, so that UE1 can determine the actual QoS information between (R)AN and UE1, which is equivalent to that UE1 can determine the actual QoS information of the second link according to the second information.
  • the QoS information between UPF-(R)AN is relatively fixed.
  • the core network device can send the QoS information between UPF-(R)AN to UE1. Therefore, the QoS information between UPF-(R)AN is known to UE1, so UE1 can determine the actual QoS information of the link of UPF-(R)AN-UE1.
  • the third information may also include the first information, or include the first information and the second information.
  • the first information may be the same or different information
  • the second information may be the same or different information.
  • the first UE may determine whether to reselect the decomposition information for the first UE according to the obtained QoS information of the second link. For the determination method, reference may be made to the foregoing description of the UPF determination process. In addition, if the first UE determines to reselect the decomposition information for the first UE, then the method for reselecting the decomposition information for the first UE may also refer to the foregoing description of the method for the UPF to reselect the decomposition information.
  • the first UE it may not be the last hop device on the first transmission path, and the first UE may reselect the decomposition information for the first UE. Therefore, optionally, the first UE is in the next hop.
  • the index of the decomposition information used by the first UE may be carried in the data packet, so that other devices on the first transmission path can determine which decomposition information is used by the first UE, so that the first transmission
  • the decomposition information used by each device on the path can be consistent to meet the requirements of the QoS information of the industrial Ethernet.
  • the first UE may add the decomposition used by the first UE to the Ethernet header.
  • Index of information if an index of the decomposition information is to be added to the Ethernet header, one way is to add the index of the decomposition information to a virtual local area network tag (VLAN tag, VLAN tag) of the Ethernet header. ) domain.
  • VLAN tag virtual local area network tag
  • the communication device can obtain the actual QoS information of the data of the first UE, so as to determine whether to reselect the decomposition for the first UE according to the actual QoS information of the link of the first UE information.
  • the communication device includes, for example, one or more of the first UE, the UPF or the (R)AN. Therefore, using the solutions of the embodiments of the present application, multiple decomposition modes of QoS information can be set for a transmission path, and the device on the first transmission path (such as the UPF) can transmit the data of the first UE according to actual network conditions. Choose an appropriate decomposition method to improve the flexibility of data transmission and improve the success rate of data transmission while satisfying the QoS information of industrial Ethernet.
  • the first transmission path is a path forwarded through the UPF.
  • the second communication method provided by the embodiment of the present application is described below.
  • the first transmission path involved in this method is, for example, a D2D transmission path.
  • FIG. 7 is a flowchart of the method.
  • the method can be applied to the network architecture shown in FIG. 4 .
  • the first network device obtains the QoS information of the industrial Ethernet.
  • the QoS information of the Industrial Ethernet is referred to as the first QoS information.
  • the first network device obtains connection status information.
  • S702 For more content of S702, reference may be made to S502 in the embodiment shown in FIG. 5 .
  • the first network device determines, according to the first QoS information, the QoS information in the 5GS of the data transmitted through the first transmission path.
  • the first network device configures K UEs to establish a D2D connection, where K is an integer greater than or equal to 2.
  • the first network device may determine, according to the connection state information, whether there is a UE pair capable of supporting establishment of a D2D connection among the plurality of UEs in the 5GS.
  • the so-called "UE pair” means that two UEs support establishing a D2D connection between the two UEs, and the two UEs are considered to be a pair of UEs, or a UE pair.
  • K UEs there may be P UE pairs, where P is, for example, a positive integer, and P is less than or equal to [(K-1)+(K-2)+(K-3)+...+1].
  • UE1 and UE2 are a UE pair, and UE2 and UE3 are a UE pair, then there are 2 UEs right.
  • UE1 and UE2 are a UE pair
  • UE2 and UE3 are a UE pair
  • UE1 and UE3 are a UE pair, then There are 3 UE pairs.
  • P can be equal to Indicates that x is rounded up.
  • K 4, UE1 and UE2 are one UE pair, and UE3 and UE4 are one UE pair, so the four UEs include two UE pairs.
  • P may also be other values less than or equal to [(K-1)+(K-2)+(K-3)+...+1].
  • the first network device may configure some UE pairs or all UE pairs involved in the K UEs to establish a D2D connection, wherein a D2D connection is established between two UEs constituting one UE pair.
  • the first network device is a PCF
  • the PCF can configure one or more of the authentication information, connection information or policy information of the D2D connection to the K UEs through the AMF, so as to configure the corresponding UE pair to establish the D2D connection.
  • K 4
  • these 4 UEs include two UE pairs, which are a UE pair composed of UE1 and UE2, and a UE pair composed of UE3 and UE4, then the first network device can be configured to establish a D2D connection between UE1 and UE2, And configure the establishment of a D2D connection between UE3 and UE4.
  • the first network device may configure, according to the first transmission path, to establish a D2D connection between corresponding pairs of UEs among the K UEs.
  • the first network device may not configure the two UEs to establish a D2D connection.
  • the first network device determines that the first UE has established a PDU session.
  • the first UE is, for example, one of multiple UEs in the Industrial Ethernet, or in other words, the connection state information may include sub-connection state information of the first UE.
  • the first network device allocates a transmission path to the first UE.
  • the first network device may allocate a D2D transmission path for the first UE.
  • the first transmission path is a D2D transmission path.
  • all or part of the links included in the first transmission path are D2D links.
  • the first transmission path is the primary station-UPF-(R)AN-UE1-secondary station1-UE1-UE2-secondary station2-UE2-(R)AN-UPF-primary station in FIG. 6B, where UE1 For example, the first UE.
  • the transmission path is master-UPF-(R)AN-UE1-secondary-UE1-(R)AN-UPF-(R)AN-UE2- Secondary station 2-UE2-(R)AN-UPF-master station, that is to say, after the data packet reaches the secondary station 1, it needs to be sent back to the UPF before it can be sent to the secondary station 2, but if the D2D transmission path is used, Then the data packet can reach UE2 directly from UE1, which greatly reduces the delay of the entire communication cycle, and also provides more QoS scheduling space for other links in multi-link transmission.
  • S705 may also be replaced by the first network device determining that the first UE has established a D2D session. If the first network device determines that the first UE has established a D2D session, the first network device may also allocate a D2D transmission path for the first UE. For example, if the embodiment of the present application is applied to the scenario shown in FIG. 6C , the first UE is UE1, and the first network device determines that UE1 has established a D2D session with UE2, then the first network device may be the first UE Allocate the D2D transmission path. In this scenario, the communication of UE1 does not need to go through the UPF, so UE1 may not need to establish a PDU session anymore.
  • the UE may establish a PDU session; if the D2D transmission path does not pass through the UPF, the UE may not need to establish a PDU session.
  • the first network device may configure these UEs to establish D2D connections through S704, or these UEs may establish D2D connections by themselves when they need to transmit data, without first network device configuration.
  • one UE in the pair of UEs may send feedback information to the first network device, where the feedback information may indicate that the establishment of the D2D connection is complete or that the establishment of the D2D connection fails. If the feedback information indicates that the establishment of the D2D connection is completed, the first network device can determine that the pair of UEs has established a D2D connection, so that the first network device can allocate a transmission path for the pair of UEs.
  • S703 may also occur after S706, etc., please refer to the related introduction of the embodiment shown in FIG. 5 .
  • the first network device sends the QoS information of the first link to the first UE, and correspondingly, the first UE receives the QoS information of the first link from the first network device.
  • the first link is a link included in the first transmission path, and the QoS information of the first link may be included in the QoS information in the 5GS of the data transmitted through the first transmission path.
  • the first link is the link between the first UE and the next-hop device on the first transmission path, for example, the first transmission path is the primary station-UPF-(R)AN-UE1-secondary station in FIG. 6B 1-UE1-UE2-secondary station 2-UE2-(R)AN-UPF-primary station, the first UE is UE1, then the first link may be the link of UE1-UE2.
  • the first network device needs to send the QoS information of the first link to the first UE, so that the first UE can Send the data packet of the first UE.
  • the first network device sends the QoS information of the first link to the first UE, reference may be made to the introduction of the first network device sending the QoS information of the first link to the UPF in the embodiment shown in FIG. 4 .
  • the UPF may pass through the transmission path, for example, the primary station-UPF-(R)AN-UE1-secondary station1-UE1-UE2-secondary station2-UE2- in FIG. 6B (R)AN-UPF-Master This transmission path goes through the UPF. Therefore, optionally, the first network device may also send the QoS information of the first link to the UPF. If the D2D transmission path does not pass through the UPF, the first network device may not need to send the QoS information of the first link to the UPF.
  • (R)AN may be passed in this transmission path, for example, the primary station-UPF-(R)AN-UE1-secondary station1-UE1-UE2-secondary station in FIG. 6B
  • the transmission path 2-UE2-(R)AN-UPF-master goes through the (R)AN. Therefore, optionally, the first network device may also send the QoS information of the first link to the (R)AN. If the D2D transmission path does not pass through the (R)AN, the first network device may not need to send the QoS information of the first link to the (R)AN.
  • the first network device sends the QoS information of the first link to a device such as the UPF or (R)AN
  • a device such as the UPF or (R)AN
  • the first UE receives a first data packet, where the first data packet corresponds to the first UE.
  • the first UE receives the first data packet on the first transmission path, for example, the first transmission path is the primary station-UPF-(R)AN-UE1-secondary station1-UE1-UE2-secondary station2-UE2 in FIG. 6B -(R)AN-UPF-master station, UE1 is the first UE, then the first UE can receive the first data packet from the UPF through the (R)AN, or receive the first data packet from the secondary station.
  • the first UE sends the first data packet to the next-hop device on the first transmission path through the first link according to the QoS information of the first link.
  • the first UE may directly use the QoS information of the first link.
  • the first UE may determine the first UE from the QoS information of the data transmitted through the first transmission path in the 5GS. QoS information of a link.
  • the first UE receives in S707 the QoS information of the data transmitted through the first transmission path in 5GS, and the first UE also receives the index of the first decomposition information, it indicates that the data transmitted through the first transmission path
  • the QoS information in the 5GS includes a plurality of decomposition information
  • the first UE determines the first decomposition information corresponding to the index of the first decomposition information from the QoS information of the data transmitted through the first transmission path in the 5GS, and determines the first decomposition information corresponding to the index of the first decomposition information according to the first transmission path.
  • a decomposition information determines the QoS information of the first link.
  • steps S702 , S704 to S706 , S708 , and S709 are all optional steps.
  • the first network device may determine, according to the first QoS information of the first communication network, the QoS information of the data transmitted through the first transmission path in the 5GS, where the first network device determines the first QoS information of each link in the multiple links on the transmission path, that is, the first network device can decompose the QoS information of the industrial Ethernet into each link on the first transmission path, so that each chain
  • the road can clearly define what kind of QoS information should be transmitted, thus providing a specific implementation method for 5GS to adapt to industrial Ethernet, so that 5GS can adapt to industrial Ethernet.
  • the QoS information is decomposed into each link, so that the entire transmission path can be better controlled to improve the transmission quality.
  • the embodiment shown in FIG. 7 may further include the following steps:
  • the first UE obtains actual QoS information of the data of the first UE.
  • the actual QoS information of the data of the first UE obtained by the first UE is, for example, the actual QoS information of the second link.
  • the second link includes, for example, the previous hop device on the first transmission path and the link between the first UE.
  • the first transmission path is the primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-(R)AN-UE2-secondary station2-UE2-(R) in FIG.
  • the second link may include the UPF-(R)AN-UE1 link, or, if the first UE is UE2, the second link may include UPF-(R)AN-UE2 link.
  • the manner in which the first UE obtains the actual QoS information of the second link is similar to the manner in which the UPF obtains the actual QoS information of the second link in FIG. 5 , and reference may be made to the introduction of the embodiment shown in FIG. 5 .
  • the first UE determines whether to reselect the decomposition information for the first UE according to the first decomposition information and the actual QoS information of the data of the first UE.
  • the manner in which the first UE determines whether to reselect the decomposition information for the first UE is similar to the manner in which the UPF determines whether to reselect the decomposition information for the first UE in FIG.
  • the related introduction of the embodiment is similar to the manner in which the UPF determines whether to reselect the decomposition information for the first UE in FIG. The related introduction of the embodiment.
  • the first UE reselects the decomposition information for the first UE.
  • the first UE determines according to S711 that the decomposition information needs to be reselected for the first UE, S712 may be performed, and if the first UE determines according to S711 that it is not necessary to reselect the decomposition information for the first UE, S712 may not be performed.
  • the manner in which the first UE reselects the decomposition information for the first UE is similar to the manner in which the UPF reselects the decomposition information for the first UE in FIG. Related introduction.
  • the first UE may not be the last hop device on the first transmission path, and the first UE may reselect the decomposition information for the first UE. Therefore, optionally, the first UE sends data to the next hop device For example, if the first UE wants to send the data packet of the first UE to the UPF, and the data packet sent by the first UE to the UPF may carry an Ethernet header, the first UE may add the Ethernet header to the Ethernet header. Index of decomposition information to use. In various embodiments of the present application, if the index of the decomposition information is to be added in the Ethernet header, one way is to add the index of the decomposition information in the VLAN tag field of the Ethernet header.
  • multiple decomposition modes of QoS information can be set for a transmission path, and the device on the first transmission path (such as the UPF) can transmit the data of the first UE according to actual network conditions.
  • the device on the first transmission path such as the UPF
  • data can be transmitted through the D2D transmission path as much as possible, thereby shortening the data transmission path and reducing the data transmission delay.
  • the embodiment shown in FIG. 5 introduces the case where the transmission path is a transmission path forwarded through UPF
  • the embodiment shown in FIG. 7 introduces the case where the transmission path is a D2D transmission path.
  • the third communication method provided by the embodiment of the present application is introduced next, and the method introduces how to realize the decomposition of QoS information when such multiple connection modes coexist.
  • FIG. 8 is a flowchart of the method.
  • the method can be applied to the network architecture shown in FIG. 4 .
  • the first network device obtains the QoS information of the industrial Ethernet.
  • the QoS information of the Industrial Ethernet is referred to as the first QoS information.
  • the first network device obtains connection state information.
  • S802 For more content of S802, reference may be made to S502 in the embodiment shown in FIG. 5 .
  • the first network device determines, according to the first QoS information, the QoS information of the data in the 5GS transmitted through the first transmission path in the second communication network.
  • the first network device configures K UEs to establish a D2D connection, where K is an integer greater than or equal to 2.
  • S804 For more content of S804, reference may be made to S704 in the embodiment shown in FIG. 7 .
  • the first network device sends the information of the UE that does not support D2D connection communication to the UPF, and accordingly, the UPF receives the information of the UE that does not support D2D connection communication from the first network device.
  • the PCF sends the information of the K UEs to the SMF, and the SMF can filter out the UEs that need to be forwarded by the UPF, or filter out the UEs that do not support D2D connection communication.
  • the SMF can determine that UE2 and UE3 need to be forwarded through UPF.
  • the first network device may determine, according to the connection state information, a UE that needs to be forwarded by the UPF.
  • the first network device determines that the first UE has established a PDU session. Alternatively, the first network device determines that the first UE has established a D2D session.
  • the first UE is, for example, one of multiple UEs in the Industrial Ethernet, or in other words, the connection state information may include sub-connection state information of the first UE.
  • S806 reference may be made to S504 in the embodiment shown in FIG. 5 , or reference to S705 or S706 in the embodiment shown in FIG. 7 .
  • the first network device allocates a transmission path to the first UE.
  • the first network device may allocate a D2D transmission path for the first UE, and if the first UE does not support D2D connections with other UEs, the first network device A transmission path forwarded through the UPF may be allocated to the first UE.
  • Whether the first UE supports a D2D connection with other UEs can be known by the first network device according to the connection state information. For example, the technical solutions of the embodiments of the present application are applied to the embodiment shown in FIG. 6B .
  • the first UE is UE1. If UE1 supports a D2D connection with UE2, the first network device can allocate a D2D transmission path for UE1.
  • the D2D transmission path is, for example, master station-UPF-(R)AN-UE1-secondary station1-UE1-UE2-secondary station2-UE2-(R)AN-UPF-master station; if UE1 does not support communication with UE2 D2D connection, the first network device can allocate a transmission path forwarded through UPF for UE1, for example, the transmission path is master station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-( R)AN-UE2-Secondary Station2-UE2-(R)AN-UPF-Primary Station.
  • S807 For more content of S807, reference may be made to S505 in the embodiment shown in FIG. 5 , or reference to S706 in the embodiment shown in FIG. 7 .
  • the first network device sends the QoS information of the first link to the UPF, and accordingly, the UPF receives the QoS information of the first link from the first network device; or, the first network device sends the first link to the first UE. correspondingly, the first UE receives the QoS information of the first link from the first network device; or, the first network device sends the QoS information of the first link to the (R)AN, correspondingly, ( The R)AN receives the QoS information of the first link from the first network device; or, the first network device sends the QoS information of the first link to the UPF and the (R)AN.
  • the UPF and the (R)AN are respectively Receive the QoS information of the first link from the first network device; or, the first network device sends the QoS information of the first link to the UPF and the first UE, and correspondingly, the UPF and the first UE respectively receive the QoS information from the first network QoS information of the first link of the device; or, the first network device sends the QoS information of the first link to the (R)AN and the first UE, and correspondingly, the (R)AN and the first UE receive data from the first link respectively.
  • QoS information of the first link of the network device are respectively Receive the QoS information of the first link from the first network device.
  • the first network device sends the QoS information of the first link to the communication device, and correspondingly, the communication device receives the QoS information of the first link from the first network device, and the communication device includes UPF, (R)AN or one or more of the first UEs.
  • the communication device may include the UPF
  • the communication device may include the first network device. a UE.
  • the D2D transmission path may still include UPF (for example, the D2D transmission path is the master station-UPF-(R)AN-UE1 in FIG.
  • the communication device may comprise the first UE and the UPF.
  • the communication device may also include the (R)AN.
  • the first link may be a different link for the first UE, the (R)AN and the UPF.
  • S808 For more content of S808, reference may be made to S506 in the embodiment shown in FIG. 5 , or reference to S707 in the embodiment shown in FIG. 7 .
  • the UPF receives the first data packet, where the first data packet corresponds to the first UE.
  • the UPF may receive the first data packet on the first transmission path.
  • the first transmission path is the transmission path forwarded by the UPF, for example, the primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-(R)AN-UE2 in FIG. 6B -Secondary station 2-UE2-(R)AN-UPF-primary station
  • the first UE is, for example, UE1 (or UE2)
  • the first data packet is, for example, from the primary station on the first transmission path.
  • the first network device allocates the transmission path forwarded through the UPF to the first UE, the data packet of the first UE will pass through the UPF. Or, even if the first network device allocates a D2D transmission path for the first UE, for example, the primary station-UPF-(R)AN-UE1-secondary station1-UE1-UE2-secondary station2-UE2- in FIG. 6B (R)AN-UPF-Master, the transmission path will go through the UPF, so the data packets of the first UE will also go through the UPF.
  • a D2D transmission path for the first UE for example, the primary station-UPF-(R)AN-UE1-secondary station1-UE1-UE2-secondary station2-UE2- in FIG. 6B (R)AN-UPF-Master
  • the UPF sends the first data packet to the next-hop device on the first transmission path through the first link according to the QoS information of the first link.
  • the first transmission path is the primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-(R)AN-UE2-secondary station2-UE2-(R) in FIG. 6B )AN-UPF-master
  • the first network device sends the QoS information of the first link of the UPF in S808, for example, including the QoS information of the link of the UPF to UE2, then the UPF can follow the UPF-(R)AN-
  • the QoS information of the link of UE1 sends a data packet to UE2.
  • S810 For more content of S810, reference may be made to S508 in the embodiment shown in FIG. 5 .
  • S802, S804-S807, and S809 are all optional steps.
  • the first network device may determine, according to the first QoS information of the first communication network, the QoS information of the data transmitted through the first transmission path in the 5GS, where the first network device determines the first QoS information of each link in the multiple links on the transmission path, that is, the first network device can decompose the QoS information of the industrial Ethernet into each link on the first transmission path, so that each chain
  • the road can clearly define what kind of QoS information should be transmitted, thus providing a specific implementation method for 5GS to adapt to industrial Ethernet, so that 5GS can adapt to industrial Ethernet.
  • the QoS information is decomposed into each link, so that the entire transmission path can be better controlled to improve the transmission quality.
  • the embodiment shown in FIG. 8 may further include the following steps:
  • the UPF obtains the actual QoS information of the data of the first UE.
  • the UPF determines whether to reselect the decomposition information for the first UE according to the first decomposition information and the actual QoS information of the data of the first UE.
  • the UPF reselects the decomposition information for the first UE.
  • the first UE receives a second data packet, where the second data packet corresponds to the first UE.
  • the first UE may receive the second data packet on the first transmission path.
  • the transmission path will pass through the first UE.
  • the first transmission path is the transmission path forwarded by the UPF, for example, the primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-(R)AN-UE2 in FIG. 6B -Secondary station 2-UE2-(R)AN-UPF-Master station, the first UE is UE1, for example, the first data packet is, for example, from the UPF (or from (R)AN) on the first transmission path, or from the first data packet A secondary station 1 on a transmission path.
  • S815 The first UE sends the second data packet to the next-hop device on the first transmission path through the first link according to the QoS information of the first link.
  • the first UE obtains actual QoS information of the data of the first UE.
  • the first UE determines whether to reselect the decomposition information for the first UE according to the first decomposition information and the actual QoS information of the data of the first UE.
  • the first UE reselects the decomposition information for the first UE.
  • S809-S813, or S814-S817, or S809-S813, and S814-S817 may be performed; or, if the first If the network device allocates the first UE through the D2D transmission path, S814 to S817 may be executed.
  • the (R)AN can also calculate the actual QoS information of the data of the first UE, so as to decide whether to use the A UE reselects the decomposition information.
  • the (R)AN can also calculate the actual QoS information of the data of the first UE, so as to decide whether to use the A UE reselects the decomposition information.
  • multiple decomposition modes of QoS information may be set for a transmission path.
  • a device on the first transmission path for example, a UPF
  • an appropriate decomposition mode may be correspondingly selected according to actual network conditions.
  • different transmission paths can be allocated to different UEs, for example, a D2D transmission path can be allocated to UEs that can support D2D connection communication, so as to shorten the data transmission path and reduce the data transmission delay.
  • UEs connected to communicate can allocate transmission paths forwarded through the UPF to improve the success rate of data transmission.
  • the data of the industrial Ethernet is transmitted in the 5GS, which can be forwarded through the UPF, or can be transmitted through the D2D transmission path. If it is forwarded through UPF, the transmission delay may be relatively large, and it is very likely that the transmission path forwarded through UPF cannot meet the QoS requirements of industrial Ethernet.
  • the embodiment of the present application provides a fourth communication method. By this method, when one transmission path does not meet the QoS requirements of the industrial Ethernet, it can be switched to another transmission path, so as to improve the success rate of data transmission.
  • FIG. 9 is a flowchart of the method. For example, the method can be applied to the network architecture shown in FIG. 4 .
  • the first network device obtains the QoS information of the industrial Ethernet.
  • the QoS information of the Industrial Ethernet is referred to as the first QoS information.
  • the first network device obtains connection status information.
  • the first network device determines, according to the first QoS information, the QoS information in the 5GS of the data transmitted through the first transmission path. For example, the first network device further determines, according to the first QoS information, the QoS information in the 5GS of the data transmitted through the second transmission path in the 5GS.
  • the first transmission path is a transmission path forwarded through UPF
  • the second transmission path is a D2D transmission path
  • the second transmission path is a transmission path forwarded through UPF
  • the first transmission path is a D2D transmission path.
  • a transmission path passes through the first UE and the second UE, and the transmission path is a transmission path forwarded by the UPF, which can be implemented as, on the transmission path, between the first UE and the second UE is a link forwarded by the UPF;
  • a transmission path passes through the first UE and the second UE, and the transmission path is a D2D transmission path, which may be implemented as a D2D link between the first UE and the second UE on the transmission path.
  • the transmission path forwarded by UPF is the primary station-UE1-(R)AN 1-UPF-(R)AN 2-UE2-secondary station-UE2-(R)AN2-UPF-(R)AN in Fig.
  • the corresponding D2D transmission path is the master station-UE1-UE2-secondary station-UE2-UE1-master station in Fig. 6C; for another example, the transmission path forwarded by the UPF is the master station in Fig. 6B -UPF-(R)AN-UE1-Secondary Station1-UE1-(R)AN-UPF-(R)AN-UE2-Secondary Station2-UE2-(R)AN-UPF-Primary Station, corresponding D2D transmission
  • the path is primary station-UPF-(R)AN-UE1-secondary station1-UE1-UE2-secondary station2-UE2-(R)AN-UPF-primary station in Fig. 6B.
  • the first network device determines that the first UE has established a PDU session. Alternatively, the first network device determines that the first UE has established a D2D session.
  • the first UE is, for example, one of multiple UEs in the 5GS, or in other words, the connection state information may include sub-connection state information of the first UE.
  • the first UE is UE1 in FIG. 6B or UE2 in FIG. 6C .
  • the first network device allocates a transmission path to the first UE.
  • the first network device may assign a transmission path forwarded through the UPF to the first UE by default. For more details, please refer to S505; or it may be similar to the embodiment shown in FIG. 8 , if If the first UE supports a D2D connection, the first network device may allocate a D2D transmission path for the first UE, and if the first UE does not support a D2D connection, the first network device may allocate a transmission path forwarded by the UPF for the first UE, For more information, please refer to S807. For example, the first network device allocates the first transmission path to the first UE.
  • the first network device sends the QoS information of the first link to the UPF, and accordingly, the UPF receives the QoS information of the first link from the first network device.
  • the first network device determines handover delay information of at least one UE.
  • At least one UE includes a UE that needs to perform path switching, and at least one UE may include a first UE.
  • the UE that needs to perform path switching may include a UE that passes through both the first transmission path and the second transmission path, and the UE has different transmission directions on the first transmission path and the second transmission path.
  • the first transmission path is the primary station-UPF-(R)AN-UE1-secondary station 1-UE1-(R)AN-UPF-(R)AN-UE2 shown in Fig.
  • the second transmission path is the Master Station-UPF-(R)AN-UE1-Secondary Station 1-UE1-UE2-Secondary Station 2 shown in Figure 6B -UE2-(R)AN-UPF-master station, then the UEs passing through these two transmission paths include UE1 and UE2, and for UE1, the transmission direction in the first transmission path includes receiving data from UPF and When sending data to UPF, the transmission direction in the second transmission path includes receiving data from UPF and sending data to UE2. It can be seen that UE1 has different transmission directions on the two transmission paths, and UE1 is the UE that needs to perform path switching.
  • the transmission direction in the first transmission path includes receiving data from UPF and sending data to UPF
  • the transmission direction in the second transmission path includes receiving data from UE1 and sending data to UPF. It can be seen that UE2 If the transmission directions on the two transmission paths are different, UE2 is also a UE that needs to perform path switching.
  • the switching delay information of a UE may indicate the duration required for the UE to switch from the first transmission path to the second transmission path.
  • the handover delay information of a UE may include one or more of the following: the delay required for the UE to perform path switching, the delay for the UE to establish a D2D connection, or, after the UE performs the path switching, the network is sent to the network. Delay in sending the handover successful information.
  • the first network device sends the handover delay information of the at least one UE to the UPF, and correspondingly, the UPF receives the handover delay information of the at least one UE from the first network device.
  • the UPF receives the first data packet, where the first data packet corresponds to the first UE.
  • the UPF may receive the first data packet on the first transmission path, that is, the UPF starts to transmit the data of the first UE. If the first network device allocates the transmission path forwarded through the UPF to the first UE, the data packet of the first UE will pass through the UPF. Alternatively, even if the first network device allocates a D2D transmission path to the first UE, the D2D transmission path may also include a UPF, and the data packets of the first UE will also pass through the UPF.
  • the UPF sends the first data packet to the next-hop device on the first transmission path through the first link according to the QoS information of the first link.
  • the first transmission path is the primary station-UE1-(R)AN 1-UPF-(R)AN 2-UE2-secondary station in FIG. 6C, then the next-hop device of the UPF on the first transmission path is UE2, and the first transmission path is UE2.
  • One link is the link from the UPF to UE2.
  • S902, S904, S905, S907-S910, etc. are all optional steps.
  • the first network device may determine, according to the first QoS information of the first communication network, the QoS information of the data transmitted through the first transmission path in the 5GS, where the first network device determines the first QoS information of each link in the multiple links on the transmission path, that is, the first network device can decompose the QoS information of the industrial Ethernet into each link on the first transmission path, so that each chain
  • the road can clearly define what kind of QoS information should be transmitted, thus providing a specific implementation method for 5GS to adapt to industrial Ethernet, so that 5GS can adapt to industrial Ethernet.
  • the QoS information is decomposed into each link, so that the entire transmission path can be better controlled to improve the transmission quality.
  • the embodiment shown in FIG. 9 may further include the following steps:
  • the UPF obtains the actual QoS information of the data of the first UE.
