WO2022158311A1 - 電源回路及び光海底ケーブル - Google Patents

電源回路及び光海底ケーブル Download PDF

Info

Publication number
WO2022158311A1
WO2022158311A1 PCT/JP2022/000319 JP2022000319W WO2022158311A1 WO 2022158311 A1 WO2022158311 A1 WO 2022158311A1 JP 2022000319 W JP2022000319 W JP 2022000319W WO 2022158311 A1 WO2022158311 A1 WO 2022158311A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
converter
current
circuit
Prior art date
Application number
PCT/JP2022/000319
Other languages
English (en)
French (fr)
Inventor
成浩 新井
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US18/272,565 priority Critical patent/US20240072909A1/en
Priority to JP2022576598A priority patent/JP7521610B2/ja
Publication of WO2022158311A1 publication Critical patent/WO2022158311A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0912Electronics or drivers for the pump source, i.e. details of drivers or circuitry specific for laser pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06808Stabilisation of laser output parameters by monitoring the electrical laser parameters, e.g. voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/808Electrical power feeding of an optical transmission system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/44Arrangements for feeding power to a repeater along the transmission line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4018Lasers electrically in series

Definitions

  • the present invention relates to a power supply circuit that supplies a predetermined current to each of a plurality of loads connected in series to one power supply line.
  • the submarine cable system includes terminal equipment installed on land, submarine equipment installed on the seabed, and cables whose total length can reach thousands of kilometers.
  • the submarine cable system employs a power feeding method that supplies a constant current (hereinafter referred to as "system current") through a power cable.
  • system current a constant current
  • the submarine repeater With the increase in the amount of information communication worldwide, the capacity of submarine cable systems has increased significantly. In order to realize such data communication, the submarine repeater is required to have a higher optical output. Furthermore, as the capacity of the submarine cable system increases, the required number of submarine repeaters tends to increase significantly. However, since there is a limit to the amount of power that can be supplied from land stations, submarine repeaters with high power efficiency are needed.
  • Patent Document 1 describes an example of a technique for supplying current to a plurality of submarine repeaters connected in series to a power cable.
  • the DC constant voltage appearing across each Zener diode inserted in series in the middle of the feeder line is used as a power supply, and the optical power supply is connected in parallel to each Zener diode.
  • Each repeater circuit of the submarine repeater operates.
  • an optical submarine repeater has a built-in laser module and obtains an optical output by applying a predetermined current to the laser module by a laser module driving circuit.
  • FIG. 3 is a circuit diagram showing an example of the configuration of a power supply circuit referred to in the present invention.
  • a system current is supplied to the power supply circuit 109 from an external power supply 300 .
  • Power supply circuit 109 includes current control circuit 159 and one or more Zener diodes 160 .
  • Each of the one or more Zener diodes 160 are connected in series with each other. Although one Zener diode 160 is illustrated in FIG. 3, the Zener diode 160 may actually include two or more Zener diodes.
  • Current control circuit 159 includes DC/DC converter 119 , voltage dividing resistor 120 , current detection resistor 130 , and laser module drive circuit 149 .
  • the DC/DC converter 119 inputs a predetermined voltage V in and outputs a predetermined voltage V out to the laser module 209, laser module drive circuit 149, and current detection resistor 130, which are connected in series.
  • Voltage dividing resistor 120 generates reference voltage V ref according to voltage V out output from DC/DC converter 119 .
  • a current detection resistor 130 generates a current detection voltage V mon corresponding to the current I flowing through the laser module 209 .
  • the laser module drive circuit 149 adjusts the current I flowing through the laser module 209 so that the reference voltage Vref and the current detection voltage Vmon match.
  • the laser module drive circuit 149 includes an IC (Integrated Circuit) and a transistor. Zener diode 160 is connected between terminals to which the system current is input.
  • the power supply circuit 109 An example of the operation of the power supply circuit 109 will be described. In the following description, conversion loss in the current control circuit 159 of the power supply circuit 109 is ignored for the sake of simplicity. Also, it is assumed that only a maximum system current of 1 A (ampere) can flow from the power supply device (external power supply 300) on land to the submarine cable. It is also assumed that the laser module 209 consumes a current of 1.2A. Also, the laser module 209 includes two laser diodes with an operating voltage of 2V (volt). It is also assumed that the voltage drop across the transistors of the laser module drive circuit 149 is 2V. It is also assumed that the voltage drop across the current detection resistor 130 is 1V.
  • the power supply device described in Patent Literature 2 includes a DC/DC converter (Direct Current to Direct Current Converter), a detection resistor, a command voltage generation section, a comparator, a power supply section, and a phase compensation section.
  • the comparator generates a high level feedback voltage when the detected voltage is greater than the indicated voltage, and generates a low level feedback voltage when the detected voltage is less than the indicated voltage.
  • the DC/DC converter reduces the driving current of the LED when the feedback voltage is greater than the internal reference voltage, and increases the driving current when the feedback voltage is less than the reference voltage.
  • the laser module 209 is connected in series to the laser module drive circuit 149 of the power supply circuit 109 referred to in the present invention, a current having the same magnitude as the laser module 209 (for example, 1.2 A described above) flows. As a result, a voltage drop (eg, 2 V as described above) occurs across the transistors included in the laser module drive circuit 149 . Therefore, the power supply circuit 109 has a problem of low power supply efficiency due to voltage drop occurring in the laser module drive circuit 149 .
  • the power supply device described in Patent Document 2 inputs a constant voltage.
  • a system current constant current
  • no consideration is given to supplying a constant voltage to each of a plurality of power supply devices connected in series. Therefore, in the power supply device described in Patent Document 2, when a constant current is supplied to one power supply line, each of the plurality of power supply devices connected in series cannot be supplied with a constant voltage. do not have. Therefore, in the power supply device described in Patent Document 2, when a constant current is supplied to one power supply line, it is difficult to supply a predetermined current to each of a plurality of loads. was there.
  • the present invention has been made in view of the above problems, and a main object of the present invention is to supply a predetermined current to each of a plurality of loads with high power supply efficiency when a constant current is supplied to one power supply line.
  • the power supply circuit includes a DC/DC converter that inputs a predetermined voltage and outputs a voltage adjusted based on a control signal for feedback control to a load that operates by flowing a predetermined current; Comparing the voltage dividing resistor that generates a reference voltage according to the voltage output from the DC/DC converter, the current detection resistor that generates a current detection voltage according to the current flowing through the load, and the reference voltage and the current detection voltage, a current control circuit including a feedback circuit that outputs a control signal representing the comparison result to the DC/DC converter;
  • Each of the plurality of circuit elements is connected in series with each other, and a system current is supplied from an external power supply to the plurality of circuit elements connected in series with each other.
  • the optical submarine cable includes a DC/DC converter that inputs a predetermined voltage and outputs the voltage adjusted based on a control signal for feedback control to a load that operates by flowing a predetermined current.
  • a voltage dividing resistor that generates a reference voltage according to the voltage output from the DC/DC converter
  • a current detection resistor that generates a current detection voltage according to the current flowing through the load
