WO2022160200A1 - 触控模组及其制作方法、触控显示装置 - Google Patents

触控模组及其制作方法、触控显示装置 Download PDF

Info

Publication number
WO2022160200A1
WO2022160200A1 PCT/CN2021/074219 CN2021074219W WO2022160200A1 WO 2022160200 A1 WO2022160200 A1 WO 2022160200A1 CN 2021074219 W CN2021074219 W CN 2021074219W WO 2022160200 A1 WO2022160200 A1 WO 2022160200A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
area
electrodes
region
bridge
Prior art date
Application number
PCT/CN2021/074219
Other languages
English (en)
French (fr)
Inventor
王新星
柳在健
孙雪菲
刘丽艳
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/074219 priority Critical patent/WO2022160200A1/zh
Priority to GB2215879.4A priority patent/GB2609824A/en
Priority to US17/607,622 priority patent/US20230341983A1/en
Priority to CN202180000090.2A priority patent/CN115190992A/zh
Publication of WO2022160200A1 publication Critical patent/WO2022160200A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a touch module and a method for manufacturing the same, and a touch display device.
  • OLED Organic Light-Emitting Diode, Organic Light Emitting Diode
  • the driving electrodes (Tx) and sensing electrodes (Rx) in the touch module are made of Metal Mesh electrode materials, which have the advantages of low resistance, lightness, and high sensitivity.
  • the disclosure provides a touch module, a manufacturing method thereof, and a touch display device.
  • the bridging area, the boundary area and the main body area include cutting openings, which eliminates the Mura phenomenon (or, the moiré phenomenon) caused by the bridging area and the boundary area.
  • a touch module includes: a base substrate; an array of touch units arranged on the base substrate, the touch units comprising first touch electrodes extending along a first direction and arranged along a second direction The two second touch electrodes on both sides of the first touch electrodes, the first direction and the second direction intersect; wherein, the touch unit further includes: located on the two second touch electrodes a bridging area between, a boundary area between the first touch electrode and the second touch electrode, and a bridging area between at least one of the first touch electrode and the second touch electrode
  • An inner body region; the bridge region, the border region, and the body region each include cut openings.
  • the first touch electrodes and the second touch electrodes comprise metal meshes; the bridging area, the boundary area, and the cut openings in the body area have essentially the same distribution density.
  • the distribution density of the cut openings in the bridge region is about 0.9-1.1 times the distribution density of the cut openings in the body region.
  • the ratio of the area of the bridge region to the area of the touch unit is in the range of about 1/10000 ⁇ 1/500.
  • the ratio of the number of sub-pixels covered by the bridge region to the number of sub-pixels covered by the touch control unit is in the range of about 3 ⁇ 10 ⁇ 4 to 4 ⁇ 10 ⁇ 3 .
  • a first dimension of the bridging region in the first direction is greater than a second dimension of the bridging region in the second direction.
  • the ratio of the second size to the first size is in the range of about 0.3-1.
  • a touch display device includes a display panel and the touch module according to any of the above embodiments, and the touch module is arranged on a light emitting surface of the display panel.
  • the first touch electrodes and the second touch electrodes comprise metal meshes; the bridging area, the boundary area, and the cut openings in the body area have essentially the same distribution density.
  • the distribution density of the cut openings in the bridge region is about 0.9-1.1 times the distribution density of the cut openings in the body region.
  • the ratio of the area of the bridge region to the area of the touch control unit is in the range of about 1/10000 ⁇ 1/500.
  • the ratio of the number of sub-pixels covered by the bridge region to the number of sub-pixels covered by the touch control unit is in the range of about 3 ⁇ 10 ⁇ 4 to 4 ⁇ 10 ⁇ 3 .
  • a first dimension of the bridging region in the first direction is greater than a second dimension of the bridging region in the second direction.
  • the ratio of the second size to the first size is in the range of about 0.3-1.
  • a manufacturing method of a touch module includes: providing a base substrate; arranging an array of touch control units on the base substrate, the touch control units including first touch electrodes extending along a first direction and disposed on the base substrate along a second direction. two second touch electrodes on both sides of the first touch electrode, the first direction and the second direction intersect; the touch unit further includes: a bridge area located between the two second touch electrodes , a boundary area located between the first touch electrodes and the second touch electrodes, and a main body area located inside at least one of the first touch electrodes and the second touch electrodes; and forming cutting openings in the bridging region, the boundary region, and the body region.
  • Figure 1 shows the basic structure of the touch unit
  • FIG. 2 shows the basic structure of another touch unit
  • FIG. 3 is a schematic structural diagram of a touch module according to an embodiment of the present disclosure.
  • FIG. 4 shows a schematic structural diagram of a touch control unit according to an embodiment of the present disclosure
  • FIG. 5 shows a schematic structural diagram of a touch control unit according to another embodiment of the present disclosure
  • 6A-6E show schematic structural diagrams of metal grids
  • FIG. 7 shows a schematic structural diagram of a touch control unit according to an embodiment of the present disclosure
  • FIG. 8 shows a schematic structural diagram of a touch control unit according to another embodiment of the present disclosure.
  • FIG. 9 shows a schematic diagram of a bridging area of a touch control unit according to an embodiment of the present disclosure.
  • FIG. 10 shows a schematic structural diagram of a bridge of a touch control unit according to an embodiment of the present disclosure
  • FIG. 11 shows a schematic structural diagram of a touch display device according to an embodiment of the present disclosure
  • FIG. 12 shows an optical simulation result of a touch module according to an embodiment of the present disclosure.
  • FIG. 13 shows a flowchart of a method for fabricating a touch module according to an embodiment of the present disclosure.
  • the disclosure provides a touch module, a manufacturing method thereof, and a touch display device.
  • the bridging area, the boundary area and the main body area include cutting openings, which eliminates the Mura phenomenon (or, the moiré phenomenon) caused by the bridging area and the boundary area.
  • the inventors found that during the manufacturing process of the touch display device, after the touch module and the display module such as the OLED backplane are superimposed, the OLED touch display device has metal grids with different patterns, which will cause optical Mura Phenomenon (for example, Mura such as dots, lines, and blocks in the dark state, brightness differences at different azimuth angles in the bright state).
