WO2022158384A1 - Resin composition and electrical/electronic part encapsulation body - Google Patents

Resin composition and electrical/electronic part encapsulation body Download PDF

Info

Publication number
WO2022158384A1
WO2022158384A1 PCT/JP2022/001088 JP2022001088W WO2022158384A1 WO 2022158384 A1 WO2022158384 A1 WO 2022158384A1 JP 2022001088 W JP2022001088 W JP 2022001088W WO 2022158384 A1 WO2022158384 A1 WO 2022158384A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
polyester resin
acid
less
Prior art date
Application number
PCT/JP2022/001088
Other languages
French (fr)
Japanese (ja)
Inventor
雄基 村上
亮 浜崎
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022534330A priority Critical patent/JPWO2022158384A1/ja
Publication of WO2022158384A1 publication Critical patent/WO2022158384A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • C08L77/08Polyamides derived from polyamines and polycarboxylic acids from polyamines and polymerised unsaturated fatty acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to resin compositions. More particularly, it relates to a sealing resin composition and an electrical/electronic component sealing body capable of sealing electrical/electronic components.
  • Two-component curing epoxy resins and silicone resins have been commonly used as insulating resins for sealing electrical and electronic components used in automobiles and electrical appliances, but they require long processes. In recent years, sealing of electrical and electronic components by low-pressure molding using a thermoplastic resin has been known.
  • polyester resin is used as a suitable material as a sealing resin for electrical and electronic parts.
  • the adhesion between the electrical/electronic component and the sealing resin is often insufficient, and the desired electrical insulation and waterproof properties are often not achieved. Therefore, from the viewpoint of raising the level of adhesiveness, an attempt to blend an adhesion imparting agent having a functional group has been actively studied (for example, Patent Document 1).
  • the present invention was made against the background of such problems of the prior art. That is, it is an object of the present invention to provide a resin composition having excellent insulating properties while maintaining resin fluidity excellent in low-pressure molding, without lowering oil resistance, particularly physical properties when immersed in cutting oil. It is in.
  • the resin composition of the present invention is suitable for sealing electrical and electronic parts.
  • the present invention consists of the following configurations.
  • a resin composition comprising a polyester resin (A) having a solubility parameter (SP) value of 10.0 (cal/cm 3 ) 1/2 or more, a dimer acid polyamide (B) and an epoxy resin (C).
  • SP solubility parameter
  • polyester resin (A) has terephthalic acid, isophthalic acid, butanediol, and polytetramethylene glycol as structural units.
  • the resin composition of the present invention exhibits excellent fluidity and is excellent in oil resistance and insulation. Therefore, by using it as a sealing material particularly in a sealed electrical/electronic component, it becomes possible to manufacture a sealed electrical/electronic component that satisfies oil resistance and insulation.
  • FIG. 1 shows a schematic diagram of a chart measured with a differential scanning calorimeter.
  • the polyester resin (A) used in the present invention preferably has a chemical structure in which a hard segment mainly composed of a polyester segment and a soft segment mainly composed of a polyalkylene glycol component are linked by an ester bond.
  • the polyester segment is mainly composed of a polyester having a structure that can be formed by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol and/or an alicyclic glycol.
  • the SP value of the polyester resin (A) used in the present invention must be 10.0 (cal/cm 3 ) 1/2 or more. It is preferably 10.5 (cal/cm 3 ) 1/2 or more.
  • the SP value of cutting oil is generally about 7 to 8 (cal/cm 3 ) 1/2 . absorbs cutting oil, and swelling of the resin may deteriorate the oil resistance. On the other hand, if the SP value is too high, the compatibility with the dimer acid polyamide (B) may decrease, and the insulating properties, oil resistance, and mechanical properties of the resin composition may rather deteriorate.
  • the SP value is preferably 12.5 (cal/cm 3 ) 1/2 or less, more preferably 12.0 (cal/cm 3 ) 1/2 or less, still more preferably 11.5 (cal/cm 3 ) 1/2 or less. cm 3 ) 1/2 or less.
  • the SP value can be adjusted by selecting a monomer or adjusting the ester bond concentration, and a high SP value can be obtained by copolymerizing a highly polar monomer or by increasing the ester bond concentration.
  • the SP value used in the present invention is a value obtained by the Fedors calculation method estimated from the molecular structure. The calculation method is described in the following literature; Polym. Eng. Sci. , 14[2], 147-154 (1974).
  • the glass transition temperature of the polyester resin (A) used in the present invention is preferably -20°C or lower, more preferably -30°C or lower.
  • the upper limit of the ester group concentration of the polyester resin (A) used in the present invention is desirably 8000 equivalents/10 6 g.
  • a preferred upper limit is 7500 equivalents/10 6 g, more preferably 7000 equivalents/10 6 g.
  • the lower limit is preferably 1000 equivalents/10 6 g.
  • a more preferable lower limit is 1500 equivalents/10 6 g, more preferably 2000 equivalents/10 6 g.
  • the unit of the ester group concentration is represented by the equivalent number of ester groups per 10 6 g of the resin, and can be calculated from the composition of the polyester resin and its copolymerization ratio.
  • the acid value of the polyester resin (A) used in the present invention is preferably 100 equivalents/10 6 g or less, more preferably 70 equivalents/10 6 g or less, still more preferably 50 equivalents/10 6 g or less. be. If the acid value is too high, the hydrolysis of the polyester resin (A) may be accelerated by the acid generated from the carboxylic acid, resulting in a decrease in resin strength.
  • the lower limit of the acid value is not particularly limited, it is preferably 10 equivalents/10 6 g or more, more preferably 20 equivalents/10 6 g or more. If the acid value is too low, the adhesion may deteriorate.
  • the lower limit of the number average molecular weight of the polyester resin (A) used in the present invention is not particularly limited, it is preferably 3,000 or more, more preferably 5,000 or more, and still more preferably 7,000 or more.
  • the upper limit of the number average molecular weight is not particularly limited, it is preferably 80,000 or less, more preferably 70,000 or less, and still more preferably 60,000 or less. If the number average molecular weight is too low, the hydrolysis resistance of the resin composition and the retention of strength and elongation under high temperature and high humidity may be insufficient. The pressure may become too high and molding may become difficult.
  • the upper limit of the melt viscosity of the polyester resin (A) used in the present invention is preferably less than 5000 dPa ⁇ s, more preferably less than 4000 dPa ⁇ s, and even more preferably less than 3000 dPa ⁇ s at a molding temperature (for example, 230°C).
  • the lower limit of the melt viscosity is not particularly limited, it is preferably 50 dPa ⁇ s or more, more preferably 300 dPa ⁇ s, still more preferably 500 dPa ⁇ s, and most preferably 1000 dPa ⁇ s. If the melt viscosity is too high, the fluidity during molding may deteriorate, making it difficult to mold. may not be
  • the polyester resin (A) used in the present invention is preferably a saturated polyester resin, and may be an unsaturated polyester resin having a trace amount of vinyl groups of 50 equivalents/10 6 g or less. If the unsaturated polyester has a high concentration of vinyl groups, cross-linking may occur during melting, resulting in poor melt stability.
  • the polyester resin (A) used in the present invention may be a branched polyester obtained by copolymerizing a tri- or higher-functional polycarboxylic acid or polyol such as trimellitic anhydride or trimethylolpropane, if necessary.
  • the polyester resin (A) used in the present invention is required to melt quickly at 210 to 240°C in order to mold while minimizing thermal deterioration. Therefore, the upper limit of the melting point of the polyester resin (A) is desirably 210°C. It is preferably 200°C, more preferably 190°C. Considering the handleability at normal temperature and the normal heat resistance, the melting point of the polyester resin (A) is preferably 90° C. or higher, more preferably 100° C. or higher, still more preferably 110° C. or higher, and particularly preferably 120° C. or higher. , most preferably 130° C. or higher.
  • a known method can be used as a method for producing the polyester resin (A) used in the present invention.
  • a polyester can be obtained by subjecting a polycarboxylic acid component and a polyol component, which will be described later, to an esterification reaction at 150 to 250° C., followed by a polycondensation reaction at 230 to 300° C. under reduced pressure.
  • a derivative such as a dimethyl ester of a polycarboxylic acid described later and a polyol component are used for an ester exchange reaction at 150° C. to 250° C., followed by a polycondensation reaction at 230° C. to 300° C. under reduced pressure to form a polyester.
  • the hard segment constituting the polyester resin (A) used in the present invention is mainly composed of a polyester segment.
  • the polyester segment is composed mainly of a polycarboxylic acid component and a polyol component as structural units.
  • the polycarboxylic acid component that constitutes the polyester segment is not particularly limited, it is preferable that it contains an aromatic dicarboxylic acid because it can improve the heat resistance of the polyester resin (A).
  • aromatic dicarboxylic acids include terephthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, isophthalic acid, and 5-sodiumsulisophthalic acid.
  • the aromatic dicarboxylic acid is preferably terephthalic acid and/or naphthalenedicarboxylic acid in view of improved heat resistance and high reactivity with glycol, resulting in polymerizability and productivity.
  • the total polycarboxylic acid component constituting the polyester segment is 100 mol%
  • the total of terephthalic acid and naphthalene dicarboxylic acid is preferably 50 mol% or more, more preferably 60 mol% or more, and 80 mol. % or more, particularly preferably 95 mol % or more
  • the total polycarboxylic acid component may be composed of terephthalic acid and/or naphthalenedicarboxylic acid.
  • polycarboxylic acid components constituting the polyester segment include alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid and tetrahydrophthalic anhydride, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, and dimers. Acids, dicarboxylic acids such as aliphatic dicarboxylic acids such as hydrogenated dimer acid. These dicarboxylic acid components are used within a range that does not greatly lower the melting point of the polyester resin (A), and the copolymerization ratio thereof is 50 mol % or less, preferably 40 mol % or less of the total polycarboxylic acid components.
  • the copolymerization ratio of the tri- or higher functional polycarboxylic acid is preferably 10 mol % or less, more preferably 5 mol % or less, of the total polycarboxylic acid component.
  • the polyol component constituting the polyester segment is not particularly limited, it is preferably an aliphatic glycol and/or an alicyclic glycol in that it can improve the heat resistance of the polyester resin (A).
  • the aliphatic glycol and/or the alicyclic glycol are preferably alkylene glycols having 2 to 10 carbon atoms, more preferably alkylene glycols having 2 to 8 carbon atoms.
  • Particularly preferred aliphatic glycol and alicyclic glycol components are specifically ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol and the like.
  • Aliphatic glycol and/or alicyclic glycol preferably accounts for 50 mol% or more, more preferably 70 mol% or more, of the total polyol component.
  • trifunctional or higher polyols such as glycerin, trimethylolpropane, pentaerythritol, etc. may be used, and from the viewpoint of preventing gelation of the resin composition, 10 mol % or less of the total polyol component. and more preferably 5 mol % or less.
  • a butylene terephthalate unit or a butylene naphthalate unit is used because the polyester resin (A) has a high melting point and can improve heat resistance, and also from the viewpoint of moldability and cost performance. , is particularly preferred.
  • the polycarboxylic acid component and the polyol component that constitute the polyester segment may contain raw materials derived from biomass.
  • the soft segment of the polyester resin (A) used in the present invention mainly consists of a polyalkylene glycol component.
  • the copolymerization ratio of the soft segment is preferably 0.5 mol % or more, more preferably 2.5 mol % or more, when the total polyol component constituting the polyester resin (A) is taken as 100 mol %. , is more preferably 5 mol % or more. Moreover, it is preferably 50 mol % or less, more preferably 45 mol % or less, and even more preferably 40 mol % or less.
  • the melt viscosity of the resin composition of the present invention tends to be high, which tends to cause problems such as being unable to be molded at low pressure, or causing short shots due to high crystallization speed.
  • the copolymerization ratio of the soft segment is too high, problems such as insufficient heat resistance when used as a sealing body tend to occur.
  • the number average molecular weight of the soft segment is not particularly limited, it is preferably 400 or more, more preferably 800 or more. If the number average molecular weight of the soft segment is too low, flexibility cannot be imparted, and the stress load on the electronic substrate after sealing tends to increase.
  • the soft segment preferably has a number average molecular weight of 5,000 or less, more preferably 3,000 or less. If the number-average molecular weight is too high, the compatibility with other copolymerization components tends to be poor, resulting in a problem of inability to copolymerize.
  • polyalkylene glycol components used in soft segments include polyethylene glycol, polytrimethylene glycol, and polytetramethylene glycol.
  • Polytetramethylene glycol is most preferred in terms of imparting flexibility and lowering melt viscosity.
  • the polyester resin (A) used in the present invention may be amorphous or crystalline, but preferably crystalline.
  • crystallinity means using a differential scanning calorimeter (DSC) to heat and melt at a temperature increase rate of 20 ° C./min to 230 ° C., then using liquid nitrogen at 20 ° C./min to -130 After cooling to ° C. and holding for 5 minutes, when heating from -130 ° C. to 230 ° C. at a heating rate of 20 ° C./min, it shows a clear melting peak in either of these two heating steps. point to something On the other hand, "amorphous" refers to those that do not show a melting peak in either heating step.
  • the resin composition of the present invention contains a dimer acid polyamide (B).
  • Dimer acid polyamide (B) is a polyamide containing dimer acid as a structural unit.
  • the melt viscosity can be lowered while maintaining the oil resistance of the polyamide. Therefore, fluidity during molding can be imparted while maintaining excellent oil resistance in the resin composition with the polyester resin (A).
  • the glass transition temperature is lowered and the low temperature resistance is also excellent.
  • the glass transition temperature of the dimer acid polyamide (B) used in the present invention is preferably -20°C or lower, more preferably -30°C or lower.
  • the dimer acid polyamide (B) used in the present invention is required to melt rapidly at 210 to 240° C. in order to be molded with as little heat deterioration as possible. Therefore, the softening point of the dimer acid polyamide (B) is preferably 210°C or lower, more preferably 200°C or lower. Considering the handleability at room temperature and normal heat resistance, the softening point of the dimer acid polyamide (B) is preferably 90°C or higher, more preferably 100°C or higher, still more preferably 110°C or higher, and particularly preferably 120°C. °C or higher, most preferably 130 °C or higher.
  • the content of the dimer acid polyamide (B) is 10 parts by mass or more and 50 parts by mass or less. is preferred, and 20 parts by mass or more and 40 parts by mass or less is more preferred. If the content of the dimer acid polyamide (B) is too low, the melt viscosity of the resin composition will increase and the fluidity during molding will deteriorate. It may get worse.
  • the resin composition of the present invention contains an epoxy resin (C).
  • the epoxy resin (C) used in the present invention is not particularly limited as long as it is a compound having one or more epoxy groups in one molecule. Preferably, it is a resin having a number average molecular weight in the range of 450 to 40,000 and an average of 1.1 or more epoxy groups per molecule.
  • glycidyl ether types such as bisphenol A diglycidyl ether, bisphenol S diglycidyl ether, novolac glycidyl ether, brominated bisphenol A diglycidyl ether; glycidyl ester types such as hexahydrophthalic acid glycidyl ester and dimer acid glycidyl ester; triglycidyl isocyanate Nurate, glycidylhindantoin, tetraglycidyldiaminodiphenylmethane, triglycidyl para-aminophenol, triglycidylmethaminophenol, diglycidylaniline, diglycidyltoluidine, tetraglycidylmetaxylenediamine, diglycidyltribromoaniline, tetraglycidylbisaminomethylcyclohexane, etc.
  • glycidylamine type alicyclic or aliphatic epoxide types such as 3,4-epoxycyclohexylmethyl carboxylate, epoxidized polybutadiene, and epoxidized soybean oil; These can be used alone or in combination of two or more.
  • the softening point of (C) of the epoxy resin is preferably 70°C or higher, more preferably 80°C or higher. If the softening point is low, physical properties may deteriorate in a high temperature (70° C. or higher) environment.
  • the number average molecular weight of the epoxy resin (C) is preferably 450 or more, more preferably 600 or more, and still more preferably 1000 or more. If the number average molecular weight is too small, the resin composition tends to soften, and mechanical properties may deteriorate. Also, it is preferably 40,000 or less, more preferably 30,000 or less, and still more preferably 20,000 or less. If the number average molecular weight is too large, the compatibility with the polyester resin (A) and the dimer acid polyamide (B) may be lowered, resulting in impaired adhesion.
  • the epoxy resin (C) by blending the epoxy resin (C) into the resin composition, when sealing electrical and electronic parts, good initial adhesion, adhesion durability against environmental loads such as immersion in cutting oil, and molding by low viscosity Excellent properties such as improved fluidity can be imparted.