  • S910 For more content of S910, reference may be made to S509 in the embodiment shown in FIG. 5 , or reference to S811 in the embodiment shown in FIG. 8 .
  • the UPF determines whether to reselect the decomposition information for the first UE according to the first decomposition information and the actual QoS information of the data of the first UE.
  • the UPF may perform S913, but S912 may not be performed.
  • the UPF determines that the data transmitted through the first transmission path does not have the required decomposition information in the QoS information in the 5GS, and the QoS information in the 5GS of the data transmitted through the second transmission path can meet the requirements.
  • the UPF determines through S912 that the decomposition information is to be reselected for the first UE, then the UPF can reselect the decomposition information for the first UE.
  • the manner in which the UPF selects the decomposition information for the first UE refer to the embodiment shown in FIG. 5 . in S511, or refer to S812 in the embodiment shown in FIG. 8 .
  • the UPF After the UPF performs the process of reselecting the decomposition information for the first UE, it determines that the data transmitted through the first transmission path has no decomposition information in the QoS information in the 5GS that can satisfy the actual QoS information of the data of the first UE, such as , UPF determines that in the QoS information of the data transmitted through the first transmission path in the 5GS, the delay corresponding to the QoS information of the second link included in all the decomposition information is smaller than the delay corresponding to the actual QoS information of the second link, then the UPF It can be determined that no decomposition information can satisfy the delay corresponding to the actual QoS information of the data of the first UE, which is equivalent to determining that in the QoS information of the data transmitted through the first transmission path in the 5GS, no decomposition information can satisfy the first UE.
  • the actual QoS information of the UE's data the actual QoS information of the UE's data.
  • the UPF can It is determined whether the QoS information of other transmission paths satisfies the actual QoS information of the data of the first UE. For example, the UPF also obtains the QoS information of the data transmitted through the second transmission path in the 5GS, and the UPF determines that the QoS information of the data transmitted through the second transmission path in the 5GS can satisfy the actual QoS information of the data of the first UE.
  • the QoS information in the 5GS of the data transmitted through the second transmission path includes only one decomposition information, and the UPF determines that the QoS information of the data transmitted through the second transmission path in the 5GS can satisfy the actual QoS information of the data of the first UE;
  • the QoS information in the 5GS of the data transmitted through the second transmission path includes multiple decomposition information, then the UPF determines that at least one decomposition information included in the QoS information of the data transmitted through the second transmission path in the 5GS can satisfy the first The actual QoS information of the UE's data.
  • S907 and S908 may occur before S909, and FIG. 9 takes this as an example.
  • S909 to S913 may be executed first, and after S913 is executed, the UPF may request the first network device to obtain the handover delay information of the first UE, and the first network device may execute S907 and S908 after receiving the request from the UPF.
  • the UPF determines whether at least one UE can perform path switching.
  • at least one UE For the introduction of at least one UE, reference may be made to the foregoing.
  • the UPF can determine whether at least one UE can perform path switching, that is, the UPF can determine whether at least one UE can switch from the first transmission path to the second transmission path. For example, if the number of at least one UE is 1, the UPF can determine whether the duration indicated by the handover delay information of the UE is less than or equal to the survival time of the data of the first UE.
  • the survival time has been described above. If the duration indicated by the handover delay information is less than or equal to the survival time of the data of the first UE, indicating that the UE performs path switching without affecting the system, the UPF determines that the UE can perform path switching, which is equivalent to determining that the UE can perform path switching. In order to be able to perform path switching; and if the duration indicated by the handover delay information is less than or equal to the survival time of the data of the first UE, indicating that the UE performs path switching will have an impact on the system, then the UPF determines that the UE cannot perform path switching. It is equivalent to determining that path switching cannot be performed.
  • the UPF receives the handover delay information of multiple UEs through S908.
  • the UPF determines the handover delay information with the largest value from it, and determines whether the duration indicated by the handover delay information is less than or equal to the survival time of the data of the first UE.
  • the UPF determines that at least one UE can perform path switching, which is equivalent to It is determined that the path switching can be performed; and if the duration indicated by the handover delay information is less than or equal to the survival time of the data of the first UE, it indicates that the path switching of at least one UE will have an impact on the system, and the UPF determines that at least one UE cannot Performing path switching is equivalent to determining that path switching cannot be performed.
  • the first transmission path is shown in FIG. 6B as primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-(R)AN-UE2-secondary station2-UE2- (R)AN-UPF-Master
  • the first decomposition information is decomposition information corresponding to index 0 in Table 1.
  • the actual QoS information of the data of the first UE obtained by the UPF is the actual QoS information of the second link
  • the delay corresponding to the QoS information of the second link is the delay corresponding to the QoS information of the link of UPF-(R)AN-UE1 Sum of delays corresponding to the QoS information of the link of UE1-(R)AN-UPF.
  • the delay corresponding to the actual QoS information of the second link is 24ms.
  • the sum of the delay corresponding to the QoS information of the UPF-(R)AN-UE1 link included in the first decomposition information and the delay corresponding to the QoS information of the UE1-(R)AN-UPF link is: 20ms, the actual QoS information of the second link cannot be satisfied.
  • the delay corresponding to the QoS information of the UPF-(R)AN-UE1 link included in the decomposition information corresponding to index 1 in Table 1 is the sum of the delay corresponding to the QoS information of the UE1-(R)AN-UPF link.
  • the sum is 19ms, the sum of the delay corresponding to the QoS information of the UPF-(R)AN-UE1 link included in the decomposition information corresponding to index 2 and the delay corresponding to the QoS information of the UE1-(R)AN-UPF link It is also 19ms, which cannot satisfy the actual QoS information of the second link. That is to say, the data transmitted through the first transmission path has no decomposition information in the QoS information in the 5GS and can satisfy the actual QoS information of the second link.
  • the UPF also obtains the QoS information of the data transmitted through the second transmission path in the 5GS, and the QoS information of the data transmitted through the second transmission path in the 5GS is shown in Table 2. Then the UPF can determine whether the QoS information in the 5GS of the data transmitted through the second transmission path can satisfy the actual QoS information of the second link. Since the second link includes two links, and the UE1-(R)AN-UPF link is not included in Table 2, the UPF can split the actual QoS information of the second link into two On the link, it is evaluated according to the link of UPF-(R)AN-UE1.
  • the UPF may take an average value of the delay corresponding to the actual QoS information of the second link, and the average value is used as the QoS information of each link included in the second link.
  • the arithmetic average is taken as an example here.
  • the UPF may also take a weighted average, etc., or the UPF may determine the actual QoS information of each link included in the second link in other ways. .
  • UPF determines that the delay corresponding to the actual QoS information of each of the two links is 12ms according to the arithmetic mean value, that is, UPF-(R)
  • the delay corresponding to the QoS information of the link of AN-UE1 is 12ms.
  • the delays corresponding to the QoS information of the UPF-(R)AN-UE1 link included in the decomposition information corresponding to the two indexes in Table 2 are all greater than 12ms, so the decomposition corresponding to the two indexes in Table 2 The information can satisfy the actual QoS information of the second link.
  • the UPF may determine the handover delay information with a larger value among the handover delay information of UE1 and the handover delay information of UE2, and determine where the handover delay information belongs. Whether the indicated duration is less than or equal to the survival time of the data of the first UE, according to the determination process, the UPF can obtain a determination result.
  • the determination result may indicate that the duration indicated by the handover delay information is less than or equal to the data survival time of the first UE , and if the duration indicated by the handover delay information is greater than the survival time of the data of the first UE, the determination result may indicate that the duration indicated by the handover delay information is greater than the survival time of the data of the first UE; for another example, If the duration indicated by the handover delay information is less than or equal to the survival time of the data of the first UE, the determination result may indicate that the state is normal, and if the duration indicated by the handover delay information is greater than the survival time of the data of the first UE time, the determination result may indicate an abnormal state; for another example, if the duration indicated by the handover delay information is less than or equal to the survival time of the data of the first UE, the determination result may indicate that path switching is allowed, and if the switching delay information If the duration indicated by the duration indicated by the handover delay information is less than or equal to the data survival time of the first UE, the determination result may
  • the first transmission path is shown in FIG. 6B as primary station-UPF-(R)AN-UE1-secondary station1-UE1-(R)AN-UPF-(R)AN-UE2-secondary station2-UE2-( R) AN-UPF-master station
  • UPF determines whether at least one UE can switch the transmission path, and when UPF determines, it indicates that UPF has received some data packets of the first UE, that is, there are already some first UEs.
  • the UE's packet is transmitted to the UPF. If the UPF determines that at least one UE can switch the transmission path, the data packet of the first UE that has been received by the UPF may be discarded.
  • the UPF determines that at least one UE can perform path switching; and if packet loss occurs after the survival time of the first UE is exceeded , the system may not be able to tolerate it, which will affect the system. Therefore, if the maximum handover delay information of at least one UE is greater than the survival time of the data of the first UE, it indicates that after the survival time of the data of the first UE ends, at least one If the UE has not completed the path switching, packet loss may still occur during the path switching, which cannot be tolerated by the system. Therefore, in this case, the UPF determines that at least one UE cannot perform the path switching. In addition, since there is at least one UE involved in path switching, that is, there may be one or more UEs involved in path switching, it is reasonable for the UPF to uniformly determine whether these UEs perform path switching.
  • the UPF sends the determination result to the first network device, and correspondingly, the first network device receives the determination result from the UPF.
  • the determination result indicates that the duration indicated by the handover delay information is less than or equal to the data survival time of the first UE, or indicates that the duration indicated by the handover delay information is greater than the data survival time of the first UE. If the determination result indicates that the duration indicated by the handover delay information is less than or equal to the survival time of the data of the first UE, the first network device may determine that the first UE can perform path switching, and if the determination result indicates that the time indicated by the handover delay information is greater than the survival time of the data of the first UE, the first network device may determine that the first UE cannot perform path switching.
  • the determination result indicates that the state is normal, or indicates that the state is abnormal. If the determination result indicates that the state is normal, the first network device may determine that the first UE can perform path switching, and if the determination result indicates that the state is abnormal, the first network device may determine that the first UE cannot perform path switching.
  • the determination result indicates that path switching is permitted, or indicates that path switching is not permitted. If the determination result indicates that path switching is allowed, the first network device may determine that the first UE can perform path switching, and if the determination result indicates that path switching is not allowed, the first network device may determine that the first UE cannot perform path switching.
  • the first network device may instruct the UE to perform path switching.
  • the SMF may send path switching signaling to the UE through the AMF, and the path switching signaling may instruct the UE to switch to the second transmission path.
  • the UE After the UE receives the path switching signaling, it can switch to the second transmission path. Since the duration indicated by the handover delay information is less than or equal to the survival time of the data of the first UE, the path switching of the UE will not affect the system, and the success rate of data transmission of the first UE can be improved through the handover.
  • the first network device may also send the QoS information of the third link to the communication device.
  • the communication device receives the third link from the first network device.
  • the communication device includes one or more of the UPF, the (R)AN, or the first UE.
  • the third link is a link included in the second transmission path, and the QoS information of the third link may be included in the QoS information of the data transmitted through the second transmission path in the 5GS.
  • the third link may be a link between the communication device and the next-hop device on the second transmission path.
  • the third link may be different.
  • the first network device can send the QoS information of each link in the second transmission path to the communication device (the first network device sends the QoS information of the data transmitted through the second transmission path in 5GS to the communication device. , that is, it is considered that the QoS information of the third link is sent to the communication device), so that the communication device can not only obtain the QoS information of the third link, but also obtain the QoS information of other links on the second transmission path.
  • the first network device may select one piece of disassembly information for the first UE from the multiple pieces of disassembly information, for example, the first network device selects one piece of disassembly information for the first UE.
  • the second decomposition information If the first network device sends the QoS information of the data transmitted through the second transmission path in 5GS to the communication device, the first network device may also send the index of the second decomposition information to the communication device, so that the communication device can know that Which decomposition information in the QoS information in 5GS of the data transmitted through the second transmission path is used.
  • the first network device may select one decomposition information for the first UE from the multiple decomposition information, and This disaggregation information is sent to the communication device.
  • the first network device sends the decomposition information to the communication device, that is, it is considered that the QoS information of the third link is sent to the communication device.
  • the communication device can send the data packet of the first UE according to the QoS information of the third link.
  • the communication device may continue to calculate the actual QoS information of the data of the first UE, and may continue to determine whether the second decomposition information needs to be adjusted, etc.
  • the communication device please refer to the introduction of the corresponding contents above.
  • the network may instruct the UE to switch the transmission path, so as to improve the data transmission success rate and transmission quality.
  • the UPF can select the disassembly information, and the UE can also choose the disassembly information.
  • the fifth communication method provided by the embodiments of the present application is introduced below. Through this method, the (R)AN can also select the decomposition information. Please refer to FIG. 10 , which is a flowchart of the method.
  • the master station also accesses the 5GS through the UE, and reference may be made to FIG. 11 for the applicable scenario of the embodiment of the present application.
  • the method can be applied to the network architecture shown in FIG. 6C.
  • a first network device obtains QoS information of an industrial Ethernet.
  • the QoS information of the Industrial Ethernet is referred to as the first QoS information.
  • the first network device obtains connection status information.
  • S1002 For more content of S1002, reference may be made to S502 in the embodiment shown in FIG. 5 .
  • the first network device determines, according to the first QoS information, the QoS information in the 5GS of the data transmitted through the first transmission path.
  • the first network device determines that the first UE has established a PDU session. Alternatively, the first network device determines that the first UE has established a D2D session.
  • the first UE is, for example, one of multiple UEs in the 5GS, or in other words, the connection state information may include sub-connection state information of the first UE.
  • S1005 For more content of S1005, reference may be made to S504 in the embodiment shown in FIG. 5 , or reference may be made to S705 or S706 in the embodiment shown in FIG. 7 .
  • the first network device allocates a transmission path to the first UE.
  • the first network device may assign a transmission path forwarded through the UPF to the first UE by default. For more details, please refer to S505; or it may be similar to the embodiment shown in FIG. 8 , if If the first UE supports D2D connection communication, the first network device allocates a D2D transmission path to the first UE. If the first UE does not support D2D connection communication, the first network device allocates a transmission path forwarded by UPF to the first UE, and more For more content, please refer to S807. For example, the first network device allocates the first transmission path to the first UE.
  • the first network device sends the QoS information of the first link to the second network device, and accordingly, the second network device receives the QoS information of the first link from the first network device; or, the first network device sends the QoS information of the first link to the second network device.
  • a UE sends the QoS information of the first link, correspondingly, the first UE receives the QoS information of the first link from the first network device; or, the first network device sends the QoS information of the first link to the second network device information, correspondingly, the second network device receives the QoS information of the first link from the first network device, and the first network device sends the QoS information of the first link to the first UE, correspondingly, the first UE receives QoS information of the first link from the first network device.
  • the second network device includes, for example, the UPF, or the (R)AN, or both the UPF and the (R)AN.
  • the first link may include the same or different links, which are collectively referred to as the first link for convenience of description herein.
  • the first link may include the same link or may include different links.
  • the UPF sends the first data packet to the next-hop device on the first transmission path through the first link according to the QoS information of the first link.
  • S1002, S1004, S1005, and S1007 are all optional steps.
  • the first network device may determine, according to the first QoS information of the first communication network, the QoS information of the data transmitted through the first transmission path in the 5GS, where the first network device determines the first QoS information of each link in the multiple links on the transmission path, that is, the first network device can decompose the QoS information of the industrial Ethernet into each link on the first transmission path, so that each chain
  • the road can clearly define what kind of QoS information should be transmitted, thus providing a specific implementation method for 5GS to adapt to industrial Ethernet, so that 5GS can adapt to industrial Ethernet.
  • the QoS information is decomposed into each link, so that the entire transmission path can be better controlled to improve the transmission quality.
  • the embodiment shown in FIG. 10 may further include the following steps:
  • the UPF determines whether to reselect the decomposition information for the first UE according to the first decomposition information and the actual QoS information of the data of the first UE.
  • S1008 For more content of S1008 , reference may be made to S510 to S511 in the embodiment shown in FIG. 5 , or to S811 to S813 of the embodiment shown in FIG. 8 .
  • (R)AN sends the second data packet to the next-hop device on the first transmission path through the first link according to the QoS information of the first link.
  • the first link may be the link traversed by the (R)AN.
  • the first transmission path is the primary station-UE1-(R)AN1-UPF-(R)AN2-UE2-secondary station in FIG.
  • the first network device may send the first transmission to (R)AN1 in S1006 Information of a link, the first link is the link that UE1 points to the UPF, for (R)AN1, according to the QoS information of the first link, the data packet can be sent to the UPF through the first link, And/or, in S1006, the first network device may send information of the first link to (R)AN2, where the first link is the link of UPF-(R)AN2-UE2, for (R)AN2 , the data packet may be sent to UE2 through the first link according to the QoS information of the first link.
  • (R)AN determines whether to reselect the decomposition information for the first UE according to the first decomposition information and the actual QoS information of the second link.
  • S1010 For more content of S1010, reference may be made to S510-S511 in the embodiment shown in FIG. 5 .
  • the first UE sends a third data packet to the next-hop device on the first transmission path through the first link according to the QoS information of the first link.
  • the first UE determines whether to reselect the decomposition information for the first UE according to the first decomposition information and the actual QoS information of the second link.
  • S1012 For more content of S1012, reference may be made to S510-S511 in the embodiment shown in FIG. 5 .
  • the optional when the communication device sends the data packet of the first UE to the next-hop device on the first transmission path, it can carry the index of the currently used decomposition information in the data packet, so that other devices on the first transmission path can It is clear which decomposition information is used by the communication device, so that the decomposition information used by each device on the first transmission path can be consistent, so as to meet the requirements of the QoS information of the industrial Ethernet.
  • the communication device includes, for example, one or more of the following: UPF, (R)AN, or, a first UE.
  • the UPF wants to send the data packet of the first UE to the (R)AN, and the data packet sent by the UPF to the (R)AN may carry the GTP-U header and the Ethernet header, then the UPF may include the GTP-U header and/or The index of the decomposition information used by the UPF is added to the Ethernet header.
  • (R)AN wants to send the data packet of the first UE to the first UE, and the data packet sent by (R)AN to the first UE may carry an Ethernet header, then the (R)AN may be in the Ethernet header Adds an index of decomposition information used by (R)AN.
  • (R)AN wants to send the data packet of the first UE to UPF, and the data packet sent by (R)AN to UPF can carry a GTP-U header, then (R)AN can add ( The index of the decomposition information used by R)AN.
  • the UPF wants to send the data packet of the first UE to the first UE, and the data packet sent by the UPF to the first UE may carry an Ethernet header, then the UPF may add the index of the decomposition information used by the UPF to the Ethernet header. .
  • the first UE may add the data packet used by the first UE in the Ethernet header.
  • Index of decomposition information if the index of the decomposition information is to be added in the Ethernet header, one way is to add the index of the decomposition information in the VLAN tag field of the Ethernet header.
  • the embodiment of the present application provides a scenario in which both the primary station and the secondary station of the Industrial Ethernet are wirelessly accessed through the UE, and a dynamic QoS scheduling mechanism in which the (R)AN participates is designed, by carrying the index of the decomposition information in the packet header of the data packet , so that the devices on the first transmission path can perceive the currently used decomposition information, so that dynamic QoS scheduling can be performed more flexibly, and network resources can be fully utilized to meet the QoS requirements of the Industrial Ethernet.
  • FIG. 11 is a schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 1100 may be the communication described in the embodiment shown in FIG. 5 , the embodiment shown in FIG. 7 , the embodiment shown in FIG. 8 , the embodiment shown in FIG. 9 , or the embodiment shown in FIG. 10 .
  • the device or the chip system of the communication device is used to implement the method corresponding to the communication device in the above method embodiments.
  • the communication device includes, for example, the second network device and/or the first UE described in the foregoing embodiments.
  • the communication apparatus may also be described in the embodiment shown in FIG. 5 , the embodiment shown in FIG. 7 , the embodiment shown in FIG. 8 , the embodiment shown in FIG. 9 , or the embodiment shown in FIG. 10 .
  • the first network device or the chip system of the first network device is used to implement the method corresponding to the first network device in the above method embodiments.
  • Communication device 1100 includes one or more processors 1101 .
  • the processor 1101 may also be referred to as a processing unit, and may implement certain control functions.
  • the processor 1101 may be a general-purpose processor or a special-purpose processor or the like. For example, including: baseband processor, central processing unit, etc.
  • the baseband processor may be used to process communication protocols and communication data.
  • the central processing unit may be used to control the communication device 1100, execute software programs and/or process data.
  • the different processors may be independent devices, or may be provided in one or more processing circuits, eg, integrated on one or more application specific integrated circuits.
  • the communication apparatus 1100 includes one or more memories 1102 for storing instructions 1104, and the instructions 1104 can be executed on the processor, so that the communication apparatus 1100 executes the methods described in the above method embodiments.
  • the memory 1102 may also store data.
  • the processor and the memory can be provided separately or integrated together.
  • the communication apparatus 1100 may include instructions 1103 (sometimes also referred to as codes or programs), and the instructions 1103 may be executed on the processor, so that the communication apparatus 1100 executes the methods described in the above embodiments .
  • Data may be stored in the processor 1101 .
  • the communication device 1100 may further include a transceiver 1105 and an antenna 1106 .
  • the transceiver 1105 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, a transceiver, an input and output interface, etc., and is used to implement the transceiver function of the communication device 1100 through the antenna 1106 .
  • the communication device 1100 may further include one or more of the following components: a wireless communication module, an audio module, an external memory interface, an internal memory, a universal serial bus (universal serial bus, USB) interface, a power management module, an antenna, Speakers, microphones, I/O modules, sensor modules, motors, cameras, or displays, etc. It can be understood that, in some embodiments, the communication device 1100 may include more or less components, or some components may be integrated, or some components may be separated. These components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 1101 and the transceiver 1105 described in the embodiments of the present application may be implemented in an integrated circuit (IC), an analog IC, a radio frequency identification (RFID), a mixed-signal IC, and an application specific integrated circuit (application specific integrated circuit). integrated circuit, ASIC), printed circuit board (printed circuit board, PCB), or electronic equipment, etc.
  • IC integrated circuit
  • RFID radio frequency identification
  • ASIC application specific integrated circuit
  • PCB printed circuit board
  • electronic equipment etc.
  • it may be an independent device (eg, an independent integrated circuit, a mobile phone, etc.), or may be a part of a larger device (eg, a module that can be embedded in other devices). The description of the communication device and the first network device will not be repeated here.
  • a terminal device for convenience of description, referred to as UE
  • the terminal device includes the steps described in the embodiment shown in FIG. 5 , the embodiment shown in FIG. 7 , the embodiment shown in FIG. 8 , the embodiment shown in FIG. 9 or the embodiment shown in FIG. 10 .
  • a terminal device includes a transceiver module, which is used to support the terminal device to implement a transceiver function, and a processing module, which is used to support the terminal device to process signals.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 1200 can be applied to the architecture shown in any one of FIG. 1 , FIG. 3 , FIG. 4 , FIG. 6B or FIG. 6C .
  • FIG. 12 only shows the main components of the terminal device 1200 .
  • the terminal device 1200 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal device 1200, execute software programs, and process data of the software programs.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, microphones, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • FIG. 12 only shows one memory and a processor.
  • terminal device 1200 may include multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • the antenna and control circuit with a transceiving function can be regarded as the transceiving unit 1210 of the terminal device 1200
  • the processor having a processing function can be regarded as the processing unit 1220 of the terminal device 1200
  • the terminal device 1200 includes a transceiver unit 1210 and a processing unit 1220 .
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, or the like.
  • the device for implementing the receiving function in the transceiver unit 1210 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 1210 may be regarded as a transmitting unit, that is, the transceiver unit 1210 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, and the like
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the embodiment of the present application also provides a network device, and the network device can be used in each of the foregoing embodiments.
  • the network device includes the steps described in the embodiment shown in FIG. 5 , the embodiment shown in FIG. 7 , the embodiment shown in FIG. 8 , the embodiment shown in FIG. 9 or the embodiment shown in FIG. 10 .
  • the functional means, units and/or circuits of the first network device.
  • the network device includes a method for implementing the embodiment shown in FIG. 5 , the embodiment shown in FIG. 7 , the embodiment shown in FIG. 8 , the embodiment shown in FIG. 9 , or the embodiment shown in FIG. 10 .
  • the functional means, unit and/or circuit of the second network device.
  • the network device includes a transceiver module to support the first network device or the second network device to implement a transceiver function, and a processing module to support the first network device or the second network device to process signals.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device may be applicable to the architecture shown in any one of FIG. 1 , FIG. 3 , FIG. 4 , FIG. 6B or FIG. 6C .
  • the network equipment includes: a baseband device 1301 , a radio frequency device 1302 , and an antenna 1303 .
  • the radio frequency device 1302 receives the information sent by the terminal device through the antenna 1303, and sends the information sent by the terminal device to the baseband device 1301 for processing.
  • the baseband apparatus 1301 processes the information of the terminal equipment and sends it to the radio frequency apparatus 1302
  • the radio frequency apparatus 1302 processes the information of the terminal equipment and sends it to the terminal equipment through the antenna 1303 .
  • the baseband device 1301 includes one or more processing units 13011 , storage units 13012 and interfaces 13013 .
  • the processing unit 13011 is configured to support the network device to perform the functions of the network device in the foregoing method embodiments.
  • the storage unit 13012 is used to store software programs and/or data.
  • the interface 13013 is used to exchange information with the radio frequency device 1302, and the interface includes an interface circuit for inputting and outputting information.
  • the processing unit is an integrated circuit, such as one or more ASICs, or one or more digital signal processors (DSPs), or one or more field programmable gate arrays (field programmable gate array, FPGA), or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form chips.
  • the storage unit 13012 and the processing unit 13011 may be located in the same chip, that is, an on-chip storage element. Alternatively, the storage unit 13012 and the processing unit 13011 may be located on a different chip, that is, an off-chip storage element.
  • the storage unit 13012 may be a memory, or may be a collective term for multiple memories or storage elements.
  • the network device 1300 may implement some or all of the steps in the above method embodiments in the form of one or more processing unit schedulers.
  • the first embodiment in any one of the embodiment shown in FIG. 5 , the embodiment shown in FIG. 7 , the embodiment shown in FIG. 8 , the embodiment shown in FIG. 9 or the embodiment shown in FIG. 10 is implemented.
  • the one or more processing units may support wireless access technologies of the same standard, or may support wireless access standards of different standards.
  • the computer software product is stored in a storage medium, and includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned computer-readable storage medium can be any available medium that can be accessed by a computer.
  • a computer-readable medium may include random access memory (RAM), read-only memory (ROM), or a computer-readable medium capable of carrying or storing instructions or data structures desired program code in the form and any other medium that can be accessed by a computer.
  • RAM random access memory
  • ROM read-only memory
  • a computer-readable medium capable of carrying or storing instructions or data structures desired program code in the form and any other medium that can be accessed by a computer.

