WO2022158000A1 - Impeller, motor, and vacuum cleaner - Google Patents

Impeller, motor, and vacuum cleaner Download PDF

Info

Publication number
WO2022158000A1
WO2022158000A1 PCT/JP2021/021978 JP2021021978W WO2022158000A1 WO 2022158000 A1 WO2022158000 A1 WO 2022158000A1 JP 2021021978 W JP2021021978 W JP 2021021978W WO 2022158000 A1 WO2022158000 A1 WO 2022158000A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
axial
blade
centrifugal
circumferential direction
Prior art date
Application number
PCT/JP2021/021978
Other languages
French (fr)
Japanese (ja)
Inventor
心路 竹本
哲 梶川
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2022158000A1 publication Critical patent/WO2022158000A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes

Definitions

  • the present invention relates to impellers, motors and vacuum cleaners.
  • Patent Literature 1 describes a fin that sends air outward from the center side by centrifugal force.
  • the electric motor may be required to flow the air sent radially outward by the fins as described above along the axial direction of the electric motor.
  • the fins are required to efficiently flow air along the axial direction.
  • an object of the present invention to provide an impeller capable of improving the efficiency of blowing air in the axial direction, a motor provided with such an impeller, and a vacuum cleaner provided with such a motor.
  • One aspect of the impeller of the present invention is an impeller that rotates in the circumferential direction around a central axis that extends in the axial direction, and that includes a plurality of first blades arranged along the circumferential direction.
  • Each of the plurality of first blades has a centrifugal blade portion having a centrifugal blade surface facing the circumferential direction and an axial blade portion having an axial blade surface facing the axial direction, and is connected to the radially outer side of the centrifugal blade portion. and have
  • the centrifugal blade surface is a curved surface that curves to one side in the circumferential direction from the radially inner side to the radially outer side.
  • the radially inner end portion of the centrifugal blade surface is inclined with respect to the radial direction so as to be located on the other side in the circumferential direction toward the radially outer side.
  • One aspect of the motor of the present invention includes the impeller described above and a motor main body that rotates the impeller.
  • One aspect of the vacuum cleaner of the present invention includes the motor described above.
  • the efficiency of blowing air in the axial direction by the impeller can be improved.
  • FIG. 1 is a cross-sectional view showing the motor of the first embodiment.
  • FIG. 2 is a perspective view showing part of the impeller of the first embodiment.
  • FIG. 3 is a top view of part of the impeller of the first embodiment.
  • FIG. 4 is a cross-sectional view showing the axial flow blade portion of the first embodiment.
  • FIG. 5 is a top view of part of the impeller of the second embodiment.
  • FIG. 6 is a perspective view showing part of the impeller of the third embodiment.
  • FIG. 7 is a perspective view showing the vacuum cleaner of one embodiment.
  • a motor 10 of the present embodiment shown in FIG. 1 is an inner rotor type motor. As shown in FIG. 1 , the motor 10 includes a motor main body 20, an impeller 30, a motor housing 40, an impeller housing 50, and a flow path member 60.
  • the motor main body 20 rotates the impeller 30 around the central axis J.
  • the central axis J is a virtual line shown in FIG. In each figure, the direction in which the central axis J extends is indicated by the Z-axis. In the following description, the direction in which the central axis J extends, that is, the direction parallel to the Z axis, is simply referred to as the "axial direction,” and the radial direction about the central axis J is simply referred to as the "radial direction.” is simply referred to as the "circumferential direction".
  • the arrow ⁇ appropriately shown in the figure indicates the circumferential direction.
  • the side proceeding clockwise about the central axis J as viewed from above, that is, the side to which the arrow ⁇ is directed (+ ⁇ side) is referred to as "one side in the circumferential direction”.
  • the side proceeding counterclockwise about the center axis J as viewed from above, that is, the side opposite to the side to which the arrow ⁇ is directed ( ⁇ side) is called the “other side in the circumferential direction”.
  • the side of the axis where the arrow of the Z-axis points (+Z side) is referred to as the "upper side", and the side of the axis opposite to the side where the arrow of the Z-axis points (-Z side). Call it "bottom”.
  • the upper side corresponds to "one side in the axial direction” and the lower side corresponds to "the other side in the axial direction”.
  • the upper side and the lower side are simply names for explaining the relative positional relationship of each part, and the actual arrangement relationship etc. may be an arrangement relationship etc. other than the arrangement relationship etc. indicated by these names. .
  • the motor main body 20 has a rotor 21 and a stator 22 .
  • the rotor 21 is rotatable around a central axis J extending in the axial direction.
  • the rotor 21 has a shaft 21a and a rotor body 21b.
  • the shaft 21a has a columnar shape extending in the axial direction around the central axis J.
  • the rotor body 21b is fixed to the outer peripheral surface of the shaft 21a.
  • the rotor body 21b has a rotor core fixed to the shaft 21a and magnets held by the rotor core.
  • the stator 22 is arranged to face the rotor 21 with a gap in the radial direction.
  • the stator 22 is positioned radially outside the rotor 21 .
  • the stator 22 has a stator core 22a, an insulator 22b, and a plurality of coils 22c.
  • the stator core 22a has an annular shape surrounding the rotor body 21b.
  • a plurality of coils 22c are attached to stator core 22a via insulators 22b.
  • the motor housing 40 accommodates the motor body 20 inside.
  • the motor housing 40 has a motor housing body 41 and a bearing holder 42 .
  • the motor housing main body 41 has a cylindrical shape with a bottom portion on the lower side and an opening on the upper side.
  • a stator 22 is fixed to the inner peripheral surface of the motor housing main body 41 .
  • a bearing 43 that rotatably supports the shaft 21 a is held at the bottom of the motor housing main body 41 .
  • the bearing holder 42 is attached to the upper opening of the motor housing main body 41 .
  • the bearing holder 42 has a through hole 42a that passes through the bearing holder 42 in the axial direction.
  • the shaft 21a is axially passed through the through hole 42a. An upper end of the shaft 21a protrudes above the motor housing 40 through the through hole 42a.
  • a bearing 44 that rotatably supports the shaft 21a is held in the through hole 42a.
  • the bearings 43 and 44 are ball bearings.
  • the impeller housing 50 is an annular member surrounding the central axis J.
  • the impeller housing 50 is positioned above the motor housing 40 .
  • the impeller housing 50 accommodates the impeller 30 inside.
  • the impeller housing 50 has an impeller housing body 51 and an intake guide 52 .
  • the impeller housing body 51 has an annular shape surrounding the impeller 30 .
  • the impeller housing main body 51 has a lid wall portion 51a and a peripheral wall portion 51b.
  • the lid wall portion 51 a is positioned above the radially outer portion of the impeller 30 .
  • the lid wall portion 51a has an annular shape surrounding the central axis J.
  • the peripheral wall portion 51b has a tubular shape that protrudes downward from the radial outer peripheral edge portion of the lid wall portion 51a.
  • the peripheral wall portion 51b is positioned radially outward of the impeller 30 .
  • the air intake guide 52 has a cylindrical shape that protrudes upward from the radially inner peripheral edge of the impeller housing main body 51 .
  • the intake guide 52 opens upward.
  • An upper opening of the intake guide 52 is an intake port 50a.
  • the flow path member 60 is a tubular member that surrounds the motor housing 40 .
  • the flow channel member 60 has a flow channel member body 61 and a plurality of stationary blades 62 .
  • the flow path member main body 61 is located radially outside the motor housing 40 .
  • the flow path member main body 61 has a cylindrical shape surrounding the motor housing 40 .
  • An upper end portion of the flow path member main body 61 is fixed to a lower end portion of the peripheral wall portion 51 b of the impeller housing main body 51 .
  • the plurality of stationary blades 62 are positioned between the inner peripheral surface of the flow path member main body 61 and the outer peripheral surface of the motor housing 40 . Although not shown, the plurality of stationary blades 62 are arranged at intervals along the circumferential direction. The plurality of stationary vanes 62 protrude radially inward from the inner peripheral surface of the flow path member main body 61 .
  • the motor housing 40, the impeller housing 50, and the flow path member 60 constitute an exhaust flow path 70 extending in the axial direction.
  • the exhaust flow path 70 extends downward from the radially outer side of the impeller 30 .
  • the exhaust flow path 70 includes a first flow path portion 71 provided radially between the peripheral wall portion 51b and the impeller 30, and a first flow path portion 71 provided radially between the motor housing 40 and the flow path member main body 61. 2 channel portion 72 .
  • the second channel portion 72 is connected to the lower side of the first channel portion 71 .
  • a lower end portion of the second flow path portion 72 is an exhaust port 73 that opens downward.
  • a plurality of stationary blades 62 are arranged in the second flow path portion 72 .
  • the impeller 30 is rotated in the circumferential direction about the axially extending central axis J by the motor main body 20 .
  • the impeller 30 is rotated in one circumferential direction (+ ⁇ direction).
  • the impeller 30 is positioned above the bearing holder 42 .
  • the impeller 30 is fixed to a portion of the shaft 21a that protrudes above the through hole 42a.
  • the impeller 30 includes a base portion 31 , a plurality of first blades 32 , a fixed portion 35 and a shroud 36 .
  • the base 31 is positioned above the bearing holder 42 .
  • the base 31 widens in the radial direction.
  • the base 31 has a plate-like shape with a plate surface facing the axial direction.
  • the base 31 has an annular shape surrounding the central axis J.
  • a radially outer portion of the base portion 31 is positioned axially between the cover wall portion 51 a and the bearing holder 42 .
  • the radial position of the radial outer edge of the base portion 31 is, for example, the same as the radial position of the outer peripheral surface of the motor housing 40 .
  • a radially inner portion of the base portion 31 is exposed to the upper side of the motor 10 through the intake port 50a.
  • the fixed portion 35 protrudes downward from the radial inner edge of the base portion 31 .
  • the fixed portion 35 has a cylindrical shape surrounding the shaft 21a.
  • the fixed portion 35 is fixed to the shaft 21a by, for example, press fitting.
  • a lower end portion of the fixed portion 35 is inserted into the through hole 42a.
  • the lower end of the fixed portion 35 is in contact with the inner ring of the bearing 44 from above.
  • the plurality of first blades 32 are arranged along the circumferential direction. More specifically, the plurality of first blades 32 are arranged at regular intervals along the circumferential direction. In this embodiment, the plurality of first blades 32 protrude upward from the base portion 31 .
  • the plurality of first blades 32 are provided on the radially outer portion of the base portion 31 .
  • Each of the plurality of first blades 32 has a centrifugal blade portion 33 and an axial blade portion 34 .
  • the centrifugal blade portion 33 extends radially outward from the radially inner side.
  • the lower end of the centrifugal impeller 33 is connected to the base 31 .
  • the radially outer end of the centrifugal vane portion 33 is positioned at the radially outer peripheral edge portion of the base portion 31 .
  • the radially inner end of the centrifugal vane portion 33 overlaps the intake port 50a when viewed in the axial direction.
  • a radially inner end of the centrifugal blade portion 33 is exposed to the upper side of the motor 10 through the intake port 50a.
  • the centrifugal blade portion 33 extends from the radially inner side toward the radially outer side while being inclined to the other circumferential side (- ⁇ side) with respect to the radial direction.
  • the radially outer end portion of the centrifugal blade portion 33 is located on the other circumferential side of the radially inner end portion of the centrifugal blade portion 33 .
  • the centrifugal blade portion 33 has a curved shape protruding toward the other side in the circumferential direction when viewed in the axial direction.
  • the centrifugal blade portion 33 is curved from the radially inner side toward the radially outer side in the circumferential direction (+ ⁇ side).
  • the centrifugal blade portion 33 has a centrifugal blade surface 33a facing the circumferential direction.
  • the centrifugal impeller surface 33a is a surface of the centrifugal impeller portion 33 on one circumferential side (+ ⁇ side). That is, the centrifugal blade surface 33a is a surface facing one side in the circumferential direction.
  • the centrifugal blade surface 33a is a surface along the axial direction.
  • the centrifugal blade surface 33a is, for example, parallel to the axial direction.
  • the centrifugal blade surface 33a extends from the radially inner side to the radially outer side while being inclined to the other circumferential side ( ⁇ side) with respect to the radial direction.
  • the radially outer end of the centrifugal blade surface 33a is located on the other circumferential side of the radially inner end of the centrifugal blade surface 33a.
  • the centrifugal blade surface 33a has a curved shape protruding toward the other side in the circumferential direction when viewed in the axial direction.
  • the centrifugal blade surface 33a is a curved surface that curves from the radially inner side toward the radially outer side in the circumferential direction (+ ⁇ side).
  • the radially inner end of the centrifugal blade surface 33a is inclined toward the radially outer side in the circumferential direction (- ⁇ side).
  • the radially outer end of the centrifugal blade surface 33a is inclined with respect to the radial direction so as to be located on the other side in the circumferential direction toward the radially outer side.
  • the radially inner end 33b of the centrifugal blade surface 33a has an inclination angle ⁇ 1 with respect to the radial direction that is greater than the radially inclined angle ⁇ 2 at the radially outer end 33c of the centrifugal blade surface 33a.
  • the angle of inclination of the centrifugal blade surface 33a with respect to the radial direction decreases radially outward.
  • the axial vane portion 34 is connected to the radially outer side of the centrifugal vane portion 33 .
  • the axial vane portion 34 protrudes radially outward from the base portion 31 .
  • the entire axial flow vane portion 34 is positioned radially outward of the base portion 31 .
  • the axial flow blade portion 34 protrudes from the centrifugal blade portion 33 to the other side ( ⁇ side) in the circumferential direction.
  • the radial dimension of the axial vane portion 34 is smaller than the radial dimension of the centrifugal vane portion 33 .
  • the radial dimension of the centrifugal vanes 33 is larger than the radial dimension of the axial vanes 34 .
  • the axial vane portion 34 protrudes into the upper end portion of the exhaust passage 70 .
  • the axial vane portion 34 has an axial vane surface 34a facing the axial direction.
  • the axial flow blade surface 34a is circumferentially inclined with respect to the axial direction.
  • the axial flow blade surface 34a faces downward and obliquely to one side in the circumferential direction (+ ⁇ side).
  • the axial flow blade surface 34a is positioned downward toward the other side ( ⁇ side) in the circumferential direction.
  • the inclination angle ⁇ 3 of the axial flow blade surface 34a with respect to the axial direction increases radially outward.
  • the radial inner end of the axial flow impeller surface 34a is connected to the radial outer end of the centrifugal impeller surface 33a.
  • the shroud 36 is positioned above the first blade 32.
