WO2022157939A1 - Deterioration evaluation device, deterioration evaluation method, and program - Google Patents

Deterioration evaluation device, deterioration evaluation method, and program Download PDF

Info

Publication number
WO2022157939A1
WO2022157939A1 PCT/JP2021/002297 JP2021002297W WO2022157939A1 WO 2022157939 A1 WO2022157939 A1 WO 2022157939A1 JP 2021002297 W JP2021002297 W JP 2021002297W WO 2022157939 A1 WO2022157939 A1 WO 2022157939A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel resolution
area
unit
image
deterioration
Prior art date
Application number
PCT/JP2021/002297
Other languages
French (fr)
Japanese (ja)
Inventor
一旭 渡邉
大輔 内堀
勇臣 濱野
洋介 櫻田
淳 荒武
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022576912A priority Critical patent/JPWO2022157939A1/ja
Priority to PCT/JP2021/002297 priority patent/WO2022157939A1/en
Publication of WO2022157939A1 publication Critical patent/WO2022157939A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/28Measuring arrangements characterised by the use of optical techniques for measuring areas

Definitions

  • the present disclosure relates to a deterioration evaluation device, a deterioration evaluation method, and a program.
  • Non-Patent Document 1 a technique for quantitatively evaluating the deteriorated area from the scale by embedding the crack scale in the image (see Non-Patent Document 1), and keeping the distance to the photographing object constant.
  • a technique is known in which an image is acquired using imaging equipment having a mechanism for maintaining the image, and a degraded region is quantitatively evaluated from the pixel resolution (see Non-Patent Document 2).
  • An object of the present disclosure which has been made in view of such circumstances, is to provide a deterioration evaluation device, a deterioration evaluation method, and a program capable of evaluating the actual size value of a deteriorated region without being limited to certain shooting conditions.
  • the deterioration evaluation apparatus includes an equipment area detection unit that detects an equipment area from an acquired image, a deteriorated area detection unit that detects a deteriorated area from the image, and the detected equipment A pixel resolution estimating unit that estimates pixel resolution of at least part of the image based on the area, and a degradation size estimating unit that estimates the size of the degraded area based on the pixel resolution.
  • a deterioration evaluation method is a deterioration evaluation method for evaluating deterioration by a deterioration evaluation device, and includes a step of detecting an equipment area from an acquired image, a step of detecting a deteriorated area from the image, and a step of detecting estimating a pixel resolution of at least a portion of the image based on the facility area obtained; and estimating a size of the degraded area based on the pixel resolution.
  • the program according to the present disclosure causes a computer to function as the deterioration evaluation device according to the present disclosure.
  • FIG. 1 is a diagram for explaining a deterioration evaluation system according to an embodiment of the present disclosure; FIG. It is a figure which simplifies and shows a tunnel.
  • 1 is a block diagram showing the configuration of a deterioration evaluation device according to an embodiment of the present disclosure; FIG. It is a figure which shows an example of the image which the deterioration evaluation apparatus acquired. It is a figure which shows an example of the image which the deterioration evaluation apparatus acquired.
  • FIG. 4 is a diagram for explaining a pixel resolution map;
  • FIG. 10 is a diagram showing an example of an image when it is determined that the number of objects N is N ⁇ 3;
  • FIG. 11 is a diagram for explaining an equipment area correction unit according to Modification 1;
  • FIG. 11 is a diagram for explaining an equipment area correction unit according to Modification 1;
  • FIG. 11 is a diagram for explaining an equipment area correction unit according to Modification 1;
  • FIG. 11 is a diagram for explaining an equipment area correction unit according to Modification 1;
  • FIG. 11 is a diagram for explaining an equipment area correction unit according to Modification 1;
  • FIG. 11 is a diagram for explaining an equipment area correction unit according to Modification 1;
  • FIG. 11 is a diagram showing an example of an image acquired by a deterioration evaluation device according to modification 2;
  • FIG. 11 is a diagram for explaining a pixel resolution map according to modification 2;
  • the deterioration evaluation system 1 is a system that quantitatively evaluates the deterioration occurring in the structure body using the known information of the equipment from the photographed images of the structure.
  • an image processing algorithm is used to detect a deteriorated area and known facilities from a photographed image.
  • the known dimensions for the detected equipment are then compared to the number of pixels on the image to estimate the pixel resolution at each location.
  • the actual size value of the degraded area is calculated based on the estimated pixel resolution. This makes it possible to estimate the actual size of the degraded area without being limited to certain shooting conditions.
  • a structure refers to a tunnel in this embodiment.
  • a tunnel is an underground tunnel for laying telecommunication cables. Structures include, but are not limited to, for example, tunnels for laying gas pipes or power lines, or manholes.
  • the equipment in this embodiment, is hard metal that is part of the hardware equipment. Deterioration to be detected includes damage, stains, etc. occurring in the tunnel main body in the photographed image. The deterioration may be damage, dirt, etc. occurring in the equipment.
  • Figure 2 is a simplified diagram of a tunnel.
  • the height in the Z-axis direction from the top to the bottom of the tunnel and the width in the X-axis direction are, for example, about 3 meters.
  • the tunnel may have a rectangular cross-sectional shape as well as a circular cross-sectional shape as shown in FIG. Workers enter the tunnel and perform work such as laying, connecting, maintaining, repairing, and removing communication cables.
  • hardware equipment for housing communication cables, lighting, ventilation equipment, drainage equipment, etc. are installed.
  • the hardware equipment includes a flat steel metal piece fixed to the wall surface of the cable tunnel, and a receiving metal piece attached to the metal metal piece to support the communication cable.
  • the hard metal has a width of about 8 cm, but is not limited to this.
  • the steel bars extend in the Z-axis direction in FIG. 2 and are installed at regular intervals in the Y-axis direction, which is the depth direction of the cable tunnel.
  • the Z-axis direction in FIG. 2 indicates the longitudinal direction of the metal rod, and the Y-axis direction indicates the lateral direction of the metal rod.
  • the deterioration evaluation system 1 includes an imaging device 10, a deterioration evaluation device 20, and a server device 30.
  • the photographing device 10, the deterioration evaluation device 20, and the server device 30 are connected by wire or wirelessly so as to be able to communicate with each other.
  • a communication method for transmitting and receiving information between devices is not particularly limited.
  • the photographing device 10 is a device that has a function of photographing the inside of the tunnel, and is, for example, a smartphone, a tablet terminal, a notebook PC (personal computer), an unmanned flying object, or the like.
  • the photographing device 10 transmits data of the photographed image to the deterioration evaluation device 20 . At least part of the equipment in the tunnel is reflected in the captured image.
  • the number of imaging devices 10 is not limited to one, and may be plural.
  • the imaging device 10 may be integrated with the deterioration evaluation device 20 .
  • the deterioration evaluation device 20 is any electronic device such as a smartphone or tablet terminal.
  • the deterioration evaluation device 20 may be a general-purpose computer, a dedicated computer, or a PC (Personal Computer).
  • the deterioration evaluation device 20 may be used by workers who perform inspections in tunnels.
  • the deterioration evaluation device 20 receives the data of the captured image from the imaging device 10 . Although the details will be described later, the deterioration evaluation device 20 detects the facility area and the deteriorated area based on the received photographed image, estimates the pixel resolution, and estimates the size of the deteriorated area.
  • the deterioration evaluation device 20 transmits information indicating the estimated actual size of the deteriorated region to the server device 30 via the network.
  • the server device 30 may be installed in a facility such as a data center.
  • the server device 30 receives information indicating the actual size of the deteriorated area of the equipment from the deterioration evaluation device 20 via the network.
  • the server device 30 stores information indicating the actual dimension value of the degraded area in the storage unit of the server device 30 .
  • ⁇ Deterioration detector> An example of the configuration of the deterioration evaluation device 20 according to this embodiment will be described with reference to FIGS. 3 to 13B.
  • the deterioration evaluation device 20 includes a control unit 21, a storage unit 22, a communication unit 23, an input unit 24, and an output unit 25.
  • the control unit 21 includes an equipment area detection unit 211 , a deterioration area detection unit 212 , a pixel resolution estimation unit 213 and a deterioration magnitude estimation unit 214 .
  • the storage unit 22 includes one or more memories, and may include, for example, semiconductor memory, magnetic memory, optical memory, and the like. Each memory included in the storage unit 22 may function as, for example, a main memory device, an auxiliary memory device, or a cache memory. Each memory does not necessarily have to be provided inside the deterioration evaluation device 20 , and may be provided outside the deterioration evaluation device 20 .
  • the storage unit 22 stores information used for the operation of the deterioration evaluation device 20 and information obtained by the operation of the deterioration evaluation device 20 .
  • the storage unit 22 includes, for example, information indicating the actual width of the reinforcing metal, information indicating the installation interval of the reinforcing metal, information on the created pixel resolution map, information on the actual size of the deteriorated region estimated by the control unit 21, and the like. can be stored.
  • the communication unit 23 includes at least one communication interface.
  • the communication interface is, for example, a LAN interface.
  • the communication unit 23 receives information used for the operation of the deterioration evaluation device 20 and transmits information obtained by the operation of the deterioration evaluation device 20 .
  • the communication unit 23 receives the data of the photographed image from the photographing device 10 .
  • the communication unit 23 transmits information on the estimated actual size of the deteriorated region to the server device 30 .
  • the input unit 24 includes at least one input interface.
  • the input interface is, for example, a physical key, a capacitive key, a pointing device, a touch screen integrated with the display, or a microphone.
  • the input unit 24 receives an operation of inputting information used for operation of the deterioration evaluation device 20 .
  • the input unit 24 may be connected to the deterioration evaluation device 20 as an external input device instead of being provided in the deterioration evaluation device 20 . Any connection method may be used.
  • the operator can input image data, such as an inspection image, captured in the cable tunnel to the deterioration evaluation device 20 by performing a predetermined operation using the input unit 24 .
  • the output unit 25 includes at least one output interface.
  • the output interface is, for example, a display or speaker.
  • the display is, for example, an LCD (liquid crystal display) or an organic EL (electro luminescence) display.
  • the output unit 25 outputs information obtained by the operation of the deterioration evaluation device 20 .
  • the output unit 25 may be connected to the deterioration evaluation device 20 as an external output device instead of being provided in the deterioration evaluation device 20 . Any connection method may be used.
  • the output unit 25 may notify the operator of information on the estimated actual size of the deteriorated region by image or sound.
  • the control unit 21 includes at least one processor, at least one dedicated circuit, or a combination thereof.
  • the processor is a general-purpose processor such as a CPU (central processing unit) or a GPU (graphics processing unit), or a dedicated processor specialized for specific processing.
  • a dedicated circuit is, for example, an FPGA (field-programmable gate array) or an ASIC (application specific integrated circuit).
  • the control unit 21 executes processing related to the operation of the deterioration evaluation device 20 while controlling each unit of the deterioration evaluation device 20 .
  • the control unit 21 obtains an image obtained inside the communication tunnel, estimates the pixel resolution of the image based on the equipment area detected from the image using an image processing method such as segmentation deep learning, and It has the function of quantitatively evaluating the region detection results.
  • the equipment area detection unit 211 detects a metal object as an equipment area from the acquired image, and outputs it to the pixel resolution estimation unit 213 .
  • Objects to be detected as equipment areas are not limited to solid metal objects, and may be set freely. Detection is performed by an image processing technique such as segmentation deep learning.
  • the degraded area detection unit 212 detects a degraded area that occurs in the main body of the cable tunnel from the acquired image, and outputs it to the degradation magnitude estimation unit 214 .
  • the detection may be based on the same image processing method as that used by the facility area detection unit 211 .
  • FIG. 4A shows an example of an acquired image.
  • FIG. 4B is a diagram showing the equipment area detected by the equipment area detection unit 211 and the degraded area detected by the degraded area detection unit 212.
  • the equipment area detector 211 and the deteriorated area detector 212 may be integrated so that the equipment area and the deteriorated area can be detected simultaneously. If the equipment area is not detected from the acquired image, the equipment area detection unit 211 may notify the photographing device 10 to that effect via the output unit 25 and prompt photographing again.
  • the equipment area detected by the equipment area detection unit 211 and the deterioration area detected by the deterioration area detection unit 212 may be displayed to the worker using the deterioration evaluation device 20 via the output unit 25 .
  • the operator can operate the input unit 24 to manually set the range between the facility area and the deterioration area.
  • the pixel resolution estimation unit 213 estimates the pixel resolution of at least a part of the image based on the equipment area detected by the equipment area detection unit 211 . Specifically, the pixel resolution, which is the actual size value of the length per pixel of the image, is estimated for each pixel from the width of the reinforcing metal or the installation interval, and a pixel resolution map is created for the entire image to determine the degree of deterioration. output to the height estimation unit 214 .
  • One pixel means one pixel.
  • the pixel resolution estimation unit 213 includes an object number extraction unit 2131, an object number determination unit 2132, an object width extraction unit 2133a and an object width extraction unit 2133b, a thinning unit 2134, and an installation interval extraction unit. 2135, an actual size comparison unit 2136a, an actual size comparison unit 2136b, an actual size comparison unit 2136c, a pixel resolution map creation unit 2137a, a pixel resolution map creation unit 2137b, and a pixel resolution map creation unit 2137c.
  • the number-of-objects extraction unit 2131 divides the detected hard metal objects into objects one by one from the detection result of the equipment area by the equipment area detection unit 211, and extracts the number of hard metal objects detected as the equipment area. For example, the number-of-objects extracting unit 2131 extracts that the number of objects (number of hardened metal objects) N of hard metal objects is 2 from the detection result of the facility area shown in FIG. 4B. The number-of-objects extraction unit 2131 outputs the extracted result to the number-of-objects determination unit 2132 .
  • the object width extraction unit 2133a measures the number of pixels corresponding to the width of the hard metal and outputs it to the actual size comparison unit 2136a.
  • FIG. 6 shows a single hard metal area and a background area detected as an equipment area.
  • the object width extraction unit 2133a measures the number of pixels corresponding to the width of the metal object indicated by the arrow symbol in FIG.
  • the vertical position of the width of the object to be measured may be set freely. For example, as shown in FIG. 6, the number of pixels corresponding to the width at a plurality of positions of the hard metal may be measured. By measuring the number of pixels for the width of a plurality of positions, it is possible to improve the accuracy of the pixel resolution map described later.
  • FIG. 7A and 7B are diagrams showing other examples of acquired images.
  • FIG. 7A is an image taken looking up at the metal object
  • FIG. 7B is an image taken looking down at the metal object.
  • the upper part of the hard metal in FIG. 7A and the lower part of the hard metal in FIG. 7B are displayed smaller due to perspective.
  • the object width extracting unit 2133a measures the number of pixels for the width at a plurality of positions.
  • the object width extraction unit 2133a may measure the number of pixels for widths at the top, center, and bottom positions of the metal object in the vertical direction.
  • the actual size comparison unit 2136a calculates the pixel resolution for each pixel and outputs it to the pixel resolution map creation unit 2137a. Specifically, the actual size comparison unit 2136a compares the number of pixels corresponding to the width of the metal object in the image measured by the object width extraction unit 2133a with the actual size value of the width of the metal object. The pixel resolution is obtained by (1).
  • R is the pixel resolution for each pixel, and the unit is mm/pixel.
  • B is the actual value of the width of the metal bar, and the unit is mm.
  • C is the number of pixels (ie, the number of pixels) corresponding to the width of the hard metal.
  • the actual size comparison unit 2136a divides the actual size value B of the width of the metal by the measured number of pixels C to estimate the pixel resolution R.
  • the actual size comparison unit 2136a refers to the storage unit 22, reads out the pre-stored actual size value of the width of the metal rod, and calculates the pixel resolution R as the B value.
  • the actual size comparison unit 2136a may calculate the pixel resolution R using the actual size value of the width of the metal rod input via the input unit 24 as the value of B.
  • the pixel resolution map creation unit 2137a creates a pixel resolution map A indicating the pixel resolution of each pixel of the entire image by linearly approximating the relationship between the pixel resolution calculated by the actual size comparison unit 2136a and the coordinates of the image. .
  • the pixel resolution map creation unit 2137 a outputs the created pixel resolution map A to the deterioration magnitude estimation unit 214 .
  • the coordinates are coordinates in the vertical direction of the image, that is, in the longitudinal direction of the steel metal. Any type of approximation method may be used, for example, a method such as the least squares method may be used. As shown in FIG.
  • the pixel resolution value of the upper part of the image corresponding to the upper part of the tunnel becomes large.
  • the pixel resolution value of the lower part of the image corresponding to the lower part of the tunnel becomes large. In this way, in the case of an image in which only one metal object is detected, the image is often distorted in the vertical direction. It is possible to improve the accuracy of This allows the distortion correction to be reproduced on the pixel resolution map.
  • the pixel resolution map may be created by linear approximation in the longitudinal direction of the metal rod, or by using an approximation method that considers angles and the like.
  • FIG. 8 is a diagram for explaining the pixel resolution map A created by the pixel resolution map creation unit 2137a when only one metal object is detected.
  • the scale on the right side of the figure expresses the pixel resolution value in the image by shading.
  • the hard metal is photographed from below the tunnel. It can be seen that the pixel resolution value increases in the direction indicated by the arrow symbol in the image.
  • the thinning unit 2134 displays a thin line along the longitudinal direction of the detected hard metal at the center of the width of the hard metal, and thins the width of the hard metal with a line.
  • FIG. 9 shows two hard metal areas and a background area detected as the facility area.
  • the thinning unit 2134 displays thin lines as indicated by dotted lines in FIG. 9, and linearly represents the width of each of the two reinforcing metals.
  • the thinning unit 2134 outputs the thinning result to the installation interval extracting unit 2135 .
  • the installation interval extraction unit 2135 measures the number of pixels corresponding to the interval distance of the fine lines displayed by the thinning unit 2134, and outputs it to the actual size comparison unit 2136b.
  • the installation interval extraction unit 2135 measures the number of pixels corresponding to the interval distance between the thin lines indicated by the arrow symbols in FIG.
  • the vertical position of the distance between objects to be measured may be set freely. For example, as shown in FIG. 9, the number of pixels corresponding to the spacing distance at a plurality of positions on the metal rod may be measured. By measuring the number of pixels for the interval distances at a plurality of positions, the accuracy of the pixel resolution map, which will be described later, can be improved.
  • FIG. 10A and 10B are diagrams showing other examples of acquired images.
  • FIG. 10A is an image taken looking up at the metal object
  • FIG. 10B is an image taken looking down at the metal object.
  • the upper portion of the spacing distance between the reinforcing metals in FIG. 10A and the lower portion of the spacing distance between the reinforcing metals in FIG. 10B are displayed smaller in perspective.
  • the installation interval extraction unit 2135 measures the number of pixels for the interval distance at a plurality of positions.
  • the installation interval extraction unit 2135 may measure the number of pixels for the interval distances at the uppermost position, the center position, and the lowermost position of the fine wire of the metal wire.
  • the actual size comparison unit 2136b calculates the pixel resolution R for each pixel and outputs it to the pixel resolution map creation unit 2137b. Specifically, the actual size comparison unit 2136b compares the number of pixels corresponding to the interval distance between the fine lines of the reinforcing metal in the image measured by the installation interval extraction unit 2135, and the actual size value of the interval distance. 2) Obtain the pixel resolution.
  • R is the pixel resolution for each pixel, and the unit is mm/pixel.
  • L is the actual size of the distance between the metal bars, and the unit is mm.
  • C is the number of pixels (that is, the number of pixels) corresponding to the distance between the metal bars.
  • the actual size comparison unit 2136b divides the actual size value L of the interval distance between the metal parts by the measured number of pixels C to estimate the pixel resolution R.
  • the actual size comparison unit 2136b refers to the storage unit 22, reads out the pre-stored actual size value of the distance between the reinforcing metals, and calculates the pixel resolution R as the value of L.
  • the actual size comparison unit 2136b may calculate the pixel resolution R using the actual size value of the interval distance between the reinforcing metals input via the input unit 24 as the value of L.
  • the pixel resolution map creation unit 2137b creates a pixel resolution map B indicating the pixel resolution of each pixel of the entire image by linearly approximating the relationship between the pixel resolution calculated by the actual size comparison unit 2136b and the coordinates of the image. .
  • the pixel resolution map creation unit 2137 b outputs the created pixel resolution map B to the deterioration magnitude estimation unit 214 .
  • the details of the pixel resolution map creation unit 2137b are the same as those of the pixel resolution map creation unit 2137a, so description thereof will be omitted.
  • the overall pixel resolution of the image may be calculated based on the number of pixels and the actual size values measured for both the width of the hard metal and the distance between the fine lines of the hard metal. This makes it possible to create a pixel resolution map with higher accuracy.
  • the object width extraction unit 2133b measures the number of pixels corresponding to the width of the hard metal and outputs it to the actual size comparison unit 2136c.
  • 11A and 11B show examples of images when the number-of-objects determination unit 2132 determines that the number of metal objects N ⁇ 3.
  • the images of FIGS. 11A and 11B show three hard metal areas and a background area detected as the equipment area. The image was taken toward the back of the tunnel, the right side of the image is the front side of the tunnel, and the left side is the back side. As indicated by the arrow symbol, the hard metal object as the facility area detected toward the far side is displayed smaller due to the perspective method.
  • Other details of the object width extraction unit 2133b are the same as those of the object width extraction unit 2133a, and thus description thereof is omitted.
  • the object width extraction unit 2133b may measure the number of pixels in each width for all detected equipment areas. Alternatively, the object width extracting unit 2133b may identify a plurality of metal objects in descending order of the ratio of the size of the facility area in the image, and measure the number of pixels for the width of only the identified metal objects. As a result, it is possible to omit the process of measuring the number of pixels corresponding to the width of a metal object having an extremely small proportion of the size of the equipment area in the image, that is, the metal object existing on the far side of the cable tunnel.
  • the object width extracting unit 2133b may also measure the number of pixels corresponding to the width of the metal object existing on the far side of the cable tunnel when a deteriorated region is detected on the far side of the image. As a result, the accuracy of the pixel resolution map created by the pixel resolution map creation unit 2137c is increased compared to the case of measuring the width only for the specified hard metal, and the actual size value of the deteriorated region on the far side of the image is estimated with high accuracy. can. In this way, the object width extraction unit 2133b can freely determine which of the detected facility areas the number of pixels of the width is to be measured.
  • FIG. 11B is a diagram illustrating a case where the number of pixels of the interval distance is measured by the thinning unit 2134 and the installation interval extraction unit 2135 instead of the object width extraction unit 2133b.
  • the thinning unit 2134 represents the widths of three or more steel bars in a line shape, and the installation interval extraction unit 2135 measures the number of pixels corresponding to the interval distance of each line.
  • the thinning unit 2134 and the installation interval extraction unit 2135 freely determine the number of pixels of which interval distance among the plurality of interval distances between the plurality of hard metal objects to be measured. can.
  • the actual size comparison unit 2136c calculates the pixel resolution for each pixel and outputs it to the pixel resolution map creation unit 2137c.
  • the details of the actual size comparison section 2136c are the same as those of the actual size comparison section 2136a or the actual size comparison section 2136b, so description thereof will be omitted.
  • the pixel resolution map creation unit 2137c creates a pixel resolution map indicating the pixel resolution of each pixel of the entire image by linearly approximating the relationship between the pixel resolution calculated by the actual size comparison unit 2136c and the coordinates of the image.
  • the pixel resolution map creation unit 2137 c outputs the created pixel resolution map C to the deterioration magnitude estimation unit 214 .
  • the coordinates are in the horizontal direction of the image, that is, in the lateral direction of the metal. Any type of approximation method may be used, for example, a method such as the least squares method may be used. As shown in FIGS.
  • the pixel resolution value of the left side of the image corresponding to the back side of the tunnel is large.
  • the pixel resolution value of the right side of the image corresponding to the front side of the tunnel becomes smaller.