Abstract

本申请涉及一种通信方法及装置。第一网络设备获得第一通信网络的第一QoS信息,第一网络设备根据第一QoS信息,确定通过第一传输路径传输的数据在第二通信网络中的QoS信息。第一网络设备向通信设备发送第一链路的QoS信息,第一链路的QoS信息包括在通过第一传输路径传输的数据在第二通信网络中的QoS信息中,第一链路为所述通信设备与所述第一传输路径上的下一跳设备之间的链路。第一网络设备可以将工业以太网的QoS信息分解到第一传输路径上的各条链路上,使得各条链路都能够明确应该按照何种QoS信息来传输,由此为5GS适配工业以太网提供了具体的实现方式,使得5GS得以适配工业以太网。

Description

一种通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
第五代移动通信系统(the 5th generation system,5GS)进入工业领域中,就会涉及对现有工业场景的网络的兼容问题。目前的运营技术(operational technology,OT)场景下,较为主流的组网方式是总线形式和工业以太网形式,但是随着工业设备逐渐升级以及工业需求的逐渐多样化,工业以太网由于其灵活的组网方式、通用的网络接口以及强大的网络性能,正在逐渐取代传统的总线形式的组网。因此,5GS兼容工业以太网就成为了一个必然趋势。
5GS适配工业以太网的一个关键部分就是服务质量(quality of service,QoS)的适配。5GS如果兼容工业以太网,那么需要将工业以太网的QoS转换为5GS的QoS。目前,将5GS视为工业以太网中的一个节点,那么5GS所获得的QoS是对于该节点的整体QoS。但是5GS里还包括多个设备,数据在5GS中传输时,会在这些设备之间传输,这可能导致工业以太网的数据在5GS中的传输过程无法得到较为准确的控制,降低了通信质量。
发明内容
本申请实施例提供一种通信方法及装置,用于使得5GS能够适配工业以太网。
第一方面,提供第一种通信方法,该方法可由网络设备执行,或由芯片系统执行,该芯片系统能够实现网络设备的功能。示例性地,所述网络设备为核心网设备,例如应用功能(application function,AF)、会话管理功能(session management function,SMF)或策略控制功能(policy control function,PCF)等。该方法包括:第一网络设备获得第一通信网络的第一QoS信息,所述第一网络设备根据所述第一QoS信息,确定通过第一传输路径传输的数据在第二通信网络中的QoS信息。其中,所述通过第一传输路径传输的数据在第二通信网络中的QoS信息包括所述第一传输路径上多条链路的QoS信息,其中,所述多条链路中各链路的一个端点为所述第二通信网络中的一个终端设备,且所述多条链路均位于所述第二通信网络中。所述第一网络设备向通信设备发送第一链路的QoS信息,所述第一链路的QoS信息包括在所述通过第一传输路径传输的数据在第二通信网络中的QoS信息中,所述第一链路为所述通信设备与所述第一传输路径上的下一跳设备之间的链路,其中,所述通信设备为第二网络设备或第一终端设备。
在本申请实施例中,第一通信网络例如为工业以太网,或者也可以是其他网络。第二通信网络例如为5GS,或者也可以是其他网络。第一网络设备可以根据第一通信网络的第一QoS信息确定通过第一传输路径传输的数据在第二通信网络中的QoS信息,其中,第一网络设备所确定的是第一传输路径上多条链路的QoS信息,也就是说,第一网络设备可以将工业以太网的QoS信息分解到第一传输路径上的各条链路上,使得各条链路都能够明确应该按照何种QoS信息来传输,由此为5GS适配工业以太网提供了具体的实现方式,使得5GS得以适配工业以太网。而且将QoS信息分解到各条链路上,也使得整个传输路 径能够得到更好的控制,以提高传输质量。
在一种可选的实施方式中,所述第一网络设备根据所述第一QoS信息,确定通过第一传输路径传输的数据在第二通信网络中的QoS信息,包括:所述第一网络设备将所述第一QoS信息映射为第二QoS信息,所述第二QoS信息为应用于所述第二通信网络的QoS信息;所述第一网络设备根据所述第二QoS信息,确定所述通过第一传输路径传输的数据在第二通信网络中的QoS信息。第一QoS信息为工业以太网中的QoS信息,而第一网络设备位于5GS中,且第一网络设备要确定的是数据在5GS中的QoS信息,因此第一网络设备可以将第一QoS信息映射为5GS中的QoS信息(称为第二QoS信息),从而可以根据第二QoS信息确定通过第一传输路径传输的数据在第二通信网络中的QoS信息。通过第一传输路径传输的数据在第二通信网络中的QoS信息,可以包括第一传输路径上的一条或多条链路中的每条链路的QoS信息。也就是说,第一网络设备可以将第二QoS信息按照链路进行分解,从而可以为第一传输路径上的各条链路都设置QoS信息。通过这种方式,使得工业以太网的QoS信息能够适配5GS,也使得工业以太网的数据能够在5GS中以满足工业以太网的QoS信息的方式传输。
在一种可选的实施方式中,所述第一网络设备根据所述第一QoS信息,确定通过第一传输路径传输的数据在第二通信网络中的QoS信息,包括:所述第一网络设备根据所述第一QoS信息和连接状态信息,确定所述通过第一传输路径传输的数据在第二通信网络中的QoS信息,所述连接状态信息用于表示位于所述第二通信网络中的多个终端设备的连接状态,所述多个终端设备能够为位于所述第一通信网络中的设备传输数据,作为所述多条链路中各链路的一个端点的终端设备属于所述多个终端设备。例如,如果连接状态信息包括UE是否支持D2D连接方式的信息,那么第一网络设备可确定第一传输路径为通过UPF的路径(在本申请的各个实施例中,也将“通过UPF的路径”称为“通过UPF转发的路径”),或为D2D传输路径。又例如,连接状态信息包括UE与该UE所连接的各个设备之间的延迟信息,那么第一网络设备可以根据第一QoS信息和连接状态信息确定通过第一传输路径传输的数据在5GS中的QoS信息。例如,第一网络设备在分解第二QoS信息时,可以考虑UE与该UE所连接的各个设备之间的延迟信息。通过考虑连接状态信息,可以使得第一网络设备确定更符合数据的实际传输情况的传输路径,且也可以确定更准确的QoS信息。
在一种可选的实施方式中,所述连接状态信息包括第一终端设备与所述第一终端设备所连接的各个设备之间的延迟信息,和/或,包括第一终端设备是否支持D2D连接方式的信息,所述第一终端设备是所述多个终端设备中的一个终端设备。例如,该连接状态信息可以表示位于5GS中的多个终端设备的连接状态,或者说,该连接状态信息可以包括位于5GS中的多个终端设备的连接状态信息。可以将一个终端设备的连接状态信息称为子连接状态信息,以第一终端设备为例,第一终端设备的子连接状态信息可以包括第一终端设备与第一终端设备所连接的各个设备之间的延迟信息(或者称为时延信息),或者包括第一终端设备是否支持D2D连接方式的信息,或者包括第一终端设备与该终端设备所连接的各个设备之间的延迟信息,以及包括第一终端设备是否支持D2D连接方式的信息。从而第一网络设备根据连接状态信息就能更好地确定数据在5GS中的传输路径。
在一种可选的实施方式中,所述通过第一传输路径传输的数据在第二通信网络中的QoS信息包括一个或多个分解信息,所述一个或多个分解信息中的每个分解信息包括所述第一传输路径上的多条链路的QoS信息,其中,在不同的分解信息中,所述第一传输路径 上的至少一条链路的QoS信息不同。可以认为,第一网络设备在将第二QoS信息分配给第一传输路径时,可以采用一种分解方式,也可以采用多种分解方式,而在每种分解方式中,都可以包括第一传输路径上的至少一条链路的QoS信息,而且每种分解方式所对应的第一传输路径上的至少一条链路的QoS信息所对应的延迟的总和,都可以小于或等于第二QoS信息包括的包延迟预算参数的取值。第一传输路径上的至少一条链路可包括第一传输路径上的部分链路或全部链路。为第一传输路径设置多种QoS信息的分解方式,可以便于根据网络情况为第一传输路径选择不同的分解方式,例如在某个时刻可以为第一传输路径选择分解方式1,而在下一个时刻可以为第一传输路径选择分解方式2,这使得对于链路的QoS信息的分解更为灵活,能够提高数据传输的质量和成功率。
在一种可选的实施方式中,所述第一网络设备向通信设备发送第一链路的QoS信息,包括:所述第一网络设备向所述通信设备发送所述通过第一传输路径传输的数据在第二通信网络中的QoS信息。通信设备可包括第二网络设备,或包括第一终端设备,或包括第二网络设备和第一终端设备。第二网络设备例如包括UPF,或包括(R)AN,或包括UPF和(R)AN。第一网络设备可以只向通信设备发送第一链路的QoS信息,而不必发送第一传输路径中其他链路的QoS信息,这样可以减小信令开销,而且通信设备也能根据第一链路的QoS信息发送第一UE的数据包。或者,第一网络设备也可以向通信设备发送通过第一传输路径传输的数据在5GS中的QoS信息(第一网络设备向UPF发送通过第一传输路径传输的数据在5GS中的QoS信息,也就认为是向通信设备发送了第一链路的QoS信息),从而通信设备不仅能获得第一链路的QoS信息,还能获得第一传输路径上的其他链路的QoS信息。
在一种可选的实施方式中,在所述通过第一传输路径传输的数据在第二通信网络中的QoS信息包括多个分解信息的情况下,所述方法还包括:所述第一网络设备从所述通过第一传输路径传输的数据在第二通信网络中的QoS信息包括的所述一个或多个分解信息中,确定所述通信设备对应的第一分解信息;所述第一网络设备向所述通信设备发送所述第一分解信息的索引。如果通过第一传输路径传输的数据在5GS中的QoS信息包括多个分解信息,那么第一网络设备可以从这多个分解信息中为第一UE选择一个分解信息,例如第一网络设备选择了第一分解信息。如果第一网络设备向通信设备发送了通过第一传输路径传输的数据在5GS中的QoS信息,那么第一网络设备还可以将第一分解信息的索引发送给通信设备,使得通信设备能够获知应该使用通过第一传输路径传输的数据在5GS中的QoS信息中的哪个分解信息。
在一种可选的实施方式中,所述第一传输路径上的部分链路或全部链路为D2D链路。第一传输路径例如为通过UPF的传输路径,在通过UPF的传输路径上可以不包括D2D链路;或者,第一传输路径例如为D2D传输路径,在D2D传输路径上可以包括一条或多条D2D链路。
在一种可选的实施方式中,所述方法还包括:所述第一网络设备向所述第二网络设备发送不支持D2D连接通信的终端设备的信息。如果有不支持D2D连接通信的终端设备,那么这些终端设备的通信是需要经过第二网络设备的,则第一网络设备可将这些终端设备的信息发送给第二网络设备,使得第二网络设备明确需要为哪些终端设备转发数据。
在一种可选的实施方式中,所述方法还包括:所述第一网络设备根据所述第一QoS信息,确定通过第二传输路径传输的数据在所述第二通信网络中的QoS信息,其中,所述通 过第二传输路径传输的数据在所述第二通信网络中的QoS信息包括所述第二传输路径上多条链路的QoS信息;所述第一网络设备向所述第二网络设备发送切换时延信息,所述切换时延信息用于指示第一终端设备从所述第一传输路径切换为所述第二传输路径所需的时长,其中,所述第一传输路径中,所述第一终端设备与第三终端设备之间为D2D链路,所述第二传输路径中,所述第一终端设备与所述第三终端设备之间为经过所述第二网络设备的链路,或者,所述第一传输路径中,所述第一终端设备与第三终端设备之间为经过所述第二网络设备的链路,所述第二传输路径中,所述第一终端设备与所述第三终端设备之间为D2D链路。本申请实施例中,支持终端设备在不同的传输路径之间切换,例如,如果一条传输路径无法满足相应的QoS信息,则该传输路径上的终端设备可以考虑切换传输路径。而如果切换传输路径所需的时延较长,则可能因为切换而导致终端设备的业务中断,或者导致系统受到影响等,这是不希望出现的情况。因此要切换传输路径,可以考虑切换时延,第一网络设备可将切换时延信息发送给第二网络设备,从而第二网络设备能够根据切换时延信息确定第一终端设备是否能够切换传输路径,以减小因为切换传输路径而对系统造成的影响。
在一种可选的实施方式中,所述方法还包括:所述第一网络设备接收来自所述第二网络设备的确定结果;在所述确定结果指示所述切换时延信息所指示的时长小于或等于所述第一终端设备的数据的存活时间的情况下,所述第一网络设备指示所述第一终端设备切换为所述第二传输路径。例如,第二网络设备根据切换时延信息确定第一终端设备是否能够进行路径切换。第二网络设备可确定切换时延信息所指示的时长是否小于或等于第一终端设备的数据的存活时间。如果切换时延信息所指示的时长小于或等于第一终端设备的数据的存活时间,表明第一终端设备进行路径切换不会对系统产生影响,则第二网络设备确定第一终端设备能够进行路径切换,而如果切换时延信息所指示的时长小于或等于第一终端设备的数据的存活时间,表明第一终端设备进行路径切换会对系统产生影响,则第二网络设备确定第一终端设备不能进行路径切换。且第二网络设备可将确定结果发送给第一网络设备,第一网络设备根据确定结果就能确定第一终端设备是否能够切换传输路径。
在一种可选的实施方式中,所述方法还包括:所述第一网络设备向所述第二网络设备和/或所述第一终端设备发送所述通过第二传输路径传输的数据在第二通信网络中的QoS信息。如果数据在5GS中除了第一传输路径外还有其他传输路径,那么第一网络设备根据第二QoS信息除了可以确定通过第一传输路径传输的数据在第二通信网络中的QoS信息外,还可能确定其他传输路径的QoS信息,例如第一网络设备还确定了通过第二传输路径传输的数据在第二通信网络中的QoS信息。那么第一网络设备也可以将通过第二传输路径传输的数据在第二通信网络中的QoS信息发送给第二网络设备和/或第一终端设备,使得第二网络设备和/或第一终端设备能够应用通过第二传输路径传输的数据在第二通信网络中的QoS信息,在第二传输路径上传输第一终端设备的数据。
第二方面,提供第二种通信方法,该方法可由通信设备执行,或由芯片系统执行,或由包括该通信设备的较大设备执行,该芯片系统能够实现通信设备的功能。例如,该通信设备为网络设备,示例性地,所述网络设备为核心网设备,例如用户面功能(user plane function,UPF)等,或者,示例性地,所述网络设备为接入网设备,例如(R)AN等。又例如,该通信设备为终端设备,例如第一终端设备。该方法包括:通信设备接收第一链路的QoS信息,所述第一链路为所述通信设备与第一传输路径上的下一跳设备之间的链路,其 中,所述第一传输路径在第二通信网络中包括多条链路,所述多条链路中各链路的一个端点为一个终端设备,所述一个终端设备能够为位于第一通信网络中的设备传输数据,所述第一链路为所述多条链路中的一条链路;所述通信设备接收第一数据包,所述第一数据包对应第一终端设备;所述通信设备按照所述第一链路的QoS信息,通过所述第一链路向所述下一跳设备发送所述第一数据包。
在一种可选的实施方式中,通信设备接收第一链路的QoS信息,包括:所述通信设备接收通过所述第一传输路径传输的数据在所述第二通信网络中的QoS信息,其中,所述通过所述第一传输路径传输的数据在所述第二通信网络中的QoS信息包括所述第一传输路径上在所述第二通信网络中的多条链路的QoS信息,所述多条链路的QoS信息包括所述第一链路的QoS信息。
在一种可选的实施方式中,所述方法还包括:所述通信设备接收第一分解信息的索引,其中,所述通过第一传输路径传输的数据在所述第二通信网络中的QoS信息包括一个或多个分解信息,所述一个或多个分解信息中的每个分解信息包括所述第一传输路径上在所述第二通信网络的多条链路的QoS信息,在不同的分解信息中,所述第一传输路径上的至少一条链路的QoS信息不同,所述第一分解信息是所述一个或多个分解信息中的一个分解信息。
在一种可选的实施方式中,所述第一链路的QoS信息是所述第一分解信息的索引所对应的所述第一链路的QoS信息。
在一种可选的实施方式中,所述方法还包括:所述通信设备获得所述第一终端设备的数据的实际QoS信息;所述通信设备根据所述第一分解信息,以及所述第一终端设备的数据的实际QoS信息,确定是否为所述第一终端设备重新选择分解信息。通信设备获得了第一分解信息,也获得了第一终端设备的数据的实际QoS信息,从而可以确定第一分解信息与第一终端设备的数据的实际QoS信息的契合程度,以确定是否为第一终端设备重新选择分解信息,从而可以为第一终端设备选择更为契合第一终端设备的数据的实际QoS信息的分解信息。
在一种可选的实施方式中,所述通信设备根据所述第一分解信息,以及所述第一终端设备的数据的实际QoS信息,确定是否为所述第一终端设备重新选择分解信息,包括:在所述第一终端设备的数据的实际QoS信息对应的时延与所述第一分解信息所包括的第二链路的QoS信息对应的时延的差值大于第一阈值的情况下,所述通信设备为所述第一终端设备重新选择分解信息,所述第二链路为所述第一终端设备的数据的实际QoS信息对应的链路。如果第一终端设备的数据的实际QoS信息对应的时延与第一分解信息包括的第二链路的QoS信息对应的时延之间的差值过大,表明第一分解信息对于第二链路来说适用度较低,在这种情况下,通信设备可以重新为第一终端设备选择分解信息,以选择更为适合第二链路的分解信息。
在一种可选的实施方式中,所述通信设备为所述第一终端设备重新选择分解信息,包括:所述通信设备根据所述第一终端设备的数据的实际QoS信息,为所述第一终端设备重新选择分解信息,其中,重新选择的分解信息所包括的所述第二链路的QoS信息对应的时延大于或等于所述第一终端设备的数据的实际QoS信息对应的时延。通信设备重新选择的分解信息可以尽量符合第一终端设备的数据的实际QoS信息。
在一种可选的实施方式中,所述通信设备获得所述第一终端设备的数据的实际QoS信 息,包括:所述通信设备获得第一累积QoS信息,所述第一累积QoS信息包括所述第一终端设备的数据从所述第一传输路径中的首个设备传输到所述通信设备所经历的全部链路的实际QoS信息之和。通信设备所获得的第一终端设备的数据的实际QoS信息,例如为第二链路的实际QoS信息,或者也可以是第一累积QoS信息,第一累积QoS信息更能表明第一传输路径上位于该通信设备之前的链路的QoS信息。
在一种可选的实施方式中,所述通信设备根据所述第一分解信息,以及所述第一终端设备的数据的实际QoS信息,确定是否为所述第一终端设备重新选择分解信息,包括:在所述第一累积QoS信息对应的时延与第二累积QoS信息对应的时延的差值大于第二阈值的情况下,所述通信设备为所述第一终端设备重新选择分解信息。其中,所述第二累积QoS信息对应的时延包括所述第一分解信息包括的N条链路的QoS信息对应的时延之和,所述N条链路为所述第一终端设备的数据从所述第一传输路径中的首个设备传输到所述通信设备所经历的全部链路,N为正整数。如果第二累积QoS信息对应的时延与第一累积QoS信息对应的时延之间的差值过大,表明第一分解信息对于N条链路来说适用度较低,在这种情况下,通信设备可以重新为第一终端设备选择分解信息,以选择更为适合第二链路的分解信息。
在一种可选的实施方式中,所述方法还包括:所述通信设备为所述第一终端设备重新选择分解信息,包括:所述通信设备根据所述第一累积QoS信息和所述第二累积QoS信息,为所述第一终端设备重新选择分解信息,其中,重新选择的分解信息所包括的所述N条链路的QoS信息对应的时延之和大于或等于所述第一累积QoS信息对应的时延。通信设备在重新选择分解信息时,可以考虑不影响第一传输路径上该通信设备之前的链路,以提高数据的传输成功率。
在一种可选的实施方式中,所述方法还包括:所述通信设备接收通过第二传输路径传输的数据在所述第二通信网络中的QoS信息,所述通过第二传输路径传输的数据在第二通信网络中的QoS信息包括所述第二传输路径上的链路的QoS信息,所述第二传输路径是所述第一终端设备对应的传输路径。
在一种可选的实施方式中,所述方法还包括:所述通信设备确定所述通过第一传输路径传输的数据在第二通信网络中的QoS信息无法满足所述第一终端设备的数据的实际QoS信息,但所述通过第二传输路径传输的数据在第二通信网络中的QoS信息能够满足所述第一终端设备的数据的实际QoS信息,所述第二QoS信息为第二通信网络的QoS信息,其中,所述第一传输路径中,第一终端设备与第二终端设备之间为D2D链路,所述第二传输路径中,所述第一设备与所述第二终端设备之间为经过所述第二网络设备的链路,或者,所述第一传输路径中,第一终端设备与第二终端设备之间为经过所述第二网络设备的链路,所述第二传输路径中,所述第一终端设备与所述第二终端设备之间为D2D链路;所述通信设备确定切换时延信息所指示的时长是否小于或等于所述第一终端设备的数据的存活时间,所述切换时延信息用于指示所述第一终端设备从所述第一传输路径切换为所述第二传输路径所需的时长;所述通信设备向第一网络设备发送确定结果。
在一种可选的实施方式中,所述确定结果用于指示所述切换时延信息所指示的时长小于或等于所述第一终端设备的数据的存活时间,或指示所述切换时延信息所指示的时长大于所述第一终端设备的数据的存活时间;或,所述确定结果用于指示状态正常,或指示状态异常;或,所述确定结果用于指示允许切换路径,或指示不允许切换路径。确定结果可 能有多种指示方式,本申请实施例对此并不作限制。
在一种可选的实施方式中,所述通信设备通过所述第一链路向所述下一跳设备发送所述第一数据包,包括:所述通信设备通过所述第一链路向所述下一跳设备发送携带了所述第一终端设备的数据的分解信息的索引的所述第一数据包。该通信设备可能不是第一传输路径上的最后一跳设备,而该通信设备有可能会重新为第一终端设备选择分解信息,因此可选的,该通信设备在通过第一链路向下一跳设备发送数据包时,可以在该数据包中携带该通信设备使用的分解信息的索引,以使得第一传输路径上的其他设备能够明确该通信设备究竟使用了哪个分解信息,从而使得第一传输路径上的各个设备所使用的分解信息能够一致,以满足工业以太网的QoS信息的需求。
关于第二方面或第二方面的部分实施方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
第三方面,提供一种通信装置。该通信装置可以为上述第一方面或第二方面所述的第一网络设备,或者为配置在所述第一网络设备中的电子设备(例如,芯片系统),或者为包括所述第一网络设备的较大设备。所述第一网络设备包括用于执行上述方法的相应的手段(means)或模块。例如,所述通信装置:包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。
例如,所述处理单元,用于获得第一通信网络的第一服务质量QoS信息;
所述处理单元,还用于根据所述第一QoS信息,确定通过第一传输路径传输的数据在第二通信网络中的QoS信息,其中,所述通过第一传输路径传输的数据在第二通信网络中的QoS信息包括所述第一传输路径上多条链路的QoS信息,其中,所述多条链路中各链路的一个端点为所述第二通信网络中的一个终端设备,且所述多条链路均位于所述第二通信网络中;
所述收发单元,用于向通信设备发送第一链路的QoS信息,所述第一链路的QoS信息包括在所述通过第一传输路径传输的数据在第二通信网络中的QoS信息中,所述第一链路为所述通信设备与所述第一传输路径上的下一跳设备之间的链路,其中,所述通信设备为第二网络设备或第一终端设备。
在一种可选的实现方式中,所述通信装置包括存储单元,所述处理单元能够与存储单元耦合,并执行存储单元中的程序或指令,使能所述通信装置执行上述第一网络设备的功能。
在一种可选的实施方式中,所述通信装置包括:处理器,与存储器耦合,用于执行存储器中的指令,以实现上述第一方面或第二方面中的第一网络设备所执行的方法。可选的,该通信装置还包括其他部件,例如,天线,输入输出模块,接口等等。这些部件可以是硬件,软件,或者软件和硬件的结合。
第四方面,提供一种通信装置。所述通信装置可以为上述第一方面或第二方面所述的通信设备。所述通信装置具备上述通信设备的功能。所述通信设备例如为网络设备,例如第二网络设备,第二网络设备例如为核心网设备,例如UPF等,或者,第二网络设备例如为接入网设备,例如(R)AN,或为(R)AN中的基带装置。或者,所述通信设备例如为终端设备,例如第一终端设备。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。
例如,所述收发单元,用于接收第一链路的QoS信息,所述第一链路为所述通信设备与第一传输路径上的下一跳设备之间的链路,其中,所述第一传输路径在第二通信网络中包括多条链路,所述多条链路中各链路的一个端点为一个终端设备,所述一个终端设备能够为位于第一通信网络中的设备传输数据,所述第一链路为所述多条链路中的一条链路;
所述收发单元,还用于接收第一数据包,所述第一数据包对应第一终端设备;
所述处理单元,还用于按照所述第一链路的QoS信息,通过所述收发单元经所述第一链路向所述下一跳设备发送所述第一数据包。
在一种可选的实现方式中,所述通信装置包括存储单元,所述处理单元能够与存储单元耦合,并执行存储单元中的程序或指令,使能所述通信装置执行上述通信设备的功能。
在一种可选的实施方式中,所述通信装置包括:处理器,与存储器耦合,用于执行存储器中的指令,以实现上述第一方面或第二方面中的通信设备所执行的方法。可选的,该通信装置还包括其他部件,例如,天线,输入输出模块,接口等。这些部件可以是硬件,软件,或者软件和硬件的结合。
第五方面,提供一种通信系统,所述通信系统可包括第三方面所述的通信装置,以及包括第四方面所述的通信装置。
第六方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中通信设备或第一网络设备所执行的方法被实现。
第七方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
附图说明
图1为5G网络架构的一种示意图;
图2为5GS与TSN在层2网络的结合架构;
图3为本申请实施例设计的5GS适配工业以太网的一种结构图;
图4为本申请实施例的一种应用场景示意图;
图5、图7~图10为本申请实施例提供的几种通信方法的流程图;
图6A为本申请实施例中将第一QoS信息映射为第二QoS信息的一种示意图;
图6B为本申请实施例的另一种应用场景示意图;
图6C为本申请实施例的又一种应用场景示意图;
图11为本申请实施例提供的通信装置的一种示意性框图;
图12为本申请实施例提供的终端设备的一种示意性框图;
图13为本申请实施例提供的网络设备的一种示意性框图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
本申请实施例中,终端设备是一种具有无线收发功能的设备,可以是固定设备,移动 设备、手持设备、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块或芯片系统等)。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、车到一切(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为用户设备(user equipment,UE)、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等,为描述方便,本申请实施例中将终端设备以UE为例进行说明。
本申请实施例中的网络设备,例如包括接入网设备,和/或核心网设备。
所述接入网设备为具有无线收发功能的设备,用于与所述终端设备进行通信。所述接入网设备包括但不限于上述通信系统中的基站(BTS,Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(t(R)ANsmission reception point,TRP),3GPP后续演进的基站,无线保真(wireless fidelity,WiFi)系统中的接入节点,无线中继节点,无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的同一种接入技术的网络,也可以支持上述提及的不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。网络设备还可以是云无线接入网络(cloud radio access network,C(R)AN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。网络设备还可以是服务器,可穿戴设备,或车载设备等。例如,车到一切(vehicle to everything,V2X)技术中的网络设备可以为路侧单元(road side unit,RSU)。以下对接入网设备以为基站为例进行说明。所述通信系统中的多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。
所述核心网设备用于实现移动管理,数据处理,会话管理,策略和计费等功能中的至少一项。不同接入技术的系统中实现核心网功能的设备名称可以不同,本申请实施例并不对此进行限定。以5G系统为例,所述核心网设备包括:接入和移动管理功能(access and mobility management function,AMF)、SMF、或用户面功能(user plane function,UPF)等。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以 是单个,也可以是多个。
为了便于理解,下面简单介绍5G的网络架构。第三代合作伙伴计划(3rd generation partnership project,3GPP)标准组织制定了下一代移动通信网络架构(next generation system),称为5G网络架构,5G网络架构支持3GPP标准组织定义的无线技术(如长期演进(long term evolution,LTE)或5G无线接入网(radio access network,(R)AN)等)。请参考图1,是5G网络架构的一种示意图。UE通过(R)AN接入核心网,核心网包括用户面网元以及控制面网元。其中,核心网的用户面网元包括UPF;核心网的控制面网元包括认证服务器功能(authentication server function,AUSF),AMF,SMF,网络切片选择功能(network slice selection function,NSSF),网络开放功能(network exposure function,NEF),网络功能仓储功能(NF repository function,NRF),统一数据管理(unified data management,UDM),PCF,以及AF等中的至少一项。