  • the shroud 36 has an annular portion 36a and a cylindrical portion 36b.
  • the annular portion 36a has an annular shape surrounding the central axis J.
  • the annular portion 36a has a plate shape with a plate surface facing the axial direction.
  • the upper end portions of the radially outer portions of the plurality of first blades 32 are connected to the lower surface of the annular portion 36a.
  • the plurality of first blades 32 connect the base portion 31 and the annular portion 36a.
  • a space between the base portion 31 and the annular portion 36 a in the axial direction is divided into a plurality of portions along the circumferential direction by the plurality of first blades 32 .
  • the annular portion 36a is positioned between the cover wall portion 51a and the bearing holder 42 in the axial direction.
  • the cylindrical portion 36b protrudes upward from the radial inner edge of the annular portion 36a.
  • the cylindrical portion 36b has a cylindrical shape surrounding the central axis J. As shown in FIG.
  • the cylindrical portion 36b is open upward.
  • An upper opening of the cylindrical portion 36b is connected to the intake port 50a.
  • the cylindrical portion 36b is located radially inside the lid wall portion 51a.
  • each of the plurality of first blades 32 has a centrifugal blade portion 33 and an axial blade portion 34 connected to the radially outer side of the centrifugal blade portion 33 . Therefore, as indicated by the arrow in FIG. 2, the air sent radially outward by the centrifugal impeller 33 can be sent axially by the axial impeller 34 connected to the radially outer side of the centrifugal impeller 33. Accordingly, by rotating the impeller 30 by the motor body 20, air can be sent in the axial direction.
  • the centrifugal impeller surface 33a of the centrifugal impeller portion 33 is a curved surface that curves from the radially inner side to the radially outer side in the circumferential direction (+ ⁇ side).
  • the radially inner end portion of the centrifugal blade surface 33a is inclined toward the radially outer side toward the other circumferential side ( ⁇ side). Therefore, the inclination angle of the centrifugal vane surface 33a with respect to the radial direction becomes smaller toward the radially outer side.
  • the smaller the inclination angle of the centrifugal blade surface 33a with respect to the radial direction the greater the resistance that the centrifugal blade surface 33a receives from the air.
  • the resistance that the centrifugal blade surface 33a receives from the air increases radially outward.
  • the centrifugal vane surface 33a becomes more difficult to send air radially outward in a portion located radially outward. Therefore, the air that has flowed from the radially outer end of the centrifugal vane surface 33a to the axial vane surface 34a of the axial vane portion 34 is less likely to flow radially outward, and is more likely to flow axially due to the axial vane surface 34a. Become. Therefore, it is possible to suppress the direction of the air sent in the axial direction by the axial flow blade surface 34a from tilting radially outward.
  • the air can be preferably sent in the axial direction by the first blades 32 . Therefore, the air sent radially outward from the impeller 30 can be suitably flowed in the axial direction without being redirected by another member such as the wall of the exhaust passage 70 . Therefore, the pressure loss caused in the air sent by the impeller 30 can be reduced compared to the case where the air sent radially outward from the impeller 30 can change its flow direction by another member. Therefore, the efficiency of blowing air in the axial direction by the impeller 30 can be improved.
  • the air sucked into the impeller 30 through the intake port 50a can be efficiently flowed through the exhaust passage 70 and discharged downward through the exhaust port 73 .
  • the motor body 20 can also be cooled by the air flowing through the exhaust passage 70 . Therefore, the cooling efficiency of the motor main body 20 can also be improved.
  • the motor 10 since it is easy to cool the entire axial direction of the motor main body portion 20 with a single impeller 30, the motor 10 is less likely to cool than, for example, a case where a plurality of impellers are provided to cool the entire axial direction of the motor main portion 20. increase in the number of parts can be suppressed. In addition, it is possible to suppress an increase in the size of the motor 10 as a whole.
  • the axial flow blade surface 34a is inclined in the circumferential direction with respect to the axial direction.
  • a circumferential inclination angle ⁇ 3 of the axial flow blade surface 34a with respect to the axial direction increases radially outward.
  • the larger the inclination angle ⁇ 3 of the axial flow blade surface 34a with respect to the axial direction the smaller the resistance that the axial flow blade surface 34a receives from the air. That is, the resistance that the axial flow blade surface 34a receives from the air decreases toward the radially outer side.
  • the centrifugal vane surface 33a increases radially outwardly the resistance received by the air from the centrifugal vane surface 33a, while decreasing the radially outwardly exerted resistance received by the axial vane surface 34a from the air. It is possible to easily flow the air from the axial flow blade surface 34a to the axial flow blade surface 34a, and the axial flow blade surface 34a makes it easier to flow the air in the axial direction. Therefore, the efficiency of blowing air in the axial direction by the impeller 30 can be further improved.
  • the centrifugal blade surface 33a is a surface along the axial direction. Therefore, air can be easily sucked from above in the axial direction between the centrifugal blade portions 33 in the circumferential direction. As a result, the amount of air sucked into the impeller 30 by the centrifugal vanes 33 can be increased. Therefore, the amount of air that can be sent axially by the impeller 30 can be increased. Therefore, the efficiency of blowing air in the axial direction by the impeller 30 can be further improved.
  • the radial dimension of the centrifugal vane portion 33 is larger than the radial dimension of the axial vane portion 34 . Therefore, the radial dimension of the centrifugal blade portion 33 can be made relatively large. As a result, the amount of air sucked into the impeller 30 by the centrifugal vanes 33 can be increased. Thus, a greater amount of air can be pumped axially by the impeller 30 . Therefore, the efficiency of blowing air in the axial direction by the impeller 30 can be further improved. In addition, the radial dimension of the axial flow blade portion 34 can be made relatively small. Therefore, it is possible to prevent the impeller 30 from increasing in size in the radial direction.
  • the direction of flow of a relatively large amount of air sucked by the centrifugal vanes 33 is changed to the axial direction by the axial vanes 34, so that a relatively large amount of air can be preferably sucked in the axial direction. It is possible to make the impeller 30 compact in the radial direction while allowing the air to flow through.
  • the plurality of first blades 32 protrude upward from the base portion 31 .
  • the axial flow blade surface 34a faces downward. Therefore, the air sucked from above between the centrifugal blade portions 33 can be flowed downward by the axial flow blade surface 34a.
  • the impeller 30 on the upper side of the motor main body 20 as in the present embodiment, the air sucked from the upper side flows downward, and the entire axial direction of the motor main body 20 is preferably Allow to cool.
  • the axial vane portion 34 protrudes radially outward from the base portion 31 . Therefore, the base portion 31 does not block the air sent downward by the axial flow blade portion 34 . As a result, the impeller 30 can more preferably send the air in the axial direction. Therefore, the efficiency of blowing air in the axial direction by the impeller 30 can be further improved.
  • the air sent downward by the axial vanes 34 is preferably distributed in the exhaust passage 70 . can flow downwards.
  • the base portion 231 of the impeller 230 of this embodiment has a concave portion 231a that is recessed radially inward from the radial outer edge.
  • the interior of the recessed portion 231a has a substantially quadrangular shape that curves and extends along the circumferential direction when viewed in the axial direction.
  • a plurality of recesses 231a are provided at intervals in the circumferential direction.
  • a recess 231 a is provided for each first blade 232 .
  • Each of the plurality of first blades 232 has a centrifugal blade portion 233 and an axial blade portion 234.
  • the radially outer end of the centrifugal blade portion 233 is positioned at the radially inner edge 231b of the recess 231a.
  • the radially outer end of the axial flow vane portion 234 is located at the same radial position as the radially outer edge of the base portion 231 . Therefore, the axial vane portion 234 does not protrude radially outward from the base portion 231 . As a result, it is possible to prevent the axial flow blade portion 234 from colliding with other components and being damaged.
  • the radially outer end of the axial flow blade portion 234 may be positioned radially inward of the radially outer edge of the base portion 231 .
  • the axial flow blade portion 234 overlaps the interior of the recessed portion 231a when viewed in the axial direction. Therefore, the air sent downward by the axial flow vane portion 234 can be suitably flowed downward from the base portion 231 via the recessed portion 231a.
  • the concave portion 231a in this way, the axial vane portion 234 does not protrude radially outward from the base portion 231, and the air sent downward by the axial vane portion 234 is prevented from being blocked by the base portion 231.
  • Other configurations of the impeller 230 are similar to other configurations of the impeller 30 of the first embodiment.
  • the axial blade portions 334 are arranged in the other circumferential direction with respect to the centrifugal blade portion 33 than the axial blade portions 34 of the first embodiment. side ( ⁇ side).
  • the circumferential dimension of the axial vane portion 334 is larger than the circumferential dimension of the axial vane portion 34 of the first embodiment.
  • the axial vane surface 334a of the axial vane portion 334 has a circumferential inclination angle ⁇ 3 with respect to the axial direction that is larger than that of the axial vane surface 34a of the first embodiment at the radially outer end.
  • Other configurations of the first blade 332 are the same as other configurations of the first blade 32 of the first embodiment.
  • the impeller 330 includes second blades 335 positioned between the axial flow blade portions 334 of the first blades 332 adjacent in the circumferential direction.
  • the second blade 335 is positioned at the center of the axial flow blade portions 334 adjacent to each other in the circumferential direction.
  • the second blade 335 is provided on the radial outer edge of the base 31 .
  • the second blade 335 has a blade surface 335a facing in the axial direction.
  • the shape of the second blade 335 is the same as the shape of the axial blade portion 334 .
  • the shape of the blade surface 335a is the same as the shape of the axial flow blade surface 334a.
  • the axial flow blade portion 334 and the second blade 335 that are adjacent in the circumferential direction partially overlap each other when viewed in the axial direction. More specifically, the end portion of the axial flow blade portion 334 on the other side in the circumferential direction ( ⁇ side) is positioned below the second blade 335 adjacent to the other side in the circumferential direction. The end portion of the second blade 335 on the other side in the circumferential direction is positioned below the axial flow blade portion 334 adjacent to the other side in the circumferential direction.
  • Other configurations of the impeller 330 are the same as the other configurations of the impeller 30 of the first embodiment.
  • the second blade 335 having the blade surface 335a can send air downward in the axial direction. Therefore, a greater amount of air can be sent axially by the impeller 330 . As a result, the efficiency of blowing air in the axial direction by the impeller 330 can be further improved.
  • the radially inner portion where the length of the entire circumference of the base portion 31 is relatively small no other blade portion is provided between the centrifugal blade portions 33 that are adjacent in the circumferential direction. narrowing can be suppressed. Therefore, it is possible to prevent air from passing easily between the centrifugal blade portions 33 .
  • the axial flow blade portion 334 and the second blade 335 partially overlap each other when viewed in the axial direction.
  • the static pressure of the air sent in the axial direction by the axial flow blade portion 334 and the second blades 335 can be increased. Therefore, a greater amount of air can be sent axially by the impeller 330 . As a result, the efficiency of blowing air in the axial direction by the impeller 330 can be further improved.
  • the cleaner 1000 of this embodiment is a stick-type cleaner.
  • a vacuum cleaner 1000 includes the motor 10 of the first embodiment described above. As described above, the motor 10 can flow the air sucked from the intake port 50 a in the axial direction and efficiently discharge it from the exhaust port 73 . Therefore, by using the motor 10 in the cleaner 1000, the suction force of the cleaner 1000 can be efficiently improved.
  • a motor equipped with the impeller 230 of the second embodiment may be mounted on the cleaner 1000, or a motor equipped with the impeller 330 of the third embodiment may be mounted on the cleaner 1000. good too.
  • a vacuum cleaner equipped with the motor of each embodiment may be a canister type vacuum cleaner.
  • the present invention is not limited to the above-described embodiments, and other configurations and other methods can be adopted within the scope of the technical idea of the present invention.
  • the number of first blades is not particularly limited as long as it is two or more.
  • the centrifugal blade surface is a curved surface that curves to one side in the circumferential direction from the radially inner side to the radially outer side, and the radially inner end portion extends in the radial direction toward the radially outer side. It may have any shape as long as it is slanted toward the other side.
  • the centrifugal impeller may have any shape as long as it has a centrifugal impeller surface.
  • the axial flow blade surface may have any shape as long as it faces the axial direction.
  • the inclination angle of the axial flow blade surface in the circumferential direction with respect to the axial direction may be the same throughout the radial direction.
  • the axial vane portion may have any shape as long as it has an axial vane surface.
  • An end portion of the axial flow blade portion on the other side in the axial direction may be connected to the base portion.
  • the axial vane surface may be arranged axially opposite the base.
  • the base does not have to be provided.
  • the impeller and at least a portion of the rotor of the motor body may be part of the same single member.
  • the first blade may be provided directly on the rotor.
  • the first blade may be configured to allow air to flow axially through a radial gap between the rotor and the stator of the motor main body.
  • the axial flow blade portion may be arranged, for example, at a position axially facing the radial gap between the rotor and the stator.
  • the impellers may be provided on both axial sides of the motor body.
  • the shaft 21a may be protruded below the motor housing 40, and another impeller may be attached to the protruding portion of the shaft 21a.
  • the other impeller may be an axial-flow impeller that causes air to flow downward, and the blades of the other impeller may be arranged below the exhaust port 73 so as to face each other. This makes it easier for the air to flow downward in the exhaust passage 70 , and makes it easier for the air to be discharged from the exhaust port 73 .
  • a motor including an impeller may be mounted on a device other than a vacuum cleaner, such as a dryer.
  • the impeller may be used only for cooling the motor.
  • the impeller may not be used for motor cooling.
  • the type of motor provided with the impeller is not particularly limited. It should be noted that each configuration and each method described in this specification can be appropriately combined within a mutually consistent range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