  • the reference voltage and the current detection voltage e.g., a feedback circuit for outputting a control signal representing the comparison result to the DC/DC converter, and one or more Zener diodes connected in parallel at terminals for inputting a predetermined voltage to each DC/DC converter.
  • a power supply circuit in which each of the plurality of circuit elements is connected in series with each other and a system current is supplied from an external power supply to the plurality of circuit elements connected in series with each other; an optical fiber; , a plurality of optical amplifiers connected in series for amplifying an optical signal propagating through an optical fiber on the input side and outputting the signal to an optical fiber on the output side, and a laser module as a load included in the optical amplifiers.
  • FIG. 1 is a circuit diagram showing an example of a configuration of a power supply circuit according to a first embodiment of the invention
  • FIG. It is a circuit diagram which shows an example of a structure of the power supply circuit in 2nd Embodiment of this invention.
  • 1 is a circuit diagram showing an example of the configuration of a power supply circuit referred to in the present invention
  • FIG. 1 is a circuit diagram showing an example of the configuration of the power supply circuit 100 according to the first embodiment of the present invention.
  • the power supply circuit 100 of this embodiment includes a plurality of circuit elements 170 . Each of the plurality of circuit elements 170 are connected in series with each other. A system current is supplied from an external power supply 300 to a plurality of circuit elements 170 connected in series.
  • Each circuit element 170 includes a current control circuit 150 and one or more Zener diodes 160 .
  • Each of the one or more Zener diodes 160 are connected in series with each other. Although one Zener diode 160 is illustrated in FIG. 1, the Zener diode 160 may actually include two or more Zener diodes.
  • the current control circuit 150 includes a DC/DC converter 110, a voltage dividing resistor 120, a current detection resistor 130, and a feedback circuit 140.
  • DC/DC converter 110 receives a predetermined voltage V in and outputs to load 200 a voltage V out adjusted based on a control signal S fb for feedback control.
  • the load 200 is a load (hereinafter referred to as “current drive load).
  • Current-driven loads are, for example, laser diodes and light-emitting diodes.
  • Voltage dividing resistor 120 generates reference voltage V ref according to voltage V out output from DC/DC converter 110 .
  • Current detection resistor 130 generates a current detection voltage Vmon corresponding to the current flowing through load 200 .
  • the feedback circuit 140 compares the reference voltage V ref and the current detection voltage V mon and outputs a control signal S fb representing the comparison result to the DC/DC converter 110 .
  • Feedback circuit 140 is, for example, a comparator or an operational amplifier.
  • Zener diodes 160 are connected in parallel at terminals for inputting a predetermined voltage Vin to each DC/DC converter 110 .
  • One or more Zener diodes 160 generate a predetermined voltage V in in response to system current supplied from external power supply 300 .
  • DC/DC converter 110 receives a predetermined voltage V in and outputs to load 200 a voltage V out adjusted based on a control signal S fb for feedback control.
  • the feedback circuit 140 compares the reference voltage V ref and the current detection voltage V mon , and outputs a control signal S fb according to the comparison result between the reference voltage V ref and the current detection voltage V mon to the DC/DC converter 110 (example in FIG. 2). output to the FEEDBACK terminal).
  • the control signal S fb is a signal for increasing or decreasing the voltage V out output by the DC/DC converter 110 .
  • the control signal S fb is a digital signal
  • the DC/DC converter 110 increases the voltage V out by a predetermined amount (very small amount) when the control signal S fb is “ ⁇ 1”, for example, so that the control signal S fb becomes If it is "1", the voltage Vout is decreased by a predetermined amount (very small amount).
  • control signal S fb is an analog signal
  • the DC/DC converter 110 increases the voltage V out by a very small amount according to the absolute value of the negative value, and the control signal S When fb is a positive value, the voltage Vout is decreased by a minute amount corresponding to the absolute value of the positive value.
  • DC/DC converter 110 outputs to load 200 a voltage V out adjusted according to input control signal S fb so that reference voltage V ref and current detection voltage V mon are equal.
  • the value of the current detection voltage V mon expected during operation of the load 200 is also determined at the time of design.
  • the expected value of the voltage V out output by the DC/DC converter 110 during operation of the load 200 is determined at the time of design according to the current I that should flow through the load 200 and the current detection resistor 130 .
  • the value expected during operation of the load 200 at the reference voltage V ref is determined at design time according to the value expected during operation of the load 200 at the voltage V out . Since the load 200 is a current-driven load, the rate of change of the current I changes relatively more than the rate of change of the voltage Vout .
  • each circuit element 170 is supplied with the system current from the external power supply 300 .
  • a Zener diode 160 included in each circuit element 170 supplies a predetermined voltage Vin to the DC/DC converter 110 included in each circuit element 170 .
  • DC/DC converter 110 outputs voltage V out to load 200 so that reference voltage V ref and current detection voltage V mon are equal.
  • the current detection voltage V mon I ⁇ R 1
  • the reference voltage V ref V out R 2 /(R 2 +R 3 ).
  • the power loss in each current control circuit 150 is determined by making the resistance value R1 sufficiently smaller than the internal resistance of the load 200 and setting the resistance value R2 +R3 sufficiently larger than the internal resistance of the load 200. can be made as small as needed. That is, the laser module drive circuit 149 in the power supply circuit 109 referred to in the present invention is not required, and no voltage drop occurs in the laser module drive circuit 149 . Therefore, in the power supply circuit 100 of the present embodiment, when a constant current is supplied to one power supply line, there is an effect that a predetermined current can be supplied to each of a plurality of loads with high power supply efficiency. .
  • the DC/DC converter 110 may output the voltage Vout that is constantly boosted from the predetermined voltage Vin while the predetermined voltage Vin is being input.
  • the power supply circuit 100 of the present embodiment has the effect of suppressing the voltage required when supplying the system current.
  • the power efficiency of the power supply circuit 100 can be significantly improved and the supply voltage of the external power supply 300 can be significantly reduced as compared with the power supply circuit 109 referred to in the present invention.
  • the power supply circuit 100 of the present embodiment also includes a Schottky diode 715 (Schottky barrier diode), a coil 725, a capacitor 735, etc. for stabilizing the voltage Vout output from the DC/DC converter 110.
  • a Schottky diode 715 Schottky barrier diode
  • the Schottky diode 715 is connected to the positive terminal OUT and the negative terminal GND that output the voltage V out of the DC/DC converter 110 .
  • the coil 725 is connected between the positive terminal OUT and the positive end of the load 200 .
  • a capacitor 735 is also connected between the positive end and the negative terminal GND.
  • the power supply circuit 100 of the present embodiment has the effect of stabilizing the voltage V out output from the DC/DC converter 110 .
  • the power supply circuit 100 of the present embodiment may be included in the optical submarine cable 600 (see FIG. 2 described later).
  • the optical submarine cable 600 includes, for example, an optical fiber 400 , a plurality of optical amplifiers 500 , laser modules 205 as loads 200 included in each optical amplifier 500 , and a plurality of power supply circuits 105 .
  • each of the plurality of optical amplifiers 500 are connected in series with each other.
  • Each optical amplifier 500 amplifies the optical signal propagating through the optical fiber 400 on the input side and outputs the amplified signal to the optical fiber 400 on the output side.
  • the power supply circuit in this embodiment is a power supply circuit that drives a laser module included in an optical amplifier of an optical submarine cable.
  • FIG. 2 is a circuit diagram showing an example of the configuration of the power supply circuit according to the second embodiment of the present invention. Further, FIG. 2 schematically illustrates an optical submarine cable including optical amplifiers including laser modules.