用户面网元(例如UPF)主要负责分组数据包转发、QoS控制、计费信息统计等。控制面网元主要负责业务流程交互、向用户面下发数据包转发策略、QoS控制策略等。在本申请实施例中,考虑传感器等设备可以通过UE以及(R)AN等设备接入核心网,从而,在工业以太网中与传感器等设备连接的控制器就能够通过UPF在用户面进行工业数据通信。
其中,核心网控制面可以采用服务化架构,即,控制面网元之间的交互采用服务调用的方式,来替换传统架构中的点对点通信方式。在服务化架构中,一个控制面网元会向其他控制面网元开放服务,供其他控制面网元调用;在点对点通信中,控制面网元之间通信接口会存在一套特定的消息,只能由接口两端的控制面网元在通信时使用。
核心网中的网元的功能介绍如下:
UPF,根据SMF的路由规则执行用户数据包转发,如将上行数据发送到DN或其他UPF,将下行数据转发到其他UPF或者(R)AN。
AUSF,执行UE的安全认证。
AMF,UE的接入管理和移动性管理。负责UE的状态维护,UE的可达性管理,非移动性管理(mobility management,MM)非接入层(non-access-stratum,NAS)消息的转发,会话管理(session management,SM)N2消息的转发。
SMF,UE会话管理,为UE的会话分配资源,释放资源。其中资源包括会话服务质量(quality of service,QoS),会话路径,转发规则等。
NSSF,为UE选择网络切片。
NEF,以北向应用编程接口(application programming interface,API)接口的方式向第三方开放网络功能。
NRF,为其他网元提供网络功能实体信息的存储功能和选择功能。
UDM,用户签约上下文管理。
PCF,用户策略管理,用于生成、管理用户、会话、QoS流处理策略。
AF,应用管理,提供各种业务服务的功能网元,能够通过NEF与核心网交互,以及能够与策略管理框架交互以进行策略管理。
本申请实施例涉及的网元功能之间的相关接口包括:
N1:UE与核心网控制面之间的接口。
N2:接入网(access network,AN)网元与核心网控制面之间的通信接口。
N3:接入网网元与UPF之间的通信接口,用于传输用户数据。
N4:SMF与UPF之间的通信接口,用于对UPF进行策略配置等。
N6:UPF与数据网络(data network,DN)之间的通信端口。
接下来介绍工业以太网的QoS以及5GS的QoS。
工业以太网的协议是在以太网基础上为工业生产场景定制的以太网协议。该协议主要是改善了传统以太网中基于竞争的信道传输方式,保证设备之间的数据传输具有实时控制特性和确定性的特征,包括延迟确定、抖动确定等中的至少一项。因此,工业以太网的QoS定义比较简单,主要是用来描述数据传输的特征,例如描述数据包的延迟、数据包的抖动、周期性数据的周期、数据量以及存活时间等中的至少一项。其中,数据的存活时间是指,只要该数据在该数据的存活时间内传输成功,系统就不会受影响,而如果该数据在该数据的存活时间内未传输成功,系统就会受到影响。
而5GS的QoS是基于数据流进行定义的,相对工业以太网来说比较复杂。5GS的QoS定义了非(non)-保证比特速率(guaranteed bit rate,GBR)、GBR、以及关键(critical)-GBR三种数据流类型,以及定义了数据流调度的优先级,数据包延迟预算,包错误率,均值窗口,最大数据突发量以及可保证的最大流比特率中的至少一项。
目前,3GPP标准提供了5GS与时间敏感网络(time sensitive networking,TSN)在层2网络的结合架构,对此可参考图2。
为了保证TSN节点之间的确定性通信,由TSN集中网络配置(centralized network configuration,CNC)将两个TSN节点之间的相关路由配置以及QoS配置给这两个TSN节点中间的TSN节点,该TSN节点称之为TSN桥节点(TSN bridge)。在这种架构下,5GS为了与TSN结合,将5GS模拟成一个逻辑上的TSN桥节点,称为5GS逻辑桥节点(5GS logical bridge),并增加一个AF以适配TSN的相关控制逻辑,另外在UPF和UE侧各增加一个TSN翻译(translator)模块以适配用户面的数据传输。那么,TSN CNC可将两个TSN节点(例如,图2中右下角的TSN节点和左下角的TSN节点)之间的相关路由配置以及QoS,通过AF配置给5GS逻辑桥节点,AF可将来自TSN CNC的相关信息转换为对应于5GS的信息。UE和UPF侧的用户面适配功能则用来为控制面提供必要的决策信息。另外,图2中,TSN还包括TSN集中用户配置(centralized user configuration,CUC)这一网元,TSN CUC可以制定用户对于TSN流数据的相关需求配置,且TSN CUC可以向TSN CNC发送该配置,由TSN CNC计算TSN节点的配置要求。
TSN定义了时间敏感通信辅助信息(time sensitive communication assistance information,TSCAI)来描述工业以太网的流量特征,TSCAI可包括数据流的方向、数据周期、突发数据到达时间等中的至少一项。AF在将来自TSN CNC的相关信息转换为对应于5GS的信息后,可发送给SMF,SMF可据此推导出基于每一条数据流的TSCAI,并且将基于每一条数据流的TSCAI发送给(R)AN,(R)AN则可以根据基于每一条数据流的TSCAI进行工业以太网的数据调度。
同时,SMF或5GS中的其他网元还会根据时间敏感通信(time sensitive communication,TSC)数据流的特征来设置对应的5GS的QoS。例如,利用TSC数据突发量来推导最大数据突发量(maximum data burst volume,MDBV),以及根据TSC数据流的延迟要求推导包延迟预算(packet delay budget,PDB)等,从而可以设置合适的5GS的QoS流来传输TSC数据。
可以看到,在5GS适配TSN的场景中,5GS获得的是5GS的端到端的QoS。但是5GS 还包括多个设备,在5GS适配工业以太网的场景中,数据在5GS中传输时,会在这些设备之间传输,也就是说,数据在5GS中会经历多条链路。而5GS所获得的QoS,只是数据从进入5GS到离开5GS的整体的QoS,而无法获知在5GS内的这些设备之间到底应该使用何种QoS,这会导致工业以太网的数据在5GS中的传输过程无法得到较为准确的控制,降低了通信质量,甚至可能导致工业以太网的数据无法在5GS中传输,也就是说,导致5GS无法适配工业以太网。
例如请参考图3,为本申请实施例设计的5GS适配工业以太网的一种结构图。图3中包括主(primary)站、5GS、辅(secondary)站1、辅站2和辅站3,主站和辅站都是工业以太网中的设备,为了便于理解,主站、辅站1、辅站2和辅站3都可以理解为UE,这些UE位于工业以太网中。例如主站有数据需要发送给辅站1,那么就可以通过5GS来发送,则该数据的发送需要经历主站-5GS-辅站1。在5GS内,该数据还可能经历一个或多个设备,例如该数据可能会经历5GS内的(R)AN、UPF、或一个或多个UE等设备的转发,也就是说,该数据在5GS内还可能经历一条或多条链路。由于5GS获得的只是5GS的端到端的QoS,那么5GS是无法获知该如何准确控制数据在5GS内所经历的链路的QoS,这可能导致数据的传输过程无法得到较为准确的控制,会降低通信质量。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,第一网络设备可以根据第一通信网络的第一QoS信息确定通过第一传输路径传输的数据在第二通信网络中的QoS信息,其中,第一网络设备所确定的是第一传输路径上多条链路的QoS信息,也就是说,第一网络设备可以将工业以太网的QoS信息分解到第一传输路径上的每条链路上,使得每条链路都能够明确应该按照何种QoS信息来传输,由此为5GS适配工业以太网提供了具体的实现方式,使得5GS得以适配工业以太网。而且将QoS信息分解到每条链路上,也使得整个传输路径能够得到更好的控制,以提高传输质量。
本申请实施例提供的技术方案可以应用于5G系统中,例如NR系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统,具体的不做限制。
可参考图4,为本申请实施例提供的一种应用场景的示意图。图4中的主站和辅站都位于工业以太网中,除此之外的其他网元均位于5GS中。图4以主站直接接入5GS、辅站通过UE接入5GS为例。另外,图4只画出了一个主站和一个辅站,在实际应用中,该主站在工业以太网中可能还会连接一个或多个辅站,图4中的辅站在工业以太网中也可能还会连接一个或多个辅站。其中,主站例如为UE,或者也可以是工业以太网中的其他设备;辅站例如为UE,或者也可以是工业以太网中的其他设备。图4中的(R)AN例如通过接入网设备实现,接入网设备例如为基站。
下面结合附图介绍本申请实施例所提供的方法。本文的各个实施例所述的第一通信网络例如为工业以太网,或者也可以是其他网络,例如TSN等。本文的各个实施例所述的第二通信网络例如为5GS,或者也可以是其他网络,例如下一代移动通信系统等。在各个实施例的介绍过程中,均以第一通信网络是工业以太网、第二通信网络是5GS为例。在本申请的各个实施例中,D2D传输路径是指包括了D2D连接的传输路径。D2D连接是指连接传输路径上两个UE之间的一条连接,通过这条连接,两个UE之间直接通信,而不用经过网络侧。一条D2D传输路径可能会经过UPF,也可能不经过UPF,只要一条传输路径包括了D2D连接,该传输路径就称为D2D传输路径。而通过UPF转发的传输路径,例如为不包括D2D连接的传输路径。
为了便于介绍,在下文将要介绍的各个实施例中,以该方法由网络设备和终端设备执行为例。本文的各个实施例所述的第一网络设备例如为AF、SMF或PCF等。本文的各个实施例所述的第二网络设备例如为UPF或(R)AN等。另外,本文的各个实施例所述的第二网络设备、(R)AN或第一UE等,均可以统称为通信设备。在本申请的各个实施例对应的附图中,凡是用虚线表示的步骤,均为可选的步骤。
本申请实施例提供第一种通信方法,请参见图5,为该方法的流程图。例如该方法可应用于图4所示的网络架构。
S501、第一网络设备获得工业以太网的QoS信息。为了与后文将要出现的其他的QoS信息相区分,例如将工业以太网的QoS信息称为第一QoS信息。
例如第一网络设备为AF,那么AF可以从图4所示的主站获得第一QoS信息。又例如,第一网络设备为PCF,那么PCF可以从AF获得第一QoS信息。再例如,第一网络设备为SMF,那么SMF可以从PCF获得第一QoS信息。
或者,图4所示的主站可以与UPF建立用户面数据通道,从而向UPF发送第一QoS信息。UPF可以提取第一QoS信息,并将第一QoS信息发送给SMF,如果SMF作为第一网络设备,则第一网络设备就获得了第一QoS信息。又例如,如果第一网络设备是PCF,那么PCF可以从SMF获得第一QoS信息。再例如,如果第一网络设备是AF,那么AF可以从PCF获得第一QoS信息。
S502、第一网络设备获得连接状态信息,该连接状态信息可以表示位于5GS中的多个UE的连接状态,或者说,该连接状态信息可以包括位于5GS中的多个UE的连接状态信息。为了在名称上加以区分,可以将一个UE的连接状态信息称为子连接状态信息,那么该连接状态信息就包括位于5GS中的多个UE的子连接信息。这多个UE例如包括图4中的UE,还可以包括5GS中除了该UE之外剩余的部分或全部UE。这多个UE可以连接工业以太网中的设备(例如主站或辅站),且这多个UE可以为所连接的工业以太网中的设备转发数据,可理解为,工业以太网中的设备要发送数据,该数据的传输需要经过5GS,那么5GS中与该设备连接的UE就可以转发该数据。例如,这多个UE中的有些UE可能与工业以太网中的主站连接,且不同的UE连接的主站可能是同一个主站,也可能是不同的主站,这多个UE中的有些UE可能与工业以太网中的辅站连接,且不同的UE连接的辅站可能是同一个辅站,也可能是不同的辅站;或者,这多个UE可能均连接工业以太网中的主站,且不同的UE连接的主站可能是同一个主站,也可能是不同的主站;或者,这多个UE可能均连接工业以太网中的辅站,且不同的UE连接的辅站可能是同一个辅站,也可能是不同的辅站。
一个UE的子连接状态信息,可以包括该UE与该UE所连接的各个设备之间的延迟信息(或者称为时延信息),或者包括该UE是否支持设备到设备(device-to-device,D2D)连接方式的信息,或者包括该UE与该UE所连接的各个设备之间的延迟信息,以及包括该UE是否支持D2D连接方式的信息。其中,一个UE可能连接一个或多个设备。例如,一个UE连接了工业以太网中的辅站,还连接了5GS中的UPF。以UE的子连接状态信息包括该UE与该UE所连接的各个设备之间的延迟信息为例,那么该UE的子连接状态信息就可以包括该UE与该UE所连接的全部辅站或部分辅站的延迟信息,以及包括该UE与UPF之间的延迟信息。
UE是否支持D2D连接方式的信息,可以理解为,包括该UE是否支持PC5通信接口 的D2D连接方式信息,或包括该UE是否支持Uu通信接口的D2D连接方式的信息,或包括该UE是否支持PC5通信接口的D2D连接方式信息,以及包括该UE是否支持Uu通信接口的D2D连接方式的信息。另外在本申请实施例中,UE是否支持D2D连接方式的信息,可以包括该UE是否支持与某个或某些UE之间的D2D连接方式的信息。例如,UE1的子连接状态信息可以包括UE1支持与UE2之间的D2D连接方式的信息,即,一个UE是否支持D2D连接方式的信息,可以指示该UE所支持或不支持D2D连接方式的UE。且UE支持或不支持D2D连接方式,一般都是对应的,例如UE1的子连接状态信息包括UE1支持与UE2之间的D2D连接方式的信息,那么UE2的子连接状态信息也可以包括UE2支持与UE1之间的D2D连接方式的信息;又例如,UE1的子连接状态信息包括UE1不支持与UE2之间的D2D连接方式的信息,那么UE2的子连接状态信息也可以包括UE2不支持与UE1之间的D2D连接方式的信息。从而对于第一网络设备来说,如果获得了UE1是否支持D2D连接方式的信息,也就可以明确其他UE与UE1之间是否支持D2D连接的情况。
对于UE来说,可以维护该UE的子连接状态信息,且UE还可以更新该UE的子连接状态信息。例如,该UE与一些设备之间的延迟信息并不是始终不变的,而是可能随着网络质量而发生改变。如果网络质量较好,则UE与一些设备之间的延迟可能较小,而如果网络质量较差,则UE与一些设备之间的延迟可能较大,那么UE就可以相应更新该UE与该UE所连接的部分设备或全部设备之间的延迟信息。又例如,UE对于D2D连接方式的支持也可能不是始终不变的,例如,该UE初始时支持D2D连接,而后来可能又变为不支持D2D连接,因此UE也可以更新该UE是否支持D2D连接方式的信息。
第一网络设备要获得连接状态信息,一种方式是,第一网络设备从多个UE获得子连接状态信息,从而就获得了该连接状态信息。例如对于一个UE来说,该UE可以通过非接入层(non-access stratum,NAS)信令将该UE的子连接状态信息发送给SMF,如果第一网络设备是SMF,则第一网络设备就获得了该UE的子连接状态信息,而如果第一网络设备是AF或PCF,则第一网络设备也可以从SMF获得该UE的子连接状态信息。又例如,一个UE可以建立该UE与UPF之间的连接,将该UE的子连接状态信息发送给UPF,UPF可以提取子连接状态信息,并发送给SMF,如果第一网络设备是SMF,则第一网络设备就获得了该UE的子连接状态信息,而如果第一网络设备是AF或PCF,则第一网络设备也可以从SMF获得该UE的子连接状态信息。多个UE都可以采用如上方式将子连接状态信息发送给SMF,从而第一网络设备就可以获得该连接状态信息。
S503、第一网络设备根据第一QoS信息,确定通过第一传输路径传输的数据在5GS中的QoS信息。
第一网络设备获得的第一QoS信息是工业以太网的QoS信息,那么第一网络设备可以先根据第一QoS信息得到5GS中的QoS信息。例如,第一网络设备将第一QoS信息映射为第二QoS信息,第二QoS信息就是5GS的QoS信息。相当于,第一网络设备将工业以太网的QoS信息转换为了5GS的QoS信息。
例如,第一QoS信息可以包括如下参数中的一种或多种:包延迟(packet delay)参数,包抖动(packet jitter)参数,周期时间(cycle time)参数,数据量(data volume)参数,或,存活时间(survival time)参数。第二QoS信息可以包括如下一种或多种:源类型(resource type)参数,优先级(priority level)参数,包延迟预算(packet delay budget,PDB)参数,包错误率(packet error rate)参数,平均窗(averaging window)参数,MDBV参数,保证 流比特率(guaranteed flow bit rate,GFBR)参数,或,最大流比特率(maximum flow bit rate,MFBR)参数。将第一QoS信息映射得到第二QoS信息,可参考图6A。例如,第一网络设备可根据第一QoS信息中的包延迟参数选取相应的5GS的包延迟预算参数。第一网络设备可根据第一QoS信息中的周期时间参数以及数据量参数等,确定第二QoS信息中的MFBR参数以及GFBR参数等。第一网络设备可根据工业以太网的数据量参数来计算第二QoS信息中的MDBV。之后,第一网络设备可以根据计算出来的第二QoS信息中的参数选取一个能够满足这些参数的5G QoS标识(5G QoS identifier,5QI),或者也可以设置一个新的5QI,这就得到了第二QoS信息。
在得到第二QoS信息后,第一网络设备可以根据第二QoS信息,确定通过第一传输路径传输的数据在5GS中的QoS信息。可选的,通过第一传输路径传输的数据在5GS中的QoS信息的确定还可以参考上述连接状态信息。
工业以太网中的数据要在5GS中传输,需要有传输路径,第一网络设备可确定数据在5GS中的一条或多条传输路径。如上所述,传输路径可以有两种:D2D传输路径和通过UPF转发的传输路径。例如第一网络设备未获得连接状态信息,或者第一网络设备获得的连接状态信息不包括UE是否支持D2D连接方式的信息,那么第一网络设备可以确定数据的传输路径为通过UPF转发的传输路径。
以图4所示的架构为例,例如第一网络设备未获得连接状态信息,或者第一网络设备获得的连接状态信息不包括UE是否支持D2D连接方式的信息,那么第一网络设备确定工业以太网中的数据在5GS中的一条传输路径为通过UPF转发的路径,以图4中的主站向辅站发送数据为例,则第一网络设备可以确定该数据可能经历的一条传输路径为:主站-UPF-(R)AN-UE-辅站。或者,主站向辅站发送数据后,辅站对该数据进行相应处理,之后还会将处理后的数据再发送给主站,那么第一网络设备可以确定该数据可能经历的一条传输路径为:主站-UPF-(R)AN-UE-辅站-UE-(R)AN-UPF-主站。
另外再给出一种场景的示例,例如在图4所示的5GS中再添加一个UE,可参考图6B的UE2。例如第一网络设备未获得连接状态信息,或者第一网络设备获得的连接状态信息不包括UE1或UE2是否支持D2D连接方式的信息。以主站向辅站1和辅站2发送数据为例,则第一网络设备可以确定该数据可能经历的一条传输路径为:主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2。或者,主站向辅站发送数据后,辅站对该数据进行相应处理,之后还会将处理后的数据再发送给主站,那么第一网络设备可以确定该数据可能经历的一条传输路径为:主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站。
例如,再给出一种场景的示例,图4中是以主站直接接入5GS为例,或者还有另一种方式,主站也通过UE接入5GS,例如可参考图6C中的UE1,为该场景的示意图。例如第一网络设备未获得连接状态信息,或者第一网络设备获得的连接状态信息不包括UE1或UE2是否支持D2D连接方式的信息。以图6C中的主站向辅站发送数据为例,则第一网络设备可以确定该数据可能经历的一条传输路径为:主站-UE1-(R)AN 1-UPF-(R)AN 2-UE2-辅站。或者,主站向辅站发送数据后,辅站对该数据进行相应处理,之后还会将处理后的数据再发送给主站,那么第一网络设备可以确定该数据可能经历的一条传输路径为:主站-UE1-(R)AN 1-UPF-(R)AN 2-UE2-辅站-UE2-(R)AN 2-UPF-(R)AN 1-UE1-主站。
如果第一网络设备获得了连接状态信息,则第一网络设备可以根据连接状态信息确定 工业以太网中的数据在5GS中的传输路径。例如,连接状态信息包括UE是否支持D2D连接方式的信息,那么,如果UE不支持D2D连接方式,则第一网络设备确定工业以太网中的数据在5GS中的传输路径为通过UPF转发的路径;或者,如果UE支持D2D连接方式,则第一网络设备除了确定工业以太网中的数据在5GS中的一条传输路径为通过UPF转发的路径外,还可以确定工业以太网中的数据在5GS中的另一条传输路径为不通过UPF转发的传输路径,或者说另一条传输路径为D2D传输路径。可再参考图6B,例如,图6B中的UE1的子连接状态信息表明UE1支持与UE2之间的D2D连接,和/或图6B中的UE2的子连接状态信息表明UE2支持与UE1之间的D2D连接。以主站要向辅站1和辅站2发送数据为例,则第一网络设备可以确定该数据可能经历的另一条传输路径为:主站-UPF-(R)AN-UE1-辅站1-UE1-UE2-辅站2,或者,主站向辅站发送数据后,辅站对该数据进行相应处理,之后还会将处理后的数据再发送给主站,那么第一网络设备可以确定该数据可能经历的一条传输路径为:主站-UPF-(R)AN-UE1-辅站1-UE1-UE2-辅站2-UE2-(R)AN-UPF-主站。需要注意的是,这条传输路径虽然也会经历UPF,这是因为主站与UE1之间不能通过D2D传输,但UE1和UE2之间是D2D路径,因此这条传输路径也可以视为D2D传输路径。
另外再给出一种示例,可参考图6C,为该场景的示意图。例如,图6C中的UE1的子连接状态信息表明UE1支持与UE2之间的D2D连接,和/或图6C中的UE2的子连接状态信息表明UE2支持与UE1之间的D2D连接。那么以图6C中的主站向辅站发送数据为例,则第一网络设备可以确定该数据可能经历的另一条传输路径为:主站-UE1-UE2-辅站。或者,主站向辅站发送数据后,辅站对该数据进行相应处理,之后还会将处理后的数据再发送给主站,那么第一网络设备可以确定该数据可能经历的一条传输路径为:主站-UE1-UE2-辅站-UE2-UE1-主站。当然,工业以太网中的数据在5GS中传输,除了如上这两种传输路径外可能还有其他传输路径,本申请实施例不做限制。
第一传输路径例如为通过UPF转发的传输路径,或者也可以是D2D传输路径,或者也可以是其他传输路径。无论第一传输路径是何种路径,第一传输路径都可以包括一条链路或多条链路。例如将本申请实施例应用于图4所示的场景,第一传输路径为图4中的主站-UPF-(R)AN-UE-辅站-UE-(R)AN-UPF-主站,因为5G的QoS流(flow)是定义在一个PDU会话中,因此第一传输路径包括两条链路,这两条链路中的一条链路为UPF指向UE的链路(即,UPF-(R)AN-UE),另一条链路为UE指向UPF的链路(即,UE-(R)AN-UPF)。
又例如,将本申请实施例应用于图6B所示的场景,第一传输路径为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-UE2-辅站2-UE2-(R)AN-UPF-主站,则第一传输路径包括三条链路,这三条链路中的一条链路为UPF指向UE1的链路(即,UPF-(R)AN-UE1),这三条链路中的另一条链路为UE1指向UE2的链路(即,UE1-UE2),这三条链路中的再一条链路为UE2指向UPF的链路(即,UE2-(R)AN-UPF)。本申请实施例中,链路的一个端点设备为5GS中的一个UE,链路的另一个端点设备为5GS中的UPF或5GS中的另一个UE。一条链路可能是两个设备之间的直连通道(例如,一条链路为UE1-UE2,该链路就是指UE1和UE2之间的直连通道),或者,一条链路也可能经历多个设备,该链路包括多个设备中两两之间的直连通道(例如,一条链路为UE2-(R)AN-UPF,该链路就包括UE2和(R)AN之间的直连通道,以及包括(R)AN与UPF之间的直连通道)。另外需要注意的是,链路是有方向性的,链路的方向与数据传输的方向相同,即使经历的设备都相同,但数据的传输 方向不同,那么也视为两条链路。例如,UE2-(R)AN-UPF视为一条链路,而UPF-(R)AN-UE2就视为另一条链路。
需要注意的是,本申请实施例所述的第二QoS信息,包括的可以是第一传输路径中的各条链路的QoS信息。例如,第一网络设备根据第一QoS信息可以先得到第三QoS信息,第三QoS信息不仅包括第一传输路径中的各条链路的QoS信息,还包括第一传输路径上除了本申请实施例所定义的链路外的其他连接的QoS信息。例如,其他连接可以是图4中UE和从站之间的连接,或者图6B中的UE1与从站1之间的连接,UE2与从站2之间的连接,或者图6C中UE2与从站之间的连接。而除了本申请实施例所定义的链路外的其他连接的QoS信息是第一网络设备已知的,那么第一网络设备从第三QoS信息中去除第一传输路径上除了本申请实施例所定义的链路外的其他连接的QoS信息,就可以得到第二QoS信息。也就是说,第三QoS信息可以认为是5GS端到端的QoS信息,或者理解为数据从进入5GS到离开5GS的整体的QoS信息。如果第一传输路径中不包括除了本申请实施例所定义的链路外的其他连接,即,第一传输路径所包括的连接均为链路,那么第三QoS信息与第二QoS信息为相同的QoS信息,而如果第一传输路径中包括除了本申请实施例所定义的链路外的其他连接,则第二QoS信息严格来说不能简单认为是5GS端到端的QoS信息。第一网络设备先根据第三QoS信息得到第二QoS信息,再将第二QoS信息分解到第一传输路径所包括的每条链路,就得到了通过第一传输路径传输的数据在5GS中的QoS信息,因此,通过第一传输路径传输的数据在5GS中的QoS信息,包括的也是第一传输路径中的各条链路的QoS信息。
例如,第一传输路径为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-UE2-辅站2-UE2-(R)AN-UPF-主站,那么第三QoS信息可以包括数据包从主站进入UPF一直到数据包从UPF离开至主站的QoS信息,这中间经过了UPF-(R)AN-UE1的链路,UE1-辅站1的连接,辅站1-UE1的连接,UE1-UE2的链路,UE2-辅站2的连接,辅站2-UE2的连接,以及UE2-(R)AN-UPF的链路。其中,UE1-辅站1,辅站1-UE1,UE2-辅站2,以及辅站2-UE2,这两四连接不是本申请实施例所定义的链路,而UE1-辅站1的连接的QoS信息,辅站1-UE1的连接的QoS信息,UE2-辅站2的连接的QoS信息,以及辅站2-UE2的QoS信息,是第一网络设备已知的,因此第一网络设备可以从第三QoS信息中去除UE1-辅站1的连接的QoS信息,辅站1-UE1的连接的QoS信息,UE2-辅站2的连接的QoS信息,以及辅站2-UE2的QoS信息,从而第一网络设备就能得到第二QoS信息,第二QoS信息就包括第一传输路径中的各条链路的QoS信息。第一网络设备再将第二QoS信息分解到第一传输路径所包括的每条链路,就得到了通过第一传输路径传输的数据在5GS中的QoS信息。
如果第一网络设备未获得连接状态信息,或者第一网络设备获得的连接状态信息不包括UE与该UE所连接的设备之间的延迟信息,则第一网络设备可以根据第二QoS信息确定通过第一传输路径传输的数据在5GS中的QoS信息。
对于上述任一方式确定的通过第一传输路径传输的数据在5GS中的QoS信息,该信息可以包括第一传输路径上在5GS的多条链路的QoS信息。也就是说,第一网络设备可以将第二QoS信息按照链路进行分解,从而可以为第一传输路径上在5GS的每条链路都设置QoS信息。例如,第二QoS信息包括MDBV、MFBR、GFBR等参数中的至少一项,第一网络设备在将第二QoS信息分解时,可以使得第一传输路径所包括的每条链路的 MDBV参数的取值大于或等于第二QoS信息的MDBV参数的取值,使得第一传输路径所包括的每条链路的MFBR参数的取值大于或等于第二QoS信息的MFBR参数的取值,或者,可以使得第一传输路径所包括的每条链路的GFBR参数的取值大于或等于第二QoS信息的GFBR参数的取值。又例如,第二QoS信息包括包错误率参数,第一网络设备在将第二QoS信息分解时,可以使得第一传输路径所包括的各条链路的包错误率参数的取值之和小于或等于第二QoS信息包括的包错误率参数的取值。
再例如,第二QoS信息包括包延迟预算参数,那么第一网络设备在将第二QoS信息分解时,可以为第一传输路径所包括的各条链路都分配相应的延迟(或者,也可将“延迟”称为“时延”),则第一传输路径所包括的各条链路的延迟的总和,可以小于或等于第二QoS信息所包括的包延迟预算参数的取值。可选的,可以尽量使得第一传输路径所包括的各条链路的延迟的总和等于第二QoS信息所包括的包延迟预算参数的取值,以达到对于第二QoS信息的充分利用,且提高传输成功率。
可选的,如果第一网络设备接收了连接状态信息,且连接状态信息包括UE与该UE所连接的各个设备之间的延迟信息,那么第一网络设备可以根据第二QoS信息和连接状态信息确定通过第一传输路径传输的数据在5GS中的QoS信息。例如,第一网络设备在分解第二QoS信息时,可以考虑UE与该UE所连接的各个设备之间的延迟信息。例如,第一传输路径上的一条链路的一个端点设备为一个UE,该UE的子连接状态信息包括该UE与该UE所连接的一个设备之间的延迟信息,而该设备属于该链路(例如该设备是该链路的另一个端点设备,或者该设备位于该UE与该链路的另一个端点设备之间),那么第一网络设备根据第二QoS信息分解得到的该链路的QoS信息对应的延迟可以大于或等于该UE的子连接状态信息所包括的该UE与该设备之间的延迟,从而提高该链路上的传输成功率。
例如,第二QoS信息所包括的包延迟预算参数的取值为40ms,第一传输路径为图6C中的主站-UE1-(R)AN 1-UPF-(R)AN 2-UE2-辅站-UE2-(R)AN2-UPF-(R)AN1-UE1-主站,则第一传输路径包括UE1指向UPF的链路1、UPF指向UE2的链路2、UE2指向UPF的链路3、以及UPF指向UE1的链路4。第一网络设备可以根据第二QoS信息确定通过第一传输路径传输的数据在5GS中的QoS信息。例如一种分解第二QoS信息的方式为,为这4条链路分别分配10ms的延迟。那么通过第一传输路径传输的数据在5GS中的QoS信息包括4条链路的QoS信息,这4条链路的QoS信息对应的延迟均为10ms,而这4条链路的QoS信息对应的延迟的总和就等于第二QoS信息的包延迟预算参数的取值。