  • the epoxy resin (C) exerts an effect as a compatibilizer for the polyester resin (A) and the dimer acid polyamide (B), and also exhibits an effect of improving the wettability to the base material by introducing a functional group, and in turn improves the insulating properties. It is considered to be improved.
  • the content of the epoxy resin (C) in the resin composition of the present invention is preferably 5 parts by mass or more, more preferably 100 parts by mass in total of the polyester resin (A) and the dimer acid polyamide (B). It is 10 parts by mass or more, more preferably 20 parts by mass or more. If the amount of the epoxy resin (C) is less than 5 parts by mass, it may not function as a compatibilizer for the polyester resin (A) and the dimer acid polyamide (B). Also, it is preferably 50 parts by mass or less, more preferably 40 parts by mass or less. When 50 parts by mass or more of the epoxy resin (C) is blended, the productivity of the resin composition may be inferior, and the properties such as heat resistance of the sealing body may be inferior.
  • the resin composition of the present invention may further contain a tackifier (D).
  • the tackifier (D) used in the present invention is not particularly limited, and phenol compounds, xylene-modified phenolic resins, terpene-modified phenolic resins, hydrogenated terpene-modified phenolic resins obtained by hydrogenating terpene-modified phenolic resins, and the like can be used.
  • the SP value of the tackifier (D) used in the present invention is preferably 9.0 (cal/cm 3 ) 1/2 or more. If the SP value is low, oil resistance to kerosene, cutting oil, etc. and mechanical properties may be inferior.
  • the tackifier (D) used in the present invention preferably has a hydroxyl group. Since the adhesion imparting agent (D) has a hydroxyl group, the adhesiveness to the base material can be improved, and the insulation can be improved.
  • the hydroxyl value of the tackifier (D) is preferably from 1 to 500 KOHmg/g, more preferably from 30 to 400 KOHmg/g, even more preferably from 50 to 300 KOHmg/g.
  • the adhesion imparting agent (D) is considered to exhibit the effect of improving the wettability to the substrate by introducing the functional group.
  • the amount of the tackifier (D) in the present invention is preferably 5 parts by mass or more and 10 parts by mass or more with respect to a total of 100 parts by mass of the polyester resin (A) and the dimer acid polyamide (B). is more preferable, and 20 parts by mass or more is even more preferable. Also, it is preferably 50 parts by mass or less, more preferably 40 parts by mass or less.
  • the blending ratio of the tackifier (D) is too low, good adhesion may not be exhibited. On the other hand, if the blending ratio of the tackifier (D) is too high, the elastic modulus will increase and the flexibility of the resin will decrease, which will adversely affect the adhesiveness. It may react and embrittle the resin.
  • the resin composition of the present invention may further contain an antioxidant (E).
  • the antioxidant (E) used in the present invention is not particularly limited as long as it can prevent oxidation of the polyester resin (A). agents can be used.
  • hindered phenols include 1,3,5-tris(3,5-di-t-butyl-4-hydroxybenzyl)isocyanurate, 1,1,3-tri(4-hydroxy-2-methyl- 5-t-butylphenyl)butane, 1,1-bis(3-t-butyl-6-methyl-4-hydroxyphenyl)butane, 3,5-bis(1,1-dimethylethyl)-4-hydroxy- Benzenepropanoic acid, pentaerythrityl tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 3-(1,1-dimethylethyl)-4-hydroxy-5-methyl-benzenepropanoic acid Ic acid, 3,9-bis
  • the content of the antioxidant (E) is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass with respect to a total of 100 parts by mass of the polyester resin (A) and the dimer acid polyamide (B). or more, more preferably 0.3 parts by mass or more. If the content is too low, it may adversely affect long-term durability at high temperatures. Also, it is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and even more preferably 1 part by mass or less. If the content is too high, it may adversely affect adhesion, flame retardancy, and the like.
  • the resin composition of the present invention contains at least the polyester resin (A), the dimer acid polyamide (B), and the epoxy resin (C), and if necessary, an adhesion promoter (D), an antioxidant (E ) is a composition containing
  • adhesion promoter D
  • antioxidant E
  • the term "sealing” refers to the wrapping of precision parts and the like without gaps so as to prevent dust and water from coming into contact with the outside air.
  • INDUSTRIAL APPLICABILITY The resin composition of the present invention is excellent in long-term reliability, and is therefore suitable for use in sealing electrical and electronic parts, among precision parts.
  • the resin composition of the present invention includes polyesters, polyamides, polyolefins, and polycarbonates that do not correspond to any of the polyester resin (A), dimer acid polyamide (B), epoxy (C), and tackifier (D) of the present invention.
  • other resins such as acrylic and ethylene vinyl acetate, isocyanate compounds, curing agents such as melamine, fillers such as talc and mica, pigments such as carbon black and titanium oxide, flame retardants such as antimony trioxide and brominated polystyrene.
  • Adhesiveness, flexibility, durability and the like may be improved by blending these components.
  • the polyester resin (A) is preferably contained in an amount of 50% by mass or more, more preferably 55% by mass or more, and still more preferably 60% by mass or more, relative to the entire resin composition of the present invention. If the content of the polyester resin (A) is less than 50% by mass, the polyester resin (A) itself tends to have poor adhesion to electric and electronic parts, adhesion durability, and flexibility.
  • light stabilizers include benzotriazole-based light stabilizers, benzophenone-based light stabilizers, hindered amine-based light stabilizers, nickel-based light stabilizers, and benzoate-based light stabilizers.
  • Benzotriazole light stabilizers include 2-(3,5-di-tert-amyl-2'hydroxyphenyl)benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)benzotriazole, 2-( 2′-hydroxy-3′-tert-butyl-5′-methylphenyl)-5-chlorobenzotriazole, 2-(2H-benzotriazol-2-yl)-p-cresol, 2-(2′-hydroxy- 5′-methylphenyl)-benzotriazole, 2,4-di-tert-butyl-6-(5-chlorobenzotriazol-2-yl)phenol, 2-[2-hydroxy-3,5-di(1, 1-dimethylbenzyl)]-2H-benzotriazole and the like.
  • Benzophenone-based light stabilizers include 2-hydroxy-4-(octyloxy)benzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4 -methoxy-benzophenone-5-sulfonic acid, 2-hydroxy-4-n-dodecyloxybenzophenone, bis(5-benzoyl-4-hydroxy-2-methoxyphenyl)methane, 2-2'-dihydroxy-4- methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone and the like.
  • Hindered amine light stabilizers include bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate, dimethyl succinate/1-(2-hydroxyethyl)-4-hydroxy-2,2, 6,6-tetramethylpiperidine polycondensate, poly[ ⁇ 6-(1,1,3,3-tetramethylbutyl)amino-1,3,5-triazine-2,4-diyl ⁇ (2,2 ,6,6-tetramethyl-4-piperidyl)imino ⁇ hexamethylene(2,2,6,6-tetramethyl-4-piperidyl)imino ⁇ ], 1,3,5-tris(3,5-di- tert-butyl-4-hydroxybenzyl)-s-triazine-2,4,6(1H,3H,5H)trione, tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)-s- triazine-2,4,6-(1H,3H,5H
  • Nickel-based light stabilizers include [2,2′-thio-bis(4-tert-octylphenolate)]-2-ethylhexylamine-nickel-(II), nickel dibutyldithiocarbamate, [2′,2′ -thio-bis(4-tert-octylphenolate)]n-butylamine-nickel and the like.
  • Benzoate-based light stabilizers include 2,4-di-t-butylphenyl-3,5'-di-tert-butyl-4'-hydroxybenzoate and the like. These light stabilizers can be used alone or in combination.
  • the amount added is preferably 0.1% by mass or more and 5% by mass or less with respect to the entire resin composition. If it is less than 0.1% by mass, the weather resistance effect may be poor. If it exceeds 5% by mass, it may adversely affect the adhesion and the like.
  • the polyester resin (A) is dissolved in a solvent such as heavy chloroform and measured by 1 H-NMR, 13 C-NMR, polyester resin (A) and quantification by gas chromatography measured after methanolysis (hereinafter sometimes abbreviated as methanolysis-GC method).
  • a solvent such as heavy chloroform
  • methanolysis-GC method gas chromatography measured after methanolysis
  • the resin composition of the present invention preferably has a melt viscosity of 5 to 1000 dPa s at 230 ° C.
  • polyester resin (A), dimer acid polyamide (B), epoxy resin (C), tackifier (D) can be achieved by appropriately adjusting the type and blending ratio of the antioxidant (E).
  • E the type and blending ratio of the antioxidant
  • increasing the copolymerization ratio of the polyether diol to be copolymerized with the polyester resin (A) or decreasing the molecular weight of the polyester resin (A) tends to decrease the melt viscosity of the resin composition of the present invention.
  • Increasing the molecular weight of the polyester resin (A) tends to increase the melt viscosity of the resin composition of the present invention.
  • the melt viscosity at 230° C. is a value measured as follows. That is, the resin composition is dried to a moisture content of 0.1% or less, and then heated to 230 ° C. with a flow tester (model number CFT-500C) manufactured by Shimadzu Corporation. It is a measured value of viscosity when passed through a die having a thickness of 10 mm and a hole diameter at a pressure of 98 N/cm 2 .
  • a high melt viscosity of 1,000 dPa ⁇ s or more provides high resin cohesive strength and durability, but high-pressure injection molding is required when sealing parts with complex shapes, which may damage the parts. can occur.
  • a sealing body having excellent electrical insulation can be obtained at a relatively low injection pressure of 0.1 to 20 MPa. (Molded parts) can be obtained, and the characteristics of electrical and electronic parts are not impaired. Also, from the viewpoint of the injection operation of the sealing resin composition, it is preferable that the melt viscosity at 230° C. is low. is 10 dPa ⁇ s or more, more preferably 30 dPa ⁇ s or more, and most preferably 50 dPa ⁇ s or more.
  • the sealing property of a specific member and the sealing resin composition is evaluated by preparing a measurement sample piece by bonding the sealing resin composition on a metal wiring printed circuit board by molding, and measuring the insulation resistance of this. Determined by measuring the value.
  • the method for producing the test piece for measurement and the method for measuring the insulation resistance value shall be performed according to the method described in the examples described later.
  • the encapsulating resin composition of the present invention is molded by injecting it into a mold in which electrical and electronic components are set. More specifically, in the case of using a screw-type hot melt molding applicator, it is heated and melted at around 160 to 280 ° C., injected into a mold through an injection nozzle, and after a certain cooling time, it is molded. An object can be removed from the mold to obtain a molded product.
  • the type of applicator for hot melt molding is not particularly limited, but examples include ST2 manufactured by Nordson, vertical extrusion molding machine IMC-18F9 manufactured by Imoto Seisakusho, hybrid type small vertical injection molding machine STX20 manufactured by Nissei Plastic Industry Co., Ltd., and the like. .
  • the intersection of the tangent line (1) obtained from the baseline before the inflection point and the tangent line (2) obtained from the baseline after the inflection point in the portion where the inflection point appears in DSC as shown in FIG. was taken as the glass transition temperature (Tg), and the minimum point of the endothermic peak (x mark in the figure) was taken as the melting point (Tm).
  • SP value of polymer is determined by the Fedors method, and the known cohesive energy density and molar molecular volume of the atoms and atomic groups of the monomers constituting the polymer and the atoms and atomic groups of the bonds formed during polymer polymerization are substituted into the following formula.
  • ⁇ Melting characteristics (fluidity) test> Method for evaluating the melt viscosity of the polyester resin (A) and the resin composition Using a flow tester (CFT-500C type) manufactured by Shimadzu Corporation, the moisture content was reduced to 0.1% or less in the cylinder at the center of the heating body set at 230 ° C. A dry polyester resin (A) or resin composition is filled. After 1 minute of filling, a load is applied to the sample through the plunger, and the melted sample is extruded from the die (hole diameter: 1.0 mm, thickness: 10 mm) at the bottom of the cylinder at a pressure of 1 MPa. The fall time was recorded and the melt viscosity was calculated.
  • Melting properties of the resin composition were evaluated as follows based on the melt viscosity. Evaluation criteria ⁇ : Melt viscosity @ 230 ° C. less than 500 dPa s ⁇ : Melt viscosity @ 230 ° C. 500 dPa s or more and less than 800 dPa s ⁇ : Melt viscosity @ 230 ° C. 800 dPa s or more and less than 1000 dPa s ⁇ : Melt viscosity @ 230 ° C. 1000dPa ⁇ s or more
  • a flat plate of the resin composition of 100 mm ⁇ 100 mm ⁇ 2 mmt was produced by injection molding using a vertical injection molding machine (TH40E manufactured by Nissei Plastics Co., Ltd.).
  • the injection molding conditions were a molding resin temperature of 210° C., a molding pressure of 20 MPa, a cooling time of 30 seconds, and an injection speed of 10 mm/second.
  • Three dumbbell-shaped No. 3 test pieces based on JIS K6251 were cut out from the molded flat plate using a test piece punching blade.
  • Cutting oil swelling rate (%) (total length of test piece after immersion (mm) - total length of test piece before immersion (mm)) / total length of test piece before immersion (mm) x 100
  • the oil resistance of the resin composition was evaluated as follows based on the cutting oil swelling rate. Evaluation criteria ⁇ : Cutting oil swelling rate less than 0.5% ⁇ : Cutting oil swelling rate 0.5% or more and less than 1.0% ⁇ : Cutting oil swelling rate 1.0% or more
  • a flat plate of the resin composition of 100 mm ⁇ 100 mm ⁇ 2 mmt was produced by injection molding using a vertical injection molding machine (TH40E manufactured by Nissei Plastics Co., Ltd.).
  • the injection molding conditions were a molding resin temperature of 210° C., a molding pressure of 20 MPa, a cooling time of 30 seconds, and an injection speed of 10 mm/second.
  • Three dumbbell-shaped No. 3 test pieces based on JIS K6251 were cut out from the molded flat plate using a cutout machine.
  • test piece is immersed in cutting oil at room temperature (about 25 ° C.) for 4 weeks, and after immersion, the cutting oil on the surface is wiped off, and an autograph (AG-IS manufactured by Shimadzu Corporation) is used to measure between the chucks.
  • a dumbbell-shaped No. 3 test piece was sandwiched so that the thickness was 20 mm, and the mechanical properties were measured.
  • the pulling speed was 500 mm/min.
  • the tensile elongation retention rate was calculated using the following formula.
  • Tensile elongation retention rate (%) (tensile elongation after immersion in cutting oil for 4 weeks/tensile elongation at initial stage of molding) x 100
  • the mechanical properties of the resin composition were evaluated as follows based on the tensile elongation retention rate. Evaluation criteria ⁇ : Tensile elongation retention rate of 90% or more ⁇ : Tensile elongation retention rate of 70% or more to less than 90% ⁇ : Tensile elongation retention rate of 50% or more to less than 70% ⁇ : Tensile elongation retention rate of less than 50%
  • the test piece was immersed in a sample at the initial stage of molding and cutting oil at room temperature (about 25 ° C.) for 4 weeks at an applied voltage of 500 V. After immersion, the surface After wiping off the cutting oil, the insulation resistance value of the sample was measured. The insulating properties of the resin composition were evaluated as follows based on the insulation resistance value.
  • E+N represents 10 to the Nth power.
  • 2.09E+00 is the minimum detection limit
  • ⁇ 2.09E+00 is below the detection limit.
  • polyester resin (A) > 1080 parts by mass of terephthalic acid, 582 parts by mass of isophthalic acid, 1893 parts by mass of 1,4-butanediol and 1.9 parts by mass of tetrabutyl titanate were added to a reactor equipped with a stirrer, a thermometer and a cooler for distillation. , 170 to 220° C. for 2 hours.
  • TPA terephthalic acid
  • IPA isophthalic acid
  • AA adipic acid
  • NDC 2,6-naphthalenedicarboxylic acid
  • EG ethylene glycol
  • BD 1,4-butanediol
  • CHDM cyclohexanedimethanol
  • PTMG1000 polytetramethylene Ether glycol (number average molecular weight 1000)
  • PTMG2000 polytetramethylene ether glycol (number average molecular weight 2000)
  • Polyester resin (A), dimer acid polyamide (B), epoxy resin (C), tackifier (D), and antioxidant (E) are mixed in the proportions shown in Table 2 using a twin-screw extruder.
  • Resin compositions (S1) to (S18) were obtained by melt-kneading at a temperature of 160°C to 220°C. The melt viscosity, cutting oil swellability, mechanical properties, and insulating properties of the resin composition were evaluated by the methods described separately. The evaluation results are shown in Table 2 below.
  • the dimer acid polyamide (B), epoxy resin (C), tackifier (D) and antioxidant (E) used in Table 2 are as follows.
  • Example 2 the resin compositions of Examples 1 to 12 were all excellent in melt viscosity, cutting oil swelling, mechanical properties, and insulating properties.
  • Comparative Example 1 since it did not contain dimer acid polyamide, it was inferior in oil resistance, melting properties and insulation. Comparative Examples 2 to 4 did not contain an epoxy resin, and therefore were inferior in insulating properties.
  • Comparative Example 5 since the SP value of the polyester resin used was low, the oil resistance was lowered.
  • the polyamide used in Comparative Example 6 did not have a dimer acid component, and was inferior in melting properties and insulating properties.
  • the resin composition of the present invention has a low melt viscosity when sealing electronic and electronic substrates, is extremely excellent in adhesive strength to glass epoxy substrates and PBT substrates, and has excellent oil resistance. It is useful as a resin composition.
  • the electrical/electronic component sealing body of the present invention is particularly excellent in adhesiveness and cutting oil swelling property, so that electric leakage from the electrical/electronic component is suppressed, which is very useful.
  • the electrical/electronic component sealed product of the present invention is useful as molded products such as connectors for automobiles, communications, computers, and household appliances, harnesses, electronic components, switches having printed circuit boards, and sensors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