  • the pixel resolution value of the right side of the image increases, and the pixels of the left side of the image The resolution value becomes smaller. In this way, in the case of an image in which three or more metal objects are detected, the image is often distorted in the horizontal direction. It is possible to improve the precision of the value. This allows the distortion correction to be reproduced on the pixel resolution map.
  • the deterioration magnitude estimation unit 214 estimates the actual size value of the deteriorated area detected by the deteriorated area detection unit 212 based on the pixel resolution map created by the pixel resolution estimation unit 213 . This allows the degradation magnitude estimator 214 to evaluate the degradation region. As shown in FIG. 12 , the deterioration magnitude estimation unit 214 includes a deterioration area coordinate acquisition unit 2141 , a deterioration area length estimation unit 2142 and a deterioration area area estimation unit 2143 .
  • the degraded area coordinate acquisition unit 2141 acquires the coordinates in the image of the area detected as the degraded area. According to the acquired coordinate values, the degraded area coordinate acquisition unit 2141 determines which of the degraded area length estimation unit 2142 and the degraded area area estimation unit 2143 performs the next process. 2142 and the deteriorated region area estimation unit 2143, the acquired coordinates are output. For example, when the photographed deterioration in the tunnel is linear deterioration such as a crack whose shape is not uniformly determined, the deterioration area coordinate acquisition unit 2141 determines the deterioration area length estimation unit 2142 from the acquired coordinate values. decides what to do next.
  • the acquired coordinates are output to the deteriorated region length estimating section 2142 .
  • the deteriorated area coordinate acquisition unit 2141 determines that the deteriorated area area estimation unit 2143 performs next processing from the acquired coordinate values. decide to do Then, the acquired coordinates are output to the deteriorated area area estimation unit 2143 .
  • Which of the deteriorated area length estimating unit 2142 and the deteriorated area area estimating unit 2143 should perform the next process may be determined according to preset deterioration area recording items or inspection items.
  • the degraded area length estimation unit 2142 calculates the length of the degraded area from the coordinates indicating the degraded area, and stores the result in the storage unit 22 .
  • FIG. 13A shows an example of coordinates on the image of the acquired deteriorated region. Referring to FIG. 13A, cracks as degraded areas are indicated by dotted lines.
  • the degraded region length estimating unit 2142 calculates, of the coordinates of the degraded region, the point A having the maximum value on the vertical axis (Y axis), the point B having the maximum value on the horizontal axis (X axis), and the point B having the maximum value on the vertical axis (Y).
  • the point C with the minimum value on the X-axis and the point D with the minimum value on the horizontal axis (X-axis) are extracted.
  • Degraded region length estimation section 2142 creates a quadrangle formed by straight lines connecting point A to point D, and the straight line connecting point A and point C among the diagonal lines of the quadrangle has maximum length L′. It is determined that it is max.
  • the degraded region length estimator 2142 may extract points forming an arbitrary polygon according to the shape of the degraded region.
  • the degraded region length estimation unit 2142 may determine any side or diagonal line of the polygon as the maximum length.
  • the degraded region length estimation unit 2142 next plots the coordinates of point A and point C on the pixel resolution map.
  • FIG. 13B is a diagram for explaining a state where points A and C forming the maximum length obtained in FIG. 13A are plotted on the pixel resolution map.
  • the degraded area length estimator 2142 obtains the distance between the plotted points, that is, the actual size value of the maximum length of the degraded area from the pixel resolution value indicated by the pixel resolution map.
  • the degraded region length estimator 2142 forms a right-angled triangle whose oblique side is the straight line connecting the plotted points A and C.
  • the degraded region length estimation unit 2142 calculates the pixel resolution of pixels corresponding to a straight line extending downward along the vertical axis from point A and a straight line extending leftward from point C along the horizontal axis, which form a right angle. Measure and determine the actual size of each straight line.
  • the deteriorated region length estimation unit 2142 sums 30.25 mm, which is the value obtained by squaring 5.5 mm, and 11.56 mm, which is the value obtained by squaring 3.4 mm, to calculate a value of 41.81 mm. . Then, the square root of the value of 41.81 mm is obtained, and the value of 6.5 mm is calculated by rounding off to the second decimal place. Thus, it is determined that the actual length of the oblique side L'max is 6.5 mm.
  • the degraded region length estimation unit 2142 calculates the pixel resolution corresponding to the straight line between the coordinates indicating the degraded region. may be simply summed up to calculate the actual size of the straight line.
  • the deteriorated area area estimation unit 2143 obtains the area of the deteriorated area and stores the result in the storage unit 22 . Specifically, the deteriorated area area estimation unit 2143 plots the acquired coordinate values of the deteriorated area on the pixel resolution map. The degraded area area estimation unit 2143 identifies the pixel resolution value of each pixel corresponding to the degraded area based on the plotted coordinates. Next, the deteriorated area area estimation unit 2143 squares each of the specified pixel resolution values to obtain the actual size value of the area per pixel. The deteriorated area area estimator 2143 adds the obtained actual size values of the area per pixel, and calculates the total value as the actual size value of the area of the entire deteriorated region.
  • the degradation assessment device 20 may be a computer capable of executing program instructions.
  • the computer stores a program describing the processing details for realizing each function of the deterioration evaluation apparatus 20 in the memory of the computer, and the processor of the computer reads and executes the program. A part of these processing contents may be realized by hardware.
  • the computer may be a general purpose computer, a special purpose computer, a workstation, a PC, an electronic notepad, or the like.
  • Program instructions may be program code, code segments, etc. for performing the required tasks.
  • the processor may be a CPU, GPU, DSP (Digital Signal Processor), or the like.
  • this program may be recorded on a computer-readable recording medium.
  • the recording medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as a CD-ROM or a DVD-ROM.
  • This program can also be provided by download over a network.
  • step S1 the photographing device 10 photographs the deteriorated part inside the tunnel and the facilities inside the tunnel.
  • the photographing device 10 transmits photographed image data to the deterioration evaluation device 20 .
  • step S ⁇ b>2 the communication unit 23 of the deterioration evaluation device 20 receives image data from the imaging device 10 .
  • the control unit 21 of the deterioration evaluation device 20 acquires the received image.
  • step S3 the facility area detection unit 211 of the deterioration evaluation device 20 detects the facility area from the acquired image.
  • hard metal is detected as an equipment area.
  • the equipment area detection unit 211 may notify the photographing device 10 to that effect.
  • the equipment area detection unit 211 outputs the detection result to the pixel resolution estimation unit 213 .
  • step S4 the degraded area detection unit 212 of the degradation evaluation device 20 detects degraded areas from the acquired image.
  • Degraded area detection section 212 outputs the detection result to degradation magnitude estimation section 214 .
  • steps S3 and S4 may be changed, and the processes of steps S3 and S4 may be performed simultaneously.
  • step S5 the pixel resolution estimation unit 213 of the deterioration evaluation device 20 estimates the pixel resolution of at least part of the image based on the detected facility area.
  • 15A and 15B show a specific processing flow of pixel resolution estimation in step S5 of FIG. 14A.
  • step S6 the number-of-objects extraction unit 2131 extracts the number of solid metal objects detected as the facility area.
  • the number-of-objects extraction unit 2131 outputs the extracted result to the number-of-objects determination unit 2132 .
  • the object width extracting unit 2133a measures the number of pixels corresponding to the width of the metal object.
  • the position of the width of the object to be measured may be freely set, and the number of pixels corresponding to the width at a plurality of positions of the hard metal may be measured.
  • the object width extraction unit 2133a may measure the number of pixels for widths at the top, center, and bottom positions of the metal object in the vertical direction.
  • the object width extraction unit 2133a outputs the measurement result to the actual size comparison unit 2136a.
  • the actual size comparison unit 2136a calculates the pixel resolution for each pixel. Specifically, the actual size comparison unit 2136a compares the number of pixels corresponding to the width of the metal rod in the image measured in step S8 with the actual size value of the metal rod pre-stored in the storage unit 22. Then, the pixel resolution is obtained from the above equation (1). The actual size comparison unit 2136a outputs the calculated result to the pixel resolution map generation unit 2137a.
  • the pixel resolution map creation unit 2137a In step S10, the pixel resolution map creation unit 2137a generates a pixel resolution map A representing the pixel resolution of each pixel of the entire image by linearly approximating the relationship between the pixel resolution calculated by the actual size comparison unit 2136a and the coordinates of the image. to create The pixel resolution map is created by linear approximation in the longitudinal direction of the metal.
  • the pixel resolution map creation unit 2137 a outputs the created pixel resolution map A to the deterioration magnitude estimation unit 214 .
  • step S11 the thinning unit 2134 displays a thin line along the longitudinal direction of the detected hard metal at the center of the width of the hard metal, and performs thinning processing to linearly represent the width of the hard metal.
  • the thinning unit 2134 outputs the thinning result to the installation interval extracting unit 2135 .
  • step S12 of FIG. 15B the installation interval extraction unit 2135 measures the number of pixels corresponding to the interval distance of the fine lines displayed by the thinning unit 2134, and outputs it to the actual size comparison unit 2136b.
  • the vertical position of the interval distance to be measured may be freely set, and the number of pixels corresponding to the interval distance at a plurality of positions of the thin line may be measured.
  • the actual size comparison unit 2136b calculates the pixel resolution for each pixel and outputs it to the pixel resolution map creation unit 2137b. Specifically, the actual size comparison unit 2136b compares the number of pixels corresponding to the distance between the thin lines represented by the steel metal in the image measured in step S12 and the steel metal pre-stored in the storage unit 22. is compared with the actual size value of the interval distance, and the pixel resolution is obtained by the above equation (2).
  • step S14 the pixel resolution map creation unit 2137b performs linear approximation of the relationship between the pixel resolution calculated by the actual size comparison unit 2136b and the coordinates of the image, thereby generating a pixel resolution map B indicating the pixel resolution of each pixel of the entire image. to create The pixel resolution map creation unit 2137 b outputs the created pixel resolution map B to the deterioration magnitude estimation unit 214 .
  • the object width extraction unit 2133b measures the number of pixels corresponding to the width of the metal object.
  • the object width extraction unit 2133b may measure the number of pixels in each width of all the detected metal objects.
  • the object width extracting unit 2133b may identify a plurality of metal objects in descending order of the ratio of the size of the facility area in the image, and measure the number of pixels for the width of only the identified metal objects.
  • the object width extraction unit 2133b outputs the measurement result to the actual size comparison unit 2136c.
  • the actual size comparison unit 2136c calculates the pixel resolution for each pixel.
  • the details of the processing of step S16 are the same as those of step S9 or step S13, and thus the description thereof is omitted.
  • the actual size comparison unit 2136c outputs the calculated result to the pixel resolution map creation unit 2137c.
  • step S17 the pixel resolution map creation unit 2137c linearly approximates the relationship between the pixel resolution calculated by the actual size comparison unit 2136c and the coordinates of the image, thereby generating a pixel resolution map indicating the pixel resolution of each pixel of the entire image. create C.
  • the pixel resolution map is created by linear approximation in the transverse direction of the metal.
  • the pixel resolution map creation unit 2137 c outputs the created pixel resolution map C to the deterioration magnitude estimation unit 214 .
  • the pixel resolution estimation unit 213 finishes estimating the pixel resolution.
  • step S18 the deteriorated area coordinate acquisition unit 2141 of the deterioration magnitude estimation unit 214 acquires the coordinates in the image of the area detected as the deteriorated area.
  • step S19 in FIG. 14B the deteriorated area coordinate acquisition unit 2141 determines which of the deteriorated area length estimation unit 2142 and the deteriorated area area estimation unit 2143 performs the next process according to the acquired coordinate values. , the degraded region length estimator 2142 and the degraded region area estimator 2143 . Degraded region coordinate acquisition section 2141 determines that degraded region length estimation section 2142 performs next processing when the degradation region is linear degradation, and outputs the acquired coordinates to degradation region length estimation section 2142. do. In this case, the process proceeds to step S20.
  • Degraded area coordinate acquisition section 2141 determines that degraded area area estimation section 2143 performs next processing when the degraded area has a shape having an area, and outputs the acquired coordinates to degraded area area estimation section 2143 . In this case, the process proceeds to step S21.
  • step S20 the degraded region length estimator 2142 calculates the length of the degraded region from the coordinates indicating the degraded region.
  • the degraded region length estimation unit 2142 stores the calculated result in the storage unit 22 .
  • the length to be calculated may be set freely.
  • the degraded region length estimator 2142 extracts points that form an arbitrary polygon according to the shape of the degraded region, and determines one of the diagonals of the polygon as the maximum length. do. For example, referring to FIG. 13A, cracks are indicated by dashed lines as degraded regions.
  • the degraded region length estimating unit 2142 calculates, of the coordinates of the degraded region, the point A having the maximum value on the vertical axis (Y axis), the point B having the maximum value on the horizontal axis (X axis), and the point B having the maximum value on the vertical axis (Y).
  • the point C with the minimum value on the X-axis and the point D with the minimum value on the horizontal axis (X-axis) are extracted.
  • the degraded region length estimating unit 2142 creates a quadrangle formed by straight lines connecting points A to D, and the straight line connecting points A and C among the diagonals of the quadrangle has the maximum length L′. It is determined that it is max.
  • the degraded area length estimation unit 2142 plots the coordinates of the point forming the maximum length on any one of the pixel resolution maps AC. Then, the degraded area length estimator 2142 obtains the distance between the plotted points, that is, the actual size value of the maximum length of the degraded area from the pixel resolution value indicated by the pixel resolution map. For example, FIG. 13B shows points A and C forming the maximum length plotted on a pixel resolution map. The degraded area length estimator 2142 obtains the distance of the plotted coordinate values, ie, the actual size value of the maximum length of the degraded area, from the pixel resolution value indicated by the pixel resolution map. On the pixel resolution map of FIG.
  • the degraded region length estimator 2142 forms a right-angled triangle whose oblique side is the straight line connecting the plotted points A and C.
  • FIG. The degraded region length estimation unit 2142 calculates the pixel resolution of pixels corresponding to a straight line extending downward along the vertical axis from point A and a straight line extending leftward from point C along the horizontal axis, which form a right angle. Measure and determine the actual size of each straight line. From FIG. 13B, the deteriorated region length estimator 2142 totals the pixel resolution values of the pixels corresponding to the straight line extending from the point A, and calculates that the actual size value of the straight line is 5.5 mm.
  • the pixel resolution values of the pixels corresponding to the straight line extending from the point C are totaled to calculate that the actual size value of the straight line is 3.4 mm. Then, the deteriorated region length estimation unit 2142 calculates that the actual size value of the oblique side connecting the points A and C is 6.5 mm by the Pythagorean theorem.
  • step S21 the degraded area area estimation unit 2143 calculates the area of the degraded area.
  • the deteriorated area area estimation unit 2143 stores the calculated result in the storage unit 22 .
  • the degraded area area estimation unit 2143 plots the acquired coordinate values of the degraded area on one of the pixel resolution maps AC.
  • the degraded area area estimation unit 2143 identifies the pixel resolution value of each pixel corresponding to the degraded area based on the plotted coordinates.
  • the deteriorated area area estimation unit 2143 squares each of the specified pixel resolution values to obtain the actual size value of the area per pixel.
  • the deteriorated area area estimator 2143 adds the obtained actual size values of the area per pixel, and calculates the total value as the actual size value of the area of the entire deteriorated region.
  • the deterioration magnitude estimation unit 214 estimates the actual size value of the deteriorated area detected by the deteriorated area detection unit 212 based on the pixel resolution map created by the pixel resolution estimation unit 213.
  • step S ⁇ b>22 the control unit 21 of the deterioration evaluation device 20 reads information indicating the estimated actual size of the deteriorated region from the storage unit 22 and transmits the information to the server device 30 via the communication unit 23 .
  • step S23 the server device 30 receives the information indicating the actual size of the deteriorated area and stores it in the storage section of the server device 30.
  • the deterioration evaluation apparatus 20 includes the equipment area detection unit 211 that detects the equipment area from the acquired image, the deterioration area detection unit 212 that detects the deterioration area from the image, and the detected equipment area and a deterioration size estimation unit 214 for estimating the size of the deteriorated region based on the pixel resolution.
  • the actual size value of the deteriorated area can be estimated. Therefore, it is possible to provide a deterioration evaluation device and a deterioration evaluation method capable of evaluating the actual size value of a deteriorated region without being limited to certain photographing conditions.
  • the pixel resolution estimation unit 213 creates a pixel resolution map of the entire image by approximating the relationship between the coordinates of the image and the pixel resolution.
  • a creation unit 2137 is further provided.
  • a degradation size estimation unit 214 estimates the size of the degradation region based on the pixel resolution indicated by the pixel resolution map.
  • the pixel resolution map of the entire image can be grasped in a unified manner.
  • the actual size of the degraded region can be easily estimated. Therefore, it is possible to provide a deterioration evaluation device and a deterioration evaluation method capable of evaluating the actual size value of a deteriorated region without being limited to certain photographing conditions.
  • the pixel resolution estimation unit 213 includes the object number extraction unit 2131 that extracts the number of facilities indicated by the facility area, and the number of extracted facilities. It further includes an actual size comparison unit 2136 for estimating the pixel resolution by comparing the number of pixels indicating the facility area and the actual size value.
  • a method of estimating pixel resolution is selected according to the number of facilities. This makes it possible to estimate the pixel resolution of an image with higher accuracy. Therefore, it is possible to provide a deterioration evaluation device and a deterioration evaluation method capable of evaluating the actual size value of a deteriorated region without being limited to certain photographing conditions.
  • the pixel resolution estimation unit 213 selects pixels corresponding to the width of the facility. It further comprises an object width extractor 2133 that measures the number.
  • the actual size comparison unit 2136 divides the actual size value of the width of the facility by the number of pixels measured to estimate the pixel resolution.
  • the pixel resolution can be accurately estimated based on the number of pixels corresponding to the width of the facility and the known actual width of the facility.
  • the image in which only one metal object was detected was an image taken relatively close to the tunnel wall, and the deteriorated area was often reflected near the metal object.
  • the actual size value of the degraded region can be accurately estimated.
  • images in which three or more metal objects are detected are often images shot from the front to the back of the cable tunnel. highly sexual.
  • the actual size value of such a deteriorated region can also be accurately estimated. Therefore, it is possible to provide a deterioration evaluation apparatus and a deterioration evaluation method capable of evaluating the actual size value of a deteriorated region without being limited to certain photographing conditions.
  • the pixel resolution estimation unit 213 performs thinning to express the width of the facilities linearly. 2134, and an installation interval extraction unit 2135 for measuring the number of pixels corresponding to the interval distance between fine lines.
  • the actual size comparison unit 2136 divides the actual size value of the gap distance by the measured number of pixels to estimate the pixel resolution.
  • the facilities are represented by thin lines, and the accuracy The pixel resolution can be estimated well. Based on the actual size of the separation distance between the metal objects and the number of pixels measured, the overall pixel resolution of the image can be made closer to the actual size value, even if the two steel objects are not close to the center of the image. can be reproduced in the near future. Therefore, it is possible to provide a deterioration evaluation apparatus and a deterioration evaluation method capable of evaluating the actual size value of a deteriorated region without being limited to certain photographing conditions.
  • control unit 21 of the deterioration evaluation device 20 may further include an equipment area correction unit 215 .
  • the facility area correction unit 215 performs at least one of a process of deleting an overdetected area from the facility area and a process of interpolating a segmented area in the facility area.
  • An over-detected area is an area where the equipment area detection unit 211 has detected an area other than the equipment area as the equipment area. For example, when a background area in an image is detected as an equipment area, the detected area is called an overdetected area.
  • the equipment area correction unit 215 binarizes the result detected by the equipment area detection unit 211 based on the density of the pixels, refers to pixels in an arbitrary peripheral range of 4 or 8 neighborhoods of the target pixel, and obtains the same value , the pixels with the same value are taken as one connected pixel.
  • the facility area correction unit 215 deletes connected pixels whose sizes are equal to or smaller than the threshold. The threshold in this case may be set arbitrarily.
  • the facility area correction unit 215 After deleting the overdetected area, the facility area correction unit 215 generates a corrected facility area by correcting the facility area.
  • FIG. 16B shows the corrected equipment area with the over-detected area removed in FIG. 16A.
  • FIG. 17A an arrow symbol indicates a segmented facility area due to the presence of a cable or a bracket for supporting the cable on the front face of the steel. Detection of the segmented regions may be performed by any image analysis method.
  • the facility region correction unit 215 interpolates the segmented regions by, for example, a morphological conversion method. Also, although the type of morphological transformation is not limited, it is effective and desirable to perform a closing process in which an erosion process is performed after an expansion process.
  • the facility area correction unit 215 After interpolating the divided area, the facility area correction unit 215 generates a corrected facility area by correcting the facility area.
  • FIG. 17B shows the corrected equipment area with the fragmented area detected in FIG. 17A interpolated.
  • the equipment area correction unit 215 can perform processing after the equipment area detection unit 211 performs processing.
  • the number-of-objects extraction unit 2131 included in the pixel resolution estimation unit 213 can extract the number of facilities indicated by the corrected facility area generated by the facility area correction unit 215 .
  • the equipment area correction unit 215 may be able to detect divided areas in the degraded areas detected not only by the equipment area detection unit 211 but also by the degraded area detection unit 212 and interpolate the areas. In this case, the equipment area correction unit 215 can execute processing after the processing of the deteriorated area detection unit 212 .
  • the deterioration evaluation apparatus 20 performs at least one of the process of deleting the overdetected area from the equipment area and the process of interpolating the divided area in the equipment area. Further includes an equipment area correction unit 215 that generates a corrected equipment area by correcting The object number extraction unit 2131 extracts the number of facilities indicated by the corrected facility area.
  • this modified example it is possible to accurately grasp the number of facilities in an image by deleting overdetected areas or interpolating divided areas. Therefore, the pixel resolution can be estimated more accurately, and the actual size value of the degraded area can be estimated. Therefore, it is possible to provide a deterioration evaluation device and a deterioration evaluation method capable of evaluating the actual size value of a deteriorated region without being limited to certain photographing conditions.
  • the pixel resolution map created by the pixel resolution map creation unit 2137a, the pixel resolution map creation unit 2137b, or the pixel resolution map creation unit 2137c may have two-dimensional angles.
  • the pixel resolution of the entire image changes in both the horizontal and vertical directions of the image.
  • the image is angled and three metal objects are detected.
  • the object width extraction unit 2133b, the thinning unit 2134, and the installation interval extraction unit 2135 measure the pixels corresponding to the width and the installation interval of the reinforcing metal.
  • the dimension comparison unit 2136c estimates the pixel resolution in both the longitudinal direction and the lateral direction of the metal rod. Then, the pixel resolution map creation unit 2137b and the pixel resolution map creation unit 2137c create a pixel resolution map D that changes two-dimensionally.
  • FIG. 20 is a diagram for explaining the pixel resolution map D created based on the image shown in FIG.
  • the scale on the right side of the figure expresses the pixel resolution value in the image by shading. Looking at FIG. 20, it can be seen that the pixel resolution value increases along the direction indicated by the two arrow symbols in the image, that is, from the upper right to the lower left of the image. Thus, in the pixel resolution map D, the pixel resolution values change two-dimensionally with angles.
  • this modified example it is possible to estimate the pixel resolution in consideration of the imaging angle of the image and create a pixel resolution map. Therefore, it is possible to provide a deterioration evaluation apparatus and a deterioration evaluation method capable of evaluating the actual size value of a deteriorated region without being limited to certain photographing conditions.