One aspect of an impeller of the present invention is an impeller that is rotated in the circumferential direction centered around the central axis extending in the axial direction and includes a plurality of first blades arranged circumferentially. Each of the plurality of the first blades includes: a centrifugal blade part that includes a centrifugal blade surface facing the circumferential direction; and an axial flow blade part that includes an axial flow blade surface facing the axial direction and is connected to the radially outer side of the centrifugal blade part. The centrifugal blade surface is a curved surface that is curved toward one side in the circumferential direction from the radially inner side to the radially outer side. The centrifugal blade surface has a radially inner end that is inclined toward the other side in the circumferential direction as it goes radially outward with respect to the radial direction.

Description

インペラ、モータ、および掃除機impeller, motor, and vacuum cleaner
 本発明は、インペラ、モータ、および掃除機
に関する。
The present invention relates to impellers, motors and vacuum cleaners.
 ロータにフィンが設けられた構造の電動機が知られている。例えば、特許文献1には、遠心力によって中心側から外側に向かって空気を送るフィンが記載されている。 An electric motor having a structure in which a rotor is provided with fins is known. For example, Patent Literature 1 describes a fin that sends air outward from the center side by centrifugal force.
特許第5297398号公報Japanese Patent No. 5297398
 例えば電動機の冷却などを目的として、上記のようなフィンによって径方向外側に送られる空気を、電動機の軸方向に沿って流すことが求められる場合がある。このような場合において、フィンによって、軸方向に沿って効率的に空気を流せることが求められていた。 For example, for the purpose of cooling the electric motor, it may be required to flow the air sent radially outward by the fins as described above along the axial direction of the electric motor. In such a case, the fins are required to efficiently flow air along the axial direction.
 本発明は、上記事情に鑑みて、軸方向への送風効率を向上できるインペラ、そのようなインペラを備えるモータ、およびそのようなモータを備える掃除機を提供することを目的の一つとする。 SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide an impeller capable of improving the efficiency of blowing air in the axial direction, a motor provided with such an impeller, and a vacuum cleaner provided with such a motor.
 本発明のインペラの一つの態様は、軸方向に延びる中心軸を中心とする周方向に回転させられるインペラであって、周方向に沿って配置された複数の第1羽根を備える。前記複数の第1羽根のそれぞれは、周方向を向く遠心羽根面を有する遠心羽根部と、軸方向を向く軸流羽根面を有し、前記遠心羽根部の径方向外側に繋がる軸流羽根部と、を有する。前記遠心羽根面は、径方向内側から径方向外側に向かって周方向一方側に湾曲する湾曲面である。前記遠心羽根面の径方向内側の端部は、径方向に対して、径方向外側に向かうに従って周方向他方側に位置する向きに傾斜している。 One aspect of the impeller of the present invention is an impeller that rotates in the circumferential direction around a central axis that extends in the axial direction, and that includes a plurality of first blades arranged along the circumferential direction. Each of the plurality of first blades has a centrifugal blade portion having a centrifugal blade surface facing the circumferential direction and an axial blade portion having an axial blade surface facing the axial direction, and is connected to the radially outer side of the centrifugal blade portion. and have The centrifugal blade surface is a curved surface that curves to one side in the circumferential direction from the radially inner side to the radially outer side. The radially inner end portion of the centrifugal blade surface is inclined with respect to the radial direction so as to be located on the other side in the circumferential direction toward the radially outer side.
 本発明のモータの一つの態様は、上記のインペラと、前記インペラを回転させるモータ本体部と、を備える。 One aspect of the motor of the present invention includes the impeller described above and a motor main body that rotates the impeller.
 本発明の掃除機の一つの態様は、上記のモータを備える。 One aspect of the vacuum cleaner of the present invention includes the motor described above.
 本発明の一つの態様によれば、インペラによる軸方向への送風効率を向上できる。 According to one aspect of the present invention, the efficiency of blowing air in the axial direction by the impeller can be improved.
図1は、第1実施形態のモータを示す断面図である。FIG. 1 is a cross-sectional view showing the motor of the first embodiment. 図2は、第1実施形態のインペラの一部を示す斜視図である。FIG. 2 is a perspective view showing part of the impeller of the first embodiment. 図3は、第1実施形態のインペラの一部を上側から見た図である。FIG. 3 is a top view of part of the impeller of the first embodiment. 図4は、第1実施形態の軸流羽根部を示す断面図である。FIG. 4 is a cross-sectional view showing the axial flow blade portion of the first embodiment. 図5は、第2実施形態のインペラの一部を上側から見た図である。FIG. 5 is a top view of part of the impeller of the second embodiment. 図6は、第3実施形態のインペラの一部を示す斜視図である。FIG. 6 is a perspective view showing part of the impeller of the third embodiment. 図7は、一実施形態の掃除機を示す斜視図である。FIG. 7 is a perspective view showing the vacuum cleaner of one embodiment.
[モータの実施形態]
<第1実施形態>
 図1に示す本実施形態のモータ10は、インナーロータ型のモータである。図1に示すように、モータ10は、モータ本体部20と、インペラ30と、モータハウジング40と、インペラハウジング50と、流路部材60と、を備える。
[Motor embodiment]
<First embodiment>
A motor 10 of the present embodiment shown in FIG. 1 is an inner rotor type motor. As shown in FIG. 1 , the motor 10 includes a motor main body 20, an impeller 30, a motor housing 40, an impeller housing 50, and a flow path member 60.
 モータ本体部20は、インペラ30を中心軸J回りに回転させる。中心軸Jは、図1に示される仮想線である。各図においては、中心軸Jが延びる方向をZ軸で示している。以下の説明においては、中心軸Jが延びる方向、つまりZ軸と平行な方向を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向を単に「周方向」と呼ぶ。 The motor main body 20 rotates the impeller 30 around the central axis J. The central axis J is a virtual line shown in FIG. In each figure, the direction in which the central axis J extends is indicated by the Z-axis. In the following description, the direction in which the central axis J extends, that is, the direction parallel to the Z axis, is simply referred to as the "axial direction," and the radial direction about the central axis J is simply referred to as the "radial direction." is simply referred to as the "circumferential direction".
 適宜図に示す矢印θは、周方向を示している。以下の説明においては、周方向のうち上側から見て中心軸Jを中心として時計回りに進む側、つまり矢印θが向く側(+θ側)を「周方向一方側」と呼び、周方向のうち上側から見て中心軸Jを中心として反時計回りに進む側、すなわち矢印θが向く側と逆側(-θ側)を「周方向他方側」と呼ぶ。 The arrow θ appropriately shown in the figure indicates the circumferential direction. In the following description, of the circumferential direction, the side proceeding clockwise about the central axis J as viewed from above, that is, the side to which the arrow θ is directed (+θ side) is referred to as "one side in the circumferential direction". The side proceeding counterclockwise about the center axis J as viewed from above, that is, the side opposite to the side to which the arrow θ is directed (−θ side) is called the “other side in the circumferential direction”.
 また、以下の説明においては、軸方向のうちZ軸の矢印が向く側(+Z側)を「上側」と呼び、軸方向のうちZ軸の矢印が向く側と逆側(-Z側)を「下側」と呼ぶ。なお、本実施形態において、上側は「軸方向一方側」に相当し、下側は「軸方向他方側」に相当する。また、上側および下側とは、単に各部の相対位置関係を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。 In the following description, the side of the axis where the arrow of the Z-axis points (+Z side) is referred to as the "upper side", and the side of the axis opposite to the side where the arrow of the Z-axis points (-Z side). Call it "bottom". In this embodiment, the upper side corresponds to "one side in the axial direction" and the lower side corresponds to "the other side in the axial direction". Further, the upper side and the lower side are simply names for explaining the relative positional relationship of each part, and the actual arrangement relationship etc. may be an arrangement relationship etc. other than the arrangement relationship etc. indicated by these names. .
 モータ本体部20は、ロータ21と、ステータ22と、を有する。ロータ21は、軸方向に延びる中心軸Jを中心として回転可能である。ロータ21は、シャフト21aと、ロータ本体21bと、を有する。シャフト21aは、中心軸Jを中心として軸方向に延びる円柱状である。ロータ本体21bは、シャフト21aの外周面に固定されている。図示は省略するが、ロータ本体21bは、シャフト21aに固定されたロータコアと、ロータコアに保持されたマグネットと、を有する。 The motor main body 20 has a rotor 21 and a stator 22 . The rotor 21 is rotatable around a central axis J extending in the axial direction. The rotor 21 has a shaft 21a and a rotor body 21b. The shaft 21a has a columnar shape extending in the axial direction around the central axis J. As shown in FIG. The rotor body 21b is fixed to the outer peripheral surface of the shaft 21a. Although not shown, the rotor body 21b has a rotor core fixed to the shaft 21a and magnets held by the rotor core.
 ステータ22は、ロータ21と径方向に隙間を介して対向して配置されている。ステータ22は、ロータ21の径方向外側に位置する。ステータ22は、ステータコア22aと、インシュレータ22bと、複数のコイル22cと、を有する。ステータコア22aは、ロータ本体21bを囲む環状である。複数のコイル22cは、インシュレータ22bを介してステータコア22aに取り付けられている。 The stator 22 is arranged to face the rotor 21 with a gap in the radial direction. The stator 22 is positioned radially outside the rotor 21 . The stator 22 has a stator core 22a, an insulator 22b, and a plurality of coils 22c. The stator core 22a has an annular shape surrounding the rotor body 21b. A plurality of coils 22c are attached to stator core 22a via insulators 22b.
 モータハウジング40は、モータ本体部20を内部に収容している。モータハウジング40は、モータハウジング本体41と、ベアリングホルダ42と、を有する。モータハウジング本体41は、下側に底部を有し、上側に開口する円筒状である。モータハウジング本体41の内周面には、ステータ22が固定されている。モータハウジング本体41の底部には、シャフト21aを回転可能に支持するベアリング43が保持されている。ベアリングホルダ42は、モータハウジング本体41の上側の開口部に取り付けられている。ベアリングホルダ42は、ベアリングホルダ42を軸方向に貫通する貫通孔42aを有する。貫通孔42aには、シャフト21aが軸方向に通されている。シャフト21aの上側の端部は、貫通孔42aを介して、モータハウジング40よりも上側に突出している。貫通孔42aには、シャフト21aを回転可能に支持するベアリング44が保持されている。本実施形態においてベアリング43およびベアリング44は、ボールベアリングである。 The motor housing 40 accommodates the motor body 20 inside. The motor housing 40 has a motor housing body 41 and a bearing holder 42 . The motor housing main body 41 has a cylindrical shape with a bottom portion on the lower side and an opening on the upper side. A stator 22 is fixed to the inner peripheral surface of the motor housing main body 41 . A bearing 43 that rotatably supports the shaft 21 a is held at the bottom of the motor housing main body 41 . The bearing holder 42 is attached to the upper opening of the motor housing main body 41 . The bearing holder 42 has a through hole 42a that passes through the bearing holder 42 in the axial direction. The shaft 21a is axially passed through the through hole 42a. An upper end of the shaft 21a protrudes above the motor housing 40 through the through hole 42a. A bearing 44 that rotatably supports the shaft 21a is held in the through hole 42a. In this embodiment, the bearings 43 and 44 are ball bearings.
 インペラハウジング50は、中心軸Jを囲む環状の部材である。インペラハウジング50は、モータハウジング40の上側に位置する。インペラハウジング50は、インペラ30を内部に収容している。インペラハウジング50は、インペラハウジング本体51と、吸気ガイド52と、を有する。 The impeller housing 50 is an annular member surrounding the central axis J. The impeller housing 50 is positioned above the motor housing 40 . The impeller housing 50 accommodates the impeller 30 inside. The impeller housing 50 has an impeller housing body 51 and an intake guide 52 .
 インペラハウジング本体51は、インペラ30を囲む環状である。インペラハウジング本体51は、蓋壁部51aと、周壁部51bと、を有する。蓋壁部51aは、インペラ30の径方向外側部分の上側に位置する。蓋壁部51aは、中心軸Jを囲む環状である。周壁部51bは、蓋壁部51aの径方向外周縁部から下側に突出する筒状である。周壁部51bは、インペラ30の径方向外側に位置する。吸気ガイド52は、インペラハウジング本体51の径方向内周縁部から上側に突出する筒状である。吸気ガイド52は、上側に開口している。吸気ガイド52の上側の開口は、吸気口50aである。 The impeller housing body 51 has an annular shape surrounding the impeller 30 . The impeller housing main body 51 has a lid wall portion 51a and a peripheral wall portion 51b. The lid wall portion 51 a is positioned above the radially outer portion of the impeller 30 . The lid wall portion 51a has an annular shape surrounding the central axis J. As shown in FIG. The peripheral wall portion 51b has a tubular shape that protrudes downward from the radial outer peripheral edge portion of the lid wall portion 51a. The peripheral wall portion 51b is positioned radially outward of the impeller 30 . The air intake guide 52 has a cylindrical shape that protrudes upward from the radially inner peripheral edge of the impeller housing main body 51 . The intake guide 52 opens upward. An upper opening of the intake guide 52 is an intake port 50a.
 流路部材60は、モータハウジング40を囲む筒状の部材である。流路部材60は、流路部材本体61と、複数の静翼62と、を有する。流路部材本体61は、モータハウジング40の径方向外側に位置する。流路部材本体61は、モータハウジング40を囲む円筒状である。流路部材本体61の上側の端部は、インペラハウジング本体51における周壁部51bの下端部に固定されている。 The flow path member 60 is a tubular member that surrounds the motor housing 40 . The flow channel member 60 has a flow channel member body 61 and a plurality of stationary blades 62 . The flow path member main body 61 is located radially outside the motor housing 40 . The flow path member main body 61 has a cylindrical shape surrounding the motor housing 40 . An upper end portion of the flow path member main body 61 is fixed to a lower end portion of the peripheral wall portion 51 b of the impeller housing main body 51 .