又例如,如果第一网络设备接收了连接状态信息,且连接状态信息包括UE与该UE所连接的各个设备之间的延迟信息,那么第一网络设备可以根据第二QoS信息和连接状态信息确定通过第一传输路径传输的数据在5GS中的QoS信息。例如第一传输路径为图6C中的主站-UE1-(R)AN 1-UPF-(R)AN 2-UE2-辅站-UE2-(R)AN2-UPF-(R)AN1-UE1-主站,第一传输路径包括UE1指向UPF的链路1、UPF指向UE2的链路2、UE2指向UPF的链路3、以及UPF指向UE1的链路4。UE1的子连接状态信息包括UE1指向(R)AN1的延迟为11ms,(R)AN1指向UE1的延迟为7ms,那么第一网络设备为链路1分配的QoS信息对应的延迟需要大于或等于11ms,为链路4分配的QoS信息对应的延迟需要大于或等于7ms。例如一种分解第二QoS信息的方式为,为链路1分配12ms的延迟,为链路2分配10ms的延迟,为链路3分配10ms的延迟,以及为链路4分配8ms的延迟。那么通过第一传输路径传输的数据在5GS中的QoS信息包括4条链路的QoS信息,这4条链路的QoS信息 对应的延迟的总和就等于第二QoS信息的包延迟预算参数的取值。
作为一种可选的实施方式,第一网络设备可以为第一传输路径设置一种或多种分解方式,或者说,通过第一传输路径传输的数据在5GS中的QoS信息可以包括一个或多个分解信息。其中,在通过第一传输路径传输的数据在5GS中的QoS信息包括一个分解信息的情况下,也可以认为通过第一传输路径传输的数据在5GS中的QoS信息就是一个整体,该整体称为通过第一传输路径传输的数据在5GS中的QoS信息。其中,一个分解信息可以包括第一传输路径上的一条或多条链路的QoS信息,例如,一个或多个分解信息中的每个分解信息都可以包括第一传输路径上的一条或多条链路的QoS信息。可以认为,第一网络设备在将第二QoS信息分配给第一传输路径时,可以采用一种分解方式,也可以采用多种分解方式,而在每种分解方式中,都可以获得第一传输路径上的多条链路的QoS信息,而且每种分解方式所对应的第一传输路径上的各条链路的QoS信息所对应的延迟的总和,都可以小于或等于第二QoS信息包括的包延迟预算参数的取值。为第一传输路径设置多种QoS信息的分解方式,可以便于根据网络情况为第一传输路径选择不同的分解方式,例如在某个时刻可以为第一传输路径选择分解方式1,而在下一个时刻可以为第一传输路径选择分解方式2,这使得对于链路的QoS信息的分解更为灵活,能够提高数据传输的质量和成功率。这将在后面进行具体描述。
例如,在图6B的架构中,主站要向辅站1和辅站2发送数据,且数据经过辅站1的处理后要返回主站,以及数据经过辅站2的处理后也要返回主站,例如这样的数据可采用第一传输路径来传输,第一传输路径例如为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站。该第一传输路径包括四条链路,具体为UPF-(R)AN-UE1的链路,UE1-(R)AN-UPF的链路,UPF-(R)AN-UE2的链路以及UE2-(R)AN-UPF的链路。以第二QoS信息的包延迟预算参数的取值为40ms为例,请参考表1,为通过第一传输路径传输的数据在5GS中的QoS信息的一种实现方式。
表1
  UPF→UE1 UE1→UPF UPF→UE2 UE2→UPF
0 10 10 10 10
1 11 8 8 13
2 9 10 10 11
表1中的“→”表示数据的传输方向,也表示一条链路。表1中每行代表第一传输路径的一个分解信息。第一列的0、1、2表示分解信息的索引(index),因为通过第一传输路径传输的数据在5GS中的QoS信息包括了多个分解信息,为了区分不同的分解信息,第一网络设备可以为分解信息设置索引。可以看到,表1采用了三种分解方式,在不同的分解方式下,第一传输路径上的同一条链路的QoS信息所对应的延迟可能相同,也可能不同。例如对于UE1指向的UPF这条链路,在分解方式0下,该链路的QoS信息对应的延迟为10ms,在分解方式3下,该链路的QoS信息对应的延迟也为10ms。又例如,对于UPF指向UE1的这条链路,在分解方式0下,该链路的QoS信息对应的延迟为10ms,而在分解方式1下,该链路的QoS信息对应的延迟为11ms。另外表1以第二QoS信息包括的包延迟预算参数的取值是40ms为例,可见在各个分解方式下,第一传输路径上的各条链路的QoS信息所对应的延迟的总和都等于40ms。当然表1以通过第一传输路径传输的 数据在5GS中的QoS信息包括3个分解信息为例,在实际应用中,一条传输路径的QoS信息可能包括更少或更多的分解信息,而且表1中的数值也只是示例,并不是对于本申请实施例的方案的限制。
如果数据在5GS中的传输路径除了包括第一传输路径外还包括其他的传输路径,那么第一网络设备也还可以为其他的传输路径也设置QoS信息。例如数据在5GS中还有第二传输路径,例如第一传输路径是通过UPF传输的路径,第二传输路径是D2D传输路径,或者第二传输路径是通过UPF传输的路径,第一传输路径是D2D传输路径等。那么第一网络设备也可以设置通过第二传输路径传输的数据在5GS中的QoS信息。同理,第一网络设备可以根据第二QoS信息,可选的,根据连接状态信息,确定数据在5GS中的通过第二传输路径传输的数据在5GS中的QoS信息。第一网络设备确定通过第二传输路径传输的数据在5GS中的QoS信息的方式,可参考第一网络设备确定通过第一传输路径传输的数据在5GS中的QoS信息的方式,不多赘述。
例如,在图6B的架构中,主站要向辅站1和辅站2发送数据,且数据经过辅站1的处理后要返回主站,以及数据经过辅站2的处理后也要返回主站,例如这样的数据也可采用第二传输路径来传输,以第二传输路径是图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-UE2-辅站2-UE2-(R)AN-UPF-主站,且以第二QoS信息的包延迟预算参数的取值是40ms为例,请参考表2,为通过第二传输路径传输的数据在5GS中的QoS信息的一种实现方式。
表2
  UPF→UE1 UE1→UE2 UE2→UPF
0 19 4 17
1 17 6 17
表2中的“→”表示数据的传输方向,也表示一条链路。表2中每行代表第二传输路径的一个分解信息。第一列的0、1表示分解信息的索引。可以看到,表2采用了两种分解方式,在不同的分解方式下,第二传输路径上的同一条链路的QoS信息所对应的延迟可能相同,也可能不同。另外表2以第二QoS信息包括的包延迟预算参数的取值是40ms为例,可见在各个分解方式下,第二传输路径上的各条链路的QoS信息所对应的延迟的总和都等于40ms。当然表2以通过第二传输路径传输的数据在5GS中的QoS信息包括2个分解信息为例,在实际应用中,一条传输路径的QoS信息可能包括更少或更多的分解信息,而且表2中的数值也只是示例,并不是对于本申请实施例的方案的限制。
根据表1和表2可以看到,D2D传输路径中,两个UE之间的时延会小于通过UPF转发的路径中的两个UE之间的时延。例如按照表1,从UE1到UE2需要经历20ms(对应索引0或索引2)或16ms(对应索引1),但是按照表2,从UE1到UE2就只需经历4ms(对应索引0)或6ms(对应索引1),在总延迟不变的情况下,如果通过D2D传输路径来传输数据,则可以为D2D传输路径中除了D2D连接外的其他链路分配更多的时延,从而提高数据在这些链路上的传输成功率。
如果第一网络设备得到了多条传输路径的QoS信息,那么多条路径的传输信息可以位于一个信息中。例如传输路径的QoS信息以表格形式实现,那么多条传输路径的QoS信息可以位于一个表格中。例如对于一种应用场景来说,不同的传输路径下对应的链路的数 量相同,那么不同的传输路径的QoS信息可以位于一个表格中;或者,即使不同的传输路径下对应的链路的数量不同,不同的传输路径的QoS信息也可以位于一个表格中,例如将不同的传输路径的QoS信息视为一个表格中的不同的子表格,例如表1和表2可以位于一个表格中,这样便于统一管理。对于不同的两条传输路径的QoS信息都包括分解信息的情况,那么这些分解信息也可以分别设置索引,即,不同的传输路径的QoS信息所包括的分解信息的索引可能是相同的,但由于传输路径不同,因此即使分解信息的索引相同,不同的分解信息也不会互相混淆。或者,多条路径的传输信息也可以位于不同的信息中,例如传输路径的QoS信息以表格形式实现,那么多条传输路径的QoS信息可以分别位于不同的表格中,这样可以避免混淆不同的传输路径的QoS信息。
S504、第一网络设备确定第一UE建立了协议数据单元(protocol data unit,PDU)会话。第一UE例如为所述多个UE中的一个,或者说,连接状态信息可以包括第一UE的子连接状态信息。如果以图4所示的场景为例,那么第一UE例如为图4中的UE。或者,以图6B所示的场景为例,那么第一UE例如为图6B中的UE1或UE2。或者,以图6C所示的场景为例,那么第一UE例如为图6C中的UE1或UE2。
如果第一UE需要发送数据或接收数据,那么第一UE可以发起PDU会话的建立过程。一个UE在注册到核心网时,该UE和核心网设备就都能够明确该UE可能与哪些设备通信,因此一个UE能够明确,如果通信,则是否需要经过UPF,如果需要经过UPF,就需要建立PDU会话。例如,本申请实施例的技术方案应用于图6B所示的实施例,传输路径例如为主站-UPF-(R)AN-UE1-辅站1-UE1-UE2-辅站2-UE2-(R)AN-UPF-主站。例如对于UE1来说,此时UE1虽然还不知道传输路径,但UE1能够获知,如果UE1要通信,那么UE1需要与UPF通信,因此UE1可以建立PDU会话,对于UE2来说也是类似的。
如果一个UE确定该UE通信无需经过UPF,那么该UE就无需建立PDU会话,而是建立D2D会话即可,则S504也可以改为:第一网络设备确定第一UE建立了D2D会话。因为本申请实施例主要讨论的是通过UPF转发的传输路径,因此关于该内容,将在后文的实施例中介绍。
如果第一UE建立PDU会话是为了为工业以太网中的设备转发数据,那么第一UE的PDU会话如果建立完毕,第一网络设备就可以确定第一UE需要传输数据,或者说,第一网络设备可以确定是主站和辅站之间需要传输数据,也就是说,第一网络设备可以确定数据的发送端和最终接收端。而如果第一UE建立PDU会话并不是为了为工业以太网中的设备转发数据,而是为了其他的通信过程,那么第一UE在建立PDU会话后,如果需要为工业以太网中的设备转发数据,则第一UE可以告知第一网络设备,则第一网络设备可以确定是主站和辅站之间需要传输数据,也就是说,第一网络设备可以确定数据的发送端和最终接收端。其中,第一网络设备可能是第一UE的PDU会话建立过程的参与者,那么第一网络设备可以确定第一UE建立了PDU会话;或者,第一网络设备如果不是第一UE的PDU会话建立过程的参与者,那么第一网络设备可以通过其他网络设备确定第一UE已建立了PDU会话。
S505、第一网络设备为第一UE分配传输路径。
第一网络设备确定了数据的发送端和接收端,就可以按此为第一UE分配传输路径。例如第一网络设备通过S503为该发送端和该接收端确定了一条或多条传输路径,那么第一网络设备可以从这一条或多条传输路径中为第一UE分配一条传输路径。由于D2D传输 路径并不是所有的UE都支持,例如有些UE可能并不支持建立D2D连接,因此第一网络设备在为UE分配传输路径时,可以默认分配通过UPF转发的传输路径。当然也不限于此,例如第一网络设备也可以为第一UE分配D2D传输路径。本申请实施例以第一网络设备为第一UE分配通过UPF转发的路径为例。例如第一传输路径为通过UPF转发的路径。
在一种可选的实施方式中,S503也可以发生在S505之后。也就是说,第一网络设备在获知第一UE需要传输数据后,为第一UE分配传输路径。在分配传输路径后,第一网络设备再获得通过第一传输路径传输的数据在5GS中的QoS信息。例如,第一网络设备可以直接为第一UE分配通过UPF转发的传输路径;或者,如果第一网络设备获得了连接状态信息,且连接状态信息包括UE是否支持D2D连接方式的信息,那么,如果第一UE不支持D2D连接方式,则第一网络设备可以为第一UE分配通过UPF转发的传输路径,而如果第一UE支持D2D连接方式,则第一网络设备可以为第一UE分配D2D传输路径。例如第一网络设备先为第一UE分配了第一传输路径,第一网络设备再获得通过第一传输路径传输的数据在5GS中的QoS信息,第一网络设备获得通过第一传输路径传输的数据在5GS中的QoS信息的方式可参考S503的描述。
S506、第一网络设备向UPF发送第一链路的QoS信息,相应的,UPF接收来自第一网络设备的第一链路的QoS信息。第一链路是第一传输路径包括的一条链路,第一链路的QoS信息可以包括在通过第一传输路径传输的数据在5GS中的QoS信息中。例如第一链路是UPF与第一传输路径上的下一跳设备之间的链路,例如第一传输路径为图6C中的主站-UE1-(R)AN 1-UPF-(R)AN 2-UE2-辅站,那么第一链路可以是UPF指向UE2的链路。需要注意的是,本申请的各个实施例所述的“上一跳设备”或“下一跳设备”,是相对于链路而言的。例如第一传输路径为图6C中的主站-UE1-(R)AN 1-UPF-(R)AN 2-UE2-辅站,UPF的实际的下一跳设备是(R)AN2,但由于链路是指UPF与UE2之间的链路,因此本申请实施例将UE2视为UPF的下一跳设备,同理,对于UE来说,实际的上一跳设备应该是(R)AN1,但由于链路是指UPF与UE1之间的链路,因此本申请实施例将UPF视为UE1的上一跳设备。
因为本申请实施例以第一传输路径是通过UPF转发的路径为例,因此第一网络设备需要将第一链路的QoS信息发送给UPF,以便UPF能够根据第一链路的QoS信息发送第一UE的数据包。第一网络设备可以只向UPF发送第一链路的QoS信息,而不必发送第一传输路径中其他链路的QoS信息,这样可以减小信令开销,而且UPF也能根据第一链路的QoS信息发送第一UE的数据包。在第一传输路径上,对于UPF来说,第一链路可能包括一条或多条链路,因此第一网络设备发送给UPF的第一链路的QoS信息,可包括一条链路的QoS信息,或者包括多条链路的QoS信息。例如,第一传输路径为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站,对于UPF来说,下一跳设备可以是UE1,或者是UE2,那么第一网络设备发送给UPF的第一链路的QoS信息,可以包括UPF指向UE1的链路的QoS信息,和/或,包括UPF指向UE2的链路的QoS信息。
或者,可选的,第一网络设备可以向UPF发送第一传输路径中各条链路的QoS信息(第一网络设备向UPF发送通过第一传输路径传输的数据在5GS中的QoS信息,也就认为是向UPF发送了第一链路的QoS信息),从而UPF不仅能获得第一链路的QoS信息,还能获得第一传输路径上的其他链路的QoS信息。如果通过第一传输路径传输的数据在 5GS中的QoS信息包括多个分解信息,那么第一网络设备可以从这多个分解信息中为第一UE选择一个分解信息,例如第一网络设备选择了第一分解信息。如果第一网络设备向UPF发送了通过第一传输路径传输的数据在5GS中的QoS信息,那么第一网络设备还可以将第一分解信息的索引发送给UPF,使得UPF能够获知应该使用通过第一传输路径传输的数据在5GS中的QoS信息中的哪个分解信息。
或者,可选的,如果通过第一传输路径传输的数据在5GS中的QoS信息包括多个分解信息,那么第一网络设备可以从这多个分解信息中为第一UE选择一个分解信息,并将该分解信息发送给UPF。第一网络设备向UPF发送该分解信息,也就认为是向UPF发送了第一链路的QoS信息。
可选的,第一网络设备还可以将第一链路的QoS信息发送给第一UE,第一网络设备向第一UE发送第一链路的QoS信息的方式,可参考第一网络设备向UPF发送第一链路的QoS信息的方式。另外,如果第一传输路径上还包括(R)AN,那么可选的,第一网络设备也可以将第一链路的QoS信息发送给(R)AN,第一网络设备向(R)AN发送第一链路的QoS信息的方式,可参考第一网络设备向UPF发送第一链路的QoS信息的方式。需要注意的是,对于UPF、第一UE和(R)AN来说,第一链路可能包括的是不同的链路。例如,发送给UPF的第一链路的QoS信息所涉及的第一链路,它的起始点是UPF。而发送给第一UE的第一链路的QoS信息所涉及的第一链路,它的起始点是第一UE。
S507、UPF接收第一数据包,第一数据包对应第一UE。UPF可以在第一传输路径上接收第一数据包。例如,第一传输路径为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站,第一数据包例如来自主站,或者来自(R)AN。按照第一传输路径,如果第一数据包来自主站,UPF会将第一数据包通过(R)AN发给UE1,如果第一数据包来自(R)AN,UPF会将第一数据包通过(R)AN发给UE2或主站。第一数据包对应第一UE,是指第一数据包在传输过程中会经过第一UE,第一UE可能是第一数据包的接收方,也可能是第一数据包的发送方。如果以上述第一传输路径为例,例如第一UE为UE2,那么第一数据包对应第一UE,是指UE2会接收来自UPF的第一数据包,另外,UE2也会将第一数据包再发送给辅站。
在本申请的各个实施例中,一个设备接收一个数据包,再将该数据包转发出去,该设备所接收的数据包,和该设备再转发的数据包,可能是同一个数据包,也可能不是同一个数据包,例如该设备可能会对接收的数据包进行相应处理后再转发,则严格来说这两个数据包不是同一个数据包。但为了便于描述,本申请实施例中一个设备接收的数据包和发送的数据包都使用同一名称,例如UPF接收的是第一数据包,UPF转发的也称为第一数据包。
S508、UPF按照第一链路的QoS信息,通过第一链路向第一传输路径上的下一跳设备发送第一数据包。
例如第一传输路径为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站。当UPF从主站收到待发送的第一数据包,则第一链路例如为UPF指向UE1的链路(或者说,第一链路为UPF-(R)AN-UE1的链路),UPF的下一跳设备例如为UE1。当UPF通过(R)AN从UE1收到待发送的第一数据包,则第一链路例如为UPF指向UE2的链路(或者说,第一链路为UPF-(R)AN-UE2的链路),第一传输路径上UPF的下一跳设备例如为UE2。
如果UPF在S506中接收的只是第一链路的QoS信息,那么UPF可直接使用第一链 路的QoS信息。或者,如果UPF在S506中接收的是通过第一传输路径传输的数据在5GS中的QoS信息,那么UPF可从通过第一传输路径传输的数据在5GS中的QoS信息中确定第一链路的QoS信息。或者,如果通过第一传输路径传输的数据在5GS中的QoS信息包括多个分解信息,那么UPF从通过第一传输路径传输的数据在5GS中的QoS信息中确定第一分解信息的索引所对应的第一分解信息,并根据第一分解信息确定第一链路的QoS信息。
在图5所示的实施例中,S502、S504、S505、S507和S508等均为可选的步骤。
通过上述方法,第一网络设备可以根据第一通信网络的第一QoS信息确定通过第一传输路径传输的数据在5GS中的QoS信息,其中,第一网络设备所确定的是第一传输路径上多条链路中每条链路的QoS信息,也就是说,第一网络设备可以将工业以太网的QoS信息分解到第一传输路径上的每条链路上,使得每条链路都能够明确应该按照何种QoS信息来传输,由此为5GS适配工业以太网提供了具体的实现方式,使得5GS得以适配工业以太网。而且将QoS信息分解到每条链路上,也使得整个传输路径能够得到更好的控制,以提高传输质量。
可选的,图5所示的实施例还可以包括如下步骤:
S509、UPF获得第一UE的数据的实际QoS信息。
在本申请实施例中,通信设备可以根据第三信息来获得第一UE的数据的实际QoS信息,第三信息例如包括第一信息,或包括第二信息,或包括第一信息和第二信息。对于UPF来说,例如第三信息包括第一信息和第二信息。例如,UPF可以确定第一信息和第二信息,从而可以根据第一信息和第二信息获得第一UE的数据的实际QoS信息。在本申请实施例中,UPF根据第一信息和第二信息获得的第一UE的数据的实际QoS信息,例如为第二链路的实际QoS信息,第二链路例如包括第一传输路径上该UPF上一次出现的位置与UPF现在所在的位置之间的链路。或者,UPF根据第一信息和第二信息获得的第一UE的数据的实际QoS信息,例如为累积QoS信息,该累积QoS信息例如称为第一累积QoS信息,第一累积QoS信息例如包括第一UE的数据从第一传输路径上位于5GS中的首个设备传输到UPF所经历的全部链路的实际QoS信息之和。在第一传输路径上,对于UPF来说,第二链路可能包括一条或多条链路,因此UPF获得的第二链路的实际QoS信息,可包括一条链路的实际QoS信息,或者包括多条链路的实际QoS信息。
例如,第一传输路径为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站,如果第一传输路径上UPF当前所在的位置是主站之后,那么第一传输路径上UPF是首次出现,此时UPF无法获得第一UE的数据的实际QoS信息。或者,如果第一传输路径上UPF当前所在的位置是两个(R)AN之间,则第一传输路径上UPF上一次出现的位置是在主站之后,UPF如果获得第二链路的实际QoS信息,则第二链路的实际QoS信息包括UPF指向UE1的链路(或者说,UPF-(R)AN-UE1的链路)的QoS信息,以及包括UE1指向UPF的链路(或者说,UE1-(R)AN-UPF的链路)的QoS信息。在这种场景下,UPF所获得的第二链路的实际QoS信息,实际上也就是第一累积QoS信息。或者,如果第一传输路径上UPF当前所在的位置是主站之前,则第一传输路径上UPF上一次出现的位置是在两个(R)AN之间,UPF如果获得第二链路的实际QoS信息,则第二链路的实际QoS信息UPF指向UE2的链路(或者说,UPF-(R)AN-UE2的链路)的QoS信息,以及包括UE2指向UPF的链路(或者说, UE2-(R)AN-UPF的链路)的QoS信息;而如果UPF获得第一累积QoS信息,则第一累积QoS信息包括UPF指向UE1的链路(或者说,UPF-(R)AN-UE1的链路)的QoS信息,UE1指向UPF的链路(或者说,UE1-(R)AN-UPF的链路)的QoS信息,UPF指向UE2的链路(或者说,UPF-(R)AN-UE2的链路)的QoS信息,以及包括UE2指向UPF的链路(或者说,UE2-(R)AN-UPF的链路)的QoS信息。
其中,一个的数据包的内容是UPF能够识别的,或者该数据包的包头所携带的数据包的标识(例如数据包的序列号,或者数据包的其他标识)是UPF也能识别的,而UPF对于第一传输路径也是已知的,则UPF根据对数据包的识别就能确定UPF在第一传输路径中所在的位置。以第一传输路径是图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站为例,在数据的传输过程中,UPF接收了一个数据包,如果UPF确定该数据包是第一次接收,就能确定UPF当前的位置是位于主站之后,而如果确定该数据包是第二次接收,就能确定UPF当前的位置是位于两个(R)AN之间,以此类推。如果其他通信设备(例如(R)AN或相应的UE)要识别该通信设备在第一传输路径中的位置,也可以采用类似的方法,在后文不再多赘述。
需要注意的是,在该第一传输路径中,主站和UPF之间可能是有线连接,其对应的时延等信息是固定的,因此主站和UPF之间的连接所对应的QoS信息并不在本申请实施例的考虑范围之内,因此主站和UPF之间不存在本申请实施例所定义的链路,那么就不将主站视为是UPF的上一跳设备。辅站和UE之间、以及(R)AN和UPF之间等,都是这种情况,凡是QoS信息较为固定的连接,其QoS信息均不在本申请实施例的考虑范围内。本申请实施例需要考虑的QoS信息,可包括如下一项或多项:UE与(R)AN之间的Uu接口的QoS信息,UE与UE之间的PC5接口的QoS信息,或,UE与UPF之间的QoS信息。
作为一种可选的实施方式,第一信息包括如下一项或多项:第一UE的一个或多个数据包的发送时间,发送的第一UE的数据的总数据量,或,在单位时间内发送的第一UE的数据的数据量。例如,UPF要发送第一UE的数据包,就可以获得第一信息。例如第一传输路径是图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站,那么UPF可以向(R)AN(或者说UE1)发送第一UE的数据包,也可以向(R)AN(或者说UE2)发送第一UE的数据包。UPF每发送一个第一UE的数据包,都可以记录该数据包的发送时间戳,从而获得该数据包的发送时间,那么UPF可以获得第一UE的一个或多个数据包的发送时间,这一个或多个数据包例如为第一UE通过第一传输路径传输的全部或部分数据包。例如,UPF可以获得向UE1发送的第一UE的数据包的发送时间,也可以获得向UE2发送的第一UE的数据包的发送时间。另外,UPF可以获得UPF所发送的第一UE的数据的总数据量,例如UPF可以获得向UE1发送的第一UE的数据的总数据量,也可以获得向UE2发送的第一UE的数据的总数据量。以及,UPF也可以获得在单位时间内发送的第一UE的数据的数据量(也可以理解为UPF对于第一UE的数据的发送速率),例如,例如UPF可以获得向UE1发送的第一UE的数据的发送速率,也可以获得向UE2发送的第一UE的数据的发送速率。第一UE的数据包,是指第一UE对应的数据包,对此可参考前文的介绍。
作为一种可选的实施方式,第二信息包括如下一项或多项:第一UE的一个或多个数据包的接收时间,接收的第一UE的数据的总数据量,或,在单位时间内接收的第一UE的数据的数据量。例如,UPF要接收第一UE的数据包,就可以获得第二信息。例如第一 传输路径是图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站,那么UPF可以接收来自(R)AN(或者说UE1)的第一UE的数据包,也可以接收来自(R)AN(或者说UE2)的第一UE的数据包。UPF每接收一个第一UE的数据包,都可以记录该数据包的接收时间戳,从而获得该数据包的接收时间,那么UPF可以获得第一UE的一个或多个数据包的接收时间,这一个或多个数据包例如为第一UE通过第一传输路径传输的全部或部分数据包。例如,UPF可以获得从UE1接收的第一UE的数据包的接收时间,也可以获得从UE2接收的第一UE的数据包的接收时间。另外,UPF可以获得UPF所接收的第一UE的数据的总数据量,例如UPF可以获得从UE1接收的第一UE的数据的总数据量,也可以获得从UE2接收的第一UE的数据的总数据量。以及,UPF也可以获得在单位时间内接收的第一UE的数据的数据量(也可以理解为UPF对于第一UE的数据的接收速率),例如,例如UPF可以获得从UE1接收的第一UE的数据的发送速率,也可以获得从UE2接收的第一UE的数据的发送速率。
例如,UPF记录接收时间戳的数据包,与UPF记录发送时间戳的数据包,可以是同一批数据包。例如对于一批数据包,如果第一传输路径上UPF当前所在的位置是主站之后,则UPF记录向UE1发送这批数据包中的每个数据包的时间1;如果第一传输路径上UPF当前所在的位置是两个(R)AN之间,UPF可以记录从UE1接收这批数据包中的每个数据包的时间2,以及记录向UE2发送这批数据包中的每个数据包的时间3;如果第一传输路径上UPF当前所在的位置是主站之前,UPF可以记录从UE2接收这批数据包中的每个数据包的时间4。需注意的是,时间1、时间2、时间3和时间4都可以是指时刻,而不是时长。如果第一传输路径上UPF当前所在的位置是两个(R)AN之间,而UE1到辅站1的时延以及辅站1到UE1的时延,是UPF已知的较为固定的时延,则UPF可以根据时间1和时间2获得第二链路的实际QoS信息,例如第二链路的实际QoS信息对应的延迟为时间2与时间1之间所间隔的时长,再减去UE1到辅站1的时延,以及减去辅站1到UE1的时延,所得到的时长,此时,第二链路的实际QoS信息包括UPF-(R)AN-UE1的链路的实际QoS信息,以及UE1-(R)AN-UPF的链路的实际QoS信息,此时,第一累积QoS信息与第二链路的实际QoS信息为相同的QoS信息。或者,如果第一传输路径上UPF当前所在的位置是主站之前,而UE2到辅站2的时延以及辅站2到UE2的时延,是UPF已知的较为固定的时延,则UPF可以根据时间3和时间4获得第二链路的实际QoS信息,例如第二链路的实际QoS信息对应的延迟为时间4与时间3之间所间隔的时长,再减去UE2到辅站2的时延,以及减去辅站2到UE2的时延,所得到的时长,此时第二链路的实际QoS信息包括UPF-(R)AN-UE2的链路的实际QoS信息,以及UE2-(R)AN-UPF的链路的实际QoS信息。或者,UPF可以根据时间1和时间4获得第一累积QoS信息,第一累积QoS信息包括UPF-(R)AN-UE1的链路的实际QoS信息,UE1-(R)AN-UPF的链路的实际QoS信息,UPF-(R)AN-UE2的链路的实际QoS信息,以及UE2-(R)AN-UPF的链路的实际QoS信息。当然计算实际QoS信息时可能还需考虑数据量和发送速率或接收速率等,这里只是为了说明发送时间和接收时间与数据包之间的关系。
S510、UPF根据第一分解信息,以及第一UE的数据的实际QoS信息,确定是否为第一UE重新选择分解信息。
例如,UPF可根据QoS信息对应的延迟来确定是否重新选择分解信息。例如第一UE的数据的实际QoS信息为第二链路的实际QoS信息,如果第二链路的实际QoS信息对应 的延迟与第一分解信息包括的第二链路的QoS信息对应的延迟之间的差值(或者,差值的绝对值)大于第二阈值,表明第二链路的实际QoS信息与第一分解信息包括的第二链路的QoS信息之间相差较大,或者说,表明第一分解信息对于第二链路来说并不是很合适,那么UPF可以为第一UE重新选择分解信息。而如果第二链路的实际QoS信息对应的延迟与第一分解信息包括的第二链路的QoS信息对应的延迟之间的差值(或者,差值的绝对值)小于或等于第二阈值,表明第二链路的实际QoS信息与第一分解信息包括的第二链路的QoS信息之间相差较小,或者说,表明第一分解信息对于第二链路来说较为合适,那么UPF可以不必为第一UE重新选择分解信息,而是可以继续应用第一分解信息。