  • the optical submarine cable 600 of this embodiment includes an optical fiber 400 , a plurality of optical amplifiers 500 , a laser module 205 as a load included in each optical amplifier 500 , and a plurality of power supply circuits 105 .
  • Each of the plurality of optical amplifiers 500 are connected in series with each other. Each optical amplifier 500 amplifies an optical signal propagating through the optical fiber 400 on the input side and outputs it to the optical fiber 400 on the output side.
  • the laser module 205 is a current driven load.
  • Laser module 205 may actually include more than one laser module (laser diode). In that case, each of the laser modules 205 are connected in series with each other. Note that FIG. 2 shows an example in which one laser module 205 is one laser diode.
  • the power supply circuit 105 includes multiple circuit elements 175 .
  • Each of the plurality of circuit elements 175 are connected in series with each other.
  • a system current is supplied from an external power supply 300 to a plurality of circuit elements 175 connected in series with each other.
  • Each circuit element 175 includes a current control circuit 155 and one or more Zener diodes 160 .
  • Each of the one or more Zener diodes 160 are connected in series with each other. Although one Zener diode 160 is illustrated in FIG. 2, the Zener diode 160 may actually include two or more Zener diodes.
  • Current control circuit 155 includes DC/DC converter 110, Schottky diode 715 (Schottky barrier diode), coil 725, capacitor 735, voltage dividing resistor 120, current detection resistor 130, and feedback circuit 140. include.
  • the Zener diode 160 is connected to a power supply line to which a system current is supplied from a power supply device (external power supply 300) installed on land so that the direction from the anode to the cathode is opposite to the direction of the system current.
  • a power supply device external power supply 300
  • reverse connection refers to the connection in which the direction of the current supplied from the outside is opposite to the direction from the anode to the cathode, and the direction of the current supplied from the outside. , are called "forward connection".
  • the input side (input terminal (IN terminal) and ground terminal (GND terminal)) of the DC/DC converter 110 is connected in parallel to the Zener diode 160 .
  • the output side (output terminal (OUT terminal) and GND terminal) of the DC/DC converter 110 includes a Schottky diode 715, and a capacitor 735, a voltage dividing resistor 120, and a current detection resistor 130, which are connected in series to a coil 725, respectively. is connected in parallel with the laser module 205 which is connected in series with the .
  • Schottky diode 715 is reverse connected and laser module 205 is forward connected.
  • the DC/DC converter 110 inputs the breakdown voltage V in generated across the Zener diode 160 by the system current from the power supply device, and outputs the voltage V out required to drive the laser module 205 .
  • Schottky diode 715 , capacitor 735 and inductor 725 stabilize the voltage V out output from DC/DC converter 110 .
  • the feedback circuit 140 inputs the voltage at the point connecting the cathode side of the laser module 205 and the current detection resistor 130 as the current detection voltage Vmon . Further, the feedback circuit 140 inputs a voltage obtained by dividing the voltage V out output from the DC/DC converter 110 by the voltage dividing resistor 120 as a reference voltage V ref . The feedback circuit 140 then outputs a signal corresponding to the difference between the reference voltage Vref and the current detection voltage Vmon to the feedback terminal (FEEDBACK terminal) of the DC/DC converter 110 as the control signal Sfb .
  • a power supply device installed on land supplies a constant current (system current) to submarine equipment (for example, optical amplifier 500) through a power supply line (power cable).
  • a positive voltage is applied to the cathode side of the Zener diode 160 connected in parallel with the submarine equipment (for example, the optical amplifier 500 ), and a negative voltage is applied to the anode side of the Zener diode 160 .
  • the breakdown voltage due to the Zener effect when system current flows keeps the voltage between the cathode and anode constant.
  • the voltage generated by the Zener diode 160 is called the primary-side voltage V in
  • the voltage output by the DC/DC converter 110 is called the secondary-side voltage V out .
  • the DC/DC converter 110 outputs a voltage necessary for driving the laser module 205 as a secondary side voltage Vout . If the submarine equipment is a submarine repeater, the DC/DC converter 110 of the current control circuit 155 included in the submarine equipment outputs a voltage V out for causing a constant current to flow through the laser module 205 .
  • a current sensing resistor 130 converts the current I flowing through the laser module 205 into a current sensing voltage Vmon .
  • the feedback circuit 140 outputs a control signal S fb corresponding to the difference between the current detection voltage V mon and the reference voltage V ref to the feedback terminal (FEEDBACK terminal) of the DC/DC converter 110 .
  • the DC/DC converter 110 performs feedback control so that the voltage V out becomes the expected voltage.
  • the expected voltage is the output voltage of the DC/DC converter 110 when a desired constant current is passed through the laser module 205 .
  • the reference voltage Vref is determined so that the current detection voltage Vmon matches the reference voltage Vref when the output voltage of the DC/DC converter 110 matches the expected voltage. Since the laser module 205 is a current-driven load, the light output is likely to be unstable under voltage control, so the current I must be controlled. In addition, the current I needs to be controlled in order to cope with deterioration of the characteristics of the laser module 205 over time.
  • the first effect is that the voltage Vout required to drive the laser module 205 can be reduced to the voltage drop in the forward direction of the laser module 205 by removing the voltage drop across the current detection resistor 130 .
  • the current detection resistor 130 can be set to a sufficiently small resistance value compared to the internal resistance corresponding to the voltage drop in the forward direction of the laser module 205 .
  • the feedback loop (OUT terminal-laser module 205-current detection resistor 130-feedback circuit 140-FEEDBACK terminal) in the output voltage control of the DC/DC converter 110 has a constant current in the drive circuit of the laser module 205. This is because it also serves as a feedback loop in control. This eliminates the need for the laser module drive circuit 149 in the power supply circuit 109 referred to in the present invention, and no voltage drop occurs in the laser module drive circuit 149 . Also, the voltage Vout required to drive the laser module 205 can be suppressed, and the voltage Vin can be suppressed.
  • the second effect is that the power consumption of the submarine repeater (optical amplifier 500) can be suppressed.
  • the reason for this effect is that the voltage Vout required to drive the laser module 205 can be reduced to the voltage drop in the forward direction of the laser module 205 by excluding the voltage drop across the current detection resistor 130 . That is, there is no need for the laser module drive circuit 149 connected in series with the laser module 209 in the power supply circuit 109 referred to in the present invention, and no voltage drop occurs in the laser module drive circuit 149 . Also, as described in the first embodiment, the loss in the current detection resistor 130 and the voltage dividing resistor 120 can be made as small as necessary. Thereby, the power consumption required for driving the laser module 205 can be suppressed. As a result, for example, a single optical submarine cable 600 can accommodate a larger number of submarine repeaters, and by extension, the capacity of the optical submarine cable 600 can be increased.
  • the power supply circuit 105 of the present embodiment has the effect of being able to supply a predetermined current to each of a plurality of loads with high power supply efficiency when a constant current is supplied to one power supply line. .
  • This effect is remarkable in applications for supplying power to a submarine repeater installed on the seabed where power supply is difficult.
  • the power efficiency of the power supply circuit 105 can be significantly improved and the supply voltage of the external power supply 300 can be significantly reduced compared to the power supply circuit 109 referred to in the present invention.
  • the power supply circuit 105 of this embodiment has the effect of stabilizing the voltage Vout required to drive the laser module 205 .
  • the present invention can be used to supply power to current-driven devices installed in places where power supply is difficult, such as seabeds, lakebeds, mountains, high places, underground, and tunnels.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

1本の電源ラインに定電流が供給される場合に、複数の負荷のそれぞれに高い電源効率で所定の電流を供給するために、所定の電圧を入力し、フィードバック制御用の制御信号に基づき調整した電圧を、所定の電流を流すことによって動作する負荷に出力するDC/DCコンバータと、DC/DCコンバータから出力される電圧に応じて参照電圧を生成する分圧抵抗と、負荷に流れる電流に応じた電流検出電圧を生成する電流検出抵抗と、参照電圧及び電流検出電圧を比較し、比較結果を表す制御信号をDC/DCコンバータへ出力するフィードバック回路とを含む電流制御回路、及び各DC/DCコンバータに所定の電圧を入力する端子において並列に接続された1つ以上のツェナーダイオードを含む回路要素を複数個含み、複数個の回路要素のそれぞれが互いに直列に接続され、互いに直列に接続された複数個の回路要素に外部電源からシステム電流が供給される。

Description

電源回路及び光海底ケーブル
 本発明は、1本の電源ラインに互いに直列に接続された複数の負荷のそれぞれに所定の電流を供給する電源回路に関する。
 海底ケーブルシステムは、陸地に設置される端局装置と、海底に設置される海底装置と、全長が数千キロメートルに及ぶこともあるケーブルとを含む。海底ケーブルシステムでは、電源ケーブルを通じて定電流(以下、「システム電流」と称す)を供給する給電方式を採用している。このような海底ケーブルシステムを構成する海底装置として、光ファイバーを伝送されることによって減衰した光信号を増幅して元の光信号レベルに回復させる海底中継器がある。
 世界的な情報通信量の増大に伴い、海底ケーブルシステムの大容量化が著しい。このようなデータ通信を実現するために、海底中継器にはより高い光出力が求められている。更に、海底ケーブルシステムの大容量化に伴い、海底中継器の所要数量も大幅に増加する傾向にある。しかしながら、陸上局から給電可能な電力には限界があるため、電源効率が高い海底中継器が必要とされている。
 電源ケーブルに互いに直列に接続された複数の海底中継器に電流を供給する技術の一例が特許文献1に記載されている。特許文献1に記載の光海底中継器の電源回路では、給電線の途中に直列に挿入された各ツェナーダイオードの両端に現れる直流定電圧を電源として、各ツェナーダイオードに並列に接続された、光海底中継器の各中継器回路が動作する。通常、光海底中継器は、レーザーモジュールを内蔵し、レーザーモジュール駆動回路によってレーザーモジュールに所定の電流を流すことによって光出力を得る。
 本発明で参照する光海底中継器用の電源回路について説明する。
 本発明で参照する電源回路の構成について説明する。図3は、本発明で参照する電源回路の構成の一例を示す回路図である。電源回路109には、外部電源300からシステム電流が供給される。電源回路109は、電流制御回路159と、1つ以上のツェナーダイオード160とを含む。1つ以上のツェナーダイオード160のそれぞれは、互いに直列に接続される。尚、図3では、1つのツェナーダイオード160が例示されているが、ツェナーダイオード160は、実際には、2つ以上のツェナーダイオードを含んでもよい。電流制御回路159は、DC/DCコンバータ119と、分圧抵抗120と、電流検出抵抗130と、レーザーモジュール駆動回路149とを含む。DC/DCコンバータ119は、所定の電圧Vinを入力し、所定の電圧Voutを、直列に接続された、レーザーモジュール209、レーザーモジュール駆動回路149、及び電流検出抵抗130に出力する。分圧抵抗120は、DC/DCコンバータ119から出力される電圧Voutに応じて参照電圧Vrefを生成する。電流検出抵抗130は、レーザーモジュール209に流れる電流Iに応じた電流検出電圧Vmonを生成する。レーザーモジュール駆動回路149は、参照電圧Vrefと電流検出電圧Vmonが一致するように、レーザーモジュール209に流れる電流Iを調節する。レーザーモジュール駆動回路149は、IC(Integrated Circuit)及びトランジスタを含む。ツェナーダイオード160は、システム電流が入力される端子間に接続される。
 電源回路109の動作の一例について説明する。尚、以下の説明では、説明を簡単にするために、電源回路109の電流制御回路159における変換損失を無視することとする。又、陸上の給電装置(外部電源300)から海底ケーブルには、最大1A(アンペア)のシステム電流しか流せないこととする。又、レーザーモジュール209において、1.2Aの電流が消費されることとする。又、レーザーモジュール209は、動作電圧が2V(ボルト)のレーザーダイオードを2個含むこととする。又、レーザーモジュール駆動回路149のトランジスタにおける電圧降下は2Vであることとする。又、電流検出抵抗130における電圧降下は1Vであることとする。つまり、DC/DCコンバータ119の出力側における消費電力は、(2V×2+2V+1V)×1.2A=8.4W(ワット)である。この場合、DC/DCコンバータ119の入力側に必要な電圧は、8.4W/1A=8.4Vである。しかしながら、光海底中継器で利用可能な高信頼度ツェナーダイオードのツェナー電圧の種類は限定されている。例えば、ツェナーダイオードのツェナー電圧が7Vであれば、ツェナーダイオード160として、直列に接続された2個のツェナーダイオードが使用される(合計のツェナー電圧が14V)。このとき、DC/DCコンバータ119の入力側における消費電力は14V×1A=14WでありDC/DCコンバータ119の入力側対出力側における電力効率は、8.4W/14W=60%となる。
 高い電源効率で電流を供給する技術の一例が特許文献2に記載されている。特許文献2に記載の電源装置は、DC/DCコンバータ(Direct Current to Direct Current Converter)と、検出抵抗と、指示電圧生成部と、コンパレータと、電源部と、位相補償部とを備える。コンパレータは、検出電圧が指示電圧より大きい場合、ハイレベルのフィードバック電圧を生成し、検出電圧が指示電圧より小さい場合、ローレベルのフィードバック電圧を生成する。DC/DCコンバータは、フィードバック電圧が内部のリファレンス電圧より大きい場合、発光ダイオードの駆動電流を低下させ、フィードバック電圧がリファレンス電圧より小さい場合、駆動電流を上昇させる。上記構成の結果、特許文献2に記載の電源装置では、高い電源効率で発光ダイオードの調光を実現する。
特開昭63-005630号公報 特開2019-103289号公報
 本発明で参照する電源回路109のレーザーモジュール駆動回路149には、レーザーモジュール209が直列に接続されるので、レーザーモジュール209と同じ大きさの電流(例えば、前述した1.2A)が流れる。その結果、レーザーモジュール駆動回路149に含まれるトランジスタにおける電圧降下(例えば、前述した2V)が発生する。そのため、電源回路109には、レーザーモジュール駆動回路149で発生する電圧降下に起因して電源効率が低いという問題があった。
 電源回路109における課題について、より詳細に説明する。もしも、レーザーモジュール駆動回路149における電圧降下(例えば、前述した2V)が無ければ、DC/DCコンバータ119の出力側における消費電力は、(2V×2+1V)×1.2A=6Wである。この場合、DC/DCコンバータ119の入力側に必要な電圧は、6W/1A=6Vである。例えば、ツェナーダイオードのツェナー電圧が7Vであれば、ツェナーダイオード160として、1個のツェナーダイオードが使用される。このとき、DC/DCコンバータ119の入力側における消費電力は7V×1A=7Wであり、DC/DCコンバータ119の入力側対出力側における電力効率は、6W/7W=86%となる。即ち、本例と比較すると、電源回路109に関する上述の例では、レーザーモジュール駆動回路149における電圧降下(例えば、前述した2V)に起因して、電力効率が86%から60%に低下し、外部電源300の供給電圧が7Vから14Vに上昇している。このように、レーザーモジュール駆動回路149における電圧降下は、電源回路109における電力効率を大幅に低下させる原因になり得る。
 特許文献2に記載の電源装置は、定電圧を入力する。しかしながら、1本の電源ラインにシステム電流(定電流)が供給される場合に、互いに直列に接続された複数の電源装置のそれぞれに定電圧を供給することが考慮されていない。そのため、特許文献2に記載の電源装置では、そのままでは、1本の電源ラインに定電流が供給される場合に、互いに直列に接続された複数の電源装置のそれぞれは定電圧の供給を受けられない。従って、特許文献2に記載の電源装置には、1本の電源ラインに定電流が供給される場合に、複数の負荷のそれぞれに対して、所定の電流を供給することが困難であるという問題があった。尚、複数の電源装置が電流制御する各発光ダイオードに流す電流を1本の電源ラインに供給される定電流に一致させるという方法を採用することも一般的には困難である。その理由は、例えば、各発光ダイオードが必要とする電流が同一でない(出力の異なる発光ダイオードが混在する)ことが一般的であり、更に発光ダイオード毎の入出力特性の経年変化が発生するからである。
 本発明は、上記の課題に鑑みてなされたもので、1本の電源ラインに定電流が供給される場合に、複数の負荷のそれぞれに高い電源効率で所定の電流を供給することを主たる目的とする。
 本発明の一態様において、電源回路は、所定の電圧を入力し、フィードバック制御用の制御信号に基づき調整した電圧を、所定の電流を流すことによって動作する負荷に出力するDC/DCコンバータと、DC/DCコンバータから出力される電圧に応じて参照電圧を生成する分圧抵抗と、負荷に流れる電流に応じた電流検出電圧を生成する電流検出抵抗と、参照電圧及び電流検出電圧を比較し、比較結果を表す制御信号をDC/DCコンバータへ出力するフィードバック回路とを含む電流制御回路、及び各DC/DCコンバータに所定の電圧を入力する端子において並列に接続された1つ以上のツェナーダイオードを含む回路要素を複数個含み、複数個の回路要素のそれぞれが互いに直列に接続され、互いに直列に接続された複数個の回路要素に外部電源からシステム電流が供給される。
 本発明の一態様において、光海底ケーブルは、所定の電圧を入力し、フィードバック制御用の制御信号に基づき調整した電圧を、所定の電流を流すことによって動作する負荷に出力するDC/DCコンバータと、DC/DCコンバータから出力される電圧に応じて参照電圧を生成する分圧抵抗と、負荷に流れる電流に応じた電流検出電圧を生成する電流検出抵抗と、参照電圧及び電流検出電圧を比較し、比較結果を表す制御信号をDC/DCコンバータへ出力するフィードバック回路とを含む電流制御回路、及び各DC/DCコンバータに所定の電圧を入力する端子において並列に接続された1つ以上のツェナーダイオードを含む回路要素を複数個含み、複数個の回路要素のそれぞれが互いに直列に接続され、互いに直列に接続された複数個の回路要素に外部電源からシステム電流が供給される電源回路と、光ファイバーと、入力側の光ファイバーを伝搬してきた光信号を増幅して出力側の光ファイバーへ出力する、互いに直列に接続された複数の光増幅器と、光増幅器に含まれる負荷であるレーザーモジュールとを含む。
 本発明によれば、1本の電源ラインに定電流が供給される場合に、複数の負荷のそれぞれに高い電源効率で所定の電流を供給することができるという効果がある。
本発明の第1実施形態における電源回路の構成の一例を示す回路図である。 本発明の第2実施形態における電源回路の構成の一例を示す回路図である。 本発明で参照する電源回路の構成の一例を示す回路図である。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、すべての図面において、同等の構成要素には同じ符号を付し、適宜説明を省略する。
(第1実施形態)
 本発明の各実施形態の基本である第1実施形態について説明する。
 本実施形態における構成について説明する。
 図1は、本発明の第1実施形態における電源回路100の構成の一例を示す回路図である。
 本実施形態における電源回路100は、複数個の回路要素170を含む。複数個の回路要素170のそれぞれは、互いに直列に接続される。互いに直列に接続された複数個の回路要素170には、外部電源300からシステム電流が供給される。
 それぞれの回路要素170は、電流制御回路150と、1つ以上のツェナーダイオード160とを含む。
 1つ以上のツェナーダイオード160のそれぞれは、互いに直列に接続される。尚、図1では、1つのツェナーダイオード160が例示されているが、ツェナーダイオード160は、実際には、2つ以上のツェナーダイオードを含んでもよい。
 電流制御回路150は、DC/DCコンバータ110と、分圧抵抗120と、電流検出抵抗130と、フィードバック回路140とを含む。
 DC/DCコンバータ110は、所定の電圧Vinを入力し、フィードバック制御用の制御信号Sfbに基づき調整した電圧Voutを負荷200に出力する。ここで、負荷200は、所定の電圧の範囲(電流の変化する割合の範囲に比べて相対的に狭い電圧の変化する割合の範囲)内で電流を流すことによって動作する負荷(以下、「電流駆動負荷」と称す)であることとする。電流駆動負荷は、例えば、レーザーダイオード、発光ダイオードである。
 分圧抵抗120は、DC/DCコンバータ110から出力される電圧Voutに応じて参照電圧Vrefを生成する。
 電流検出抵抗130は、負荷200に流れる電流に応じた電流検出電圧Vmonを生成する。
 フィードバック回路140は、参照電圧Vref及び電流検出電圧Vmonを比較し、比較結果を表す制御信号SfbをDC/DCコンバータ110へ出力する。フィードバック回路140は、例えば、コンパレータ、又はオペアンプである。
 ツェナーダイオード160は、各DC/DCコンバータ110に所定の電圧Vinを入力する端子において並列に接続される。
 本実施形態における動作について説明する。
 1つ以上のツェナーダイオード160は、外部電源300から供給されたシステム電流に応じて、所定の電圧Vinを発生させる。
 DC/DCコンバータ110は、所定の電圧Vinを入力し、フィードバック制御用の制御信号Sfbに基づき調整した電圧Voutを負荷200に出力する。
 電流検出抵抗130(抵抗値はRで表す)は、負荷200に流れる電流Iに応じた電流検出電圧Vmon=I×Rを生成する。
 分圧抵抗120(抵抗値はR及びRで表す)は、DC/DCコンバータ110から出力される電圧Voutに応じて参照電圧Vref=Vout/(R+R)を生成する。ここで、分圧抵抗120の抵抗値R及びRは、負荷200に流すべき電流Iについて、I×R=Vout/(R+R)となるように予め決定されていることとする。
 フィードバック回路140は、参照電圧Vref及び電流検出電圧Vmonを比較し、参照電圧Vrefと電流検出電圧Vmonの比較結果に応じた制御信号SfbをDC/DCコンバータ110(図2の例ではFEEDBACK端子)へ出力する。ここで、制御信号Sfbは、DC/DCコンバータ110が出力する電圧Voutを増加又は減少させるための信号である。制御信号Sfbがデジタル信号の場合、DC/DCコンバータ110は、例えば、制御信号Sfbが“-1”の場合に電圧Voutを所定量(微小量)だけ増加させ、制御信号Sfbが“1”の場合に電圧Voutを所定量(微小量)だけ減少させる。制御信号Sfbがアナログ信号の場合、DC/DCコンバータ110は、例えば、制御信号Sfbが負値の場合に電圧Voutを負値の絶対値に応じた微小量だけ増加させ、制御信号Sfbが正値の場合に電圧Voutを正値の絶対値に応じた微小量だけ減少させる。
 DC/DCコンバータ110は、入力された制御信号Sfbに応じて、参照電圧Vrefと電流検出電圧Vmonが等しくなるように、調整した電圧Voutを負荷200に出力する。ここで、負荷200に流すべき電流Iは設計時に決まるので、電流検出電圧Vmonの負荷200の動作時に期待される値も設計時に決まる。又、DC/DCコンバータ110が出力する電圧Voutの負荷200の動作時に期待される値は、負荷200及び電流検出抵抗130に流すべき電流Iに応じて、設計時に決まる。又、参照電圧Vrefの負荷200の動作時に期待される値は、電圧Voutの負荷200の動作時に期待される値に応じて、設計時に決まる。そして、負荷200は電流駆動負荷なので、電流Iの変化の割合が、電圧Voutの変化の割合に比べて相対的に大きく変化する。
 以上説明したように、本実施形態の電源回路100では、各回路要素170には、外部電源300からシステム電流が供給される。そして、各回路要素170に含まれるツェナーダイオード160は、各回路要素170に含まれるDC/DCコンバータ110に所定の電圧Vinを供給する。DC/DCコンバータ110は、参照電圧Vrefと電流検出電圧Vmonが等しくなるように、調整した電圧Voutを負荷200に出力する。ここで、負荷200に流すべき電流Iについて、電流検出電圧Vmon=I×R且つ参照電圧Vref=Vout/(R+R)である。各電流制御回路150における電力の損失は、抵抗値Rを負荷200の内部抵抗に比べて十分に小さくし、且つ抵抗値R+Rを負荷200の内部抵抗に比べて十分に大きくすることにより、必要なだけ小さくできる。即ち、本発明で参照する電源回路109における、レーザーモジュール駆動回路149を必要とせず、レーザーモジュール駆動回路149における電圧降下が発生しない。従って、本実施形態の電源回路100には、1本の電源ラインに定電流が供給される場合に、複数の負荷のそれぞれに高い電源効率で所定の電流を供給することができるという効果がある。
 尚、本実施形態の電源回路100では、DC/DCコンバータ110は、所定の電圧Vinの入力中に所定の電圧Vinを常に昇圧した電圧Voutを出力してもよい。この場合には、本実施形態の電源回路100には、システム電流を供給する際に必要な電圧を抑制できるという効果がある。
 本実施形態における効果について、本発明で参照する電源回路109の説明における例と対比して(各数値例を援用)、より詳細に説明する。本実施形態の電源回路100には、フィードバック回路140による電圧降下が無いので、DC/DCコンバータ110の出力側における消費電力は、(2V×2+1V)×1.2A=6Wである。この場合、DC/DCコンバータ110の入力側に必要な電圧は、6W/1A=6Vである。例えば、ツェナーダイオードのツェナー電圧が7Vであれば、ツェナーダイオード160として、1個のツェナーダイオードが使用される。このとき、DC/DCコンバータ110の入力側における消費電力は7V×1A=7Wであり、DC/DCコンバータ110の入力側対出力側における電力効率は、6W/7W=86%となる。即ち、上述した電源回路109の説明における例と比較すると、フィードバック回路140における電圧降下(例えば、前述した2V)が無いことに起因して、電力効率が60%から86%に向上し、外部電源300の供給電圧が14Vから7Vに低下している。このように、本実施形態の電源回路100では、本発明で参照する電源回路109に比べて、電源回路100における電力効率を大幅に向上させ、外部電源300の供給電圧を大幅に低下させ得る。例えば、海底中継器は、伝送される光信号の減衰特性に合わせて、通常、60km(キロメートル)乃至80kmの間隔で設置される。海底ケーブルの総長が12000kmである場合、60km間隔ならば約200台の中継器が必要となる。この場合、上述した外部電源300(陸上の給電装置)の供給電圧は、200台×14V=2800Vから、200台×7V=1400Vに抑制できる。そのため、安価で安全性が高い海底ケーブルシステムの構築が可能になる。
 又、本実施形態の電源回路100は、DC/DCコンバータ110から出力される電圧Voutを安定化するための、ショットキーダイオード715(ショットキーバリアダイオード)、コイル725、及びコンデンサ735等を含んでもよい(後述する図2参照)。ここで、例えば、ショットキーダイオード715は、DC/DCコンバータ110の電圧Voutを出力する正極端子OUT及び負極端子GNDに接続される。又、コイル725は、正極端子OUTと負荷200の正側端との間に接続される。又、コンデンサ735は、正側端と負極端子GNDとの間に接続される。この場合には、本実施形態の電源回路100には、DC/DCコンバータ110から出力される電圧Voutを安定化することができるという効果がある。
 又、本実施形態の電源回路100は、光海底ケーブル600に含まれてもよい(後述する図2参照)。ここで、光海底ケーブル600は、例えば、光ファイバー400と、複数の光増幅器500と、各光増幅器500に含まれる、負荷200であるレーザーモジュール205と、複数の電源回路105とを含む。ここで、複数の光増幅器500のそれぞれは、互いに直列に接続される。そして、各光増幅器500は、入力側の光ファイバー400を伝搬してきた光信号を増幅して出力側の光ファイバー400へ出力する。
(第2実施形態)
 本発明の第1実施形態を基本とする、本発明の第2実施形態について説明する。本実施形態における電源回路は、光海底ケーブルの光増幅器に含まれるレーザーモジュールを駆動する電源回路である。
 本実施形態における構成について説明する。
 図2は、本発明の第2実施形態における電源回路の構成の一例を示す回路図である。更に、図2では、レーザーモジュールを含む光増幅器を含む光海底ケーブルを模式的に図示している。
 本実施形態の光海底ケーブル600は、光ファイバー400と、複数の光増幅器500と、各光増幅器500に含まれる、負荷であるレーザーモジュール205と、複数の電源回路105とを含む。
 複数の光増幅器500のそれぞれは、互いに直列に接続される。各光増幅器500は、入力側の光ファイバー400を伝搬してきた光信号を増幅して出力側の光ファイバー400へ出力する。
 レーザーモジュール205は、電流駆動負荷である。レーザーモジュール205は、実際には、2つ以上のレーザーモジュール(レーザーダイオード)を含んでもよい。その場合、レーザーモジュール205のそれぞれは、互いに直列接続される。尚、図2では、1つのレーザーモジュール205が1つのレーザーダイオードである例を示している。
 電源回路105は、複数個の回路要素175を含む。
 複数個の回路要素175のそれぞれは、互いに直列に接続される。互いに直列に接続された複数個の回路要素175には、外部電源300からシステム電流が供給される。それぞれの回路要素175は、電流制御回路155と、1つ以上のツェナーダイオード160とを含む。
 1つ以上のツェナーダイオード160のそれぞれは、互いに直列に接続される。尚、図2では、1つのツェナーダイオード160が例示されているが、ツェナーダイオード160は、実際には、2つ以上のツェナーダイオードを含んでもよい。
 電流制御回路155は、DC/DCコンバータ110と、ショットキーダイオード715(ショットキーバリアダイオード)と、コイル725と、コンデンサ735と、分圧抵抗120と、電流検出抵抗130と、フィードバック回路140とを含む。
 ツェナーダイオード160は、陸上に設置される給電装置(外部電源300)からシステム電流が供給される給電ラインに、アノードからカソードへの向きとシステム電流の向きとが反対になるように接続される。以降、アノードからカソードへの向きと外部から供給される電流の向きとが反対になるように接続されることを「逆接続」と、アノードからカソードへの向きと外部から供給される電流の向きとが一致するように接続されることを「順接続」と称することとする。
 DC/DCコンバータ110の入力側(入力端子(IN端子)及びグラウンド端子(GND端子))は、ツェナーダイオード160に並列接続される。
 DC/DCコンバータ110の出力側(出力端子(OUT端子)及びGND端子)は、ショットキーダイオード715、並びに、それぞれコイル725に直列接続された、コンデンサ735、分圧抵抗120、及び電流検出抵抗130に直列接続されたレーザーモジュール205に並列接続される。ここで、ショットキーダイオード715は逆接続され、レーザーモジュール205は順接続される。
 DC/DCコンバータ110は、給電装置からのシステム電流によってツェナーダイオード160の両端に発生する降伏電圧Vinを入力し、レーザーモジュール205の駆動に必要な電圧Voutを出力する。