 複数の静翼62は、流路部材本体61の内周面とモータハウジング40の外周面との間に位置する。図示は省略するが、複数の静翼62は、周方向に沿って間隔を空けて配置されている。複数の静翼62は、流路部材本体61の内周面から径方向内側に突出している。 The plurality of stationary blades 62 are positioned between the inner peripheral surface of the flow path member main body 61 and the outer peripheral surface of the motor housing 40 . Although not shown, the plurality of stationary blades 62 are arranged at intervals along the circumferential direction. The plurality of stationary vanes 62 protrude radially inward from the inner peripheral surface of the flow path member main body 61 .
 モータハウジング40とインペラハウジング50と流路部材60とによって、軸方向に延びる排気流路70が構成されている。排気流路70は、インペラ30の径方向外側から下側に延びている。排気流路70は、周壁部51bとインペラ30との径方向の間に設けられた第1流路部71と、モータハウジング40と流路部材本体61との径方向の間に設けられた第2流路部72と、を有する。第2流路部72は、第1流路部71の下側に繋がっている。第2流路部72の下側の端部は、下側に開口する排気口73である。第2流路部72内には、複数の静翼62が配置されている。 The motor housing 40, the impeller housing 50, and the flow path member 60 constitute an exhaust flow path 70 extending in the axial direction. The exhaust flow path 70 extends downward from the radially outer side of the impeller 30 . The exhaust flow path 70 includes a first flow path portion 71 provided radially between the peripheral wall portion 51b and the impeller 30, and a first flow path portion 71 provided radially between the motor housing 40 and the flow path member main body 61. 2 channel portion 72 . The second channel portion 72 is connected to the lower side of the first channel portion 71 . A lower end portion of the second flow path portion 72 is an exhaust port 73 that opens downward. A plurality of stationary blades 62 are arranged in the second flow path portion 72 .
 インペラ30は、モータ本体部20によって、軸方向に延びる中心軸Jを中心とする周方向に回転させられる。本実施形態においてインペラ30は、周方向一方側向き(+θ向き)に回転させられる。インペラ30は、ベアリングホルダ42の上側に位置する。本実施形態においてインペラ30は、シャフト21aのうち貫通孔42aよりも上側に突出する部分に固定されている。インペラ30は、基部31と、複数の第1羽根32と、被固定部35と、シュラウド36と、を備える。 The impeller 30 is rotated in the circumferential direction about the axially extending central axis J by the motor main body 20 . In this embodiment, the impeller 30 is rotated in one circumferential direction (+θ direction). The impeller 30 is positioned above the bearing holder 42 . In this embodiment, the impeller 30 is fixed to a portion of the shaft 21a that protrudes above the through hole 42a. The impeller 30 includes a base portion 31 , a plurality of first blades 32 , a fixed portion 35 and a shroud 36 .
 基部31は、ベアリングホルダ42の上側に位置する。基部31は、径方向に広がっている。本実施形態において基部31は、板面が軸方向を向く板状である。基部31は、中心軸Jを囲む円環状である。基部31の径方向外側部分は、蓋壁部51aとベアリングホルダ42との軸方向の間に位置する。基部31の径方向外縁の径方向位置は、例えば、モータハウジング40の外周面の径方向位置と同じである。基部31の径方向内側部分は、吸気口50aを介してモータ10の上側に露出している。 The base 31 is positioned above the bearing holder 42 . The base 31 widens in the radial direction. In this embodiment, the base 31 has a plate-like shape with a plate surface facing the axial direction. The base 31 has an annular shape surrounding the central axis J. As shown in FIG. A radially outer portion of the base portion 31 is positioned axially between the cover wall portion 51 a and the bearing holder 42 . The radial position of the radial outer edge of the base portion 31 is, for example, the same as the radial position of the outer peripheral surface of the motor housing 40 . A radially inner portion of the base portion 31 is exposed to the upper side of the motor 10 through the intake port 50a.
 被固定部35は、基部31の径方向内縁から下側に突出している。被固定部35は、シャフト21aを囲む円筒状である。被固定部35は、例えば圧入により、シャフト21aに固定されている。被固定部35の下側の端部は、貫通孔42a内に挿入されている。被固定部35の下側の端部は、ベアリング44の内輪に上側から接触している。 The fixed portion 35 protrudes downward from the radial inner edge of the base portion 31 . The fixed portion 35 has a cylindrical shape surrounding the shaft 21a. The fixed portion 35 is fixed to the shaft 21a by, for example, press fitting. A lower end portion of the fixed portion 35 is inserted into the through hole 42a. The lower end of the fixed portion 35 is in contact with the inner ring of the bearing 44 from above.
 図2および図3に示すように、複数の第1羽根32は、周方向に沿って配置されている。より詳細には、複数の第1羽根32は、周方向に沿って一周に亘って等間隔に配置されている。本実施形態において複数の第1羽根32は、基部31から上側に突出している。複数の第1羽根32は、基部31のうち径方向外側部分に設けられている。複数の第1羽根32のそれぞれは、遠心羽根部33と、軸流羽根部34と、を有する。 As shown in FIGS. 2 and 3, the plurality of first blades 32 are arranged along the circumferential direction. More specifically, the plurality of first blades 32 are arranged at regular intervals along the circumferential direction. In this embodiment, the plurality of first blades 32 protrude upward from the base portion 31 . The plurality of first blades 32 are provided on the radially outer portion of the base portion 31 . Each of the plurality of first blades 32 has a centrifugal blade portion 33 and an axial blade portion 34 .
 遠心羽根部33は、径方向内側から径方向外側に向かって延びている。本実施形態において遠心羽根部33の下側の端部は、基部31に繋がっている。遠心羽根部33の径方向外側の端部は、基部31の径方向外周縁部に位置する。図1に示すように、遠心羽根部33の径方向内側の端部は、軸方向に見て、吸気口50aと重なっている。遠心羽根部33の径方向内側の端部は、吸気口50aを介してモータ10の上側に露出している。 The centrifugal blade portion 33 extends radially outward from the radially inner side. In this embodiment, the lower end of the centrifugal impeller 33 is connected to the base 31 . The radially outer end of the centrifugal vane portion 33 is positioned at the radially outer peripheral edge portion of the base portion 31 . As shown in FIG. 1, the radially inner end of the centrifugal vane portion 33 overlaps the intake port 50a when viewed in the axial direction. A radially inner end of the centrifugal blade portion 33 is exposed to the upper side of the motor 10 through the intake port 50a.
 図3に示すように、遠心羽根部33は、径方向内側から径方向外側に向かって、径方向に対して周方向他方側(-θ側)に傾いて延びている。遠心羽根部33の径方向外側の端部は、遠心羽根部33の径方向内側の端部よりも周方向他方側に位置する。遠心羽根部33は、軸方向に見て、周方向他方側に凸となる湾曲形状である。遠心羽根部33は、径方向内側から径方向外側に向かって周方向一方側(+θ側)に湾曲している。 As shown in FIG. 3, the centrifugal blade portion 33 extends from the radially inner side toward the radially outer side while being inclined to the other circumferential side (-θ side) with respect to the radial direction. The radially outer end portion of the centrifugal blade portion 33 is located on the other circumferential side of the radially inner end portion of the centrifugal blade portion 33 . The centrifugal blade portion 33 has a curved shape protruding toward the other side in the circumferential direction when viewed in the axial direction. The centrifugal blade portion 33 is curved from the radially inner side toward the radially outer side in the circumferential direction (+θ side).
 遠心羽根部33は、周方向を向く遠心羽根面33aを有する。本実施形態において遠心羽根面33aは、遠心羽根部33の周方向一方側(+θ側)の面である。つまり、遠心羽根面33aは、周方向一方側を向く面である。本実施形態において遠心羽根面33aは、軸方向に沿った面である。遠心羽根面33aは、例えば、軸方向と平行である。遠心羽根面33aは、径方向内側から径方向外側に向かって、径方向に対して周方向他方側(-θ側)に傾いて延びている。遠心羽根面33aの径方向外側の端部は、遠心羽根面33aの径方向内側の端部よりも周方向他方側に位置する。遠心羽根面33aは、軸方向に見て、周方向他方側に凸となる湾曲形状である。遠心羽根面33aは、径方向内側から径方向外側に向かって周方向一方側(+θ側)に湾曲する湾曲面である。 The centrifugal blade portion 33 has a centrifugal blade surface 33a facing the circumferential direction. In the present embodiment, the centrifugal impeller surface 33a is a surface of the centrifugal impeller portion 33 on one circumferential side (+θ side). That is, the centrifugal blade surface 33a is a surface facing one side in the circumferential direction. In this embodiment, the centrifugal blade surface 33a is a surface along the axial direction. The centrifugal blade surface 33a is, for example, parallel to the axial direction. The centrifugal blade surface 33a extends from the radially inner side to the radially outer side while being inclined to the other circumferential side (−θ side) with respect to the radial direction. The radially outer end of the centrifugal blade surface 33a is located on the other circumferential side of the radially inner end of the centrifugal blade surface 33a. The centrifugal blade surface 33a has a curved shape protruding toward the other side in the circumferential direction when viewed in the axial direction. The centrifugal blade surface 33a is a curved surface that curves from the radially inner side toward the radially outer side in the circumferential direction (+θ side).
 遠心羽根面33aの径方向内側の端部は、径方向に対して、径方向外側に向かうに従って周方向他方側(-θ側)に位置する向きに傾斜している。本実施形態において遠心羽根面33aの径方向外側の端部は、径方向に対して、径方向外側に向かうに従って周方向他方側に位置する向きに傾斜している。遠心羽根面33aの径方向内端33bにおける径方向に対する傾斜角度φ1は、遠心羽根面33aの径方向外端33cにおける径方向に対する傾斜角度φ2よりも大きい。遠心羽根面33aの径方向に対する傾斜角度は、径方向外側に向かうに従って小さくなっている。 The radially inner end of the centrifugal blade surface 33a is inclined toward the radially outer side in the circumferential direction (-θ side). In the present embodiment, the radially outer end of the centrifugal blade surface 33a is inclined with respect to the radial direction so as to be located on the other side in the circumferential direction toward the radially outer side. The radially inner end 33b of the centrifugal blade surface 33a has an inclination angle φ1 with respect to the radial direction that is greater than the radially inclined angle φ2 at the radially outer end 33c of the centrifugal blade surface 33a. The angle of inclination of the centrifugal blade surface 33a with respect to the radial direction decreases radially outward.
 軸流羽根部34は、遠心羽根部33の径方向外側に繋がっている。本実施形態において軸流羽根部34は、基部31よりも径方向外側に突出している。本実施形態では、軸流羽根部34の全体が、基部31よりも径方向外側に位置する。軸流羽根部34は、遠心羽根部33よりも周方向他方側(-θ側)に突出している。軸流羽根部34の径方向の寸法は、遠心羽根部33の径方向の寸法よりも小さい。言い換えれば、遠心羽根部33の径方向の寸法は、軸流羽根部34の径方向の寸法よりも大きい。図1に示すように、軸流羽根部34は、排気流路70の上側の端部内に突出している。 The axial vane portion 34 is connected to the radially outer side of the centrifugal vane portion 33 . In this embodiment, the axial vane portion 34 protrudes radially outward from the base portion 31 . In the present embodiment, the entire axial flow vane portion 34 is positioned radially outward of the base portion 31 . The axial flow blade portion 34 protrudes from the centrifugal blade portion 33 to the other side (−θ side) in the circumferential direction. The radial dimension of the axial vane portion 34 is smaller than the radial dimension of the centrifugal vane portion 33 . In other words, the radial dimension of the centrifugal vanes 33 is larger than the radial dimension of the axial vanes 34 . As shown in FIG. 1 , the axial vane portion 34 protrudes into the upper end portion of the exhaust passage 70 .
 図2および図4に示すように、軸流羽根部34は、軸方向を向く軸流羽根面34aを有する。軸流羽根面34aは、軸方向に対して周方向に傾斜している。軸流羽根面34aは、下側かつ斜め周方向一方側(+θ側)を向いている。軸流羽根面34aは、周方向他方側(-θ側)に向かうに従って下側に位置する。本実施形態において軸流羽根面34aの軸方向に対する傾斜角度φ3は、径方向外側に向かうに従って大きくなっている。軸流羽根面34aの径方向内側の端部は、遠心羽根面33aの径方向外側の端部に繋がっている。 As shown in FIGS. 2 and 4, the axial vane portion 34 has an axial vane surface 34a facing the axial direction. The axial flow blade surface 34a is circumferentially inclined with respect to the axial direction. The axial flow blade surface 34a faces downward and obliquely to one side in the circumferential direction (+θ side). The axial flow blade surface 34a is positioned downward toward the other side (−θ side) in the circumferential direction. In this embodiment, the inclination angle φ3 of the axial flow blade surface 34a with respect to the axial direction increases radially outward. The radial inner end of the axial flow impeller surface 34a is connected to the radial outer end of the centrifugal impeller surface 33a.
 図1に示すように、シュラウド36は、第1羽根32の上側に位置する。シュラウド36は、円環部36aと、円筒部36bと、を有する。円環部36aは、中心軸Jを囲む円環状である。円環部36aは、板面が軸方向を向く板状である。円環部36aの下側の面には、複数の第1羽根32における径方向外側部分の上端部が繋がっている。つまり、複数の第1羽根32によって基部31と円環部36aとが繋げられている。基部31と円環部36aとの軸方向の間の空間は、複数の第1羽根32によって周方向に沿って複数に分割されている。円環部36aは、蓋壁部51aとベアリングホルダ42との軸方向の間に位置する。円筒部36bは、円環部36aの径方向内縁から上側に突出している。円筒部36bは、中心軸Jを囲む円筒状である。円筒部36bは、上側に開口している。円筒部36bの上側の開口は、吸気口50aと繋がっている。円筒部36bは、蓋壁部51aの径方向内側に位置する。 As shown in FIG. 1, the shroud 36 is positioned above the first blade 32. The shroud 36 has an annular portion 36a and a cylindrical portion 36b. The annular portion 36a has an annular shape surrounding the central axis J. As shown in FIG. The annular portion 36a has a plate shape with a plate surface facing the axial direction. The upper end portions of the radially outer portions of the plurality of first blades 32 are connected to the lower surface of the annular portion 36a. In other words, the plurality of first blades 32 connect the base portion 31 and the annular portion 36a. A space between the base portion 31 and the annular portion 36 a in the axial direction is divided into a plurality of portions along the circumferential direction by the plurality of first blades 32 . The annular portion 36a is positioned between the cover wall portion 51a and the bearing holder 42 in the axial direction. The cylindrical portion 36b protrudes upward from the radial inner edge of the annular portion 36a. The cylindrical portion 36b has a cylindrical shape surrounding the central axis J. As shown in FIG. The cylindrical portion 36b is open upward. An upper opening of the cylindrical portion 36b is connected to the intake port 50a. The cylindrical portion 36b is located radially inside the lid wall portion 51a.