  • optical Mura Phenomenon for example, Mura such as dots, lines, and blocks in the dark state, brightness differences at different azimuth angles in the bright state.
  • the touch control unit is generally composed of two adjacent emitting electrode patterns and two adjacent sensing electrode patterns, wherein the emitting electrode pattern and the sensing electrode pattern basically each occupy half of the area.
  • the bridge between the emitter electrode (Tx) or the sensing electrode (Rx) is defined as the bridge region 10
  • the boundary between the emitter electrode and the sensing electrode is defined as a bridge region 10 .
  • the other regions are the body regions 30 of the emitter electrode or the sense electrode. If the bridging distance of the bridging region 10 and the pattern design of the metal grid are defective, it will lead to more serious point-like or block-like Mura.
  • the bridging area is the portion indicated by the dotted frame 10 , and is composed of a Tx connection portion and an Rx connection portion.
  • the Tx connecting portion connects adjacent emitter electrode patterns (Tx) inside the touch unit 100
  • the Rx connecting portion connects adjacent sensing electrode patterns (Rx) inside the touch unit 100 .
  • the Tx connection portion and the Rx connection portion constitute a laminated structure.
  • the bridging area is the part indicated by the dotted frame 205 , and is formed by the connection part of the first touch electrode 203 and the connection part of the second touch electrode 204 .
  • the connecting portion of the second touch electrode 204 may be a bridge 209 as shown in FIG. 9 .
  • the connection parts of the first touch electrodes 203 and the bridges 209 form a stacked structure.
  • connection parts of the first touch electrodes 203 in the bridge region may include one or more conductive patterns, and the connection parts (eg, bridges 209 ) of the second touch electrodes 204 in the bridge region may also One or more conductive patterns are included.
  • FIG. 3 is a schematic structural diagram of a touch module according to an embodiment of the present disclosure.
  • the touch control module 200 includes: a base substrate 201 ; and an array of touch control units 202 arranged on the base substrate 201 .
  • the touch unit 202 includes a first touch electrode 203 extending along the first direction X and two touch electrodes 203 arranged along the second direction Y on both sides of the first touch electrode 203 For the second touch electrodes 204, the first direction X and the second direction Y intersect; wherein, the touch unit 202 further includes: a bridge area 205 located between the two second touch electrodes 204, located in The boundary area 206 between the first touch electrodes 203 and the second touch electrodes 204 , and a boundary area 206 located inside at least one of the first touch electrodes 203 and the second touch electrodes 204
  • the main body region 207 ; the bridging region 205 , the border region 206 , and the main body region 207 all include cut openings 208 .
  • the bridging area, the boundary area and the main body area include cutting openings. Therefore, when the touch module is used in a touch display device, the Mura phenomenon (or the moiré phenomenon) caused by the bridging area, the boundary area and the main body area is eliminated.
  • the present disclosure also provides a design method of FMLOC (Flexible Multi-Layer On Cell, flexible multi-layer On Cell structure). Design the Tx and Rx bridging regions, border regions, and body regions within a complete FMLOC cycle so that in each touch sensing unit, the bridging regions, border regions, and body regions include cutting openings. Thereby, an optimized design of the touch unit can be obtained, in which the Mura due to the superposition of the FMLOC and the OLED is significantly reduced.
  • FMLOC Flexible Multi-Layer On Cell, flexible multi-layer On Cell structure
  • the present disclosure can also be applied to other types of multi-layer On Cell structures and devices, and is especially suitable for metal mesh On Cell touch structures.
  • the touch unit of the metal mesh On Cell touch structure can be made of, for example, a layered metal mesh as shown in FIGS. 6A to 6E , wherein the metal mesh is formed by repeatedly arranged mesh patterns.
  • the On Cell touch structure is arranged on the display panel, so the grid pattern can be selected according to the specific arrangement of the sub-pixel units in the display panel.
  • the first touch electrodes 203 may be emitter electrodes (Tx), and the first touch electrodes 203 may also be sensing electrodes (Rx).
  • the second touch electrodes 204 may be sensing electrodes (Rx), and the second touch electrodes 204 may also be emitter electrodes (Tx).
  • the first touch electrodes 203 are emitter electrodes (Tx)
  • the second touch electrodes 204 are sensing electrodes (Rx).
  • the first touch electrodes 203 are sensing electrodes (Rx)
  • the second touch electrodes 204 are emitter electrodes (Tx).
  • the first touch electrodes 203 and the second touch electrodes 204 include metal meshes 220 ; the bridging regions 205 , the The border region 206, and the cut openings 208 in the body region 207 have substantially the same distribution density.
  • the "distribution density" of cut openings in a metal mesh refers to the ratio of the number of cut openings within a repeating unit to the number of mesh patterns within the repeating unit in a certain direction. For example, if 20 of the 100 wires extending in a certain direction have fractures, the "distribution density" of the cut openings in that direction is 20%. In some embodiments, the “distribution density" of cut openings in each direction is equal.
  • the distribution density of the cut openings in the bridge region is about 0.9-1.1 times the distribution density of the cut openings in the body region. Approximate refers to the value within the allowable process error and measurement error range, and does not strictly limit the limit.
  • the distribution density of cutting openings in the main body region can be used as a reference, and the distribution density of cutting openings in the bridging region can be adjusted so that each region has substantially the same distribution density of cutting openings in all directions. Thereby, the Mura phenomenon can be further eliminated.
  • the ratio of the area of the bridge region to the area of the touch control unit is in the range of about 1/10000 ⁇ 1/500.
  • “about” refers to a numerical value within an allowable range of process error and measurement error, not strictly limiting the limit.
  • the size of the bridge area determines the size of the touch electrode. Therefore, the design of the bridge region has an influence on the coupling capacitance between the touch electrodes. Specifically, the smaller the area of the bridge region, the larger the coupling capacitance. However, if the area of the bridge area is too small, the resistance increases and the touch sensitivity increases, resulting in crosstalk. Therefore, the present disclosure provides the area ratio of the bridge area to the touch unit.