Abstract

A deterioration evaluation device (20) according to this disclosure comprises a facility area detection unit (211) for detecting a facility area from an acquired image, a deterioration area detection unit (212) for detecting a deterioration area from the image, a pixel resolution estimation unit (213) for estimating the pixel resolution of at least a portion of the image on the basis of the detected facility area, and a deterioration size estimation unit (214) for estimating the size of the deterioration area on the basis of the pixel resolution.

Description

劣化評価装置、劣化評価方法及びプログラムDeterioration evaluation device, deterioration evaluation method and program
 本開示は、劣化評価装置、劣化評価方法及びプログラムに関する。 The present disclosure relates to a deterioration evaluation device, a deterioration evaluation method, and a program.
 画像処理を用いて構造物表面に発生する劣化を検出する手法が存在する。近年では、深層学習におけるセグメンテーション手法が用いられている。劣化領域の定量的な評価を行う技術として、画像中にクラックスケールを収めることにより、スケールから劣化領域の定量的な評価を行う技術(非特許文献1参照)、撮影対象との距離を一定に保つ機構を有した撮影機材を用いて画像を取得し、画素分解能から劣化領域の定量的な評価を行う技術(非特許文献2参照)などが知られている。 There is a method for detecting deterioration that occurs on the surface of structures using image processing. In recent years, segmentation methods have been used in deep learning. As a technique for quantitatively evaluating the deteriorated area, a technique for quantitatively evaluating the deteriorated area from the scale by embedding the crack scale in the image (see Non-Patent Document 1), and keeping the distance to the photographing object constant. A technique is known in which an image is acquired using imaging equipment having a mechanism for maintaining the image, and a degraded region is quantitatively evaluated from the pixel resolution (see Non-Patent Document 2).
 従来の劣化領域の定量評価を行う技術は、撮影画像に何かしらの工夫を施す必要があった。そのため、一定の撮影条件が満たされずに撮影された画像に対して、セグメンテーション手法等の画像処理アルゴリズムを用いて劣化領域の定量評価を行うことは困難であり、改善の余地があった。  Conventional techniques for quantitative evaluation of degraded areas required some ingenuity in the captured images. Therefore, it is difficult to quantitatively evaluate the degraded region using an image processing algorithm such as a segmentation method for images captured without satisfying certain imaging conditions, and there is room for improvement.
 かかる事情に鑑みてなされた本開示の目的は、一定の撮影条件に限定されずに劣化領域の実寸値を評価可能な劣化評価装置、劣化評価方法及びプログラムを提供することである。 An object of the present disclosure, which has been made in view of such circumstances, is to provide a deterioration evaluation device, a deterioration evaluation method, and a program capable of evaluating the actual size value of a deteriorated region without being limited to certain shooting conditions.
 上述の課題を解決するため、本開示に係る劣化評価装置は、取得した画像から設備領域を検出する設備領域検出部と、前記画像から劣化領域を検出する劣化領域検出部と、検出した前記設備領域に基づいて、前記画像の少なくとも一部の画素分解能を推定する画素分解能推定部と、前記画素分解能に基づいて前記劣化領域の大きさを推定する劣化大きさ推定部と、を備える。 In order to solve the above-described problems, the deterioration evaluation apparatus according to the present disclosure includes an equipment area detection unit that detects an equipment area from an acquired image, a deteriorated area detection unit that detects a deteriorated area from the image, and the detected equipment A pixel resolution estimating unit that estimates pixel resolution of at least part of the image based on the area, and a degradation size estimating unit that estimates the size of the degraded area based on the pixel resolution.
 また、本開示に係る劣化評価方法は、劣化評価装置により劣化を評価する劣化評価方法であって、取得した画像から設備領域を検出するステップと、前記画像から劣化領域を検出するステップと、検出した前記設備領域に基づいて、前記画像の少なくとも一部の画素分解能を推定するステップと、前記画素分解能に基づいて前記劣化領域の大きさを推定するステップと、を含む。 Further, a deterioration evaluation method according to the present disclosure is a deterioration evaluation method for evaluating deterioration by a deterioration evaluation device, and includes a step of detecting an equipment area from an acquired image, a step of detecting a deteriorated area from the image, and a step of detecting estimating a pixel resolution of at least a portion of the image based on the facility area obtained; and estimating a size of the degraded area based on the pixel resolution.
 また、本開示に係るプログラムは、コンピュータを本開示に係る劣化評価装置として機能させる。 Also, the program according to the present disclosure causes a computer to function as the deterioration evaluation device according to the present disclosure.
 本開示によれば、一定の撮影条件に限定されずに劣化領域の実寸値を評価することができる。 According to the present disclosure, it is possible to evaluate the actual size value of the deteriorated region without being limited to certain shooting conditions.
本開示の一実施形態に係る劣化評価システムを説明するための図である。1 is a diagram for explaining a deterioration evaluation system according to an embodiment of the present disclosure; FIG. とう道を簡略化して示す図である。It is a figure which simplifies and shows a tunnel. 本開示の一実施形態に係る劣化評価装置の構成を示すブロック図である。1 is a block diagram showing the configuration of a deterioration evaluation device according to an embodiment of the present disclosure; FIG. 劣化評価装置が取得した画像の一例を示す図である。It is a figure which shows an example of the image which the deterioration evaluation apparatus acquired. 劣化評価装置が取得した画像の一例を示す図である。It is a figure which shows an example of the image which the deterioration evaluation apparatus acquired. 本開示の一実施形態に係る画素分解能推定部の構成を示すブロック図である。4 is a block diagram showing the configuration of a pixel resolution estimation unit according to an embodiment of the present disclosure; FIG. 物体数NがN=1であると判断された場合の画像の一例を示す図である。FIG. 10 is a diagram showing an example of an image when it is determined that the number of objects N is N=1; 物体数NがN=1であると判断された場合の画像の別の例を示す図である。FIG. 10 is a diagram showing another example of an image when the number of objects N is determined to be N=1; 物体数NがN=1であると判断された場合の画像の別の例を示す図である。FIG. 10 is a diagram showing another example of an image when the number of objects N is determined to be N=1; 画素分解能マップを説明するための図である。FIG. 4 is a diagram for explaining a pixel resolution map; FIG. 物体数NがN=2であると判断された場合の画像の一例を示す図である。FIG. 10 is a diagram showing an example of an image when it is determined that the number of objects N is N=2; 物体数NがN=2であると判断された場合の画像の別の例を示す図である。FIG. 10 is a diagram showing another example of an image when the number of objects N is determined to be N=2; 物体数NがN=2であると判断された場合の画像の別の例を示す図である。FIG. 10 is a diagram showing another example of an image when the number of objects N is determined to be N=2; 物体数NがN≧3であると判断された場合の画像の一例を示す図である。FIG. 10 is a diagram showing an example of an image when it is determined that the number of objects N is N≧3; 物体数NがN≧3であると判断された場合の画像の別の例を示す図である。FIG. 10 is a diagram showing another example of an image when it is determined that the number of objects N is N≧3; 本開示の一実施形態に係る劣化大きさ推定部の構成を示すブロック図である。4 is a block diagram showing the configuration of a degradation magnitude estimator according to an embodiment of the present disclosure; FIG. 劣化領域の座標の一例を説明するための図である。FIG. 4 is a diagram for explaining an example of coordinates of a deteriorated area; FIG. 劣化領域の座標が画素分解能マップ上にプロットされた状態を説明するための図である。FIG. 4 is a diagram for explaining a state in which coordinates of a degraded area are plotted on a pixel resolution map; 本開示の一実施形態に係る劣化評価システムの動作を示す図である。FIG. 3 is a diagram showing the operation of a deterioration assessment system according to an embodiment of the present disclosure; FIG. 本開示の一実施形態に係る劣化評価システムの動作を示す図である。FIG. 3 is a diagram showing the operation of a deterioration assessment system according to an embodiment of the present disclosure; FIG. 本開示の一実施形態に係る劣化評価装置の制御部の動作を示す図である。It is a figure which shows operation|movement of the control part of the deterioration evaluation apparatus which concerns on one Embodiment of this indication. 本開示の一実施形態に係る劣化評価装置の制御部の動作を示す図である。It is a figure which shows operation|movement of the control part of the deterioration evaluation apparatus which concerns on one Embodiment of this indication. 変形例1に係る設備領域修正部を説明するための図である。FIG. 11 is a diagram for explaining an equipment area correction unit according to Modification 1; 変形例1に係る設備領域修正部を説明するための図である。FIG. 11 is a diagram for explaining an equipment area correction unit according to Modification 1; 変形例1に係る設備領域修正部を説明するための図である。FIG. 11 is a diagram for explaining an equipment area correction unit according to Modification 1; 変形例1に係る設備領域修正部を説明するための図である。FIG. 11 is a diagram for explaining an equipment area correction unit according to Modification 1; 変形例1に係る設備領域修正部を説明するための図である。FIG. 11 is a diagram for explaining an equipment area correction unit according to Modification 1; 変形例2に係る劣化評価装置が取得した画像の一例を示す図である。FIG. 11 is a diagram showing an example of an image acquired by a deterioration evaluation device according to modification 2; 変形例2に係る画素分解能マップを説明するための図である。FIG. 11 is a diagram for explaining a pixel resolution map according to modification 2;
 以下、本開示の実施形態について適宜図面を参照しながら説明する。各図面中、同一又は相当する部分には、同一符号を付している。本実施形態の説明において、同一又は相当する部分については、説明を適宜省略又は簡略化する。以下に説明する実施形態は本開示の構成の例であり、本開示は、以下の実施形態に制限されるものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings as appropriate. In each drawing, the same reference numerals are given to the same or corresponding parts. In the description of this embodiment, the description of the same or corresponding parts will be omitted or simplified as appropriate. The embodiments described below are examples of the configuration of the present disclosure, and the present disclosure is not limited to the following embodiments.
<劣化評価システムの構成>
 図1を参照して、本実施形態に係る劣化評価システム1の構成の一例について説明する。
<Configuration of deterioration evaluation system>
An example of the configuration of a deterioration evaluation system 1 according to this embodiment will be described with reference to FIG.
 劣化評価システム1は、構造物の撮影画像から設備の既知情報を用いて、構造物本体に発生する劣化の定量評価を行うシステムである。劣化評価システム1においては、画像処理アルゴリズムを用いて、撮影画像から劣化領域と、既知の設備とが検出される。次に、検出された設備に関する既知寸法と画像上の画素数とが比較され、各位置における画素分解能が推定される。そして、推定された画素分解能に基づいて劣化領域の実寸値が算出される。これにより、一定の撮影条件に限定されずに劣化領域の実寸値を推定することができる。 The deterioration evaluation system 1 is a system that quantitatively evaluates the deterioration occurring in the structure body using the known information of the equipment from the photographed images of the structure. In the deterioration evaluation system 1, an image processing algorithm is used to detect a deteriorated area and known facilities from a photographed image. The known dimensions for the detected equipment are then compared to the number of pixels on the image to estimate the pixel resolution at each location. Then, the actual size value of the degraded area is calculated based on the estimated pixel resolution. This makes it possible to estimate the actual size of the degraded area without being limited to certain shooting conditions.
 構造物は、本実施形態ではとう道をいう。とう道とは、通信ケーブル敷設用の地下トンネルである。これに限られず、構造物は例えば、ガス管又は送電線等の敷設用のトンネル、又はマンホール等を含む。設備は、本実施形態では、金物設備の一部である筋金物である。検出の対象となる劣化は、撮影画像におけるとう道本体に発生している損傷、汚れ等である。劣化は設備に発生している損傷、汚れ等であってもよい。 A structure refers to a tunnel in this embodiment. A tunnel is an underground tunnel for laying telecommunication cables. Structures include, but are not limited to, for example, tunnels for laying gas pipes or power lines, or manholes. The equipment, in this embodiment, is hard metal that is part of the hardware equipment. Deterioration to be detected includes damage, stains, etc. occurring in the tunnel main body in the photographed image. The deterioration may be damage, dirt, etc. occurring in the equipment.
 図2は、とう道を簡略化して示す図である。とう道の上部から下部までのZ軸方向の高さ、及びX軸方向の幅は、例えば約3メートルである。とう道は、図2に示すように円形の断面形状の他、矩形の断面形状を有していてもよい。とう道内には、作業者が入って通信ケーブルの敷設、接続、保守、修理、撤去等の作業を行う。とう道内には、通信ケーブルを収容する金物設備、照明、換気設備、排水設備等が設けられる。金物設備は、とう道の壁面に固定された平板状の筋金物と、筋金物に取り付けられて、通信ケーブルを支持する受金物と、を備える。本実施形態において筋金物は約8cmの幅を有するが、これに限定されない。筋金物は図2のZ軸方向に延在し、とう道の奥行方向であるY軸方向に一定の間隔で設置されている。図2のZ軸方向は筋金物の長手方向、Y軸方向は筋金物の短手方向を指す。 Figure 2 is a simplified diagram of a tunnel. The height in the Z-axis direction from the top to the bottom of the tunnel and the width in the X-axis direction are, for example, about 3 meters. The tunnel may have a rectangular cross-sectional shape as well as a circular cross-sectional shape as shown in FIG. Workers enter the tunnel and perform work such as laying, connecting, maintaining, repairing, and removing communication cables. In the tunnel, hardware equipment for housing communication cables, lighting, ventilation equipment, drainage equipment, etc. are installed. The hardware equipment includes a flat steel metal piece fixed to the wall surface of the cable tunnel, and a receiving metal piece attached to the metal metal piece to support the communication cable. In this embodiment, the hard metal has a width of about 8 cm, but is not limited to this. The steel bars extend in the Z-axis direction in FIG. 2 and are installed at regular intervals in the Y-axis direction, which is the depth direction of the cable tunnel. The Z-axis direction in FIG. 2 indicates the longitudinal direction of the metal rod, and the Y-axis direction indicates the lateral direction of the metal rod.
 図1を再び参照すると、劣化評価システム1は、撮影装置10と、劣化評価装置20と、サーバ装置30と、を備える。撮影装置10、劣化評価装置20、サーバ装置30は、それぞれ、有線又は無線により通信可能に接続されている。各装置間で情報を送受信するための通信方法は、特に限定されない。 Referring to FIG. 1 again, the deterioration evaluation system 1 includes an imaging device 10, a deterioration evaluation device 20, and a server device 30. The photographing device 10, the deterioration evaluation device 20, and the server device 30 are connected by wire or wirelessly so as to be able to communicate with each other. A communication method for transmitting and receiving information between devices is not particularly limited.
 撮影装置10は、とう道内を撮影する機能を有する装置であり、例えば、スマートフォン、タブレット端末、ノートPC(personal computer)、無人飛行体等である。撮影装置10は、撮影した画像のデータを、劣化評価装置20へ送信する。撮影された画像には、とう道内の設備の少なくとも一部が写り込んでいる。撮影装置10の数は1つに限られず、複数であってもよい。撮影装置10は、劣化評価装置20と一体化されていてもよい。 The photographing device 10 is a device that has a function of photographing the inside of the tunnel, and is, for example, a smartphone, a tablet terminal, a notebook PC (personal computer), an unmanned flying object, or the like. The photographing device 10 transmits data of the photographed image to the deterioration evaluation device 20 . At least part of the equipment in the tunnel is reflected in the captured image. The number of imaging devices 10 is not limited to one, and may be plural. The imaging device 10 may be integrated with the deterioration evaluation device 20 .
 劣化評価装置20は、スマートフォン又はタブレット端末等の任意の電子機器である。劣化評価装置20は、汎用コンピュータ、専用コンピュータ、又はPC(Personal Computer)であってもよい。劣化評価装置20は、とう道内で点検を行う作業者に使用されてもよい。劣化評価装置20は、撮影装置10から、撮影された画像のデータを受信する。詳細は後述するが、劣化評価装置20は、受信した撮影画像に基づいて、設備領域及び劣化領域を検出し、画素分解能を推定し、劣化領域の大きさを推定する。劣化評価装置20は、推定した劣化領域の実寸値を示す情報を、ネットワークを介してサーバ装置30へ送信する。 The deterioration evaluation device 20 is any electronic device such as a smartphone or tablet terminal. The deterioration evaluation device 20 may be a general-purpose computer, a dedicated computer, or a PC (Personal Computer). The deterioration evaluation device 20 may be used by workers who perform inspections in tunnels. The deterioration evaluation device 20 receives the data of the captured image from the imaging device 10 . Although the details will be described later, the deterioration evaluation device 20 detects the facility area and the deteriorated area based on the received photographed image, estimates the pixel resolution, and estimates the size of the deteriorated area. The deterioration evaluation device 20 transmits information indicating the estimated actual size of the deteriorated region to the server device 30 via the network.
 サーバ装置30は、データセンタなどの施設に設置されてもよい。サーバ装置30は、劣化評価装置20から、ネットワークを介して設備の劣化領域の実寸値を示す情報を受信する。サーバ装置30は、劣化領域の実寸値を示す情報をサーバ装置30の記憶部に格納する。 The server device 30 may be installed in a facility such as a data center. The server device 30 receives information indicating the actual size of the deteriorated area of the equipment from the deterioration evaluation device 20 via the network. The server device 30 stores information indicating the actual dimension value of the degraded area in the storage unit of the server device 30 .
<劣化検出装置>
 図3から図13Bを参照して、本実施形態に係る劣化評価装置20の構成の一例について説明する。
<Deterioration detector>
An example of the configuration of the deterioration evaluation device 20 according to this embodiment will be described with reference to FIGS. 3 to 13B.
 図3に示すように、劣化評価装置20は、制御部21と、記憶部22と、通信部23と、入力部24と、出力部25と、を備える。制御部21は、設備領域検出部211と、劣化領域検出部212と、画素分解能推定部213と、劣化大きさ推定部214と、を備える。 As shown in FIG. 3, the deterioration evaluation device 20 includes a control unit 21, a storage unit 22, a communication unit 23, an input unit 24, and an output unit 25. The control unit 21 includes an equipment area detection unit 211 , a deterioration area detection unit 212 , a pixel resolution estimation unit 213 and a deterioration magnitude estimation unit 214 .
 記憶部22は、1つ以上のメモリを含み、例えば、半導体メモリ、磁気メモリ、光メモリなどを含んでよい。記憶部22に含まれる各メモリは、例えば、主記憶装置、補助記憶装置、又はキャッシュメモリとして機能してよい。各メモリは、必ずしも劣化評価装置20がその内部に備える必要はなく、劣化評価装置20の外部に備える構成としてもよい。記憶部22には、劣化評価装置20の動作に用いられる情報と、劣化評価装置20の動作によって得られた情報とが記憶される。記憶部22は例えば、筋金物の幅の実寸値を示す情報、筋金物の設置間隔を示す情報、作成された画素分解能マップの情報、制御部21に推定された劣化領域の実寸値の情報等を格納できる。 The storage unit 22 includes one or more memories, and may include, for example, semiconductor memory, magnetic memory, optical memory, and the like. Each memory included in the storage unit 22 may function as, for example, a main memory device, an auxiliary memory device, or a cache memory. Each memory does not necessarily have to be provided inside the deterioration evaluation device 20 , and may be provided outside the deterioration evaluation device 20 . The storage unit 22 stores information used for the operation of the deterioration evaluation device 20 and information obtained by the operation of the deterioration evaluation device 20 . The storage unit 22 includes, for example, information indicating the actual width of the reinforcing metal, information indicating the installation interval of the reinforcing metal, information on the created pixel resolution map, information on the actual size of the deteriorated region estimated by the control unit 21, and the like. can be stored.
 通信部23には、少なくとも1つの通信用インタフェースが含まれる。通信用インタフェースは、例えば、LANインタフェースである。通信部23は、劣化評価装置20の動作に用いられる情報を受信し、また劣化評価装置20の動作によって得られる情報を送信する。通信部23は、撮影装置10から、撮影した画像のデータを受信する。通信部23は、サーバ装置30へ、推定された劣化領域の実寸値の情報を送信する。 The communication unit 23 includes at least one communication interface. The communication interface is, for example, a LAN interface. The communication unit 23 receives information used for the operation of the deterioration evaluation device 20 and transmits information obtained by the operation of the deterioration evaluation device 20 . The communication unit 23 receives the data of the photographed image from the photographing device 10 . The communication unit 23 transmits information on the estimated actual size of the deteriorated region to the server device 30 .
 入力部24には、少なくとも1つの入力用インタフェースが含まれる。入力用インタフェースは、例えば、物理キー、静電容量キー、ポインティングデバイス、ディスプレイと一体的に設けられたタッチスクリーン、又はマイクである。入力部24は、劣化評価装置20の動作に用いられる情報を入力する操作を受け付ける。入力部24は、劣化評価装置20に備えられる代わりに、外部の入力機器として劣化評価装置20に接続されてもよい。接続方式は任意のものであってよい。例えば、作業者が、入力部24を用いて所定の操作を行うことで、点検画像等のとう道内で撮影された画像データを、劣化評価装置20に入力することができる。 The input unit 24 includes at least one input interface. The input interface is, for example, a physical key, a capacitive key, a pointing device, a touch screen integrated with the display, or a microphone. The input unit 24 receives an operation of inputting information used for operation of the deterioration evaluation device 20 . The input unit 24 may be connected to the deterioration evaluation device 20 as an external input device instead of being provided in the deterioration evaluation device 20 . Any connection method may be used. For example, the operator can input image data, such as an inspection image, captured in the cable tunnel to the deterioration evaluation device 20 by performing a predetermined operation using the input unit 24 .
 出力部25には、少なくとも1つの出力用インタフェースが含まれる。出力用インタフェースは、例えば、ディスプレイ又はスピーカである。ディスプレイは、例えば、LCD(liquid crystal display)又は有機EL(electro luminescence)ディスプレイである。出力部25は、劣化評価装置20の動作によって得られる情報を出力する。出力部25は、劣化評価装置20に備えられる代わりに、外部の出力機器として劣化評価装置20に接続されてもよい。接続方式は任意のものであってよい。例えば、出力部25は、推定された劣化領域の実寸値の情報を、作業者に対して画像又は音声により通知してもよい。 The output unit 25 includes at least one output interface. The output interface is, for example, a display or speaker. The display is, for example, an LCD (liquid crystal display) or an organic EL (electro luminescence) display. The output unit 25 outputs information obtained by the operation of the deterioration evaluation device 20 . The output unit 25 may be connected to the deterioration evaluation device 20 as an external output device instead of being provided in the deterioration evaluation device 20 . Any connection method may be used. For example, the output unit 25 may notify the operator of information on the estimated actual size of the deteriorated region by image or sound.
 制御部21には、少なくとも1つのプロセッサ、少なくとも1つの専用回路、又はこれらの組み合わせが含まれる。プロセッサは、CPU(central processing unit)、GPU(graphics processing unit)等の汎用プロセッサ、又は特定の処理に特化した専用プロセッサである。専用回路は、例えば、FPGA(field-programmable gate array)又はASIC(application specific integrated circuit)である。制御部21は、劣化評価装置20の各部を制御しながら、劣化評価装置20の動作に関わる処理を実行する。制御部21は、通信用とう道の内部で取得した画像を取得し、当該画像から、セグメンテーション深層学習等の画像処理手法を用いて検出した設備領域に基づいて画像の画素分解能を推定し、劣化領域の検出結果を定量評価する機能を有する。 The control unit 21 includes at least one processor, at least one dedicated circuit, or a combination thereof. The processor is a general-purpose processor such as a CPU (central processing unit) or a GPU (graphics processing unit), or a dedicated processor specialized for specific processing. A dedicated circuit is, for example, an FPGA (field-programmable gate array) or an ASIC (application specific integrated circuit). The control unit 21 executes processing related to the operation of the deterioration evaluation device 20 while controlling each unit of the deterioration evaluation device 20 . The control unit 21 obtains an image obtained inside the communication tunnel, estimates the pixel resolution of the image based on the equipment area detected from the image using an image processing method such as segmentation deep learning, and It has the function of quantitatively evaluating the region detection results.
 設備領域検出部211は、取得された画像から、筋金物を設備領域として検出し、画素分解能推定部213に出力する。設備領域として検出される対象は筋金物に限られず、自由に設定されてよい。検出は、セグメンテーション深層学習等の画像処理手法により行う。 The equipment area detection unit 211 detects a metal object as an equipment area from the acquired image, and outputs it to the pixel resolution estimation unit 213 . Objects to be detected as equipment areas are not limited to solid metal objects, and may be set freely. Detection is performed by an image processing technique such as segmentation deep learning.
 劣化領域検出部212は、取得された画像から、とう道本体に発生する劣化領域を検出し、劣化大きさ推定部214に出力を行う。検出は、設備領域検出部211と同様の画像処理手法によるものであってよい。 The degraded area detection unit 212 detects a degraded area that occurs in the main body of the cable tunnel from the acquired image, and outputs it to the degradation magnitude estimation unit 214 . The detection may be based on the same image processing method as that used by the facility area detection unit 211 .
 図4Aは、取得された画像の一例を示す。図4Bは、設備領域検出部211によって検出された設備領域と、劣化領域検出部212によって検出された劣化領域とを示す図である。設備領域検出部211と劣化領域検出部212とは一体化されて、設備領域と劣化領域とを同時に検出できてもよい。設備領域検出部211は、取得された画像から設備領域が検出されない場合、出力部25を介してその旨を撮影装置10に対し通知し、再度の撮影を促してもよい。 FIG. 4A shows an example of an acquired image. FIG. 4B is a diagram showing the equipment area detected by the equipment area detection unit 211 and the degraded area detected by the degraded area detection unit 212. As shown in FIG. The equipment area detector 211 and the deteriorated area detector 212 may be integrated so that the equipment area and the deteriorated area can be detected simultaneously. If the equipment area is not detected from the acquired image, the equipment area detection unit 211 may notify the photographing device 10 to that effect via the output unit 25 and prompt photographing again.
 設備領域検出部211が検出した設備領域と劣化領域検出部212が検出した劣化領域とは、出力部25を介して、劣化評価装置20を使用する作業者に対し表示されてもよい。この場合、作業者が入力部24を操作して、設備領域と劣化領域との範囲を手動で設定できる。 The equipment area detected by the equipment area detection unit 211 and the deterioration area detected by the deterioration area detection unit 212 may be displayed to the worker using the deterioration evaluation device 20 via the output unit 25 . In this case, the operator can operate the input unit 24 to manually set the range between the facility area and the deterioration area.
 画素分解能推定部213は、設備領域検出部211により検出された設備領域に基づいて、画像の少なくとも一部の画素分解能を推定する。具体的には、筋金物の幅又は設置間隔から、画像の1画素当たりの長さの実寸値である画素分解能を、画素毎に推定し、画像の全体について画素分解能マップを作成し、劣化大きさ推定部214に出力する。1画素とは1ピクセルのことである。 The pixel resolution estimation unit 213 estimates the pixel resolution of at least a part of the image based on the equipment area detected by the equipment area detection unit 211 . Specifically, the pixel resolution, which is the actual size value of the length per pixel of the image, is estimated for each pixel from the width of the reinforcing metal or the installation interval, and a pixel resolution map is created for the entire image to determine the degree of deterioration. output to the height estimation unit 214 . One pixel means one pixel.
