WO2022156813A1 - 燃料电池流场板 - Google Patents

燃料电池流场板 Download PDF

Info

Publication number
WO2022156813A1
WO2022156813A1 PCT/CN2022/073768 CN2022073768W WO2022156813A1 WO 2022156813 A1 WO2022156813 A1 WO 2022156813A1 CN 2022073768 W CN2022073768 W CN 2022073768W WO 2022156813 A1 WO2022156813 A1 WO 2022156813A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
axis direction
spoiler
flow field
fuel cell
Prior art date
Application number
PCT/CN2022/073768
Other languages
English (en)
French (fr)
Inventor
许德超
赵洪辉
潘兴龙
丁磊
盛夏
韩令海
金守一
刘颖
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022156813A1 publication Critical patent/WO2022156813A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present application relates to the technical field of automobile fuel cells, and in particular, to a fuel cell flow field plate.
  • the flow field plate is an important part of the fuel cell. Its functions are as follows: 1. Fluid distribution, the fuel and the oxidant are respectively transported to the catalyst layers of the anode and the cathode for reaction, and the unreacted oxidant passes the water generated by the cathode reaction through the flow. The field plate is taken out to prevent the cathode from being flooded; 2. Mechanical support, which supports the membrane electrode so that the fuel and oxidant can react under the specified pressure; 3. The single cells are connected in series to form an electrical path.
  • the structure of the fuel cell flow field plate in the related art has obvious grooves and ridges, and is usually prepared by a stamping process.
  • the main disadvantage is that the continuous grooves and ridges will block the distribution of the supply gas, so that the gas concentration in the reaction area corresponding to the groove part is significantly different from that in the reaction area corresponding to the ridge part;
  • the grooves are all in the same plane, so that the flow velocity of the gas is mainly in the direction parallel to the flow field; in addition, due to the size limitation at the inlet, the pressure distribution and flow velocity distribution difference between the upper and lower regions of the distribution zone is usually relatively large.
  • Another type of flow field plate such as that used by Toyota, is a net-like structure that contains an infinite number of open-slotted structures produced by a precision stamping process. Obviously, the flow field plate can achieve good gas distribution and transmission rates in different directions, but the flow field distribution along the width direction of the bipolar plate has not been optimized and improved, which obviously causes the concentration distribution difference in this direction.
  • the purpose of the present application is to provide a fuel cell flow field plate, which can solve the problem of uneven flow velocity caused by excessive difference in lateral pressure gradient inside the fuel cell.
  • a fuel cell flow field plate comprising a first spoiler group and a second spoiler group staggered along the Y-axis direction, the first spoiler group comprising a plurality of first spoiler groups connected along the X-axis direction
  • a flow unit, the second spoiler group includes a plurality of second spoiler units connected along the X-axis direction, wherein: the first spoiler unit includes a first bottom plate, a first top plate, a first transition plate and a first tail plate, the first transition plate is obliquely connected between the first bottom plate and the first top plate, the first tail plate is obliquely connected to the first top plate away from One end of the first transition plate; the second spoiler unit includes a second bottom plate, a second top plate, a second transition plate and a second tail plate connected along the X-axis direction, the second transition plate is connected obliquely Between the second bottom plate and the second top plate, the second tail plate is connected obliquely at the end of the second top plate away from the second
  • FIG. 1 is a schematic structural diagram of a fuel cell flow field plate according to Embodiment 1 of the present application.
  • FIG. 2 is a schematic structural diagram of a first spoiler unit according to Embodiment 1 of the present application.
  • FIG. 3 is a schematic structural diagram of a second spoiler unit according to Embodiment 1 of the present application.
  • FIG. 4 is a schematic structural diagram from a first perspective of two adjacent rows of first spoiler units and second spoiler units according to Embodiment 1 of the present application;
  • FIG. 5 is a schematic structural diagram from a second perspective of two adjacent rows of first spoiler units and second spoiler units according to Embodiment 1 of the present application;
  • 6A is a schematic diagram of the pressure distribution of the flow field plate of the related art