[Problem] To provide a resin composition for an electrical/electronic encapsulation, the composition having excellent oil resistance and insulation performance without a reduction in fluidity. [Solution] Provided is a resin composition that contains a polyester resin (A) having a solubility parameter (SP) value of 10.0 (cal/cm3)1/2 or greater, a dimer acid polyamide (B), and an epoxy resin (C).

Description

樹脂組成物および電気電子部品封止体Resin composition and electrical/electronic component sealing body
 本発明は樹脂組成物に関する。さらに詳しくは、電気電子部品を封止可能な封止用樹脂組成物および電気電子部品封止体に関する。 The present invention relates to resin compositions. More particularly, it relates to a sealing resin composition and an electrical/electronic component sealing body capable of sealing electrical/electronic components.
 自動車や電化製品などに使用されている電気電子部品の封止に用いられる絶縁性樹脂としては、二液硬化型エポキシ樹脂やシリコン樹脂が一般的に使用されてきたが、長時間の工程が必要となることや硬化時の収縮応力により電気電子部品を破壊してしまう可能性もあることから、近年、熱可塑性樹脂を用いた低圧成形による電気電子部品の封止が知られている。 Two-component curing epoxy resins and silicone resins have been commonly used as insulating resins for sealing electrical and electronic components used in automobiles and electrical appliances, but they require long processes. In recent years, sealing of electrical and electronic components by low-pressure molding using a thermoplastic resin has been known.
 電気絶縁性、耐水性、耐久性、溶融粘度の観点から、電気電子部品の封止樹脂としてポリエステル樹脂が好適な材料として使用されているが、電気電子部品へのダメージを低減するための低温、低圧成形においては電気電子部品と封止樹脂との接着性が不十分となり、目的とする電気絶縁性や防水性が十分に発揮されない場合が多い。そのため、接着性を底上げする観点から官能基を有する接着付与剤等を配合する試みが積極的に検討されている(例えば特許文献1)。 From the viewpoint of electrical insulation, water resistance, durability, and melt viscosity, polyester resin is used as a suitable material as a sealing resin for electrical and electronic parts. In low-pressure molding, the adhesion between the electrical/electronic component and the sealing resin is often insufficient, and the desired electrical insulation and waterproof properties are often not achieved. Therefore, from the viewpoint of raising the level of adhesiveness, an attempt to blend an adhesion imparting agent having a functional group has been actively studied (for example, Patent Document 1).
特開2004-210893号公報Japanese Patent Application Laid-Open No. 2004-210893
 一方で、上記のような要求物性のほかに電気電子部品においては、耐油性を求められることがあるが、特許文献1のような接着付与剤を配合した熱可塑性樹脂を用いた場合、接着性は改善されるものの、耐油性や絶縁性が担保されないという問題があった。従来の技術では、特に低圧成形に優れた樹脂の流動性を維持しながら、耐油性および絶縁性を両立することができる封止用樹脂組成物は提案されていなかった。 On the other hand, in addition to the required physical properties as described above, in electrical and electronic parts, oil resistance may be required. However, there was a problem that oil resistance and insulation were not ensured. In the prior art, no encapsulating resin composition has been proposed that can achieve both oil resistance and insulation while maintaining the fluidity of the resin, which is particularly excellent for low-pressure molding.
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、低圧成形に優れた樹脂の流動性を維持しながら、耐油性、特に切削油浸漬時における物性を低下させることなく、絶縁性に優れた樹脂組成物を提供することにある。特に本発明の樹脂組成物は、電気電子部品の封止用途に好適である。 The present invention was made against the background of such problems of the prior art. That is, it is an object of the present invention to provide a resin composition having excellent insulating properties while maintaining resin fluidity excellent in low-pressure molding, without lowering oil resistance, particularly physical properties when immersed in cutting oil. It is in. In particular, the resin composition of the present invention is suitable for sealing electrical and electronic parts.
 本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。すなわち本発明は、以下の構成からなる。 As a result of diligent studies, the present inventors have found that the above problems can be solved by the means shown below, and have arrived at the present invention. That is, the present invention consists of the following configurations.
 [1] 溶解度パラメータ(SP)値が10.0(cal/cm1/2以上であるポリエステル樹脂(A)、ダイマー酸ポリアミド(B)およびエポキシ樹脂(C)を含む樹脂組成物。 [1] A resin composition comprising a polyester resin (A) having a solubility parameter (SP) value of 10.0 (cal/cm 3 ) 1/2 or more, a dimer acid polyamide (B) and an epoxy resin (C).
 [2] ポリエステル樹脂(A)がテレフタル酸、イソフタル酸、ブタンジオールおよびポリテトラメチレングリコールを構成単位として有する、前記[1]に記載の樹脂組成物。 [2] The resin composition according to [1] above, wherein the polyester resin (A) has terephthalic acid, isophthalic acid, butanediol, and polytetramethylene glycol as structural units.
 [3] ポリエステル樹脂(A)およびダイマー酸ポリアミド(B)のガラス転移温度がいずれも-20℃以下である前記[1]または[2]に記載の樹脂組成物。 [3] The resin composition according to [1] or [2] above, wherein the polyester resin (A) and the dimer acid polyamide (B) both have a glass transition temperature of -20°C or lower.
 [4] さらに接着付与剤(D)を含む前記[1]~[3]のいずれかに記載の樹脂組成物。 [4] The resin composition according to any one of [1] to [3], further comprising an adhesion promoter (D).
 [5] 接着付与剤(D)のSP値が9.0(cal/cm1/2以上である、前記[4]に記載の樹脂組成物。 [5] The resin composition according to [4] above, wherein the adhesion promoter (D) has an SP value of 9.0 (cal/cm 3 ) 1/2 or more.
 [6] さらに酸化防止剤(E)を含む前記[1]~[5]のいずれかに記載の樹脂組成物。 [6] The resin composition according to any one of [1] to [5], further comprising an antioxidant (E).
 [7] 前記[1]~[6]に記載の樹脂組成物を含有する、封止用樹脂組成物。 [7] A sealing resin composition containing the resin composition described in [1] to [6] above.
 [8] 前記[7]に記載の封止用樹脂組成物で封止された電気電子部品封止体。 [8] A sealed electrical/electronic component sealed with the sealing resin composition according to [7] above.
 本発明の樹脂組成物は優れた流動性を示し、かつ耐油性および絶縁性に優れている。そのため、特に電気電子部品封止体において封止材として用いることにより、耐油性および絶縁性を満足する電気電子部品封止体を製造する事が可能となる。 The resin composition of the present invention exhibits excellent fluidity and is excellent in oil resistance and insulation. Therefore, by using it as a sealing material particularly in a sealed electrical/electronic component, it becomes possible to manufacture a sealed electrical/electronic component that satisfies oil resistance and insulation.
図1は、示差走査熱量分析計で測定したチャートの模式図を示す。FIG. 1 shows a schematic diagram of a chart measured with a differential scanning calorimeter.
 以下、本発明を詳述する。 The present invention will be described in detail below.
<ポリエステル樹脂(A)>
 本発明に用いるポリエステル樹脂(A)は、主としてポリエステルセグメントからなるハードセグメントと、主としてポリアルキレングリコール成分からなるソフトセグメントとがエステル結合により結合された化学構造からなることが好ましい。前記ポリエステルセグメントは芳香族ジカルボン酸と脂肪族グリコールおよび/または脂環族グリコールとの重縮合により形成しうる構造のポリエステルから主としてなることが好ましい。
<Polyester resin (A)>
The polyester resin (A) used in the present invention preferably has a chemical structure in which a hard segment mainly composed of a polyester segment and a soft segment mainly composed of a polyalkylene glycol component are linked by an ester bond. Preferably, the polyester segment is mainly composed of a polyester having a structure that can be formed by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol and/or an alicyclic glycol.
 本発明に用いるポリエステル樹脂(A)のSP値は10.0(cal/cm1/2以上であることが必要である。好ましくは10.5(cal/cm1/2以上であることが好ましい。切削油のSP値は一般的に約7~8(cal/cm1/2であり、SP値が低く、切削油のSP値に近いほど、親和性が良くなり、切削油浸漬時に樹脂が切削油を吸収し、樹脂の膨潤により耐油性が悪化することがある。一方でSP値が高すぎる場合、ダイマー酸ポリアミド(B)との相溶性が低下し、かえって樹脂組成物の絶縁性、耐油性、機械特性が劣る場合がある。そのため、SP値は12.5(cal/cm1/2以下であることが好ましく、より好ましくは12.0(cal/cm1/2以下、さらに好ましくは11.5(cal/cm1/2以下である。SP値はモノマーの選定やエステル結合濃度を調整することで調整が可能であり、極性の高いモノマーを共重合する、あるいはエステル結合濃度を高くすることで高いSP値を得ることができる。ここで、本発明で用いられるSP値は、分子構造から推算されるFedorsの計算方法により求められる値である。計算方法は、次の文献に記載されている;Polym. Eng. Sci., 14[2], 147-154(1974)。 The SP value of the polyester resin (A) used in the present invention must be 10.0 (cal/cm 3 ) 1/2 or more. It is preferably 10.5 (cal/cm 3 ) 1/2 or more. The SP value of cutting oil is generally about 7 to 8 (cal/cm 3 ) 1/2 . absorbs cutting oil, and swelling of the resin may deteriorate the oil resistance. On the other hand, if the SP value is too high, the compatibility with the dimer acid polyamide (B) may decrease, and the insulating properties, oil resistance, and mechanical properties of the resin composition may rather deteriorate. Therefore, the SP value is preferably 12.5 (cal/cm 3 ) 1/2 or less, more preferably 12.0 (cal/cm 3 ) 1/2 or less, still more preferably 11.5 (cal/cm 3 ) 1/2 or less. cm 3 ) 1/2 or less. The SP value can be adjusted by selecting a monomer or adjusting the ester bond concentration, and a high SP value can be obtained by copolymerizing a highly polar monomer or by increasing the ester bond concentration. Here, the SP value used in the present invention is a value obtained by the Fedors calculation method estimated from the molecular structure. The calculation method is described in the following literature; Polym. Eng. Sci. , 14[2], 147-154 (1974).
 本発明に用いるポリエステル樹脂(A)のガラス転移温度は-20℃以下であることが好ましく、より好ましくは-30℃以下である。 The glass transition temperature of the polyester resin (A) used in the present invention is preferably -20°C or lower, more preferably -30°C or lower.
 本発明に用いるポリエステル樹脂(A)のエステル基濃度の上限は8000当量/10gであることが望ましい。好ましい上限は7500当量/10g、より好ましくは7000当量/10gである。また、切削油、灯油、ガソリン、エンジンオイル、その他炭化水素系溶剤等への耐油性が要求される場合には、下限は1000当量/10gであることが望ましい。より好ましい下限は1500当量/10g、さらに好ましくは2000当量/10gである。ここでエステル基濃度の単位は、樹脂10gあたりのエステル基の当量数で表し、ポリエステル樹脂の組成及びその共重合比から算出することができる。 The upper limit of the ester group concentration of the polyester resin (A) used in the present invention is desirably 8000 equivalents/10 6 g. A preferred upper limit is 7500 equivalents/10 6 g, more preferably 7000 equivalents/10 6 g. Further, when oil resistance to cutting oil, kerosene, gasoline, engine oil, and other hydrocarbon solvents is required, the lower limit is preferably 1000 equivalents/10 6 g. A more preferable lower limit is 1500 equivalents/10 6 g, more preferably 2000 equivalents/10 6 g. Here, the unit of the ester group concentration is represented by the equivalent number of ester groups per 10 6 g of the resin, and can be calculated from the composition of the polyester resin and its copolymerization ratio.
 本発明に用いるポリエステル樹脂(A)の酸価は100当量/10g以下であることが好ましく、より好ましくは70当量/10g以下であり、さらに好ましくは50当量/10g以下である。酸価が高すぎるとカルボン酸から発生する酸によってポリエステル樹脂(A)の加水分解が促進され、樹脂強度の低下が引き起こされることがある。酸価の下限は特に限定されないが、10当量/10g以上であることが好ましく、より好ましくは20当量/10g以上である。酸価が低すぎると接着性が低下することがある。 The acid value of the polyester resin (A) used in the present invention is preferably 100 equivalents/10 6 g or less, more preferably 70 equivalents/10 6 g or less, still more preferably 50 equivalents/10 6 g or less. be. If the acid value is too high, the hydrolysis of the polyester resin (A) may be accelerated by the acid generated from the carboxylic acid, resulting in a decrease in resin strength. Although the lower limit of the acid value is not particularly limited, it is preferably 10 equivalents/10 6 g or more, more preferably 20 equivalents/10 6 g or more. If the acid value is too low, the adhesion may deteriorate.