 図5に示すように、画素分解能推定部213は、物体数抽出部2131と、物体数判断部2132と、物体幅抽出部2133a及び物体幅抽出部2133bと、細線化部2134と、設置間隔抽出部2135と、実寸法比較部2136a、実寸法比較部2136b及び実寸法比較部2136cと、画素分解能マップ作成部2137a、画素分解能マップ作成部2137b及び画素分解能マップ作成部2137cと、を備える。 As shown in FIG. 5, the pixel resolution estimation unit 213 includes an object number extraction unit 2131, an object number determination unit 2132, an object width extraction unit 2133a and an object width extraction unit 2133b, a thinning unit 2134, and an installation interval extraction unit. 2135, an actual size comparison unit 2136a, an actual size comparison unit 2136b, an actual size comparison unit 2136c, a pixel resolution map creation unit 2137a, a pixel resolution map creation unit 2137b, and a pixel resolution map creation unit 2137c.
 物体数抽出部2131は、設備領域検出部211による設備領域の検出結果から、検出された筋金物を1本毎に物体として分割して、設備領域として検出された筋金物の数を抽出する。例えば、図4Bに示す設備領域の検出結果から、物体数抽出部2131は、筋金物の物体数(筋金物数)Nが2であることを抽出する。物体数抽出部2131は、抽出した結果を物体数判断部2132に出力する。 The number-of-objects extraction unit 2131 divides the detected hard metal objects into objects one by one from the detection result of the equipment area by the equipment area detection unit 211, and extracts the number of hard metal objects detected as the equipment area. For example, the number-of-objects extracting unit 2131 extracts that the number of objects (number of hardened metal objects) N of hard metal objects is 2 from the detection result of the facility area shown in FIG. 4B. The number-of-objects extraction unit 2131 outputs the extracted result to the number-of-objects determination unit 2132 .
 物体数判断部2132は、物体数抽出部2131が抽出した筋金物数Nについて、N=1、N=2、又はN≧3のいずれであるかを判断する。図5に示すように、筋金物数N=1の場合、物体幅抽出部2133a、実寸法比較部2136a、画素分解能マップ作成部2137aによって順に処理が実行される。筋金物数N=2の場合、細線化部2134、設置間隔抽出部2135、実寸法比較部2136b、画素分解能マップ作成部2137bによって順に処理が実行される。筋金物数N≧3の場合、物体幅抽出部2133b、実寸法比較部2136c、画素分解能マップ作成部2137cによって順に処理が実行される。 The number-of-objects determination unit 2132 determines whether N=1, N=2, or N≧3 for the number N of metal objects extracted by the number-of-objects extraction unit 2131 . As shown in FIG. 5, when the number of metal objects N=1, the processing is sequentially executed by an object width extraction unit 2133a, an actual size comparison unit 2136a, and a pixel resolution map creation unit 2137a. When the number of metal parts N=2, the thinning unit 2134, the installation interval extraction unit 2135, the actual size comparison unit 2136b, and the pixel resolution map generation unit 2137b sequentially perform processing. When the number of metal objects N≧3, the processing is sequentially executed by the object width extraction unit 2133b, the actual size comparison unit 2136c, and the pixel resolution map generation unit 2137c.
 以下、物体数判断部2132が筋金物数N=1と判断した場合について説明する。 A case where the object number determination unit 2132 determines that the number of metal objects N=1 will be described below.
 物体幅抽出部2133aは、筋金物の幅に相当する画素数を測定し、実寸法比較部2136aに出力する。図6は、物体数判断部2132が筋金物数N=1であると判断した場合の画像の一例を示す。図6では、設備領域として検出された1つの筋金物の領域と背景の領域とが示される。物体幅抽出部2133aは、図6の矢印記号で示す筋金物の幅に相当する画素数を測定する。測定される対象の幅の上下方向の位置は自由に設定されてよい。例えば、図6に示すように、筋金物の複数の位置における幅に相当する画素数が測定されてよい。複数の位置の幅について画素数が測定されることで、後述する画素分解能マップの精度を高めることができる。 The object width extraction unit 2133a measures the number of pixels corresponding to the width of the hard metal and outputs it to the actual size comparison unit 2136a. FIG. 6 shows an example of an image when the number-of-objects determination unit 2132 determines that the number of metal objects is N=1. FIG. 6 shows a single hard metal area and a background area detected as an equipment area. The object width extraction unit 2133a measures the number of pixels corresponding to the width of the metal object indicated by the arrow symbol in FIG. The vertical position of the width of the object to be measured may be set freely. For example, as shown in FIG. 6, the number of pixels corresponding to the width at a plurality of positions of the hard metal may be measured. By measuring the number of pixels for the width of a plurality of positions, it is possible to improve the accuracy of the pixel resolution map described later.
 図7A及び図7Bは、取得された画像の他の例を示す図である。図7Aは、筋金物を見上げるように撮影された画像であり、図7Bは、筋金物を見下ろすように撮影された画像である。図7Aの筋金物の上部及び図7Bの筋金物の下部は、遠近法により小さく表示される。このように画像上で筋金物の幅が遠近法により変化する場合、物体幅抽出部2133aは複数の位置の幅について画素数を測定する。物体幅抽出部2133aは例えば、筋金物の上下方向の最上位置と、中央位置と、最下位置における幅について画素数を測定してよい。 7A and 7B are diagrams showing other examples of acquired images. FIG. 7A is an image taken looking up at the metal object, and FIG. 7B is an image taken looking down at the metal object. The upper part of the hard metal in FIG. 7A and the lower part of the hard metal in FIG. 7B are displayed smaller due to perspective. In this way, when the width of the metal object changes on the image according to the perspective method, the object width extracting unit 2133a measures the number of pixels for the width at a plurality of positions. For example, the object width extraction unit 2133a may measure the number of pixels for widths at the top, center, and bottom positions of the metal object in the vertical direction.
 実寸法比較部2136aは、画素分解能を画素毎に算出し、画素分解能マップ作成部2137aに出力する。具体的には、実寸法比較部2136aは、物体幅抽出部2133aが測定した画像中の筋金物の幅に相当する画素数と、当該筋金物の幅の実寸値とを比較し、以下の式(1)により画素分解能を求める。 The actual size comparison unit 2136a calculates the pixel resolution for each pixel and outputs it to the pixel resolution map creation unit 2137a. Specifically, the actual size comparison unit 2136a compares the number of pixels corresponding to the width of the metal object in the image measured by the object width extraction unit 2133a with the actual size value of the width of the metal object. The pixel resolution is obtained by (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)においてRは画素毎の画素分解能であり、単位はmm/pixelである。Bは筋金物の幅の実寸値であり、単位はmmである。Cは筋金物の幅に相当する画素数(すなわち、ピクセル数)である。このように実寸法比較部2136aは、筋金物の幅の実寸値Bを、測定された画素数Cで除して画素分解能Rを推定する。実寸法比較部2136aは、記憶部22を参照して、予め記憶されている筋金物の幅の実寸値を読み出し、Bの値として、画素分解能Rを算出する。実寸法比較部2136aは、入力部24を介して入力された筋金物の幅の実寸値をBの値として、画素分解能Rを算出してもよい。 In formula (1), R is the pixel resolution for each pixel, and the unit is mm/pixel. B is the actual value of the width of the metal bar, and the unit is mm. C is the number of pixels (ie, the number of pixels) corresponding to the width of the hard metal. In this manner, the actual size comparison unit 2136a divides the actual size value B of the width of the metal by the measured number of pixels C to estimate the pixel resolution R. The actual size comparison unit 2136a refers to the storage unit 22, reads out the pre-stored actual size value of the width of the metal rod, and calculates the pixel resolution R as the B value. The actual size comparison unit 2136a may calculate the pixel resolution R using the actual size value of the width of the metal rod input via the input unit 24 as the value of B.
 画素分解能マップ作成部2137aは、実寸法比較部2136aが算出した画素分解能と画像の座標との関係を直線近似することにより、画像の全体の画素毎の画素分解能を示す画素分解能マップAを作成する。画素分解能マップ作成部2137aは、作成した画素分解能マップAを劣化大きさ推定部214に出力する。座標は、画像の上下方向、すなわち筋金物の長手方向の座標である。近似手法の種類は任意のものであってよく、例えば最小二乗法等の手法であってもよい。図7Aのように、とう道の下部から筋金物を見上げるように撮影された画像においては、とう道上部に対応する画像上部の画素分解能の値が大きくなる。また、図7Bのように、とう道の上部から筋金物を見下ろすように撮影された画像においては、とう道下部に対応する画像下部の画素分解能の値が大きくなる。このように、筋金物を1本のみ検出した画像の場合には、上下方向に画像が歪むことが多く、筋金物の長手方向に画素分解能を直線近似することで画像の全体の画素分解能の値の精度を高めることが可能となる。これにより、歪み補正を画素分解能マップ上で再現することができる。画素分解能マップの作成は、筋金物の長手方向に直線近似することで行う他、角度等を考慮した近似方法を用いて行っても良い。 The pixel resolution map creation unit 2137a creates a pixel resolution map A indicating the pixel resolution of each pixel of the entire image by linearly approximating the relationship between the pixel resolution calculated by the actual size comparison unit 2136a and the coordinates of the image. . The pixel resolution map creation unit 2137 a outputs the created pixel resolution map A to the deterioration magnitude estimation unit 214 . The coordinates are coordinates in the vertical direction of the image, that is, in the longitudinal direction of the steel metal. Any type of approximation method may be used, for example, a method such as the least squares method may be used. As shown in FIG. 7A, in an image taken as if looking up at the metal object from the lower part of the tunnel, the pixel resolution value of the upper part of the image corresponding to the upper part of the tunnel becomes large. In addition, as shown in FIG. 7B , in an image taken from the upper part of the tunnel to look down on the steel metal, the pixel resolution value of the lower part of the image corresponding to the lower part of the tunnel becomes large. In this way, in the case of an image in which only one metal object is detected, the image is often distorted in the vertical direction. It is possible to improve the accuracy of This allows the distortion correction to be reproduced on the pixel resolution map. The pixel resolution map may be created by linear approximation in the longitudinal direction of the metal rod, or by using an approximation method that considers angles and the like.
 図8は、筋金物が1つのみ検出された場合に画素分解能マップ作成部2137aが作成した画素分解能マップAを説明するための図である。図中右側のスケールは、画像中の画素分解能の値を濃淡によって表している。図8では、筋金物はとう道の下方向から撮影されている。画像中の矢印記号が示す方向に向かって、画素分解能の値が大きくなっていることがわかる。 FIG. 8 is a diagram for explaining the pixel resolution map A created by the pixel resolution map creation unit 2137a when only one metal object is detected. The scale on the right side of the figure expresses the pixel resolution value in the image by shading. In FIG. 8, the hard metal is photographed from below the tunnel. It can be seen that the pixel resolution value increases in the direction indicated by the arrow symbol in the image.
 以下、物体数判断部2132が筋金物数N=2と判断した場合について説明する。 A case where the object number determination unit 2132 determines that the number of metal objects N=2 will be described below.
 細線化部2134は、検出した筋金物の幅の中心に、筋金物の長手方向に沿った細線を表示し、筋金物の幅を線で表す細線化を実施する。図9は、物体数判断部2132が筋金物数N=2であると判断した場合の画像の一例を示す。図9では、設備領域として検出された2つの筋金物の領域と背景の領域とが示される。細線化部2134は、図9の点線で示すような細線を表示し、2つの筋金物のそれぞれについて、幅を線状で表す。細線化部2134は、細線化を実施した結果を設置間隔抽出部2135に出力する。 The thinning unit 2134 displays a thin line along the longitudinal direction of the detected hard metal at the center of the width of the hard metal, and thins the width of the hard metal with a line. FIG. 9 shows an example of an image when the number-of-objects determination unit 2132 determines that the number of metal objects is N=2. FIG. 9 shows two hard metal areas and a background area detected as the facility area. The thinning unit 2134 displays thin lines as indicated by dotted lines in FIG. 9, and linearly represents the width of each of the two reinforcing metals. The thinning unit 2134 outputs the thinning result to the installation interval extracting unit 2135 .
 設置間隔抽出部2135は、細線化部2134が表示した細線の間隔距離に相当する画素数を測定し、実寸法比較部2136bに出力する。設置間隔抽出部2135は、図9の矢印記号で示す、細線と細線との間隔距離に相当する画素数を測定する。測定される対象の間隔距離の上下方向の位置は自由に設定されてよい。例えば、図9に示すように、筋金物の複数の位置における間隔距離に相当する画素数が測定されてよい。複数の位置の間隔距離について画素数が測定されることで、後述する画素分解能マップの精度を高めることができる。 The installation interval extraction unit 2135 measures the number of pixels corresponding to the interval distance of the fine lines displayed by the thinning unit 2134, and outputs it to the actual size comparison unit 2136b. The installation interval extraction unit 2135 measures the number of pixels corresponding to the interval distance between the thin lines indicated by the arrow symbols in FIG. The vertical position of the distance between objects to be measured may be set freely. For example, as shown in FIG. 9, the number of pixels corresponding to the spacing distance at a plurality of positions on the metal rod may be measured. By measuring the number of pixels for the interval distances at a plurality of positions, the accuracy of the pixel resolution map, which will be described later, can be improved.
 図10A及び図10Bは、取得された画像の他の例を示す図である。図10Aは、筋金物を見上げるように撮影された画像であり、図10Bは、筋金物を見下ろすように撮影された画像である。図10Aの筋金物の間隔距離の上部及び図10Bの筋金物の間隔距離の下部は、遠近法により小さく表示される。このように画像上で筋金物の間隔距離が遠近法により変化する場合、設置間隔抽出部2135は複数の位置の間隔距離について画素数を測定する。設置間隔抽出部2135は例えば、筋金物の細線の上下方向の最上位置と、中央位置と、最下位置における間隔距離について画素数を測定してよい。 10A and 10B are diagrams showing other examples of acquired images. FIG. 10A is an image taken looking up at the metal object, and FIG. 10B is an image taken looking down at the metal object. The upper portion of the spacing distance between the reinforcing metals in FIG. 10A and the lower portion of the spacing distance between the reinforcing metals in FIG. 10B are displayed smaller in perspective. In this way, when the interval distance between the metal fittings on the image changes according to the perspective method, the installation interval extraction unit 2135 measures the number of pixels for the interval distance at a plurality of positions. For example, the installation interval extraction unit 2135 may measure the number of pixels for the interval distances at the uppermost position, the center position, and the lowermost position of the fine wire of the metal wire.
 実寸法比較部2136bは、画素分解能Rを画素毎に算出し、画素分解能マップ作成部2137bに出力する。具体的には、実寸法比較部2136bは、設置間隔抽出部2135が測定した画像中の筋金物の細線の間隔距離に相当する画素数と、当該間隔距離の実寸値とを比較し、式(2)により画素分解能を求める。 The actual size comparison unit 2136b calculates the pixel resolution R for each pixel and outputs it to the pixel resolution map creation unit 2137b. Specifically, the actual size comparison unit 2136b compares the number of pixels corresponding to the interval distance between the fine lines of the reinforcing metal in the image measured by the installation interval extraction unit 2135, and the actual size value of the interval distance. 2) Obtain the pixel resolution.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)においてRは画素毎の画素分解能であり、単位はmm/pixelである。Lは筋金物の間隔距離の実寸値であり、単位はmmである。Cは筋金物の間隔距離に相当する画素数(すなわち、ピクセル数)である。このように実寸法比較部2136bは、筋金物の間隔距離の実寸値Lを、測定された画素数Cで除して画素分解能Rを推定する。実寸法比較部2136bは、記憶部22を参照して、予め記憶されている筋金物の間隔距離の実寸値を読み出し、Lの値として、画素分解能Rを算出する。実寸法比較部2136bは、入力部24を介して入力された筋金物の間隔距離の実寸値をLの値として、画素分解能Rを算出してもよい。 In Equation (2), R is the pixel resolution for each pixel, and the unit is mm/pixel. L is the actual size of the distance between the metal bars, and the unit is mm. C is the number of pixels (that is, the number of pixels) corresponding to the distance between the metal bars. In this manner, the actual size comparison unit 2136b divides the actual size value L of the interval distance between the metal parts by the measured number of pixels C to estimate the pixel resolution R. The actual size comparison unit 2136b refers to the storage unit 22, reads out the pre-stored actual size value of the distance between the reinforcing metals, and calculates the pixel resolution R as the value of L. The actual size comparison unit 2136b may calculate the pixel resolution R using the actual size value of the interval distance between the reinforcing metals input via the input unit 24 as the value of L.
 画素分解能マップ作成部2137bは、実寸法比較部2136bが算出した画素分解能と画像の座標との関係を直線近似することにより、画像の全体の画素毎の画素分解能を示す画素分解能マップBを作成する。画素分解能マップ作成部2137bは、作成した画素分解能マップBを劣化大きさ推定部214に出力する。画素分解能マップ作成部2137bについての詳細は画素分解能マップ作成部2137aと同様であるため、説明を省略する。 The pixel resolution map creation unit 2137b creates a pixel resolution map B indicating the pixel resolution of each pixel of the entire image by linearly approximating the relationship between the pixel resolution calculated by the actual size comparison unit 2136b and the coordinates of the image. . The pixel resolution map creation unit 2137 b outputs the created pixel resolution map B to the deterioration magnitude estimation unit 214 . The details of the pixel resolution map creation unit 2137b are the same as those of the pixel resolution map creation unit 2137a, so description thereof will be omitted.
 なお、とう道の筋金物の設置間隔の実寸値が不明な場合には、物体数判断部2132がN=1と判断した場合と同様に、筋金物の幅から画素分解能を算出してもよい。又は、筋金物の幅及び筋金物の細線の間隔距離の両方について測定された画素数と実寸値とに基づいて、画像の全体の画素分解能を算出してもよい。これにより、より精度よく画素分解能マップを作成できる。 In addition, when the actual size value of the installation interval of the reinforcing metal of the cable tunnel is unknown, the pixel resolution may be calculated from the width of the reinforcing metal in the same manner as when the number of objects determination unit 2132 determines that N = 1. . Alternatively, the overall pixel resolution of the image may be calculated based on the number of pixels and the actual size values measured for both the width of the hard metal and the distance between the fine lines of the hard metal. This makes it possible to create a pixel resolution map with higher accuracy.
 以下、物体数判断部2132が筋金物数N≧3と判断した場合について説明する。 A case where the number-of-objects determination unit 2132 determines that the number of metal objects N≧3 will be described below.
 物体幅抽出部2133bは、筋金物の幅に相当する画素数を測定し、実寸法比較部2136cに出力する。図11A及び図11Bは、物体数判断部2132が筋金物数N≧3であると判断した場合の画像の一例を示す。図11A及び図11Bの画像には、設備領域として検出された3つの筋金物の領域と背景の領域とが示される。画像はとう道の奥に向かって撮影されたものであり、画像の右側がとう道の手前側、左側が奥側となっている。矢印記号で示すように、遠近法により、奥側に向かうにつれ検出される設備領域としての筋金物が小さく表示される。物体幅抽出部2133bについてのその他の詳細は物体幅抽出部2133aと同様であるため、説明を省略する。 The object width extraction unit 2133b measures the number of pixels corresponding to the width of the hard metal and outputs it to the actual size comparison unit 2136c. 11A and 11B show examples of images when the number-of-objects determination unit 2132 determines that the number of metal objects N≧3. The images of FIGS. 11A and 11B show three hard metal areas and a background area detected as the equipment area. The image was taken toward the back of the tunnel, the right side of the image is the front side of the tunnel, and the left side is the back side. As indicated by the arrow symbol, the hard metal object as the facility area detected toward the far side is displayed smaller due to the perspective method. Other details of the object width extraction unit 2133b are the same as those of the object width extraction unit 2133a, and thus description thereof is omitted.
 物体幅抽出部2133bは、検出された全ての設備領域についてそれぞれの幅の画素数を測定してよい。又は、物体幅抽出部2133bは、画像に占める設備領域の大きさの割合が大きい順に、複数の筋金物を特定し、特定した筋金物のみの幅について画素数を測定してもよい。これにより、画像に占める設備領域の大きさの割合が極端に小さい筋金物、すなわちとう道の奥側に存在する筋金物の幅に相当する画素数を測定する処理を省くことができる。又は、物体幅抽出部2133bは、画像の奥側に劣化領域が検出されている場合には、とう道の奥側に存在する筋金物の幅に相当する画素数も測定してよい。これにより、特定した筋金物についてのみ幅を測定する場合と比較して、画素分解能マップ作成部2137cが作成する画素分解能マップの精度を高め、画像の奥側の劣化領域の実寸値を精度よく推定できる。このように、物体幅抽出部2133bは、検出された設備領域のいずれについて幅の画素数を測定するかを自由に決定できる。 The object width extraction unit 2133b may measure the number of pixels in each width for all detected equipment areas. Alternatively, the object width extracting unit 2133b may identify a plurality of metal objects in descending order of the ratio of the size of the facility area in the image, and measure the number of pixels for the width of only the identified metal objects. As a result, it is possible to omit the process of measuring the number of pixels corresponding to the width of a metal object having an extremely small proportion of the size of the equipment area in the image, that is, the metal object existing on the far side of the cable tunnel. Alternatively, the object width extracting unit 2133b may also measure the number of pixels corresponding to the width of the metal object existing on the far side of the cable tunnel when a deteriorated region is detected on the far side of the image. As a result, the accuracy of the pixel resolution map created by the pixel resolution map creation unit 2137c is increased compared to the case of measuring the width only for the specified hard metal, and the actual size value of the deteriorated region on the far side of the image is estimated with high accuracy. can. In this way, the object width extraction unit 2133b can freely determine which of the detected facility areas the number of pixels of the width is to be measured.
 上述の、物体数判断部2132が筋金物数N=2と判断した場合と同様、細線化部2134及び設置間隔抽出部2135が、物体幅抽出部2133bに加えて、又は物体幅抽出部2133bの代わりに設けられてもよい。これにより、例えば複数の筋金物のうち、一部の筋金物の幅の実寸値が不明である場合でも、細線化部2134及び設置間隔抽出部2135により柔軟に間隔距離の画素数を測定できる。図11Bは、物体幅抽出部2133bに代えて細線化部2134及び設置間隔抽出部2135により間隔距離の画素数を測定する場合を説明する図である。図11Bでは、細線化部2134により3つ以上の筋金物の幅が線状に表され、設置間隔抽出部2135により、各線の間隔距離に相当する画素数が測定される。上述した物体幅抽出部2133bと同様、細線化部2134及び設置間隔抽出部2135は、複数の筋金物間の複数の間隔距離のうち、いずれの間隔距離の画素数を測定するかを自由に決定できる。 Similar to the above-described case where the number of objects determining unit 2132 determines that the number of metal objects N=2, the thinning unit 2134 and the installation interval extracting unit 2135 are added to the object width extracting unit 2133b or the object width extracting unit 2133b. may be provided instead. As a result, for example, even if the actual width of some of the steel bars is unknown, the thinning unit 2134 and the installation interval extraction unit 2135 can flexibly measure the number of pixels of the gap distance. FIG. 11B is a diagram illustrating a case where the number of pixels of the interval distance is measured by the thinning unit 2134 and the installation interval extraction unit 2135 instead of the object width extraction unit 2133b. In FIG. 11B, the thinning unit 2134 represents the widths of three or more steel bars in a line shape, and the installation interval extraction unit 2135 measures the number of pixels corresponding to the interval distance of each line. As with the object width extraction unit 2133b described above, the thinning unit 2134 and the installation interval extraction unit 2135 freely determine the number of pixels of which interval distance among the plurality of interval distances between the plurality of hard metal objects to be measured. can.
 実寸法比較部2136cは、画素分解能を画素毎に算出し、画素分解能マップ作成部2137cに出力する。実寸法比較部2136cについての詳細は実寸法比較部2136a又は実寸法比較部2136bと同様であるため、説明を省略する。 The actual size comparison unit 2136c calculates the pixel resolution for each pixel and outputs it to the pixel resolution map creation unit 2137c. The details of the actual size comparison section 2136c are the same as those of the actual size comparison section 2136a or the actual size comparison section 2136b, so description thereof will be omitted.
 画素分解能マップ作成部2137cは、実寸法比較部2136cが算出した画素分解能と画像の座標との関係を直線近似することにより、画像の全体の画素毎の画素分解能を示す画素分解能マップを作成する。画素分解能マップ作成部2137cは、作成した画素分解能マップCを劣化大きさ推定部214に出力する。座標は、画像の左右方向、すなわち筋金物の短手方向の座標である。近似手法の種類は任意のものであってよく、例えば最小二乗法等の手法であってもよい。図11A及び図11Bのように、とう道の手前側から奥に向かって複数の筋金物が撮影された画像においては、とう道の奥側に対応する画像の左側部の画素分解能の値が大きくなり、とう道の手前側に対応する画像の右側部の画素分解能の値が小さくなる。なお、画像の左側部がとう道の手前側に対応し、画像の右側部がとう道の奥側に対応する場合は画像の右側部の画素分解能の値が大きくなり、画像の左側部の画素分解能の値が小さくなる。このように、筋金物を3本以上検出した画像の場合には、左右方向に画像が歪むことが多く、筋金物の短手方向に画素分解能を直線近似することで画像の全体の画素分解能の値の精度を高めることが可能となる。これにより、歪み補正を画素分解能マップ上で再現することができる。 The pixel resolution map creation unit 2137c creates a pixel resolution map indicating the pixel resolution of each pixel of the entire image by linearly approximating the relationship between the pixel resolution calculated by the actual size comparison unit 2136c and the coordinates of the image. The pixel resolution map creation unit 2137 c outputs the created pixel resolution map C to the deterioration magnitude estimation unit 214 . The coordinates are in the horizontal direction of the image, that is, in the lateral direction of the metal. Any type of approximation method may be used, for example, a method such as the least squares method may be used. As shown in FIGS. 11A and 11B, in images in which a plurality of metal objects are photographed from the front side to the back of the tunnel, the pixel resolution value of the left side of the image corresponding to the back side of the tunnel is large. As a result, the pixel resolution value of the right side of the image corresponding to the front side of the tunnel becomes smaller. When the left side of the image corresponds to the front side of the tunnel and the right side of the image corresponds to the back side of the tunnel, the pixel resolution value of the right side of the image increases, and the pixels of the left side of the image The resolution value becomes smaller. In this way, in the case of an image in which three or more metal objects are detected, the image is often distorted in the horizontal direction. It is possible to improve the precision of the value. This allows the distortion correction to be reproduced on the pixel resolution map.
