WO2022157091A1 - Dispositif d'accouplement et de détachement d'urgence - Google Patents

Dispositif d'accouplement et de détachement d'urgence Download PDF

Info

Publication number
WO2022157091A1
WO2022157091A1 PCT/EP2022/050825 EP2022050825W WO2022157091A1 WO 2022157091 A1 WO2022157091 A1 WO 2022157091A1 EP 2022050825 W EP2022050825 W EP 2022050825W WO 2022157091 A1 WO2022157091 A1 WO 2022157091A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
volume
transport
outer tube
thermal insulation
Prior art date
Application number
PCT/EP2022/050825
Other languages
English (en)
Inventor
Gaetan Coleiro
Yann PENNEC
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to KR1020237027546A priority Critical patent/KR20230130095A/ko
Priority to JP2023539087A priority patent/JP2024503590A/ja
Priority to CN202280008209.5A priority patent/CN116601417A/zh
Priority to US18/273,114 priority patent/US20240117911A1/en
Priority to CA3205306A priority patent/CA3205306A1/fr
Priority to EP22700654.1A priority patent/EP4281696A1/fr
Publication of WO2022157091A1 publication Critical patent/WO2022157091A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L37/00Couplings of the quick-acting type
    • F16L37/28Couplings of the quick-acting type with fluid cut-off means
    • F16L37/30Couplings of the quick-acting type with fluid cut-off means with fluid cut-off means in each of two pipe-end fittings
    • F16L37/32Couplings of the quick-acting type with fluid cut-off means with fluid cut-off means in each of two pipe-end fittings at least one of two lift valves being opened automatically when the coupling is applied
    • F16L37/35Couplings of the quick-acting type with fluid cut-off means with fluid cut-off means in each of two pipe-end fittings at least one of two lift valves being opened automatically when the coupling is applied at least one of the valves having an axial bore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/16Arrangements specially adapted to local requirements at flanges, junctions, valves or the like
    • F16L59/18Arrangements specially adapted to local requirements at flanges, junctions, valves or the like adapted for joints
    • F16L59/184Flanged joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/12Flanged joints specially adapted for particular pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L29/00Joints with fluid cut-off means
    • F16L29/04Joints with fluid cut-off means with a cut-off device in each of the two pipe ends, the cut-off devices being automatically opened when the coupling is applied
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L39/00Joints or fittings for double-walled or multi-channel pipes or pipe assemblies
    • F16L39/005Joints or fittings for double-walled or multi-channel pipes or pipe assemblies for concentric pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L2201/00Special arrangements for pipe couplings
    • F16L2201/20Safety or protective couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0332Safety valves or pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0335Check-valves or non-return valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/037Quick connecting means, e.g. couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to an emergency coupling and detachment device.
  • the invention relates more particularly to a self-closing emergency coupling and detachment device for the transport of cryogenic fluid comprising two fluid transport pipes extending in a longitudinal direction and each comprising, at one end of connection , a valve mechanism configured to automatically close the pipe when the connection ends are separated and to open the pipe when the connection ends are mated, the device further comprising an outer tube disposed around each transport pipe and defining a space vacuum for thermal insulation of the transmission line.
  • the invention relates to a system of pipe(s) for transporting cryogenic fluid (for example liquefied hydrogen) insulated so as to limit the thermal entries and allowing the disconnection of the pipes during an emergency event without fluid loss or spillage.
  • cryogenic fluid for example liquefied hydrogen
  • An object of the present invention is to overcome all or part of the drawbacks of the prior art noted above.
  • the coupling device is essentially characterized in that it further comprises a thermal insulation chamber arranged around of the valve mechanism and delimited by a set of wall(s) located between the outer tube and the transport pipe, the volume of the isolation chamber being independent of the vacuum space located between the outer tube and transportation driving.
  • embodiments of the invention may include one or more of the following features:
  • the invention may also relate to any alternative device or method comprising any combination of the characteristics above or below within the scope of the claims.
  • FIG. 1 represents a longitudinal sectional view, schematic and partial, illustrating an embodiment of a coupling device according to the invention in a separate configuration
  • FIG. 1 represents a longitudinal sectional view, schematic and partial, illustrating another embodiment of a coupling device according to the invention in a coupled configuration
  • FIG. 1 represents a longitudinal sectional view, schematic and partial, of a detail of the device illustrating an example of a possible embodiment of the structure of the isolation chamber.
  • FIG. 1 represents a longitudinal sectional view, schematic and partial, illustrating another embodiment of a coupling device according to the invention in a coupled configuration
  • the illustrated self-closing emergency coupling and detachment device 1 for transporting cryogenic fluid comprises two fluid transport pipes 2, 3 extending in a longitudinal direction A.
  • Each transport pipe 2, 3 can be made of stainless steel or any other material compatible with cryogenic temperatures (below -100°C for example).
  • Each transport pipe 2, 3 comprises at one connection end, a valve mechanism 4, 6, 8; 5, 7, 9 configured to automatically close the pipe when the connection ends are separated (cf. ) and to open when the connecting ends are mated (cf. ).
  • the valve mechanism may comprise a valve 4, 5 urged towards a closed position against a seat 6, 7 by a return member 8, 9 such as a spring, in particular a compression spring.
  • valves 4, 5 of the two transport pipes 2, 3 are configured to come into contact and push each other mechanically out of the respective seats against the return members 5, 9 when the connection ends are coupled.
  • the terminal ends of the valves 4, 5 of the two pipes 2, 3 protrude longitudinally beyond the ends of the transport pipes 2, 3 (and may comprise complementary shapes if necessary).
  • the device 1 further comprises an outer tube 10, 11 (stainless steel, metal or other) arranged around each transport pipe 2, 3 (for example concentrically) and defining a vacuum space between around the pipe 2, 3 of transport for the thermal insulation of the latter.
  • an outer tube 10, 11 stainless steel, metal or other
  • This vacuum space can contain a thermal insulator 22, for example of the multilayer type (MLI).
  • MMI multilayer type
  • the device 1 further comprises a thermal insulation chamber 18, 19 arranged around each valve mechanism and delimited by a set of wall(s) 12, 13 located between the outer tube 10, 11 and the pipe 2, 3 of transportation.
  • This volume in the insulation chamber 18, 19 is preferably independent of the vacuum space located between the outer tube 10, 11 and the transport pipe 2, 3.
  • each chamber 18, 19 of thermal insulation can be delimited by tubular walls extending longitudinally and spaced transversely (the volume of the chamber 18, 19 can thus be delimited between two portions of spaced cylinders.
  • a first end of the volume of each thermal insulation chamber 18, 19 located at the connection end is open (cf. ).
  • the second opposite longitudinal end can itself be sealed.
  • the first open ends of the two thermal insulation chambers 18, 19 can be configured to connect in a sealed manner and form a single sealed closed insulation volume when the connection ends are coupled (cf. ).
  • the device 1 comprises a system for emptying this insulation volume formed by the two thermal insulation chambers 18, 19 when the connection ends are coupled;
  • This vacuum system comprises for example a fluid transfer channel 26 comprising one end opening into said volume and another end which can be connected to a pumping device for example.
  • This makes it possible to produce a closed vacuum volume which is independent of the vacuum situated between the outer tube 10, 11 and the pipe 2, 3 for transport.
  • a safety non-return valve system can be provided for this vacuum volume.
  • the thermal insulation chamber 18, 19 may include a safety valve system configured to evacuate any overpressure beyond a determined threshold (using a separate or identical channel 27).
  • This closed insulation volume forms an additional insulation heat shield around the valve mechanism as well as a thermal insulation path between the hot (external) and cold (internal) parts of the device as will be described in more detail. below.
  • At least part of the set of wall(s) 12, 13 delimiting the insulation chamber 18, 19 and/or the interior of the insulation chamber 18, 19 may comprise thermal insulation 21 of the multilayer type ( “MLI”) for example.
  • MMI multilayer type
  • the mechanical connection between the outer tube 10, 11 and the transport pipe 2, 3 may comprise or be constituted by the set of wall(s) 12, 13 delimiting the chamber 18, 19 of insulation.
  • This set of walls can thus form a thermal path carrying out at least one return trip along the longitudinal direction, for example an “S”-shaped thermal path along a longitudinal section.
  • the walls are made of metal, stainless steel or any other appropriate material and can have a thickness of between 0.3mm and 0.5mm and a length of between 10mm and 500mm. This configuration constitutes an insulating thermal path between its two ends.
  • a first longitudinal wall 121 can be connected (welded for example) at the level of a right end to the terminal end of the outer tube 10 (or a flange 14 fixed to this extremity) cf. also .
  • the second end of this first wall (on the left) can be connected at an angle 122 towards the inside of the pipe 10 (second transverse wall).
  • a third longitudinal wall 123 can be connected (welded for example) at this level. second wall.
  • the second end (on the right) of this third wall 123 can be connected (welded for example) at the level of the terminal end of the outer tube 10 of the transport pipe 2, 3 (on the right or a flange 16 fixed to this end ).
  • this set of wall(s) 12, 13 delimiting the insulation chamber 18, 19 can be mechanically connected only at the level of the terminal end of the pipe (same for the other right-hand pipe).
  • the set of wall(s) 12, 13 delimiting the insulation chamber 18, 19 can ensure at least a part of the maintenance of the transport pipe 2, 3 in the outer tube 10, 11 via mechanical connections ( welding or other) between on the one hand the set of walls 12, 13 and, on the other hand, the conduit 2, 3 for transport and the tube 10, 11 external (and / or flanges).
  • the mechanical connections can be located mainly or only at the connection end.
  • the set of wall(s) 12, 13 delimiting the insulation chamber 18, 19 can be mechanically connected to the transport pipe 2, 3 and to the outer tube 10, 11 by welding.
  • the ends of the outer tubes 10, 11 and of the transport pipes 2, 3 intended to be coupled may comprise respective mounting flange(s) 14, 15, 16, 17.
  • an internal flange 16, 17 of annular shape is fixed to the end of the internal tube 2, 3 via a set of mounting member(s) 20 such as screws preferably allowing, when dismantling the flange 16 , 17, access to the valve mechanism 4, 6, 8; 5, 7, 9 and possible joints of the device 1.
  • the screws 20 in their threads can be oriented longitudinally towards the inside of the pipe.
  • connection ends When the connection ends are coupled, the ends of the two outer tubes 10, 11 are connected in a sealed manner and the ends of the two transport pipes 2, 3 are connected in a sealed manner.
  • This can be achieved by a set of suitable gaskets.
  • the seal between the outer tubes 10, 11 can be ensured at least in part by one or more seal(s) 28 at ambient temperature, interposed between the outer flanges 14, 15 (seal(s) of the polymer type Or other).
  • This location at the level of the largest diameter of the device 1 allows improved management of thermal expansions.
  • the leak rate is reduced because the seal contracts inwards and increases the forces in the sealing direction.
  • the seal between the two transport pipes 2, 3 can itself be ensured at least in part by one or more seal(s) 29 interposed between the internal flanges 16, 17, for example a metal cryogenic seal, including type "C" er radial.
  • the seal between the valve 4, 5 and its seat may comprise a lip seal 25 (for example made of PTFE or energized polymer).
  • Said gasket 25 can form the seat and is advantageously located on the internal flange 16, 17, on one side of said internal flange 16, 17 and oriented towards the inside of the transport pipe 2, 3. This protects these sensitive sealing elements from knocks, scratches and dirt.
  • the force of the spring 8, 9 allows sealing between the flange 16 and the valve 4, 5, via the seal 25, without risk of leakage.
  • Device 1 has good quality insulation compatible with cryogenic temperatures, automatic opening or closing of the valves and high reliability.
  • the device preferably comprises a purge system for the sealed insulation volume.
  • This purge system may comprise a fluid circuit connected to the isolation volume (for example opening into the isolation volume).
  • the gaseous insulation volume can be evacuated (at a pressure below atmospheric pressure, or pressurized with a purge gas (at a pressure above atmospheric pressure) and the purge gas can be a gas having a boiling temperature equal to or lower than that of the transported gas.
  • this gas can be hydrogen, helium or a mixture of the two.
  • the purge system may comprise a transfer pipe 30 opening into the insulation volume and a reservoir 31 of pressurized purge gas (hydrogen or helium for example) connected to this transfer pipe 30, for example via at least a valve 34.
  • the tank 31 can deliver a flow of purge gas to the isolation volume.
  • the purge gas can be recovered to an outlet, for example another end 32 of the transfer line 30 .
  • This discharge end 32 may be provided with a valve 34 and/or non-return valve 35 controlling the flow towards a vent 33 (atmosphere or recovery system) and/or a pumping device 33, for example a gas pump. empty.

Abstract

Dispositif d'accouplement et de détachement d'urgence à auto-fermeture pour le transport de fluide cryogénique comprenant deux conduites (2, 3) de transport de fluide s'étendant selon une direction longitudinale et comprenant chacune, à une extrémité de raccordement, un mécanisme de clapet (4, 6, 8; 5, 7, 9) configuré pour fermer automatiquement la conduite lorsque les extrémités de raccordement sont séparées et pour ouvrir la conduite lorsque les extrémités de raccordement sont accouplées, le dispositif (1) comprenant en outre un tube (10, 11) externe disposé autour de chaque conduites (2, 3) de transport et définissant un espace sous vide pour l'isolation thermique de la conduite (2, 3) de transport, le dispositif (1) étant caractérisé en ce qu'il comporte en outre une chambre (18, 19) d'isolation thermique disposée autour du mécanisme de clapet (4, 6, 8; 5, 7, 9) et délimitée par un ensemble de paroi(s) (12, 13) située(s) entre le tube (10, 11) externe et la conduite (2, 3) de transport, le volume de la chambre (18, 19) d'isolation étant indépendant de l'espace sous vide situé entre le tube (10, 11) externe et la conduite (2, 3) de transport.

Description

Dispositif d’accouplement et de détachement d’urgence
L’invention concerne un dispositif d’accouplement et de détachement d’urgence.
L’invention concerne plus particulièrement un dispositif d’accouplement et de détachement d’urgence à auto-fermeture pour le transport de fluide cryogénique comprenant deux conduites de transport de fluide s’étendant selon une direction longitudinale et comprenant chacune, à une extrémité de raccordement, un mécanisme de clapet configuré pour fermer automatiquement la conduite lorsque les extrémités de raccordement sont séparées et pour ouvrir la conduite lorsque les extrémités de raccordement sont accouplées, le dispositif comprenant en outre un tube externe disposé autour de chaque conduites de transport et définissant un espace sous vide pour l’isolation thermique de la conduite de transport.
L’invention concerne un système de tuyau(x) de transport de fluide cryogénique (par exemple de l’hydrogène liquéfié) isolé(s) de façon à limiter les entrées thermiques et permettant la déconnexion des tuyaux lors d'un événement d'urgence sans perte ou déversement de fluide.
Ces dispositifs sont désignés généralement par le terme « Breakaway » en anglais (cf. par exemple EP3581839 A1). Les dispositifs connus présentent des performances thermiques peu satisfaisantes et/ou une structure complexe et/ou une ergonomie d’utilisation désavantageuse.
Un but de la présente invention est de pallier tout ou partie des inconvénients de l’art antérieur relevés ci-dessus.
A cette fin, le dispositif d’accouplement selon l'invention, par ailleurs conforme à la définition générique qu’en donne le préambule ci-dessus, est essentiellement caractérisé en ce qu’il comporte en outre une chambre d’isolation thermique disposée autour du mécanisme de clapet et délimitée par un ensemble de paroi(s) située(s) entre le tube externe et la conduite de transport, le volume de la chambre d’isolation étant indépendant de l’espace sous vide situé entre le tube externe et la conduite de transport.
Par ailleurs, des modes de réalisation de l’invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes :
  • le dispositif comporte une chambre d’isolation thermique au niveau de chaque extrémité de raccordement, le volume de chaque chambre d’isolation thermique étant délimité par des parois tubulaires s’étendant longitudinalement et espacées transversalement, une première extrémité du volume de chaque chambre d’isolation thermique située au niveau de l’extrémité de raccordement étant ouverte, la seconde extrémité longitudinale opposée étant fermée, les premières extrémités ouvertes des deux chambres d’isolation thermique étant configurées pour se raccorder de façon étanche et former un seul volume d’isolation clos étanche lorsque les extrémités de raccordement sont accouplées,
  • le dispositif comprend un système de mise au vide du volume d’isolation formé par les deux chambres d’isolation thermique lorsque les extrémités de raccordement sont accouplées, le système de mise au vide comprenant un canal de transfert de fluide comprenant une extrémité débouchant dans ledit volume,
  • la liaison mécanique entre le tube externe et la conduite de transport comprend l’ensemble de paroi(s) délimitant la chambre d’isolation et forme un chemin thermique réalisant au moins un aller-retour selon la direction longitudinale, par exemple un chemin thermique en forme de « S » selon une section longitudinale,
  • au moins une partie de l’ensemble de paroi(s) délimitant la chambre d’isolation et/ou l’intérieur de la chambre d’isolation comprend une isolation thermique de type multicouches (« MLI »),
  • l’ensemble de paroi(s) délimitant la chambre d’isolation assure le maintien de la conduite de transport dans le tube externe via des liaisons mécaniques entre d’une part l’ensemble de parois et, d’autre part, la conduite de transport et le tube externe, lesdites liaisons mécaniques étant situées essentiellement ou uniquement au niveau de l’extrémité de raccordement,
  • les extrémités des tubes externes et des conduites de transport destinées à être accouplées comportent des bride(s) de montage respectives,
  • l’ensemble de bride(s) de montage comprend une bride interne de forme annulaire qui est fixée sur l’extrémité du tube interne via un ensemble d’organe(s) de montage tel que des vis permettant, lors du démontage de la bride, l’accès au mécanisme de clapet et de joints du dispositif,
  • l’ensemble de paroi(s) délimitant la chambre d’isolation est relié mécaniquement à la conduite de transport et au tube externe par soudage,
  • lorsque les extrémités de raccordement sont accouplées, les extrémités des deux tubes externes sont reliées de façon étanche et les extrémités des deux conduites de transport sont reliées de façon étanche,
  • le mécanisme de clapet comprend un clapet sollicité vers une position de fermeture contre un siège par un organe de rappel,
  • les extrémités terminales des clapets des deux conduites de transport sont configurées pour venir en contact et se repousser mécaniquement hors des sièges respectifs à l’encontre des organes de rappel lorsque les extrémités de raccordement sont accouplées,
  • l'espace sous vide entre le tube externe et la conduite de transport comprend un isolant thermique multicouches « MLI »,
  • la chambre d’isolation thermique comprend une soupape de sécurité configurée pour évacuer une éventuelle surpression au-delà d’un seuil déterminé.
L’invention peut concerner également tout dispositif ou procédé alternatif comprenant toute combinaison des caractéristiques ci-dessus ou ci-dessous dans le cadre des revendications.
D’autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures dans lesquelles :
représente une vue en coupe longitudinale, schématique et partielle, illustrant un exemple de réalisation d’un dispositif d’accouplement selon l’invention dans une configuration séparée,
représente une vue en coupe longitudinale, schématique et partielle, illustrant un autre exemple de réalisation d’un dispositif d’accouplement selon l’invention dans une configuration accouplée,
représente une vue en coupe longitudinale, schématique et partielle, d’un détail du dispositif illustrant un exemple de réalisation possible de la structure de la chambre d’isolation.
représente une vue en coupe longitudinale, schématique et partielle, illustrant un autre exemple de réalisation d’un dispositif d’accouplement selon l’invention dans une configuration accouplée,
Le dispositif 1 d’accouplement et de détachement d’urgence à auto-fermeture pour le transport de fluide cryogénique illustré comprend deux conduites 2, 3 de transport de fluide s’étendant selon une direction A longitudinale. Chaque conduite 2, 3 de transport peut être composée d’inox ou tout autre matériau compatible avec des températures cryogéniques (inférieures à -100°C par exemple).
Chaque conduite 2, 3 de transport comprend à une extrémité de raccordement, un mécanisme de clapet 4, 6, 8; 5, 7, 9 configuré pour fermer automatiquement la conduite lorsque les extrémités de raccordement sont séparées (cf. ) et pour s’ouvrir lorsque les extrémités de raccordement sont accouplées (cf. ).
Le mécanisme de clapet peut comprendre un clapet 4, 5 sollicité vers une position de fermeture contre un siège 6, 7 par un organe 8, 9 de rappel tel qu’un ressort, notamment un ressort de compression.
Les extrémités terminales des clapets 4, 5 des deux conduites 2, 3 de transport sont configurées pour venir en contact et se repousser mécaniquement hors des sièges respectifs à l’encontre des organes 5, 9 de rappel lorsque les extrémités de raccordement sont accouplées.
Par exemple, les extrémités terminales des clapets 4, 5 des deux conduites 2, 3 font saillie longitudinalement au-delà des extrémités des conduites 2, 3 de transport (et peuvent comporter des formes complémentaires le cas échant).
Le dispositif 1 comprend en outre un tube 10, 11 externe (en inox, métal ou autre) disposé autour de chaque conduites 2, 3 de transport (par exemple concentriquement) et définissant un espace sous vide entre autour de la conduite 2, 3 de transport pour l’isolation thermique de cette dernière.
Cet espace sous vide peut contenir un isolant thermique 22, par exemple du type à multicouches (MLI).
Le dispositif 1 comporte en outre une chambre 18, 19 d’isolation thermique disposée autour de chaque mécanisme de clapet et délimitée par un ensemble de paroi(s) 12, 13 situées entre le tube 10, 11 externe et la conduite 2, 3 de transport. Ce volume dans la chambre 18, 19 d’isolation est de préférence indépendant de l’espace sous vide situé entre le tube 10, 11 externe et la conduite 2, 3 de transport.
Comme illustré, le volume de chaque chambre 18, 19 d’isolation thermique peut être délimité par des parois tubulaires s’étendant longitudinalement et espacées transversalement (le volume de la chambre 18, 19 peut ainsi être délimité entre deux portions de cylindres espacées.
Par exemple, une première extrémité du volume de chaque chambre 18, 19 d’isolation thermique située au niveau de l’extrémité de raccordement est ouverte (cf. ). La seconde extrémité longitudinale opposée peut quant à elle est fermée de façon étanche.
Les premières extrémités ouvertes des deux chambres 18, 19 d’isolation thermique peuvent être configurées pour se raccorder de façon étanche et former un seul volume d’isolation clos étanche lorsque les extrémités de raccordement sont accouplées (cf. ).
De préférence, le dispositif 1 comprend un système de mise au vide de ce volume d’isolation formé par les deux chambres 18, 19 d’isolation thermique lorsque les extrémités de raccordement sont accouplées ; Ce système de mise au vide comprend par exemple un canal 26 de transfert de fluide comprenant une extrémité débouchant dans ledit volume et une autre extrémité pouvant être reliée à un organe de pompage par exemple. Ceci permet de réaliser un volume sous vide clos qui est indépendant du vide situé entre le tube 10, 11 externe et la conduite 2, 3 de transport. Un système clapet anti-retour de sécurité peut être prévu pour ce volume de vide.
De même, la chambre 18, 19 d’isolation thermique peut comprendre un système de soupape de sécurité configurée pour évacuer une éventuelle surpression au-delà d’un seuil déterminé (empruntant un canal 27 distinct ou identique).
Ce volume d’isolation clos forme un écran thermique d’isolation supplémentaire autour du mécanisme de clapet ainsi qu’un chemin thermique d’isolation entre les partie chaude (externe) et froide (interne) du dispositif comme cela va être décrit plus en détail ci-après.
Au moins une partie de l’ensemble de paroi(s) 12, 13 délimitant la chambre 18, 19 d’isolation et/ou l’intérieur de la chambre 18, 19 d’isolation peut comprendre une isolation thermique 21 de type multicouches (« MLI ») par exemple.
En effet, avantageusement, la liaison mécanique entre le tube 10, 11 externe et la conduite 2, 3 de transport peut comprendre ou être constituée par l’ensemble de paroi(s) 12, 13 délimitant la chambre 18, 19 d’isolation. Cet ensemble de parois peut ainsi former un chemin thermique réalisant au moins un aller-retour selon la direction longitudinale, par exemple un chemin thermique en forme de « S » selon une section longitudinale.
De préférence, les parois sont composées de métal, inox ou tout autre matériau approprié et peuvent avoir une épaisseur comprise entre 0,3mm et 0,5mm et une longueur comprise entre 10mm et 500mm. Cette configuration constitue un chemin thermique isolant entre ses deux extrémités.
Ainsi, en considérant par exemple la conduite illustrée à gauche, une première paroi longitudinale 121 peut être reliée (soudée par exemple) au niveau d’une extrémité de droite à l’extrémité terminale du tube 10 externe (ou une bride 14 fixée à cette extrémité) cf. également . La seconde extrémité de cette première paroi (à gauche) peut être reliée un angle 122 vers l’intérieur de la conduite 10 (deuxième paroi transversale).Puis, une troisième paroi longitudinale 123 peut être reliée (soudée par exemple) au niveau à cette deuxième paroi. La seconde extrémité (à droite) de cette troisième paroi 123 peut être reliée (soudée par exemple) au niveau de l’extrémité terminale du tube 10 externe de la conduite 2, 3 de transport (à droite ou une bride 16 fixée à cette extrémité). Ainsi, cet ensemble de paroi(s) 12, 13 délimitant la chambre 18, 19 d’isolation peut être reliée mécaniquement qu’au niveau de l’extrémité terminale de la conduite (idem pour l’autre conduite de droite).
Ainsi, l’ensemble de paroi(s) 12, 13 délimitant la chambre 18, 19 d’isolation peut assurer au moins une partie du maintien de la conduite 2, 3 de transport dans le tube 10, 11 externe via des liaisons mécaniques (soudage ou autre) entre d’une part l’ensemble de parois 12, 13 et, d’autre part, la conduite 2, 3 de transport et le tube 10, 11 externe (et/ou brides). Les liaisons mécaniques peuvent être situées essentiellement ou uniquement au niveau de l’extrémité de raccordement.
Ainsi, l’ensemble de paroi(s) 12, 13 délimitant la chambre 18, 19 d’isolation peut être relié mécaniquement à la conduite 2, 3 de transport et au tube 10, 11 externe par soudage.
Comme illustré et évoqué ci-dessus, les extrémités des tubes 10, 11 externes et des conduites 2, 3 de transport destinées à être accouplées peuvent comporter des bride(s) 14, 15, 16, 17 de montage respectives.
Par exemple une bride 16, 17 interne de forme annulaire est fixée sur l’extrémité du tube 2, 3 interne via un ensemble d’organe(s) 20 de montage tel que des vis permettant de préférence, lors du démontage de la bride 16, 17, l’accès au mécanisme de clapet 4, 6, 8; 5, 7, 9 et de joints éventuels du dispositif 1. Ceci facilite la maintenance. En particulier, les vis 20 dans leur filetage peuvent être orientées longitudinalement vers l’intérieur de la conduite.
Lorsque les extrémités de raccordement sont accouplées, les extrémités des deux tubes 10, 11 externes sont reliées de façon étanche et les extrémités des deux conduites 2, 3 de transport sont reliées de façon étanche. Ceci peut être obtenu par un ensemble de joints appropriés.
Par exemple, l’étanchéité entre les tubes 10, 11 externes peut être assurée au moins en partie par un ou plusieurs joint(s) 28 à température ambiante, interposé entre les brides externes 14, 15 (joint(s) de type en polymère ou autre). Cet emplacement au niveau du plus grand diamètre du dispositif 1 permet une gestion améliorée des dilatations thermiques. En particulier, le taux de fuite est diminué car le joint se contracte vers l’intérieur et augment les forces dans le sens de l’étanchéité.
L'étanchéité entre les deux conduites 2, 3 de transport peut quant à elle être assurée au moins en partie par un ou plusieurs joint(s) 29 interposé(s) entre les brides 16, 17 internes, par exemple un joint cryogénique métallique, notamment de type « C » er radial.
L’étanchéité entre le clapet 4, 5 et son siège (forme par exemple par la bride interne) peut comporter un joint 25 à lèvre (par exemple en PTFE ou polymère énergisé). Ledit joint 25 peut former le siège et est avantageusement situé sur la bride 16, 17 interne, sur une face de ladite bride 16, 17 interne et orienté vers l’intérieur de la conduite 2, 3 de transport. Ceci protège ces éléments sensibles d’étanchéité des chocs, rayures et salissures. La force du ressort 8, 9 permet la fermeture étanche entre la bride 16 et le clapet 4, 5, via le joint 25, sans risque de fuite.
Ceci assure une grande fiabilité après de multiples cycles d’ouverture/fermeture et une étanchéité à tout niveau de température. Le positionnement du clapet est facilité qui peut supporter de grands différentiels de pression.
Le dispositif 1 présente une isolation de bonne qualité compatible avec les températures cryogéniques, une ouverture ou fermeture automatique des clapets et une grande fiabilité.
En particulier, en cas de perte de vide due à une fuite de liquide, le volume de la chambre 18, 19 d’isolation indépendant ne peut monter en pression. Ceci empêche des accidents.
Comme illustré schématiquement à la , le dispositif comprend de préférence un système de purge du volume d'isolation étanche. Ce système de purge peut comporter un circuit fluidique relié au volume d'isolation (par exemple débouchant dans le volume d’isolation).
Cette purge permet de contrôler l'atmosphère gazeuse dans le volume d'isolation (nature du gaz et/ou pression en son sein). Par exemple, le volume d’isolation gazeux peut être mis sous vide (à une pression inférieure à la pression atmosphérique, ou sous pression avec un gaz de purge (à une pression supérieure à la pression atmosphérique) et le gaz de purge peut être un gaz ayant une température d’ébullition égale ou inférieure à celle du gaz transporté. Dans cet exemple, ce gaz peut être de l’hydrogène, de l’hélium ou un mélange des deux.
Comme illustré, le système de purge peut comprendre une conduite 30 de transfert débouchant dans le volume d'isolation et un réservoir 31 de gaz de purge sous pression (hydrogène ou hélium par exemple) relié à cette conduite 30 de transfert par exemple via au moins une vanne 34. De cette façon, le réservoir 31 peut délivrer un flux de gaz de purge vers le volume d'isolation.
Le gaz de purge peut être récupéré vers une évacuation, par exemple une autre extrémité 32 de la conduite 30 de transfert. Cette extrémité 32 d'évacuation peut être munie d'une vanne 34 et/ou clapet 35 anti-retour contrôlant le flux vers un évent 33 (atmosphère ou système de récupération) et/ou un organe de pompage 33, par exemple une pompe à vide.
Ceci permet d'évacuer le gaz de purge ayant purgé le volume d'isolation et/ou de le pomper.
Ceci permet de configurer le volume d'isolation pour une isolation parfaite et en toute sécurité.

Claims (16)

  1. Dispositif d’accouplement et de détachement d’urgence à auto-fermeture pour le transport de fluide cryogénique comprenant deux conduites (2, 3) de transport de fluide s’étendant selon une direction longitudinale et comprenant chacune, à une extrémité de raccordement, un mécanisme de clapet (4, 6, 8; 5, 7, 9) configuré pour fermer automatiquement la conduite lorsque les extrémités de raccordement sont séparées et pour ouvrir la conduite lorsque les extrémités de raccordement sont accouplées, le dispositif (1) comprenant en outre un tube (10, 11) externe disposé autour de chaque conduites (2, 3) de transport et définissant un espace sous vide pour l’isolation thermique de la conduite (2, 3) de transport, le dispositif (1) étant caractérisé en ce qu’il comporte en outre une chambre (18, 19) d’isolation thermique disposée autour du mécanisme de clapet (4, 6, 8; 5, 7, 9) et délimitée par un ensemble de paroi(s) (12, 13) située(s) entre le tube (10, 11) externe et la conduite (2, 3) de transport, le volume de la chambre (18, 19) d’isolation étant indépendant de l’espace sous vide situé entre le tube (10, 11) externe et la conduite (2, 3) de transport et, en ce qu’il comporte une chambre (18, 19) d’isolation thermique au niveau de chaque extrémité de raccordement, le volume de chaque chambre (18, 19) d’isolation thermique étant délimité par des parois tubulaires s’étendant longitudinalement et espacées transversalement, une première extrémité du volume de chaque chambre (18, 19) d’isolation thermique située au niveau de l’extrémité de raccordement étant ouverte, la seconde extrémité longitudinale opposée étant fermée, les premières extrémités ouvertes des deux chambres (18, 19) d’isolation thermique étant configurées pour se raccorder de façon étanche et former un seul volume d’isolation clos étanche lorsque les extrémités de raccordement sont accouplées, le dispositif comprenant un système de purge du volume d’isolation, le système de purge comprenant un circuit fluidique (30, 26) relié fluidiquement audit volume d’isolation.
  2. Dispositif selon la revendication 1, caractérisé en ce que le système de purge comprend une conduite (30) de transfert ayant une extrémité débouchant dans le volume d’isolation, un réservoir (31) de gaz de purge sous pression relié à la conduite (30) de transfert et configuré pour permettre la délivrance de gaz de purge dans le volume d’isolation, le système de purge comprenant une évacuation (32, 33) du gaz de purge.
  3. Dispositif selon la revendication 2, caractérisé en ce que l’évacuation (32, 33) de gaz de purge comprend au moins l’un parmi : un évent relié à une zone de récupération, par exemple l’atmosphère, un organe de pompage, par exemple une pompe à vide.
  4. Dispositif selon la revendication 1, caractérisé en ce qu’il comprend un système de mise au vide du volume d’isolation formé par les deux chambres (18, 19) d’isolation thermique lorsque les extrémités de raccordement sont accouplées, le système de mise au vide comprenant un canal (26) de transfert de fluide comprenant une extrémité débouchant dans ledit volume.
  5. Dispositif selon l’une quelconque des revendications 1 à 4 , caractérisé en ce que le circuit fluidique (30, 26) du système de purge comprend un ensemble de vanne(s) (34) et/ou un ensemble de clapet(s) (35), notamment un ou des clapets anti-retour.
  6. Dispositif selon l’une quelconque des revendications 1 à 5, caractérisé en ce que la liaison mécanique entre le tube (10, 11) externe et la conduite (2, 3) de transport comprend l’ensemble de paroi(s) (12, 13) délimitant la chambre (18, 19) d’isolation et forme un chemin thermique réalisant au moins un aller-retour selon la direction longitudinale, par exemple un chemin thermique en forme de « S » selon une section longitudinale.
  7. Dispositif selon l’une quelconque des revendications 1 à 6, caractérisé en ce qu’au moins une partie de l’ensemble de paroi(s) (12, 13) délimitant la chambre (18, 19) d’isolation et/ou l’intérieur de la chambre (18, 19) d’isolation comprend une isolation thermique (21) de type multicouches (« MLI »).
  8. Dispositif selon l’une quelconque des revendications 1 à 7, caractérisé en ce que l’ensemble de paroi(s) (12, 13) délimitant la chambre (18, 19) d’isolation assure le maintien de la conduite (2, 3) de transport dans le tube (10, 11) externe via des liaisons mécaniques entre d’une part l’ensemble de parois (12, 13) et, d’autre part, la conduite (2, 3) de transport et le tube (10, 11) externe, lesdites liaisons mécaniques étant situées essentiellement ou uniquement au niveau de l’extrémité de raccordement.
  9. Dispositif selon l’une quelconque des revendications 1 à 8, caractérisé en ce que les extrémités des tubes (10, 11) externes et des conduites (2, 3) de transport destinées à être accouplées comportent des bride(s) (14, 15, 16, 17) de montage respectives.
  10. Dispositif selon la revendication 9, caractérisé en ce que l’ensemble de bride(s) (14, 15, 16, 17) de montage comprend une bride (16, 17) interne de forme annulaire qui est fixée sur l’extrémité du tube (2, 3) interne via un ensemble d’organe(s) (20) de montage tel que des vis permettant, lors du démontage de la bride (16, 17), l’accès au mécanisme de clapet (4, 6, 8; 5, 7, 9) et de joints du dispositif.
  11. Dispositif selon la revendication 9 ou 10, caractérisé en ce que l’ensemble de paroi(s) (12, 13) délimitant la chambre (18, 19) d’isolation est relié mécaniquement à la conduite (2, 3) de transport et au tube (10, 11) externe par soudage.
  12. Dispositif selon l’une quelconque des revendications 1 à 11, caractérisé en ce que lorsque les extrémités de raccordement sont accouplées, les extrémités des deux tubes (10, 11) externes sont reliées de façon étanche et les extrémités des deux conduites (2, 3) de transport sont reliées de façon étanche.
  13. Dispositif selon l’une quelconque des revendications 1 à 12, caractérisé en ce que le mécanisme de clapet (4, 6, 8; 5, 7, 9) comprend un clapet (4, 5) sollicité vers une position de fermeture contre un siège (6, 7) par un organe (8, 9) de rappel.
  14. Dispositif selon la revendication 13, caractérisé en ce que les extrémités terminales des clapets (4, 5) des deux conduites (2, 3) de transport sont configurées pour venir en contact et se repousser mécaniquement hors des sièges respectifs à l’encontre des organes (5, 9) de rappel lorsque les extrémités de raccordement sont accouplées.
  15. Dispositif selon l’une quelconque des revendications 1 à 14, caractérisé en ce que l'espace sous vide entre le tube externe (10, 11) et la conduite (2, 3) de transport comprend un isolant thermique (22) multicouches « MLI ».
  16. Dispositif selon l’une quelconque des revendications 1 à 15, caractérisé en ce que la chambre (18, 19) d’isolation thermique comprend une soupape (27) de sécurité configurée pour évacuer une éventuelle surpression au-delà d’un seuil déterminé.
PCT/EP2022/050825 2021-01-19 2022-01-17 Dispositif d'accouplement et de détachement d'urgence WO2022157091A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237027546A KR20230130095A (ko) 2021-01-19 2022-01-17 비상 해제 및 커플링 장치
JP2023539087A JP2024503590A (ja) 2021-01-19 2022-01-17 緊急解放結合デバイス
CN202280008209.5A CN116601417A (zh) 2021-01-19 2022-01-17 紧急脱离和联接装置
US18/273,114 US20240117911A1 (en) 2021-01-19 2022-01-17 Emergency release and coupling device
CA3205306A CA3205306A1 (fr) 2021-01-19 2022-01-17 Dispositif d'accouplement et de detachement d'urgence
EP22700654.1A EP4281696A1 (fr) 2021-01-19 2022-01-17 Dispositif d'accouplement et de détachement d'urgence

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2100472 2021-01-19
FR2100472A FR3119007B1 (fr) 2021-01-19 2021-01-19 Dispositif d’accouplement et de détachement d’urgence

Publications (1)

Publication Number Publication Date
WO2022157091A1 true WO2022157091A1 (fr) 2022-07-28

Family

ID=74860226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/050825 WO2022157091A1 (fr) 2021-01-19 2022-01-17 Dispositif d'accouplement et de détachement d'urgence

Country Status (8)

Country Link
US (1) US20240117911A1 (fr)
EP (1) EP4281696A1 (fr)
JP (1) JP2024503590A (fr)
KR (1) KR20230130095A (fr)
CN (1) CN116601417A (fr)
CA (1) CA3205306A1 (fr)
FR (1) FR3119007B1 (fr)
WO (1) WO2022157091A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3128760A1 (fr) * 2021-10-28 2023-05-05 Airbus Ensemble de connexion optimise entre deux portions d’une canalisation pour le transport d’un fluide cryogenique, comprenant une chambre d’isolation thermique additionnelle et une chambre d’expansion de fluide.
GB2622819A (en) * 2022-09-28 2024-04-03 Airbus Operations Ltd Coupling for insulated piping

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153190A (en) * 1980-04-30 1981-11-27 Tokyo Shibaura Electric Co Joining device of pipings
JPS6091889U (ja) * 1983-11-30 1985-06-22 三菱重工業株式会社 極低温流体二重配管継手
DE4339676A1 (de) * 1993-11-22 1995-05-24 Messer Griesheim Gmbh Kupplung für tiefkalte verflüssigte Medien
US20090123221A1 (en) * 2007-09-07 2009-05-14 William Scott Marshall System quick disconnect termination or connection for cryogenic transfer lines
EP3321229A1 (fr) * 2015-07-10 2018-05-16 Tokyo Boeki Engineering Ltd. Dispositif de manipulation de fluide pour de l'hydrogène liquide
EP3581839A1 (fr) 2017-02-10 2019-12-18 Tokyo Boeki Engineering Ltd. Mécanisme de libération d'urgence pour dispositifs de chargement de fluide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153190A (en) * 1980-04-30 1981-11-27 Tokyo Shibaura Electric Co Joining device of pipings
JPS6091889U (ja) * 1983-11-30 1985-06-22 三菱重工業株式会社 極低温流体二重配管継手
DE4339676A1 (de) * 1993-11-22 1995-05-24 Messer Griesheim Gmbh Kupplung für tiefkalte verflüssigte Medien
US20090123221A1 (en) * 2007-09-07 2009-05-14 William Scott Marshall System quick disconnect termination or connection for cryogenic transfer lines
EP3321229A1 (fr) * 2015-07-10 2018-05-16 Tokyo Boeki Engineering Ltd. Dispositif de manipulation de fluide pour de l'hydrogène liquide
EP3581839A1 (fr) 2017-02-10 2019-12-18 Tokyo Boeki Engineering Ltd. Mécanisme de libération d'urgence pour dispositifs de chargement de fluide

Also Published As

Publication number Publication date
FR3119007B1 (fr) 2023-02-24
CN116601417A (zh) 2023-08-15
CA3205306A1 (fr) 2022-07-28
EP4281696A1 (fr) 2023-11-29
JP2024503590A (ja) 2024-01-26
KR20230130095A (ko) 2023-09-11
US20240117911A1 (en) 2024-04-11
FR3119007A1 (fr) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2022157091A1 (fr) Dispositif d'accouplement et de détachement d'urgence
EP2771598B1 (fr) Robinet d'isolement
EP1431638A2 (fr) Dispositif de vanne cryogénique à actionneur pneumatique
EP4174357A1 (fr) Ensemble de connexion optimise entre deux portions d'une canalisation pour le transport d'un fluide cryogenique, comprenant une chambre d'isolation thermique additionnelle et une chambre d'expansion de fluide
EP1952054B1 (fr) Dispositif et procede de protection d'un reservoir cryogenique et reservoir comportant un tel dispositif
FR2672882A1 (fr) Systeme de remplissage de reservoir pour un vehicule a moteur fonctionnant a l'hydrogene cryogenique.
FR2648892A1 (fr) Recipient de pression
WO1985002001A1 (fr) Conduite tubulaire flexible en particulier pour l'industrie du petrole
WO2022157043A1 (fr) Dispositif d'accouplement et de détachement d'urgence
FR2858785A1 (fr) Reservoir de carburant muni d'un ensemble de valve destine a reduire la permeation de carburant
WO2023134912A1 (fr) Dispositif d'accouplement et son procédé de purge
WO2023083533A1 (fr) Dispositif et procédé d'accouplement
EP2003380A1 (fr) Soupape de sécurité et conteneur-citerne équipé d'une telle soupape
FR3129192A1 (fr) Dispositif et procédé d’accouplement
EP4215791B1 (fr) Dispositif de raccordement de deux conduits à double paroi et canalisation d'hydrogène comprenant ledit dispositif de raccordement
EP3755933A1 (fr) Compensateur avec ensemble de secours et procédé correspondant
WO2024100337A1 (fr) Système de stockage et/ou de transport d'un gaz naturel à l'état liquide
FR3125321A1 (fr) Dispositif d’accouplement et de détachement d’urgence
EP4095429A1 (fr) Récipient cryogénique
EP0052169A1 (fr) Dispositif de sécurité contre les surpressions et citerne pourvue d'un tel dispositif
FR3118795A1 (fr) Installation de stockage pour gaz liquéfié

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22700654

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280008209.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023539087

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3205306

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18273114

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237027546

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237027546

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022700654

Country of ref document: EP

Effective date: 20230821