  • the ratio of the number of sub-pixels covered by the bridge region to the number of sub-pixels covered by the touch control unit is in the range of about 3 ⁇ 10 ⁇ 4 to 4 ⁇ 10 ⁇ 3 .
  • the number of sub-pixels corresponding to the touch unit is 135*90, and the number of sub-pixels corresponding to the bridge area may be between 2*2 and 9*6.
  • the first size of the bridging region 205 in the first direction X is larger than that of the bridging region 205 in the second direction Y the second size.
  • the shape of the bridge region 205 is elongated. That is, for a given bridging region area, the aspect ratio of the bridging region is reduced.
  • the aspect ratio is the ratio of the number of sub-pixels corresponding to the distance between the two second touch electrodes 204 to the number of sub-pixels corresponding to the bridge region in the second direction Y.
  • the edges of the first touch electrodes and the second touch electrodes may have a zigzag shape, a stepped shape, a straight shape, a curved shape or an irregular shape, and the like.
  • the ratio of the second size to the first size is in the range of about 0.3-1.
  • FIG. 10 shows a schematic structural diagram of a bridge of a touch control unit according to an embodiment of the present disclosure.
  • the two second touch electrodes 204 are connected to each other via a through hole 210 and a bridge 209 , and the through hole 210 penetrates through the insulating layer (or, the passivation layer) 211 .
  • the bridge 209 spans the bridge area, and the material of the bridge 209 may be metal or conductive metal oxide.
  • FIG. 11 shows a schematic structural diagram of a touch display device according to an embodiment of the present disclosure.
  • the touch display device 300 includes a display panel 301 and the touch module 200 described in any of the above embodiments, and the touch module 200 is arranged on the light emitting surface of the display panel 301 superior.
  • the touch display device provided by the embodiment of the present disclosure has the same advantages as the above-mentioned touch module, which will not be repeated here.
  • the first touch electrodes 203 and the second touch electrodes 204 include metal meshes 220 ; the bridging regions 205 , the The border region 206, and the cut openings 208 in the body region 207 have substantially the same distribution density.
  • the distribution density of the cut openings in the bridge region is about 0.9-1.1 times the distribution density of the cut openings in the body region.
  • the distribution density of cutting openings in the main body region can be used as a reference, and the distribution density of cutting openings in the bridging region can be adjusted so that each region has substantially the same distribution density of cutting openings in all directions. Thereby, the Mura phenomenon can be further eliminated.
  • the ratio of the area of the bridge region to the area of the touch control unit is in the range of about 1/10000 ⁇ 1/500.
  • the size of the bridge area determines the size of the touch electrode. Therefore, the design of the bridge region has an influence on the coupling capacitance between the touch electrodes. Specifically, the smaller the area of the bridge region, the larger the coupling capacitance. However, if the area of the bridge area is too small, the resistance increases and the touch sensitivity increases, resulting in crosstalk. Therefore, the present disclosure provides the area ratio of the bridge area to the touch unit.
  • the ratio of the number of sub-pixels covered by the bridge region to the number of sub-pixels covered by the touch control unit is in the range of about 3 ⁇ 10 ⁇ 4 to 4 ⁇ 10 ⁇ 3 .
  • the number of sub-pixels corresponding to the touch unit is 135*90, and the number of sub-pixels corresponding to the bridge area may be between 2*2 and 9*6.
  • the first size of the bridging region 205 in the first direction X is larger than that of the bridging region 205 in the second direction Y the second size.
  • the shape of the bridge region 205 is elongated. That is, for a given bridging region area, the aspect ratio of the bridging region is reduced.
  • the aspect ratio is the ratio of the number of sub-pixels corresponding to the distance between the two second touch electrodes 204 to the number of sub-pixels corresponding to the bridge region in the second direction Y.
  • the edges of the first touch electrodes and the second touch electrodes may have a zigzag shape, a stepped shape, a straight shape, a curved shape or an irregular shape, and the like.
  • the ratio of the second size to the first size is in the range of about 0.3-1.
  • Embodiments of the present disclosure further provide capacitance, sensitivity and optical simulation results of the touch unit.
  • the capacitance obtained by the touch unit shown in FIG. 7 is 0.56 pF, and the sensitivity is 4.56%.
  • the capacitance obtained by the touch unit shown in FIG. 8 is 0.505 pF, and the sensitivity is 5.02%.
  • FIG. 12 shows an optical simulation result of a touch module composed of the touch units shown in FIGS. 7 and 8 . It can be seen that with the touch module provided by the present disclosure, the Mura phenomenon is significantly suppressed.
  • FIG. 13 shows a flowchart of a method for fabricating a touch module according to an embodiment of the present disclosure.
  • the method includes: S11 providing a base substrate; S12 arranging an array of touch control units on the base substrate, the touch control units including first touch electrodes extending along a first direction and arranged in a second direction along a second direction.
  • the touch unit further comprises: located between the two second touch electrodes a bridge area, a boundary area between the first touch electrodes and the second touch electrodes, and a body located inside at least one of the first touch electrodes and the second touch electrodes and S13 forming cutting openings in the bridging region, the boundary region, and the body region.
  • the bridging area, the boundary area and the main body area include cutting openings. Therefore, when the touch module is used in a touch display device, the Mura phenomenon (or the moiré phenomenon) caused by the bridging area, the boundary area and the main body area is eliminated.
  • the cutting openings in the present disclosure are substantially slits, and the cutting openings can be formed on the first touch electrodes and the second touch electrodes by using a process such as photolithography and sawing.
  • the cutting opening and the slit between the first touch electrode and the second touch electrode may be formed simultaneously in the same process step.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本公开提供了一种触控模组及其制作方法、触控显示装置。所述触控模组包括:衬底基板;布置在所述衬底基板上的触控单元的阵列,所述触控单元包括沿第一方向延伸的第一触控电极和沿第二方向布置在所述第一触控电极两侧的两个第二触控电极,所述第一方向和第二方向相交;其中,所述触控单元进一步包括:位于所述两个第二触控电极之间的桥接区,位于所述第一触控电极和所述第二触控电极之间的边界区,以及位于所述第一触控电极和所述第二触控电极之至少一者的内部的主体区;所述桥接区、所述边界区、以及所述主体区均包括切割开口。

Description

触控模组及其制作方法、触控显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种触控模组及其制作方法、触控显示装置。
背景技术
OLED(Organic Light-Emitting Diode,有机发光二极管)显示器件具有更轻薄、柔韧性好、色域高、视野广、响应速度快、功耗低及分辨率高等优点,已成为近几年显示领域的研究热点。On Cell触控面板是柔性OLED显示屏降低厚度、提高柔性的关键技术之一。相对于ITO透明电极,触控模组中的驱动电极(Tx)和感应电极(Rx)采用金属网(Metal Mesh)电极材料具有低电阻、轻薄、高灵敏度等优势。
发明内容
公开提供了一种触控模组及其制作方法、触控显示装置。在每个触控感应单元中,桥接区、边界区和主体区都包括切割开口,消除了桥接区和边界区所引起的Mura现象(或,云纹现象)。
根据本公开的一个方面,提供了一种触控模组。所述触控模组包括:衬底基板;布置在所述衬底基板上的触控单元的阵列,所述触控单元包括沿第一方向延伸的第一触控电极和沿第二方向布置在所述第一触控电极两侧的两个第二触控电极,所述第一方向和第二方向相交;其中,所述触控单元进一步包括:位于所述两个第二触控电极之间的桥接区,位于所述第一触控电极和所述第二触控电极之间的边界区,以及位于所述第一触控电极和所述第二触控电极之至少一者的内部的主体区;所述桥接区、所述边界区、以及所述主体区均包括切割开口。
可选地,在一些实施例中,所述第一触控电极和所述第二触控电极包括金属网格;所述桥接区、所述边界区、以及所述主体区中的切割开口具有基本上相同的分布密度。
可选地,在一些实施例中,所述桥接区中的切割开口的分布密度是所述主体区中的切割开口的分布密度的约0.9~1.1倍。
可选地,在一些实施例中,所述桥接区的面积和所述触控单元的 面积的比值在约1/10000~1/500的范围内。
可选地,在一些实施例中,所述桥接区覆盖的子像素数量和所述触控单元覆盖的子像素数量的比值在约3×10 -4~4×10 -3的范围内。
可选地,在一些实施例中,所述桥接区在所述第一方向上的第一尺寸大于所述桥接区在所述第二方向上的第二尺寸。
可选地,在一些实施例中,所述第二尺寸和所述第一尺寸的比值在约0.3~1的范围内。
根据本公开的另一方面,提供了一种触控显示装置。所述触控显示装置包括显示面板和如以上任一实施例所述的触控模组,所述触控模组布置在所述显示面板的出光面上。
可选地,在一些实施例中,所述第一触控电极和所述第二触控电极包括金属网格;所述桥接区、所述边界区、以及所述主体区中的切割开口具有基本上相同的分布密度。
可选地,在一些实施例中,所述桥接区中的切割开口的分布密度是所述主体区中的切割开口的分布密度的约0.9~1.1倍。
可选地,在一些实施例中,所述桥接区的面积和所述触控单元的面积的比值在约1/10000~1/500的范围内。
可选地,在一些实施例中,所述桥接区覆盖的子像素数量和所述触控单元覆盖的子像素数量的比值在约3×10 -4~4×10 -3的范围内。
可选地,在一些实施例中,所述桥接区在所述第一方向上的第一尺寸大于所述桥接区在所述第二方向上的第二尺寸。
可选地,在一些实施例中,所述第二尺寸和所述第一尺寸的比值在约0.3~1的范围内。
根据本公开的又一方面,提供了一种触控模组的制作方法。所述方法包括:提供衬底基板;在所述衬底基板上布置触控单元的阵列,所述触控单元包括沿第一方向延伸的第一触控电极和沿第二方向布置在所述第一触控电极两侧的两个第二触控电极,所述第一方向和第二方向相交;所述触控单元进一步包括:位于所述两个第二触控电极之间的桥接区,位于所述第一触控电极和所述第二触控电极之间的边界区,以及位于所述第一触控电极和所述第二触控电极之至少一者的内部的主体区;以及在所述桥接区、所述边界区、以及所述主体区形成切割开口。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了触控单元的基本结构;
图2示出了另一种触控单元的基本结构;
图3示出了根据本公开实施例的触控模组的结构示意图;
图4示出了根据本公开实施例的触控单元的结构示意图;
图5示出了根据本公开另一实施例的触控单元的结构示意图;
图6A-6E示出了金属网格的结构示意图;
图7示出了根据本公开实施例的触控单元的结构示意图;
图8示出了根据本公开另一实施例的触控单元的结构示意图;
图9示出了根据本公开实施例的触控单元的架桥区的示意图;
图10示出了根据本公开实施例的触控单元的架桥的结构示意图;
图11示出了根据本公开实施例的触控显示装置的结构示意图;
图12示出了根据本公开实施例的触控模组的光学仿真结果;以及
图13示出了根据本公开实施例的触控模组的制作方法的流程图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
公开提供了一种触控模组及其制作方法、触控显示装置。在每个触控感应单元中,桥接区、边界区和主体区都包括切割开口,消除了桥接区和边界区所引起的Mura现象(或,云纹现象)。
发明人发现,在触控显示装置的制作过程中,当触控模组和诸如OLED背板的显示模组叠合后,OLED触控显示装置具有不同图案的金 属网格,这会导致光学Mura现象(例如,暗态下的点状、线状及块状等Mura,亮态下不同方位角的亮度差异)。
触控单元一般由两个相邻的发射电极图案和两个相邻的感应电极图案构成,其中发射电极图案和感应电极图案基本各占一半面积。如图1和图2所示,在触控模组的一个触控单元100中,发射电极(Tx)或感应电极(Rx)的搭桥处被定义为桥接区10,发射电极与感应电极分界处被定义为边界区20,其他区域为发射电极或感应电极的主体区30。如果桥接区10的桥接距离和金属网格的图案设计存在缺陷,会导致较严重的点状或块状Mura。
在图1和图2所示的触控单元100中,桥接区是由虚线框10表示的部分,由Tx连接部和Rx连接部构成。所述Tx连接部在触控单元100内部连接相邻的发射电极图案(Tx),所述Rx连接部在触控单元100内部连接相邻的感应电极图案(Rx)。Tx连接部和Rx连接部构成层叠结构。
在图4和图5所示的触控单元202中,桥接区是由虚线框205表示的部分,由第一触控电极203的连接部和第二触控电极204的连接部构成。其中,第二触控电极204的连接部可以是如图9所示的架桥209。第一触控电极203的连接部和所述架桥209构成层叠结构。
在一些实施例中,桥接区中的第一触控电极203的连接部可以包括一个或多个导电图案,桥接区中的第二触控电极204的连接部(例如,架桥209)也可以包括一个或多个导电图案。
根据本公开的一个方面,提供了一种触控模组。图3示出了根据本公开实施例的触控模组的结构示意图。如图3所示,所述触控模组200包括:衬底基板201;布置在所述衬底基板201上的触控单元202的阵列。如图4和图5所示,所述触控单元202包括沿第一方向X延伸的第一触控电极203和沿第二方向Y布置在所述第一触控电极203两侧的两个第二触控电极204,所述第一方向X和第二方向Y相交;其中,所述触控单元202进一步包括:位于所述两个第二触控电极204之间的桥接区205,位于所述第一触控电极203和所述第二触控电极204之间的边界区206,以及位于所述第一触控电极203和所述第二触控电极204之至少一者的内部的主体区207;所述桥接区205、所述边界区206、以及所述主体区207均包括切割开口208。
根据本公开的实施例,在每个触控感应单元中,桥接区、边界区和主体区都包括切割开口。由此,当所述触控模组用在触控显示装置中的时候,消除了桥接区、边界区和主体区所引起的Mura现象(或,云纹现象)。
由此,本公开还提供了一种FMLOC(Flexible Multi-Layer On Cell,柔性多层On Cell结构)的设计方法。对一个完整FMLOC周期内Tx与Rx桥接区、边界区和主体区进行设计,使得在每个触控感应单元中,桥接区、边界区和主体区都包括切割开口。由此,可以得到触控单元的优化设计,其中由于FMLOC与OLED叠合而导致的Mura被显著减轻。
本公开也可以用于其他类型的多层On Cell结构和器件,尤其适用于金属网格On Cell触控结构。金属网格On Cell触控结构的触控单元可以例如由如图6A~6E所示的层状的金属网格制成,其中金属网格是由重复地排布的网格图案所形成。On Cell触控结构布置在显示面板上,因此可以根据显示面板中的子像素单元的具体布置来选择网格图案。
在本公开的实施例中,所述第一触控电极203可以是发射电极(Tx),所述第一触控电极203也可以是感应电极(Rx)。所述第二触控电极204可以是感应电极(Rx),所述第二触控电极204也可以是发射电极(Tx)。例如,在一个实施例中,所述第一触控电极203是发射电极(Tx),所述第二触控电极204是感应电极(Rx)。在另一个实施例中,所述第一触控电极203是感应电极(Rx),所述第二触控电极204是发射电极(Tx)。
可选地,在一些实施例中,如图7和图8所示,所述第一触控电极203和所述第二触控电极204包括金属网格220;所述桥接区205、所述边界区206、以及所述主体区207中的切割开口208具有基本上相同的分布密度。
在本公开的上下文中,金属网格中的切割开口的“分布密度”指的是,某一方向上,一个重复单元内切割开口的数量与该重复单元内网格图案的数量之比。例如,在某一方向上延伸的100条金属线里,有20条金属线具有断口,那么在该方向上的切割开口的“分布密度”就是20%。在一些实施例中,各方向上的切割开口的“分布密度”是相等的。
可选地,在一些实施例中,所述桥接区中的切割开口的分布密度是所述主体区中的切割开口的分布密度的约0.9~1.1倍。约是指允许工艺误差和测量误差范围内的数值,不严格限定界限。
在具体实施中,可以以主体区中的切割开口的分布密度作为基准,通过调节桥接区中的切割开口的分布密度,使得在各个方向上各个区域具有基本上相同的切割开口的分布密度。由此,可以进一步消除Mura现象。
可选地,在一些实施例中,所述桥接区的面积和所述触控单元的面积的比值在约1/10000~1/500的范围内。在本公开的上下文中,“约”是指允许工艺误差和测量误差范围内的数值,不严格限定界限。
在触控单元中,桥接区的尺寸决定了触控电极的尺寸。因此桥接区的设计对触控电极之间的耦合电容具有影响。具体地,桥接区的面积越小,耦合电容越大。但是桥接区的面积过小会导致电阻的增加以及触控灵敏度的增加,从而产生串扰。因此本公开提供了桥接区相对于触控单元的面积占比。
可选地,在一些实施例中,所述桥接区覆盖的子像素数量和所述触控单元覆盖的子像素数量的比值在约3×10 -4~4×10 -3的范围内。
例如,所述触控单元对应的子像素数量为135*90,桥接区对应的子像素数量可以在2*2~9*6之间。
可选地,在一些实施例中,如图4和图5所示,所述桥接区205在所述第一方向X上的第一尺寸大于所述桥接区205在所述第二方向Y上的第二尺寸。
如图9所示,桥接区205的形状为细长型。也就是说,对于给定的桥接区面积,使桥接区的横纵比降低。所述横纵比即为两个第二触控电极204之间的距离对应的子像素数量与架桥区在第二方向Y上对应的子像素数量之比。本领域技术人员能够理解,第一触控电极和第二触控电极的边缘可以具有折线形、阶梯形、直线形、曲线形或者不规则形状等。
可选地,在一些实施例中,所述第二尺寸和所述第一尺寸的比值在约0.3~1的范围内。
图10示出了根据本公开实施例的触控单元的架桥的结构示意图。在一些实施例中,如图10所示,两个第二触控电极204经由通孔210 和架桥209彼此相连,所述通孔210贯穿绝缘层(或,钝化层)211。本领域技术人员能够理解,所述架桥209横跨桥接区,并且所述架桥209的材料可以是金属或者导电金属氧化物。
根据本公开的另一方面,提供了一种触控显示装置。图11示出了根据本公开实施例的触控显示装置的结构示意图。如图11所示,所述触控显示装置300包括显示面板301和如以上任一实施例所述的触控模组200,所述触控模组200布置在所述显示面板301的出光面上。
本公开实施例提供的触控显示装置具有和上述触控模组相同的优点,在此不再赘述。
可选地,在一些实施例中,如图7和图8所示,所述第一触控电极203和所述第二触控电极204包括金属网格220;所述桥接区205、所述边界区206、以及所述主体区207中的切割开口208具有基本上相同的分布密度。
可选地,在一些实施例中,所述桥接区中的切割开口的分布密度是所述主体区中的切割开口的分布密度的约0.9~1.1倍。
在具体实施中,可以以主体区中的切割开口的分布密度作为基准,通过调节桥接区中的切割开口的分布密度,使得在各个方向上各个区域具有基本上相同的切割开口的分布密度。由此,可以进一步消除Mura现象。
可选地,在一些实施例中,所述桥接区的面积和所述触控单元的面积的比值在约1/10000~1/500的范围内。
在触控单元中,桥接区的尺寸决定了触控电极的尺寸。因此桥接区的设计对触控电极之间的耦合电容具有影响。具体地,桥接区的面积越小,耦合电容越大。但是桥接区的面积过小会导致电阻的增加以及触控灵敏度的增加,从而产生串扰。因此本公开提供了桥接区相对于触控单元的面积占比。
可选地,在一些实施例中,所述桥接区覆盖的子像素数量和所述触控单元覆盖的子像素数量的比值在约3×10 -4~4×10 -3的范围内。
例如,所述触控单元对应的子像素数量为135*90,桥接区对应的子像素数量可以在2*2~9*6之间。
可选地,在一些实施例中,如图4和图5所示,所述桥接区205在所述第一方向X上的第一尺寸大于所述桥接区205在所述第二方向 Y上的第二尺寸。
如图9所示,桥接区205的形状为细长型。也就是说,对于给定的桥接区面积,使桥接区的横纵比降低。所述横纵比即为两个第二触控电极204之间的距离对应的子像素数量与架桥区在第二方向Y上对应的子像素数量之比。本领域技术人员能够理解,第一触控电极和第二触控电极的边缘可以具有折线形、阶梯形、直线形、曲线形或者不规则形状等。
可选地,在一些实施例中,所述第二尺寸和所述第一尺寸的比值在约0.3~1的范围内。
本公开的实施例进一步提供了触控单元的电容、灵敏度和光学仿真结果。由如图7所示的触控单元获得的电容为0.56pF,灵敏度为4.56%。由如图8所示的触控单元获得的电容为0.505pF,灵敏度为5.02%。图12示出了由如图7和图8所示的触控单元构成的触控模组的光学仿真结果。可以看出,利用本公开提供的触控模组,Mura现象被显著地抑制。
根据本公开的又一方面,提供了一种触控模组的制作方法。图13示出了根据本公开实施例的触控模组的制作方法的流程图。所述方法包括:S11提供衬底基板;S12在所述衬底基板上布置触控单元的阵列,所述触控单元包括沿第一方向延伸的第一触控电极和沿第二方向布置在所述第一触控电极两侧的两个第二触控电极,所述第一方向和第二方向相交;所述触控单元进一步包括:位于所述两个第二触控电极之间的桥接区,位于所述第一触控电极和所述第二触控电极之间的边界区,以及位于所述第一触控电极和所述第二触控电极之至少一者的内部的主体区;以及S13在所述桥接区、所述边界区、以及所述主体区形成切割开口。
根据本公开的实施例,在每个触控感应单元中,桥接区、边界区和主体区都包括切割开口。由此,当所述触控模组用在触控显示装置中的时候,消除了桥接区、边界区和主体区所引起的Mura现象(或,云纹现象)。
本领域技术人员能够理解,本公开中的切割开口实质上是狭缝,并且可以利用光刻、锯切等工艺在所述第一触控电极和第二触控电极上形成所述切割开口。此外,可以在同一工艺步骤中,同时形成所述 切割开口和第一触控电极与第二触控电极之间的狭缝。
在本公开的描述中,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开而不是要求本公开必须以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本说明书的描述中,参考术语“一个实施例”、“另一个实施例”等的描述意指结合该实施例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。另外,需要说明的是,本说明书中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种触控模组,包括:
    衬底基板;
    布置在所述衬底基板上的触控单元的阵列,所述触控单元包括沿第一方向延伸的第一触控电极和沿第二方向布置在所述第一触控电极两侧的两个第二触控电极,所述第一方向和第二方向相交;
    其中,所述触控单元进一步包括:位于所述两个第二触控电极之间的桥接区,位于所述第一触控电极和所述第二触控电极之间的边界区,以及位于所述第一触控电极和所述第二触控电极之至少一者的内部的主体区;所述桥接区、所述边界区、以及所述主体区均包括切割开口。
  2. 如权利要求1所述的触控模组,其中,所述第一触控电极和所述第二触控电极包括金属网格;所述桥接区、所述边界区、以及所述主体区中的切割开口具有基本上相同的分布密度。
  3. 如权利要求2所述的触控模组,其中,所述桥接区中的切割开口的分布密度是所述主体区中的切割开口的分布密度的约0.9~1.1倍。
  4. 如权利要求1-3任一项所述的触控模组,其中,所述桥接区的面积和所述触控单元的面积的比值在约1/10000~1/500的范围内。
  5. 如权利要求1-3任一项所述的触控模组,其中,所述桥接区覆盖的子像素数量和所述触控单元覆盖的子像素数量的比值在约3×10 -4~4×10 -3的范围内。
  6. 如权利要求1-3任一项所述的触控模组,其中,所述桥接区在所述第一方向上的第一尺寸大于所述桥接区在所述第二方向上的第二尺寸。
  7. 如权利要求6所述的触控模组,其中,所述第二尺寸和所述第一尺寸的比值在约0.3~1的范围内。
  8. 一种触控显示装置,包括:显示面板和如权利要求1所述的触控模组,所述触控模组布置在所述显示面板的出光面上。
  9. 如权利要求8所述的触控显示装置,其中,所述第一触控电极和所述第二触控电极包括金属网格;所述桥接区、所述边界区、以及所述主体区中的切割开口具有基本上相同的分布密度。
  10. 如权利要求9所述的触控显示装置,其中,所述桥接区中的切割开口的分布密度是所述主体区中的切割开口的分布密度的约0.9~1.1倍。
  11. 如权利要求8-10任一项所述的触控显示装置,其中,所述桥接区的面积和所述触控单元的面积的比值在约1/10000~1/500的范围内。
  12. 如权利要求8-10任一项所述的触控显示装置,其中,所述桥接区覆盖的子像素数量和所述触控单元覆盖的子像素数量的比值在约3×10 -4~4×10 -3的范围内。
  13. 如权利要求8-10任一项所述的触控显示装置,其中,所述桥接区在所述第一方向上的第一尺寸大于所述桥接区在所述第二方向上的第二尺寸。
  14. 如权利要求13所述的触控显示装置,其中,所述第二尺寸和所述第一尺寸的比值在约0.3~1的范围内。
  15. 一种触控模组的制作方法,包括:
    提供衬底基板;
    在所述衬底基板上布置触控单元的阵列,所述触控单元包括沿第一方向延伸的第一触控电极和沿第二方向布置在所述第一触控电极两侧的两个第二触控电极,所述第一方向和第二方向相交;所述触控单元进一步包括:位于所述两个第二触控电极之间的桥接区,位于所述第一触控电极和所述第二触控电极之间的边界区,以及位于所述第一触控电极和所述第二触控电极之至少一者的内部的主体区;以及
    在所述桥接区、所述边界区、以及所述主体区形成切割开口。
PCT/CN2021/074219 2021-01-28 2021-01-28 触控模组及其制作方法、触控显示装置 WO2022160200A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/074219 WO2022160200A1 (zh) 2021-01-28 2021-01-28 触控模组及其制作方法、触控显示装置
GB2215879.4A GB2609824A (en) 2021-01-28 2021-01-28 Touch module and manufacturing method therefor, and touch display device
US17/607,622 US20230341983A1 (en) 2021-01-28 2021-01-28 Touch module, manufacturing method thereof, touch display device
CN202180000090.2A CN115190992A (zh) 2021-01-28 2021-01-28 触控模组及其制作方法、触控显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074219 WO2022160200A1 (zh) 2021-01-28 2021-01-28 触控模组及其制作方法、触控显示装置

Publications (1)

Publication Number Publication Date
WO2022160200A1 true WO2022160200A1 (zh) 2022-08-04

Family

ID=82652872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074219 WO2022160200A1 (zh) 2021-01-28 2021-01-28 触控模组及其制作方法、触控显示装置

Country Status (4)

Country Link
US (1) US20230341983A1 (zh)
CN (1) CN115190992A (zh)
GB (1) GB2609824A (zh)
WO (1) WO2022160200A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107390943A (zh) * 2017-08-23 2017-11-24 友达光电(苏州)有限公司 触控结构及使用其的触控面板
CN107479756A (zh) * 2017-06-21 2017-12-15 友达光电股份有限公司 触控显示面板
CN112181192A (zh) * 2019-07-05 2021-01-05 三星显示有限公司 传感器模块和包括传感器模块的显示设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020912B (zh) * 2014-05-30 2017-02-15 京东方科技集团股份有限公司 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
CN104793833B (zh) * 2015-05-18 2017-11-24 合肥鑫晟光电科技有限公司 触控基板及其制作方法和显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107479756A (zh) * 2017-06-21 2017-12-15 友达光电股份有限公司 触控显示面板
CN107390943A (zh) * 2017-08-23 2017-11-24 友达光电(苏州)有限公司 触控结构及使用其的触控面板
CN112181192A (zh) * 2019-07-05 2021-01-05 三星显示有限公司 传感器模块和包括传感器模块的显示设备

Also Published As

Publication number Publication date
GB202215879D0 (en) 2022-12-14
GB2609824A (en) 2023-02-15
US20230341983A1 (en) 2023-10-26
CN115190992A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
KR102262952B1 (ko) 터치 컨트롤 패널 및 그 제조 방법, 터치 컨트롤 디스플레이 스크린
WO2020020027A1 (zh) 触控模组、触控显示基板和触控显示装置
WO2020029372A1 (zh) 一种触摸屏及oled显示面板
WO2020029371A1 (zh) 一种触摸屏及oled显示面板
CN110391277A (zh) 具有触摸传感器的有机发光显示装置
CN102830851B (zh) 触摸屏及其制作方法
CN110400823A (zh) 具有触摸传感器的有机发光显示设备
TWI438662B (zh) 觸控面板及具有此觸控面板的觸控顯示面板
TW201447666A (zh) 觸控面板
CN105511146B (zh) 一种集成触控显示面板
CN106062684A (zh) 显示面板、显示装置以及液晶面板的制造方法
WO2023098113A1 (zh) 触控面板以及显示装置
WO2022052715A1 (zh) 触控结构、触控显示基板和触控显示装置
WO2019192075A1 (zh) 柔性显示器及其制作方法
KR20180061856A (ko) 플렉서블 표시장치
CN109508117A (zh) 触控面板
WO2022156341A1 (zh) 触控面板及其制备方法、显示触控装置
WO2022160201A1 (zh) 触控模组及其制作方法、触控显示装置
WO2022160200A1 (zh) 触控模组及其制作方法、触控显示装置
US20200075685A1 (en) Display panel and manufacturing method thereof, and display device
WO2023071097A1 (zh) 一种触控结构、显示基板及显示面板
US20230168757A1 (en) Touch Panel and Preparation Method thereof, and Display Touch Apparatus
WO2022017499A1 (zh) 一种显示面板和显示装置
CN106843558A (zh) 触控面板的感测金属网格及其制法
KR20220101449A (ko) 투명 발광소자 디스플레이 및 전극 배선부의 폭 결정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921811

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202215879

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210128

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.11.2023)