 劣化大きさ推定部214は、劣化領域検出部212が検出した劣化領域の実寸値を、画素分解能推定部213が作成した画素分解能マップに基づいて推定する。これにより、劣化大きさ推定部214は劣化領域を評価することができる。図12に示すように、劣化大きさ推定部214は、劣化領域座標取得部2141と、劣化領域長さ推定部2142と、劣化領域面積推定部2143と、を備える。 The deterioration magnitude estimation unit 214 estimates the actual size value of the deteriorated area detected by the deteriorated area detection unit 212 based on the pixel resolution map created by the pixel resolution estimation unit 213 . This allows the degradation magnitude estimator 214 to evaluate the degradation region. As shown in FIG. 12 , the deterioration magnitude estimation unit 214 includes a deterioration area coordinate acquisition unit 2141 , a deterioration area length estimation unit 2142 and a deterioration area area estimation unit 2143 .
 劣化領域座標取得部2141は、劣化領域として検出された領域の、画像中における座標を取得する。取得した座標の値に応じて、劣化領域座標取得部2141は、劣化領域長さ推定部2142及び劣化領域面積推定部2143のいずれにより次の処理を行うかを決定し、劣化領域長さ推定部2142及び劣化領域面積推定部2143のいずれかに、取得した座標を出力する。例えば、撮影されたとう道内の劣化がヒビ割れ等の形が一様に定まらない線状の劣化であるとき、劣化領域座標取得部2141は、取得した座標の値から劣化領域長さ推定部2142が次に処理を行うことを決定する。そして、取得した座標を劣化領域長さ推定部2142に出力する。例えば、撮影されたとう道内の劣化が一定の面積を有する穴状の欠損等の劣化であるとき、劣化領域座標取得部2141は、取得した座標の値から劣化領域面積推定部2143が次に処理を行うことを決定する。そして、取得した座標を劣化領域面積推定部2143に出力する。 The degraded area coordinate acquisition unit 2141 acquires the coordinates in the image of the area detected as the degraded area. According to the acquired coordinate values, the degraded area coordinate acquisition unit 2141 determines which of the degraded area length estimation unit 2142 and the degraded area area estimation unit 2143 performs the next process. 2142 and the deteriorated region area estimation unit 2143, the acquired coordinates are output. For example, when the photographed deterioration in the tunnel is linear deterioration such as a crack whose shape is not uniformly determined, the deterioration area coordinate acquisition unit 2141 determines the deterioration area length estimation unit 2142 from the acquired coordinate values. decides what to do next. Then, the acquired coordinates are output to the deteriorated region length estimating section 2142 . For example, when the deterioration in the photographed tunnel is deterioration such as a hole-shaped defect having a certain area, the deteriorated area coordinate acquisition unit 2141 determines that the deteriorated area area estimation unit 2143 performs next processing from the acquired coordinate values. decide to do Then, the acquired coordinates are output to the deteriorated area area estimation unit 2143 .
 予め設定された劣化領域の記録項目又は点検項目に応じて、劣化領域長さ推定部2142及び劣化領域面積推定部2143のいずれにより次に処理を行うかが決定されてもよい。 Which of the deteriorated area length estimating unit 2142 and the deteriorated area area estimating unit 2143 should perform the next process may be determined according to preset deterioration area recording items or inspection items.
 劣化領域長さ推定部2142は、劣化領域を示す座標から、劣化領域の長さを算出し、結果を記憶部22に格納する。ここでは劣化領域の最大長さを算出する例を説明するが、算出する対象の長さは自由に設定されてよい。図13Aは、取得された劣化領域の画像上の座標の一例を示す。図13Aを参照すると、劣化領域としてのヒビ割れが点線で示される。劣化領域長さ推定部2142は、劣化領域の座標のうち、縦軸(Y軸)の値が最大値の点A、横軸(X軸)の値が最大値の点B、縦軸(Y軸)の値が最小値の点C、横軸(X軸)の値が最小値の点Dを抽出する。劣化領域長さ推定部2142は、点Aから点Dを接続する直線で形成される四角形を作成し、当該四角形の対角線のうち、点Aと点Cとを接続する直線が最大長さL’maxとなっていることを判断する。なお、劣化領域長さ推定部2142は、劣化領域の形状に応じて、任意の多角形を形成するような点を抽出してもよい。劣化領域長さ推定部2142は、当該多角形のいずれかの辺又は対角線を最大長さとして判断してもよい。 The degraded area length estimation unit 2142 calculates the length of the degraded area from the coordinates indicating the degraded area, and stores the result in the storage unit 22 . Here, an example of calculating the maximum length of the degraded region will be described, but the length to be calculated may be set freely. FIG. 13A shows an example of coordinates on the image of the acquired deteriorated region. Referring to FIG. 13A, cracks as degraded areas are indicated by dotted lines. The degraded region length estimating unit 2142 calculates, of the coordinates of the degraded region, the point A having the maximum value on the vertical axis (Y axis), the point B having the maximum value on the horizontal axis (X axis), and the point B having the maximum value on the vertical axis (Y The point C with the minimum value on the X-axis and the point D with the minimum value on the horizontal axis (X-axis) are extracted. Degraded region length estimation section 2142 creates a quadrangle formed by straight lines connecting point A to point D, and the straight line connecting point A and point C among the diagonal lines of the quadrangle has maximum length L′. It is determined that it is max. The degraded region length estimator 2142 may extract points forming an arbitrary polygon according to the shape of the degraded region. The degraded region length estimation unit 2142 may determine any side or diagonal line of the polygon as the maximum length.
 劣化領域長さ推定部2142は次に、点Aと点Cとの座標を、画素分解能マップ上にプロットする。図13Bは、図13Aで求めた最大長さを形成する点Aと点Cとが画素分解能マップ上にプロットされた状態を説明するための図である。劣化領域長さ推定部2142は、プロットした点と点の間の距離、すなわち劣化領域の最大長さの実寸値を、画素分解能マップが示す画素分解能の値により求める。図13Bの画素分解能マップ上で、劣化領域長さ推定部2142は、プロットされた点Aと点Cとを結ぶ直線が斜辺となる直角三角形を形成する。劣化領域長さ推定部2142は、直角を形成する、点Aから縦軸に沿って下方に伸びる直線と、点Cから横軸に沿って左方向に伸びる直線とに相当する画素の画素分解能を測定し、それぞれの直線の実寸値を求める。 The degraded region length estimation unit 2142 next plots the coordinates of point A and point C on the pixel resolution map. FIG. 13B is a diagram for explaining a state where points A and C forming the maximum length obtained in FIG. 13A are plotted on the pixel resolution map. The degraded area length estimator 2142 obtains the distance between the plotted points, that is, the actual size value of the maximum length of the degraded area from the pixel resolution value indicated by the pixel resolution map. On the pixel resolution map of FIG. 13B, the degraded region length estimator 2142 forms a right-angled triangle whose oblique side is the straight line connecting the plotted points A and C. FIG. The degraded region length estimation unit 2142 calculates the pixel resolution of pixels corresponding to a straight line extending downward along the vertical axis from point A and a straight line extending leftward from point C along the horizontal axis, which form a right angle. Measure and determine the actual size of each straight line.
 図13Bでは、点Aから下方に伸びる直線に相当する画素の画素分解能の値は1.1+1.1+1.1+1.1+1.1=5.5mm/pixelであり、当該直線の実寸値は5.5mmであることがわかる。また、点Cから左方向に伸びる直線に相当する画素の画素分解能の値は1.1+1.1+1.2=3.4mm/pixelであり、当該直線の実寸値は3.4mmであることがわかる。そして、劣化領域長さ推定部2142は、三平方の定理により斜辺の長さを求める。具体的には劣化領域長さ推定部2142は、5.5mmを二乗した値の30.25mmと、3.4mmを二乗した値の11.56mmとを合計し、41.81mmの値を算出する。そして、41.81mmの値の平方根を求め、少数点第二位を四捨五入し、6.5mmの値を算出する。このようにして、斜辺L’maxの実寸値の長さが6.5mmであることが求められる。 In FIG. 13B, the pixel resolution value of the pixel corresponding to the straight line extending downward from point A is 1.1+1.1+1.1+1.1+1.1=5.5 mm/pixel, and the actual size of the straight line is 5.5 mm. It can be seen that it is. Also, the pixel resolution value of the pixels corresponding to the straight line extending leftward from the point C is 1.1+1.1+1.2=3.4 mm/pixel, and the actual size of the straight line is 3.4 mm. . Then, the degraded region length estimation unit 2142 obtains the length of the hypotenuse by the Pythagorean theorem. Specifically, the deteriorated region length estimation unit 2142 sums 30.25 mm, which is the value obtained by squaring 5.5 mm, and 11.56 mm, which is the value obtained by squaring 3.4 mm, to calculate a value of 41.81 mm. . Then, the square root of the value of 41.81 mm is obtained, and the value of 6.5 mm is calculated by rounding off to the second decimal place. Thus, it is determined that the actual length of the oblique side L'max is 6.5 mm.
 劣化領域長さ推定部2142は、長さを推定する対象の劣化領域が、画素分解能マップ上で縦軸または横軸に平行である場合は、劣化領域を示す座標間の直線に相当する画素分解能の値を単純に合計し、当該直線の実寸値を算出してもよい。 When the degraded region whose length is to be estimated is parallel to the vertical axis or the horizontal axis on the pixel resolution map, the degraded region length estimation unit 2142 calculates the pixel resolution corresponding to the straight line between the coordinates indicating the degraded region. may be simply summed up to calculate the actual size of the straight line.
 劣化領域面積推定部2143は、劣化領域の面積を求め、結果を記憶部22に格納する。具体的には、劣化領域面積推定部2143は、取得された劣化領域の座標の値を画素分解能マップ上にプロットする。劣化領域面積推定部2143は、プロットした座標に基づき、劣化領域に対応する画素のそれぞれの画素分解能の値を特定する。次に劣化領域面積推定部2143は、特定した画素分解能の値をそれぞれ2乗し、1画素当りの面積の実寸値を求める。劣化領域面積推定部2143は、求めた1画素当りの面積の実寸値を加算していき、合計値を劣化領域全体の面積の実寸値として算出する。 The deteriorated area area estimation unit 2143 obtains the area of the deteriorated area and stores the result in the storage unit 22 . Specifically, the deteriorated area area estimation unit 2143 plots the acquired coordinate values of the deteriorated area on the pixel resolution map. The degraded area area estimation unit 2143 identifies the pixel resolution value of each pixel corresponding to the degraded area based on the plotted coordinates. Next, the deteriorated area area estimation unit 2143 squares each of the specified pixel resolution values to obtain the actual size value of the area per pixel. The deteriorated area area estimator 2143 adds the obtained actual size values of the area per pixel, and calculates the total value as the actual size value of the area of the entire deteriorated region.
<プログラム>
 劣化評価装置20は、プログラム命令を実行可能なコンピュータであってもよい。コンピュータは、劣化評価装置20の各機能を実現する処理内容を記述したプログラムを該コンピュータの記憶部に格納しておき、該コンピュータのプロセッサによってこのプログラムを読み出して実行する。これらの処理内容の一部はハードウェアで実現されてもよい。ここで、コンピュータは、汎用コンピュータ、専用コンピュータ、ワークステーション、PC、電子ノートパッドなどであってもよい。プログラム命令は、必要なタスクを実行するためのプログラムコード、コードセグメントなどであってもよい。プロセッサは、CPU、GPU、DSP(Digital Signal Processor)などであってもよい。
<Program>
The degradation assessment device 20 may be a computer capable of executing program instructions. The computer stores a program describing the processing details for realizing each function of the deterioration evaluation apparatus 20 in the memory of the computer, and the processor of the computer reads and executes the program. A part of these processing contents may be realized by hardware. Here, the computer may be a general purpose computer, a special purpose computer, a workstation, a PC, an electronic notepad, or the like. Program instructions may be program code, code segments, etc. for performing the required tasks. The processor may be a CPU, GPU, DSP (Digital Signal Processor), or the like.
 また、このプログラムは、コンピュータが読み取り可能な記録媒体に記録されていてもよい。このような記録媒体を用いれば、プログラムをコンピュータにインストールすることが可能である。ここで、プログラムが記録された記録媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM、DVD-ROMなどの記録媒体であってもよい。また、このプログラムは、ネットワークを介したダウンロードによって提供することもできる。 In addition, this program may be recorded on a computer-readable recording medium. By using such a recording medium, it is possible to install the program in the computer. Here, the recording medium on which the program is recorded may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as a CD-ROM or a DVD-ROM. This program can also be provided by download over a network.
<劣化評価システム1の動作>
 次に、図13A、図13B、図14A、図14B、図15A、及び図15Bを参照して、本実施形態に係る劣化評価装置20を含む劣化評価システム1の動作について説明する。劣化評価システム1の動作のうち、劣化評価装置20の動作は、本実施形態に係る劣化評価方法に相当する。
<Operation of deterioration evaluation system 1>
13A, 13B, 14A, 14B, 15A, and 15B, the operation of the deterioration evaluation system 1 including the deterioration evaluation device 20 according to this embodiment will be described. Among the operations of the deterioration evaluation system 1, the operation of the deterioration evaluation device 20 corresponds to the deterioration evaluation method according to this embodiment.
 ステップS1において、撮影装置10がとう道内の劣化した部分及びとう道内の設備を撮影する。撮影装置10は、撮影した画像データを劣化評価装置20に送信する。 In step S1, the photographing device 10 photographs the deteriorated part inside the tunnel and the facilities inside the tunnel. The photographing device 10 transmits photographed image data to the deterioration evaluation device 20 .
 ステップS2において、劣化評価装置20の通信部23は、撮影装置10から画像データを受信する。劣化評価装置20の制御部21は、受信した画像を取得する。 In step S<b>2 , the communication unit 23 of the deterioration evaluation device 20 receives image data from the imaging device 10 . The control unit 21 of the deterioration evaluation device 20 acquires the received image.
 ステップS3において、劣化評価装置20の設備領域検出部211は、取得された画像から、設備領域を検出する。本例では、筋金物を設備領域として検出する。ここで設備領域検出部211は、画像に設備が写っていないと判断した場合、撮影装置10にその旨通知してもよい。設備領域検出部211は、検出した結果を画素分解能推定部213に出力する。 In step S3, the facility area detection unit 211 of the deterioration evaluation device 20 detects the facility area from the acquired image. In this example, hard metal is detected as an equipment area. Here, when the equipment area detection unit 211 determines that the equipment is not captured in the image, the equipment area detection unit 211 may notify the photographing device 10 to that effect. The equipment area detection unit 211 outputs the detection result to the pixel resolution estimation unit 213 .
 ステップS4において、劣化評価装置20の劣化領域検出部212は、取得された画像から、劣化領域を検出する。劣化領域検出部212は、検出した結果を劣化大きさ推定部214に出力する。 In step S4, the degraded area detection unit 212 of the degradation evaluation device 20 detects degraded areas from the acquired image. Degraded area detection section 212 outputs the detection result to degradation magnitude estimation section 214 .
 なお、ステップS3とステップS4との順番は入れ替わってもよいし、ステップS3とステップS4との処理は同時に行われてもよい。 Note that the order of steps S3 and S4 may be changed, and the processes of steps S3 and S4 may be performed simultaneously.
 ステップS5において、劣化評価装置20の画素分解能推定部213は、検出された設備領域に基づいて、画像の少なくとも一部の画素分解能を推定する。図15A及び図15Bは、図14AのステップS5における画素分解能の推定の具体的な処理フローを示す。 In step S5, the pixel resolution estimation unit 213 of the deterioration evaluation device 20 estimates the pixel resolution of at least part of the image based on the detected facility area. 15A and 15B show a specific processing flow of pixel resolution estimation in step S5 of FIG. 14A.
 まずステップS6において、物体数抽出部2131は、設備領域として検出された筋金物の数を抽出する。物体数抽出部2131は、抽出した結果を物体数判断部2132に出力する。 First, in step S6, the number-of-objects extraction unit 2131 extracts the number of solid metal objects detected as the facility area. The number-of-objects extraction unit 2131 outputs the extracted result to the number-of-objects determination unit 2132 .
 ステップS7において、物体数判断部2132は、抽出された筋金物数Nが、N=1、N=2、又はN≧3のいずれであるかを判断する。筋金物数N=1の場合、次にステップS8で物体幅抽出部2133aによる処理が実行され、続いて実寸法比較部2136a、画素分解能マップ作成部2137aによって順に処理が実行される。筋金物数N=2の場合、次にステップS11で細線化部2134による処理が実行され、続いて、設置間隔抽出部2135、実寸法比較部2136b、画素分解能マップ作成部2137bによって順に処理が実行される。筋金物数N≧3の場合、次にステップS15で物体幅抽出部2133bによる処理が実行され、続いて、実寸法比較部2136c、画素分解能マップ作成部2137cによって順に処理が実行される。 In step S7, the number-of-objects determination unit 2132 determines whether the number N of the extracted metal objects is N=1, N=2, or N≧3. If the number of metal objects N=1, the object width extraction unit 2133a performs processing in step S8, followed by the actual size comparison unit 2136a and the pixel resolution map generation unit 2137a. If the number of metal parts N=2, the thinning unit 2134 performs processing in step S11, followed by the installation interval extraction unit 2135, the actual size comparison unit 2136b, and the pixel resolution map creation unit 2137b. be done. If the number of metal objects N≧3, the object width extraction unit 2133b performs processing in step S15, followed by the actual size comparison unit 2136c and the pixel resolution map creation unit 2137c.
 まず、ステップS7において筋金物数N=1と判断された場合について説明する。ステップS8で、物体幅抽出部2133aは、筋金物の幅に相当する画素数を測定する。測定される対象の幅の位置は自由に設定されてよく、筋金物の複数の位置における幅に相当する画素数が測定されてよい。物体幅抽出部2133aは例えば、筋金物の上下方向の最上位置と、中央位置と、最下位置における幅について画素数を測定してよい。物体幅抽出部2133aは、測定した結果を実寸法比較部2136aに出力する。 First, the case where it is determined that the number of hard metals N=1 in step S7 will be described. In step S8, the object width extracting unit 2133a measures the number of pixels corresponding to the width of the metal object. The position of the width of the object to be measured may be freely set, and the number of pixels corresponding to the width at a plurality of positions of the hard metal may be measured. For example, the object width extraction unit 2133a may measure the number of pixels for widths at the top, center, and bottom positions of the metal object in the vertical direction. The object width extraction unit 2133a outputs the measurement result to the actual size comparison unit 2136a.
 図15BのステップS9において、実寸法比較部2136aは、画素分解能を画素毎に算出する。具体的には、実寸法比較部2136aは、ステップS8で測定された画像中の筋金物の幅に相当する画素数と、記憶部22に予め記憶されている当該筋金物の実寸値とを比較し、上述した式(1)により画素分解能を求める。実寸法比較部2136aは、算出した結果を画素分解能マップ作成部2137aに出力する。 In step S9 of FIG. 15B, the actual size comparison unit 2136a calculates the pixel resolution for each pixel. Specifically, the actual size comparison unit 2136a compares the number of pixels corresponding to the width of the metal rod in the image measured in step S8 with the actual size value of the metal rod pre-stored in the storage unit 22. Then, the pixel resolution is obtained from the above equation (1). The actual size comparison unit 2136a outputs the calculated result to the pixel resolution map generation unit 2137a.
 ステップS10において、画素分解能マップ作成部2137aは、実寸法比較部2136aが算出した画素分解能と画像の座標との関係を直線近似することにより画像の全体の画素毎の画素分解能を示す画素分解能マップAを作成する。画素分解能マップの作成は、筋金物の長手方向に直線近似することで行う。画素分解能マップ作成部2137aは、作成した画素分解能マップAを劣化大きさ推定部214に出力する。 In step S10, the pixel resolution map creation unit 2137a generates a pixel resolution map A representing the pixel resolution of each pixel of the entire image by linearly approximating the relationship between the pixel resolution calculated by the actual size comparison unit 2136a and the coordinates of the image. to create The pixel resolution map is created by linear approximation in the longitudinal direction of the metal. The pixel resolution map creation unit 2137 a outputs the created pixel resolution map A to the deterioration magnitude estimation unit 214 .
 次に、ステップS7において筋金物数N=2と判断された場合について説明する。ステップS11で、細線化部2134は、検出した筋金物の幅の中心に筋金物の長手方向に沿った細線を表示し、筋金物の幅を線状で表す細線化処理を行う。細線化部2134は、細線化を実施した結果を設置間隔抽出部2135に出力する。 Next, the case where it is determined in step S7 that the number of metal fittings N=2 will be described. In step S11, the thinning unit 2134 displays a thin line along the longitudinal direction of the detected hard metal at the center of the width of the hard metal, and performs thinning processing to linearly represent the width of the hard metal. The thinning unit 2134 outputs the thinning result to the installation interval extracting unit 2135 .
 図15BのステップS12において、設置間隔抽出部2135は、細線化部2134が表示した細線の間隔距離に相当する画素数を測定し、実寸法比較部2136bに出力する。測定される対象の間隔距離の上下方向の位置は自由に設定されてよく、細線の複数の位置における間隔距離に相当する画素数が測定されてよい。 In step S12 of FIG. 15B, the installation interval extraction unit 2135 measures the number of pixels corresponding to the interval distance of the fine lines displayed by the thinning unit 2134, and outputs it to the actual size comparison unit 2136b. The vertical position of the interval distance to be measured may be freely set, and the number of pixels corresponding to the interval distance at a plurality of positions of the thin line may be measured.
 ステップS13において、実寸法比較部2136bは、画素分解能を画素毎に算出し、画素分解能マップ作成部2137bに出力する。具体的には、実寸法比較部2136bは、ステップS12で測定された画像中の筋金物に表された細線の間隔距離に相当する画素数と、記憶部22に予め記憶されている当該筋金物の間隔距離の実寸値とを比較し、上述した式(2)により画素分解能を求める。 In step S13, the actual size comparison unit 2136b calculates the pixel resolution for each pixel and outputs it to the pixel resolution map creation unit 2137b. Specifically, the actual size comparison unit 2136b compares the number of pixels corresponding to the distance between the thin lines represented by the steel metal in the image measured in step S12 and the steel metal pre-stored in the storage unit 22. is compared with the actual size value of the interval distance, and the pixel resolution is obtained by the above equation (2).
 ステップS14において、画素分解能マップ作成部2137bは、実寸法比較部2136bが算出した画素分解能と画像の座標との関係を直線近似することにより画像の全体の画素毎の画素分解能を示す画素分解能マップBを作成する。画素分解能マップ作成部2137bは、作成した画素分解能マップBを劣化大きさ推定部214に出力する。 In step S14, the pixel resolution map creation unit 2137b performs linear approximation of the relationship between the pixel resolution calculated by the actual size comparison unit 2136b and the coordinates of the image, thereby generating a pixel resolution map B indicating the pixel resolution of each pixel of the entire image. to create The pixel resolution map creation unit 2137 b outputs the created pixel resolution map B to the deterioration magnitude estimation unit 214 .
 次に、ステップS7において筋金物数N≧3と判断された場合について説明する。ステップS15で、物体幅抽出部2133bは、筋金物の幅に相当する画素数を測定する。物体幅抽出部2133bは、検出された全ての筋金物についてそれぞれの幅の画素数を測定してよい。又は、物体幅抽出部2133bは、画像に占める設備領域の大きさの割合が大きい順に、複数の筋金物を特定し、特定した筋金物のみの幅について画素数を測定してもよい。物体幅抽出部2133bは、測定した結果を実寸法比較部2136cに出力する。 Next, a case where it is determined in step S7 that the number of metal fittings N≧3 will be described. In step S15, the object width extraction unit 2133b measures the number of pixels corresponding to the width of the metal object. The object width extraction unit 2133b may measure the number of pixels in each width of all the detected metal objects. Alternatively, the object width extracting unit 2133b may identify a plurality of metal objects in descending order of the ratio of the size of the facility area in the image, and measure the number of pixels for the width of only the identified metal objects. The object width extraction unit 2133b outputs the measurement result to the actual size comparison unit 2136c.
 図15BのステップS16において、実寸法比較部2136cは、画素分解能を画素毎に算出する。ステップS16の処理の詳細はステップS9又はステップS13と同様であるため、説明を省略する。実寸法比較部2136cは、算出した結果を画素分解能マップ作成部2137cに出力する。 At step S16 in FIG. 15B, the actual size comparison unit 2136c calculates the pixel resolution for each pixel. The details of the processing of step S16 are the same as those of step S9 or step S13, and thus the description thereof is omitted. The actual size comparison unit 2136c outputs the calculated result to the pixel resolution map creation unit 2137c.
 ステップS17において、画素分解能マップ作成部2137cは、実寸法比較部2136cが算出した画素分解能と画像の座標との関係を直線近似することにより、画像の全体の画素毎の画素分解能を示す画素分解能マップCを作成する。画素分解能マップの作成は、筋金物の短手方向に直線近似することで行う。画素分解能マップ作成部2137cは、作成した画素分解能マップCを劣化大きさ推定部214に出力する。 In step S17, the pixel resolution map creation unit 2137c linearly approximates the relationship between the pixel resolution calculated by the actual size comparison unit 2136c and the coordinates of the image, thereby generating a pixel resolution map indicating the pixel resolution of each pixel of the entire image. create C. The pixel resolution map is created by linear approximation in the transverse direction of the metal. The pixel resolution map creation unit 2137 c outputs the created pixel resolution map C to the deterioration magnitude estimation unit 214 .
 上述の処理を行った後、画素分解能推定部213は、画素分解能の推定を終了する。 After performing the above-described processing, the pixel resolution estimation unit 213 finishes estimating the pixel resolution.
 再び図14Aを参照すると、ステップS18において、劣化大きさ推定部214の劣化領域座標取得部2141は、劣化領域として検出された領域の、画像中における座標を取得する。 Referring to FIG. 14A again, in step S18, the deteriorated area coordinate acquisition unit 2141 of the deterioration magnitude estimation unit 214 acquires the coordinates in the image of the area detected as the deteriorated area.
 図14BのステップS19において、劣化領域座標取得部2141は、取得した座標の値に応じて、劣化領域長さ推定部2142及び劣化領域面積推定部2143のいずれにより次の処理を行うかを決定し、劣化領域長さ推定部2142及び劣化領域面積推定部2143のいずれかに、取得した座標を出力する。劣化領域座標取得部2141は、劣化領域が線状の劣化であるとき、劣化領域長さ推定部2142が次に処理を行うことを決定し、取得した座標を劣化領域長さ推定部2142に出力する。この場合、処理はステップS20へと進む。劣化領域座標取得部2141は、劣化領域が面積を有する形状であるとき、劣化領域面積推定部2143が次に処理を行うことを決定し、取得した座標を劣化領域面積推定部2143に出力する。この場合、処理はステップS21へと進む。 In step S19 in FIG. 14B , the deteriorated area coordinate acquisition unit 2141 determines which of the deteriorated area length estimation unit 2142 and the deteriorated area area estimation unit 2143 performs the next process according to the acquired coordinate values. , the degraded region length estimator 2142 and the degraded region area estimator 2143 . Degraded region coordinate acquisition section 2141 determines that degraded region length estimation section 2142 performs next processing when the degradation region is linear degradation, and outputs the acquired coordinates to degradation region length estimation section 2142. do. In this case, the process proceeds to step S20. Degraded area coordinate acquisition section 2141 determines that degraded area area estimation section 2143 performs next processing when the degraded area has a shape having an area, and outputs the acquired coordinates to degraded area area estimation section 2143 . In this case, the process proceeds to step S21.
 まず、ステップS19において劣化領域長さ推定部2142が次に処理を行うことが決定され、処理がステップS20へと進んだ場合について説明する。ステップS20において、劣化領域長さ推定部2142は、劣化領域を示す座標から、劣化領域の長さを算出する。劣化領域長さ推定部2142は、算出した結果を記憶部22に格納する。ここでは劣化領域の最大長さを算出する例を説明するが、算出する対象の長さは自由に設定されてよい。 First, the case where it is determined in step S19 that the degraded region length estimation unit 2142 will perform the next process and the process proceeds to step S20 will be described. In step S20, the degraded region length estimator 2142 calculates the length of the degraded region from the coordinates indicating the degraded region. The degraded region length estimation unit 2142 stores the calculated result in the storage unit 22 . Although an example of calculating the maximum length of the degraded region will be described here, the length to be calculated may be set freely.
 具体的には、劣化領域長さ推定部2142は、劣化領域の形状に応じて、任意の多角形を形成するような点を抽出し、当該多角形のいずれかの対角線を最大長さとして判断する。例えば図13Aを参照すると、劣化領域としてのヒビ割れが点線で示される。劣化領域長さ推定部2142は、劣化領域の座標のうち、縦軸(Y軸)の値が最大値の点A、横軸(X軸)の値が最大値の点B、縦軸(Y軸)の値が最小値の点C、横軸(X軸)の値が最小値の点Dを抽出する。劣化領域長さ推定部2142は、点Aから点Dを接続する直線で形成される四角形を作成し、当該四角形の対角線のうち、点Aと点Cとを接続する直線が最大長さL’maxとなっていることを判断する。 Specifically, the degraded region length estimator 2142 extracts points that form an arbitrary polygon according to the shape of the degraded region, and determines one of the diagonals of the polygon as the maximum length. do. For example, referring to FIG. 13A, cracks are indicated by dashed lines as degraded regions. The degraded region length estimating unit 2142 calculates, of the coordinates of the degraded region, the point A having the maximum value on the vertical axis (Y axis), the point B having the maximum value on the horizontal axis (X axis), and the point B having the maximum value on the vertical axis (Y The point C with the minimum value on the X-axis and the point D with the minimum value on the horizontal axis (X-axis) are extracted. The degraded region length estimating unit 2142 creates a quadrangle formed by straight lines connecting points A to D, and the straight line connecting points A and C among the diagonals of the quadrangle has the maximum length L′. It is determined that it is max.
 次に劣化領域長さ推定部2142は、最大長さを形成する点の座標を、画素分解能マップA~Cのいずれかの上にプロットする。そして、劣化領域長さ推定部2142は、プロットした点と点の間の距離、すなわち劣化領域の最大長さの実寸値を、画素分解能マップが示す画素分解能の値により求める。例えば図13Bは、最大長さを形成する点Aと点Cとが画素分解能マップ上にプロットされた状態を示す。劣化領域長さ推定部2142は、プロットした座標の値の距離、すなわち劣化領域の最大長さの実寸値を、画素分解能マップが示す画素分解能の値により求める。図13Bの画素分解能マップ上で、劣化領域長さ推定部2142は、プロットされた点Aと点Cとを結ぶ直線が斜辺となる直角三角形を形成する。劣化領域長さ推定部2142は、直角を形成する、点Aから縦軸に沿って下方に伸びる直線と、点Cから横軸に沿って左方向に伸びる直線とに相当する画素の画素分解能を測定し、それぞれの直線の実寸値を求める。図13Bから、劣化領域長さ推定部2142は、点Aから伸びる直線に相当する画素の画素分解能の値を合計して、当該直線の実寸値が5.5mmであることを算出する。また、点Cから伸びる直線に相当する画素の画素分解能の値を合計して、当該直線の実寸値が3.4mmであることを算出する。そして、劣化領域長さ推定部2142は、三平方の定理により、点Aと点Cとを結ぶ斜辺の実寸値が6.5mmであることを算出する。 Next, the degraded area length estimation unit 2142 plots the coordinates of the point forming the maximum length on any one of the pixel resolution maps AC. Then, the degraded area length estimator 2142 obtains the distance between the plotted points, that is, the actual size value of the maximum length of the degraded area from the pixel resolution value indicated by the pixel resolution map. For example, FIG. 13B shows points A and C forming the maximum length plotted on a pixel resolution map. The degraded area length estimator 2142 obtains the distance of the plotted coordinate values, ie, the actual size value of the maximum length of the degraded area, from the pixel resolution value indicated by the pixel resolution map. On the pixel resolution map of FIG. 13B, the degraded region length estimator 2142 forms a right-angled triangle whose oblique side is the straight line connecting the plotted points A and C. FIG. The degraded region length estimation unit 2142 calculates the pixel resolution of pixels corresponding to a straight line extending downward along the vertical axis from point A and a straight line extending leftward from point C along the horizontal axis, which form a right angle. Measure and determine the actual size of each straight line. From FIG. 13B, the deteriorated region length estimator 2142 totals the pixel resolution values of the pixels corresponding to the straight line extending from the point A, and calculates that the actual size value of the straight line is 5.5 mm. Also, the pixel resolution values of the pixels corresponding to the straight line extending from the point C are totaled to calculate that the actual size value of the straight line is 3.4 mm. Then, the deteriorated region length estimation unit 2142 calculates that the actual size value of the oblique side connecting the points A and C is 6.5 mm by the Pythagorean theorem.
 次に、ステップS19において劣化領域面積推定部2143が次に処理を行うことが決定され、処理がステップS21へと進んだ場合について説明する。ステップS21において、劣化領域面積推定部2143は、劣化領域の面積を算出する。劣化領域面積推定部2143は、算出した結果を記憶部22に格納する。 Next, a case where it is determined in step S19 that the degraded area area estimation unit 2143 will perform the next process and the process proceeds to step S21 will be described. In step S21, the degraded area area estimation unit 2143 calculates the area of the degraded area. The deteriorated area area estimation unit 2143 stores the calculated result in the storage unit 22 .
 具体的には、劣化領域面積推定部2143は、取得された劣化領域の座標の値を画素分解能マップA~Cのいずれかの上にプロットする。劣化領域面積推定部2143は、プロットした座標に基づき、劣化領域に対応する画素のそれぞれの画素分解能の値を特定する。次に劣化領域面積推定部2143は、特定した画素分解能の値をそれぞれ2乗し、1画素当りの面積の実寸値を求める。劣化領域面積推定部2143は、求めた1画素当りの面積の実寸値を加算していき、合計値を劣化領域全体の面積の実寸値として算出する。 Specifically, the degraded area area estimation unit 2143 plots the acquired coordinate values of the degraded area on one of the pixel resolution maps AC. The degraded area area estimation unit 2143 identifies the pixel resolution value of each pixel corresponding to the degraded area based on the plotted coordinates. Next, the deteriorated area area estimation unit 2143 squares each of the specified pixel resolution values to obtain the actual size value of the area per pixel. The deteriorated area area estimator 2143 adds the obtained actual size values of the area per pixel, and calculates the total value as the actual size value of the area of the entire deteriorated region.
 ステップS18からステップS21に示すように、劣化大きさ推定部214は、劣化領域検出部212が検出した劣化領域の実寸値を、画素分解能推定部213が作成した画素分解能マップに基づいて推定する。 As shown in steps S18 to S21, the deterioration magnitude estimation unit 214 estimates the actual size value of the deteriorated area detected by the deteriorated area detection unit 212 based on the pixel resolution map created by the pixel resolution estimation unit 213.
 ステップS22において、劣化評価装置20の制御部21は、推定した劣化領域の実寸値を示す情報を記憶部22から読み出し、通信部23を介して、サーバ装置30に送信する。 In step S<b>22 , the control unit 21 of the deterioration evaluation device 20 reads information indicating the estimated actual size of the deteriorated region from the storage unit 22 and transmits the information to the server device 30 via the communication unit 23 .
 ステップS23において、サーバ装置30は劣化領域の実寸値を示す情報を受信し、サーバ装置30の記憶部に格納する。 In step S23, the server device 30 receives the information indicating the actual size of the deteriorated area and stores it in the storage section of the server device 30.
 上述のように、本実施形態にかかる劣化評価装置20は、取得した画像から設備領域を検出する設備領域検出部211と、画像から劣化領域を検出する劣化領域検出部212と、検出した設備領域に基づいて、画像の少なくとも一部の画素分解能を推定する画素分解能推定部213と、画素分解能に基づいて劣化領域の大きさを推定する劣化大きさ推定部214と、を備える。 As described above, the deterioration evaluation apparatus 20 according to this embodiment includes the equipment area detection unit 211 that detects the equipment area from the acquired image, the deterioration area detection unit 212 that detects the deterioration area from the image, and the detected equipment area and a deterioration size estimation unit 214 for estimating the size of the deteriorated region based on the pixel resolution.
 本実施形態によれば、検出された設備領域から画素分解能を推定し、当該画素分解能を用いることで、劣化領域の実寸値を推定できる。よって、一定の撮影条件に限定されずに劣化領域の実寸値を評価可能な劣化評価装置及び劣化評価方法を提供することができる。 According to this embodiment, by estimating the pixel resolution from the detected equipment area and using the pixel resolution, the actual size value of the deteriorated area can be estimated. Therefore, it is possible to provide a deterioration evaluation device and a deterioration evaluation method capable of evaluating the actual size value of a deteriorated region without being limited to certain photographing conditions.
 上述のように、本実施形態にかかる劣化評価装置20において、画素分解能推定部213は、画像の座標と画素分解能との関係を近似することにより画像の全体の画素分解能マップを作成する画素分解能マップ作成部2137をさらに備える。劣化大きさ推定部214は、画素分解能マップが示す画素分解能に基づいて劣化領域の大きさを推定する。 As described above, in the degradation evaluation apparatus 20 according to this embodiment, the pixel resolution estimation unit 213 creates a pixel resolution map of the entire image by approximating the relationship between the coordinates of the image and the pixel resolution. A creation unit 2137 is further provided. A degradation size estimation unit 214 estimates the size of the degradation region based on the pixel resolution indicated by the pixel resolution map.
 本実施形態によれば、画素分解能マップにより画像の全体の画素分解能マップが一元的に把握できる。劣化領域の座標を画素分解能マップ上に重ね合わせることで、容易に劣化領域の大きさの実寸値が推定できる。よって、一定の撮影条件に限定されずに劣化領域の実寸値を評価可能な劣化評価装置及び劣化評価方法を提供することができる。 According to this embodiment, the pixel resolution map of the entire image can be grasped in a unified manner. By superimposing the coordinates of the degraded region on the pixel resolution map, the actual size of the degraded region can be easily estimated. Therefore, it is possible to provide a deterioration evaluation device and a deterioration evaluation method capable of evaluating the actual size value of a deteriorated region without being limited to certain photographing conditions.
 上述のように、本実施形態にかかる劣化評価装置20において、画素分解能推定部213は、設備領域が示す設備の数を抽出する物体数抽出部2131と、抽出された設備の数に応じて、設備領域を示す画素数と実寸値とを比較して画素分解能を推定する実寸法比較部2136と、をさらに備える。 As described above, in the deterioration evaluation apparatus 20 according to the present embodiment, the pixel resolution estimation unit 213 includes the object number extraction unit 2131 that extracts the number of facilities indicated by the facility area, and the number of extracted facilities. It further includes an actual size comparison unit 2136 for estimating the pixel resolution by comparing the number of pixels indicating the facility area and the actual size value.
 本実施形態によれば、設備の数に応じて画素分解能を推定する手法が選択される。これにより、より精度よく画像の画素分解能を推定できる。よって、一定の撮影条件に限定されずに劣化領域の実寸値を評価可能な劣化評価装置及び劣化評価方法を提供することができる。 According to this embodiment, a method of estimating pixel resolution is selected according to the number of facilities. This makes it possible to estimate the pixel resolution of an image with higher accuracy. Therefore, it is possible to provide a deterioration evaluation device and a deterioration evaluation method capable of evaluating the actual size value of a deteriorated region without being limited to certain photographing conditions.
 上述のように、本実施形態にかかる劣化評価装置20において、画素分解能推定部213は、物体数抽出部2131が抽出した設備の数が1又は3以上であるとき、設備の幅に相当する画素数を測定する物体幅抽出部2133をさらに備える。実寸法比較部2136は、設備の幅の実寸値を、測定された画素数で除して画素分解能を推定する。 As described above, in the deterioration evaluation apparatus 20 according to the present embodiment, when the number of facilities extracted by the object number extraction section 2131 is 1 or 3 or more, the pixel resolution estimation unit 213 selects pixels corresponding to the width of the facility. It further comprises an object width extractor 2133 that measures the number. The actual size comparison unit 2136 divides the actual size value of the width of the facility by the number of pixels measured to estimate the pixel resolution.
 本実施形態によれば、設備の数が1又は3以上であるとき、設備の幅に相当する画素数と既知である設備の幅の実寸値とに基づいて、精度よく画素分解能を推定できる。筋金物を1つのみ検出した画像は、比較的とう道の壁面と接写して撮影された画像であり、劣化領域が筋金物の付近に写りこんでいることが多いため、筋金物の幅に相当する画素数と実寸値とについて画素分解能を推定することで、劣化領域の実寸値を精度よく推定できる。一方、筋金物を3つ以上検出した画像は、とう道の手前から奥に向かって撮影された画像であることが多く、この場合、とう道の奥側に存在する劣化領域が小さく写り込む可能性が高い。複数の筋金物の幅に相当する画素数と実寸値とについて画素分解能を推定することで、このような劣化領域の実寸値も精度よく推定できる。よって、一定の撮影条件に限定されずに劣化領域の実寸値を評価可能な劣化評価装置及び劣化評価方法を提供することができる。 According to this embodiment, when the number of facilities is 1 or 3 or more, the pixel resolution can be accurately estimated based on the number of pixels corresponding to the width of the facility and the known actual width of the facility. The image in which only one metal object was detected was an image taken relatively close to the tunnel wall, and the deteriorated area was often reflected near the metal object. By estimating the pixel resolution for the corresponding number of pixels and the actual size value, the actual size value of the degraded region can be accurately estimated. On the other hand, images in which three or more metal objects are detected are often images shot from the front to the back of the cable tunnel. highly sexual. By estimating the pixel resolution with respect to the number of pixels corresponding to the width of a plurality of metal bars and the actual size value, the actual size value of such a deteriorated region can also be accurately estimated. Therefore, it is possible to provide a deterioration evaluation apparatus and a deterioration evaluation method capable of evaluating the actual size value of a deteriorated region without being limited to certain photographing conditions.
 上述のように、本実施形態にかかる劣化評価装置20において、画素分解能推定部213は、物体数抽出部2131が抽出した設備の数が2であるとき、設備の幅を線状で表す細線化部2134と、細線の間隔距離に相当する画素数を測定する設置間隔抽出部2135とをさらに備える。実寸法比較部2136は、間隔距離の実寸値を、測定された画素数で除して画素分解能を推定する。 As described above, in the deterioration evaluation apparatus 20 according to the present embodiment, when the number of facilities extracted by the object number extraction section 2131 is two, the pixel resolution estimation unit 213 performs thinning to express the width of the facilities linearly. 2134, and an installation interval extraction unit 2135 for measuring the number of pixels corresponding to the interval distance between fine lines. The actual size comparison unit 2136 divides the actual size value of the gap distance by the measured number of pixels to estimate the pixel resolution.
 本実施形態によれば、設備の数が2であるとき、設備が細線で表され、当該細線の間隔距離に相当する画素数と既知である設備の間隔距離の実寸値とに基づいて、精度よく画素分解能を推定できる。2つの筋金物が画像の中心部に寄らずに撮影された場合でも、筋金物の間隔距離の実寸値と測定された画素数とに基づいて、画像の全体の画素分解能を、より実寸値に近く再現できる。よって、一定の撮影条件に限定されずに劣化領域の実寸値を評価可能な劣化評価装置及び劣化評価方法を提供することができる。 According to this embodiment, when the number of facilities is 2, the facilities are represented by thin lines, and the accuracy The pixel resolution can be estimated well. Based on the actual size of the separation distance between the metal objects and the number of pixels measured, the overall pixel resolution of the image can be made closer to the actual size value, even if the two steel objects are not close to the center of the image. can be reproduced in the near future. Therefore, it is possible to provide a deterioration evaluation apparatus and a deterioration evaluation method capable of evaluating the actual size value of a deteriorated region without being limited to certain photographing conditions.
 本開示を諸図面や実施形態に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本開示の範囲に含まれることに留意されたい。 Although the present disclosure has been described based on the drawings and embodiments, it should be noted that a person skilled in the art can easily make various modifications and modifications based on the present disclosure. Therefore, it should be noted that these variations and modifications are included within the scope of this disclosure.
(変形例1)
 本開示の変形例として、劣化評価装置20の制御部21がさらに設備領域修正部215を備えてもよい。設備領域修正部215は、設備領域から過検出された領域を削除する処理、及び設備領域において分断された領域を補間する処理の少なくとも一方の処理を行う。
(Modification 1)
As a modified example of the present disclosure, the control unit 21 of the deterioration evaluation device 20 may further include an equipment area correction unit 215 . The facility area correction unit 215 performs at least one of a process of deleting an overdetected area from the facility area and a process of interpolating a segmented area in the facility area.
 過検出された領域とは、設備領域検出部211が設備領域以外の領域を設備領域として検出してしまった領域をいう。例えば画像における背景領域が、設備領域として検出されてしまった場合に、当該検出された領域を過検出領域という。 An over-detected area is an area where the equipment area detection unit 211 has detected an area other than the equipment area as the equipment area. For example, when a background area in an image is detected as an equipment area, the detected area is called an overdetected area.
 まず、設備領域修正部215が、設備領域検出部211が過検出した領域を検出し、当該領域を削除する処理について説明する。図16Aでは、過検出された領域が矢印記号で示される。過検出された領域の検出は任意の画像解析手法により行われてよい。例えば設備領域修正部215は、設備領域検出部211が検出した結果を画素の濃度に基づき二値化し、対象画素の4近傍又は8近傍の任意の周辺範囲の画素を参照して、同一の値の画素が存在する場合には、同一の値の画素を1つの連結画素とする。設備領域修正部215は、大きさが閾値以下の連結画素を削除する。この場合の閾値は、任意に設定されてよい。過検出された領域を削除した後、設備領域修正部215は設備領域を修正した修正設備領域を生成する。図16Bは、図16Aにおいて過検出された領域が削除された状態の修正設備領域を示す。 First, the process of detecting an area over-detected by the equipment area detection unit 211 and deleting the area by the equipment area correction unit 215 will be described. In FIG. 16A, the overdetected regions are indicated by arrow symbols. Detection of over-detected regions may be performed by any image analysis technique. For example, the equipment area correction unit 215 binarizes the result detected by the equipment area detection unit 211 based on the density of the pixels, refers to pixels in an arbitrary peripheral range of 4 or 8 neighborhoods of the target pixel, and obtains the same value , the pixels with the same value are taken as one connected pixel. The facility area correction unit 215 deletes connected pixels whose sizes are equal to or smaller than the threshold. The threshold in this case may be set arbitrarily. After deleting the overdetected area, the facility area correction unit 215 generates a corrected facility area by correcting the facility area. FIG. 16B shows the corrected equipment area with the over-detected area removed in FIG. 16A.
 次に、設備領域修正部215が、設備領域検出部211が検出した設備領域における分断された領域を補間する処理について説明する。ここで設備領域の分断は、撮影装置10と設備との間に物体が存在するために発生する。図17Aでは、筋金物の前面にケーブル又はケーブルを支持するための受金物が存在するために分断された設備領域が矢印記号で示される。分断された領域の検出は任意の画像解析手法により行われてよい。設備領域修正部215は、例えばモルフォロジー変換の手法により分断された領域を補間する。また、モルフォロジー変換の種類は限定されないが、膨張処理の後に収縮処理を行うクロージング処理が有効であり望ましい。分断された領域を補間した後、設備領域修正部215は設備領域を修正した修正設備領域を生成する。図17Bは、図17Aにおいて検出された、分断された領域が補間された状態の修正設備領域を示す。 Next, the process of interpolating the divided area in the equipment area detected by the equipment area detection unit 211 by the equipment area correction unit 215 will be described. Here, division of the facility area occurs due to the presence of an object between the imaging device 10 and the facility. In FIG. 17A, an arrow symbol indicates a segmented facility area due to the presence of a cable or a bracket for supporting the cable on the front face of the steel. Detection of the segmented regions may be performed by any image analysis method. The facility region correction unit 215 interpolates the segmented regions by, for example, a morphological conversion method. Also, although the type of morphological transformation is not limited, it is effective and desirable to perform a closing process in which an erosion process is performed after an expansion process. After interpolating the divided area, the facility area correction unit 215 generates a corrected facility area by correcting the facility area. FIG. 17B shows the corrected equipment area with the fragmented area detected in FIG. 17A interpolated.
図18に示すように、設備領域修正部215は設備領域検出部211の処理の後に処理を実行できる。これにより、画素分解能推定部213が備える物体数抽出部2131が、設備領域修正部215によって生成された修正設備領域が示す設備の数を抽出できる。 As shown in FIG. 18, the equipment area correction unit 215 can perform processing after the equipment area detection unit 211 performs processing. As a result, the number-of-objects extraction unit 2131 included in the pixel resolution estimation unit 213 can extract the number of facilities indicated by the corrected facility area generated by the facility area correction unit 215 .
 設備領域修正部215は、設備領域検出部211のみならず、劣化領域検出部212が検出した劣化領域における分断された領域を検出し、当該領域を補間することができてもよい。この場合、設備領域修正部215は劣化領域検出部212の処理の後に処理を実行できる。 The equipment area correction unit 215 may be able to detect divided areas in the degraded areas detected not only by the equipment area detection unit 211 but also by the degraded area detection unit 212 and interpolate the areas. In this case, the equipment area correction unit 215 can execute processing after the processing of the deteriorated area detection unit 212 .
 上述のように、変形例1に係る劣化評価装置20は、設備領域から過検出された領域を削除する処理、及び設備領域において分断された領域を補間する処理の少なくとも一方の処理により、設備領域を修正した修正設備領域を生成する設備領域修正部215をさらに備える。物体数抽出部2131は、修正設備領域が示す設備の数を抽出する。 As described above, the deterioration evaluation apparatus 20 according to Modification 1 performs at least one of the process of deleting the overdetected area from the equipment area and the process of interpolating the divided area in the equipment area. further includes an equipment area correction unit 215 that generates a corrected equipment area by correcting The object number extraction unit 2131 extracts the number of facilities indicated by the corrected facility area.
 本変形例によれば、過検出された領域を削除、又は分断された領域を補間することで、画像中の設備の数の正確な把握が可能となる。したがって、より精度よく画素分解能を推定し、劣化領域の実寸値を推定できる。よって、一定の撮影条件に限定されずに劣化領域の実寸値を評価可能な劣化評価装置及び劣化評価方法を提供することができる。 According to this modified example, it is possible to accurately grasp the number of facilities in an image by deleting overdetected areas or interpolating divided areas. Therefore, the pixel resolution can be estimated more accurately, and the actual size value of the degraded area can be estimated. Therefore, it is possible to provide a deterioration evaluation device and a deterioration evaluation method capable of evaluating the actual size value of a deteriorated region without being limited to certain photographing conditions.
(変形例2)
 本開示の変形例として、画素分解能マップ作成部2137a、画素分解能マップ作成部2137b又は画素分解能マップ作成部2137cが作成する画素分解能マップが、二次元的に角度を有したものであってもよい。
(Modification 2)
As a modification of the present disclosure, the pixel resolution map created by the pixel resolution map creation unit 2137a, the pixel resolution map creation unit 2137b, or the pixel resolution map creation unit 2137c may have two-dimensional angles.
 画像の撮影角度によっては、画像の全体の画素分解能が画像の左右方向及び上下方向の両方向に変化することが考えられる。例えば図19に示す例では、画像は角度を有しており、3つの筋金物が検出されている。この場合、矢印記号で示すように、物体幅抽出部2133b、細線化部2134及び設置間隔抽出部2135により、筋金物の幅及び設置間隔に相当する画素が測定され、実寸法比較部2136b及び実寸法比較部2136cにより筋金物の長手方向及び短手方向の両方の方向の画素分解能を推定する。そして、画素分解能マップ作成部2137b及び画素分解能マップ作成部2137cが、2次元的に変化する画素分解能マップDを作成する。 Depending on the shooting angle of the image, it is conceivable that the pixel resolution of the entire image changes in both the horizontal and vertical directions of the image. For example, in the example shown in FIG. 19, the image is angled and three metal objects are detected. In this case, as indicated by arrow symbols, the object width extraction unit 2133b, the thinning unit 2134, and the installation interval extraction unit 2135 measure the pixels corresponding to the width and the installation interval of the reinforcing metal. The dimension comparison unit 2136c estimates the pixel resolution in both the longitudinal direction and the lateral direction of the metal rod. Then, the pixel resolution map creation unit 2137b and the pixel resolution map creation unit 2137c create a pixel resolution map D that changes two-dimensionally.
 図20は、図19に示す画像に基づいて作成された画素分解能マップDを説明するための図である。図中右側のスケールは、画像中の画素分解能の値を濃淡によって表している。図20を見ると、画像中の2つの矢印記号が示す方向に沿って、すなわち画像の右上から左下に向かって、画素分解能の値が大きくなっていることがわかる。このように画素分解能マップDにおいて、画素分解能の値が二次元的に角度を有して変化している。 FIG. 20 is a diagram for explaining the pixel resolution map D created based on the image shown in FIG. The scale on the right side of the figure expresses the pixel resolution value in the image by shading. Looking at FIG. 20, it can be seen that the pixel resolution value increases along the direction indicated by the two arrow symbols in the image, that is, from the upper right to the lower left of the image. Thus, in the pixel resolution map D, the pixel resolution values change two-dimensionally with angles.
 本変形例によれば、画像の撮影角度を考慮した画素分解能の推定及び画素分解能マップの作成が可能となり、これに基づいてより精度よく劣化領域の実寸値を推定できる。よって、一定の撮影条件に限定されずに劣化領域の実寸値を評価可能な劣化評価装置及び劣化評価方法を提供することができる。 According to this modified example, it is possible to estimate the pixel resolution in consideration of the imaging angle of the image and create a pixel resolution map. Therefore, it is possible to provide a deterioration evaluation apparatus and a deterioration evaluation method capable of evaluating the actual size value of a deteriorated region without being limited to certain photographing conditions.
  1 劣化評価システム
  10 撮影装置
  20 劣化評価装置
  30 サーバ装置
  21 制御部
  22 記憶部
  23 通信部
  24 入力部
  25 出力部
  211 設備領域検出部
  212 劣化領域検出部
  213 画素分解能推定部
  2131 物体数抽出部
  2132 物体数判断部
  2133a,2133b 物体幅抽出部
  2134 物体細線化部
  2135 設置間隔抽出部
  2136a,2136b,2136c 実寸法比較部
  2137a,2137b,2137c 画素分解能マップ作成部
  214 劣化大きさ推定部
  2141 劣化領域座標取得部
  2142 劣化領域長さ推定部
  2143 劣化領域面積推定部
  215 設備領域修正部
1 deterioration evaluation system 10 photographing device 20 deterioration evaluation device 30 server device 21 control unit 22 storage unit 23 communication unit 24 input unit 25 output unit 211 facility area detection unit 212 deterioration area detection unit 213 pixel resolution estimation unit 2131 object number extraction unit 2132 Object number determination unit 2133a, 2133b Object width extraction unit 2134 Object thinning unit 2135 Installation interval extraction unit 2136a, 2136b, 2136c Actual size comparison unit 2137a, 2137b, 2137c Pixel resolution map creation unit 214 Degradation magnitude estimation unit 2141 Degraded area coordinates Acquisition unit 2142 Degraded area length estimation unit 2143 Degraded area area estimation unit 215 Facility area correction unit