第二阈值可以通过协议规定,或者可以由SMF或AMF等设备确定,或者由UPF确定等。例如第二阈值为0,或者第二阈值也可以是大于0的其他数值。
如果对于UPF来说,如果第二链路包括多条链路,且UPF获得的第二链路的实际QoS信息包括多条链路的实际QoS信息,那么UPF可根据第一分解信息以及第二链路中的一条链路的实际QoS信息,确定是否为第一UE重新选择分解信息,或者,UPF也可根据第一分解信息以及第二链路中的所有链路的实际QoS信息,确定是否为第一UE重新选择分解信息。
例如,UPF根据第一分解信息以及第二链路中的一条链路的实际QoS信息,确定是否为第一UE重新选择分解信息,包括:UPF可根据第二链路中的一条链路的实际QoS信息对应的延迟与第一分解信息包括的该链路的QoS信息对应的延迟之间的差值(或者,差值的绝对值)是否大于第二阈值,来确定是否为第一UE重新选择分解信息。
又例如,UPF根据第一分解信息以及第二链路中的所有链路的实际QoS信息,确定是否为第一UE重新选择分解信息,包括:UPF可以确定第二链路中的每条链路的实际QoS信息对应的延迟,并确定第二链路所包括的所有链路的实际QoS信息对应的延迟之和与第一分解信息包括的这些链路的QoS信息对应的延迟之和之间的差值(或者,差值的绝对值)是否大于第二阈值,如果第二链路所包括的所有链路的实际QoS信息对应的延迟之和与第一分解信息包括的这些链路的QoS信息对应的延迟之和之间的差值(或者,差值的绝对值)大于第二阈值,则UPF可以为第一UE重新选择分解信息,否则,UPF可以不必为第一UE重新选择分解信息。
或者,第一UE的数据的实际QoS信息也可能是第一累积QoS信息。例如UPF还是可根据QoS信息对应的延迟确定是否为第一UE重新选择分解信息。在这种情况下,如果第一累积QoS信息对应的延迟与第二累积QoS信息对应的延迟的差值(或者,差值的绝对值)大于第二阈值,则UPF可以为第一UE重新选择分解信息。而如果第一累积QoS信息对应的延迟与第二累积QoS信息对应的延迟的差值小于或等于第二阈值,或者,如果第一累积QoS信息对应的延迟与第二累积QoS信息对应的延迟的差值的绝对值小于或等于第二阈值,则UPF可以不必为第一UE重新选择分解信息,而是可以继续使用第一分解信息。
第二累积QoS信息例如包括第一分解信息所包括的N条链路的QoS信息对应的延迟之和,N为大于或等于0的整数。N条链路可以包括第一UE的数据从第一传输路径上位于5GS中的首个设备传输到UPF所经历的全部链路。例如第一传输路径为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站,UPF当前位于第一传输路径上的两个(R)AN之间,那么N条链路包括UPF-(R)AN-UE1的链路 以及UE1-(R)AN-UPF的链路,第二累积QoS信息可以包括第一分解信息中的UPF-(R)AN-UE1的链路的QoS信息与UE1-(R)AN-UPF的链路的QoS信息之和。
第二阈值可以通过协议规定,或者可以由SMF或AMF等设备确定,或者由UPF确定等。例如第二阈值为0,或者第二阈值也可以是大于0的其他数值。
S511、UPF为第一UE重新选择分解信息。
如果UPF根据S510确定需要为第一UE重新选择分解信息,则可执行S511,而如果UPF根据S510确定不必为第一UE重新选择分解信息,则可不执行S511。
例如,UPF可根据QoS信息对应的延迟来选择分解信息。例如UPF计算的是第二链路的实际QoS信息,则UPF可根据第二链路的实际QoS信息所对应的延迟,为第一UE重新选择分解信息。例如,UPF重新选择的分解信息所包括的第二链路的QoS信息所对应的延迟,可以大于或等于第二链路的实际QoS信息对应的延迟。这里的为第一UE重新选择分解信息,可以理解为:为还未传输数据包的链路重新确定QoS信息,进而根据更新后的QoS信息控制该链路来传输数据包。
例如,第一传输路径是图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站。例如,当UPF位于两个(R)AN之间,第二链路包括UPF-(R)AN-UE1的链路,以及包括UE1-(R)AN-UPF的链路,可参考表1,例如第一分解信息为表1中的索引0对应的分解信息,则第一分解信息包括的第二链路的QoS信息对应的延迟为20ms,M条链路包括UPF-(R)AN-UE1的链路,以及包括UE1-(R)AN-UPF的链路,第一分解信息包括的UPF-(R)AN-UE1的链路的QoS信息对应的延迟为10ms,UE1-(R)AN-UPF的链路的QoS信息对应的延迟为10ms。UPF确定的第二链路的实际QoS信息对应的延迟为18ms,可以看到,第二链路的实际QoS信息对应的延迟要小于第一分解信息包括的第二链路的QoS信息对应的延迟,也就是说,较小的延迟就能符合第二链路的需求,那么UPF可以考虑为第一UE重新选择分解信息,重新选择的分解信息所包括的第二链路的QoS信息对应的延迟例如可以尽量等于18ms,这样相当于第二链路可以节省2ms的延迟,节省出来的延迟可以供后续的链路使用,以提高后续链路的传输成功率。例如UPF从通过第一传输路径传输的数据在5GS中的QoS信息包括的分解信息中为第一UE重新选择分解信息,继续以表1为例,可以看到索引1对应的分解信息所包括的第二链路的实际QoS信息对应的延迟为19ms,索引2对应的分解信息所包括的第二链路的实际QoS信息对应的延迟也为19ms,则UPF可以为第一UE选择索引1或索引2对应的分解信息,而不再应用索引0对应的分解信息。这样虽然无法节省2ms的延迟,但也能节省1ms的延迟。通过缩短第二链路的QoS信息对应的延迟,可以相应放松第一传输路径上的其他链路的延迟,从而提高数据的传输成功率。
可选的,UPF在选择分解信息时,除了考虑已计算了实际QoS信息的链路的QoS信息外,还可以考虑M条链路的QoS信息,M为大于或等于0的整数。例如UPF计算的是第二链路的实际QoS信息,则UPF可根据第一分解信息所包括的M条链路的QoS信息所对应的延迟,以及根据第二链路的实际QoS信息所对应的延迟,为第一UE重新选择分解信息。M条链路包括第一UE的数据从第一传输路径中的首个设备传输到UPF所经历的链路中除了第二链路外的全部链路。例如,UPF重新选择的分解信息所包括的M条链路QoS信息对应的延迟之和,可大于或等于第一分解信息所包括的M条链路的QoS信息对应的延迟之和,以及,UPF重新选择的分解信息所包括的第二链路的QoS信息所对应的延迟, 可以大于或等于第二链路的实际QoS信息对应的延迟。通过这种方式,可以减小对数据包已经经过的链路的影响。
UPF可能不是第一传输路径上的最后一跳设备,而UPF有可能会重新为第一UE选择分解信息,因此可选的,UPF在向下一跳设备发送数据包时,可以在该数据包中携带UPF使用的分解信息的索引,以使得第一传输路径上的其他设备能够明确UPF究竟使用了哪个分解信息,从而使得第一传输路径上的各个设备所使用的分解信息能够一致,以满足工业以太网的QoS信息的需求。例如,UPF将第一UE的数据包发送给(R)AN,UPF发送给(R)AN的数据包可以携带通用分组无线服务隧道协议(general packet radio services tunnelling protocol-user plane,GTP-U)头和以太网头,那么UPF可以在GTP-U头和/或以太网头中添加UPF所使用的分解信息的索引。
如果第一网络设备也将第一链路的QoS信息发送给了(R)AN,那么可选的,(R)AN也可以计算第二链路的实际QoS信息,或计算第一累积QoS信息,从而决策是否要为第一UE重新选择分解信息。当然对于(R)AN来说,第二链路所包括的链路与UPF的第二链路所包括的链路可能是不同的。例如对于(R)AN来说,第二链路例如包括第一传输路径上该(R)AN上一次出现的位置与现在(R)AN所在的位置之间的链路。例如第一传输路径为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站,如果(R)AN当前处于第一传输路径上的UE1之后,那么第二链路可以包括UPF-(R)AN-UE1的链路,以及包括UE1-(R)AN-UPF的链路。需要注意的是,对于(R)AN来说,计算的应该是(R)AN-UE1的实际QoS信息,以及UE1-(R)AN的实际QoS信息,但因为UPF-(R)AN之间的时延以及(R)AN-UPF的时延都是相对固定的,可以认为是(R)AN已知的,(R)AN能够根据(R)AN-UE1的实际QoS信息、UE1-(R)AN的实际QoS信息、UPF-(R)AN之间的时延以及(R)AN-UPF的时延,得到第二链路的实际QoS信息。或者,对于(R)AN来说,第二链路例如包括第一传输路径上该(R)AN所在的链路。以上述第一传输路径为例,如果(R)AN当前处于第一传输路径上的UE1之前,那么第二链路可以是UPF-(R)AN-UE1这条链路。
如果第二链路包括第一传输路径上该(R)AN所在的链路,那么(R)AN可以根据第三信息来获得第二链路的实际QoS信息,对于(R)AN来说,第三信息可包括第一信息,或包括第二信息,或包括第一信息和第二信息。当然,对于(R)AN和UPF来说,第一信息可能是相同或不同的信息,第二信息也可能是相同或不同的信息。例如第二链路包括UPF-(R)AN-UE1的链路,(R)AN能够确定向UE1发送数据包的时间,UE1接收数据包后可以向(R)AN发送混合自动重传请求应答(hybrid automatic repeat request-acknowledge,HARQ-ACK)信息,从而(R)AN能够大致确定UE1接收数据包的时间,所以(R)AN能够确定(R)AN-UE1之间的QoS实际信息,相当于(R)AN根据第一信息能够确定第二链路的实际QoS信息。而根据前文介绍可知,UPF-(R)AN之间的QoS信息是相对固定的,对(R)AN来说可以认为是已知,因此(R)AN可以确定UPF-(R)AN-UE1的链路的实际QoS信息。又例如,第二链路包括UE1-(R)AN-UPF的链路,UE1向(R)AN发送数据包,是(R)AN提前调度的,因此(R)AN能够确定UE1发送数据包的时间,以及(R)AN也能确定(R)AN接收数据包的时间,因此(R)AN能够确定(R)AN-UE1之间的实际QoS信息,相当于(R)AN根据第二信息能够确定第二链路的实际QoS信息。
而如果第二链路包括第一传输路径上该(R)AN上一次出现的位置与现在(R)AN所在的 位置之间的链路,那么(R)AN可以根据第一信息和第二信息来获得第二链路的实际QoS信息。关于第一信息、第二信息的获取方式,以及(R)AN如何获得第二链路的实际QoS信息等内容,可参考前文的相关介绍。
或者,(R)AN也可以获得第一累积QoS信息,关于(R)AN获得第一累积QoS信息的方式也可参考前文的相关介绍。
(R)AN可以根据获得的第二链路的QoS信息或第一累积QoS信息确定是否为第一UE重新选择分解信息,关于确定方式可参考前文对于UPF的确定过程的介绍。另外,如果(R)AN确定要为第一UE重新选择分解信息,那么(R)AN重新选择分解信息的方式也可参考前文对于UPF重新选择分解信息的方式的介绍。
对于(R)AN来说,也可能不是第一传输路径上的最后一跳设备,而(R)AN有可能会重新为第一UE选择分解信息,因此可选的,(R)AN在向下一跳设备发送数据包时,可以在该数据包中携带(R)AN使用的分解信息的索引,以使得第一传输路径上的其他设备能够明确(R)AN究竟使用了哪个分解信息,从而使得第一传输路径上的各个设备所使用的分解信息能够一致,以满足工业以太网的QoS信息的需求。例如,(R)AN要将第一UE的数据包发送给第一UE,(R)AN发送给第一UE的数据包可以携带以太网头,那么(R)AN可以在以太网头中添加(R)AN所使用的分解信息的索引。又例如,(R)AN要将第一UE的数据包发送给UPF,(R)AN发送给UPF的数据包可以携带GTP-U头,那么(R)AN可以在GTP-U头中添加(R)AN所使用的分解信息的索引。
如果第一网络设备也将第一链路的QoS信息发送给了第一UE,那么可选的,第一UE也可以计算第二链路的实际QoS信息,或计算第一累积QoS信息,从而决策是否要为第一UE重新选择分解信息。当然对于第一UE来说,第二链路所包括的链路与UPF或(R)AN的第二链路所包括的链路可能是不同的。例如对于第一UE来说,第二链路例如包括第一传输路径上的上一跳设备与第一UE之间的链路。例如第一传输路径为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站,如果第一UE为UE1,那么第二链路可以包括UPF-(R)AN-UE1的链路。
对于第一UE来说,可以根据第三信息来获得第二链路的实际QoS信息。例如对于第一UE来说,第三信息包括第二信息。例如第一UE为UE1,第二链路包括UPF-(R)AN-UE1的链路,(R)AN会调度UE1接收数据包,UE1通过调度信息能够确定(R)AN发送数据包的时间,UE1也能确定UE1接收数据包的时间,从而UE1能够确定(R)AN-UE1之间的实际QoS信息,相当于UE1根据第二信息能够确定第二链路的实际QoS信息。而根据前文介绍可知,UPF-(R)AN之间的QoS信息是相对固定的,UE1在建立PDU会话时,核心网设备可以将UPF--(R)AN之间的QoS信息发送给UE1,因此UPF-(R)AN之间的QoS信息对UE1来说是已知的,因此UE1可以确定UPF-(R)AN-UE1的链路的实际QoS信息。
或者对于第一UE来说,第三信息也可能包括第一信息,或包括第一信息和第二信息。当然,对于UPF、第一UE或(R)AN来说,第一信息可能是相同或不同的信息,第二信息可能是相同或不同的信息。
第一UE可以根据获得的第二链路的QoS信息确定是否为第一UE重新选择分解信息,关于确定方式可参考前文对于UPF的确定过程的介绍。另外,如果第一UE确定要为第一UE重新选择分解信息,那么第一UE重新选择分解信息的方式也可参考前文对于UPF重新选择分解信息的方式的介绍。
对于第一UE来说,也可能不是第一传输路径上的最后一跳设备,而第一UE有可能会重新为第一UE选择分解信息,因此可选的,第一UE在向下一跳设备发送数据包时,可以在该数据包中携带第一UE使用的分解信息的索引,以使得第一传输路径上的其他设备能够明确第一UE究竟使用了哪个分解信息,从而使得第一传输路径上的各个设备所使用的分解信息能够一致,以满足工业以太网的QoS信息的需求。例如,第一UE要将第一UE的数据包发送给UPF,第一UE发送给UPF的数据包可以携带以太网头,那么第一UE可以在以太网头中添加第一UE所使用的分解信息的索引。在本申请的各个实施例中,如果要在以太网头中添加分解信息的索引,一种方式为,将分解信息的索引添加在以太网头的虚拟局域网标签(virtual local area network tag,VLAN tag)域中。
综上,可以理解为,在本申请实施例中,通信设备可以获得第一UE的数据的实际QoS信息,从而根据第一UE的链路的实际QoS信息确定是否要为第一UE重新选择分解信息。根据前文的介绍可知,通信设备例如包括第一UE、UPF或(R)AN中的一种或多种。因此,采用本申请实施例的方案,可以为一条传输路径设置QoS信息的多种分解方式,第一传输路径上的设备(例如UPF)在传输第一UE的数据时,可以根据实际网络情况相应选择合适的分解方式,以在满足工业以太网的QoS信息的同时提高数据传输的灵活性,且提高数据传输的成功率。
在图5所示的实施例中,主要以第一传输路径是通过UPF转发的路径为例。下面介绍本申请实施例提供的第二种通信方法,在该方法中所涉及的第一传输路径例如为D2D传输路径。请参见图7,为该方法的流程图。例如该方法可应用于图4所示的网络架构。
S701、第一网络设备获得工业以太网的QoS信息。为了与后文将要出现的其他的QoS信息相区分,例如将工业以太网的QoS信息称为第一QoS信息。
关于S701的更多内容,可参考图5所示的实施例中的S501。
S702、第一网络设备获得连接状态信息。
关于S702的更多内容,可参考图5所示的实施例中的S502。
S703、第一网络设备根据第一QoS信息,确定通过第一传输路径传输的数据在5GS中的QoS信息。
关于S703的更多内容,可参考图5所示的实施例中的S503。
S704、第一网络设备配置K个UE之间,建立D2D连接,K为大于或等于2的整数。
例如,第一网络设备可根据连接状态信息确定5GS中的多个UE中是否有能够支持建立D2D连接的UE对。所谓的“UE对”是指,两个UE支持在这两个UE之间建立D2D连接,这两个UE就认为是一对UE,或者说是一个UE对。对于K个UE来说,可能存在P个UE对,P例如为正整数,且P小于或等于[(K-1)+(K-2)+(K-3)+……+1]。例如对于K个UE来说,P可以等于(K-1),例如K=3,这3个UE中,UE1与UE2是一个UE对,UE2与UE3是一个UE对,那么就存在2个UE对。或者,对于K个UE来说,P可以等于K,例如K=3,这3个UE中,UE1与UE2是一个UE对,UE2与UE3是一个UE对,UE1与UE3是一个UE对,那么就存在3个UE对。或者,对于K个UE来说,P可以等于
Figure PCTCN2021074695-appb-000001
表示对x进行向上取整。例如K=4,UE1与UE2是一个UE对,UE3 与UE4是一个UE对,则这4个UE包括2个UE对。或者,P也可以是小于或等于[(K-1)+(K-2)+(K-3)+……+1]的其他取值。
那么第一网络设备可配置K个UE所涉及的部分UE对或全部UE对之间建立D2D连接,其中,是构成一个UE对的两个UE之间建立D2D连接。例如第一网络设备为PCF,那么PCF可以通过AMF向K个UE配置D2D连接的认证信息、连接信息或策略信息中的一项或多项,以配置相应的UE对建立D2D连接。例如K=4,这4个UE包括两个UE对,分别为UE1和UE2构成的UE对,以及UE3和UE4构成的UE对,那么第一网络设备可配置UE1与UE2之间建立D2D连接,以及配置UE3与UE4之间建立D2D连接。
可选的,第一网络设备可根据第一传输路径,配置K个UE中相应的UE对之间建立D2D连接。例如,虽然两个UE是一个UE对,但按照第一传输路径,这两个UE之间不必建立D2D连接,那么第一网络设备也可以不配置这两个UE建立D2D连接。
S705、第一网络设备确定第一UE建立了PDU会话。第一UE例如为工业以太网中的多个UE中的一个,或者说,连接状态信息可以包括第一UE的子连接状态信息。
关于S705的更多内容,可参考图5所示的实施例中的S504。
S706、第一网络设备为第一UE分配传输路径。
例如,第一UE是K个UE中的一个,也就是说,第一UE是支持D2D传输路径的,那么第一网络设备可以为第一UE分配D2D传输路径。例如本申请实施例中,第一传输路径为D2D传输路径。例如第一传输路径所包括的全部链路或部分链路为D2D链路。例如,第一传输路径为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-UE2-辅站2-UE2-(R)AN-UPF-主站,其中的UE1例如为第一UE。对于图6B来说,如果采用通过UPF传输的路径,那么传输路径为主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站,也就是说,数据包到达辅站1后,还需要回传到UPF,才能继续发送给辅站2,但如果采用D2D传输路径,则数据包可以从UE1直接到达UE2,大大降低了整个通信周期的时延,也为多链路传输中其他链路给予了更多的QoS调度空间。
或者,S705也可以替换为,第一网络设备确定第一UE建立了D2D会话。如果第一网络设备确定第一UE建立了D2D会话,则第一网络设备也可以为第一UE分配D2D传输路径。例如,如果将本申请实施例应用于图6C所示的场景,第一UE为UE1,且第一网络设备确定UE1建立了与UE2之间的D2D会话,那么第一网络设备可以为第一UE分配D2D传输路径。在该场景中,UE1的通信不必经过UPF,因此UE1可以不必再建立PDU会话。也就是说,对于采用D2D传输路径的UE来说,如果D2D传输路径会经过UPF,则该UE可以建立PDU会话;如果D2D传输路径不会经过UPF,则该UE可以不必建立PDU会话。对于不必建立PDU会话的UE来说,第一网络设备可以通过S704配置这些UE建立D2D连接,或者,也可以由这些UE在需要传输数据时自行建立D2D连接,无需第一网络设备配置。而一个UE对在建立D2D连接完毕后,该UE对中的一个UE可以向第一网络设备发送反馈信息,该反馈信息可指示D2D连接建立完成或D2D连接建立失败。如果该反馈信息指示D2D连接建立完成,第一网络设备就可以确定该UE对建立了D2D连接,从而第一网络设备可以为该UE对分配传输路径。
关于S706的更多内容,例如S703也可以发生在S706之后等,可参考图5所示的实施例的相关介绍。
S707、第一网络设备向第一UE发送第一链路的QoS信息,相应的,第一UE接收来自第一网络设备的第一链路的QoS信息。第一链路是第一传输路径包括的一条链路,第一链路的QoS信息可以包括在通过第一传输路径传输的数据在5GS中的QoS信息中。例如第一链路是第一UE与第一传输路径上的下一跳设备之间的链路,例如第一传输路径为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-UE2-辅站2-UE2-(R)AN-UPF-主站,第一UE为UE1,那么第一链路可以是UE1-UE2的链路。
因为本申请实施例以第一传输路径是D2D传输路径为例,因此第一网络设备需要将第一链路的QoS信息发送给第一UE,以便第一UE能够根据第一链路的QoS信息发送第一UE的数据包。关于第一网络设备向第一UE发送第一链路的QoS信息的方式,可参考图4所示的实施例中第一网络设备向UPF发送第一链路的QoS信息的介绍。
另外,即使是D2D传输路径,在该传输路径中也可能会经过UPF,例如图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-UE2-辅站2-UE2-(R)AN-UPF-主站这条传输路径就经过了UPF。因此可选的,第一网络设备也可以向UPF发送第一链路的QoS信息。如果D2D传输路径并未经过UPF,则第一网络设备可以无需向UPF发送第一链路的QoS信息。再有,即使是D2D传输路径,在该传输路径中也可能会经过(R)AN,例如图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-UE2-辅站2-UE2-(R)AN-UPF-主站这条传输路径就经过了(R)AN。因此可选的,第一网络设备也可以向(R)AN发送第一链路的QoS信息。如果D2D传输路径并未经过(R)AN,则第一网络设备可以无需向(R)AN发送第一链路的QoS信息。关于第一网络设备向UPF或(R)AN等设备发送第一链路的QoS信息的方式,可参考图4所示的实施例中第一网络设备向UPF发送第一链路的QoS信息的介绍。
S708、第一UE接收第一数据包,第一数据包对应第一UE。第一UE在第一传输路径上接收第一数据包,例如第一传输路径为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-UE2-辅站2-UE2-(R)AN-UPF-主站,UE1为第一UE,则第一UE可通过(R)AN从UPF接收第一数据包,或者从辅站接收第一数据包。
S709、第一UE按照第一链路的QoS信息,通过第一链路向第一传输路径上的下一跳设备发送第一数据包。
如果第一UE在S707中接收的只是第一链路的QoS信息,那么第一UE可直接使用第一链路的QoS信息。或者,如果第一UE在S707中接收的是通过第一传输路径传输的数据在5GS中的QoS信息,那么第一UE可从通过第一传输路径传输的数据在5GS中的QoS信息中确定第一链路的QoS信息。或者,如果第一UE在S707中接收的是通过第一传输路径传输的数据在5GS中的QoS信息,且第一UE还接收了第一分解信息的索引,表明通过第一传输路径传输的数据在5GS中的QoS信息包括多个分解信息,那么第一UE从通过第一传输路径传输的数据在5GS中的QoS信息中确定第一分解信息的索引所对应的第一分解信息,并根据第一分解信息确定第一链路的QoS信息。
在图7所示的实施例中,S702、S704~S706、S708和S709等均为可选的步骤。
在本申请实施例中,第一网络设备可以根据第一通信网络的第一QoS信息确定通过第一传输路径传输的数据在5GS中的QoS信息,其中,第一网络设备所确定的是第一传输路径上多条链路中每条链路的QoS信息,也就是说,第一网络设备可以将工业以太网的QoS信息分解到第一传输路径上的每条链路上,使得每条链路都能够明确应该按照何种QoS信息来传输,由此为5GS适配工业以太网提供了具体的实现方式,使得5GS得以适 配工业以太网。而且将QoS信息分解到每条链路上,也使得整个传输路径能够得到更好的控制,以提高传输质量。
可选的,图7所示的实施例还可以包括如下步骤:
S710、第一UE获得第一UE的数据的实际QoS信息。
第一UE获得的第一UE的数据的实际QoS信息,例如为第二链路的实际QoS信息,对于第一UE来说,第二链路例如包括第一传输路径上的上一跳设备与第一UE之间的链路。例如第一传输路径为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站,如果第一UE为UE1,那么第二链路可以包括UPF-(R)AN-UE1的链路,或者,如果第一UE为UE2,那么第二链路可以包括UPF-(R)AN-UE2的链路。
关于第一UE获得第二链路的实际QoS信息的方式,与图5中UPF获得第二链路的实际QoS信息的方式是类似的,可参考图5所示的实施例的介绍。
S711、第一UE根据第一分解信息,以及第一UE的数据的实际QoS信息,确定是否为第一UE重新选择分解信息。
关于S711的更多内容,第一UE确定是否为第一UE重新选择分解信息的方式,与图5中UPF确定是否为第一UE重新选择分解信息的方式是类似的,可参考图5所示的实施例的相关介绍。
S712、第一UE为第一UE重新选择分解信息。
如果第一UE根据S711确定需要为第一UE重新选择分解信息,则可执行S712,而如果第一UE根据S711确定不必为第一UE重新选择分解信息,则可不执行S712。关于S712的更多内容,第一UE为第一UE重新选择分解信息的方式,与图5中UPF为第一UE重新选择分解信息的方式是类似的,可参考图5所示的实施例的相关介绍。
另外,第一UE可能不是第一传输路径上的最后一跳设备,而第一UE有可能会重新为第一UE选择分解信息,因此可选的,第一UE在向下一跳设备发送数据包时,例如,第一UE要将第一UE的数据包发送给UPF,第一UE发送给UPF的数据包可以携带以太网头,那么第一UE可以在以太网头中添加第一UE所使用的分解信息的索引。在本申请的各个实施例中,如果要在以太网头中添加分解信息的索引,一种方式为,将分解信息的索引添加在以太网头的VLAN tag域中。因此,采用本申请实施例的方案,可以为一条传输路径设置QoS信息的多种分解方式,第一传输路径上的设备(例如UPF)在传输第一UE的数据时,可以根据实际网络情况相应选择合适的分解方式,以在满足工业以太网的QoS信息的同时提高数据传输的灵活性,且提高数据传输的成功率。而且本申请实施例可以尽量通过D2D传输路径来传输数据,由此可以缩短数据的传输路径,减小数据的传输时延。
图5所示的实施例介绍了传输路径是通过UPF转发的传输路径的情况,图7所示的实施例介绍了传输路径是D2D传输路径的情况。而考虑到实际的工业以太网的架构,UE之间可能会存在通过UPF转发以及D2D这两种连接方式。因此接下来介绍本申请实施例提供的第三种通信方法,该方法介绍了在这种多种连接方式并存的情况下如何实现对于QoS信息的分解。请参考图8,为该方法的流程图。例如该方法可应用于图4所示的网络架构。
S801、第一网络设备获得工业以太网的QoS信息。为了与后文将要出现的其他的QoS信息相区分,例如将工业以太网的QoS信息称为第一QoS信息。
关于S801的更多内容,可参考图5所示的实施例中的S501。
S802、第一网络设备获得连接状态信息。
关于S802的更多内容,可参考图5所示的实施例中的S502。
S803、第一网络设备根据第一QoS信息,确定数据在5GS中的通过第一传输路径传输的数据在第二通信网络中的QoS信息。
关于S803的更多内容,可参考图5所示的实施例中的S503。
S804、第一网络设备配置K个UE之间,建立D2D连接,K为大于或等于2的整数。
关于S804的更多内容,可参考图7所示的实施例中的S704。
S805、第一网络设备向UPF发送不支持D2D连接通信的UE的信息,相应的,UPF接收来自第一网络设备的不支持D2D连接通信的UE的信息。
例如,PCF将K个UE的信息发送给SMF,SMF可以从中筛选出需要经过UPF转发的UE,或者说筛选出不支持D2D连接通信的UE。例如,K个UE的信息包括UE1和UE2是一个UE对的信息,以及包括UE3和UE4是一个UE对的信息,那么SMF就可以确定UE2和UE3之间需要经过UPF转发。又例如,第一网络设备可以根据所述连接状态信息确定需要经过UPF转发的UE。
S806、第一网络设备确定第一UE建立了PDU会话。或者,第一网络设备确定第一UE建立了D2D会话。第一UE例如为工业以太网中的多个UE中的一个,或者说,连接状态信息可以包括第一UE的子连接状态信息。关于S806的更多内容,可参考图5所示的实施例中的S504,或者参考图7所示的实施例中的S705或S706。
S807、第一网络设备为第一UE分配传输路径。
如果第一UE支持与其他UE之间的D2D连接,则第一网络设备可以为第一UE分配D2D传输路径,而如果第一UE不支持与其他UE之间的D2D连接,则第一网络设备可以为第一UE分配通过UPF转发的传输路径。第一UE究竟是否支持与其他UE之间的D2D连接,第一网络设备可根据连接状态信息获知。例如,本申请实施例的技术方案应用于图6B所示的实施例,第一UE为UE1,如果UE1支持与UE2之间的D2D连接,则第一网络设备可为UE1分配D2D传输路径,该D2D传输路径例如为主站-UPF-(R)AN-UE1-辅站1-UE1-UE2-辅站2-UE2-(R)AN-UPF-主站;如果UE1不支持与UE2之间的D2D连接,则第一网络设备可为UE1分配通过UPF转发的传输路径,该传输路径例如为主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站。