  • 6B is a schematic diagram of the pressure distribution of the fuel cell flow field plate in Example 1;
  • FIG. 7A is a schematic diagram of a flow velocity distribution of a flow field plate of the related art
  • Example 7B is a schematic diagram of the velocity distribution of the fuel cell flow field plate in Example 1.
  • FIG. 8 is a side view of the first spoiler unit according to the second embodiment of the present application.
  • FIG. 10 is a side view of a first spoiler unit and an adjacent second spoiler unit in Embodiment 3 of the present application.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • connection may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • a first feature "on” or “under” a second feature may include direct contact between the first and second features, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the present application provides a fuel cell flow field plate, the fuel cell flow field plate is installed in the fuel cell, and the reactants or reaction products can flow on the fuel cell flow field plate, and the following embodiments are described with hydrogen.
  • FIG. 1 is a schematic structural diagram of a fuel cell flow field plate according to Embodiment 1 of the present application.
  • the fuel cell flow field plate includes a substrate (not shown in FIG. 1 ), a first spoiler group 100 and a second spoiler group 100 .
  • the spoiler group 200 , the first spoiler group 100 and the second spoiler group 200 are alternately arranged on the substrate along the Y-axis direction. That is, a second spoiler group 200 is provided on the first side in the Y-axis direction of a first spoiler group 100 , and a second first spoiler group 200 is provided on the second side in the Y-axis direction of the second spoiler group 200 .
  • the first spoiler group 100 includes a plurality of first spoiler units 1 connected along the X-axis direction
  • the second spoiler group 200 includes a plurality of second spoiler units connected along the X-axis direction 2.
  • FIG. 2 is a schematic structural diagram of the first spoiler unit 1 according to Embodiment 1 of the present application.
  • the first spoiler unit 1 includes a first bottom plate 11 , a first top plate 12 , a first bottom plate 11 , a first top plate 12 , a A transition plate 13 and a first tail plate 14, the first transition plate 13 is connected obliquely between the first bottom plate 11 and the first top plate 12, and the first tail plate 14 is connected obliquely on the first top plate 12 away from the first transition plate 13 ends.
  • the first transition plate 13 and the first tail plate 14 form an included angle with the X-Y plane, in other words, the first top plate 12, the first transition plate 13 and the first tail plate 14 form an angle relative to the base Raised.
  • the first bottom plate 11 , the first top plate 12 , the first transition plate 13 and the first tail plate 14 are flat plate structures.
  • FIG. 3 is a schematic structural diagram of the second spoiler unit 2 according to the first embodiment of the present application.
  • the second spoiler unit 2 includes a second bottom plate 21 , a second top plate 22 , and a second bottom plate 21 connected along the X-axis direction.
  • the second transition plate 23 and the second tail plate 24 form an included angle with the X-Y plane. a bulge.
  • FIG. 4 is a schematic structural diagram of two adjacent rows of first spoiler units 1 and second spoiler units 2 from a first perspective according to the first embodiment of the present application
  • FIG. 5 is the first two adjacent rows of first spoiler units according to the first embodiment of the present application.
  • Two triangular channels extending along the Y-axis direction and facing each other in the Z-axis direction are formed between a transition plate 13 and the second tail plate 24 connected to the second bottom plate 21 .
  • the hydrogen enters the second spoiler unit 2 on the left side of Figure 5 along the S1 route, and then the second transition plate 23 encountering the second spoiler unit 2 moves to both sides, entering along S21 and S22 respectively.
  • the structure and size of the first spoiler unit 1 and the second spoiler unit 2 are the same. Therefore, the structures of the first spoiler group 100 and the second spoiler group 200 are the same, and the same manufacturing process can be used, thereby saving the process cost.
  • the lengths of the first spoiler unit 1 and the second spoiler unit 2 along the Y-axis direction are the same, that is, the projection of the first spoiler unit 1 and the second spoiler unit 2 on the X-Y plane is a rectangle. In this way, when the first spoiler unit 1 and the second spoiler unit 2 are connected side by side, the connection between the two is along a straight line.
  • the length of the first bottom plate 11 extending along the Y-axis direction is between 0.05mm-10mm, the first top plate 12, the first transition plate 13 and the first tail plate
  • the length of 14 extending in the Y-axis direction is the same as that of the first bottom plate 11 .
  • the length of the first bottom plate 11 extending along the Y-axis direction is 10 mm.
  • the thicknesses of the first bottom plate 11 and the first top plate 12 are the same, ranging from 0.05 mm to 1 mm. In the first embodiment, the thickness of the first bottom plate 11 and the first top plate 12 is 1 mm.
  • the distance between the upper surface of the first bottom plate 11 and the lower surface of the first top plate 12 along the Z-axis direction is between 0.05mm-2mm. In the first embodiment, the distance between the upper surface of the first bottom plate 11 and the lower surface of the first top plate 12 along the Z-axis direction is 0.5 mm.
  • FIG. 6A is a schematic diagram of the pressure distribution of the flow field plate of the related art
  • FIG. 6B is a schematic diagram of the pressure distribution of the flow field plate of the fuel cell in Example 1.
  • the abscissa represents the distance (unit is mm)
  • the ordinate represents the distance Pressure (represented by the pressure unit Pa in this field)
  • the flow field plate of the related art is input from the upper left corner of the flow field plate and output from the lower right corner, and the lateral distribution of the pressure gradient of the entire flow field plate is quite different.
  • the pressure distribution along the X-axis direction and the Y-axis direction in the fuel cell flow field plate is very uniform, that is, the pressure difference at the same X-axis coordinate position changes along the Y-axis direction is small and almost the same, while the pressure along the same Y-axis coordinate position Decreases uniformly along the X-axis.
  • Fig. 7A is a schematic diagram of the velocity distribution of the flow field plate in the related art
  • Fig. 7B is a schematic diagram of the velocity distribution of the flow field plate of the fuel cell in Example 1
  • the abscissa represents the length along the X-axis direction (unit is mm)
  • the ordinate represents the flow velocity (unit is m/s)
  • the flow field plate in the related art has a larger flow velocity at the corner, and the flow velocity at other positions is significantly different, while the fuel in this embodiment
  • the overall distribution in the battery flow field plate is uniform and forms a network structure.
  • FIG. 8 is a side view of the first spoiler unit 1 according to the second embodiment of the present application. As shown in FIG. 8 , the first bottom plate 11 The first included angle ⁇ 1 with the first transition plate 13 is the same as the second included angle ⁇ 2 between the first top plate 12 and the first tail plate 14 .
  • FIG. 9 is a side view of the two first spoiler units 1 and the adjacent second spoiler units 2 according to the second embodiment of the present application. It can be seen that the first spoiler unit 1 and the second spoiler unit 2 in FIG. 9
  • the first triangular channel M1 and the second triangular channel M2 formed by 2 are symmetrical about the Z axis. And the shape of all the first triangular channels M1 formed between the first spoiler unit 1 and the second spoiler unit 2 that are opposite to each other is the same, and the shape of all the second triangular channels M2 is the same, so that the hydrogen is in the fuel.
  • the pressure change of the cell flow field plate along the X and Y directions is more uniform.
  • the first included angle ⁇ 1 and the second included angle ⁇ 2 are between 100° and 150°.
  • the first included angle ⁇ 1 and the second included angle ⁇ 2 are set to 120°.
  • the length of the first bottom plate 11 extending along the X-axis direction and the length of the first top plate 12 extending along the X-axis direction of the same length are the same.
  • the third embodiment The first spoiler unit 1 and the second spoiler unit 2 are formed with an equiangular trapezoidal partial structure, and the third triangular channel M3 and the fourth triangular channel M4 formed by the intersection of the first transition plate 13 and the second tail plate 24 are respectively about X
  • the axis is symmetrical with the Z axis, the hydrogen flows more smoothly between the first turbulence unit 1 and the second turbulence unit 2, and the pressure gradient changes along the Y-axis direction and along the X-axis direction are more uniform.
  • the length of the first bottom plate 11 extending along the X-axis direction is between 0.02 mm and 100 mm. In the third embodiment, the length of the first bottom plate 11 extending along the X-axis direction is 10 mm.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

一种燃料电池流场板,包括第一扰流板组和第二扰流板组,第一扰流单元包括沿X轴方向连接的第一底板、第一顶板、第一过渡板和第一尾板,第二扰流单元包括沿X轴方向连接的第二底板、第二顶板、第二过渡板和第二尾板,相对设置的第一顶板和第二底板中,所述第一顶板相连的所述第一过渡板与所述第二底板相连的所述第二尾板之间形成沿Y轴方向延伸、Z轴方向对置的两个三角形通道。相互对置的第一顶板和第二底板中,第一顶板连接的第一过渡板与第二底板连接的第二尾板之间形成沿Y轴方向延伸、Z轴方向相对设置的两个三角形通道。

Description

燃料电池流场板
本申请要求申请日为2021年1月25日、申请号为202110099171.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车燃料电池技术领域,尤其涉及一种燃料电池流场板。
背景技术
流场板是燃料电池的一个重要组成部分,作用体现在:1、流体分布,将燃料与氧化剂分别输送到阳极和阴极的催化剂层进行反应,未反应的氧化剂将阴极反应后生成的水通过流场板带出,以防止阴极遭受水淹;2、机械支撑,支撑膜电极以使燃料以及氧化剂可在指定压力下进行反应;3、串联单电池形成电通路。
为了保证燃料电池的性能和寿命,需要保持膜电极各点性能一致,因此需要保持膜电极各点的气体分布均匀、温度分布均匀。如果气体分布不一致,膜电极各点散热条件不一致,会导致膜电极各点实际性能有较大差异,严重时会导致膜电极出现局部过热,甚至烧穿质子交换膜。此外,如果燃料电池运行中生成的多余的水不能及时排除,堵塞流道,会造成气体流动受阻,无法均匀分布。同时燃料电池阴极流场、阳极流场、冷却流场的压降对风机、气泵、液泵的选型有很大影响。
相关技术中的燃料电池流场板的结构带有明显的沟槽和脊,通常是以冲压工艺制备的。不足主要是连续性的沟槽和脊会隔断供给气体的分布,使得在沟槽部分对应的反应区域气体的浓度与脊部分对应的反应区域的气体浓度具有明显差异;另一方面,由于所有沟槽都处于同一平面,使得气体的流动速度主要在平行于流场的方向上进行;此外,由于入口处的尺寸限制,分配区的上下区域压力分布以及流速分布差异通常比较大。
另一种流场板如丰田公司所使用的,这种流场板是网状结构,该网状结构包含无数个精密冲压工艺制备的开孔槽结构。显然流场板可以实现良好的气体分布和不同方向的传输速率,但是并没有对沿双极板宽度方向上的流场分布做出优化和改善,这显然会造成该方向上的浓度分布差异。
发明内容
本申请的目的在于提供一种燃料电池流场板,能够解决燃料电池内部横向压力梯度差异过大导致流速不均匀的问题。
一种燃料电池流场板,包括沿Y轴方向交错排列的第一扰流板组和第二扰流板组,所述第一扰流板组包括多个沿X轴方向连接的第一扰流单元,所述第二扰流板组包括多个沿X轴方向连接的第二扰流单元,其中:所述第一扰流单元包括沿X轴方向连接的第一底板、第一顶板、第一过渡板和第一尾板,所述第一过渡板倾斜地连接在所述第一底板和所述第一顶板之间,所述第一尾板倾斜地连接在所述第一顶板背离所述第一过渡板的一端;所述第二扰流单元包括沿X轴方向连接的第二底板、第二顶板、第二过渡板和第二尾板,所述第二过渡板倾斜地连接在所述第二底板和所述第二顶板之间,所述第二尾板倾斜地连接在所述第二顶板背离所述第二过渡板的一端,任一所述第一顶板沿Y轴方向与一个所述第二底板相对设置;其中,相对设置的所述第一顶板和所述第二底板中,与所述第一顶板相连的所述第一过渡板及与所述第二底板相连的所述第二尾板之间形成沿Y轴方向延伸、Z轴方向相对设置的两个三角形通道。
附图说明
图1是本申请实施例一的燃料电池流场板的结构示意图;
图2是本申请实施例一的第一扰流单元的结构示意图;
图3是本申请实施例一的第二扰流单元的结构示意图;
图4是本申请实施例一的相邻两排第一扰流单元和第二扰流单元的第一视角的结构示意图;
图5是本申请实施例一的相邻两排第一扰流单元和第二扰流单元的第二视角的结构示意图;
图6A是相关技术的流场板的压力分布示意图;
图6B是实施例一燃料电池流场板的压力分布示意图;
图7A是相关技术的流场板的流速分布示意图;
图7B是实施例一燃料电池流场板的速分布示意图;
图8是本申请实施例二的第一扰流单元的侧视图;
图9是本申请实施例二的两个第一扰流单元和相邻的第二扰流单元的侧视图;
图10是本申请实施例三的第一扰流单元和相邻的第二扰流单元的侧视图。
图中:
100-第一扰流板组;200-第二扰流板组;
1-第一扰流单元;2-第二扰流单元;
11-第一底板;12-第一顶板;13-第一过渡板;14-第一尾板;
21-第二底板;22-第二顶板;23-第二过渡板;24-第二尾板。
具体实施方式
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
本申请提供一种燃料电池流场板,该燃料电池流场板安装在燃料电池中,反应物或反应产物能够在燃料电池流场板上流动,以下实施例以氢气进行说明。
实施例一
图1是本申请实施例一的燃料电池流场板的结构示意图,如图1所示,燃料电池流场板包括基板(图1中未示出)、第一扰流板组100和第二扰流板组200,第一扰流板组100和第二扰流板组200沿Y轴方向交错排列在基板上。即一个第一 扰流板组100的Y轴方向的第一侧设有一个第二扰流板组200,第二扰流板组200的Y轴方向的第二侧设有第二个第一扰流板组100,以此类推。
在一实施例中,第一扰流板组100包括多个沿X轴方向连接的第一扰流单元1,第二扰流板组200包括多个沿X轴方向连接的第二扰流单元2。
图2是本申请实施例一的第一扰流单元1的结构示意图,如图2所示,第一扰流单元1包括沿X轴方向依次连接的第一底板11、第一顶板12、第一过渡板13和第一尾板14,第一过渡板13倾斜地连接在第一底板11和第一顶板12之间,第一尾板14倾斜地连接在第一顶板12背离第一过渡板13的一端。
在一实施例中,第一过渡板13和第一尾板14与X-Y平面形成夹角,换言之,第一顶板12、第一过渡板13和第一尾板14之间形成相对于基板的一个凸起。
在一实施例中,第一底板11、第一顶板12、第一过渡板13和第一尾板14为平板结构。
图3是本申请实施例一的第二扰流单元2的结构示意图,如图3所示,第二扰流单元2包括沿X轴方向连接的第二底板21、第二顶板22、第二过渡板23和第二尾板24,第二过渡板23倾斜地连接在第二底板21和第二顶板22之间,第二尾板24倾斜地连接在第二顶板22背离第二过渡板23的一端。
在一实施例中,第二过渡板23和第二尾板24与X-Y平面形成夹角,换言之,第二顶板22、第二过渡板23和第二尾板24之间形成相对于基板的另一个凸起。
图4是本申请实施例一的相邻两排第一扰流单元1和第二扰流单元2的第一视角的结构示意图,图5是本申请实施例一的相邻两排第一扰流单元1和第二扰流单元2的第二视角的结构示意图。从图4和图5可以看出,任一第一顶板12沿Y轴方向与一个第二底板21相对设置,对于相对设置的第一顶板12和第二底板21,第一顶板12相连的第一过渡板13与第二底板21相连的第二尾板24之间形成沿Y轴方向延伸、Z轴方向对置的两个三角形通道。
继续参见图1-5,氢气沿S1路线进入图5左侧的第二扰流单元2,之后遇到第二扰流单元2的第二过渡板23向两侧运动,分别沿S21和S22进入与第二扰流单元2相邻的两个第一扰流单元1,以S21为例,一部分到达图5中的第一顶板12和第一尾板14之间,也可以进入第一尾板14和第一底板11之间,其中,进入第一顶板12和第一尾板14之间是沿Y轴方向运动,而进入第一尾板14和第一底板11之间是沿X轴方向运动,以此类推。
在本申请实施例中,第一扰流单元1和第二扰流单元2的结构和尺寸相同。 进而使第一扰流板组100和第二扰流板组200的结构相同,并且可以采用相同的制作工艺,进而节省了工艺成本。
在一实施例中,第一扰流单元1和第二扰流单元2沿Y轴方向延伸的长度一致,即第一扰流单元1和第二扰流单元2在X-Y平面投影为矩形。这样并排连接第一扰流单元1和第二扰流单元2时,两者的连接处沿一条直线。
在本申请实施例中,以第一扰流单元1为例,第一底板11沿Y轴方向延伸的长度介于0.05mm-10mm,第一顶板12、第一过渡板13和第一尾板14沿Y轴方向延伸的长度和第一底板11一致。在一实施例中,第一底板11沿Y轴方向延伸的长度为10mm。
在一实施例中,为了保证燃料电池流场板的力学性能,第一底板11和第一顶板12的厚度相同,并介于0.05mm-1mm。在实施例一中,第一底板11和第一顶板12的厚度为1mm。
在一实施例中,为了保证氢气的交换效率,第一底板11的上表面与第一顶板12的下表面的沿Z轴方向的间距介于0.05mm-2mm。在实施例一中,第一底板11的上表面与第一顶板12的下表面的沿Z轴方向的间距为0.5mm。
图6A是相关技术的流场板的压力分布示意图,图6B是实施例一燃料电池流场板的压力分布示意图,图6A和图6B中,横坐标表示距离(单位为mm),纵坐标表示压力(本领域用压强单位Pa表示),相关技术的流场板,从流场板左上角输入,再到右下角输出,整个流场板的压力梯度横向分布差异较大,而本实施例的燃料电池流场板中沿X轴方向和Y轴方向的压力分布非常均匀,即同一X轴坐标位置的压力差别沿Y轴方向的变化较小,几乎一致,而沿同一Y轴坐标位置的压力沿X轴方向均匀递减。
图7A是相关技术中的流场板的流速分布示意图,图7B是实施例一燃料电池流场板的速分布示意图,图7A和图7B中,横坐标表示沿X轴方向的长度(单位为mm),纵坐标表示流速(单位为m/s),可以看出,相关技术中的流场板在流到拐角处的流速较大,和其他位置的流速差异明显,而本实施例的燃料电池流场板中整体分布均匀,并形成网状结构。
实施例二
在本实施例是在实施例一的基础上进行改进,在实施例二中,一方面,第一扰流单元1和第二扰流单元2的结构和尺寸相同,并且,相互对置的第一顶板12和第二底板21的沿Y轴方向延伸的中心轴延长线重合,图8是本申请实施例二 的第一扰流单元1的侧视图,如图8所示,第一底板11和第一过渡板13之间的第一夹角θ1与第一顶板12和第一尾板14之间的第二夹角θ2相同。
图9是本申请实施例二的两个第一扰流单元1和相邻的第二扰流单元2的侧视图,可以看出,图9中第一扰流单元1和第二扰流单元2形成的第一三角形通道M1和第二三角形通道M2关于Z轴对称。并且相互对置的第一扰流单元1和第二扰流单元2之间形成所有的第一三角形通道M1的形状相同,且形成的所有的第二三角形通道M2的形状相同,这样氢气在燃料电池流场板沿X向和Y向的压力变化更加均匀。
在本申请一实施例中,第一夹角θ1和第二夹角θ2介于100°-150°之间。
在本申请一实施例中,第一夹角θ1和第二夹角θ2设置为120°。
实施例三
在本实施例是在实施例二的基础上进行改进,在实施例三中,第一扰流单元1中,第一底板11沿X轴方向延伸的长度和第一顶板12沿X轴方向延伸的长度相同。也即第一底板11、第二底板21、第一顶板12和第二顶板22沿X轴方向延伸的长度相同。
即在实施例二的基础上,且第一底板11沿X轴方向延伸的长度和第一顶板12沿X轴方向延伸的长度相同时,如图10所示,根据几何原理,实施例三中的第一扰流单元1和第二扰流单元2形成有等角梯形部分结构,第一过渡板13和第二尾板24交叉形成的第三三角形通道M3与第四三角形通道M4分别关于X轴和Z轴对称,氢气在第一扰流单元1和第二扰流单元2之间流动时更平稳,沿Y轴方向变化和沿X轴方向压力梯度变化更均匀。
在本申请一实施例中,第一底板11沿X轴方向延伸的长度介于0.02mm-100mm之间。在本实施例三中,第一底板11沿X轴方向延伸的长度为10mm。

Claims (10)

  1. 一种燃料电池流场板,包括基板及设置在所述基板上并沿Y轴方向间隔排列的第一扰流板组(100)和第二扰流板组(200),所述第一扰流板组(100)包括多个沿X轴方向连接的第一扰流单元(1),所述第二扰流板组(200)包括多个沿X轴方向连接的第二扰流单元(2),其中:
    所述第一扰流单元(1)包括沿X轴方向连接的第一底板(11)、第一顶板(12)、第一过渡板(13)和第一尾板(14),所述第一过渡板(13)倾斜地连接在所述第一底板(11)和所述第一顶板(12)之间,所述第一尾板(14)倾斜地连接在所述第一顶板(12)背离所述第一过渡板(13)的一端;
    所述第二扰流单元(2)包括沿X轴方向连接的第二底板(21)、第二顶板(22)、第二过渡板(23)和第二尾板(24),所述第二过渡板(23)倾斜地连接在所述第二底板(21)和所述第二顶板(22)之间,所述第二尾板(24)倾斜地连接在所述第二顶板(22)背离所述第二过渡板(23)的一端,任一所述第一顶板(12)沿Y轴方向与一个所述第二底板(21)相对设置;
    其中,相对设置的所述第一顶板(12)和所述第二底板(21)中,与所述第一顶板(12)相连的所述第一过渡板(13)及与所述第二底板(21)相连的所述第二尾板(24)之间形成沿Y轴方向延伸、Z轴方向相对设置的两个三角形通道。
  2. 根据权利要求1所述的燃料电池流场板,其中,所述第一扰流单元(1)和所述第二扰流单元(2)的结构和尺寸相同。
  3. 根据权利要求2所述的燃料电池流场板,其中,对应设置的第一顶板(12)和所述第二底板(21)中,所述第一顶板(12)的沿Y轴方向延伸的中心轴和所述第二底板(21)的沿Y轴方向延伸的中心轴延长线重合,且所述第一底板(11)和所述第一过渡板(13)之间的第一夹角与第一顶板(12)和所述第一尾板(14)之间的第二夹角相同。
  4. 根据权利要求3所述的燃料电池流场板,其中,所述第一夹角介于100°-150°之间。
  5. 根据权利要求2所述的燃料电池流场板,其中,所述第一扰流单元(1)中,所述第一底板(11)沿X轴方向延伸的长度和所述第一顶板(12)沿X轴方向延伸的长度相同。
  6. 根据权利要求5所述的燃料电池流场板,其中,所述第一底板(11)沿X轴方向延伸的长度介于0.02mm-100mm之间。
  7. 根据权利要求2所述的燃料电池流场板,其中,所述第一底板(11)、所述第一顶板(12)、所述第一过渡板(13)和所述第一尾板(14)沿Y轴方向延伸的长度相同。
  8. 根据权利要求7所述的燃料电池流场板,其中,所述第一底板(11)沿Y轴延伸的长度介于0.05mm-10mm。
  9. 根据权利要求2所述的燃料电池流场板,其中,所述第一底板(11)和所述第一顶板(12)的厚度相同,并介于0.05mm-1mm。
  10. 根据权利要求2所述的燃料电池流场板,其中,所述第一底板(11)的上表面与所述第一顶板(12)的下表面的沿Z轴方向的间距介于0.05mm-2mm。
PCT/CN2022/073768 2021-01-25 2022-01-25 燃料电池流场板 WO2022156813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110099171.4 2021-01-25
CN202110099171.4A CN112928297A (zh) 2021-01-25 2021-01-25 燃料电池流场板

Publications (1)

Publication Number Publication Date
WO2022156813A1 true WO2022156813A1 (zh) 2022-07-28

Family

ID=76167577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073768 WO2022156813A1 (zh) 2021-01-25 2022-01-25 燃料电池流场板

Country Status (2)

Country Link
CN (1) CN112928297A (zh)
WO (1) WO2022156813A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112928297A (zh) * 2021-01-25 2021-06-08 中国第一汽车股份有限公司 燃料电池流场板
CN113690458B (zh) * 2021-07-20 2022-11-11 浙江天能氢能源科技有限公司 一种质子交换膜燃料电池双极板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101946349A (zh) * 2008-06-16 2011-01-12 丰田车体株式会社 气体流路形成部件、制造气体流路形成部件的方法及气体流路形成部件的成形装置
CN102598379A (zh) * 2009-03-31 2012-07-18 丰田车体株式会社 燃料电池
CN104253280A (zh) * 2014-09-04 2014-12-31 华中科技大学 一种固体氧化物燃料电池阴极气体流场板及其制备方法
DE102018114006A1 (de) * 2017-07-05 2019-01-10 Schaeffler Technologies AG & Co. KG Bipolarplatte und Brennstoffzelle aufweisend eine Bipolarplatte
CN112928297A (zh) * 2021-01-25 2021-06-08 中国第一汽车股份有限公司 燃料电池流场板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492045B1 (en) * 2001-06-26 2002-12-10 Fuelcell Energy, Inc. Corrugated current collector for direct internal reforming fuel cells
JP2008243394A (ja) * 2007-03-26 2008-10-09 Toyota Motor Corp 燃料電池用セルの製造方法
CA2919064C (en) * 2013-07-22 2021-04-13 Nissan Motor Co., Ltd. Deformation absorption member and fuel-cell-stack
CN106252697A (zh) * 2016-08-04 2016-12-21 华中科技大学 一种外流腔固体氧化物燃料电池电堆
CN110707342B (zh) * 2019-09-20 2022-04-01 浙江锋源氢能科技有限公司 湍流流场板的制备方法和燃料电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101946349A (zh) * 2008-06-16 2011-01-12 丰田车体株式会社 气体流路形成部件、制造气体流路形成部件的方法及气体流路形成部件的成形装置
CN102598379A (zh) * 2009-03-31 2012-07-18 丰田车体株式会社 燃料电池
CN104253280A (zh) * 2014-09-04 2014-12-31 华中科技大学 一种固体氧化物燃料电池阴极气体流场板及其制备方法
DE102018114006A1 (de) * 2017-07-05 2019-01-10 Schaeffler Technologies AG & Co. KG Bipolarplatte und Brennstoffzelle aufweisend eine Bipolarplatte
CN112928297A (zh) * 2021-01-25 2021-06-08 中国第一汽车股份有限公司 燃料电池流场板

Also Published As

Publication number Publication date
CN112928297A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2022156813A1 (zh) 燃料电池流场板
CN106169595B (zh) 用于燃料电池的双极板结构
US20190097244A1 (en) Fuel cell metal separator and power generation cell
US20050255367A1 (en) Fuel cell, separator unit kit for fuel cell, and fuel cell generating unit kit
JP6354797B2 (ja) 燃料電池単セル
JP2007165257A (ja) 燃料電池のセパレータ
US11476472B2 (en) Separator plate for an electrochemical system
US20220149392A1 (en) Separator plate for an electrochemical system
CN109390609B (zh) 具有成角度的偏移流动通道的燃料电池单元
CN213042931U (zh) 用于燃料电池堆的歧管和具有该歧管的燃料电池堆
JP2005524937A5 (zh)
WO2023130747A1 (zh) 一种风冷结构及电池包
US11289716B2 (en) Bipolar plate, fuel cell stack with bipolar plate and power generation system with bipolar plate
JP5082312B2 (ja) 燃料電池のセパレータ構造
US11437631B2 (en) Fuel cell separator and power generation cell
KR101534940B1 (ko) 연료전지용 분리판 및 이를 이용한 연료전지
JP5082313B2 (ja) 燃料電池のセパレータ構造
CN106207235A (zh) 具有改进的反应物分布的燃料电池
CN117254060A (zh) 双极板流场结构及燃料电池
JP2007533067A (ja) 平面図形利用率を最大限にする燃料電池反応物流れ区域
JP2014003004A (ja) 燃料電池スタック
CN210778818U (zh) 燃料电池双极板
EP3282510B1 (en) Separating plate and fuel cell stack including same
CN108461771B (zh) 用于让密封件上的接触压力均匀分布的头部凸缘设计
WO2019148338A1 (zh) 燃料电池及其电池单元和电堆结构体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742290

Country of ref document: EP

Kind code of ref document: A1