 図1に矢印で示すように、モータ本体部20によってインペラ30が周方向一方側向き(+θ向き)に回転させられると、吸気口50aから空気がインペラハウジング50内に流入する。インペラハウジング50内に流入した空気は、円筒部36bの上側の開口からインペラ30内に流入する。インペラ30内に流入した空気は、基部31と円環部36aとの軸方向の間の空間内を径方向外側に流れて、排気流路70内に流入する。排気流路70内に流入した空気は、下向きに流れて、排気口73からモータ10の外部に排出される。排気流路70内を流れる空気によって、モータ本体部20が冷却される。 As shown by the arrow in FIG. 1, when the motor main body 20 rotates the impeller 30 in one circumferential direction (+θ direction), air flows into the impeller housing 50 from the intake port 50a. The air that has flowed into the impeller housing 50 flows into the impeller 30 through the upper opening of the cylindrical portion 36b. The air that has flowed into the impeller 30 flows radially outward in the space between the base portion 31 and the annular portion 36 a in the axial direction, and flows into the exhaust passage 70 . The air that has flowed into the exhaust passage 70 flows downward and is discharged from the motor 10 through the exhaust port 73 . The air flowing through the exhaust passage 70 cools the motor body 20 .
 本実施形態によれば、複数の第1羽根32のそれぞれは、遠心羽根部33と、遠心羽根部33の径方向外側に繋がる軸流羽根部34と、を有する。そのため、図2において矢印で示すように、遠心羽根部33によって径方向外側に送られた空気を、遠心羽根部33の径方向外側に繋がる軸流羽根部34によって軸方向に送ることができる。これにより、インペラ30をモータ本体部20によって回転させることで、空気を軸方向に送ることができる。 According to this embodiment, each of the plurality of first blades 32 has a centrifugal blade portion 33 and an axial blade portion 34 connected to the radially outer side of the centrifugal blade portion 33 . Therefore, as indicated by the arrow in FIG. 2, the air sent radially outward by the centrifugal impeller 33 can be sent axially by the axial impeller 34 connected to the radially outer side of the centrifugal impeller 33. Accordingly, by rotating the impeller 30 by the motor body 20, air can be sent in the axial direction.
 また、本実施形態によれば、遠心羽根部33の遠心羽根面33aは、径方向内側から径方向外側に向かって周方向一方側(+θ側)に湾曲する湾曲面である。遠心羽根面33aの径方向内側の端部は、径方向に対して、径方向外側に向かうに従って周方向他方側(-θ側)に位置する向きに傾斜している。そのため、遠心羽根面33aの径方向に対する傾斜角度は、径方向外側に向かうに従って小さくなる。ここで、遠心羽根面33aの径方向に対する傾斜角度が小さいほど、遠心羽根面33aが空気から受ける抵抗は大きくなる。つまり、遠心羽根面33aが空気から受ける抵抗は、径方向外側に向かうに従って大きくなる。これにより、遠心羽根面33aは、径方向外側に位置する部分ほど、空気を径方向外側に送りにくくなる。したがって、遠心羽根面33aの径方向外側の端部から軸流羽根部34の軸流羽根面34aに流れた空気は、径方向外側に流れにくくなり、軸流羽根面34aによって軸方向に流れやすくなる。そのため、軸流羽根面34aによって軸方向に送られる空気の向きが径方向外側に傾いた向きとなることを抑制できる。これにより、第1羽根32によって空気を好適に軸方向に送ることができる。したがって、インペラ30から径方向外側に送られた空気を、例えば排気流路70の壁などの他の部材で向きを変えることなく、軸方向に好適に流すことができる。そのため、インペラ30から径方向外側に送られた空気が他の部材で流れる向きを変えられる場合に比べて、インペラ30によって送られる空気に生じる圧力損失を小さくできる。したがって、インペラ30による軸方向への送風効率を向上できる。 Further, according to the present embodiment, the centrifugal impeller surface 33a of the centrifugal impeller portion 33 is a curved surface that curves from the radially inner side to the radially outer side in the circumferential direction (+θ side). The radially inner end portion of the centrifugal blade surface 33a is inclined toward the radially outer side toward the other circumferential side (−θ side). Therefore, the inclination angle of the centrifugal vane surface 33a with respect to the radial direction becomes smaller toward the radially outer side. Here, the smaller the inclination angle of the centrifugal blade surface 33a with respect to the radial direction, the greater the resistance that the centrifugal blade surface 33a receives from the air. That is, the resistance that the centrifugal blade surface 33a receives from the air increases radially outward. As a result, the centrifugal vane surface 33a becomes more difficult to send air radially outward in a portion located radially outward. Therefore, the air that has flowed from the radially outer end of the centrifugal vane surface 33a to the axial vane surface 34a of the axial vane portion 34 is less likely to flow radially outward, and is more likely to flow axially due to the axial vane surface 34a. Become. Therefore, it is possible to suppress the direction of the air sent in the axial direction by the axial flow blade surface 34a from tilting radially outward. As a result, the air can be preferably sent in the axial direction by the first blades 32 . Therefore, the air sent radially outward from the impeller 30 can be suitably flowed in the axial direction without being redirected by another member such as the wall of the exhaust passage 70 . Therefore, the pressure loss caused in the air sent by the impeller 30 can be reduced compared to the case where the air sent radially outward from the impeller 30 can change its flow direction by another member. Therefore, the efficiency of blowing air in the axial direction by the impeller 30 can be improved.
 本実施形態の例では、吸気口50aからインペラ30内に吸引された空気を、効率よく排気流路70に流して排気口73から下側に排出することができる。また、排気流路70を流れる空気によってモータ本体部20を冷却することもできる。そのため、モータ本体部20の冷却効率を向上することもできる。また、1つのインペラ30によってモータ本体部20の軸方向の全体を冷却しやすいため、例えば複数のインペラを設けてモータ本体部20の軸方向の全体を冷却するような場合に比べて、モータ10の部品点数が増加することを抑制できる。また、モータ10全体が大型化することを抑制できる。 In the example of the present embodiment, the air sucked into the impeller 30 through the intake port 50a can be efficiently flowed through the exhaust passage 70 and discharged downward through the exhaust port 73 . Further, the motor body 20 can also be cooled by the air flowing through the exhaust passage 70 . Therefore, the cooling efficiency of the motor main body 20 can also be improved. In addition, since it is easy to cool the entire axial direction of the motor main body portion 20 with a single impeller 30, the motor 10 is less likely to cool than, for example, a case where a plurality of impellers are provided to cool the entire axial direction of the motor main portion 20. increase in the number of parts can be suppressed. In addition, it is possible to suppress an increase in the size of the motor 10 as a whole.
 また、本実施形態によれば、軸流羽根面34aは、軸方向に対して周方向に傾斜している。軸流羽根面34aの軸方向に対する周方向の傾斜角度φ3は、径方向外側に向かうに従って大きくなっている。ここで、軸流羽根面34aの軸方向に対する傾斜角度φ3が大きいほど、軸流羽根面34aが空気から受ける抵抗が小さくなる。つまり、軸流羽根面34aが空気から受ける抵抗は、径方向外側に向かうに従って小さくなる。このように、遠心羽根面33aが空気から受ける抵抗を径方向外側に向かうに従って大きくしつつ、軸流羽根面34aが空気から受ける抵抗を径方向外側に向かうに従って小さくすることで、遠心羽根面33aから軸流羽根面34aへと空気を流しやすくでき、かつ、軸流羽根面34aによって空気を軸方向へとより好適に流しやすくできる。したがって、インペラ30による軸方向への送風効率をより向上できる。 Further, according to this embodiment, the axial flow blade surface 34a is inclined in the circumferential direction with respect to the axial direction. A circumferential inclination angle φ3 of the axial flow blade surface 34a with respect to the axial direction increases radially outward. Here, the larger the inclination angle φ3 of the axial flow blade surface 34a with respect to the axial direction, the smaller the resistance that the axial flow blade surface 34a receives from the air. That is, the resistance that the axial flow blade surface 34a receives from the air decreases toward the radially outer side. In this way, the centrifugal vane surface 33a increases radially outwardly the resistance received by the air from the centrifugal vane surface 33a, while decreasing the radially outwardly exerted resistance received by the axial vane surface 34a from the air. It is possible to easily flow the air from the axial flow blade surface 34a to the axial flow blade surface 34a, and the axial flow blade surface 34a makes it easier to flow the air in the axial direction. Therefore, the efficiency of blowing air in the axial direction by the impeller 30 can be further improved.
 また、本実施形態によれば、遠心羽根面33aは、軸方向に沿った面である。そのため、遠心羽根部33同士の周方向の間に軸方向の上側から空気を吸入しやすくできる。これにより、遠心羽根部33によってインペラ30に吸入される空気の量を多くすることができる。したがって、インペラ30によって軸方向に送ることができる空気の量を多くすることができる。そのため、インペラ30による軸方向への送風効率をより向上できる。 Further, according to this embodiment, the centrifugal blade surface 33a is a surface along the axial direction. Therefore, air can be easily sucked from above in the axial direction between the centrifugal blade portions 33 in the circumferential direction. As a result, the amount of air sucked into the impeller 30 by the centrifugal vanes 33 can be increased. Therefore, the amount of air that can be sent axially by the impeller 30 can be increased. Therefore, the efficiency of blowing air in the axial direction by the impeller 30 can be further improved.
 また、本実施形態によれば、遠心羽根部33の径方向の寸法は、軸流羽根部34の径方向の寸法よりも大きい。そのため、遠心羽根部33の径方向の寸法を比較的大きくできる。これにより、遠心羽根部33によってインペラ30に吸入される空気の量をより多くすることができる。したがって、インペラ30によって軸方向に送ることができる空気の量をより多くすることができる。そのため、インペラ30による軸方向への送風効率をより向上できる。また、軸流羽根部34の径方向の寸法を比較的小さくできる。そのため、インペラ30が径方向に大型化することを抑制できる。このように本実施形態では、遠心羽根部33によって比較的多量に吸入した空気の流れる方向を軸流羽根部34によって軸方向に変える構成とすることで、比較的多量の空気を好適に軸方向に流しつつ、インペラ30を径方向に小型化できる。 In addition, according to the present embodiment, the radial dimension of the centrifugal vane portion 33 is larger than the radial dimension of the axial vane portion 34 . Therefore, the radial dimension of the centrifugal blade portion 33 can be made relatively large. As a result, the amount of air sucked into the impeller 30 by the centrifugal vanes 33 can be increased. Thus, a greater amount of air can be pumped axially by the impeller 30 . Therefore, the efficiency of blowing air in the axial direction by the impeller 30 can be further improved. In addition, the radial dimension of the axial flow blade portion 34 can be made relatively small. Therefore, it is possible to prevent the impeller 30 from increasing in size in the radial direction. As described above, in the present embodiment, the direction of flow of a relatively large amount of air sucked by the centrifugal vanes 33 is changed to the axial direction by the axial vanes 34, so that a relatively large amount of air can be preferably sucked in the axial direction. It is possible to make the impeller 30 compact in the radial direction while allowing the air to flow through.
 また、本実施形態によれば、複数の第1羽根32は、基部31から上側に突出している。軸流羽根面34aは、下側を向いている。そのため、上側から遠心羽根部33同士の間に吸入した空気を、軸流羽根面34aによって下側に流すことができる。これにより、例えば、本実施形態のようにインペラ30をモータ本体部20の上側に配置することで、上側から吸入した空気を下側に流して、モータ本体部20の軸方向の全体を好適に冷却することができる。 Further, according to this embodiment, the plurality of first blades 32 protrude upward from the base portion 31 . The axial flow blade surface 34a faces downward. Therefore, the air sucked from above between the centrifugal blade portions 33 can be flowed downward by the axial flow blade surface 34a. As a result, for example, by arranging the impeller 30 on the upper side of the motor main body 20 as in the present embodiment, the air sucked from the upper side flows downward, and the entire axial direction of the motor main body 20 is preferably Allow to cool.
 また、本実施形態によれば、軸流羽根部34は、基部31よりも径方向外側に突出している。そのため、軸流羽根部34によって下側に送られる空気が基部31によって遮られることがない。これにより、インペラ30によって、より好適に空気を軸方向に送ることができる。したがって、インペラ30による軸方向への送風効率をより向上できる。本実施形態では、径方向外側に突出した軸流羽根部34を排気流路70の上端部内に配置することで、軸流羽根部34によって下側に送られる空気を排気流路70内において好適に下向きに流すことができる。 Further, according to the present embodiment, the axial vane portion 34 protrudes radially outward from the base portion 31 . Therefore, the base portion 31 does not block the air sent downward by the axial flow blade portion 34 . As a result, the impeller 30 can more preferably send the air in the axial direction. Therefore, the efficiency of blowing air in the axial direction by the impeller 30 can be further improved. In this embodiment, by arranging the axial vanes 34 protruding radially outward in the upper end portion of the exhaust passage 70 , the air sent downward by the axial vanes 34 is preferably distributed in the exhaust passage 70 . can flow downwards.
<第2実施形態>
 図5に示すように、本実施形態のインペラ230における基部231は、径方向外縁から径方向内側に窪む凹部231aを有する。本実施形態において凹部231aの内部は、軸方向に見て、周方向に沿って湾曲して延びる略四角形状である。凹部231aは、周方向に間隔を空けて複数設けられている。凹部231aは、第1羽根232ごとに設けられている。
<Second embodiment>
As shown in FIG. 5, the base portion 231 of the impeller 230 of this embodiment has a concave portion 231a that is recessed radially inward from the radial outer edge. In the present embodiment, the interior of the recessed portion 231a has a substantially quadrangular shape that curves and extends along the circumferential direction when viewed in the axial direction. A plurality of recesses 231a are provided at intervals in the circumferential direction. A recess 231 a is provided for each first blade 232 .
 複数の第1羽根232のそれぞれは、遠心羽根部233と、軸流羽根部234と、を有する。本実施形態において遠心羽根部233の径方向外側の端部は、凹部231aの径方向内側の縁部231bに位置する。本実施形態において軸流羽根部234の径方向外側の端部は、基部231の径方向外縁と径方向において同じ位置に位置する。そのため、基部231から軸流羽根部234が径方向外側に突出しない。これにより、軸流羽根部234が他の部品などに衝突して破損することなどを抑制できる。なお、軸流羽根部234の径方向外側の端部は、基部231の径方向外縁よりも径方向内側に位置してもよい。 Each of the plurality of first blades 232 has a centrifugal blade portion 233 and an axial blade portion 234. In the present embodiment, the radially outer end of the centrifugal blade portion 233 is positioned at the radially inner edge 231b of the recess 231a. In the present embodiment, the radially outer end of the axial flow vane portion 234 is located at the same radial position as the radially outer edge of the base portion 231 . Therefore, the axial vane portion 234 does not protrude radially outward from the base portion 231 . As a result, it is possible to prevent the axial flow blade portion 234 from colliding with other components and being damaged. The radially outer end of the axial flow blade portion 234 may be positioned radially inward of the radially outer edge of the base portion 231 .