 本発明に用いるポリエステル樹脂(A)の数平均分子量の下限は特に限定されないが、3,000以上であることが好ましく、より好ましくは5,000以上、さらに好ましくは7,000以上である。また、数平均分子量の上限は特に限定されないが、好ましくは80,000以下、より好ましくは70,000以下、さらに好ましくは60,000以下である。数平均分子量が低すぎると樹脂組成物の耐加水分解性や高温高湿下での強伸度保持が不足することがあり、数平均分子量が高すぎると樹脂組成物の溶融粘度が高くなり成形圧力が高くなりすぎたり成形困難となったりすることがある。 Although the lower limit of the number average molecular weight of the polyester resin (A) used in the present invention is not particularly limited, it is preferably 3,000 or more, more preferably 5,000 or more, and still more preferably 7,000 or more. Although the upper limit of the number average molecular weight is not particularly limited, it is preferably 80,000 or less, more preferably 70,000 or less, and still more preferably 60,000 or less. If the number average molecular weight is too low, the hydrolysis resistance of the resin composition and the retention of strength and elongation under high temperature and high humidity may be insufficient. The pressure may become too high and molding may become difficult.
 本発明に用いるポリエステル樹脂(A)の溶融粘度の上限は成形温度下(例えば230℃)にて5000dPa・s未満が好ましく、4000dPa・s未満がより好ましく、3000dPa・s未満がさらに好ましい。また溶融粘度の下限は特に限定されないが、好ましくは50dPa・s以上、より好ましくは300dP・s、さらに好ましくは500dPa・s、最も好ましくは1000dPa・sである。溶融粘度が高すぎると成形時の流動性が悪くなり、成形困難となったりすることがあり、溶融粘度が低すぎると耐油性や機械特性が低下したり、バリなどの成形の外観不良が解消されないことがある。 The upper limit of the melt viscosity of the polyester resin (A) used in the present invention is preferably less than 5000 dPa·s, more preferably less than 4000 dPa·s, and even more preferably less than 3000 dPa·s at a molding temperature (for example, 230°C). Although the lower limit of the melt viscosity is not particularly limited, it is preferably 50 dPa·s or more, more preferably 300 dPa·s, still more preferably 500 dPa·s, and most preferably 1000 dPa·s. If the melt viscosity is too high, the fluidity during molding may deteriorate, making it difficult to mold. may not be
 本発明に用いるポリエステル樹脂(A)は飽和ポリエステル樹脂であることが好ましく、50当量/10g以下の微量のビニル基を有する不飽和ポリエステル樹脂であってもよい。高濃度のビニル基を有する不飽和ポリエステルであると、溶融時に架橋が起こる等の可能性があり、溶融安定性に劣る場合がある。 The polyester resin (A) used in the present invention is preferably a saturated polyester resin, and may be an unsaturated polyester resin having a trace amount of vinyl groups of 50 equivalents/10 6 g or less. If the unsaturated polyester has a high concentration of vinyl groups, cross-linking may occur during melting, resulting in poor melt stability.
 本発明に用いるポリエステル樹脂(A)は、必要に応じて無水トリメリット酸、トリメチロールプロパン等の三官能以上のポリカルボン酸やポリオールを共重合し、分岐を有するポリエステルとしても差し支えない。 The polyester resin (A) used in the present invention may be a branched polyester obtained by copolymerizing a tri- or higher-functional polycarboxylic acid or polyol such as trimellitic anhydride or trimethylolpropane, if necessary.
 本発明に用いるポリエステル樹脂(A)は、熱劣化を出来るだけ生じさせずにモールドするためには、210~240℃での速やかな溶融が求められる。このため、ポリエステル樹脂(A)の融点の上限は210℃が望ましい。好ましくは200℃、より好ましくは190℃である。常温での取り扱い性と通常の耐熱性を考慮すると、ポリエステル樹脂(A)の融点は好ましくは90℃以上であり、より好ましくは100℃以上、さらに好ましくは110℃以上、特に好ましくは120℃以上、最も好ましくは130℃以上である。 The polyester resin (A) used in the present invention is required to melt quickly at 210 to 240°C in order to mold while minimizing thermal deterioration. Therefore, the upper limit of the melting point of the polyester resin (A) is desirably 210°C. It is preferably 200°C, more preferably 190°C. Considering the handleability at normal temperature and the normal heat resistance, the melting point of the polyester resin (A) is preferably 90° C. or higher, more preferably 100° C. or higher, still more preferably 110° C. or higher, and particularly preferably 120° C. or higher. , most preferably 130° C. or higher.
 本発明に用いるポリエステル樹脂(A)の製造方法としては、公知の方法をとることができる。例えば、後述するポリカルボン酸成分及びポリオール成分を150~250℃でエステル化反応させた後、減圧しながら230~300℃で重縮合反応させることにより、ポリエステルを得ることができる。あるいは、後述するポリカルボン酸のジメチルエステル等の誘導体とポリオール成分を用いて150℃~250℃でエステル交換反応させた後、減圧しながら230℃~300℃で重縮合反応させることにより、ポリエステルを得ることができる。 A known method can be used as a method for producing the polyester resin (A) used in the present invention. For example, a polyester can be obtained by subjecting a polycarboxylic acid component and a polyol component, which will be described later, to an esterification reaction at 150 to 250° C., followed by a polycondensation reaction at 230 to 300° C. under reduced pressure. Alternatively, a derivative such as a dimethyl ester of a polycarboxylic acid described later and a polyol component are used for an ester exchange reaction at 150° C. to 250° C., followed by a polycondensation reaction at 230° C. to 300° C. under reduced pressure to form a polyester. Obtainable.
<ポリエステル樹脂(A)のハードセグメント>
 本発明に用いるポリエステル樹脂(A)を構成するハードセグメントは、主としてポリエステルセグメントからなることが好ましい。ポリエステルセグメントは、主としてポリカルボン酸成分とポリオール成分とを構成単位とするものである。
<Hard segment of polyester resin (A)>
It is preferable that the hard segment constituting the polyester resin (A) used in the present invention is mainly composed of a polyester segment. The polyester segment is composed mainly of a polycarboxylic acid component and a polyol component as structural units.
 前記ポリエステルセグメントを構成するポリカルボン酸成分は特に限定されないが、芳香族ジカルボン酸を含むことがポリエステル樹脂(A)の耐熱性を向上させることができる点で好ましい。芳香族ジカルボン酸の具体例としては、テレフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、イソフタル酸、5-ナトリウムスルイソフタル酸などが挙げられる。特に、芳香族ジカルボン酸はテレフタル酸および/又はナフタレンジカルボン酸であることが耐熱性の向上に加え、グリコールと高反応性であり、重合性および生産性の点で望ましい。ポリエステルセグメントを構成する全ポリカルボン酸成分を100モル%としたとき、テレフタル酸とナフタレンジカルボン酸の合計が50モル%以上であることが好ましく、60モル%以上であることがより好ましく、80モル%以上であることが更に好ましく、95モル%以上であることが特に好ましく、全ポリカルボン酸成分がテレフタル酸および/またはナフタレンジカルボン酸で構成されていても差し支えない。 Although the polycarboxylic acid component that constitutes the polyester segment is not particularly limited, it is preferable that it contains an aromatic dicarboxylic acid because it can improve the heat resistance of the polyester resin (A). Specific examples of aromatic dicarboxylic acids include terephthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, isophthalic acid, and 5-sodiumsulisophthalic acid. In particular, the aromatic dicarboxylic acid is preferably terephthalic acid and/or naphthalenedicarboxylic acid in view of improved heat resistance and high reactivity with glycol, resulting in polymerizability and productivity. When the total polycarboxylic acid component constituting the polyester segment is 100 mol%, the total of terephthalic acid and naphthalene dicarboxylic acid is preferably 50 mol% or more, more preferably 60 mol% or more, and 80 mol. % or more, particularly preferably 95 mol % or more, and the total polycarboxylic acid component may be composed of terephthalic acid and/or naphthalenedicarboxylic acid.
 ポリエステルセグメントを構成するその他のポリカルボン酸成分としては、シクロヘキサンジカルボン酸、テトラヒドロ無水フタル酸などの脂環族ジカルボン酸、コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、ダイマー酸、水添ダイマー酸などの脂肪族ジカルボン酸などのジカルボン酸が挙げられる。これらのジカルボン酸成分はポリエステル樹脂(A)の融点を大きく低下させない範囲で用いられ、その共重合比率は全ポリカルボン酸成分の50モル%以下、好ましくは40モル%以下である。また、ポリエステルセグメントを構成するその他のポリカルボン酸成分として、トリメリット酸、ピロメリット酸等の3官能以上のポリカルボン酸を用いることも可能である。3官能以上のポリカルボン酸の共重合比率は、樹脂組成物のゲル化防止の観点から全ポリカルボン酸成分の10モル%以下とすることが好ましく、5モル%以下とすることがより好ましい。 Other polycarboxylic acid components constituting the polyester segment include alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid and tetrahydrophthalic anhydride, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, and dimers. Acids, dicarboxylic acids such as aliphatic dicarboxylic acids such as hydrogenated dimer acid. These dicarboxylic acid components are used within a range that does not greatly lower the melting point of the polyester resin (A), and the copolymerization ratio thereof is 50 mol % or less, preferably 40 mol % or less of the total polycarboxylic acid components. As other polycarboxylic acid components constituting the polyester segment, it is also possible to use tri- or higher functional polycarboxylic acids such as trimellitic acid and pyromellitic acid. From the viewpoint of preventing gelation of the resin composition, the copolymerization ratio of the tri- or higher functional polycarboxylic acid is preferably 10 mol % or less, more preferably 5 mol % or less, of the total polycarboxylic acid component.
 また、ポリエステルセグメントを構成するポリオール成分としては特に限定されないが、ポリエステル樹脂(A)の耐熱性を向上させることができる点で、脂肪族グリコールおよび/または脂環族グリコールであることが好ましい。中でも脂肪族グリコールおよび/または脂環族グリコールとしては、好ましくは炭素数2~10のアルキレングリコール類であり、より好ましくは炭素数2~8のアルキレングリコール類である。特に好ましい脂肪族グリコールおよび脂環族グリコール成分としては、具体的にはエチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノールなどが挙げられ、1,4-ブタンジオール及び1,4-シクロヘキサンジメタノールが最も好ましい。脂肪族グリコールおよび/または脂環族グリコールは全ポリオール成分の50モル%以上であることが好ましく、70モル%以上がより好ましい。また、ポリオール成分の一部として、グリセリン、トリメチロールプロパン、ペンタエリスルトール等の3官能以上のポリオールを用いても良く、樹脂組成物のゲル化防止の観点から全ポリオール成分の10モル%以下とすることが好ましく、5モル%以下とすることがより好ましい。 Although the polyol component constituting the polyester segment is not particularly limited, it is preferably an aliphatic glycol and/or an alicyclic glycol in that it can improve the heat resistance of the polyester resin (A). Among them, the aliphatic glycol and/or the alicyclic glycol are preferably alkylene glycols having 2 to 10 carbon atoms, more preferably alkylene glycols having 2 to 8 carbon atoms. Particularly preferred aliphatic glycol and alicyclic glycol components are specifically ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol and the like. with 1,4-butanediol and 1,4-cyclohexanedimethanol being most preferred. Aliphatic glycol and/or alicyclic glycol preferably accounts for 50 mol% or more, more preferably 70 mol% or more, of the total polyol component. In addition, as a part of the polyol component, trifunctional or higher polyols such as glycerin, trimethylolpropane, pentaerythritol, etc. may be used, and from the viewpoint of preventing gelation of the resin composition, 10 mol % or less of the total polyol component. and more preferably 5 mol % or less.
 ポリエステルセグメントを構成する成分としては、ブチレンテレフタレート単位またはブチレンナフタレート単位よりなるものが、ポリエステル樹脂(A)が高融点となり耐熱性を向上させることができること、また、成形性、コストパフォーマンスの点より、特に好ましい。 As a component constituting the polyester segment, a butylene terephthalate unit or a butylene naphthalate unit is used because the polyester resin (A) has a high melting point and can improve heat resistance, and also from the viewpoint of moldability and cost performance. , is particularly preferred.
 ポリエステルセグメントを構成するポリカルボン酸成分およびポリオール成分は、バイオマス由来の原料を含んでもよい。
 