 ショットキーダイオード715、コンデンサ735、及びコイル725は、DC/DCコンバータ110から出力される電圧Voutを安定化する。
 フィードバック回路140は、レーザーモジュール205のカソード側と電流検出抵抗130とを結ぶ点における電圧を電流検出電圧Vmonとして入力する。又、フィードバック回路140は、DC/DCコンバータ110から出力された電圧Voutを分圧抵抗120で分圧した電圧を参照電圧Vrefとして入力する。そして、フィードバック回路140は、参照電圧Vrefと電流検出電圧Vmonの差分に応じた信号をDC/DCコンバータ110のフィードバック端子(FEEDBACK端子)へ制御信号Sfbとして出力する。
 本実施形態における動作について説明する。
 陸上に設置される給電装置(外部電源300)は、海底機器(例えば、光増幅器500)に対して給電ライン(電源ケーブル)を通じて一定値の電流(システム電流)を供給する。海底機器(例えば、光増幅器500)に並列接続されたツェナーダイオード160のカソード側に正電圧、ツェナーダイオード160のアノード側に負電圧が印加される。ツェナーダイオード160のカソードとアノードの間に電圧が印加されると、システム電流が流れた場合のツェナー効果による降伏電圧によって、カソードとアノードの間の電圧が一定に保たれる。このツェナーダイオード160で生成した電圧を1次側の電圧Vin、DC/DCコンバータ110で出力する電圧を2次側の電圧Voutと称することとする。DC/DCコンバータ110は、2次側の電圧Voutとしてレーザーモジュール205の駆動に必要な電圧を出力する。海底機器が海底中継器である場合には、海底機器に含まれる電流制御回路155のDC/DCコンバータ110が、レーザーモジュール205に定電流を流すための電圧Voutを出力する。電流検出抵抗130は、レーザーモジュール205を流れる電流Iを電流検出電圧Vmonに変換する。フィードバック回路140は、電流検出電圧Vmonと参照電圧Vrefとの差分に応じた制御信号SfbをDC/DCコンバータ110のフィードバック端子(FEEDBACK端子)へ出力する。DC/DCコンバータ110は、電圧Voutが期待電圧になるようにフィードバック制御を行う。ここで、期待電圧は、レーザーモジュール205に所望の定電流を流した時のDC/DCコンバータ110の出力電圧である。DC/DCコンバータ110の出力電圧が期待電圧に一致した際に、電流検出電圧Vmonが参照電圧Vrefに一致するように、参照電圧Vrefが決定されていることとする。尚、レーザーモジュール205は、電流駆動負荷であるため電圧制御では光出力が不安定になり易いので、電流Iが制御される必要がある。又、レーザーモジュール205の特性の経年劣化に対応するためにも、電流Iが制御される必要がある。
 本実施形態における効果について説明する。
 第1の効果は、レーザーモジュール205の駆動に必要な電圧Voutを、電流検出抵抗130における電圧降下分を除いて、レーザーモジュール205の順方向における電圧降下分に抑制できることである。ここで、電流検出抵抗130は、レーザーモジュール205の順方向における電圧降下に対応する内部抵抗に比べて、十分に小さな抵抗値に設定できる。
 本効果が生じる理由は、DC/DCコンバータ110の出力電圧制御におけるフィードバックループ(OUT端子―レーザーモジュール205―電流検出抵抗130-フィードバック回路140―FEEDBACK端子)に、レーザーモジュール205の駆動回路の電流一定制御におけるフィードバックループを兼ねさせたからである。これにより、本発明で参照する電源回路109におけるレーザーモジュール駆動回路149を必要とせず、レーザーモジュール駆動回路149における電圧降下が発生しない。又、レーザーモジュール205の駆動に必要な電圧Voutを抑制でき、延いては電圧Vinを抑制できる。
 第2の効果は、海底中継器(光増幅器500)の消費電力を抑制できることである。
 本効果が生じる理由は、レーザーモジュール205の駆動に必要な電圧Voutを、電流検出抵抗130における電圧降下分を除いて、レーザーモジュール205の順方向における電圧降下分に抑制できるからである。即ち、本発明で参照する電源回路109における、レーザーモジュール209に直列に接続されたレーザーモジュール駆動回路149を必要とせず、レーザーモジュール駆動回路149における電圧降下が発生しない。又、電流検出抵抗130及び分圧抵抗120における損失を必要なだけ小さくできることは、第1実施形態で説明した通りである。これにより、レーザーモジュール205の駆動に必要な消費電力を抑制することができる。その結果、例えば、1本の光海底ケーブル600に、より多数の海底中継器を収容することができ、延いては光海底ケーブル600の大容量化を実現することができる。
 従って、本実施形態の電源回路105には、1本の電源ラインに定電流が供給される場合に、複数の負荷のそれぞれに高い電源効率で所定の電流を供給することができるという効果がある。本効果は、電源供給が困難な海底に設置される海底中継器に電源を供給する用途において顕著である。
 本実施形態における効果について、本発明で参照する電源回路109の説明における例と対比して(各数値例を援用)、より詳細に説明する。本実施形態の電源回路105には、フィードバック回路140による電圧降下が無いので、DC/DCコンバータ110の出力側における消費電力は、(2V×2+1V)×1.2A=6Wである。この場合、DC/DCコンバータ110の入力側に必要な電圧は、6W/1A=6Vである。例えば、ツェナーダイオードのツェナー電圧が7Vであれば、ツェナーダイオード160として、1個のツェナーダイオードが使用される。このとき、DC/DCコンバータ110の入力側における消費電力は7V×1A=7Wであり、DC/DCコンバータ110の入力側対出力側における電力効率は、6W/7W=86%となる。即ち、上述した電源回路109の説明における例と比較すると、フィードバック回路140における電圧降下(例えば、前述した2V)が無いことに起因して、電力効率が60%から86%に向上し、外部電源300の供給電圧が14Vから7Vに低下している。このように、本実施形態の電源回路105では、本発明で参照する電源回路109に比べて、電源回路105における電力効率を大幅に向上させ、外部電源300の供給電圧を大幅に低下させ得る。
 又、本実施形態の電源回路105では、ショットキーダイオード715、コンデンサ735、及びコイル725は、DC/DCコンバータ110から出力される電圧Voutを安定化する。従って、本実施形態の電源回路105には、レーザーモジュール205の駆動に必要な電圧Voutが安定化するという効果がある。
 以上、本発明を、上述した各実施形態およびその変形例によって例示的に説明した。しかしながら、本発明の技術的範囲は、上述した各実施形態およびその変形例に記載した範囲に限定されない。当業者には、係る実施形態に対して多様な変更又は改良を加えることが可能であることは明らかである。そのような場合、係る変更又は改良を加えた新たな実施形態も、本発明の技術的範囲に含まれ得る。そしてこのことは、特許請求の範囲に記載した事項から明らかである。
 この出願は、2021年1月21日に出願された日本出願特願2021-008076を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、海底、湖底、山岳、高所、地底、トンネル内等の電源供給が困難な場所に設置される電流駆動型の機器に電源を供給する用途において利用できる。
 100、105、109 電源回路
 110、119 DC/DCコンバータ
 120 分圧抵抗
 130 電流検出抵抗
 140 フィードバック回路
 149 レーザーモジュール駆動回路
 150、155、159 電流制御回路
 160 ツェナーダイオード
 170、175 回路要素
 200 負荷
 205、209 レーザーモジュール
 300 外部電源
 400 光ファイバー
 500 光増幅器
 600 光海底ケーブル
 715 ショットキーダイオード
 725 コイル
 735 コンデンサ

Claims (6)

  1.    所定の電圧を入力し、フィードバック制御用の制御信号に基づき調整した電圧を、所定の電流を流すことによって動作する負荷に出力するDC/DCコンバータと、
       前記DC/DCコンバータから出力される電圧に応じて参照電圧を生成する分圧抵抗と、
       前記負荷に流れる電流に応じた電流検出電圧を生成する電流検出抵抗と、
       前記参照電圧及び前記電流検出電圧を比較し、比較結果を表す前記制御信号を前記DC/DCコンバータへ出力するフィードバック回路と
      を含む電流制御回路、及び
      各前記DC/DCコンバータに前記所定の電圧を入力する端子において並列に接続された1つ以上のツェナーダイオード
     を含む回路要素を複数個備え、
     複数個の前記回路要素のそれぞれが互いに直列に接続され、
     互いに直列に接続された複数個の前記回路要素に外部電源からシステム電流が供給される
    電源回路。
  2.  前記DC/DCコンバータは、前記所定の電圧の入力中に前記所定の電圧を常に昇圧した電圧を出力する
    請求項1に記載の電源回路。
  3.  前記フィードバック回路は、前記参照電圧と前記電流検出電圧を比較し、比較結果を表す前記制御信号を前記DC/DCコンバータへ出力するコンパレータである
    請求項1又は2に記載の電源回路。
  4.  前記フィードバック回路は、前記参照電圧と前記電流検出電圧を比較し、比較結果を表す前記制御信号を前記DC/DCコンバータへ出力するオペアンプである
    請求項1又は2に記載の電源回路。
  5.  前記DC/DCコンバータから出力される電圧を安定化するための、ショットキーダイオード、コイル、及びコンデンサを含み、
     前記ショットキーダイオードは、前記DC/DCコンバータの電圧を出力する正極端子及び負極端子に接続され、
     前記コイルは、前記正極端子と前記負荷の正側端との間に接続され、
     前記コンデンサは、前記正側端と前記負極端子との間に接続された
    請求項1乃至4の何れか1項に記載の電源回路。
  6.  請求項1乃至5の何れか1項に記載の電源回路と、
     光ファイバーと、
     入力側の前記光ファイバーを伝搬してきた光信号を増幅して出力側の前記光ファイバーへ出力する、互いに直列に接続された複数の光増幅器と、
     前記光増幅器に含まれる前記負荷であるレーザーモジュール
    を備えた光海底ケーブル。
PCT/JP2022/000319 2021-01-21 2022-01-07 電源回路及び光海底ケーブル WO2022158311A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/272,565 US20240072909A1 (en) 2021-01-21 2022-01-07 Power source circuit and ocean-floor optical cable
JP2022576598A JP7521610B2 (ja) 2021-01-21 2022-01-07 電源回路及び光海底ケーブル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021008076 2021-01-21
JP2021-008076 2021-01-21

Publications (1)

Publication Number Publication Date
WO2022158311A1 true WO2022158311A1 (ja) 2022-07-28

Family

ID=82548873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000319 WO2022158311A1 (ja) 2021-01-21 2022-01-07 電源回路及び光海底ケーブル

Country Status (3)

Country Link
US (1) US20240072909A1 (ja)
JP (1) JP7521610B2 (ja)
WO (1) WO2022158311A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07154310A (ja) * 1993-12-01 1995-06-16 Nippon Denki Transmission Eng Kk 中継器の給電方式
JP2019160755A (ja) * 2018-03-16 2019-09-19 パナソニックIpマネジメント株式会社 照明光通信装置
JP2020078197A (ja) * 2018-11-08 2020-05-21 Necプラットフォームズ株式会社 給電システム、給電方法及びプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278935A (ja) 1999-03-19 2000-10-06 Toshiba Corp 電源装置
JP6048666B2 (ja) 2013-03-05 2016-12-21 横河電機株式会社 圧電トランス式電源装置
US20210379709A1 (en) 2018-10-29 2021-12-09 Makino Milling Machine Co., Ltd. Machining center and workpiece processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07154310A (ja) * 1993-12-01 1995-06-16 Nippon Denki Transmission Eng Kk 中継器の給電方式
JP2019160755A (ja) * 2018-03-16 2019-09-19 パナソニックIpマネジメント株式会社 照明光通信装置
JP2020078197A (ja) * 2018-11-08 2020-05-21 Necプラットフォームズ株式会社 給電システム、給電方法及びプログラム

Also Published As

Publication number Publication date
JP7521610B2 (ja) 2024-07-24
JPWO2022158311A1 (ja) 2022-07-28
US20240072909A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
US9769888B2 (en) Driving circuit and driving method for a plurality of LED strings
US8878445B2 (en) Light-emitting element driving device
US8749213B2 (en) Mixed mode control for switching regulator with fast transient responses
KR100940042B1 (ko) Led 조명 구동 장치
US8502459B2 (en) Driver IC for electrical load and driving method thereof
US8686701B2 (en) Active wire compensation circuit and controller with the same
WO2006018923A1 (ja) 電源装置
US8989598B2 (en) Power-saving driver circuit for providing a bias current or driving a current-driven load
US9176512B2 (en) Multi-current source and method for regulating current
EP3557768B1 (en) Current-based feedback control for voltage regulators
US11038420B2 (en) Charge pump transient response optimization by controlled flying capacitor discharge during bypass to switching mode transition
US10211728B2 (en) Current-sharing circuit for DC-DC converters
EP3432481A1 (en) Submarine device, submarine cable system, method for controlling submarine device, and storage medium for storing program for submarine device
US5861738A (en) DC to DC converter with a single-fault tolerant clamp
WO2022158311A1 (ja) 電源回路及び光海底ケーブル
US20160291621A1 (en) Ladder Circuitry for Multiple Load Regulation
US7157809B2 (en) Method and circuits for inductive DC converters with current regulated output
US6229291B1 (en) Current sharing control system of power supply and output voltage sensing circuit
US20200293075A1 (en) Voltage Regulator Circuit For Following A Voltage Source
US7430130B2 (en) D-optimized switching converter
KR20200105202A (ko) 벅 컨버터의 플라잉 캐패시터의 전압 제어장치
US20120049954A1 (en) Amplification circuit with low quiescent current
JP4467395B2 (ja) 電源装置
JP2000286755A (ja) 光増幅装置
KR101378098B1 (ko) 전류 감지 및 적응적 기준 전압 제어를 이용한 전류 공급 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576598

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18272565

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742435

Country of ref document: EP

Kind code of ref document: A1