关于S807的更多内容,可参考图5所示的实施例中的S505,或者参考图7所示的实施例中的S706。
S808、第一网络设备向UPF发送第一链路的QoS信息,相应的,UPF接收来自第一网络设备的第一链路的QoS信息;或者,第一网络设备向第一UE发送第一链路的QoS信息,相应的,第一UE接收来自第一网络设备的第一链路的QoS信息;或者,第一网络设备向(R)AN发送第一链路的QoS信息,相应的,(R)AN接收来自第一网络设备的第一链路的QoS信息;或者,第一网络设备向UPF和(R)AN发送第一链路的QoS信息,相应的,UPF和(R)AN分别接收来自第一网络设备的第一链路的QoS信息;或者,第一网络设备向UPF和第一UE发送第一链路的QoS信息,相应的,UPF和第一UE分别接收来自第一网络设备的第一链路的QoS信息;或者,第一网络设备向(R)AN和第一UE发送第一链路的QoS信息,相应的,(R)AN和第一UE分别接收来自第一网络设备的第一链路的QoS信息。 可理解为,第一网络设备向通信设备发送第一链路的QoS信息,相应的,通信设备接收来自第一网络设备的第一链路的QoS信息,通信设备包括UPF、(R)AN或第一UE中的一个或多个。
例如如果第一网络设备为第一UE分配的是通过UPF转发的传输路径,那么通信设备可包括UPF,而如果第一网络设备为第一UE分配的是D2D传输路径,那么通信设备可包括第一UE。或者,即使第一网络设备为第一UE分配的是D2D传输路径,但该D2D传输路径上还是可能包括UPF(例如该D2D传输路径为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-UE2-辅站2-UE2-(R)AN-UPF-主站)则在这种情况下,通信设备可以包括第一UE和UPF。另外,如果第一网络设备为第一UE分配的传输路径会经过(R)AN,那么通信设备也可以包括(R)AN。当然,对于第一UE、(R)AN和UPF来说,第一链路可能是不同的链路。
关于S808的更多内容,可参考图5所示的实施例中的S506,或参考图7所示的实施例中的S707。
S809、UPF接收第一数据包,第一数据包对应第一UE。UPF可在第一传输路径上接收第一数据包。例如第一传输路径为通过UPF转发的传输路径,例如为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站,第一UE例如为UE1(或者也可以是UE2),第一数据包例如来自第一传输路径上的主站。
如果第一网络设备为第一UE分配的是通过UPF转发的传输路径,那么第一UE的数据包就会经过UPF。或者,即使第一网络设备为第一UE分配的是D2D传输路径,例如为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-UE2-辅站2-UE2-(R)AN-UPF-主站,该传输路径会经过UPF,因此第一UE的数据包也会经过UPF。
S810、UPF按照第一链路的QoS信息,通过第一链路向第一传输路径上的下一跳设备发送第一数据包。例如第一传输路径为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站,第一网络设备在S808中发送给UPF的第一链路的QoS信息,例如包括UPF指向UE2的链路的QoS信息,则UPF可按照UPF-(R)AN-UE1的链路的QoS信息向UE2发送数据包。
关于S810的更多内容,可参考图5所示的实施例中的S508。
在图8所示的实施例中,S802、S804~S807、和S809等均为可选的步骤。
在本申请实施例中,第一网络设备可以根据第一通信网络的第一QoS信息确定通过第一传输路径传输的数据在5GS中的QoS信息,其中,第一网络设备所确定的是第一传输路径上多条链路中每条链路的QoS信息,也就是说,第一网络设备可以将工业以太网的QoS信息分解到第一传输路径上的每条链路上,使得每条链路都能够明确应该按照何种QoS信息来传输,由此为5GS适配工业以太网提供了具体的实现方式,使得5GS得以适配工业以太网。而且将QoS信息分解到每条链路上,也使得整个传输路径能够得到更好的控制,以提高传输质量。
可选的,图8所示的实施例还可以包括如下步骤:
S811、UPF获得第一UE的数据的实际QoS信息。
关于UPF获得第一UE的数据的实际QoS信息的方式,可参考图5所示的实施例中的S509。
S812、UPF根据第一分解信息,以及第一UE的数据的实际QoS信息,确定是否为第 一UE重新选择分解信息。
关于S812的更多内容,可参考图5所示的实施例中的S510。
S813、UPF为第一UE重新选择分解信息。
关于S813的更多内容,可参考图5所示的实施例中的S511。
S814、第一UE接收第二数据包,第二数据包对应第一UE。第一UE可在第一传输路径上接收第二数据包。
无论第一网络设备为第一UE分配的是通过UPF转发的传输路径还是D2D传输路径,该传输路径都会经过第一UE。例如第一传输路径为通过UPF转发的传输路径,例如为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站,第一UE例如为UE1,第一数据包例如来自第一传输路径上的UPF(或者说来自(R)AN),或者来自第一传输路径上的辅站1。
关于S814的更多内容,可参考图7所示的实施例中的S708。
S815、第一UE按照第一链路的QoS信息,通过第一链路向第一传输路径上的下一跳设备发送第二数据包。
关于S815的更多内容,可参考图7所示的实施例中的S709。
S816、第一UE获得第一UE的数据的实际QoS信息。
关于S816的更多内容,可参考图7所示的实施例中的S710。
S817、第一UE根据第一分解信息,以及第一UE的数据的实际QoS信息,确定是否为第一UE重新选择分解信息。
关于S817的更多内容,可参考图7所示的实施例中的S711。
S818、第一UE为第一UE重新选择分解信息。
关于S818的更多内容,可参考图7所示的实施例中的S712。
其中,如果第一网络设备为第一UE分配的是通过UPF转发的传输路径,则可执行S809~S813,或者执行S814~S817,或者执行S809~S813,以及S814~S817;或者,如果第一网络设备为第一UE分配的是通过D2D传输路径,则可执行S814~S817。
如果第一网络设备也将第一链路的QoS信息发送给了(R)AN,那么可选的,(R)AN也可以计算第一UE的数据的实际QoS信息,从而决策是否要为第一UE重新选择分解信息。关于这部分内容可参考图5所示的实施例的相关介绍。
本申请实施例可以为一条传输路径设置QoS信息的多种分解方式,第一传输路径上的设备(例如UPF)在传输第一UE的数据时,可以根据实际网络情况相应选择合适的分解方式,以在满足工业以太网的QoS信息的同时提高数据传输的灵活性,且提高数据传输的成功率。而且本申请实施例可以为不同的UE分配不同的传输路径,例如为能够支持D2D连接通信的UE分配D2D传输路径,以缩短数据的传输路径,减小数据的传输时延,而为不支持D2D连接通信的UE可以分配通过UPF转发的传输路径,以提高数据传输的成功率。
根据前述实施例的介绍可知,工业以太网的数据在5GS中传输,可以通过UPF进行转发,也可以通过D2D传输路径来传输。如果通过UPF转发,那么所带来的传输时延可能是比较大的,很有可能通过UPF转发的传输路径无法满足工业以太网的QoS需求。对此本申请实施例提供第四种通信方法,通过该方法,在一条传输路径不满足工业以太网的QoS需求时,能够切换到另一条传输路径,以提高数据的传输成功率。请参考图9,为该 方法的流程图。例如该方法可应用于图4所示的网络架构。
S901、第一网络设备获得工业以太网的QoS信息。为了与后文将要出现的其他的QoS信息相区分,例如将工业以太网的QoS信息称为第一QoS信息。
关于S901的更多内容,可参考图5所示的实施例中的S501。
S902、第一网络设备获得连接状态信息。
关于S902的更多内容,可参考图5所示的实施例中的S502。
S903、第一网络设备根据第一QoS信息,确定通过第一传输路径传输的数据在5GS中的QoS信息。例如第一网络设备还根据第一QoS信息,确定了数据在5GS中的通过第二传输路径传输的数据在5GS中的QoS信息。例如,第一传输路径为通过UPF转发的传输路径,第二传输路径为D2D传输路径,或者,第二传输路径为通过UPF转发的传输路径,第一传输路径为D2D传输路径。一条传输路径经过第一UE和第二UE,该传输路径是通过UPF转发的传输路径,可以实现为,在该传输路径上,第一UE和第二UE之间为通过UPF转发的链路;一条传输路径经过第一UE和第二UE,该传输路径是D2D传输路径,可以实现为,在该传输路径上,第一UE和第二UE之间为D2D链路。例如,通过UPF转发的传输路径为图6C中的主站-UE1-(R)AN 1-UPF-(R)AN 2-UE2-辅站-UE2-(R)AN2-UPF-(R)AN 1-UE1-主站,相应的D2D传输路径为图6C中的主站-UE1-UE2-辅站-UE2-UE1-主站;又例如,通过UPF转发的传输路径为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站,相应的D2D传输路径为图6B中的主站-UPF-(R)AN-UE1-辅站1-UE1-UE2-辅站2-UE2-(R)AN-UPF-主站。
关于S903的更多内容,可参考图5所示的实施例中的S503。
S904、第一网络设备确定第一UE建立了PDU会话。或者,第一网络设备确定第一UE建立了D2D会话。第一UE例如为5GS中的多个UE中的一个,或者说,连接状态信息可以包括第一UE的子连接状态信息。例如第一UE为图6B中的UE1,或者为图6C中的UE2。
S905、第一网络设备为第一UE分配传输路径。
可以类似于图5所示的实施例,第一网络设备可以默认为第一UE分配通过UPF转发的传输路径,更多内容可参考S505;或者也可以类似于图8所示的实施例,如果第一UE支持D2D连接,则第一网络设备可以为第一UE分配D2D传输路径,而如果第一UE不支持D2D连接,则第一网络设备可以为第一UE分配通过UPF转发的传输路径,更多内容可参考S807。例如,第一网络设备为第一UE分配了第一传输路径。
S906、第一网络设备向UPF发送第一链路的QoS信息,相应的,UPF接收来自第一网络设备的第一链路的QoS信息。
关于S906的更多内容,可参考图5所示的实施例中的S506,或参考图7所示的实施例中的S707。
S907、第一网络设备确定至少一个UE的切换时延信息。
至少一个UE包括需要进行路径切换的UE,至少一个UE可包括第一UE。需要进行路径切换的UE可包括,第一传输路径和第二传输路径都经过的UE,且该UE在第一传输路径上和第二传输路径上的传输方向不同。例如对于图6B所示的场景,第一传输路径为图6B所示的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站,第二传输路径为图6B所示的主站-UPF-(R)AN-UE1-辅站 1-UE1-UE2-辅站2-UE2-(R)AN-UPF-主站,那么,这两条传输路径都经过的UE包括UE1和UE2,对于UE1来说,在第一传输路径中的传输方向包括接收来自UPF的数据以及向UPF发送数据,在第二传输路径中的传输方向包括接收来自UPF的数据以及向UE2发送数据,可见,UE1在两条传输路径上的传输方向不同,则UE1就是需要进行路径切换的UE。对于UE2来说,在第一传输路径中的传输方向包括接收来自UPF的数据以及向UPF发送数据,在第二传输路径中的传输方向包括接收来自UE1的数据以及向UPF发送数据,可见,UE2在两条传输路径上的传输方向不同,则UE2也是需要进行路径切换的UE。
一个UE的切换时延信息可以指示该UE从第一传输路径切换为第二传输路径所需的时长。例如一个UE的切换时延信息可以包括如下一项或多项:通过该UE进行路径切换所需的时延,该UE进行D2D连接建立的时延,或,该UE进行路径切换完成后向网络发送切换成功的信息的时延。
S908、第一网络设备向UPF发送至少一个UE的切换时延信息,相应的,UPF接收来自第一网络设备的至少一个UE的切换时延信息。
S909、UPF接收第一数据包,第一数据包对应第一UE。UPF可在第一传输路径上接收第一数据包,也就是说,UPF开始传输第一UE的数据。如果第一网络设备为第一UE分配的是通过UPF转发的传输路径,那么第一UE的数据包就会经过UPF。或者,即使第一网络设备为第一UE分配的是D2D传输路径,在D2D传输路径上也可能包括UPF,则第一UE的数据包也会经过UPF。
S910、UPF按照第一链路的QoS信息,通过第一链路向第一传输路径上的下一跳设备发送第一数据包。例如第一传输路径为图6C中的主站-UE1-(R)AN 1-UPF-(R)AN 2-UE2-辅站,那么第一传输路径上UPF的下一跳设备为UE2,第一链路为UPF指向UE2的链路。
关于S910的更多内容,可参考图5所示的实施例中的S508。
在图9所示的实施例中,S902、S904、S905、S907~S910等均为可选的步骤。
在本申请实施例中,第一网络设备可以根据第一通信网络的第一QoS信息确定通过第一传输路径传输的数据在5GS中的QoS信息,其中,第一网络设备所确定的是第一传输路径上多条链路中每条链路的QoS信息,也就是说,第一网络设备可以将工业以太网的QoS信息分解到第一传输路径上的每条链路上,使得每条链路都能够明确应该按照何种QoS信息来传输,由此为5GS适配工业以太网提供了具体的实现方式,使得5GS得以适配工业以太网。而且将QoS信息分解到每条链路上,也使得整个传输路径能够得到更好的控制,以提高传输质量。
可选的,图9所示的实施例还可以包括如下步骤:
S911、UPF获得第一UE的数据的实际QoS信息。
关于S910的更多内容,可参考图5所示的实施例中的S509,或参考图8所示的实施例中的S811。
S912、UPF根据第一分解信息,以及第一UE的数据的实际QoS信息,确定是否为第一UE重新选择分解信息。
关于S912的更多内容,可参考图5所示的实施例中的S509,或参考图8所示的实施例中的S812。
另外,如果通过第一传输路径传输的数据在5GS中的QoS信息只包括一个分解信息,那么UPF可执行S913,S912可以不必执行。
S913、UPF确定通过第一传输路径传输的数据在5GS中的QoS信息中没有满足要求的分解信息,且通过第二传输路径传输的数据在5GS中的QoS信息能够满足要求。
例如,UPF通过S912确定要为第一UE重新选择分解信息,那么UPF就可以为第一UE重新选择分解信息,关于UPF为第一UE选择分解信息的方式,可参考图5所示的实施例中的S511,或参考图8所示的实施例中的S812。例如,UPF在执行为第一UE重新选择分解信息的处理过程后,确定通过第一传输路径传输的数据在5GS中的QoS信息中没有分解信息能够满足第一UE的数据的实际QoS信息,例如,UPF确定通过第一传输路径传输的数据在5GS中的QoS信息中,所有分解信息包括的第二链路的QoS信息对应的延迟都小于第二链路的实际QoS信息对应的延迟,则UPF可确定没有分解信息能够满足第一UE的数据的实际QoS信息对应的延迟,这样也就相当于确定了通过第一传输路径传输的数据在5GS中的QoS信息中,没有分解信息能够满足第一UE的数据的实际QoS信息。
在通过第一传输路径传输的数据在5GS中的QoS信息中没有分解信息能够满足第一UE的数据的实际QoS信息的情况下,如果UPF还获得了其他传输路径的QoS信息,则UPF可以再确定其他传输路径的QoS信息是否满足第一UE的数据的实际QoS信息。例如UPF还获得了通过第二传输路径传输的数据在5GS中的QoS信息,且UPF确定通过第二传输路径传输的数据在5GS中的QoS信息能够满足第一UE的数据的实际QoS信息。例如通过第二传输路径传输的数据在5GS中的QoS信息只包括一个分解信息,则UPF确定通过第二传输路径传输的数据在5GS中的QoS信息能够满足第一UE的数据的实际QoS信息;又例如,通过第二传输路径传输的数据在5GS中的QoS信息包括多个分解信息,则UPF确定通过第二传输路径传输的数据在5GS中的QoS信息包括的至少一个分解信息能够满足第一UE的数据的实际QoS信息。
另外,S907和S908可以发生在S909之前,图9以此为例。或者,可先执行S909~S913,在执行S913后,UPF可以向第一网络设备请求获取第一UE的切换时延信息,第一网络设备接收来自UPF的该请求后,再执行S907和S908。
S914、UPF确定至少一个UE是否能够进行路径切换。关于至少一个UE的介绍,可参考前文。
如果通过第一传输路径传输的数据在5GS中的QoS信息中没有分解信息能够满足第一UE的数据的实际QoS信息,但通过第二传输路径传输的数据在5GS中的QoS信息能够满足第一UE的数据的实际QoS信息,那么UPF可以确定至少一个UE是否能够进行路径切换,即,UPF确定至少一个UE是否能够从第一传输路径切换为第二传输路径。例如,至少一个UE的数量为1,则UPF可确定该UE的切换时延信息所指示的时长是否小于或等于第一UE的数据的存活时间,关于存活时间,在前文已有相关介绍。如果该切换时延信息所指示的时长小于或等于第一UE的数据的存活时间,表明该UE进行路径切换不会对系统产生影响,则UPF确定该UE能够进行路径切换,也就相当于确定了能够进行路径切换;而如果切换时延信息所指示的时长小于或等于第一UE的数据的存活时间,表明该UE进行路径切换会对系统产生影响,则UPF确定该UE不能进行路径切换,也就相当于确定了不能进行路径切换。
或者,如果至少一个UE的数量大于1,则UPF通过S908接收的就是多个UE的切换时延信息。UPF从中确定取值最大的切换时延信息,并确定该切换时延信息所指示的时长 是否小于或等于第一UE的数据的存活时间。如果该切换时延信息所指示的时长小于或等于第一UE的数据的存活时间,表明至少一个UE进行路径切换不会对系统产生影响,则UPF确定至少一个UE能够进行路径切换,也就相当于确定了能够进行路径切换;而如果切换时延信息所指示的时长小于或等于第一UE的数据的存活时间,表明至少一个UE进行路径切换会对系统产生影响,则UPF确定至少一个UE不能进行路径切换,也就相当于确定了不能进行路径切换。
例如,第一传输路径为图6B所示的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站,第一分解信息为表1中的索引0对应的分解信息。UPF获得的第一UE的数据的实际QoS信息为第二链路的实际QoS信息,第二链路的QoS信息对应的延迟为UPF-(R)AN-UE1的链路的QoS信息对应的延迟与UE1-(R)AN-UPF的链路的QoS信息对应的延迟之和。假设第二链路的实际QoS信息对应的延迟为24ms。根据表1可知,第一分解信息所包括的UPF-(R)AN-UE1的链路的QoS信息对应的延迟与UE1-(R)AN-UPF的链路的QoS信息对应的延迟之和为20ms,无法满足第二链路的实际QoS信息。而表1中的索引1对应的分解信息所包括的UPF-(R)AN-UE1的链路的QoS信息对应的延迟与UE1-(R)AN-UPF的链路的QoS信息对应的延迟之和为19ms,索引2对应的分解信息所包括的UPF-(R)AN-UE1的链路的QoS信息对应的延迟与UE1-(R)AN-UPF的链路的QoS信息对应的延迟之和也为19ms,均无法满足第二链路的实际QoS信息。也就是说,通过第一传输路径传输的数据在5GS中的QoS信息中没有分解信息能够满足第二链路的实际QoS信息。
例如UPF还获得了通过第二传输路径传输的数据在5GS中的QoS信息,通过第二传输路径传输的数据在5GS中的QoS信息如表2所示。那么UPF可以确定通过第二传输路径传输的数据在5GS中的QoS信息是否能够满足第二链路的实际QoS信息。由于第二链路包括两条链路,而对于UE1-(R)AN-UPF这条链路,表2中并不包括,因此UPF可将第二链路的实际QoS信息拆分到两条链路上,以根据UPF-(R)AN-UE1这条链路来评估。例如UPF可对第二链路的实际QoS信息对应的延迟取平均值,该平均值就作为第二链路所包括的每条链路的QoS信息。当然这里是以取算术平均值为例,在其他的示例中,UPF也可以取加权平均值等,或者UPF也可以按照其他方式来确定第二链路所包括的每条链路的实际QoS信息。因为第二链路的实际QoS信息为24ms,按照取算术平均值的方式,UPF确定这两条链路中的每条链路的实际QoS信息对应的延迟为12ms,即,UPF-(R)AN-UE1的链路的QoS信息对应的延迟为12ms。根据表2可知,表2中的两个索引对应的分解信息包括的UPF-(R)AN-UE1的链路的QoS信息对应的延迟均大于12ms,因此表2中的两个索引对应的分解信息均能够满足第二链路的实际QoS信息。
进一步,所述至少一个UE此时包括UE1和UE2,则UPF可以确定UE1的切换时延信息和UE2的切换时延信息中取值较大的切换时延信息,并确定该切换时延信息所指示的时长是否小于或等于第一UE的数据的存活时间,根据该确定过程,UPF可以得到确定结果。例如,如果该切换时延信息所指示的时长小于或等于第一UE的数据的存活时间,则该确定结果可以指示该切换时延信息所指示的时长小于或等于第一UE的数据的存活时间,而如果该切换时延信息所指示的时长大于第一UE的数据的存活时间,则该确定结果可以指示该切换时延信息所指示的时长大于第一UE的数据的存活时间;又例如,如果该切换时延信息所指示的时长小于或等于第一UE的数据的存活时间,则该确定结果可以指示状 态正常,而如果该切换时延信息所指示的时长大于第一UE的数据的存活时间,则该确定结果可以指示状态异常;再例如,如果该切换时延信息所指示的时长小于或等于第一UE的数据的存活时间,则该确定结果可以指示允许路径切换,而如果该切换时延信息所指示的时长大于第一UE的数据的存活时间,则该确定结果可以指示不允许路径切换。
例如第一传输路径是图6B所示的主站-UPF-(R)AN-UE1-辅站1-UE1-(R)AN-UPF-(R)AN-UE2-辅站2-UE2-(R)AN-UPF-主站,由UPF来确定至少一个UE是否能够切换传输路径,而UPF在确定时,说明UPF已经接收了一些第一UE的数据包,也就是说,已经有一部分第一UE的数据包传输到了UPF。如果UPF确定至少一个UE能够切换传输路径,那么UPF已经接收的第一UE的数据包可能会被丢弃,另外在至少一个UE进行路径切换的过程中,如果第一UE的数据包还在传输,那么这些在路径切换过程中传输的数据包也可能被丢弃。为此,UPF在确定至少一个UE是否能够切换传输路径时,会根据存活时间来确定,因为如果在第一UE的存活时间内丢包,系统是可以容忍的,或者说不会对系统造成影响,因此,如果至少一个UE的最大切换时延信息小于或等于第一UE的数据的存活时间,UPF就确定至少一个UE能够进行路径切换;而如果超过第一UE的存活时间后还出现丢包,系统可能就无法容忍,就会对系统造成影响,因此,如果至少一个UE的最大切换时延信息大于第一UE的数据的存活时间,表明在第一UE的数据的存活时间结束后至少一个UE还未完成路径切换,那么在路径切换中就还有可能出现丢包的情况,而这是系统不能容忍的,因此在这种情况下,UPF就确定至少一个UE不能进行路径切换。另外,由于涉及路径切换的UE有至少一个,也就是说,涉及路径切换的可能有一个或多个UE,因此由UPF统一确定这些UE是否进行路径切换是较为合理的。
S915、UPF向第一网络设备发送确定结果,相应的,第一网络设备接收来自UPF的确定结果。
例如,该确定结果指示切换时延信息所指示的时长小于或等于第一UE的数据的存活时间,或指示切换时延信息所指示的时长大于第一UE的数据的存活时间。如果确定结果指示切换时延信息所指示的时长小于或等于第一UE的数据的存活时间,则第一网络设备可以确定第一UE能够进行路径切换,而如果确定结果指示切换时延信息所指示的时长大于第一UE的数据的存活时间,则第一网络设备可以确定第一UE不能进行路径切换。
又例如,该确定结果指示状态正常,或指示状态异常。如果确定结果指示状态正常,则第一网络设备可以确定第一UE能够进行路径切换,而如果确定结果指示状态异常,则第一网络设备可以确定第一UE不能进行路径切换。
再例如,该确定结果指示允许路径切换,或指示不允许路径切换。如果确定结果指示允许路径切换,则第一网络设备可以确定第一UE能够进行路径切换,而如果确定结果指示不允许路径切换,则第一网络设备可以确定第一UE不能进行路径切换。
如果第一网络设备确定第一UE能够进行路径切换,则第一网络设备可指示UE进行路径切换。例如,SMF可通过AMF向UE发送路径切换信令,该路径切换信令可指示UE切换到第二传输路径。UE接收该路径切换信令后,就可以向第二传输路径切换。由于切换时延信息所指示的时长小于或等于第一UE的数据的存活时间,因此UE的路径切换不会对系统产生影响,而且通过切换能够提高第一UE的数据的传输成功率。
另外,如果第一网络设备指示第一UE切换为第二传输路径,那么第一网络设备还可以向通信设备发送第三链路的QoS信息,相应的,通信设备接收来自第一网络设备的第三 链路的QoS信息,通信设备包括UPF、(R)AN、或第一UE中的一个或多个。第三链路是第二传输路径包括的一条链路,第三链路的QoS信息可以包括在通过第二传输路径传输的数据在5GS中的QoS信息中。例如,第一网络设备向通信设备发送第三链路的QoS信息,则该第三链路可以是该通信设备与第二传输路径上的下一跳设备之间的链路。在通信设备不同的情况下,第三链路可能有所不同。
或者,可选的,第一网络设备可以向通信设备发送第二传输路径中各条链路的QoS信息(第一网络设备向通信设备发送通过第二传输路径传输的数据在5GS中的QoS信息,也就认为是向通信设备发送了第三链路的QoS信息),从而通信设备不仅能获得第三链路的QoS信息,还能获得第二传输路径上的其他链路的QoS信息。如果通过第二传输路径传输的数据在5GS中的QoS信息包括多个分解信息,那么第一网络设备可以从这多个分解信息中为第一UE选择一个分解信息,例如第一网络设备选择了第二分解信息。如果第一网络设备向通信设备发送了通过第二传输路径传输的数据在5GS中的QoS信息,那么第一网络设备还可以将第二分解信息的索引发送给通信设备,使得通信设备能够获知应该使用通过第二传输路径传输的数据在5GS中的QoS信息中的哪个分解信息。
或者,可选的,如果通过第二传输路径传输的数据在5GS中的QoS信息包括多个分解信息,那么第一网络设备可以从这多个分解信息中为第一UE选择一个分解信息,并将该分解信息发送给通信设备。第一网络设备向通信设备发送该分解信息,也就认为是向通信设备发送了第三链路的QoS信息。
通信设备如果获得了第三链路的QoS信息,则可以按照第三链路的QoS信息来发送第一UE的数据包。另外,通信设备还可以继续计算第一UE的数据的实际QoS信息,也可以继续确定第二分解信息是否需要调整等,关于这些内容可参考前文相应内容的介绍。
在本申请实施例中,如果一条传输路径无法满足实际QoS需求,那么网络可以指示UE切换传输路径,以提高数据的传输成功率以及传输质量。
在前述的实施例中,UPF可以选择分解信息,UE也可以选择分解信息。下面介绍本申请实施例提供的第五种通信方法,通过该方法,(R)AN也能选择分解信息。请参考图10,为该方法的流程图。在本申请实施例中,例如主站也通过UE接入5GS,本申请实施例所适用的场景可参考图11。
例如该方法可应用于图6C所示的网络架构。
S1001、第一网络设备获得工业以太网的QoS信息。为了与后文将要出现的其他的QoS信息相区分,例如将工业以太网的QoS信息称为第一QoS信息。
关于S1001的更多内容,可参考图5所示的实施例中的S501。
S1002、第一网络设备获得连接状态信息。
关于S1002的更多内容,可参考图5所示的实施例中的S502。
S1003、第一网络设备根据第一QoS信息,确定通过第一传输路径传输的数据在5GS中的QoS信息。
关于S1003的更多内容,可参考图5所示的实施例中的S503。
S1004、第一网络设备确定第一UE建立了PDU会话。或者,第一网络设备确定第一UE建立了D2D会话。第一UE例如为5GS中的多个UE中的一个,或者说,连接状态信息可以包括第一UE的子连接状态信息。
关于S1005的更多内容,可参考图5所示的实施例中的S504,或者可参考图7所示的 实施例中的S705或S706。
S1005、第一网络设备为第一UE分配传输路径。
可以类似于图5所示的实施例,第一网络设备可以默认为第一UE分配通过UPF转发的传输路径,更多内容可参考S505;或者也可以类似于图8所示的实施例,如果第一UE支持D2D连接通信,则第一网络设备为第一UE分配D2D传输路径,如果第一UE不支持D2D连接通信,则第一网络设备为第一UE分配通过UPF转发的传输路径,更多内容可参考S807。例如,第一网络设备为第一UE分配了第一传输路径。
S1006、第一网络设备向第二网络设备发送第一链路的QoS信息,相应的,第二网络设备接收来自第一网络设备的第一链路的QoS信息;或者,第一网络设备向第一UE发送第一链路的QoS信息,相应的,第一UE接收来自第一网络设备的第一链路的QoS信息;或者,第一网络设备向第二网络设备发送第一链路的QoS信息,相应的,第二网络设备接收来自第一网络设备的第一链路的QoS信息,以及,第一网络设备向第一UE发送第一链路的QoS信息,相应的,第一UE接收来自第一网络设备的第一链路的QoS信息。
第二网络设备例如包括UPF,或包括(R)AN,或包括UPF和(R)AN。需要注意的是,对于不同的设备,第一链路可以包括相同或不同的链路,这里只是为了方便描述而统称为第一链路。例如对于UPF、(R)AN和第一UE来说,第一链路包括的可能是同样的链路,也可能包括不同的链路。
关于第一网络设备发送第一链路的QoS信息的方式,可参考图5所示的实施例中的S506。
S1007、UPF按照第一链路的QoS信息,通过第一链路向第一传输路径上的下一跳设备发送第一数据包。
关于S1007的更多内容,可参考图5所示的实施例中的S508和S509。
在图10所示的实施例中,S1002、S1004、S1005和S1007等均为可选的步骤。
在本申请实施例中,第一网络设备可以根据第一通信网络的第一QoS信息确定通过第一传输路径传输的数据在5GS中的QoS信息,其中,第一网络设备所确定的是第一传输路径上多条链路中每条链路的QoS信息,也就是说,第一网络设备可以将工业以太网的QoS信息分解到第一传输路径上的每条链路上,使得每条链路都能够明确应该按照何种QoS信息来传输,由此为5GS适配工业以太网提供了具体的实现方式,使得5GS得以适配工业以太网。而且将QoS信息分解到每条链路上,也使得整个传输路径能够得到更好的控制,以提高传输质量。