The polycarboxylic acid component and the polyol component that constitute the polyester segment may contain raw materials derived from biomass.
<ポリエステル樹脂(A)のソフトセグメント>
 本発明に用いるポリエステル樹脂(A)のソフトセグメントは、主としてポリアルキレングリコール成分からなることが好ましい。ソフトセグメントの共重合比率は前記ポリエステル樹脂(A)を構成するポリオール成分全体を100モル%としたとき0.5モル%以上であることが好ましく、2.5モル%以上であることがより好ましく、5モル%以上であることが更に好ましい。また、50モル%以下であることが好ましく、45モル%以下であることがより好ましく、40モル%以下であることが更に好ましい。ソフトセグメントの共重合比率が低すぎると、本発明の樹脂組成物の溶融粘度が高くなり低圧で成形できない、または、結晶化速度が速くショートショットが発生する等の問題を生じる傾向にある。また、ソフトセグメントの共重合比率が高すぎると封止体とした場合の耐熱性が不足する等の問題を生じる傾向にある。
<Soft segment of polyester resin (A)>
It is preferable that the soft segment of the polyester resin (A) used in the present invention mainly consists of a polyalkylene glycol component. The copolymerization ratio of the soft segment is preferably 0.5 mol % or more, more preferably 2.5 mol % or more, when the total polyol component constituting the polyester resin (A) is taken as 100 mol %. , is more preferably 5 mol % or more. Moreover, it is preferably 50 mol % or less, more preferably 45 mol % or less, and even more preferably 40 mol % or less. If the copolymerization ratio of the soft segment is too low, the melt viscosity of the resin composition of the present invention tends to be high, which tends to cause problems such as being unable to be molded at low pressure, or causing short shots due to high crystallization speed. On the other hand, if the copolymerization ratio of the soft segment is too high, problems such as insufficient heat resistance when used as a sealing body tend to occur.
 ソフトセグメントの数平均分子量は特に限定されないが、400以上であることが好ましく、800以上であることがより好ましい。ソフトセグメントの数平均分子量が低すぎると柔軟性付与が出来ず、封止後の電子基板への応力負荷が大きくなる問題を生じる傾向にある。またソフトセグメントの数平均分子量は5000以下であることが好ましく、3000以下であることがより好ましい。数平均分子量が高すぎると他の共重合成分との相溶性が悪く共重合できない問題を生じる傾向にある。 Although the number average molecular weight of the soft segment is not particularly limited, it is preferably 400 or more, more preferably 800 or more. If the number average molecular weight of the soft segment is too low, flexibility cannot be imparted, and the stress load on the electronic substrate after sealing tends to increase. The soft segment preferably has a number average molecular weight of 5,000 or less, more preferably 3,000 or less. If the number-average molecular weight is too high, the compatibility with other copolymerization components tends to be poor, resulting in a problem of inability to copolymerize.
 ソフトセグメントに用いられるポリアルキレングリコール成分の具体例としては、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール等を挙げることができる。柔軟性付与、低溶融粘度化の面でポリテトラメチレングリコールが最も好ましい。 Specific examples of polyalkylene glycol components used in soft segments include polyethylene glycol, polytrimethylene glycol, and polytetramethylene glycol. Polytetramethylene glycol is most preferred in terms of imparting flexibility and lowering melt viscosity.
 本発明に用いるポリエステル樹脂(A)は非晶性でも結晶性でも差し支えないが、結晶性であることが好ましい。本発明において結晶性とは、示差走査型熱量計(DSC)を用いて、20℃/minの昇温速度で230℃まで加熱溶融し、次いで、液体窒素を用いて20℃/minで-130℃まで冷却し、5分ホールドした後、-130℃から230℃まで、20℃/minの昇温速度で昇温したとき、この二度の昇温工程のどちらかにおいて明確な融解ピークを示すものを指す。一方、非晶性とは、どちらの昇温工程にも融解ピークを示さないものを指す。 The polyester resin (A) used in the present invention may be amorphous or crystalline, but preferably crystalline. In the present invention, crystallinity means using a differential scanning calorimeter (DSC) to heat and melt at a temperature increase rate of 20 ° C./min to 230 ° C., then using liquid nitrogen at 20 ° C./min to -130 After cooling to ° C. and holding for 5 minutes, when heating from -130 ° C. to 230 ° C. at a heating rate of 20 ° C./min, it shows a clear melting peak in either of these two heating steps. point to something On the other hand, "amorphous" refers to those that do not show a melting peak in either heating step.
<ダイマー酸ポリアミド(B)>
 本発明の樹脂組成物は、ダイマー酸ポリアミド(B)を含有する。ダイマー酸ポリアミド(B)は、構成単位としてダイマー酸を含有するポリアミドである。ポリアミドの酸成分としてダイマー酸を共重合することで、ポリアミドの耐油性を維持しながら、溶融粘度を低くすることができる。そのため、ポリエステル樹脂(A)との樹脂組成物において優れた耐油性を維持しつつ、成形時の流動性を付与できる。またガラス転移温度も低くなり、耐低温性にも優れる。
<Dimer Acid Polyamide (B)>
The resin composition of the present invention contains a dimer acid polyamide (B). Dimer acid polyamide (B) is a polyamide containing dimer acid as a structural unit. By copolymerizing a dimer acid as the acid component of the polyamide, the melt viscosity can be lowered while maintaining the oil resistance of the polyamide. Therefore, fluidity during molding can be imparted while maintaining excellent oil resistance in the resin composition with the polyester resin (A). In addition, the glass transition temperature is lowered and the low temperature resistance is also excellent.
 本発明に用いるダイマー酸ポリアミド(B)のガラス転移温度は-20℃以下であることが好ましく、より好ましくは-30℃以下であることが好ましい。 The glass transition temperature of the dimer acid polyamide (B) used in the present invention is preferably -20°C or lower, more preferably -30°C or lower.
本発明に用いるダイマー酸ポリアミド(B)は、熱劣化を出来るだけ生じさせずにモールドするためには、210~240℃での速やかな溶融が求められる。このため、ダイマー酸ポリアミド(B)の軟化点は210℃以下が好ましく、より好ましくは200℃以下である。常温での取り扱い性と通常の耐熱性を考慮すると、ダイマー酸ポリアミド(B)の軟化点は好ましくは90℃以上であり、より好ましくは100℃以上、さらに好ましくは110℃以上、特に好ましくは120℃以上、最も好ましくは130℃以上である。 The dimer acid polyamide (B) used in the present invention is required to melt rapidly at 210 to 240° C. in order to be molded with as little heat deterioration as possible. Therefore, the softening point of the dimer acid polyamide (B) is preferably 210°C or lower, more preferably 200°C or lower. Considering the handleability at room temperature and normal heat resistance, the softening point of the dimer acid polyamide (B) is preferably 90°C or higher, more preferably 100°C or higher, still more preferably 110°C or higher, and particularly preferably 120°C. °C or higher, most preferably 130 °C or higher.
 本発明の樹脂組成物において、ポリエステル樹脂(A)とダイマー酸ポリアミド(B)の合計量を100質量部としたとき、ダイマー酸ポリアミド(B)の含有量は、10質量部以上50質量部以下が好ましく、20質量部以上40質量部以下がさらに好ましい。ダイマー酸ポリアミド(B)の含有量が少なすぎると樹脂組成物の溶融粘度が上昇し、成形時の流動性が悪化し、多すぎると切削油浸漬下などの長期試験環境下での絶縁性が悪化することがある。 In the resin composition of the present invention, when the total amount of the polyester resin (A) and the dimer acid polyamide (B) is 100 parts by mass, the content of the dimer acid polyamide (B) is 10 parts by mass or more and 50 parts by mass or less. is preferred, and 20 parts by mass or more and 40 parts by mass or less is more preferred. If the content of the dimer acid polyamide (B) is too low, the melt viscosity of the resin composition will increase and the fluidity during molding will deteriorate. It may get worse.
<エポキシ樹脂(C)>
 本発明の樹脂組成物は、エポキシ樹脂(C)を含有する。本発明に用いるエポキシ樹脂(C)は、1分子中に1個以上のエポキシ基を有する化合物であれば特に限定されない。好ましくは数平均分子量450~40,000の範囲で、1分子中に平均で1.1個以上のエポキシ基を有する樹脂である。例えばビスフェノールAジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ノボラックグリシジルエーテル、ブロム化ビスフェノールAジグリシジルエーテル等のグリシジルエーテルタイプ;ヘキサヒドロフタル酸グリシジルエステル、ダイマー酸グリシジルエステル等のグリシジルエステルタイプ;トリグリシジルイソシアヌレート、グリシジルヒンダントイン、テトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール、トリグリシジルメタアミノフェノール、ジグリシジルアニリン、ジグリシジルトルイジン、テトラグリシジルメタキシレンジアミン、ジグリシジルトリブロムアニリン、テトラグリシジルビスアミノメチルシクロヘキサン等のグリシジルアミンタイプ;3,4-エポキシシクロヘキシルメチルカルボキシレート、エポキシ化ポリブタジエン、エポキシ化大豆油等の脂環族または脂肪族エポキサイドタイプなどが挙げられる。これらを単独で、または2種以上を併用して使用することができる。
<Epoxy resin (C)>
The resin composition of the present invention contains an epoxy resin (C). The epoxy resin (C) used in the present invention is not particularly limited as long as it is a compound having one or more epoxy groups in one molecule. Preferably, it is a resin having a number average molecular weight in the range of 450 to 40,000 and an average of 1.1 or more epoxy groups per molecule. glycidyl ether types such as bisphenol A diglycidyl ether, bisphenol S diglycidyl ether, novolac glycidyl ether, brominated bisphenol A diglycidyl ether; glycidyl ester types such as hexahydrophthalic acid glycidyl ester and dimer acid glycidyl ester; triglycidyl isocyanate Nurate, glycidylhindantoin, tetraglycidyldiaminodiphenylmethane, triglycidyl para-aminophenol, triglycidylmethaminophenol, diglycidylaniline, diglycidyltoluidine, tetraglycidylmetaxylenediamine, diglycidyltribromoaniline, tetraglycidylbisaminomethylcyclohexane, etc. glycidylamine type; alicyclic or aliphatic epoxide types such as 3,4-epoxycyclohexylmethyl carboxylate, epoxidized polybutadiene, and epoxidized soybean oil; These can be used alone or in combination of two or more.
 エポキシ樹脂の(C)の軟化点は、70℃以上が好ましく、80℃以上がさらに好ましい。軟化点が低いと、高温(70℃以上)環境下での物性が悪化することがある。 The softening point of (C) of the epoxy resin is preferably 70°C or higher, more preferably 80°C or higher. If the softening point is low, physical properties may deteriorate in a high temperature (70° C. or higher) environment.
 エポキシ樹脂(C)の数平均分子量は450以上であることが好ましく、より好ましくは600以上であり、さらに好ましくは1000以上である。数平均分子量が小さすぎると樹脂組成物が軟化しやすくなり、機械的物性が低下することがある。また、40,000以下であることが好ましく、より好ましくは30,000以下であり、さらに好ましくは20,000以下である。数平均分子量が大きすぎると、ポリエステル樹脂(A)およびダイマー酸ポリアミド(B)との相溶性が低下し、密着性が損なわれることがある。 The number average molecular weight of the epoxy resin (C) is preferably 450 or more, more preferably 600 or more, and still more preferably 1000 or more. If the number average molecular weight is too small, the resin composition tends to soften, and mechanical properties may deteriorate. Also, it is preferably 40,000 or less, more preferably 30,000 or less, and still more preferably 20,000 or less. If the number average molecular weight is too large, the compatibility with the polyester resin (A) and the dimer acid polyamide (B) may be lowered, resulting in impaired adhesion.
 本発明において、エポキシ樹脂(C)を樹脂組成物に配合することにより、電気電子部品の封止に際し、良好な初期密着性や切削油浸漬等の環境負荷に対する密着耐久性、低粘度化による成形時の流動性の向上といった優れた特性を付与することができる。エポキシ樹脂(C)は、ポリエステル樹脂(A)とダイマー酸ポリアミド(B)の相溶化剤としての効果、さらには官能基導入による基材への濡れ性向上の効果を発揮し、ひいては絶縁性を向上するものと考えられる。本発明の樹脂組成物におけるエポキシ樹脂(C)の含有量は、ポリエステル樹脂(A)とダイマー酸ポリアミド(B)の合計100質量部に対して5質量部以上であることが好ましく、より好ましくは10質量部以上であり、さらに好ましくは20質量部以上である。エポキシ樹脂(C)の配合量が5質量部未満の場合、ポリエステル樹脂(A)とダイマー酸ポリアミド(B)の相溶化剤としての働きも発現できないことがある。また、50質量部以下であることが好ましく、より好ましくは40質量部以下である。エポキシ樹脂(C)を50質量部以上配合した場合、樹脂組成物の生産性に劣り、さらには封止体の耐熱性等の特性が劣ることがある。 In the present invention, by blending the epoxy resin (C) into the resin composition, when sealing electrical and electronic parts, good initial adhesion, adhesion durability against environmental loads such as immersion in cutting oil, and molding by low viscosity Excellent properties such as improved fluidity can be imparted. The epoxy resin (C) exerts an effect as a compatibilizer for the polyester resin (A) and the dimer acid polyamide (B), and also exhibits an effect of improving the wettability to the base material by introducing a functional group, and in turn improves the insulating properties. It is considered to be improved. The content of the epoxy resin (C) in the resin composition of the present invention is preferably 5 parts by mass or more, more preferably 100 parts by mass in total of the polyester resin (A) and the dimer acid polyamide (B). It is 10 parts by mass or more, more preferably 20 parts by mass or more. If the amount of the epoxy resin (C) is less than 5 parts by mass, it may not function as a compatibilizer for the polyester resin (A) and the dimer acid polyamide (B). Also, it is preferably 50 parts by mass or less, more preferably 40 parts by mass or less. When 50 parts by mass or more of the epoxy resin (C) is blended, the productivity of the resin composition may be inferior, and the properties such as heat resistance of the sealing body may be inferior.
<接着付与剤(D)>
 本発明の樹脂組成物は、さらに接着付与剤(D)を含有してもよい。本発明に用いる接着付与剤(D)は特に限定されず、フェノール化合物、キシレン変性フェノール樹脂、テルペン変性フェノール樹脂、テルペン変性フェノール樹脂を水素添加処理した水添テルペン変性フェノール樹脂などが使用できる。
<Adhesion imparting agent (D)>
The resin composition of the present invention may further contain a tackifier (D). The tackifier (D) used in the present invention is not particularly limited, and phenol compounds, xylene-modified phenolic resins, terpene-modified phenolic resins, hydrogenated terpene-modified phenolic resins obtained by hydrogenating terpene-modified phenolic resins, and the like can be used.
 本発明に用いる接着付与剤(D)のSP値は9.0(cal/cm1/2以上が好ましい。SP値が低いと灯油や切削油等への耐油性や機械特性に劣る場合がある。 The SP value of the tackifier (D) used in the present invention is preferably 9.0 (cal/cm 3 ) 1/2 or more. If the SP value is low, oil resistance to kerosene, cutting oil, etc. and mechanical properties may be inferior.
 本発明に用いる接着付与剤(D)は、水酸基を有していることが好ましい。接着付与剤(D)が水酸基を有することで、基材との密着性が向上し、絶縁性を向上させることができる。接着付与剤(D)の水酸基価は1~500KOHmg/gであることが好ましく、より好ましくは30~400KOHmg/gであり、50~300KOHmg/gであることがさらに好ましい。 The tackifier (D) used in the present invention preferably has a hydroxyl group. Since the adhesion imparting agent (D) has a hydroxyl group, the adhesiveness to the base material can be improved, and the insulation can be improved. The hydroxyl value of the tackifier (D) is preferably from 1 to 500 KOHmg/g, more preferably from 30 to 400 KOHmg/g, even more preferably from 50 to 300 KOHmg/g.
 本発明において、接着付与剤(D)を樹脂組成物に配合することにより、電気電子部品の封止に際し、良好な接着性を付与することができる。接着付与剤(D)は、官能基導入による基材への濡れ性向上の効果を発揮するものと考えられる。本発明における接着付与剤(D)の配合量は、ポリエステル樹脂(A)とダイマー酸ポリアミド(B)の合計100質量部に対して5質量部以上であることが好ましく、10質量部以上であることがより好ましく、20質量部以上であることがさらに好ましい。また、50質量部以下であることが好ましく、40質量部以下であることが更に好ましい。接着付与剤(D)の配合比率が低すぎると、良好な接着性を発現されないことがある。また、接着付与剤(D)の配合比率が高すぎると、弾性率の上昇に伴い、樹脂柔軟性が低下し接着性に悪影響を及ぼしたり、接着付与剤(D)の官能基が配合物と反応し樹脂が脆化することがある。 In the present invention, by blending the adhesion imparting agent (D) into the resin composition, it is possible to impart good adhesion when sealing electrical and electronic components. The tackifier (D) is considered to exhibit the effect of improving the wettability to the substrate by introducing the functional group. The amount of the tackifier (D) in the present invention is preferably 5 parts by mass or more and 10 parts by mass or more with respect to a total of 100 parts by mass of the polyester resin (A) and the dimer acid polyamide (B). is more preferable, and 20 parts by mass or more is even more preferable. Also, it is preferably 50 parts by mass or less, more preferably 40 parts by mass or less. If the blending ratio of the tackifier (D) is too low, good adhesion may not be exhibited. On the other hand, if the blending ratio of the tackifier (D) is too high, the elastic modulus will increase and the flexibility of the resin will decrease, which will adversely affect the adhesiveness. It may react and embrittle the resin.
<酸化防止剤(E)>
 本発明の樹脂組成物は、さらに酸化防止剤(E)を含有してもよい。本発明に用いる酸化防止剤(E)としては、ポリエステル樹脂(A)の酸化を防止できるものであれば特に限定されず、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤などが使用できる。例えば、ヒンダードフェノール系として、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,1,3-トリ(4-ヒドロキシ-2-メチル-5-t-ブチルフェニル)ブタン、1,1-ビス(3-t-ブチル-6-メチル-4-ヒドロキシフェニル)ブタン、3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシ-ベンゼンプロパノイック酸、ペンタエリトリチル テトラキス(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、3-(1,1-ジメチルエチル)-4-ヒドロキシ-5-メチル-ベンゼンプロパノイック酸、3,9-ビス[1,1-ジメチル-2-[(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニロキシ]エチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、1,3,5-トリメチル-2,4,6-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)ベンゼン、リン系として、3,9-ビス(p-ノニルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン、3,9-ビス(オクタデシロキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン、トリ(モノノニルフェニル)フォスファイト、トリフェノキシフォスフィン、イソデシルフォスファイト、イソデシルフェニルフォスファイト、ジフェニル2-エチルヘキシルフォスファイト、ジノニルフェニルビス(ノニルフェニル)エステルフォスフォラス酸、1,1,3-トリス(2-メチル-4-ジトリデシルフォスファイト-5-t-ブチルフェニル)ブタン、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、ペンタエリスリトールビス(2,4-ジ-t-ブチルフェニルフォスファイト)、2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)2-エチルヘキシルフォスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール ジフォスファイト、チオエーテル系として4,4’-チオビス[2-t-ブチル-5-メチルフェノール]ビス[3-(ドデシルチオ)プロピオネート]、チオビス[2-(1,1-ジメチルエチル)-5-メチル-4,1-フェニレン]ビス[3-(テトラデシルチオ)-プロピオネート]、ペンタエリスリトールテトラキス(3-n-ドデシルチオプロピオネート)、ビス(トリデシル) チオジプロピオネートが挙げられ、これらを単独に、または複合して使用できる。
<Antioxidant (E)>