Claims (8)

  1.  取得した画像から設備領域を検出する設備領域検出部と、
     前記画像から劣化領域を検出する劣化領域検出部と、
     検出した前記設備領域に基づいて、前記画像の少なくとも一部の画素分解能を推定する画素分解能推定部と、
     前記画素分解能に基づいて前記劣化領域の大きさを推定する劣化大きさ推定部と、
    を備える、劣化評価装置。
    an equipment area detection unit that detects an equipment area from the acquired image;
    a degraded area detection unit that detects a degraded area from the image;
    a pixel resolution estimation unit that estimates the pixel resolution of at least part of the image based on the detected facility area;
    a deterioration size estimation unit that estimates the size of the deteriorated region based on the pixel resolution;
    A deterioration evaluation device.
  2.  前記画素分解能推定部は、
     前記画像の座標と前記画素分解能との関係を近似することにより前記画像の全体の画素分解能マップを作成する画素分解能マップ作成部を備え、
     前記劣化大きさ推定部は、前記画素分解能マップが示す前記画素分解能に基づいて前記劣化領域の大きさを推定する、請求項1に記載の劣化評価装置。
    The pixel resolution estimator,
    a pixel resolution map creation unit that creates a pixel resolution map of the entire image by approximating the relationship between the coordinates of the image and the pixel resolution;
    2. The deterioration evaluation apparatus according to claim 1, wherein said deterioration size estimating section estimates the size of said deteriorated region based on said pixel resolution indicated by said pixel resolution map.
  3.  前記画素分解能推定部は、
     前記設備領域が示す設備の数を抽出する物体数抽出部と、
     抽出された前記設備の数に応じて、前記設備領域を示す画素数と実寸値とを比較して前記画素分解能を推定する実寸法比較部と、
    をさらに備える、請求項1又は2に記載の劣化評価装置。
    The pixel resolution estimator,
    an object number extraction unit that extracts the number of facilities indicated by the facility area;
    an actual size comparison unit for estimating the pixel resolution by comparing the number of pixels indicating the facility area and the actual size value according to the extracted number of the facilities;
    The deterioration evaluation device according to claim 1 or 2, further comprising:
  4.  前記画素分解能推定部は、
     前記物体数抽出部が抽出した前記設備の数が1又は3以上であるとき、前記設備の幅に相当する画素数を測定する物体幅抽出部をさらに備え、
     前記実寸法比較部は、前記設備の幅の実寸値を、測定された前記画素数で除して前記画素分解能を推定する、請求項3に記載の劣化評価装置。
    The pixel resolution estimator,
    further comprising an object width extraction unit that measures the number of pixels corresponding to the width of the facility when the number of facilities extracted by the object number extraction unit is 1 or 3 or more,
    4. The deterioration evaluation apparatus according to claim 3, wherein said actual size comparison unit divides the actual size value of the width of said facility by said measured number of pixels to estimate said pixel resolution.
  5.  前記画素分解能推定部は、
     前記物体数抽出部が抽出した前記設備の数が2であるとき、前記設備の幅を線状で表す細線化部と、
     前記細線の間隔距離に相当する画素数を測定する設置間隔抽出部と、をさらに備え、
     前記実寸法比較部は、前記間隔距離の実寸値を、測定された前記画素数で除して前記画素分解能を推定する、請求項3に記載の劣化評価装置。
    The pixel resolution estimator,
    when the number of facilities extracted by the number-of-objects extraction unit is two, a thinning unit representing the width of the facility in a line;
    an installation interval extraction unit that measures the number of pixels corresponding to the interval distance between the fine lines;
    4. The deterioration evaluation apparatus according to claim 3, wherein said actual size comparison unit divides the actual size value of said gap distance by said measured number of pixels to estimate said pixel resolution.
  6.  前記設備領域から過検出された領域を削除する処理、及び前記設備領域において分断された領域を補間する処理の少なくとも一方の処理により、前記設備領域を修正した修正設備領域を生成する設備領域修正部をさらに備え、
     前記物体数抽出部は、前記修正設備領域が示す設備の数を抽出する、請求項3から5のいずれか一項に記載の劣化評価装置。
    A facility area correction unit that generates a corrected facility area by correcting the facility area by at least one of a process of deleting an overdetected area from the facility area and a process of interpolating a segmented area in the facility area. further comprising
    The deterioration evaluation device according to any one of claims 3 to 5, wherein the number-of-objects extraction unit extracts the number of facilities indicated by the repair facility area.
  7.  劣化評価装置により劣化を評価する劣化評価方法であって、
     取得した画像から設備領域を検出するステップと、
     前記画像から劣化領域を検出するステップと、
     検出した前記設備領域に基づいて、前記画像の少なくとも一部の画素分解能を推定するステップと、
     前記画素分解能に基づいて前記劣化領域の大きさを推定するステップと、
    を含む、劣化評価方法。
    A deterioration evaluation method for evaluating deterioration by a deterioration evaluation device,
    a step of detecting an equipment area from the acquired image;
    detecting degraded regions from the image;
    estimating a pixel resolution of at least a portion of the image based on the detected equipment area;
    estimating the size of the degraded region based on the pixel resolution;
    Deterioration evaluation method, including
  8.  コンピュータを、請求項1から6のいずれか一項に記載の劣化評価装置として機能させるためのプログラム。 A program for causing a computer to function as the deterioration evaluation device according to any one of claims 1 to 6.
PCT/JP2021/002297 2021-01-22 2021-01-22 Deterioration evaluation device, deterioration evaluation method, and program WO2022157939A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022576912A JPWO2022157939A1 (en) 2021-01-22 2021-01-22
PCT/JP2021/002297 WO2022157939A1 (en) 2021-01-22 2021-01-22 Deterioration evaluation device, deterioration evaluation method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002297 WO2022157939A1 (en) 2021-01-22 2021-01-22 Deterioration evaluation device, deterioration evaluation method, and program

Publications (1)

Publication Number Publication Date
WO2022157939A1 true WO2022157939A1 (en) 2022-07-28

Family

ID=82549629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002297 WO2022157939A1 (en) 2021-01-22 2021-01-22 Deterioration evaluation device, deterioration evaluation method, and program

Country Status (2)

Country Link
JP (1) JPWO2022157939A1 (en)
WO (1) WO2022157939A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042659A1 (en) * 2022-08-24 2024-02-29 日本電信電話株式会社 Image processing device, image processing method, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130034305A1 (en) * 2011-08-04 2013-02-07 University Of Southern California Image-based crack quantification
JP2019045993A (en) * 2017-08-30 2019-03-22 キヤノン株式会社 Image processing device, image processing method and program
JP2019056679A (en) * 2017-09-22 2019-04-11 株式会社大林組 Surface evaluation method, surface evaluation device, and evaluation model storage device
WO2019163329A1 (en) * 2018-02-21 2019-08-29 富士フイルム株式会社 Image processing device and image processing method
WO2020166424A1 (en) * 2019-02-15 2020-08-20 日本電信電話株式会社 Position coordinate derivation device, position coordinate derivation method, position coordinate derivation program, and system
JP2020197797A (en) * 2019-05-31 2020-12-10 株式会社東芝 Image processing device and image processing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130034305A1 (en) * 2011-08-04 2013-02-07 University Of Southern California Image-based crack quantification
JP2019045993A (en) * 2017-08-30 2019-03-22 キヤノン株式会社 Image processing device, image processing method and program
JP2019056679A (en) * 2017-09-22 2019-04-11 株式会社大林組 Surface evaluation method, surface evaluation device, and evaluation model storage device
WO2019163329A1 (en) * 2018-02-21 2019-08-29 富士フイルム株式会社 Image processing device and image processing method
WO2020166424A1 (en) * 2019-02-15 2020-08-20 日本電信電話株式会社 Position coordinate derivation device, position coordinate derivation method, position coordinate derivation program, and system
JP2020197797A (en) * 2019-05-31 2020-12-10 株式会社東芝 Image processing device and image processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042659A1 (en) * 2022-08-24 2024-02-29 日本電信電話株式会社 Image processing device, image processing method, and program

Also Published As

Publication number Publication date
JPWO2022157939A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
JP6173655B1 (en) Detection apparatus and detection method
JP5538667B2 (en) Position / orientation measuring apparatus and control method thereof
WO2016152076A1 (en) Structure condition assessing device, condition assessing system, and condition assessing method
US20160133008A1 (en) Crack data collection method and crack data collection program
TWI514326B (en) System and method for measuring special boundaries
KR101703515B1 (en) Apparatus and method for target tracking of image
KR101884724B1 (en) The Diagnosis-Supporting Systems for Culvert Facilities
JP7074043B2 (en) Equipment status detector, equipment status detection method, and program
JP2013088999A (en) Building extraction device, method, and program
JP2018173276A (en) Measurement support apparatus, measurement support method and program
JPWO2019097578A1 (en) Displacement component detection device, displacement component detection method, and program
JP2019020220A (en) Image processing apparatus, image processing method, and program
WO2022157939A1 (en) Deterioration evaluation device, deterioration evaluation method, and program
US20220136979A1 (en) Information processing apparatus, information processing method, and non- transitory computer-readable storage medium
JP6337242B2 (en) Image measuring apparatus and method of structure having quadrangular or truncated cone shape
JP4870016B2 (en) Crack detection method
KR101793262B1 (en) Analysis system for occurrence and growth progression of crack
JP2018173275A (en) Notification device, notification processing program and notification processing method
JP2015005143A (en) Data analyzer, data analysis method, and program
KR101793264B1 (en) Analysis method for occurrence and growth progression of crack
JP2000121358A (en) Method and device for obtaining inspection point position
JPWO2019003796A1 (en) Image combining method, image combining apparatus, and recording medium
KR102357109B1 (en) Tunnel surface mapping system under construction
JP2020091590A (en) Display data generation apparatus, display data generation method, and display data generation program
US11948319B2 (en) Structure detection apparatus, structure detection method, and structure detection processing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576912

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921048

Country of ref document: EP

Kind code of ref document: A1