可选的,图10所示的实施例还可以包括如下步骤:
S1008、UPF根据第一分解信息以及第一UE的数据的实际QoS信息,确定是否为第一UE重新选择分解信息。
关于S1008的更多内容,可参考图5所示的实施例中的S510~S511,或参考图8所示的实施例中的S811~S813。
S1009、(R)AN按照第一链路的QoS信息,通过第一链路向第一传输路径上的下一跳设备发送第二数据包。需注意的是,对于(R)AN来说,第一链路可以是(R)AN所经过的链路。例如第一传输路径为图6C中的主站-UE1-(R)AN 1-UPF-(R)AN 2-UE2-辅站,则第一网络设备在S1006中可以向(R)AN1发送第一链路的信息,该第一链路为UE1指向UPF的链路,对于(R)AN1来说,可按照该第一链路的QoS信息,通过该第一链路向UPF发送数据 包,和/或,第一网络设备在S1006中可以向(R)AN2发送第一链路的信息,该第一链路为UPF-(R)AN2-UE2的链路,对于(R)AN2来说,可按照该第一链路的QoS信息,通过该第一链路向UE2发送数据包。
关于S1009的更多内容,可参考图5所示的实施例中的S508和S509。
S1010、(R)AN根据第一分解信息以及第二链路的实际QoS信息,确定是否为第一UE重新选择分解信息。
关于S1010的更多内容,可参考图5所示的实施例中的S510~S511。
S1011、第一UE按照第一链路的QoS信息,通过第一链路向第一传输路径上的下一跳设备发送第三数据包。
关于S1011的更多内容,可参考图5所示的实施例中的S508和S509。
S1012、第一UE根据第一分解信息以及第二链路的实际QoS信息,确定是否为第一UE重新选择分解信息。
关于S1012的更多内容,可参考图5所示的实施例中的S510~S511。
在本申请实施例中,由于UPF、(R)AN和第一UE都有可能选择分解信息,那么为了使得第一传输路径上的其他设备能够明确当前究竟使用的是哪个分解信息,可选的,通信设备在向第一传输路径上的下一跳设备发送第一UE的数据包时,可以在该数据包内携带当前使用的分解信息的索引,以使得第一传输路径上的其他设备能够明确该通信设备究竟使用了哪个分解信息,从而使得第一传输路径上的各个设备所使用的分解信息能够一致,以满足工业以太网的QoS信息的需求。该通信设备例如包括如下一个或多个:UPF,(R)AN,或,第一UE。
例如,UPF要将第一UE的数据包发送给(R)AN,UPF发送给(R)AN的数据包可以携带GTP-U头和以太网头,那么UPF可以在GTP-U头和/或以太网头中添加UPF所使用的分解信息的索引。又例如,(R)AN要将第一UE的数据包发送给第一UE,(R)AN发送给第一UE的数据包可以携带以太网头,那么(R)AN可以在以太网头中添加(R)AN所使用的分解信息的索引。又例如,(R)AN要将第一UE的数据包发送给UPF,(R)AN发送给UPF的数据包可以携带GTP-U头,那么(R)AN可以在GTP-U头中添加(R)AN所使用的分解信息的索引。又例如,UPF要将第一UE的数据包发送给第一UE,UPF发送给第一UE的数据包可以携带以太网头,那么UPF可以在以太网头中添加UPF所使用的分解信息的索引。再例如,第一UE要将第一UE的数据包发送给UPF,第一UE发送给UPF的数据包可以携带以太网头,那么第一UE可以在以太网头中添加第一UE所使用的分解信息的索引。在本申请的各个实施例中,如果要在以太网头中添加分解信息的索引,一种方式为,将分解信息的索引添加在以太网头的VLAN tag域中。
本申请实施例提供了工业以太网的主站和辅站都是通过UE无线接入的场景,并且设计了(R)AN参与的动态QoS调度机制,通过在数据包的包头携带分解信息的索引,能够使得第一传输路径上的设备都能感知当前使用的分解信息,从而能够更灵活地进行动态的QoS调度,充分利用网络资源完成工业以太网的QoS要求。
图11给出了本申请实施例提供的一种通信装置的结构示意图。所述通信装置1100可以是图5所示的实施例、图7所示的实施例、图8所示的实施例、图9所示的实施例或图10所示的实施例所述的通信设备或该通信设备的芯片系统,用于实现上述方法实施例中对应于通信设备的方法。通信设备例如包括前述实施例所述的第二网络设备和/或第一UE。 或者,所述通信装置也可以是图5所示的实施例、图7所示的实施例、图8所示的实施例、图9所示的实施例或图10所示的实施例所述的第一网络设备或第一网络设备的芯片系统,用于实现上述方法实施例中对应于第一网络设备的方法。具体的功能可以参见上述方法实施例中的说明。
通信装置1100包括一个或多个处理器1101。处理器1101也可以称为处理单元,可以实现一定的控制功能。所述处理器1101可以是通用处理器或者专用处理器等。例如,包括:基带处理器,中央处理器等。所述基带处理器可以用于对通信协议以及通信数据进行处理。所述中央处理器可以用于对通信装置1100进行控制,执行软件程序和/或处理数据。不同的处理器可以是独立的器件,也可以是设置在一个或多个处理电路中,例如,集成在一个或多个专用集成电路上。
可选的,通信装置1100中包括一个或多个存储器1102,用以存储指令1104,所述指令1104可在所述处理器上被运行,使得通信装置1100执行上述方法实施例中描述的方法。可选的,所述存储器1102中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选的,通信装置1100可以包括指令1103(有时也可以称为代码或程序),所述指令1103可以在所述处理器上被运行,使得所述通信装置1100执行上述实施例中描述的方法。处理器1101中可以存储数据。
可选的,通信装置1100还可以包括收发器1105以及天线1106。收发器1105可以称为收发单元、收发机、收发电路、收发器,输入输出接口等,用于通过天线1106实现通信装置1100的收发功能。
可选的,通信装置1100还可以包括以下一个或多个部件:无线通信模块,音频模块,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接口,电源管理模块,天线,扬声器,麦克风,输入输出模块,传感器模块,马达,摄像头,或显示屏等等。可以理解,在一些实施例中,通信装置1100可以包括更多或更少部件,或者某些部件集成,或者某些部件拆分。这些部件可以是硬件,软件,或者软件和硬件的组合实现。
本申请实施例中描述的处理器1101和收发器1105可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency identification,RFID)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、或电子设备等上。实现本文描述的通信装置,可以是独立设备(例如,独立的集成电路,手机等),或者可以是较大设备中的一部分(例如,可嵌入在其他设备内的模块),具体可以参照前述关于通信设备,以及第一网络设备的说明,在此不再赘述。
本申请实施例提供了一种终端设备,该终端设备(为描述方便,称为UE)可用于前述各个实施例中。所述终端设备包括用以实现图5所示的实施例、图7所示的实施例、图8所示的实施例、图9所示的实施例或图10所示的实施例中所述的第一UE功能的相应的手段(means)、单元和/或电路。例如,终端设备,包括收发模块,用以支持终端设备实现收发功能,和,处理模块,用以支持终端设备对信号进行处理。
图12给出了本申请实施例提供的一种终端设备的结构示意图。
该终端设备1200可适用于图1、图3、图4、图6B或图6C中的任一个附图所示的架构中。为了便于说明,图12仅示出了终端设备1200的主要部件。如图12所示,终端设 备1200包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备1200进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏,显示屏,麦克风,键盘等主要用于接收用户输入的数据以及对用户输出数据。
本领域技术人员可以理解,为了便于说明,图12仅示出了一个存储器和处理器。在一些实施例中,终端设备1200可以包括多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备1200的收发单元1210,将具有处理功能的处理器视为终端设备1200的处理单元1220。如图12所示,终端设备1200包括收发单元1210和处理单元1220。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1210中用于实现接收功能的器件视为接收单元,将收发单元1210中用于实现发送功能的器件视为发送单元,即收发单元1210包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
本申请实施例还提供了一种网络设备,该网络设备可用于前述各个实施例中。所述网络设备包括用以实现图5所示的实施例、图7所示的实施例、图8所示的实施例、图9所示的实施例或图10所示的实施例中所述的第一网络设备的功能的手段(means)、单元和/或电路。或者,所述网络设备包括用以实现图5所示的实施例、图7所示的实施例、图8所示的实施例、图9所示的实施例或图10所示的实施例中所述的第二网络设备的功能的手段、单元和/或电路。例如,该网络设备包括收发模块,用以支持第一网络设备或第二网络设备实现收发功能,和,处理模块,用以支持第一网络设备或第二网络设备对信号进行处理。
图13给出了本申请实施例提供的一种网络设备的结构示意图。如图13所示,网络设备可适用于图1、图3、图4、图6B或图6C中的任一个附图所示的架构中。该网络设备包括:基带装置1301,射频装置1302、天线1303。在上行方向上,射频装置1302通过天线1303接收终端设备发送的信息,将终端设备发送的信息发送给基带装置1301进行处理。在下行方向上,基带装置1301对终端设备的信息进行处理,并发送给射频装置1302,射频装置1302对终端设备的信息进行处理后经过天线1303发送给终端设备。
基带装置1301包括一个或多个处理单元13011,存储单元13012和接口13013。其中处理单元13011用于支持网络设备执行上述方法实施例中网络设备的功能。存储单元13012用于存储软件程序和/或数据。接口13013用于与射频装置1302交互信息,该接口包括接口电路,用于信息的输入和输出。在一种实现中,所述处理单元为集成电路,例如一个或多个ASIC,或,一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。存储单元13012与处理单元13011可以位于同一个芯片中,即片内存储元件。或者存储单元13012也可以与处理单元13011处于不同芯片上,即片外存储元件。所述存储单元13012可以是一个存储器,也可以是多个存储器或存储元件的统称。
网络设备1300可以通过一个或多个处理单元调度程序的形式实现上述方法实施例中的部分或全部步骤。例如实现图5所示的实施例、图7所示的实施例、图8所示的实施例、图9所示的实施例或图10所示的实施例中的任一个实施例中第一网络设备或第二网络设备的相应的功能。所述一个或多个处理单元可以支持同一种制式的无线接入技术,也可以支持不同种制式的无线接入制式。
在本申请所提供的几个实施例以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的计算机可读存储介质,可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    第一网络设备获得第一通信网络的第一服务质量QoS信息;
    所述第一网络设备根据所述第一QoS信息,确定通过第一传输路径传输的数据在第二通信网络中的QoS信息,其中,所述通过第一传输路径传输的数据在第二通信网络中的QoS信息包括所述第一传输路径上多条链路的QoS信息,其中,所述多条链路中各链路的一个端点为所述第二通信网络中的一个终端设备,且所述多条链路均位于所述第二通信网络中;
    所述第一网络设备向通信设备发送第一链路的QoS信息,所述第一链路的QoS信息包括在所述通过第一传输路径传输的数据在第二通信网络中的QoS信息中,所述第一链路为所述通信设备与所述第一传输路径上的下一跳设备之间的链路,其中,所述通信设备为第二网络设备或第一终端设备。
  2. 根据权利要求1所述的方法,其特征在于,所述第一网络设备根据所述第一QoS信息,确定通过第一传输路径传输的数据在第二通信网络中的QoS信息,包括:
    所述第一网络设备将所述第一QoS信息映射为第二QoS信息,所述第二QoS信息为应用于所述第二通信网络的QoS信息;
    所述第一网络设备根据所述第二QoS信息,确定所述通过第一传输路径传输的数据在第二通信网络中的QoS信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一网络设备根据所述第一QoS信息,确定通过第一传输路径传输的数据在第二通信网络中的QoS信息,包括:
    所述第一网络设备根据所述第一QoS信息和连接状态信息,确定所述通过第一传输路径传输的数据在第二通信网络中的QoS信息,所述连接状态信息用于表示位于所述第二通信网络中的多个终端设备的连接状态,所述多个终端设备能够为位于所述第一通信网络中的设备传输数据,作为所述多条链路中各链路的一个端点的终端设备属于所述多个终端设备。
  4. 根据权利要求3所述的方法,其特征在于,所述连接状态信息包括第一终端设备与所述第一终端设备所连接的各个设备之间的延迟信息,和/或,包括第一终端设备是否支持D2D连接方式的信息,所述第一终端设备是所述多个终端设备中的一个终端设备。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述通过第一传输路径传输的数据在第二通信网络中的QoS信息包括一个或多个分解信息,所述一个或多个分解信息中的每个分解信息包括所述第一传输路径上的多条链路的QoS信息,其中,在不同的分解信息中,所述第一传输路径上的至少一条链路的QoS信息不同。
  6. 根据权利要求5所述的方法,其特征在于,所述第一网络设备向通信设备发送第一链路的QoS信息,包括:
    所述第一网络设备向所述通信设备发送所述通过第一传输路径传输的数据在第二通信网络中的QoS信息。
  7. 根据权利要求5或6所述的方法,其特征在于,在所述通过第一传输路径传输的数据在第二通信网络中的QoS信息包括多个分解信息的情况下,所述方法还包括:
    所述第一网络设备从所述通过第一传输路径传输的数据在第二通信网络中的QoS信息包括的所述一个或多个分解信息中,确定所述通信设备对应的第一分解信息;
    所述第一网络设备向所述通信设备发送所述第一分解信息的索引。
  8. 根据权利要求1~7任一项所述的方法,其特征在于,所述第一传输路径上的部分链路或全部链路为设备到设备D2D链路。
  9. 根据权利要求1~8任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备向所述第二网络设备发送不支持D2D连接通信的终端设备的信息。
  10. 根据权利要求1~9任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备根据所述第一QoS信息,确定通过第二传输路径传输的数据在所述第二通信网络中的QoS信息,其中,所述通过第二传输路径传输的数据在所述第二通信网络中的QoS信息包括所述第二传输路径上多条链路的QoS信息;
    所述第一网络设备向所述第二网络设备发送切换时延信息,所述切换时延信息用于指示第一终端设备从所述第一传输路径切换为所述第二传输路径所需的时长,其中,所述第一传输路径中,所述第一终端设备与第三终端设备之间为D2D链路,所述第二传输路径中,所述第一终端设备与所述第三终端设备之间为经过所述第二网络设备的链路,或者,所述第一传输路径中,所述第一终端设备与第三终端设备之间为经过所述第二网络设备的链路,所述第二传输路径中,所述第一终端设备与所述第三终端设备之间为D2D链路。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备接收来自所述第二网络设备的确定结果;
    在所述确定结果指示所述切换时延信息所指示的时长小于或等于所述第一终端设备的数据的存活时间的情况下,所述第一网络设备指示所述第一终端设备切换为所述第二传输路径。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备向所述第二网络设备和/或所述第一终端设备发送所述通过第二传输路径传输的数据在第二通信网络中的QoS信息。
  13. 一种通信方法,其特征在于,包括:
    通信设备接收第一链路的QoS信息,所述第一链路为所述通信设备与第一传输路径上的下一跳设备之间的链路,其中,所述第一传输路径在第二通信网络中包括多条链路,所述多条链路中各链路的一个端点为一个终端设备,所述一个终端设备能够为位于第一通信网络中的设备传输数据,所述第一链路为所述多条链路中的一条链路;
    所述通信设备接收第一数据包,所述第一数据包对应第一终端设备;
    所述通信设备按照所述第一链路的QoS信息,通过所述第一链路向所述下一跳设备发送所述第一数据包。
  14. 根据权利要求13所述的方法,其特征在于,通信设备接收第一链路的QoS信息,包括:
    所述通信设备接收通过所述第一传输路径传输的数据在所述第二通信网络中的QoS信息,其中,所述通过所述第一传输路径传输的数据在所述第二通信网络中的QoS信息包括所述第一传输路径上在所述第二通信网络中的多条链路的QoS信息,所述多条链路的QoS信息包括所述第一链路的QoS信息。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述通信设备接收第一分解信息的索引,其中,所述通过第一传输路径传输的数据在所述第二通信网络中的QoS信息包括一个或多个分解信息,所述一个或多个分解信息中的 每个分解信息包括所述第一传输路径上在所述第二通信网络的多条链路的QoS信息,在不同的分解信息中,所述第一传输路径上的至少一条链路的QoS信息不同,所述第一分解信息是所述一个或多个分解信息中的一个分解信息。
  16. 根据权利要求15所述的方法,其特征在于,所述第一链路的QoS信息是所述第一分解信息的索引所对应的所述第一链路的QoS信息。
  17. 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:
    所述通信设备获得所述第一终端设备的数据的实际QoS信息;
    所述通信设备根据所述第一分解信息,以及所述第一终端设备的数据的实际QoS信息,确定是否为所述第一终端设备重新选择分解信息。
  18. 根据权利要求17所述的方法,其特征在于,所述通信设备根据所述第一分解信息,以及所述第一终端设备的数据的实际QoS信息,确定是否为所述第一终端设备重新选择分解信息,包括:
    在所述第一终端设备的数据的实际QoS信息对应的时延与所述第一分解信息所包括的第二链路的QoS信息对应的时延的差值大于第一阈值的情况下,所述通信设备为所述第一终端设备重新选择分解信息,所述第二链路为所述第一终端设备的数据的实际QoS信息对应的链路。
  19. 根据权利要求18所述的方法,其特征在于,所述通信设备为所述第一终端设备重新选择分解信息,包括:
    所述通信设备根据所述第一终端设备的数据的实际QoS信息,为所述第一终端设备重新选择分解信息,其中,重新选择的分解信息所包括的所述第二链路的QoS信息对应的时延大于或等于所述第一终端设备的数据的实际QoS信息对应的时延。
  20. 根据权利要求17所述的方法,其特征在于,所述通信设备获得所述第一终端设备的数据的实际QoS信息,包括:
    所述通信设备获得第一累积QoS信息,所述第一累积QoS信息包括所述第一终端设备的数据从所述第一传输路径中的首个设备传输到所述通信设备所经历的全部链路的实际QoS信息之和。
  21. 根据权利要求20所述的方法,其特征在于,所述通信设备根据所述第一分解信息,以及所述第一终端设备的数据的实际QoS信息,确定是否为所述第一终端设备重新选择分解信息,包括:
    在所述第一累积QoS信息对应的时延与第二累积QoS信息对应的时延的差值大于第二阈值的情况下,所述通信设备为所述第一终端设备重新选择分解信息;
    其中,所述第二累积QoS信息对应的时延包括所述第一分解信息包括的N条链路的QoS信息对应的时延之和,所述N条链路为所述第一终端设备的数据从所述第一传输路径中的首个设备传输到所述通信设备所经历的全部链路,N为正整数。
  22. 根据权利要求21所述的方法,其特征在于,所述通信设备为所述第一终端设备重新选择分解信息,包括:
    所述通信设备根据所述第一累积QoS信息和所述第二累积QoS信息,为所述第一终端设备重新选择分解信息,其中,重新选择的分解信息所包括的所述N条链路的QoS信息对应的时延之和大于或等于所述第一累积QoS信息对应的时延。
  23. 根据权利要求17~22任一项所述的方法,其特征在于,所述方法还包括:
    所述通信设备接收通过第二传输路径传输的数据在所述第二通信网络中的QoS信息,所述通过第二传输路径传输的数据在第二通信网络中的QoS信息包括所述第二传输路径上的链路的QoS信息,所述第二传输路径是所述第一终端设备对应的传输路径。
  24. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    所述通信设备确定所述通过第一传输路径传输的数据在第二通信网络中的QoS信息无法满足所述第一终端设备的数据的实际QoS信息,但所述通过第二传输路径传输的数据在第二通信网络中的QoS信息能够满足所述第一终端设备的数据的实际QoS信息,所述第二QoS信息为第二通信网络的QoS信息,其中,所述第一传输路径中,第一终端设备与第二终端设备之间为D2D链路,所述第二传输路径中,所述第一设备与所述第二终端设备之间为经过所述第二网络设备的链路,或者,所述第一传输路径中,第一终端设备与第二终端设备之间为经过所述第二网络设备的链路,所述第二传输路径中,所述第一终端设备与所述第二终端设备之间为D2D链路;
    所述通信设备确定切换时延信息所指示的时长是否小于或等于所述第一终端设备的数据的存活时间,所述切换时延信息用于指示所述第一终端设备从所述第一传输路径切换为所述第二传输路径所需的时长;
    所述通信设备向第一网络设备发送确定结果。
  25. 根据权利要求24所述的方法,其特征在于,
    所述确定结果用于指示所述切换时延信息所指示的时长小于或等于所述第一终端设备的数据的存活时间,或指示所述切换时延信息所指示的时长大于所述第一终端设备的数据的存活时间;或,
    所述确定结果用于指示状态正常,或指示状态异常;或,
    所述确定结果用于指示允许切换路径,或指示不允许切换路径。
  26. 根据权利要求13~25任一项所述的方法,其特征在于,所述通信设备通过所述第一链路向所述下一跳设备发送所述第一数据包,包括:
    所述通信设备通过所述第一链路向所述下一跳设备发送携带了所述第一终端设备的数据的分解信息的索引的所述第一数据包。
  27. 一种通信装置,其特征在于,包括:处理器和存储器;所述存储器用于存储一个或多个计算机程序,所述一个或多个计算机程序包括计算机执行指令,当所述通信装置运行时,所述处理器执行所述存储器存储的所述一个或多个计算机程序,以使得所述通信装置执行如权利要求1~12中任一项所述的方法,或使得所述通信装置执行如权利要求13~26中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~12中任一项所述的方法,或使得所述计算机执行如权利要求13~26中任一项所述的方法。
  29. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~12中任一项所述的方法,或使得所述计算机执行如权利要求13~26中任一项所述的方法。
  30. 一种芯片系统,其特征在于,所述芯片系统包括:
    处理器和接口,所述处理器用于从所述接口调用并运行指令,当所述处理器执行所述指令时,实现如权利要求1~12中任一项所述的方法,或实现如权利要求13~26中任一项 所述的方法。
PCT/CN2021/074695 2021-02-01 2021-02-01 一种通信方法及装置 WO2022160346A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180009625.2A CN115211169A (zh) 2021-02-01 2021-02-01 一种通信方法及装置
PCT/CN2021/074695 WO2022160346A1 (zh) 2021-02-01 2021-02-01 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074695 WO2022160346A1 (zh) 2021-02-01 2021-02-01 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2022160346A1 true WO2022160346A1 (zh) 2022-08-04

Family

ID=82652946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074695 WO2022160346A1 (zh) 2021-02-01 2021-02-01 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN115211169A (zh)
WO (1) WO2022160346A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034464A1 (en) * 2018-11-14 2020-02-20 Zte Corporation Methods, apparatus and systems for satisfying a time control requirement in a wireless communication
CN110996368A (zh) * 2019-11-22 2020-04-10 中国科学院计算机网络信息中心 一种应用于智能工厂的异构融合网络架构及路由配制方法
US20200259896A1 (en) * 2019-02-13 2020-08-13 Telefonaktiebolaget Lm Ericsson (Publ) Industrial Automation with 5G and Beyond

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034464A1 (en) * 2018-11-14 2020-02-20 Zte Corporation Methods, apparatus and systems for satisfying a time control requirement in a wireless communication
US20200259896A1 (en) * 2019-02-13 2020-08-13 Telefonaktiebolaget Lm Ericsson (Publ) Industrial Automation with 5G and Beyond
CN110996368A (zh) * 2019-11-22 2020-04-10 中国科学院计算机网络信息中心 一种应用于智能工厂的异构融合网络架构及路由配制方法

Also Published As

Publication number Publication date
CN115211169A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
EP3509371B1 (en) Method and device for transmitting message
CN112586033A (zh) 用于通过无线电接入网的时间敏感联网的技术
TWI717490B (zh) 中繼傳輸的方法和裝置
WO2021004191A1 (zh) 一种支持时间敏感网络的方法及装置
JP7389243B2 (ja) QoSマッピング
US10750357B2 (en) Data transmission method and apparatus, and related device
CN113746585A (zh) 授时方法和通信装置
CN113938904A (zh) 数据传输的方法和装置
TW201818712A (zh) 切換通訊模式的方法、終端設備和網路設備
CN113228717B (zh) 一种通信方法及装置
WO2023284551A1 (zh) 通信方法、装置和系统
WO2022160346A1 (zh) 一种通信方法及装置
WO2022252651A1 (zh) 一种无线通信方法及装置
WO2022188035A1 (zh) 一种通信方法及装置
US20230021043A1 (en) HANDLING OVERLAPPING OF MULTIPLE PHYSICAL UPLINK SHARED CHANNELS (PUSCHs)
CN116155875A (zh) 一种数据传输的方法及通信装置
CN114698145A (zh) 用于传输数据的方法和装置
WO2023185608A1 (zh) 一种数据传输的方法及通信装置
WO2022017504A1 (zh) 信息控制方法、装置及通信设备
WO2022222748A1 (zh) 中继通信方法和装置
WO2023185769A1 (zh) 通信方法、通信装置和通信系统
WO2023056852A1 (zh) 一种通信方法、装置及系统
JP2023542669A (ja) データ伝送方法、リンク品質検出方法、通信装置、及び記憶媒体
WO2023001172A1 (zh) 推荐比特率确定方法、装置及相关设备
CN116319161A (zh) 通信的方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921946

Country of ref document: EP

Kind code of ref document: A1