The resin composition of the present invention may further contain an antioxidant (E). The antioxidant (E) used in the present invention is not particularly limited as long as it can prevent oxidation of the polyester resin (A). agents can be used. For example, hindered phenols include 1,3,5-tris(3,5-di-t-butyl-4-hydroxybenzyl)isocyanurate, 1,1,3-tri(4-hydroxy-2-methyl- 5-t-butylphenyl)butane, 1,1-bis(3-t-butyl-6-methyl-4-hydroxyphenyl)butane, 3,5-bis(1,1-dimethylethyl)-4-hydroxy- Benzenepropanoic acid, pentaerythrityl tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 3-(1,1-dimethylethyl)-4-hydroxy-5-methyl-benzenepropanoic acid Ic acid, 3,9-bis[1,1-dimethyl-2-[(3-t-butyl-4-hydroxy-5-methylphenyl)propionyloxy]ethyl]-2,4,8,10-tetra Oxaspiro[5.5]undecane, 1,3,5-trimethyl-2,4,6-tris(3′,5′-di-t-butyl-4′-hydroxybenzyl)benzene, as phosphorus system, 3 ,9-bis(p-nonylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane, 3,9-bis(octadecyloxy)-2,4 ,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane, tri(monononylphenyl)phosphite, triphenoxyphosphine, isodecylphosphite, isodecylphenylphosphite, diphenyl 2- Ethylhexylphosphite, dinonylphenylbis(nonylphenyl)ester phosphoric acid, 1,1,3-tris(2-methyl-4-ditridecylphosphite-5-t-butylphenyl)butane, tris(2,4 -di-t-butylphenyl) phosphite, pentaerythritol bis(2,4-di-t-butylphenyl phosphite), 2,2'-methylenebis(4,6-di-t-butylphenyl) 2-ethylhexyl Phosphite, bis(2,6-di-t-butyl-4-methylphenyl)pentaerythritol diphosphite, 4,4'-thiobis[2-t-butyl-5-methylphenol]bis[3 as thioether -(dodecylthio)propionate], thiobis[2-(1,1-dimethylethyl)-5-methyl-4,1-phenylene]bis[3-(tetradecylthio)-propionate], pentaerythritol tetrakis(3-n -dodecylthiopropionate), bis(tridecyl)thiodipropionate), and these can be used alone or in combination.
 酸化防止剤(E)の含有量はポリエステル樹脂(A)とダイマー酸ポリアミド(B)の合計100質量部に対して0.1質量部以上であることが好ましく、より好ましくは0.2質量部以上であり、さらに好ましくは0.3質量部以上である。含有量が少なすぎると、高温下での長期耐久性に悪影響を与える場合がある。また5質量部以下であることが好ましく、より好ましくは3質量部以下であり、さらに好ましくは1質量部以下である。含有量が多すぎると、接着性、難燃性等に悪影響を与える場合がある。 The content of the antioxidant (E) is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass with respect to a total of 100 parts by mass of the polyester resin (A) and the dimer acid polyamide (B). or more, more preferably 0.3 parts by mass or more. If the content is too low, it may adversely affect long-term durability at high temperatures. Also, it is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and even more preferably 1 part by mass or less. If the content is too high, it may adversely affect adhesion, flame retardancy, and the like.
<樹脂組成物>
 本発明の樹脂組成物は、少なくとも前記ポリエステル樹脂(A)、ダイマー酸ポリアミド(B)、およびエポキシ樹脂(C)を含有し、必要に応じて、接着付与剤(D)、酸化防止剤(E)を含有する組成物である。ここで、封止とは精密部品等を防塵、防水するために外気に触れないように隙間なく包むことをいう。本発明の樹脂組成物は、長期信頼性に優れることから、精密部品のなかでも特に電気電子部品の封止用途に好適である。
<Resin composition>
The resin composition of the present invention contains at least the polyester resin (A), the dimer acid polyamide (B), and the epoxy resin (C), and if necessary, an adhesion promoter (D), an antioxidant (E ) is a composition containing Here, the term "sealing" refers to the wrapping of precision parts and the like without gaps so as to prevent dust and water from coming into contact with the outside air. INDUSTRIAL APPLICABILITY The resin composition of the present invention is excellent in long-term reliability, and is therefore suitable for use in sealing electrical and electronic parts, among precision parts.
 本発明の樹脂組成物には、本発明のポリエステル樹脂(A)、ダイマー酸ポリアミド(B)、エポキシ(C)、接着付与剤(D)のいずれにも該当しない、ポリエステル、ポリアミド、ポリオレフィン、ポリカーボネート、アクリル、エチレンビニルアセテート等の他の樹脂、イソシアネート化合物、メラミン等の硬化剤、タルクや雲母等の充填材、カーボンブラック、酸化チタン等の顔料、三酸化アンチモン、臭素化ポリスチレン等の難燃剤を本発明の効果を損なわない範囲で配合しても全く差し支えない。これらの成分を配合することにより、接着性、柔軟性、耐久性等が改良される場合がある。その際のポリエステル樹脂(A)は、本発明の樹脂組成物全体に対して50質量%以上含有することが好ましく、より好ましくは55質量%以上であり、さらに好ましくは60質量%以上である。ポリエステル樹脂(A)の含有量が50質量%未満であるとポリエステル樹脂(A)自身が有する、優れた電気電子部品に対する接着性、接着耐久性、柔軟性が低下する傾向がある。 The resin composition of the present invention includes polyesters, polyamides, polyolefins, and polycarbonates that do not correspond to any of the polyester resin (A), dimer acid polyamide (B), epoxy (C), and tackifier (D) of the present invention. , other resins such as acrylic and ethylene vinyl acetate, isocyanate compounds, curing agents such as melamine, fillers such as talc and mica, pigments such as carbon black and titanium oxide, flame retardants such as antimony trioxide and brominated polystyrene. There is no problem even if it is blended within a range that does not impair the effects of the present invention. Adhesiveness, flexibility, durability and the like may be improved by blending these components. In this case, the polyester resin (A) is preferably contained in an amount of 50% by mass or more, more preferably 55% by mass or more, and still more preferably 60% by mass or more, relative to the entire resin composition of the present invention. If the content of the polyester resin (A) is less than 50% by mass, the polyester resin (A) itself tends to have poor adhesion to electric and electronic parts, adhesion durability, and flexibility.
 さらには本発明の樹脂組成物が耐候性を求められる場合には、光安定剤を添加することが好ましい。光安定剤としては、例えば、ベンゾトリアゾール系光安定剤、ベンゾフェノン系光安定剤、ヒンダートアミン系光安定剤、ニッケル系光安定剤、ベンゾエート系光安定剤などが挙げられる。ベンゾトリアゾール系光安定剤としては、2-(3,5-ジ-tert-アミル-2’ヒドロキシフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)-ベンゾトリアゾール、2,4-ジ-tert-ブチル-6-(5-クロロベンゾトリアゾール-2-イル)フェノール,2-[2-ヒドロキシ-3,5-ジ(1,1-ジメチルベンジル)]-2H-ベンゾトリアゾール等が挙げられる。ベンゾフェノン系光安定剤としては、2-ヒドロキシ-4-(オクチルオキシ)ベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン-5-サルフォニックアシッド、2-ヒドロキシ-4-n―ドデシロキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2-2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン等が挙げられる。ヒンダートアミン系光安定剤としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、コハク酸ジメチル・1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]、1,3,5-トリス(3,5-ジ-tert―ブチル-4-ヒドロキシベンジル)-s-トリアジン-2,4,6(1H,3H,5H)トリオン、トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-s-トリアジン-2,4,6-(1H,3H,5H)トリオン等が挙げられる。ニッケル系光安定剤としては、[2,2’-チオ-ビス(4-tert-オクチルフェノレート)]-2-エチルヘキシルアミン-ニッケル-(II)、ニッケルジブチルジチオカルバメート、[2’,2’-チオ-ビス(4-tert-オクチルフェノレート)]n-ブチルアミン-ニッケル等が挙げられる。ベンゾエート系光安定剤としては、2,4-ジ-t-ブチルフェニル-3,5’-ジ-tert-ブチル‐4’‐ヒドロキシベンゾエート等が挙げられる。これらの光安定剤を単独に、または複合して使用できる。添加する場合の添加量は樹脂組成物全体に対して0.1質量%以上5質量%以下が好ましい。0.1質量%未満だと耐侯性効果に乏しくなることがある。5質量%を超えると、接着性等に悪影響を与える場合がある。 Furthermore, when the resin composition of the present invention requires weather resistance, it is preferable to add a light stabilizer. Examples of light stabilizers include benzotriazole-based light stabilizers, benzophenone-based light stabilizers, hindered amine-based light stabilizers, nickel-based light stabilizers, and benzoate-based light stabilizers. Benzotriazole light stabilizers include 2-(3,5-di-tert-amyl-2'hydroxyphenyl)benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)benzotriazole, 2-( 2′-hydroxy-3′-tert-butyl-5′-methylphenyl)-5-chlorobenzotriazole, 2-(2H-benzotriazol-2-yl)-p-cresol, 2-(2′-hydroxy- 5′-methylphenyl)-benzotriazole, 2,4-di-tert-butyl-6-(5-chlorobenzotriazol-2-yl)phenol, 2-[2-hydroxy-3,5-di(1, 1-dimethylbenzyl)]-2H-benzotriazole and the like. Benzophenone-based light stabilizers include 2-hydroxy-4-(octyloxy)benzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4 -methoxy-benzophenone-5-sulfonic acid, 2-hydroxy-4-n-dodecyloxybenzophenone, bis(5-benzoyl-4-hydroxy-2-methoxyphenyl)methane, 2-2'-dihydroxy-4- methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone and the like. Hindered amine light stabilizers include bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate, dimethyl succinate/1-(2-hydroxyethyl)-4-hydroxy-2,2, 6,6-tetramethylpiperidine polycondensate, poly[{6-(1,1,3,3-tetramethylbutyl)amino-1,3,5-triazine-2,4-diyl}{(2,2 ,6,6-tetramethyl-4-piperidyl)imino}hexamethylene(2,2,6,6-tetramethyl-4-piperidyl)imino}], 1,3,5-tris(3,5-di- tert-butyl-4-hydroxybenzyl)-s-triazine-2,4,6(1H,3H,5H)trione, tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)-s- triazine-2,4,6-(1H,3H,5H)trione and the like. Nickel-based light stabilizers include [2,2′-thio-bis(4-tert-octylphenolate)]-2-ethylhexylamine-nickel-(II), nickel dibutyldithiocarbamate, [2′,2′ -thio-bis(4-tert-octylphenolate)]n-butylamine-nickel and the like. Benzoate-based light stabilizers include 2,4-di-t-butylphenyl-3,5'-di-tert-butyl-4'-hydroxybenzoate and the like. These light stabilizers can be used alone or in combination. When added, the amount added is preferably 0.1% by mass or more and 5% by mass or less with respect to the entire resin composition. If it is less than 0.1% by mass, the weather resistance effect may be poor. If it exceeds 5% by mass, it may adversely affect the adhesion and the like.
 ポリエステル樹脂(A)の組成及び組成比を決定する方法としては、例えばポリエステル樹脂(A)を重クロロホルム等の溶媒に溶解して測定するH-NMRや13C-NMR、ポリエステル樹脂(A)のメタノリシス後に測定するガスクロマトグラフィーによる定量(以下、メタノリシス-GC法と略記する場合がある)等が挙げられる。本発明においては、ポリエステル樹脂(A)を溶解でき、なおかつH-NMR測定に適する溶剤がある場合には、H-NMRで組成及び組成比を決定することとする。適当な溶剤がない場合やH-NMR測定だけでは組成比が特定できない場合には、13C-NMRやメタノリシス-GC法を採用または併用することとする。 As a method for determining the composition and composition ratio of the polyester resin (A), for example, the polyester resin (A) is dissolved in a solvent such as heavy chloroform and measured by 1 H-NMR, 13 C-NMR, polyester resin (A) and quantification by gas chromatography measured after methanolysis (hereinafter sometimes abbreviated as methanolysis-GC method). In the present invention, if there is a solvent that can dissolve the polyester resin (A) and is suitable for 1 H-NMR measurement, the composition and composition ratio are determined by 1 H-NMR. If there is no suitable solvent or if the composition ratio cannot be specified by 1 H-NMR measurement alone, 13 C-NMR or methanolysis-GC method is adopted or used in combination.
 本発明の樹脂組成物は230℃での溶融粘度が5~1000dPa・sであることが望ましく、ポリエステル樹脂(A)、ダイマー酸ポリアミド(B)、エポキシ樹脂(C)、接着付与剤(D)、酸化防止剤(E)の種類と配合比率を適切に調整することにより、達成することができる。例えば、ポリエステル樹脂(A)に共重合するポリエーテルジオールの共重合比率を高くすることや、ポリエステル樹脂(A)の分子量を低くすることは、本発明の樹脂組成物の溶融粘度を低くする方向に作用する傾向にあり、ポリエステル樹脂(A)の分子量を高くすることは本発明の樹脂組成物の溶融粘度を高くする方向に作用する傾向にある。なおここで、230℃での溶融粘度は以下のようにして測定した値である。すなわち、樹脂組成物を水分率0.1%以下に乾燥し、次いで島津製作所株式会社製フローテスター(型番CFT-500C)にて、230℃に加温安定した樹脂組成物を、1.0mmの孔径を有する厚み10mmのダイを98N/cmの圧力で通過させたときの粘度の測定値である。1000dPa・s以上の高溶融粘度になると、高い樹脂凝集力や耐久性が得られるが、複雑な形状の部品への封止の際には高圧の射出成型が必要となるため、部品の破壊を生じることがある。1000dPa・s以下、好ましくは900dPa・s以下の溶融粘度を有する封止用樹脂組成物を使用することで、0.1~20MPaの比較的低い射出圧力で、電気絶縁性に優れた封止体(モールド部品)が得られると共に、電気電子部品の特性も損ねない。また、封止用樹脂組成物注入操作の観点からは230℃での溶融粘度は低いほうが好ましいが、樹脂組成物の接着性や凝集力を考慮すると下限としては5dPa・s以上が望ましく、さらに好ましくは10dPa・s以上、より好ましくは30dPa・s以上、最も好ましくは50dPa・s以上である。 The resin composition of the present invention preferably has a melt viscosity of 5 to 1000 dPa s at 230 ° C., polyester resin (A), dimer acid polyamide (B), epoxy resin (C), tackifier (D) , can be achieved by appropriately adjusting the type and blending ratio of the antioxidant (E). For example, increasing the copolymerization ratio of the polyether diol to be copolymerized with the polyester resin (A) or decreasing the molecular weight of the polyester resin (A) tends to decrease the melt viscosity of the resin composition of the present invention. Increasing the molecular weight of the polyester resin (A) tends to increase the melt viscosity of the resin composition of the present invention. Here, the melt viscosity at 230° C. is a value measured as follows. That is, the resin composition is dried to a moisture content of 0.1% or less, and then heated to 230 ° C. with a flow tester (model number CFT-500C) manufactured by Shimadzu Corporation. It is a measured value of viscosity when passed through a die having a thickness of 10 mm and a hole diameter at a pressure of 98 N/cm 2 . A high melt viscosity of 1,000 dPa·s or more provides high resin cohesive strength and durability, but high-pressure injection molding is required when sealing parts with complex shapes, which may damage the parts. can occur. By using a sealing resin composition having a melt viscosity of 1000 dPa s or less, preferably 900 dPa s or less, a sealing body having excellent electrical insulation can be obtained at a relatively low injection pressure of 0.1 to 20 MPa. (Molded parts) can be obtained, and the characteristics of electrical and electronic parts are not impaired. Also, from the viewpoint of the injection operation of the sealing resin composition, it is preferable that the melt viscosity at 230° C. is low. is 10 dPa·s or more, more preferably 30 dPa·s or more, and most preferably 50 dPa·s or more.
 本発明において、特定の部材と封止用樹脂組成物の封止性は、金属配線プリント基板上に封止用樹脂組成物を成形にて接着した測定用試料片を作製し、これの絶縁抵抗値を測定することにより判定する。測定用試験片の作製方法や絶縁抵抗値の測定方法は、後述する実施例に記載の方法に従って行うものとする。 In the present invention, the sealing property of a specific member and the sealing resin composition is evaluated by preparing a measurement sample piece by bonding the sealing resin composition on a metal wiring printed circuit board by molding, and measuring the insulation resistance of this. Determined by measuring the value. The method for producing the test piece for measurement and the method for measuring the insulation resistance value shall be performed according to the method described in the examples described later.
 本発明の封止用樹脂組成物は、電気電子部品をセットした金型に注入することで成型される。より具体的には、スクリュータイプのホットメルト成型加工用アプリケーターを用いた場合において、160~280℃前後で加熱溶融し、射出ノズルを通じて金型へ注入され、その後一定の冷却時間を経た後、成型物を金型から取り外して成型物を得ることが出来る。 The encapsulating resin composition of the present invention is molded by injecting it into a mold in which electrical and electronic components are set. More specifically, in the case of using a screw-type hot melt molding applicator, it is heated and melted at around 160 to 280 ° C., injected into a mold through an injection nozzle, and after a certain cooling time, it is molded. An object can be removed from the mold to obtain a molded product.
 ホットメルト成型加工用アプリケーターの型式は特に限定されないが、例えばNordson社製ST2、井元製作所製竪型押し出し成型機IMC-18F9、日精樹脂工業社製ハイブリッド式小型竪型射出成形機STX20等が挙げられる。 The type of applicator for hot melt molding is not particularly limited, but examples include ST2 manufactured by Nordson, vertical extrusion molding machine IMC-18F9 manufactured by Imoto Seisakusho, hybrid type small vertical injection molding machine STX20 manufactured by Nissei Plastic Industry Co., Ltd., and the like. .
 本発明をさらに詳細に説明するために以下に実施例、比較例を挙げるが、本発明は実施例によってなんら限定されるものではない。尚、実施例、比較例に記載された各測定値は次の方法によって測定したものである。 Examples and comparative examples are given below to describe the present invention in more detail, but the present invention is not limited by the examples. Each measured value described in Examples and Comparative Examples was measured by the following method.
<融点、ガラス転移温度の測定>
 セイコー電子工業株式会社製の示差走査熱量分析計「DSC220型」にて、測定試料5mgをアルミパンに入れ、蓋を押さえて密封し、一度20℃/minの昇温速度で230℃まで加熱し、溶融した。次いで、液体窒素を用いて20℃/minで-130℃まで冷却し、5分ホールドした後、-130℃から230℃まで、20℃/minの昇温速度で測定した。得られた曲線においての図1に示したようなDSCで変極点が表れる部分の変極点前のベースラインから得られる接線(1)と変極点後のベースラインから得られる接線(2)の交点をガラス転移温度(Tg)、吸熱ピークの極小点(図内×印)を融点(Tm)とした。
<Measurement of melting point and glass transition temperature>
Using a differential scanning calorimeter "DSC220 type" manufactured by Seiko Electronics Industry Co., Ltd., 5 mg of the measurement sample was placed in an aluminum pan, the lid was pressed and sealed, and the temperature was increased to 230 ° C. at a rate of 20 ° C./min. , melted. Then, it was cooled to −130° C. at a rate of 20° C./min using liquid nitrogen, held for 5 minutes, and then measured from −130° C. to 230° C. at a heating rate of 20° C./min. In the obtained curve, the intersection of the tangent line (1) obtained from the baseline before the inflection point and the tangent line (2) obtained from the baseline after the inflection point in the portion where the inflection point appears in DSC as shown in FIG. was taken as the glass transition temperature (Tg), and the minimum point of the endothermic peak (x mark in the figure) was taken as the melting point (Tm).
<ポリマーのSP値>
 ポリマーのSP値はFedorsの方法により、ポリマーを構成するモノマーの原子や原子団およびポリマー重合時に生成される結合の原子および原子団の既知の凝集エネルギー密度やモル分子容を下記式に代入することで算出した。
 