 軸流羽根部234は、軸方向に見て凹部231aの内部と重なっている。そのため、軸流羽根部234によって下側に送られる空気を、凹部231aを介して、基部231よりも下側に好適に流すことができる。このように凹部231aを設けることで、軸流羽根部234を基部231から径方向外側に突出しない構造としつつ、軸流羽根部234によって下側に送られる空気が基部231によって遮られることを抑制できる。インペラ230のその他の構成は、第1実施形態のインペラ30のその他の構成と同様である。 The axial flow blade portion 234 overlaps the interior of the recessed portion 231a when viewed in the axial direction. Therefore, the air sent downward by the axial flow vane portion 234 can be suitably flowed downward from the base portion 231 via the recessed portion 231a. By providing the concave portion 231a in this way, the axial vane portion 234 does not protrude radially outward from the base portion 231, and the air sent downward by the axial vane portion 234 is prevented from being blocked by the base portion 231. can. Other configurations of the impeller 230 are similar to other configurations of the impeller 30 of the first embodiment.
<第3実施形態>
 図6に示すように、本実施形態のインペラ330の第1羽根332において、軸流羽根部334は、第1実施形態の軸流羽根部34よりも、遠心羽根部33に対して周方向他方側(-θ側)に突出している。軸流羽根部334の周方向の寸法は、第1実施形態の軸流羽根部34の周方向の寸法よりも大きい。軸流羽根部334の軸流羽根面334aは、径方向外側の端部において、第1実施形態の軸流羽根面34aよりも軸方向に対する周方向の傾斜角度φ3が大きくなっている。第1羽根332のその他の構成は、第1実施形態の第1羽根32のその他の構成と同様である。
<Third Embodiment>
As shown in FIG. 6, in the first blades 332 of the impeller 330 of the present embodiment, the axial blade portions 334 are arranged in the other circumferential direction with respect to the centrifugal blade portion 33 than the axial blade portions 34 of the first embodiment. side (−θ side). The circumferential dimension of the axial vane portion 334 is larger than the circumferential dimension of the axial vane portion 34 of the first embodiment. The axial vane surface 334a of the axial vane portion 334 has a circumferential inclination angle φ3 with respect to the axial direction that is larger than that of the axial vane surface 34a of the first embodiment at the radially outer end. Other configurations of the first blade 332 are the same as other configurations of the first blade 32 of the first embodiment.
 本実施形態においてインペラ330は、周方向に隣り合う第1羽根332の軸流羽根部334同士の間に位置する第2羽根335を備える。第2羽根335は、周方向に隣り合う軸流羽根部334同士の中心に位置する。第2羽根335は、基部31の径方向外縁に設けられている。第2羽根335は、軸方向を向く羽根面335aを有する。第2羽根335の形状は、軸流羽根部334の形状と同様である。羽根面335aの形状は、軸流羽根面334aの形状と同様である。 In this embodiment, the impeller 330 includes second blades 335 positioned between the axial flow blade portions 334 of the first blades 332 adjacent in the circumferential direction. The second blade 335 is positioned at the center of the axial flow blade portions 334 adjacent to each other in the circumferential direction. The second blade 335 is provided on the radial outer edge of the base 31 . The second blade 335 has a blade surface 335a facing in the axial direction. The shape of the second blade 335 is the same as the shape of the axial blade portion 334 . The shape of the blade surface 335a is the same as the shape of the axial flow blade surface 334a.
 本実施形態において、周方向に隣り合う軸流羽根部334と第2羽根335とは、軸方向に見て、一部同士が互いに重なり合っている。より詳細には、軸流羽根部334の周方向他方側(-θ側)の端部は、周方向他方側に隣り合う第2羽根335の下側に位置する。第2羽根335の周方向他方側の端部は、周方向他方側に隣り合う軸流羽根部334の下側に位置する。インペラ330のその他の構成は、第1実施形態のインペラ30のその他の構成と同様である。 In this embodiment, the axial flow blade portion 334 and the second blade 335 that are adjacent in the circumferential direction partially overlap each other when viewed in the axial direction. More specifically, the end portion of the axial flow blade portion 334 on the other side in the circumferential direction (−θ side) is positioned below the second blade 335 adjacent to the other side in the circumferential direction. The end portion of the second blade 335 on the other side in the circumferential direction is positioned below the axial flow blade portion 334 adjacent to the other side in the circumferential direction. Other configurations of the impeller 330 are the same as the other configurations of the impeller 30 of the first embodiment.
 本実施形態によれば、軸流羽根部334に加えて、羽根面335aを有する第2羽根335によっても、空気を軸方向の下側に送ることができる。そのため、インペラ330によって軸方向に送られる空気の量をより多くできる。これにより、インペラ330による軸方向への送風効率をより向上できる。また、基部31の全周の長さが比較的小さい径方向内側部分において、周方向に隣り合う遠心羽根部33同士の間に他の羽根部を設けないことで、遠心羽根部33同士の間隔が狭くなることを抑制できる。そのため、遠心羽根部33同士の間に空気が通りにくくなることを抑制できる。これにより、遠心羽根部33によって吸引される空気の量が少なくなることを抑制できる。一方、基部31の全周の長さが比較的大きい径方向外側部分では、第2羽根335を軸流羽根部334同士の間に配置しても、軸流羽根部334と第2羽根335との周方向の間隔を十分に確保しやすい。そのため、軸流羽根部334と第2羽根335との間に空気が流れにくくなることを抑制できる。 According to this embodiment, in addition to the axial flow blade portion 334, the second blade 335 having the blade surface 335a can send air downward in the axial direction. Therefore, a greater amount of air can be sent axially by the impeller 330 . As a result, the efficiency of blowing air in the axial direction by the impeller 330 can be further improved. In addition, in the radially inner portion where the length of the entire circumference of the base portion 31 is relatively small, no other blade portion is provided between the centrifugal blade portions 33 that are adjacent in the circumferential direction. narrowing can be suppressed. Therefore, it is possible to prevent air from passing easily between the centrifugal blade portions 33 . As a result, it is possible to prevent the amount of air sucked by the centrifugal impeller 33 from decreasing. On the other hand, in the radially outer portion where the length of the entire circumference of the base portion 31 is relatively large, even if the second blade 335 is arranged between the axial flow blade portions 334, the axial flow blade portion 334 and the second blade 335 It is easy to sufficiently secure the space in the circumferential direction. Therefore, it is possible to prevent the air from becoming difficult to flow between the axial flow blade portion 334 and the second blade 335 .
 また、本実施形態によれば、軸流羽根部334と第2羽根335とは、軸方向に見て、一部同士が互いに重なり合っている。軸流羽根部334と第2羽根335とをこのように配置することで、軸流羽根部334および第2羽根335によって軸方向に送られる空気の静圧を大きくすることができる。そのため、インペラ330によって軸方向に送られる空気の量をより多くできる。これにより、インペラ330による軸方向への送風効率をより向上できる。 Further, according to the present embodiment, the axial flow blade portion 334 and the second blade 335 partially overlap each other when viewed in the axial direction. By arranging the axial flow blade portion 334 and the second blades 335 in this manner, the static pressure of the air sent in the axial direction by the axial flow blade portion 334 and the second blades 335 can be increased. Therefore, a greater amount of air can be sent axially by the impeller 330 . As a result, the efficiency of blowing air in the axial direction by the impeller 330 can be further improved.
[掃除機の実施形態]
 図7に示すように、本実施形態の掃除機1000は、スティック型の掃除機である。掃除機1000は、上述した第1実施形態のモータ10を備える。上述したように、モータ10は、吸気口50aから吸引した空気を軸方向に流して効率よく排気口73から排出できる。そのため、モータ10を掃除機1000に用いることで、掃除機1000の吸引力を効率よく向上できる。なお、モータ10の代わりに、第2実施形態のインペラ230を備えたモータが掃除機1000に搭載されてもよいし、第3実施形態のインペラ330を備えたモータが掃除機1000に搭載されてもよい。各実施形態のモータが搭載される掃除機は、キャニスタ型の掃除機であってもよい。
[Embodiment of Vacuum Cleaner]
As shown in FIG. 7, the cleaner 1000 of this embodiment is a stick-type cleaner. A vacuum cleaner 1000 includes the motor 10 of the first embodiment described above. As described above, the motor 10 can flow the air sucked from the intake port 50 a in the axial direction and efficiently discharge it from the exhaust port 73 . Therefore, by using the motor 10 in the cleaner 1000, the suction force of the cleaner 1000 can be efficiently improved. Instead of the motor 10, a motor equipped with the impeller 230 of the second embodiment may be mounted on the cleaner 1000, or a motor equipped with the impeller 330 of the third embodiment may be mounted on the cleaner 1000. good too. A vacuum cleaner equipped with the motor of each embodiment may be a canister type vacuum cleaner.
 本発明は上述の実施形態に限られず、本発明の技術的思想の範囲内において、他の構成および他の方法を採用することもできる。第1羽根の数は、2つ以上であれば、特に限定されない。遠心羽根面は、径方向内側から径方向外側に向かって周方向一方側に湾曲する湾曲面で、かつ、径方向内側の端部が、径方向に対して、径方向外側に向かうに従って周方向他方側に位置する向きに傾斜しているならば、どのような形状であってもよい。遠心羽根部は、遠心羽根面を有するならば、どのような形状であってもよい。軸流羽根面は、軸方向を向く面であるならば、どのような形状であってもよい。軸流羽根面の軸方向に対する周方向の傾斜角度は、径方向の全体に亘って同じであってもよい。軸流羽根部は、軸流羽根面を有するならば、どのような形状であってもよい。軸流羽根部の軸方向他方側の端部は、基部に繋がっていてもよい。軸流羽根面は、基部と軸方向に対向して配置されてもよい。 The present invention is not limited to the above-described embodiments, and other configurations and other methods can be adopted within the scope of the technical idea of the present invention. The number of first blades is not particularly limited as long as it is two or more. The centrifugal blade surface is a curved surface that curves to one side in the circumferential direction from the radially inner side to the radially outer side, and the radially inner end portion extends in the radial direction toward the radially outer side. It may have any shape as long as it is slanted toward the other side. The centrifugal impeller may have any shape as long as it has a centrifugal impeller surface. The axial flow blade surface may have any shape as long as it faces the axial direction. The inclination angle of the axial flow blade surface in the circumferential direction with respect to the axial direction may be the same throughout the radial direction. The axial vane portion may have any shape as long as it has an axial vane surface. An end portion of the axial flow blade portion on the other side in the axial direction may be connected to the base portion. The axial vane surface may be arranged axially opposite the base.
 基部は設けられなくてもよい。インペラとモータ本体部のロータの少なくとも一部とは、同一の単一部材の一部であってもよい。この場合、第1羽根がロータに直接設けられてもよい。第1羽根は、モータ本体部のロータとステータとの径方向の隙間に軸方向に空気を流す構成であってもよい。この場合、軸流羽根部は、例えば、ロータとステータとの径方向の隙間と軸方向に対向する位置に配置されてもよい。インペラは、モータ本体部の軸方向両側にそれぞれ設けられてもよい。 The base does not have to be provided. The impeller and at least a portion of the rotor of the motor body may be part of the same single member. In this case, the first blade may be provided directly on the rotor. The first blade may be configured to allow air to flow axially through a radial gap between the rotor and the stator of the motor main body. In this case, the axial flow blade portion may be arranged, for example, at a position axially facing the radial gap between the rotor and the stator. The impellers may be provided on both axial sides of the motor body.
 例えば、上述した第1実施形態において、シャフト21aをモータハウジング40よりも下側に突出させ、当該突出させたシャフト21aの部分に、他のインペラを取り付けてもよい。この場合、当該他のインペラを下向きに空気を流す軸流型のインペラとして、当該他のインペラの羽根を排気口73の下側に対向して配置してもよい。これにより、排気流路70内において、より空気が下向きに流れやすくなり、排気口73から、より空気を排出させやすくできる。 For example, in the first embodiment described above, the shaft 21a may be protruded below the motor housing 40, and another impeller may be attached to the protruding portion of the shaft 21a. In this case, the other impeller may be an axial-flow impeller that causes air to flow downward, and the blades of the other impeller may be arranged below the exhaust port 73 so as to face each other. This makes it easier for the air to flow downward in the exhaust passage 70 , and makes it easier for the air to be discharged from the exhaust port 73 .
 本発明が適用されるインペラおよびモータの用途は、特に限定されない。インペラを備えるモータは、ドライヤなどの掃除機以外の機器に搭載されてもよい。インペラは、モータを冷却するためのみに用いられてもよい。インペラは、モータの冷却に用いられなくてもよい。インペラを備えるモータの種類は、特に限定されない。なお、本明細書において説明した各構成および各方法は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 The use of the impeller and motor to which the present invention is applied is not particularly limited. A motor including an impeller may be mounted on a device other than a vacuum cleaner, such as a dryer. The impeller may be used only for cooling the motor. The impeller may not be used for motor cooling. The type of motor provided with the impeller is not particularly limited. It should be noted that each configuration and each method described in this specification can be appropriately combined within a mutually consistent range.
 10…モータ、20…モータ本体部、30,230,330…インペラ、31,231…基部、32,232,332…第1羽根、33,233…遠心羽根部、33a…遠心羽根面、34,234,334…軸流羽根部、34a,334a…軸流羽根面、231a…凹部、335…第2羽根、335a…羽根面、1000…掃除機、J…中心軸、φ3…傾斜角度 DESCRIPTION OF SYMBOLS 10... Motor 20... Motor main- body part 30, 230, 330... Impeller, 31, 231... Base part, 32, 232, 332... First blade, 33, 233... Centrifugal blade part, 33a... Centrifugal blade surface, 34, 234, 334... Axial blade portion 34a, 334a... Axial blade surface 231a... Recess 335... Second blade 335a... Blade surface 1000... Vacuum cleaner J... Central axis φ3... Inclination angle

