WO2022159144A1 - Conformal fluid reservoir for thermal management - Google Patents
Conformal fluid reservoir for thermal management Download PDFInfo
- Publication number
- WO2022159144A1 WO2022159144A1 PCT/US2021/047984 US2021047984W WO2022159144A1 WO 2022159144 A1 WO2022159144 A1 WO 2022159144A1 US 2021047984 W US2021047984 W US 2021047984W WO 2022159144 A1 WO2022159144 A1 WO 2022159144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- housing
- reservoir
- port
- volume
- working fluid
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 75
- 230000004888 barrier function Effects 0.000 claims abstract description 34
- 238000007599 discharging Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 30
- 238000001816 cooling Methods 0.000 claims description 10
- 238000004891 communication Methods 0.000 claims description 8
- 230000000717 retained effect Effects 0.000 claims description 8
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 230000036962 time dependent Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 230000001276 controlling effect Effects 0.000 claims description 2
- 230000000903 blocking effect Effects 0.000 description 19
- 239000007789 gas Substances 0.000 description 17
- 239000007788 liquid Substances 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 241000251729 Elasmobranchii Species 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1422—Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
- H05K7/1427—Housings
- H05K7/1434—Housings for electronics exposed to high gravitational force; Cylindrical housings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/06—Pumps having fluid drive
- F04B43/073—Pumps having fluid drive the actuating fluid being controlled by at least one valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B15/00—Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
- F42B15/34—Protection against overheating or radiation, e.g. heat shields; Additional cooling arrangements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20218—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
- H05K7/20272—Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20327—Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0028—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
- F28D2021/0029—Heat sinks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/08—Fluid driving means, e.g. pumps, fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/12—Elements constructed in the shape of a hollow panel, e.g. with channels
Definitions
- the present invention relates to reservoirs and, more specifically, to positive expulsion reservoirs used in thermal management systems.
- Modem munitions e.g., missiles, guided projectiles, torpedoes, and rockets, among others
- modesm munitions include one or more electronics modules assisting operation of the vehicle.
- an electronics module of the vehicle can be a guidance module, power supply, or other high-density power device used during operation of the vehicle. Due to concentrated power consumption, these devices produce large thermal loads within relatively small spaces. Attempts to disperse a thermal load from medium to low power density devices has included using the outer body of the munition or vehicle as a heat sink, routing the thermal load of the electronics module through a heat pipe, and using thermal capacitance devices to absorb the thermal load internally. To date, these attempts are inadequate to address thermal loads produced by high-density power devices for near future products.
- a method for cooling an electronics module of a vehicle includes discharging gas from a pressurized or pressure-generating storage into a reservoir through a first port and expelling a working fluid contained within the reservoir through a second port by displacing a barrier within the reservoir with the discharged gas. Further, the method includes cooling the electronics module using the working fluid expelled from the reservoir and discharging the working fluid to an exterior of the vehicle through an overboard port.
- the reservoir includes a first housing joined to a second housing along a split surface that defines an internal volume of the reservoir.
- the first and second housings are asymmetric about the split surface and retain a periphery of the barrier, which divides the internal volume into a first volume and a second volume.
- the first port communicates with the first volume, and the second port communicates with the second volume.
- FIG. 1 is a schematic of a thermal management system with a reservoir for expelling a working medium to dissipate high-density power loads contained within a vehicle.
- FIGs. 2A and 2B are schematic views of an exemplary reservoir incorporated into the thermal management system of FIG. 1.
- FIG. 3 is a schematic view of another exemplary embodiment of a reservoir that includes one or more localized recesses and/or one or more localized protrusions for further adapting a shape of the reservoir to a space within the vehicle.
- the thermal management system includes a reservoir fluidly coupled in series to a heat exchanger and an overboard port.
- storage releases a charging fluid into the reservoir, driving a working fluid contained therein through the heat exchanger before externally discharging the working fluid from the vehicle through the overboard port.
- the charging fluid may be stored under pressure or can be pressurized and/or created using a gas generator.
- a high-density power device such as an electronics module of the vehicle, rejects heat to the working fluid at the heat exchanger maintaining the electronics module within an acceptable temperature range during operation of the vehicle.
- the reservoir includes a multi-part housing with a barrier retained between two or more housing parts.
- some embodiments include a two-piece housing formed by first and second housings mated to each other along a split surface.
- First and second housings can be symmetric or asymmetric about the split surface, which itself can be planar, curved, or irregular along with mating surfaces of the first and second housings depending on the space available within the vehicle.
- first and second housings subtend a segment of an annulus at the split surface.
- first and second housings define a partial or complete toroidal internal volume.
- first and second housings can form a spherical, cylindrical, or annular internal volume, or a portion thereof.
- Certain embodiments of the reservoir include one or more housings with localized protrusions extending away from the internal volume, localized recesses extending toward the internal volume, or a combination of one or more localized protrusions and localized recesses.
- localized protrusions include portions of a bounding housing wall that form a hump, a dome, a ramp, a bulge, a protuberance, a projection, a convexity, or another deviation of the housing away from the internal volume
- examples of localized recesses include a depression, a concavity, an ingrowth, an indentation, a hollow, a cavity, a retreat, or other deviation of the housing wall towards the internal volume.
- Each of the localized protrusion and/or recess is incongruent with a shape of the housing as a whole but is incorporated into a general shape of the housing using smooth and continuous transitions.
- the reservoir shape can be adapted to an interior space of the vehicle or munition bounded by an outer casing of the vehicle as well as one or more internal components, which can include components of a radar system, a guidance system, a control surface actuation system, and a propulsion system, among other possible internal components.
- FIG. 1 is a schematic of thermal management system 10 equipped with reservoir 12 incorporating one or more of these features to facilitate installation into a single-use or limited-use vehicle, such as a munition, with high-density power loads and, consequently, high thermal loads.
- Reservoir 12 includes first housing 14 mated to second housing 16 and barrier 18 retained between first housing 14 and second housing 16 along split surface 20.
- First housing 14 and second housing 16 enclose and define internal volume 22, and barrier 18 divides internal volume 22 into two subvolumes 22A and 22B.
- Charging port 24 of reservoir 12 places sub volume 22 A in communication with charging line 26 fluidly connecting charging port 24 to storage 28.
- Discharge port 30 of reservoir 12 places subvolume 22B in communication with discharge line 32 fluidly connecting discharge port 30 to overboard port 34.
- Vent port 31 communicates with subvolume 22A and can facilitate filling subvolume 22B by evacuating subvolume 22A as barrier 18 displaces within reservoir 12.
- Heat exchanger 36 Positioned along discharge line 32 between discharge port 30 and overboard port 34, heat exchanger 36 places discharge line 32 in thermal communication with heat source 38.
- Barrier 18 is elastically deformable under pressure from working fluid 40 stored within subvolume 22B of reservoir 12, under pressure from charging fluid 42 contained or produced within storage 28, or under pressure from both working fluid 40 and charging fluid 42 depending on the neutral state of barrier 18.
- barrier 18 in some embodiments includes a neutral state that conforms to the interior walls of reservoir 12 and overlays charging port 24. With this configuration, working fluid 40 is not pressurized under a restoring force from barrier 18.
- the neutral state of barrier 18 can be selected to divide internal volume 22 into any proportion of subvolumes 22A and 22B, the restonng force of barrier 18 on working fluid 40 increasing as the neutral state of barrier 18 increases sub volume 22 A.
- blocking element 44 is disposed at any location along discharge line 32, including at discharge port 30 or overboard port 34, to retain working fluid 40 within reservoir 12. As shown, blocking element 44 is downstream from discharge port 30 and upstream from heat exchanger 36. In some embodiments, blocking element 44 can be a burst disk that breaks open above a threshold pressure or a squib that explosively breaks open after triggered. In other embodiments, blocking element 44 can be a two-position valve such as solenoid valve or a needle valve characterized by an open area selected to regulate flow rate Q of working fluid 40 within discharge line 32.
- orifice 45 can be positioned along discharge line 32 between blocking element 44 and overboard port 34 to regulate flow rate Q of working fluid 40, an open area of the valve, or other blocking element 44, selected to be larger than an open area of orifice 45.
- blocking element 44 can be a flow control valve in which an open area of valve 44 varies to regulate flow rate Q within discharge line 32 as described further below.
- Storage 28 contains charging fluid 42 necessary for expelling working fluid 40 from reservoir 12 through discharge line 32 and associated components to overboard port 34.
- charging fluid 42 fills charging line 26 up to barrier 18, pressing on barrier 18 and retained by blocking element 44 in the charged state.
- charging line 26 includes another blocking element 46 that, when closed, retains charging fluid 42 within storage 28 independently of working fluid 40 and blocking element 44. Examples of blocking element 46 include a solenoid valve, a burst disc, or a squib, among other potential blocking elements known in the art.
- charging fluid 42 can be stored under pressure within storage 28 or, alternatively, can unpressurized and expelled from storage 28 using pressurized gas produced by a gas generator.
- charging fluid 42 can be product of the gas generator itself, storage 28 containing one or more constituents necessary for operation of the gas generator reaction.
- working fluid 40 and charging fluid 42 can be a gas or a liquid
- selecting a liquid for working fluid 40 facilitates a phase-change or mixed-phase- flow configuration for heat exchanger 36 and selecting a gas for working fluid 42 facilitates compact storage of a quantity and pressure of working fluid 42 sufficient to expel working fluid 40 from reservoir 12.
- working fluid 40 liquids include water, methanol, and ammonia
- gaseous charging fluid 42 include carbon dioxide, dry or humid air, and nitrogen.
- any non-volatile gas or fluid with thermal properties compatible with a design of thermal management system 10 can be selected for working fluid 40 and charging fluid 42.
- a gas generator can be used to produce charging fluid 42, or to pressurize stored charging fluid 42, upon initiation of a reaction of two or more constituents.
- Heat exchanger 36 places discharge line 32 in thermal communication with heat source 38 to reject heat into working fluid 40.
- Various configurations can be selected for heat exchanger 36 depending on the application including single channel, multi-channel, microchannel, plate and fin, or plate and frame heat exchanger designs arranged in singlepass or multi-pass configurations.
- Heat exchanger 36 can be bonded directly to heat source 38 using a thermally conductive material or, alternatively, receive rejected heat through another medium such as a gas or liquid circulated through heat source 38 or contained within a heat pipe arrangement.
- heat exchanger 36 is configured to partially vaporize or fully vaporize working fluid 40 such that gaseous or mixed-phase working fluid 40 exits heat exchanger 36.
- Heat source 38 can be any component internal to the vehicle that produces heat.
- heat source 38 can be heat-generating components of, a radar system, a guidance system, a control surface actuation system, or a propulsion system among other possible internal components.
- heat source 38 is an electronics module operatively associated with one or more of the foregoing systems. Heat generated by heat source 38 is rejected to working fluid 40, which exits heat exchanger 36, flowing along discharge line 32 before expelling externally to the vehicle through overboard port 34.
- thermal management system 10 discharges charging fluid 42 from storage 28 into sub volume 22 A through charging port 24 of reservoir 12. Discharge of fluid 42 can be initiated by opening blocking element 44 or by opening both blocking element 44 and blocking element 46. Charging fluid 42 displaces barrier 18 from a charged position overlaying charging port 24 to a discharged position overlaying discharge port 30 and thereby expels working fluid 40 from reservoir 12 into discharge line 32.
- blocking element 44 While working fluid 40 exits reservoir 12 through discharge port 30, blocking element 44 or orifice 45 regulates flow rate Q of working fluid 40 through discharge line 32.
- blocking element 44 is a flow control valve
- an open area of is the valve varies to control flow rate Q of working fluid 40 within discharge line 32.
- blocking element 44 receives an analog or digital electric pilot signal 48 that operates to vary the open area of the valve as is known in the art.
- signal 48 can be indicative of temperature T of heat source 38 and operate to increase flow rate Q as temperature T increases or exceeds a threshold temperature, although other applicationspecific temperature sources can be used in other embodiments.
- a valve schedule can be stored within an electronics module contained within the vehicle or munition that varies the open area of the valve as a function of time or some other timedependent variable via signal 48.
- this electronics module can command an initial open area of the valve that increases to different open area during a period known to produce higher heat flux from heat source 38.
- FIGs. 2A is a schematic end view and FIG. 2B is a schematic cross-section, each of FIGs. 2A and 2B depicting features that can be incorporated into embodiments of reservoir 12 for adapting a shape of reservoir 12 to a space bounded by outer casing 50 of vehicle 52 or munition 54 and at least one internal component 56A and up to an arbitrary number of internal components 56n as indicated by subscript “n”.
- reservoir 12 includes outer housing 58 mated to inner housing 60 along split surface 62 between respective flanges 64 and 66. Fasteners 67 extending through flanges 64 and 66, of which two are shown, to secure outer housing 58 to inner housing 60.
- a different mechanical attachment can be implemented.
- outer housing 58 can be affixed to inner housing 60 via a suitable weld joint, adhesive or epoxy joint, or a v-band clamp, among other possible mechanical attachments.
- Outer housing 58 and inner housing 60 are asymmetric about split surface 62 defined along the mating faces of flanges 64 and 66. Taken together, outer housing 58 and inner housing 60 enclose internal volume 68 depicted in FIG. 2B. Retained between outer housing 58 and inner housing 60 is barrier 70, which is depicted in charged position 70A, discharged position, and intermediate position 70C. Barrier 70 divides internal volume 68 into sub- volumes 68A and 68B, which is best shown with barrier 70 at intermediate position 70C. In charged position 70A, barrier 70 conforms to interior surfaces of outer housing 58 and overlays charging port 72. In the discharged position 70B, barrier 70 conforms to interior surfaces of inner housing 60 and overlays discharge port 74.
- FIG. 3 is a schematic cross-section of another embodiment of reservoir 12 equipped with one or more localized recesses 76, one or more localized protrusions 78, and one or more localized recesses 76 and one or more localized protrusions 78.
- Each localized recess 76 is characterized by a wall of outer housing 58 or inner housing 60 that deviates inward toward internal volume 68 relative to a generalize shape of the outer or inner housing.
- each localized protrusion 78 is characterized by a wall of outer housing 58 or inner housing 60 that deviates away from internal volume 68 relative to the generalized shape of the outer housing 58 or inner housing 60.
- reservoir 12 includes localized recess 76 in outer housing 58 and localized protrusion 60 in inner housing 60. While a shape of barrier 70 differs from the embodiment depicted in FIGs. 2A and 2B to accommodate localized recess 76 and localized protrusion 60, barrier 70 conforms to interior surfaces of outer housing 58 or inner housing 60 in the same manner as the embodiment depicted by FIG. 2B. Similarly, working fluid enters one of ports 72 and 74, expelling working fluid 40 from the other port 72 or port 74, depending on the arrangement. Eike the embodiment depicted by FIGs.
- reservoirs 12 incorporating one or more localized recesses 76 and/or one ore more localized protrusions 78 can have asymmetric outer housing 58 and inner housing 60 relative to split surface 62. In this manner, reservoir 12 can be adapted to an interior space of the vehicle bounded by one or more of outer casing 50 as well as internal components 56A to 56n.
- a reservoir in accordance with this disclosure can include, among other possible things, a first housing and a second housing joined to the first housing along a split surface to define an internal volume between the first housing and the second housing.
- a periphery of a barrier retained between the first and second housings divides the internal volume into a first volume and a second volume.
- a first port communicates with the first volume, and a second port communicates with the second volume.
- the first housing and the second housing are asymmetric about the split surfaced.
- the reservoir of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components.
- a further embodiment of any of the foregoing reservoirs wherein a bounding wall of the first housing or the second housing can define a localized recess extending toward the internal volume.
- first housing and the second housing can subtend a segment of an annulus at the split surface.
- a vehicle in accordance with this disclosure includes, among other possible things, an electronics module, and a thermal management system.
- the thermal management system includes a storage, a reservoir, an overboard port, a first line fluidly connecting the storage to the first port, and a second line fluidly connecting the second port to the overboard port, a heat exchanger position along the second line between the second port and the overboard port, and a burst disc or a squib positioned along the second line between the second port and the heat exchanger.
- the reservoir includes a first housing and a second housing joined to the first housing along a split surface to define an internal volume between the first housing and the second housing.
- a periphery of a barrier retained between the first and second housings divides the internal volume into a first volume and a second volume.
- a first port communicates with the first volume, and a second port communicates with the second volume.
- the first housing and the second housing are asymmetric about the split surfaced.
- the heat exchange thermally communicates with the electronics module.
- the vehicle of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components.
- a further embodiment of the foregoing vehicle wherein a bounding wall of the first housing or the second housing can define a localized protrusion extending away from the internal volume.
- a bounding wall of the first housing or the second housing can define a localized recess extending toward the internal volume.
- first housing and the second housing can subtend a segment of an annulus at the split surface.
- a further embodiment of any of the foregoing vehicles can include one or more components adjacent to the reservoir that at least partially bound a space within the vehicle.
- first housing and the second housing can conform to a shape of the space.
- one of the first housing and the second housing can include a localized protrusion extending away from the internal volume or a localized recess extending toward the internal volume.
- a further embodiment of any of the foregoing vehicles, wherein the localized protrusion can conform to the one or more components.
- a further embodiment of any of the foregoing vehicles, wherein the localized recess can conform to the one or more components.
- one of the first housing and the second housing of the reservoir can conform to an interior surface of a body of the vehicle.
- a method for cooling an electronics module of a vehicle in accordance with this disclosure includes, among other possible things and/or steps, discharging gas from a storage into a reservoir through a first port and expelling a working fluid contained within the reservoir through a second port by displacing a barrier within the reservoir with the discharged gas. Further, the method includes cooling the electronics module using the working fluid expelled from the reservoir and discharging the working fluid to an exterior of the vehicle through a third port.
- cooling the electronics module can include expelling the working fluid through a heat exchanger in thermal communication with the electronics module.
- a further embodiment of any of the foregoing methods can include regulating a flow rate of the working fluid from the second port to the heat exchanger using one of an orifice or a valve disposed along a line fluidly connecting the second port of the reservoir to the heat exchanger.
- a further embodiment of any of the foregoing methods can include triggering a squib and thereby discharging the gas from the storage and expelling the working fluid from the reservoir.
- a further embodiment of any of the foregoing methods can include controlling a flow rate of the working fluid from the second port to the heat exchanger by varying an open area of a valve disposed along a line fluidly connecting the second port of the reservoir to the heat exchanger.
- a further embodiment of any of the foregoing methods can include sensing a parameter of the heat exchanger or the electronics module.
- open area of the valve can vary according to a schedule stored in the electronics module that defines open area of the valve as a function of a time-dependent variable.
- schedule can define at least a first open area and a second open area.
- each of the first open area and the second open area can be nonzero.
- cooling the electronics module includes causing a phase change of at least a portion of the working fluid using heat rejected from the electronics module.
- discharging gas from the storage can include opening a solenoid valve.
- discharging gas from the storage can include breaking a burst disc by exceeding a threshold pressure within the charging line.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Aviation & Aerospace Engineering (AREA)
- Combustion & Propulsion (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Lubricants (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237027578A KR20230131259A (en) | 2021-01-19 | 2021-08-27 | Compliant fluid reservoir for thermal management |
CA3207856A CA3207856A1 (en) | 2021-01-19 | 2021-08-27 | Conformal fluid reservoir for thermal management |
EP21839710.7A EP4282233A1 (en) | 2021-01-19 | 2021-08-27 | Conformal fluid reservoir for thermal management |
AU2021421146A AU2021421146A1 (en) | 2021-01-19 | 2021-08-27 | Conformal fluid reservoir for thermal management |
JP2023543116A JP2024503109A (en) | 2021-01-19 | 2021-08-27 | Conformal fluid reservoir for thermal management |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202117152083A | 2021-01-19 | 2021-01-19 | |
US17/152,083 | 2021-01-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022159144A1 true WO2022159144A1 (en) | 2022-07-28 |
Family
ID=79283021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2021/047984 WO2022159144A1 (en) | 2021-01-19 | 2021-08-27 | Conformal fluid reservoir for thermal management |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP4282233A1 (en) |
JP (1) | JP2024503109A (en) |
KR (1) | KR20230131259A (en) |
AU (1) | AU2021421146A1 (en) |
CA (1) | CA3207856A1 (en) |
WO (1) | WO2022159144A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2925722A (en) * | 1958-05-07 | 1960-02-23 | Charles M Blackburn | Expendable liquid evaporative coolant system |
US3998359A (en) * | 1975-02-04 | 1976-12-21 | Mcdonnell Douglas Corporation | Transpiration cooling system having an expulsion bladder |
WO1984001082A1 (en) * | 1982-09-07 | 1984-03-15 | Maritime Protection A S | Condensation eliminator |
US20170131078A1 (en) * | 2015-11-10 | 2017-05-11 | Raytheon Company | Multifunctional aerodynamic, propulsion, and thermal control system |
-
2021
- 2021-08-27 JP JP2023543116A patent/JP2024503109A/en active Pending
- 2021-08-27 KR KR1020237027578A patent/KR20230131259A/en unknown
- 2021-08-27 EP EP21839710.7A patent/EP4282233A1/en active Pending
- 2021-08-27 CA CA3207856A patent/CA3207856A1/en active Pending
- 2021-08-27 WO PCT/US2021/047984 patent/WO2022159144A1/en active Application Filing
- 2021-08-27 AU AU2021421146A patent/AU2021421146A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2925722A (en) * | 1958-05-07 | 1960-02-23 | Charles M Blackburn | Expendable liquid evaporative coolant system |
US3998359A (en) * | 1975-02-04 | 1976-12-21 | Mcdonnell Douglas Corporation | Transpiration cooling system having an expulsion bladder |
WO1984001082A1 (en) * | 1982-09-07 | 1984-03-15 | Maritime Protection A S | Condensation eliminator |
US20170131078A1 (en) * | 2015-11-10 | 2017-05-11 | Raytheon Company | Multifunctional aerodynamic, propulsion, and thermal control system |
Also Published As
Publication number | Publication date |
---|---|
EP4282233A1 (en) | 2023-11-29 |
KR20230131259A (en) | 2023-09-12 |
JP2024503109A (en) | 2024-01-24 |
CA3207856A1 (en) | 2022-07-28 |
AU2021421146A9 (en) | 2024-05-16 |
AU2021421146A1 (en) | 2023-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7891298B2 (en) | Guided projectile | |
US4444085A (en) | Pneumatic launcher system | |
US6792972B2 (en) | Excess pressure release for gas | |
US9625046B2 (en) | Valve for opening a fluid line | |
US3070957A (en) | Liquid separator, vapor-gas injection steering system | |
US6227247B1 (en) | Position driven hot gas proportional thruster valve | |
WO2022159144A1 (en) | Conformal fluid reservoir for thermal management | |
US4716930A (en) | Pneumatic time delay valve | |
WO1998050694A1 (en) | Spherical chamber fluidic ball diverter valve | |
US4646644A (en) | Pneumatic time delay valve | |
US6951317B2 (en) | Vehicle, lightweight pneumatic pilot valve and related systems therefor | |
US4436016A (en) | Variable energy missile eject system | |
US10989455B1 (en) | Integrated hybrid thermostatic expansion valve and method for providing uniform cooling of heat generating devices | |
US7269951B2 (en) | Throat retention apparatus for hot gas applications | |
JP6906440B2 (en) | Flying body | |
US20150184988A1 (en) | Integral injection thrust vector control with booster attitude control system | |
EP4163583B1 (en) | Guided munition having a compressed fluid actuation system involving heat exchange | |
US10662898B2 (en) | Integrated thruster | |
US10214176B2 (en) | Gas generator | |
JP2000179726A (en) | Valve for shutting out fluid at the time of emergency | |
US20050284883A1 (en) | Pressure container | |
JPH11182346A (en) | Thrust direction control device for rocket | |
US9291410B2 (en) | Cooling device for cooling combustion gases from recoilless anti-tank weapons | |
US5438905A (en) | Method and apparatus for stabilizing the in-tube trajectory of a missile | |
Martini et al. | Multiple function CO 2 valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21839710 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3207856 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023543116 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2021421146 Country of ref document: AU Date of ref document: 20210827 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20237027578 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237027578 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021839710 Country of ref document: EP Effective date: 20230821 |