δ=(Σe/Σv1/2 (cal/cm1/2
 
δ:SP値((cal/cm1/2)
:原子および原子団の凝集エネルギー密度(cal/mol)
:原子および原子団のモル分子容(cm/mol)
 
およびvはPolym. Eng. Sci., 14[2], 147-154(1974)に記載の値を使用した。
<SP value of polymer>
The SP value of the polymer is determined by the Fedors method, and the known cohesive energy density and molar molecular volume of the atoms and atomic groups of the monomers constituting the polymer and the atoms and atomic groups of the bonds formed during polymer polymerization are substituted into the following formula. Calculated by

δ=(Σe i /Σv i ) 1/2 (cal/cm 3 ) 1/2

δ: SP value ((cal/cm 3 ) 1/2 )
e i : cohesive energy density of atoms and atomic groups (cal/mol)
v i : molar molecular volume of atoms and atomic groups (cm 3 /mol)

e i and v i are Polym. Eng. Sci. , 14[2], 147-154 (1974) were used.
<溶融特性(流動性)試験>
 ポリエステル樹脂(A)および樹脂組成物の溶融粘度の評価方法
 島津製作所製、フローテスター(CFT-500C型)にて、230℃に設定した加熱体中央のシリンダー中に水分率0.1%以下に乾燥したポリエステル樹脂(A)または樹脂組成物を充填する。充填1分経過後、プランジャーを介して試料に荷重を加え、圧力1MPaで、シリンダー底部のダイ(孔径:1.0mm、厚み:10mm)より、溶融した試料を押出し、プランジャーの降下距離と降下時間を記録し、溶融粘度を算出した。
 樹脂組成物の溶融特性を、溶融粘度に基づいて以下のとおりに評価した。
 評価基準   ◎:溶融粘度@230℃ 500dPa・s未満
        〇:溶融粘度@230℃ 500dPa・s以上800dPa・s未満
        △:溶融粘度@230℃ 800dPa・s以上1000dPa・s未満
        ×:溶融粘度@230℃ 1000dPa・s以上
<Melting characteristics (fluidity) test>
Method for evaluating the melt viscosity of the polyester resin (A) and the resin composition Using a flow tester (CFT-500C type) manufactured by Shimadzu Corporation, the moisture content was reduced to 0.1% or less in the cylinder at the center of the heating body set at 230 ° C. A dry polyester resin (A) or resin composition is filled. After 1 minute of filling, a load is applied to the sample through the plunger, and the melted sample is extruded from the die (hole diameter: 1.0 mm, thickness: 10 mm) at the bottom of the cylinder at a pressure of 1 MPa. The fall time was recorded and the melt viscosity was calculated.
Melting properties of the resin composition were evaluated as follows based on the melt viscosity.
Evaluation criteria ◎: Melt viscosity @ 230 ° C. less than 500 dPa s ○: Melt viscosity @ 230 ° C. 500 dPa s or more and less than 800 dPa s △: Melt viscosity @ 230 ° C. 800 dPa s or more and less than 1000 dPa s ×: Melt viscosity @ 230 ° C. 1000dPa・s or more
<切削油膨潤特性(切削油浸漬後の膨潤率)>
 竪型射出成形機(日精樹脂株式会社製TH40E)を用いた射出成形により、100mm×100mm×2mmtの樹脂組成物の平板を作製した。
 射出成形条件は、成形樹脂温度210℃、成型圧力20MPa、冷却時間30秒、射出速度10mm/秒とした。成形した平板からJIS K6251に基づいたダンベル状3号形試験片を、試験片打抜き刃を用いて、3本分切り抜いた。次いで、切削油(日興キャスティ社製 ハングスターファーS-500)に試験片を常温(約25℃)で4週間浸漬し、取り出し直後に試験片の全長(約100mm)をノギスで測定し、切削油膨潤率を下記式により求めた。
 
切削油膨潤率(%)=(浸漬後の試験片の全長(mm)-浸漬前の試験片の全長(mm))÷浸漬前の試験片の全長(mm)×100
 
 樹脂組成物の耐油性を、切削油膨潤率に基づいて以下のとおりに評価した。
 評価基準  ◎:切削油膨潤率 0.5%未満
       〇:切削油膨潤率 0.5%以上1.0%未満
       ×:切削油膨潤率 1.0%以上
<Cutting oil swelling characteristics (swelling rate after immersion in cutting oil)>
A flat plate of the resin composition of 100 mm×100 mm×2 mmt was produced by injection molding using a vertical injection molding machine (TH40E manufactured by Nissei Plastics Co., Ltd.).
The injection molding conditions were a molding resin temperature of 210° C., a molding pressure of 20 MPa, a cooling time of 30 seconds, and an injection speed of 10 mm/second. Three dumbbell-shaped No. 3 test pieces based on JIS K6251 were cut out from the molded flat plate using a test piece punching blade. Next, the test piece is immersed in cutting oil (Hang Starfar S-500 manufactured by Nikko Casty Co., Ltd.) at room temperature (about 25 ° C.) for 4 weeks, and the total length of the test piece (about 100 mm) is measured with a vernier caliper immediately after taking it out. The oil swelling ratio was determined by the following formula.

Cutting oil swelling rate (%) = (total length of test piece after immersion (mm) - total length of test piece before immersion (mm)) / total length of test piece before immersion (mm) x 100

The oil resistance of the resin composition was evaluated as follows based on the cutting oil swelling rate.
Evaluation criteria ◎: Cutting oil swelling rate less than 0.5% ○: Cutting oil swelling rate 0.5% or more and less than 1.0% ×: Cutting oil swelling rate 1.0% or more
<機械特性(切削油浸漬後の引張伸度保持率)>
 竪型射出成形機(日精樹脂株式会社製TH40E)を用いた射出成形により、100mm×100mm×2mmtの樹脂組成物の平板を作製した。
 射出成形条件は、成形樹脂温度210℃、成型圧力20MPa、冷却時間30秒、射出速度10mm/秒とした。成形した平板からJIS K6251に基づいたダンベル状3号形試験片を、切り抜き機を用いて、3本分切り抜いた。次いで、切削油に試験片を常温(約25℃)で4週間浸漬し、浸漬後、表面の切削油をふき取って、オートグラフ(株式会社島津製作所社製AG-IS)を用いて、チャック間が20mmとなるようにダンベル状3号形試験片を挟み込み、機械特性を測定した。引張速度は500mm/分とした。引張伸度保持率は下記式を用いて算出した。
 
引張伸度保持率(%)=(切削油4週間浸漬後の引張伸度/成形初期の引張伸度)×100
 
 樹脂組成物の機械特性を、引張伸度保持率に基づいて以下のとおりに評価した。
 評価基準  ◎:引張伸度保持率 90%以上
       ○:引張伸度保持率 70%以上~90%未満
       △:引張伸度保持率 50%以上~70%未満
       ×:引張伸度保持率 50%未満
<Mechanical properties (tensile elongation retention rate after immersion in cutting oil)>
A flat plate of the resin composition of 100 mm×100 mm×2 mmt was produced by injection molding using a vertical injection molding machine (TH40E manufactured by Nissei Plastics Co., Ltd.).
The injection molding conditions were a molding resin temperature of 210° C., a molding pressure of 20 MPa, a cooling time of 30 seconds, and an injection speed of 10 mm/second. Three dumbbell-shaped No. 3 test pieces based on JIS K6251 were cut out from the molded flat plate using a cutout machine. Next, the test piece is immersed in cutting oil at room temperature (about 25 ° C.) for 4 weeks, and after immersion, the cutting oil on the surface is wiped off, and an autograph (AG-IS manufactured by Shimadzu Corporation) is used to measure between the chucks. A dumbbell-shaped No. 3 test piece was sandwiched so that the thickness was 20 mm, and the mechanical properties were measured. The pulling speed was 500 mm/min. The tensile elongation retention rate was calculated using the following formula.

Tensile elongation retention rate (%) = (tensile elongation after immersion in cutting oil for 4 weeks/tensile elongation at initial stage of molding) x 100

The mechanical properties of the resin composition were evaluated as follows based on the tensile elongation retention rate.
Evaluation criteria ◎: Tensile elongation retention rate of 90% or more ○: Tensile elongation retention rate of 70% or more to less than 90% △: Tensile elongation retention rate of 50% or more to less than 70% ×: Tensile elongation retention rate of less than 50%
<絶縁特性(切削油浸漬後の絶縁抵抗値)>
 塩化ビニル製の外径約1.45mmの絶縁電線をハンダ付けした40mm×40mm×1.6mm厚みの金属配線がプリントされた基板(基板:ガラスエポキシ)上に小型電動射出成型機(キヤノン電子株式会社製LS-300i)を用いて、樹脂組成物を成形し、金属配線プリント部分および塩化ビニル絶縁電線の一部を封止した成形物を作製した。成形条件は、成形樹脂温度230℃、成型圧力15MPa、冷却時間10秒、射出速度6mm/秒とした。超絶縁計SM-8220(日置電機株式会社製)を用いて、500Vの印加電圧で成形初期のサンプルおよび、切削油に試験片を常温(約25℃)で4週間浸漬し、浸漬後、表面の切削油をふき取ったサンプルの絶縁抵抗値を測定した。
 
 樹脂組成物の絶縁性を、絶縁抵抗値に基づいて以下のとおりに評価した。
 評価基準  ◎:絶縁抵抗値 100MΩ以上
       ○:絶縁抵抗値  70MΩ以上~100MΩ未満
       △:絶縁抵抗値  50MΩ以上~70MΩ未満
       ×:絶縁抵抗値  50MΩ未満
 
 なお表2中、E+Nは10のN乗を表す。例えば2.86E+03は、2.86×10の3乗(=約2860)を表す。また、本測定では2.09E+00が検出限界最小値であり、≦2.09E+00は検出限界以下であることを表す。
 
<Insulation properties (insulation resistance value after immersion in cutting oil)>
A small electric injection molding machine (Canon Electronics Co., Ltd. Using the company's LS-300i), the resin composition was molded to prepare a molding in which the metal wiring printed portion and a portion of the vinyl chloride insulated wire were sealed. The molding conditions were a molding resin temperature of 230° C., a molding pressure of 15 MPa, a cooling time of 10 seconds, and an injection speed of 6 mm/second. Using a super megohmmeter SM-8220 (manufactured by Hioki Electric Co., Ltd.), the test piece was immersed in a sample at the initial stage of molding and cutting oil at room temperature (about 25 ° C.) for 4 weeks at an applied voltage of 500 V. After immersion, the surface After wiping off the cutting oil, the insulation resistance value of the sample was measured.