Claims (10)

  1.  軸方向に延びる中心軸を中心とする周方向に回転させられるインペラであって、
     周方向に沿って配置された複数の第1羽根を備え、
     前記複数の第1羽根のそれぞれは、
      周方向を向く遠心羽根面を有する遠心羽根部と、
      軸方向を向く軸流羽根面を有し、前記遠心羽根部の径方向外側に繋がる軸流羽根部と、
     を有し、
     前記遠心羽根面は、径方向内側から径方向外側に向かって周方向一方側に湾曲する湾曲面であり、
     前記遠心羽根面の径方向内側の端部は、径方向に対して、径方向外側に向かうに従って周方向他方側に位置する向きに傾斜している、インペラ。
    An impeller circumferentially rotated about an axially extending central axis, comprising:
    A plurality of first blades arranged along the circumferential direction,
    Each of the plurality of first blades,
    a centrifugal blade portion having a centrifugal blade surface facing the circumferential direction;
    an axial vane portion having an axial vane surface facing the axial direction and connected to the radially outer side of the centrifugal vane portion;
    has
    The centrifugal blade surface is a curved surface that curves from the radially inner side to the radially outer side in the circumferential direction,
    The impeller, wherein the radially inner end portion of the centrifugal blade surface is inclined with respect to the radial direction so as to be located on the other side in the circumferential direction toward the radially outer side.
  2.  前記軸流羽根面は、軸方向に対して周方向に傾斜しており、
     前記軸流羽根面の軸方向に対する周方向の傾斜角度は、径方向外側に向かうに従って大きくなっている、請求項1に記載のインペラ。
    The axial flow blade surface is circumferentially inclined with respect to the axial direction,
    2. The impeller according to claim 1, wherein the inclination angle of the axial flow blade surface in the circumferential direction with respect to the axial direction increases radially outward.
  3.  前記遠心羽根面は、軸方向に沿った面である、請求項1または2に記載のインペラ。 The impeller according to claim 1 or 2, wherein the centrifugal blade surface is a surface along the axial direction.
  4.  前記遠心羽根部の径方向の寸法は、前記軸流羽根部の径方向の寸法よりも大きい、請求項1から3のいずれか一項に記載のインペラ。 The impeller according to any one of claims 1 to 3, wherein the radial dimension of the centrifugal blade portion is larger than the radial dimension of the axial flow blade portion.
  5.  基部をさらに備え、
     前記複数の第1羽根は、前記基部から軸方向一方側に突出し、
     前記軸流羽根面は、軸方向他方側を向いている、請求項1から4のいずれか一項に記載のインペラ。
    further comprising a base,
    The plurality of first blades protrude from the base portion to one side in the axial direction,
    The impeller according to any one of claims 1 to 4, wherein the axial flow blade surface faces the other side in the axial direction.
  6.  前記軸流羽根部は、前記基部よりも径方向外側に突出している、請求項5に記載のインペラ。 The impeller according to claim 5, wherein the axial flow blade portion protrudes radially outward from the base portion.
  7.  前記軸流羽根部の径方向外側の端部は、前記基部の径方向外縁と径方向において同じ位置、または前記基部の径方向外縁よりも径方向内側に位置し、
     前記基部は、径方向外縁から径方向内側に窪む凹部を有し、
     前記軸流羽根部は、軸方向に見て前記凹部の内部と重なっている、請求項5に記載のインペラ。
    the radially outer end of the axial flow blade portion is located at the same position in the radial direction as the radially outer edge of the base or radially inwardly of the radially outer edge of the base;
    The base has a recess that is recessed radially inward from the radial outer edge,
    6. The impeller according to claim 5, wherein the axial vane portion overlaps the interior of the recess when viewed in the axial direction.
  8.  周方向に隣り合う前記第1羽根の前記軸流羽根部同士の間に位置する第2羽根をさらに備え、
     前記第2羽根は、軸方向を向く羽根面を有する、請求項1から7のいずれか一項に記載のインペラ。
    further comprising a second blade positioned between the axial flow blade portions of the first blades adjacent in the circumferential direction,
    8. An impeller as claimed in any preceding claim, wherein the second blades have axially facing blade surfaces.
  9.  請求項1から8のいずれか一項に記載のインペラと、
     前記インペラを回転させるモータ本体部と、
     を備える、モータ。
    an impeller according to any one of claims 1 to 8;
    a motor body that rotates the impeller;
    a motor.
  10.  請求項9に記載のモータを備える、掃除機。 A vacuum cleaner comprising the motor according to claim 9.
PCT/JP2021/021978 2021-01-25 2021-06-09 Impeller, motor, and vacuum cleaner WO2022158000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021009495 2021-01-25
JP2021-009495 2021-01-25