The insulating properties of the resin composition were evaluated as follows based on the insulation resistance value.
Evaluation criteria ◎: Insulation resistance value of 100 MΩ or more ○: Insulation resistance value of 70 MΩ or more to less than 100 MΩ △: Insulation resistance value of 50 MΩ or more to less than 70 MΩ ×: Insulation resistance value of less than 50 MΩ
In Table 2, E+N represents 10 to the Nth power. For example, 2.86E+03 represents 2.86×10 to the power of 3 (=approximately 2860). In this measurement, 2.09E+00 is the minimum detection limit, and ≤2.09E+00 is below the detection limit.
<ポリエステル樹脂(A)の製造例>
 撹拌機、温度計、溜出用冷却器を装備した反応缶内にテレフタル酸1080質量部、イソフタル酸582質量部、1,4-ブタンジオール1893質量部、テトラブチルチタネート1.9質量部を加え、170~220℃で2時間エステル化反応を行った。エステル化反応終了後、数平均分子量1000のポリテトラメチレングリコール「PTMG1000」(三菱化学社製)を1500質量部とヒンダードフェノール系酸化防止剤「イルガノックス1330」(チバガイギー社製)を3質量部投入し、255℃まで昇温する一方、系内をゆっくり減圧にしてゆき、60分かけて255℃で665Paとした。そしてさらに133Pa以下で30分間重縮合反応を行い、ポリエステル樹脂(A-1)を得た。このポリエステル樹脂(A-1)の溶融粘度、融点、ガラス転移温度、SP値を表1に示した。また、ポリエステル樹脂(A-2)、(A-3)をポリエステル樹脂(A-1)と同様の方法により合成した。それぞれの組成及び物性値を表1に示した。
<Production example of polyester resin (A)>
1080 parts by mass of terephthalic acid, 582 parts by mass of isophthalic acid, 1893 parts by mass of 1,4-butanediol and 1.9 parts by mass of tetrabutyl titanate were added to a reactor equipped with a stirrer, a thermometer and a cooler for distillation. , 170 to 220° C. for 2 hours. After completion of the esterification reaction, 1500 parts by mass of polytetramethylene glycol "PTMG1000" (manufactured by Mitsubishi Chemical Corporation) having a number average molecular weight of 1000 and 3 parts by mass of a hindered phenolic antioxidant "Irganox 1330" (manufactured by Ciba-Geigy). The temperature was raised to 255° C., and the pressure in the system was slowly reduced to 665 Pa at 255° C. over 60 minutes. Further, a polycondensation reaction was carried out at 133 Pa or less for 30 minutes to obtain a polyester resin (A-1). Table 1 shows the melt viscosity, melting point, glass transition temperature and SP value of this polyester resin (A-1). Polyester resins (A-2) and (A-3) were synthesized in the same manner as polyester resin (A-1). Table 1 shows the composition and physical property values of each.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中の略号は以下の通りである。
 TPA:テレフタル酸、IPA:イソフタル酸、AA:アジピン酸、NDC:2,6-ナフタレンジカルボン酸、EG:エチレングリコール、BD:1,4-ブタンジオール、CHDM:シクロヘキサンジメタノール、PTMG1000:ポリテトラメチレンエーテルグリコール(数平均分子量1000)、PTMG2000:ポリテトラメチレンエーテルグリコール(数平均分子量2000)
Abbreviations in Table 1 are as follows.
TPA: terephthalic acid, IPA: isophthalic acid, AA: adipic acid, NDC: 2,6-naphthalenedicarboxylic acid, EG: ethylene glycol, BD: 1,4-butanediol, CHDM: cyclohexanedimethanol, PTMG1000: polytetramethylene Ether glycol (number average molecular weight 1000), PTMG2000: polytetramethylene ether glycol (number average molecular weight 2000)
 表2に記載の割合で、ポリエステル樹脂(A)、ダイマー酸ポリアミド(B)、エポキシ樹脂(C)、接着付与剤(D)、酸化防止剤(E)を、二軸押し出し機を用いてダイ温度160℃~220℃において溶融混練することによって、樹脂組成物(S1)~(S18)を得た。別記した方法により、樹脂組成物の溶融粘度、切削油膨潤性、機械特性、絶縁性を評価した。評価結果は以下の表2の通りである。 Polyester resin (A), dimer acid polyamide (B), epoxy resin (C), tackifier (D), and antioxidant (E) are mixed in the proportions shown in Table 2 using a twin-screw extruder. Resin compositions (S1) to (S18) were obtained by melt-kneading at a temperature of 160°C to 220°C. The melt viscosity, cutting oil swellability, mechanical properties, and insulating properties of the resin composition were evaluated by the methods described separately. The evaluation results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2で使用したダイマー酸ポリアミド(B)、エポキシ樹脂(C)、接着付与剤(D)、酸化防止剤(E)は、以下のものである。
ダイマー酸ポリアミド(B-1):PA673、Henkel社製、軟化点:185℃、Tg:-45℃
ダイマー酸ポリアミド(B-2):PA6839、Henkel社製、軟化点:195℃、Tg:-30℃
ポリアミド(B-3):グラマイドT-802、東洋紡(株)製、融点:220℃、Tg:50℃
エポキシ樹脂(C-1):jER(登録商標)1007K、三菱化学(株)製、軟化点:128℃
エポキシ樹脂(C-2):EPICLON(登録商標)HP-7200HHH、DIC(株)製、軟化点:105℃
接着付与剤 (D-1):YSポリスターK125、ヤスハラケミカル(株)製、水酸基価:約200KOHmg/g、SP値:9.3(cal/cm1/2、Tg:約70℃
接着付与剤(D-2):YSポリスターT160、ヤスハラケミカル(株)製、水酸基価:約60KOHmg/g、SP値:8.8(cal/cm1/2、Tg:約100℃
酸化防止剤(E-1):IRGANOX(登録商標)1010、BASFジャパン(株)製
酸化防止剤(E-2):ラスミットLG、第一工業製薬(株)製
The dimer acid polyamide (B), epoxy resin (C), tackifier (D) and antioxidant (E) used in Table 2 are as follows.
Dimer acid polyamide (B-1): PA673, manufactured by Henkel, softening point: 185°C, Tg: -45°C
Dimer acid polyamide (B-2): PA6839, manufactured by Henkel, softening point: 195°C, Tg: -30°C
Polyamide (B-3): Gramide T-802, manufactured by Toyobo Co., Ltd., melting point: 220°C, Tg: 50°C
Epoxy resin (C-1): jER (registered trademark) 1007K, manufactured by Mitsubishi Chemical Corporation, softening point: 128°C
Epoxy resin (C-2): EPICLON (registered trademark) HP-7200HHH, manufactured by DIC Corporation, softening point: 105°C
Tackifier (D-1): YS Polyster K125, manufactured by Yasuhara Chemical Co., Ltd., hydroxyl value: about 200 KOHmg/g, SP value: 9.3 (cal/cm 3 ) 1/2 , Tg: about 70°C
Tackifier (D-2): YS Polyster T160, manufactured by Yasuhara Chemical Co., Ltd., hydroxyl value: about 60 KOHmg/g, SP value: 8.8 (cal/cm 3 ) 1/2 , Tg: about 100°C
Antioxidant (E-1): IRGANOX (registered trademark) 1010, manufactured by BASF Japan Co., Ltd. Antioxidant (E-2): Rasmit LG, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
 表2から明らかなように、実施例1~12の樹脂組成物は、溶融粘度、切削油膨潤性、機械特性、絶縁性の各特性がいずれも優れた結果であった。一方、比較例1では、ダイマー酸ポリアミドを含有していないため耐油性に劣り、また溶融特性と絶縁性にも劣った。比較例2~4ではエポキシ樹脂を含有していないため絶縁性に劣った。比較例5では用いたポリエステル樹脂のSP値が低いため、耐油性が低下した。比較例6では用いたポリアミドがダイマー酸成分を有しておらず、溶融特性および絶縁性に劣った。 As is clear from Table 2, the resin compositions of Examples 1 to 12 were all excellent in melt viscosity, cutting oil swelling, mechanical properties, and insulating properties. On the other hand, in Comparative Example 1, since it did not contain dimer acid polyamide, it was inferior in oil resistance, melting properties and insulation. Comparative Examples 2 to 4 did not contain an epoxy resin, and therefore were inferior in insulating properties. In Comparative Example 5, since the SP value of the polyester resin used was low, the oil resistance was lowered. The polyamide used in Comparative Example 6 did not have a dimer acid component, and was inferior in melting properties and insulating properties.
 本発明の樹脂組成物は、電子電子基板封止時の溶融粘度が低く、ガラスエポキシ基板やPBT基板への接着強度に非常に優れ、耐油性に優れている事から、電気電子部品封止用樹脂組成物として有用である。また、本発明の電気電子部品封止体は、特に接着性、切削油膨潤性に優れている事から電気電子部品からの漏電が抑制され、非常に有用である。本発明の電気電子部品封止体は、例えば自動車、通信、コンピュータ、家電用途各種のコネクター、ハーネスやあるいは電子部品、プリント基板を有するスイッチ、センサーのモールド成型品として有用である。 The resin composition of the present invention has a low melt viscosity when sealing electronic and electronic substrates, is extremely excellent in adhesive strength to glass epoxy substrates and PBT substrates, and has excellent oil resistance. It is useful as a resin composition. In addition, the electrical/electronic component sealing body of the present invention is particularly excellent in adhesiveness and cutting oil swelling property, so that electric leakage from the electrical/electronic component is suppressed, which is very useful. The electrical/electronic component sealed product of the present invention is useful as molded products such as connectors for automobiles, communications, computers, and household appliances, harnesses, electronic components, switches having printed circuit boards, and sensors.

Claims (8)

  1.  溶解度パラメータ(SP)値が10.0(cal/cm1/2以上であるポリエステル樹脂(A)、ダイマー酸ポリアミド(B)およびエポキシ樹脂(C)を含む樹脂組成物。 A resin composition comprising a polyester resin (A) having a solubility parameter (SP) value of 10.0 (cal/cm 3 ) 1/2 or more, a dimer acid polyamide (B) and an epoxy resin (C).
  2.  ポリエステル樹脂(A)がテレフタル酸、イソフタル酸、ブタンジオールおよびポリテトラメチレングリコールを構成単位として有する、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the polyester resin (A) has terephthalic acid, isophthalic acid, butanediol and polytetramethylene glycol as structural units.
  3.  ポリエステル樹脂(A)およびダイマー酸ポリアミド(B)のガラス転移温度がいずれも-20℃以下である請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the polyester resin (A) and the dimer acid polyamide (B) both have a glass transition temperature of -20°C or lower.
  4.  さらに接着付与剤(D)を含む請求項1~3のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, further comprising an adhesion promoter (D).
  5.  接着付与剤(D)のSP値が9.0(cal/cm1/2以上である、請求項4に記載の樹脂組成物。 The resin composition according to claim 4, wherein the tackifier (D) has an SP value of 9.0 (cal/cm 3 ) 1/2 or more.
  6.  さらに酸化防止剤(E)を含む請求項1~5のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, further comprising an antioxidant (E).
  7.  請求項1~6に記載の樹脂組成物を含有する、封止用樹脂組成物。 A sealing resin composition containing the resin composition according to any one of claims 1 to 6.
  8.  請求項7に記載の封止用樹脂組成物で封止された電気電子部品封止体。 A sealed electrical/electronic component sealed with the sealing resin composition according to claim 7.
PCT/JP2022/001088 2021-01-20 2022-01-14 Resin composition and electrical/electronic part encapsulation body WO2022158384A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022534330A JPWO2022158384A1 (en) 2021-01-20 2022-01-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-007426 2021-01-20
JP2021007426 2021-01-20

Publications (1)

Publication Number Publication Date
WO2022158384A1 true WO2022158384A1 (en) 2022-07-28

Family

ID=82548897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001088 WO2022158384A1 (en) 2021-01-20 2022-01-14 Resin composition and electrical/electronic part encapsulation body

Country Status (3)

Country Link
JP (1) JPWO2022158384A1 (en)
TW (1) TW202239867A (en)
WO (1) WO2022158384A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083918A (en) * 2001-09-18 2004-03-18 Toyobo Co Ltd Polyester resin for molding, resin composition and molding using the composition
JP2004277559A (en) * 2003-03-14 2004-10-07 Toyobo Co Ltd Polyester resin for molding, resin composition and molded product using the same
JP2012180385A (en) * 2011-02-28 2012-09-20 Toyobo Co Ltd Resin composition, sealing body of electrical and electronic component using the resin composition, and method for producing the sealing body
JP2013060539A (en) * 2011-09-14 2013-04-04 Toyobo Co Ltd Resin composition and coated metallic article using the same
JP2014074157A (en) * 2012-09-13 2014-04-24 Toyobo Co Ltd Resin composition for coating metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083918A (en) * 2001-09-18 2004-03-18 Toyobo Co Ltd Polyester resin for molding, resin composition and molding using the composition
JP2004277559A (en) * 2003-03-14 2004-10-07 Toyobo Co Ltd Polyester resin for molding, resin composition and molded product using the same
JP2012180385A (en) * 2011-02-28 2012-09-20 Toyobo Co Ltd Resin composition, sealing body of electrical and electronic component using the resin composition, and method for producing the sealing body
JP2013060539A (en) * 2011-09-14 2013-04-04 Toyobo Co Ltd Resin composition and coated metallic article using the same
JP2014074157A (en) * 2012-09-13 2014-04-24 Toyobo Co Ltd Resin composition for coating metal

Also Published As

Publication number Publication date
JPWO2022158384A1 (en) 2022-07-28
TW202239867A (en) 2022-10-16

Similar Documents

Publication Publication Date Title
JP6269783B2 (en) Resin composition for sealing electric and electronic parts, method for producing sealed electric and electronic parts, and sealed electric and electronic parts
WO2012124435A1 (en) Polyester resin composition for electrical / electronic part-sealing material, sealed product and production method therefor
JP6098521B2 (en) Resin composition for sealing electric and electronic parts, method for producing sealed electric and electronic parts, and sealed electric and electronic parts
WO2022158384A1 (en) Resin composition and electrical/electronic part encapsulation body
US20140221578A1 (en) Resin composition for sealing electrical and electronic parts, method for producing sealed electrical and electronic parts, and sealed electrical and electronic parts
WO2022158385A1 (en) Resin composition and encapsulated electrical/electronic component
JP7140116B2 (en) Sealing resin composition
TWI627228B (en) Resin composition for packaging electric and electronic parts, manufacturing method of electric and electronic part package, and electric and electronic part package
JP2023144932A (en) Resin composition and hot-melt adhesive composition
JP2021091901A (en) Resin composition for sealing
JP4534115B2 (en) Polyester resin for molding, resin composition and molded product using the same
JP5293754B2 (en) Polyester resin for molding, resin composition and molded product using the same
JP5794425B2 (en) Resin composition for sealing electric and electronic parts, sealed electric and electronic parts and method for producing the same
JP2013112771A (en) Resin composition for sealing electrical and electronic parts, method for producing sealed electrical and electronic parts, and sealed electrical and electronic parts
JP2013112772A (en) Resin composition for sealing electrical and electronic parts, method for producing sealed electrical and electronic parts, and sealed electrical and electronic parts
JP2004277640A (en) Polyester resin for molding, resin composition and molded article obtained using the same
JP2010043286A (en) Polyester resin for molding, resin composition and molded article using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022534330

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742506

Country of ref document: EP

Kind code of ref document: A1