Publications (1)

Publication Number Publication Date
WO2022158000A1 true WO2022158000A1 (en) 2022-07-28

Family

ID=82548641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021978 WO2022158000A1 (en) 2021-01-25 2021-06-09 Impeller, motor, and vacuum cleaner

Country Status (1)

Country Link
WO (1) WO2022158000A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171078B1 (en) * 1997-09-04 2001-01-09 Sulzer Electronics Ag Centrifugal pump
JP2015203369A (en) * 2014-04-15 2015-11-16 株式会社ノーリツ Vane wheel and water heater with vane wheel
US20160134174A1 (en) * 2014-11-07 2016-05-12 Industrial Technology Research Institute Heat dissipation apparatus for motors
WO2018062468A1 (en) * 2016-09-30 2018-04-05 本田技研工業株式会社 Cooling fan of internal combustion engine
JP2020084815A (en) * 2018-11-19 2020-06-04 愛三工業株式会社 Centrifugal pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171078B1 (en) * 1997-09-04 2001-01-09 Sulzer Electronics Ag Centrifugal pump
JP2015203369A (en) * 2014-04-15 2015-11-16 株式会社ノーリツ Vane wheel and water heater with vane wheel
US20160134174A1 (en) * 2014-11-07 2016-05-12 Industrial Technology Research Institute Heat dissipation apparatus for motors
WO2018062468A1 (en) * 2016-09-30 2018-04-05 本田技研工業株式会社 Cooling fan of internal combustion engine
JP2020084815A (en) * 2018-11-19 2020-06-04 愛三工業株式会社 Centrifugal pump

Similar Documents

Publication Publication Date Title
US11085454B2 (en) Fan motor having a motor mount defining a cooling flow path inlet and a diffuser body defining a cooling flow path outlet with the cooling flow path in fluid communication with the inner space of the motor mount
WO2017082222A1 (en) Blowing device and cleaner
JP5747632B2 (en) Centrifugal fan
US8794915B2 (en) Blower fan
US20200124055A1 (en) Fan motor
US7775767B2 (en) Fan assembly
WO2017082224A1 (en) Blowing device and cleaner
JP2006325315A (en) Fan motor
JP4060252B2 (en) Fan motor
JP2019157656A (en) Centrifugal fan
TW202203555A (en) Fan motor
CN113482943A (en) Electric blower and electric equipment
JPWO2020145219A1 (en) Motor, rotor blade device
JP2020020320A (en) Impeller, and centrifugal fan
WO2022158000A1 (en) Impeller, motor, and vacuum cleaner
US11976666B2 (en) Fan motor
JP2019100314A (en) Blower module
JP2019124205A (en) Air blower
JP2019065763A (en) Centrifugal fan
CN114135501A (en) Rotating device
TW202220344A (en) Rotary electrical machine
JP2022062289A (en) Electric motor and electric blower
US12009724B2 (en) Motor and rotor blade apparatus
CN216642552U (en) Impeller, air supply device and dust collector
KR102482413B1 (en) Fan Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP