WO2022156691A1 - 网络切片通信的方法、装置和系统 - Google Patents

网络切片通信的方法、装置和系统 Download PDF

Info

Publication number
WO2022156691A1
WO2022156691A1 PCT/CN2022/072650 CN2022072650W WO2022156691A1 WO 2022156691 A1 WO2022156691 A1 WO 2022156691A1 CN 2022072650 W CN2022072650 W CN 2022072650W WO 2022156691 A1 WO2022156691 A1 WO 2022156691A1
Authority
WO
WIPO (PCT)
Prior art keywords
rate
network
smf
network slice
network element
Prior art date
Application number
PCT/CN2022/072650
Other languages
English (en)
French (fr)
Inventor
李卓明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022156691A1 publication Critical patent/WO2022156691A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method, apparatus and system for network slicing.
  • a network slice is a logical network with specific network characteristics divided in an operator's communication network.
  • a 5G physical network can be abstractly divided into multiple network slices.
  • Each network slice constitutes a logical network, which is logically isolated from each other and does not affect each other.
  • the services of each network slice are identified using a single network slice selection assistance information (Single-Network slice selection assistance information, S-NSSAI).
  • S-NSSAI Single-Network slice selection assistance information
  • the operator signs a service level agreement (SLA) for network slicing with the customer according to the needs of the customer.
  • SLA service level agreement
  • the resources of the network slicing contracted by the customer are determined by the SLA of the network slicing.
  • the SLA of the network slicing contracted by different customers is often different. of.
  • An attribute of the network slice specified in the SLA is the maximum bandwidth used by the network slice, that is, the maximum value of the total network bandwidth used by the services transmitted through the session in the network slice, and it is also the bandwidth used by each user equipment in the network slice. The maximum value of the sum.
  • the operator should prepare enough network resources for the network slice to meet the needs of the customer. If the transmission bandwidth allocated by the operator for the network slice is greater than the maximum bandwidth used by the customer during use, it will cause waste of the operator's resources. The transmission bandwidth allocated by the operator for the network slice is less than the maximum bandwidth used by the customer during use, which may lead to the failure to meet the customer's service requirements. Therefore, it is very necessary for the operator to accurately measure the maximum used bandwidth of a network slice. However, at present, operators cannot accurately measure the maximum used bandwidth of a network slice.
  • the present application describes a method, apparatus, and system for communication of network slices.
  • an embodiment of the present application provides a communication method for network slicing, where the method is executed by a network device.
  • the method includes: the network device sends the identification of the network slice and the first starting moment of measuring the rate of the network slice, the identification of the network slice is used to identify the network slice to be measured; the network device receives multiple rates at multiple times, the multiple times Including the first start time and one or more times after the first start time, wherein each time of the multiple times corresponds to multiple rates; the network device determines multiple first rates at multiple times, wherein the multiple first rates The first rate corresponding to each time is equal to the sum of multiple rates at each time; the network device determines the maximum used bandwidth according to the multiple first rates at multiple times; the network device sends the maximum used bandwidth.
  • the network device can determine multiple first rates at multiple times according to multiple rates at multiple times, and finally determine the maximum used bandwidth according to the multiple first rates at multiple times, so that the determined maximum used bandwidth is Bandwidth is more accurate.
  • the first start time is the start time of measuring the network slice.
  • the time interval is used to determine multiple time points at which the measurement action should be performed according to the first start time, the multiple times are the multiple time points, and the time interval between each adjacent time point is the time interval.
  • the method further includes: the network device instructs the session management function network element to report multiple rates at multiple times.
  • the network device instructs the session management function network element to report multiple rates at multiple times through a rejection response message.
  • sending the maximum used bandwidth by the network device includes: the network device obtains first threshold information, and when the maximum used bandwidth is greater than or equal to the first threshold information, the network device sends the maximum used bandwidth.
  • the network device can confirm the maximum used bandwidth according to the first threshold information, so as to reduce the reporting of the network device in the network, thereby reducing the burden on the network.
  • acquiring the first threshold information by the network device includes: acquiring the historical maximum used bandwidth of the network slice by the network device, and the network device determines the first threshold information according to the historical maximum used bandwidth.
  • the first threshold information determined by the network device according to the historical maximum used bandwidth is more in line with the actual situation of the network slice in the network, and achieves the effect of reducing the number of times the first threshold information is updated.
  • the method further includes: the network device sends the second threshold information associated with the first threshold information to the session management function network element, when the session management function network element at the first moment in the plurality of moments is associated with the session management function network element.
  • the associated rate is greater than the second threshold information, and the second threshold information is used to trigger the reporting of multiple rates at the first moment. That is to say, when the rate associated with the session management function network element at the first moment of the multiple moments is less than or equal to the second threshold information, the rate associated with the session management function network element at the first moment will not be reported. It also reduces the reporting of network devices in the network, and thus reduces the burden on the network.
  • the method further includes: the network device updates the second threshold value information to the third threshold value information according to multiple rates of the first moment in the multiple times; the network device sends the session management function network element to the The third threshold information, when the rate associated with the session management function network element at the second time among the multiple times is greater than the third threshold information, the third threshold information is used to trigger the reporting of the multiple rates at the second time, and the second time later than the first moment. That is to say, in this method, the second threshold information will be continuously updated, and only when the rate associated with the network element with the session management function at the second moment in the plurality of times is greater than the updated second threshold information, the rate will be It will be reported, and the burden on the network is also reduced.
  • the network device sending the identifier of the network slice and the first start time includes: the network device sends the usage report rule to the user plane function network element through the session management function network element, and the usage report rule includes the network The identity of the slice and the first start moment. That is, the usage reporting rule is used to inform the user plane functional network element to measure the rate of the network slice corresponding to the identifier of the network slice, and to inform the user plane functional network element to start the measurement from the first start time.
  • the network device receives multiple rates at multiple times, including: the network device receives multiple rates at multiple times from the session management function network element.
  • the method further includes: the network device receives the identifier of the user plane function network element from the session management function network element, and the identifier of the user plane function network element is used to indicate that multiple rates at multiple times are user plane functions. Measured by functional network elements. The identifier of the user plane function network element is used to distinguish multiple rates at multiple times, which can prevent multiple rates measured by the same user plane function network element from being repeatedly calculated, and reduce the probability that the final maximum used bandwidth is inaccurate.
  • the method further includes: the network device obtains the accuracy requirement information; the network device determines the time interval information according to the accuracy requirement information; the network device sends the time interval information, and the time interval information is used for a or multiple time determinations. That is to say, the time interval information can be used to specify multiple times, and the network element or device performing the rate measurement of the network slice performs the rate measurement at the specified multiple times.
  • the network device determining the maximum used bandwidth according to multiple first rates at multiple times includes: the network equipment determining the maximum used bandwidth according to the largest first rate among the multiple first rates at multiple times.
  • the network device is a policy control function network element, a network data analysis function network element, or a network slice quota control function network element.
  • the embodiments of the present application provide a communication method for network slicing, where the method is executed by a session management function network element.
  • the method includes: a session management function network element receives a network slice identifier from a network device and a first start moment of measuring a rate of the network slice, where the network slice identifier is used to identify the measured network slice; the session management function network element reports to the user plane The functional network element sends the identifier of the network slice and the first start time; the session management function network element receives multiple rates at multiple times from the user plane functional network element, and the multiple times include the first start time and one after the first start time.
  • the session management function network element sends the rate information associated with the multiple rates at the multiple times to the network device.
  • the session management function network element sends rate information to the network device, where the rate information is rate information associated with multiple rates at multiple times, and the rate information reflects the actual rate information at multiple times of the network slice , the rate information is finally used to determine the maximum used bandwidth, and the maximum used bandwidth determined by the rate information is more accurate.
  • the rate information includes multiple rates at multiple times. That is to say, with this embodiment, the session management function network element sends to the network device multiple rates at multiple times received from the user plane function network element.
  • the rate information includes multiple first rates at multiple times, wherein when each of the multiple times corresponds to multiple rates, the first rate corresponding to each of the multiple first rates is It is equal to the sum of multiple rates at each moment, or, when each moment of the multiple times corresponds to a rate, the first rate corresponding to each of the multiple first rates is equal to a rate at each moment. That is to say, the session management function network element accumulates the rates at multiple times received by the user plane function network element at the same time, and sends the accumulated rate value to the network device.
  • the method further includes: the session management function network element receives the first threshold information from the network device; when the first rate corresponding to the first moment in the plurality of moments is greater than or equal to the first threshold information, the session The management function network element reports the first rate corresponding to the first moment to the network device.
  • the network element with the session management function reduces the value of the rate reported to the network device, thereby reducing the burden on the network.
  • the method further includes: the session management function network element sends second threshold information associated with the first threshold information to the user plane function network element, where the second threshold information is used to trigger and Reporting of rates associated with NEs of user plane functions.
  • the network element of the session management function reduces the value of the rate reported to the network device, thereby reducing the burden on the network.
  • the method further includes: the session management function network element receives the identifier of the user plane function network element, and the identifier of the user plane function network element is used to indicate that multiple rates at multiple times are the user plane function network element. measured.
  • the identifier of the user plane function network element is used to distinguish multiple rates at multiple times, which can prevent multiple rates measured by the same user plane function network element from being repeatedly calculated, and reduce the probability that the maximum used bandwidth is inaccurate.
  • the session management function network element sends the identifier of the network slice and the first start time to the user plane function network element, including: the session management function network element sends the usage reporting rule to the user plane function network element, using The volume reporting rule includes the identifier of the network slice and the first starting moment; or, the usage reporting rule includes the identifier of the network slice, the first starting moment, and time interval information, and the time interval information is used for one or more determination of time.
  • the network device is a policy control function network element, a network data analysis function network element, or a network slice quota control function network element.
  • the embodiments of the present application provide a communication method for network slicing, where the method is executed by a user plane functional network element.
  • the method includes: a user plane functional network element receives an identifier of a network slice and a first start moment of measuring a rate of the network slice, where the identifier of the network slice is used to identify the measured network slice; the user plane functional network element measures a plurality of network slices The rate of multiple sessions at a time, the multiple times include the first start time and one or more times after the first start time, wherein each time of the multiple times corresponds to the rate of multiple sessions; the user plane function network element determines Multiple first rates at multiple times, wherein the first rate corresponding to each time in the multiple first rates is equal to the sum of the rates of multiple sessions at each time; the user plane function network element sends the session management function network element to the The network device sends multiple first rates at multiple times, and the multiple first rates at multiple times are used to determine the maximum used bandwidth.
  • the user plane function network element measures the rate of each session of the network slice at each of the multiple times at multiple times, and sends the rate of each session at each time to the network device, and the rate can be more accurate It reflects the bandwidth used in the network slice at each time point, so the maximum bandwidth used by this rate can be more accurate.
  • the method further includes: the user plane function network element receives the first threshold information, and when the first rate corresponding to the first moment after the first starting moment is greater than or equal to the first threshold information, the first threshold The information is used for reporting the first rate corresponding to the first moment. That is to say, when the first rate at the first moment measured by the user plane function network element is less than the first threshold information, the first rate corresponding to the first moment will not be reported, thus reducing the rate reported in the network The amount of information, the burden on the network has been reduced.
  • the user plane function network element receives the identification of the network slice and the first starting moment of measuring the rate of the network slice, including: the user plane function network element receives the usage reporting rule from the session management function network element, and uses The quantity reporting rule includes the identification of the network slice and the first start moment of measuring the rate of the network slice.
  • the method further includes: the user plane function network element receives time interval information from the session management function, or receives time interval information from the network device through the session management function network element; the user plane function network element receives the time interval information according to the time interval.
  • the information identifies one or more times after the first start time.
  • the network device is a policy control function network element, a network data analysis function network element, or a network slice quota control function network element.
  • an embodiment of the present application provides a communication device, including a processor, where the processor is configured to read and run a program from a memory, so as to implement the method of the foregoing first aspect or any possible implementation manner (for example, when the communication device is a network device), or, to implement the method as described above in the second aspect or any possible implementation manner (eg, when the communication device is a session management function network element), or, to realize the method as described above
  • the method of the third aspect or any possible implementation manner for example, when the communication device is a user plane functional network element.
  • an embodiment of the present application provides a communication system, including a network device, a session management function network element, and a user plane function network element, where the network device can execute the method of the first aspect or any possible implementation manner,
  • the session management function network element may perform the method of the second aspect or any possible implementation manner, and the user plane function network element may perform the third aspect or any possible implementation manner of the method.
  • embodiments of the present application provide a computer program product comprising instructions, which, when run on a computer, cause the computer to perform the method of the first aspect or any possible implementation, or the second aspect or The method of any possible embodiment, or the third aspect or the method of any possible embodiment.
  • embodiments of the present application provide a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium is run on a computer, cause a processor to execute the first aspect or any possible The method of an embodiment, or the method of the second aspect or any possible embodiment, or the method of the third aspect or any possible embodiment.
  • FIG. 1 is a 5G network architecture to which this application applies;
  • FIG. 2 is a schematic diagram of a method for measuring the maximum used bandwidth of a network slice
  • 3 is a method for measuring the maximum used bandwidth of a network slice according to the present application.
  • FIG. 11 is a schematic diagram of a communication device provided according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another communication apparatus provided according to an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), fifth generation (5th generation, 5G) mobile communication systems or new radio (NR) systems, or applied to future communication systems or other similar communication systems.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • 5th generation, 5G fifth generation
  • 5G fifth generation
  • the network architecture and service scenarios described in this application are for the purpose of illustrating the technical solutions of this application more clearly, and do not constitute a limitation on the technical solutions provided by this application. appears, the technical solutions provided in this application are also applicable to similar technical problems.
  • FIG. 1 shows a 5G network architecture to which this application applies.
  • the above network architecture may include the following parts, namely terminal equipment, radio access network (RAN), core network network and data network (DN).
  • RAN radio access network
  • DN data network
  • a terminal device is a device with wireless transceiver function.
  • the terminal equipment is wirelessly connected to the access network equipment so as to be connected to the communication system.
  • a terminal device may also be referred to as a terminal, user equipment (UE), a mobile station, a mobile terminal, and the like.
  • the terminal equipment can be mobile phone, tablet computer, computer with wireless transceiver function, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminal in industrial control, wireless terminal in unmanned driving, wireless terminal in remote surgery, smart grid Wireless terminals in smart cities, wireless terminals in transportation security, wireless terminals in smart cities, or wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes. Wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device may also be an on-board module, on-board component, on-board chip or on-board unit built into the vehicle as one or more components or units, and the vehicle passes the built-in on-board module, on-board module, on-board component, on-board chip or on-board unit.
  • a unit may implement the methods of the present application.
  • a radio access network is used to implement radio-related functions.
  • a node in a wireless access network may also be called an access network device or a base station, and is used to connect a terminal device to a wireless network.
  • the access network device may be a base station (base station), an LTE system or an evolved base station (evolved NodeB, eNodeB) in an LTE system (LTE-Advanced, LTE-A), a next-generation base station in a 5G communication system (next generation NodeB, gNB), transmission reception point (TRP), base band unit (BBU), WiFi access point (access point, AP), base station or WiFi system in future mobile communication systems access node etc.
  • the radio access network device may also be a module or unit that completes some functions of the base station, for example, may be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the wireless access network device.
  • the radio access network device may be a CU node, a DU node, or an access network device including a CU node and a DU node.
  • the CU node is used to support radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP), service data adaptation protocol (service data adaptation protocol, SDAP) and other protocols;
  • DU node Used to support radio link control (radio link control, RLC) layer protocol, medium access control (medium access control, MAC) layer protocol and physical layer protocol.
  • the core network network may include one or more of the following network elements: access and mobility management function (AMF) network element, session management function (session management function, SMF) network element, user User plane function (UPF) network element, application function (AF) network element, network exposure function (Network Exposure Function, NEF) network element, charging function (charging function, CHF) network element, policy control Function (policy control function, PCF) network element, network data analysis function (network data analytics function, NWDAF) network element, unified data management (unified data management, UDM) network element, unified data repository (unified data repository, UDR) network element element, network repository function (NRF) network element, and network slice quota access control (Network Slice Quota related Access Control, NSQAC) network element.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user User plane function
  • AF application function
  • NEF Network Exposure Function
  • CHF charging function
  • policy control Function policy control function
  • PCF policy control function
  • Access and mobility management function network element mainly used for terminal attachment and mobility management in the mobile network.
  • Session management function network element mainly used for session management in mobile networks, such as session establishment, modification, and release. Specific functions include allocating Internet Protocol (IP) addresses to terminals, and selecting user plane network elements that provide packet forwarding functions.
  • IP Internet Protocol
  • User plane function network element It is mainly responsible for processing user packets, such as forwarding, charging, and lawful interception.
  • the user plane network element may also be referred to as a protocol data unit (protocol data unit, PDU) session anchor (PDU session anchor, PSA).
  • PDU protocol data unit
  • PSA session anchor
  • Application function network element It is mainly used to provide application layer services to terminal equipment.
  • the application function network element interacts with other control network elements on behalf of the application, including providing quality of service (QoS) requirements, charging policy requirements, and routing policy requirements.
  • QoS quality of service
  • Network opening function network element It is mainly used to provide the opening of 5G network capabilities and events, and receive related external information.
  • Charging functional network element mainly used for charging according to the charging information generated by each functional network element.
  • PCF Policy control function network element: including user subscription data management function, policy control function, charging policy control function, quality of service (quality of service, QoS) control, etc.
  • PCF can have various forms according to layers or functions, such as global PCF and PCF in network slices, or session management PCF (Session Management PCF, SM-PCF) and access management PCF (Access Management PCF, AM-PCF).
  • Network data analysis function network element can collect data from various network function (network function, NF) network elements, such as policy control function network element, session management function network element, user plane function network element, application function network element and other network elements. , and analyze and forecast.
  • network function network function
  • NF network function
  • Unified data management network element responsible for managing the subscription information of the terminal.
  • Unified data storage network element responsible for storing structured data information, including subscription information, policy information, and network data or service data.
  • Network warehouse function network element responsible for maintaining the information of each network element and the services they support.
  • Network slice quota access control network element responsible for managing and controlling network slice-related quotas, monitoring the current uplink or downlink aggregate data rate of the network slice (that is, the bandwidth used by the network slice), and checking whether the current uplink or downlink aggregate data rate is within the The maximum bit rate (Slice Maximum Bit Rate, Slice-MBR) allowed by the network slice specified by the SLA is within the range.
  • the network slice quota access control network element may be an independent network element, or may be a part of an existing network element (eg, PCF), or be deployed in combination with the existing network element.
  • the session management function network element and the user plane function network element generally belong to a specific network network slice.
  • the above “network element” may also be referred to as “entity” or “device”, which is not limited in this application.
  • the session management function network element is abbreviated as SMF
  • the user plane function network element is abbreviated as UPF
  • the application function network element is abbreviated as AF
  • the charging function network element is abbreviated as CHF
  • the policy control function network element is abbreviated as PCF.
  • NWDAF the unified data management network element
  • UDR unified data storage network element
  • Data network Provide data transmission services for terminals, which can be a public data network (PDN) network, such as the Internet, or a local access data network (LADN, Local Access Data Network), such as mobile Edge computing (MEC, Mobile Edge Computing) node network, etc.
  • PDN public data network
  • LADN Local Access Data Network
  • MEC mobile Edge computing
  • MEC Mobile Edge Computing
  • FIG. 2 is a schematic diagram of a method for measuring the maximum used bandwidth of a network slice.
  • a network slice there are generally multiple user plane functional network elements.
  • the currently used method for measuring the maximum used bandwidth of a network slice is shown in the figure.
  • Figure 2 shows the relationship between the rate and time measured by user plane functional network element 1 and user plane functional network element 2 in a period of time, where the point The rate corresponding to 1 is the maximum rate of the user plane functional network element 1 in a period of time, and the rate corresponding to point 2 is the maximum rate of the user plane function network element 2 in a period of time.
  • the two are added together to obtain the measured maximum usage rate of the network slice, that is, point 3
  • the maximum used bandwidth of the network slice shown.
  • the user plane function NE 1 and the user plane function NE 2 cannot reach the maximum rate at the same time, so the sum of the maximum rate of each user plane function NE is currently used as the maximum bandwidth limit of the measured network slice. It may be inaccurate, and such a maximum usage bandwidth cannot accurately reflect the real maximum usage bandwidth.
  • the problem to be solved by this application is how to more accurately measure the maximum used bandwidth of a network slice within a period of time.
  • the rate is the rate of the session in the network slice, which can be divided into an uplink rate and a downlink rate.
  • the uplink refers to the direction in which the terminal device transmits the session to the core network side
  • the downlink refers to the core network.
  • the rate can be either the bit rate or the baud rate. Therefore, the measured maximum usage bandwidth of the network slice can be the maximum usage bandwidth in bits, or the maximum usage bandwidth in bits.
  • the maximum bandwidth used in baud is not limited in this application.
  • the accumulation of each rate mentioned in this application is the accumulation of multiple rates in the same direction (uplink or downlink) at the same time point, rather than the accumulation of the rates at all time points.
  • the embodiment shown in FIG. 3 is a method for measuring the maximum used bandwidth of a network slice according to the present application.
  • the measured network slice includes SMF and UPF
  • the number of SMF and UPF can be as follows.
  • the network slice includes one SMF, and the SMF manages At least two UPFs.
  • the network slice includes at least two SMFs, and each SMF manages one UPF.
  • the network slice includes at least two SMFs, and each SMF manages multiple UPFs. But in any of the above cases, the network slice includes at least two UPFs.
  • the method includes the following steps:
  • Step 301 the NWDAF receives the identifier and start time of the network slice.
  • the operator's operation, administration and maintenance (OAM) device sends an Analytics Subscription message to the NWDAF, so as to allocate the network slice according to the maximum used bandwidth of the network slice Sufficient network resources to meet the needs of slicing customers.
  • OAM administration and maintenance
  • the CHF sends an analysis subscription message to the NWDAF, requesting to obtain the maximum used bandwidth of the network slice, so as to charge according to the maximum used bandwidth of the network slice.
  • the PCF sends an analysis subscription message to the NWDAF, requesting to obtain the maximum used bandwidth of the network slice, so as to change the newly registered or currently registered network slice according to the maximum used bandwidth of the network slice and the policy set by the operator.
  • the authorized maximum data rate of the slice of the terminal device on the network slice, or, to change the authorized maximum data rate of a newly established session or an already established session within the network slice, the session may be a PDU session.
  • the AF sends an analysis information request message to the NWDAF, requesting to obtain the maximum used bandwidth of the network slice, so as to adjust the QoS parameters of the service data flow according to the current maximum used bandwidth of the network slice.
  • the above-mentioned analysis subscription message or analysis information request message includes the identifier of the network slice (for example, S-NSSAI) and the start time.
  • the start time is the start time for measuring the rate of network slices.
  • the start time may be a certain time point in the current or history, or may be a certain time point in the future.
  • the analysis subscription message or the analysis information request message further includes a termination time, where the termination time is used to end the action of measuring the rate.
  • the analysis subscription message or the analysis information request message further includes an analysis precision requirement, where the analysis precision requirement is used to determine the time interval between each measurement time point in the subsequent steps.
  • Step 302 the NWDAF sends the identifier and start time of the network slice to the SMF.
  • the NWDAF obtains each SMF that supports the network slice according to the identifier of the network slice. For example, the NWDAF queries the network warehouse function network element according to the identifier of the network slice. For example, the NWDAF sends an event subscription request message to each SMF supporting the network slice, requesting the SMF to send the measurement result of the rate of the network slice in the SMF service area to the NWDAF.
  • the event subscription request message includes the identifier and start time of the network slice received in step 301 .
  • the event subscription request message further includes a time interval.
  • the same starting time and time interval are to ensure that the measurement results of each SMF are the same time point (including the start time and N time points, and the time interval between adjacent time points is the above time interval) , where N is an integer).
  • the analysis subscription message or the analysis information request message also includes the analysis precision requirement, and the NWDAF may determine the time interval according to the analysis precision requirement. If the analysis subscription message or the analysis information request message does not include the analysis precision requirement, the NWDAF can determine the appropriate time interval according to the analysis precision requirement configured by itself or the analysis precision requirement in the local policy. If the analysis accuracy requirements are high, the time interval is small, and if the analysis accuracy requirements are low, the time interval is large.
  • the event subscription request message sent by the NWDAF to each SMF may also include the termination time. Subsequent SMFs send measurement results no later than the termination time.
  • NWDAF can subsequently send an event subscription cancellation message to each SMF, so that each SMF stops measuring the rate of the network slice, so that each SMF sends no later than the termination time measurement results.
  • Step 303 the SMF sends the identifier and start time of the network slice to the respective managed UPFs that support the network slice.
  • the SMF determines the UPFs it manages that support the network slice. Each SMF sends the identification and start time of the network slice to the respective managed UPF that supports the network slice. For example, the SMF sends a usage reporting rule (Usage Reporting Rule, URR) to the UPF, where the URR includes the identifier and start time of the network slice, and optionally, the URR also includes a time interval.
  • URR Usage Reporting Rule
  • the URR is used to instruct the UPF to subsequently report a usage report, where the usage report includes the cumulative acceleration rate of the session obtained by the UPF at each time point, and the cumulative acceleration rate is the uplink and/or downlink rate of the network slice.
  • the cumulative acceleration rate of sessions measured by the UPF is the cumulative result of the uplink data rates of the respective sessions at each time point and/or the cumulative downlink data rates of the above-mentioned sessions of the network slice forwarded by the UPF through the interface with the data network. result.
  • the cumulative acceleration rate of the session measured by the UPF may also be the cumulative result of the uplink data rate of each session at each time point of the network slice forwarded by the UPF through the interface with the radio access network, and/or the above-mentioned each session. The cumulative result of the downlink data rate.
  • the UPF reports the cumulative acceleration rate of the cached session at the historical time point.
  • the SMF sends the termination time to the UPF.
  • Step 304 the UPF reports the cumulative acceleration rate of the session to the SMF.
  • UPF measures the rate of each session of the network slice at each specified time point, and accumulates the rates of each session in the same direction, and the accumulated value is used as the cumulative acceleration rate of the session at this time point.
  • the time point may be determined according to the start time and time interval, or may be determined by the UPF according to the start time and the built-in time interval. If the time interval is a built-in value, the built-in time intervals are unified.
  • UPF can measure the session rate of the network slice at multiple time points at the same time interval.
  • the UPF sends a measurement report to the SMF sending the URR, wherein the measurement report includes the cumulative acceleration rate of the session measured by the UPF at multiple time points.
  • a UPF receives URRs from multiple SMFs, the UPF obtains the cumulative acceleration rates of sessions in the same direction at multiple time points for sessions related to specified network slices controlled by different SMFs respectively, and sends the cumulative acceleration rates of the sessions to the corresponding SMFs. rate.
  • the UPF can also not perform the accumulation action, but accumulate the measured rates of multiple time points in the same direction of each session of different SMFs.
  • the UPF reports the cumulative acceleration rate of the session to the SMF, it also reports UPF identification, in case the cumulative acceleration rate of the session measured by the same UPF is repeatedly calculated in subsequent steps.
  • Step 305 the SMF accumulates the accumulated acceleration rates of the sessions reported by the UPF.
  • the SMF aggregates and accumulates the cumulative acceleration rates of sessions in the same direction received from the UPF at the same time point to obtain the rate of network slices in the SMF service area.
  • step 305 may be replaced by the following step: the SMF may not perform the action of accumulating the accumulated acceleration rate of the session reported by the UPF.
  • the SMF also receives the UPF's identity from the UPF.
  • the identifier of the UPF is used to identify that the cumulative acceleration rate of the session is measured by the UPF corresponding to the identifier.
  • the SMF may receive the identity of the UPF from the UPF through step 304 described above.
  • Step 306 the SMF sends the rate information to the NWDAF.
  • the rate information includes the following two cases.
  • the SMF accumulates the accumulated acceleration rates of the sessions respectively received from the UPF, and the rate information is used to indicate the accumulated rate of the SMF, that is, the network slice within the service area of the SMF. s speed.
  • step 305 the SMF does not perform the accumulation action, and the rate information is used to indicate the accumulated acceleration rate of the session including the UPF identifier received from the UPF.
  • the SMF may send the above rate information to the NWDAF through an event notification message.
  • the SMF sends an event notification message to the NWDAF every time interval until the termination time is reached or the SMF receives an event subscription cancellation message.
  • the NWDAF receives the rate at which network slices within the SMF service area are received from the SMF, or the cumulative acceleration rate (measured by the UPF) of the received session.
  • Step 307 the NWDAF obtains the maximum used bandwidth of the network slice.
  • This step includes the following situations:
  • the network slice includes one SMF, and the SMF manages at least two UPFs.
  • the SMF managing two UPFs for example, the first UPF and the second UPF.
  • step 305 the SMF accumulates the cumulative acceleration rate of the session measured by the first UPF and the cumulative acceleration rate of the session measured by the second UPF according to the same time point, to obtain the SMF service area within the The rate of the network slice, the rate of the network slice in the SMF service area is sent to the NWDAF through step 306 .
  • NWDAF accumulates the rates measured by SMF at the same time point, and selects the maximum rate as the maximum bandwidth used by the network slice. Since there is only one rate for the network slice in the SMF service area, NWDAF may not perform this step in this step. cumulative operation. Taking the values measured at 6 time points as an example, the rate values measured by the first UPF, the second UPF, SMF and NWDAF are shown in Table 1:
  • Table 1 The rate measured by each network element when SMF performs accumulation
  • the rate of the network slice is the rate value of the above-mentioned six time points corresponding to NWDAF, and the maximum value is the rate at time T6, and the rate corresponding to time T6 is the maximum used bandwidth of the network slice.
  • step 305 the SMF does not accumulate the accumulated acceleration rate of the session measured by the first UPF and the accumulated acceleration rate of the session measured by the second UPF according to the same time point, and the SMF The cumulative acceleration rate of the session measured by the UPF and the cumulative acceleration rate of the session measured by the second UPF, as well as the identifier of the first UPF and the identifier of the second UPF are sent to the NWDAF through step 306, then in this step, the NWDAF will send the cumulative acceleration rate of the session measured by the first UPF to the NWDAF
  • the rate and the cumulative acceleration rate of the session measured by the second UPF are accumulated at the same time point to obtain the rate of the network slice, and the maximum rate among them is selected as the maximum bandwidth used by the network slice.
  • the rate values measured by the first UPF, the second UPF and the NWDAF are shown in Table 2:
  • the rate of the network slice is the rate value of the above-mentioned six time points corresponding to NWDAF, and the maximum value is the rate at time T6, and the rate corresponding to time T6 is the maximum used bandwidth of the network slice.
  • the network slice includes at least two SMFs. Taking two SMFs as an example, for example, the network slice includes a first SMF and a second SMF.
  • the first SMF manages the first UPF
  • the second SMF manages the first UPF. If the second UPF is managed, the value measured by the first SMF is the value of the cumulative acceleration rate of the session measured by the first UPF, and the same is true for the second SMF.
  • the first SMF sends the accumulated acceleration rate of the session measured by the first UPF and the identifier of the first UPF to the NWDAF through step 306, and the second SMF sends the accumulated acceleration rate of the session measured by the second UPF and the second UPF through step 306 to the NWDAF.
  • the identifier of the UPF then in this step, the NWDAF accumulates the cumulative acceleration rate of the session measured by the first UPF and the cumulative acceleration rate of the session measured by the second UPF at the same time point to obtain the rate of the network slice, and selects the maximum rate among them. The value is used as the maximum bandwidth used by this network slice.
  • the rate values measured by the first UPF, the second UPF, the first SMF, the second SMF, and the NWDAF are shown in Table 3:
  • the rate of the network slice is the rate value of the above-mentioned six time points corresponding to NWDAF, and the maximum value is the rate at time T6, and the rate corresponding to time T6 is the maximum used bandwidth of the network slice.
  • the network slice includes at least two SMFs. Taking two SMFs as an example, for example, the network slice includes a first SMF and a second SMF, and the first SMF manages the first UPF and the second UPF. The third UPF and the fourth UPF are managed under the second SMF.
  • step 305 the first SMF accumulates the accumulated acceleration rate of the session measured by the first UPF and the accumulated acceleration rate of the session measured by the second UPF according to the same time point to obtain the first SMF service
  • the rate of intra-area network slices is sent to NWDAF through step 306
  • the rate of network slices in the service area of the first SMF is sent to NWDAF
  • the second SMF calculates the accumulated rate of the session measured by the third UPF and the accumulated rate of the session measured by the fourth UPF according to the same Accumulate the rate of the network slice in the second SMF service area at the time point of the second SMF, and send the rate of the network slice in the second SMF service area to the NWDAF through step 306.
  • the NWDAF performs the accumulation operation, that is, in the first SMF service area
  • the rate of the network slice and the rate of the network slice in the second SMF service area are accumulated to obtain the rate of the network slice, and the maximum rate among them is selected as the maximum bandwidth used by the network slice.
  • the rate values measured by the first UPF, the second UPF, the third UPF, the fourth UPF, the first SMF, the second SMF and the NWDAF are shown in Table 4:
  • the rate of the network slice is the rate value of the above-mentioned six time points corresponding to NWDAF, and the maximum value is the rate at time T6, and the rate corresponding to time T6 is the maximum used bandwidth of the network slice.
  • the first SMF directly compares the accumulated acceleration rate of the session measured by the first UPF, the accumulated acceleration rate of the session measured by the second UPF, and the identifier of the first UPF and the second UPF.
  • the identification of the third UPF is sent to the NWDAF through step 306, and the second SMF directly transmits the accumulated acceleration rate of the session measured by the third UPF, the accumulated acceleration rate of the session measured by the fourth UPF, and the identification of the third UPF and the fourth UPF to the NWDAF through step 306.
  • NWDAF uses the same cumulative acceleration rate of the session measured by the first UPF, the cumulative acceleration rate of the session measured by the second UPF, the cumulative acceleration rate of the session measured by the third UPF, and the cumulative acceleration rate of the session measured by the fourth UPF.
  • the time points are accumulated to obtain the rate of the network slice, and the maximum value of the rate is selected as the maximum bandwidth used by the network slice.
  • the rate values measured by the first UPF, the second UPF, the third UPF, the fourth UPF, the first SMF, the second SMF and the NWDAF are shown in Table 5:
  • the rate of the network slice is the rate value of the above-mentioned six time points corresponding to NWDAF, and the maximum value is the rate at time T6, and the rate corresponding to time T6 is the maximum used bandwidth of the network slice.
  • Step 308 NWDAF sends the maximum used bandwidth of the network slice.
  • the NWDAF may send the maximum used bandwidth of the network slice to the OAM or CHF or PCF that sent the request for analyzing the subscription message in step 301 .
  • the NWDAF may send the maximum used bandwidth of the network slice to the OAM or CHF or PCF that sent the analysis subscription message request in step 301 through the analysis notification message.
  • the NWDAF can send the AF the maximum used bandwidth of the network slice.
  • the NWDAF sends the AF the maximum used bandwidth of the network slice by analyzing the information response message.
  • the UPF can directly receive the identifier and start time of the network slice from the NWDAF. After the UPF obtains the cumulative acceleration rate of the session, it can also send the cumulative acceleration rate of the session to the NWDAF, and the NWDAF performs the accumulation of the cumulative acceleration rate of the session, and finally the NWDAF obtains the maximum used bandwidth of the network slice.
  • NWDAF can obtain the rate at each time point of the network slice, and selects the maximum rate among the rates at each time point as the maximum used bandwidth of the network slice. Therefore, through the method shown in this embodiment The maximum bandwidth used by network slices can be measured more accurately.
  • the embodiment shown in FIG. 4 is another method for measuring the maximum used bandwidth of a network slice according to the present application.
  • the PCF can locally store the rate of the network slice at each time point; if there are multiple PCFs in the measured network slice, for a certain SMF, the SMF is The session policy of the network slice controls the selection of one of the PCFs, then each PCF can store the network slice rate at each time point of each session it is responsible for in the UDR, and any PCF can obtain the rates measured by other PCFs from the UDR. , and further calculate the rate of the entire network slice at each time point.
  • the network slice has only one PCF as an example for description, and the specific process in the case of multiple PCFs will not be repeated.
  • the method includes the following steps:
  • Step 401 the PCF receives trigger information for measuring the maximum used bandwidth of the network slice.
  • PCF receives trigger information from OAM to set the maximum bit rate (Slice Maximum Bit Rate, Slice-MBR) supported by the measured network slice, so PCF is required to monitor the used bandwidth of this network slice and check the usage of this network slice Whether the bandwidth is within the Slice-MBR range supported by the network slice specified by the SLA, for example, NSQAC (not shown in the figure) may be included in the PCF.
  • Slice-MBR Slice Maximum Bit Rate
  • the PCF receives trigger information from the OAM, and the PCF is requested to create a task to measure the performance of the bandwidth used by the network slice. Subsequently, the PCF periodically reports the performance measurement result to the OAM, that is, reports the maximum bandwidth used by the measured network slice.
  • the PCF receives trigger information from the CHF or NWDAF, and the trigger information is an event subscription message, or the AF (may be through the NEF) sends trigger information to the PCF, the trigger information is an event subscription message, and the trigger information informs the PCF to obtain the measured network slice. maximum bandwidth used.
  • the trigger information includes the identifier of the network slice.
  • the PCF After receiving the above trigger information, the PCF sets the status flag for calculating the maximum bandwidth used by the network slice, and records the identifier of the network slice.
  • Step 402 the SMF sends a session establishment policy control request message to the PCF.
  • the SMF When the terminal device requests to establish a session connection in the network slice, after receiving the session establishment request message (not shown in the figure), the SMF sends a session establishment policy control request message to the PCF, which includes the identifier of the network slice corresponding to the session .
  • Step 403 the PCF sends a session establishment policy control response message to the SMF, where the session establishment policy control response message includes the identifier and start time of the network slice, and optionally, the session establishment policy control response message also includes a time interval.
  • the session establishment policy control response message is used to instruct the SMF to report the rate of network slices within its service area.
  • the identifier of the network slice is the identifier of the measured network slice.
  • the PCF receives the establishment session policy control request message, it determines whether the identifier of the network slice corresponding to the session is the same as the identifier of the measured network slice, if the SMF has not reported the network slice in the SMF service area to the PCF. rate, the PCF sends to the SMF the identification and start time of the measured network slice.
  • the PCF also sends the time interval to the SMF.
  • the PCF may send the identification and start time of the measured network slice to the SMF via a reject response message.
  • the reject response message may also include a cause value indicating that the SMF should report the rate of network slices within the SMF service area. After the PCF sends the rejection response message to the SMF, the PCF may no longer send the rejection response message to the SMF during the period when the SMF performs rate measurement.
  • Step 404 the SMF sends the identifier and start time of the network slice to the UPF.
  • step 303 For this step, reference may be made to the description of step 303 in the embodiment shown in FIG. 3 .
  • Step 405 the UPF reports the measured cumulative acceleration rate of the session to the SMF.
  • step 304 For this step, reference may be made to the description of step 304 in the embodiment shown in FIG. 3 .
  • Step 406 the SMF accumulates the accumulated acceleration rates of the sessions reported by the UPF.
  • the SMF aggregates and accumulates the cumulative acceleration rates of sessions in the same direction at the same time point received from the UPF to obtain the rate of network slices in the SMF service area.
  • this step may be replaced by the following step: the SMF does not perform the action of accumulating the accumulated acceleration rate of the session reported by the UPF, and the SMF receives the identifier of the UPF from the UPF.
  • the identifier of the UPF is used to identify that the cumulative acceleration rate of the session is measured by the UPF corresponding to the identifier.
  • the SMF sends the establishment session policy control request message to the PCF again after accumulating the cumulative acceleration rate of the session reported by the UPF.
  • the reason for sending the establishment session policy control request message to the PCF again may be that the SMF receives the rejection response message, or may be the establishment of a new session.
  • the establishment session policy control request message includes the rate of the network slice in the SMF service area. Subsequent SMF will receive the establishment session policy control response message of PCF (not shown in the figure).
  • Step 407 the SMF sends the rate information to the PCF.
  • the rate information includes the following two cases.
  • the SMF accumulates the accumulated acceleration rates of the sessions each received from the UPF.
  • the rate information is used to indicate the accumulated rate of the SMF, that is, the network slices within the service area of the SMF. s speed.
  • the SMF does not perform the accumulation action, and the rate information is used to indicate the accumulated acceleration rate of the session including the UPF identifier received from the UPF.
  • the SMF may send the above rate information to the NWDAF through an event notification message.
  • the SMF sends an event notification message to the PCF every time interval until the termination time is reached or the SMF receives an event subscription cancellation message.
  • the PCF receives from the SMF the rate of network slices within the SMF service area, or the cumulative acceleration rate of the received session (measured by the UPF).
  • Step 408 the PCF obtains the maximum used bandwidth of the network slice.
  • This step includes the following situations:
  • the network slice includes one SMF, and the SMF manages at least two UPFs.
  • the SMF managing two UPFs for example, the first UPF and the second UPF.
  • the SMF accumulates the cumulative acceleration rate of the session measured by the first UPF and the cumulative acceleration rate of the session measured by the second UPF according to the same time point, to obtain the SMF service area.
  • the rate of the network slice the SMF sends the rate of the network slice in the SMF service area to the PCF through step 407, and the PCF accumulates the rate measured by the SMF according to the same time point, and selects the maximum rate as the maximum rate of the network slice.
  • the PCF may not perform the accumulation operation in this step.
  • the rate of the network slice is the rate value of the above-mentioned six time points corresponding to the PCF, and the maximum value is the rate at the time of T6, and the rate corresponding to the time of T6 is the maximum used bandwidth of the network slice.
  • step 406 the SMF does not accumulate the accumulated acceleration rate of the session measured by the first UPF and the accumulated acceleration rate of the session measured by the second UPF according to the same time point, and the SMF sends the first UPF to the PCF through step 407.
  • the accumulated acceleration rate of the session measured by one UPF, the accumulated acceleration rate of the session measured by the second UPF, the identifier of the first UPF and the identifier of the second UPF then in this step, the PCF compares the accumulated acceleration rate of the session measured by the first UPF and the second UPF.
  • the cumulative acceleration rates of the measured sessions are accumulated at the same time point to obtain the rate of the network slice, and the maximum rate among them is selected as the maximum bandwidth used by the network slice.
  • the rate values measured by the first UPF, the second UPF and the PCF are shown in Table 7:
  • the rate of the network slice is the rate value of the above-mentioned six time points corresponding to the PCF, and the maximum value is the rate at the time of T6, and the rate corresponding to the time of T6 is the maximum used bandwidth of the network slice.
  • the network slice includes at least two SMFs. Taking two SMFs as an example, for example, the network slice includes a first SMF and a second SMF.
  • the first SMF manages the first UPF
  • the second SMF manages the first UPF. If the second UPF is managed, the value measured by the first SMF is the value of the cumulative acceleration rate of the session measured by the first UPF, and the same is true for the second SMF.
  • the first SMF sends the PCF the cumulative acceleration rate of the session measured by the first UPF and the identifier of the first UPF through step 407
  • the second SMF sends the cumulative acceleration rate of the session measured by the second UPF and the second UPF to the PCF through step 407.
  • the PCF accumulates the cumulative acceleration rate of the session measured by the first UPF and the cumulative acceleration rate of the session measured by the second UPF at the same time point to obtain the rate of the network slice, and selects the maximum rate among them.
  • the value is used as the maximum bandwidth used by this network slice.
  • the rate values measured by the first UPF, the second UPF, the first SMF, the second SMF and the PCF are shown in Table 8:
  • the rate of the network slice is the rate value of the above-mentioned six time points corresponding to the PCF, and the maximum value is the rate at the time of T6, and the rate corresponding to the time of T6 is the maximum used bandwidth of the network slice.
  • the network slice includes at least two SMFs. Taking two SMFs as an example, for example, the network slice includes a first SMF and a second SMF, and the first SMF manages the first UPF and the second UPF. The third UPF and the fourth UPF are managed under the second SMF.
  • step 406 the first SMF accumulates the accumulated acceleration rate of the session measured by the first UPF and the accumulated acceleration rate of the session measured by the second UPF according to the same time point to obtain the first SMF service
  • the rate of intra-area network slices, the rate of network slices in the service area of the first SMF is sent to the PCF through step 407, and the second SMF uses the same cumulative acceleration rate of the session measured by the third UPF and the cumulative acceleration rate of the session measured by the fourth UPF.
  • the PCF performs the accumulation operation, that is, the rate of the network slice in the first SMF service area.
  • the rate of the network slice is accumulated with the rate of the network slice in the second SMF service area to obtain the rate of the network slice, and the maximum value of the rate is selected as the maximum bandwidth used by the network slice.
  • the rate values measured by the first UPF, the second UPF, the third UPF, the fourth UPF, the first SMF, the second SMF and the PCF are shown in Table 9:
  • the rate of the network slice is the rate value of the above-mentioned six time points corresponding to the PCF, and the maximum value is the rate at the time of T6, and the rate corresponding to the time of T6 is the maximum used bandwidth of the network slice.
  • step 406 the first SMF directly sends the accumulated acceleration rate of the session measured by the first UPF, the accumulated acceleration rate of the session measured by the second UPF, and the identifier of the first UPF and the second UPF to the PCF through step 407.
  • the identifier of the UPF, the second SMF directly sends the accumulated acceleration rate of the session measured by the third UPF, the accumulated acceleration rate of the session measured by the fourth UPF, the identifier of the third UPF and the identifier of the fourth UPF to the PCF through step 407, then in this step
  • the PCF accumulates the cumulative acceleration rate of the session measured by the first UPF, the cumulative acceleration rate of the session measured by the second UPF, the cumulative acceleration rate of the session measured by the third UPF, and the cumulative acceleration rate of the session measured by the fourth UPF at the same time point, to obtain
  • the rate of the network slice, and the maximum rate among them is selected as the maximum bandwidth used by the network slice.
  • the rate values measured by the first UPF, the second UPF, the third UPF, the fourth UPF, the first SMF, the second SMF and the PCF are shown as 10:
  • the rate of the network slice is the rate value of the above-mentioned six time points corresponding to the PCF, and the maximum value is the rate at the time of T6, and the rate corresponding to the time of T6 is the maximum used bandwidth of the network slice.
  • each PCF can store the acquired rate of the network slice in the service area of its own PCF in a network device with a storage function, such as , the network device is a UDR.
  • the network device is a UDR.
  • One of the PCFs obtains the rate of the network slice in the service area of its own PCF obtained by the other PCFs in the UDR, and accumulates it at the same time point to obtain the rate of the network slice at each time point, and selects the highest rate value. is the maximum bandwidth used by the network slice.
  • Step 409 the PCF sends the maximum used bandwidth of the network slice to the device (OAM or CHF or NWDAF or AF) that sends the trigger information in step 401 .
  • the device OAM or CHF or NWDAF or AF
  • the UPF can directly receive the identifier and start time of the network slice from the PCF. After the UPF obtains the cumulative acceleration rate of the session, it can also send the cumulative acceleration rate of the session to the PCF, and the PCF performs the accumulation of the cumulative acceleration rate of the session, and finally the PCF obtains the maximum bandwidth used by the network slice.
  • the PCF can measure the rate of each time point of the network slice. If the network slice has only one PCF, the rate at each time point of the network slice within the service range of the PCF measured by the PCF is the rate of the network slice. If the network slice includes at least two PCFs, then the A PCF can obtain the measured values of other PCFs at various time points, and accumulate them according to time points to obtain the rate of the network slice. Finally, the PCF selects the maximum rate among the rates of the network slice at each time point as the maximum used bandwidth of the network slice. Therefore, the method shown in this embodiment can more accurately measure the maximum used bandwidth of the network slice. .
  • the embodiment shown in FIG. 5 is another method for measuring the maximum used bandwidth of a network slice according to the present application.
  • the measured network slice includes at least two SMFs, and each SMF manages one or more UPFs.
  • each SMF manages one or more UPFs.
  • the measured network slice includes two SMFs ( For example, a first SMF and a second SMF) and the first SMF manages the first UPF and the second SMF manages the second UPF.
  • the method includes the following steps:
  • Step 501 the PCF receives the identifier, the start time and the first threshold of the network slice.
  • the PCF receives an event subscription message from the CHF, requesting to obtain the maximum used bandwidth of the network slice;
  • the PCF receives the event subscription message from the NWDAF and requests to obtain the maximum used bandwidth of the network slice;
  • the PCF receives an event subscription message from the AF, requesting to obtain the maximum used bandwidth of the network slice.
  • the above event subscription message includes the identifier of the network slice (for example, S-NSSAI), the start time and the first threshold, and the start time may be a current or a certain time point in history, or a certain time point in the future.
  • the function of the first threshold is to decompose the corresponding thresholds for multiple SMFs, so that when the rate value of the network slice of each SMF in the respective service area is greater than the corresponding threshold, the rate value is reported. When the value of the rate of the network slices of each SMF in the respective service area is smaller than the corresponding threshold, the value of the rate may not be reported.
  • the value of the rate may be reported, or the value of the rate may not be reported, which may depend on the specific implementation.
  • This embodiment is described by taking an example of performing a reporting action when the value of the rate at which each SMF obtains a network slice in the service area is greater than or equal to the corresponding threshold.
  • the first threshold value received by the PCF is generally a very small value, or the first threshold value is set to 0. In this case, it can be ensured that the used bandwidth of the network slice obtained by the PCF subsequently is greater than the first threshold value.
  • the PCF If the PCF obtains that the used bandwidth of the network slice at a time point is greater than the first threshold, the PCF records the used bandwidth of the network slice at the time point as the maximum used bandwidth. In other words, if the PCF obtains that the used bandwidth of the network slice at a time point is greater than the first threshold, the PCF updates the maximum used bandwidth to the used bandwidth of the network slice at the time point.
  • the above event subscription message includes a termination time. If the event subscription message does not include the termination time, the subsequent PCF receives the indication information for terminating the measurement, and delivers the indication information.
  • Step 502 the PCF decomposes the first threshold.
  • the PCF queries the NRF according to the identifier of the network slice, and determines that the SMFs supporting the network slice are the first SMF and the second SMF.
  • the PCF decomposes the first threshold, and sets the decomposed thresholds for the first SMF and the second SMF respectively. For example, a second threshold is set for the first SMF, a third threshold is set for the second SMF, and the second threshold and the third threshold are set. The sum is equal to or less than the first threshold.
  • the second threshold and the third threshold may be the same or different.
  • the second or third threshold is used to indicate the corresponding SMF.
  • the SMF When the rate of the network slice at a certain measured time point in the respective service area of the SMF is greater than or equal to the corresponding second or third threshold, the SMF sends the PCF to the Report the rate of the network slice corresponding to this time point in the respective service area. Otherwise, SMF only measures the rate of network slices in the respective service areas at each time point, and caches them locally. For example, if the first threshold is 10, the thresholds are decomposed for the two SMFs, and the second threshold is 5 and the third threshold is 5.
  • Step 503 the PCF sends the identifier and start time of the network slice to the SMF.
  • the PCF sends an event subscription request message including the identifier and start time of the network slice to the first SMF and the second SMF.
  • the event subscription request message further includes a time interval.
  • the subscribed event is the result of the rate of this network slice.
  • the same start time and time interval are to ensure that the measurement results of each SMF are the same at each specified time point (including N time points from the start time, and the time interval between adjacent time points is the above time. interval, where N is an integer), if the time interval is not included in the event subscription request message, the time interval can be any built-in value in PCF, SMF or UPF, and each built-in time interval is uniform.
  • the PCF also sends the set decomposition threshold to each SMF, for example, the PCF sends the second threshold to the first SMF, and the PCF sends the third threshold to the second SMF.
  • the second threshold is 5 and the third threshold is 5.
  • the PCF also sends the termination time to the first SMF and the second SMF.
  • the event subscription request message sent by the PCF to each SMF may include the termination time.
  • Each subsequent SMF sends the measurement results no later than the termination time.
  • the PCF can subsequently send an event subscription cancellation message to each SMF, so that each SMF stops measuring the rate of the network slice, so that each SMF sends no later than the termination time measurement results.
  • Step 504 the SMF sends the identifier and the start time of the network slice to the respective managed UPFs that support the network slice.
  • step 303 For this step, reference may be made to the description of step 303 in the embodiment shown in FIG. 3 .
  • the first SMF can further decompose the second threshold to obtain the fourth threshold and the fifth threshold.
  • the decomposition method refer to the steps The description of 502 is not repeated here.
  • the first SMF sends the fourth threshold to the first UPF, and the first SMF sends the fifth threshold to the second UPF.
  • the SMF also sends the termination time to the respective managed UPFs that support the network slice.
  • Step 505 the UPF determines whether the current time point is a specified time point. If the current time point is the specified time point, step 506 is executed. If the current time is not the specified time point, continue to perform this step.
  • the specified time point includes N time points from the start time to the end time, and the time interval between adjacent time points is the above-mentioned time interval, where N is an integer.
  • Step 506 the UPF reports the measured cumulative acceleration rate of the session to the SMF.
  • UPF measures the rate of each session of the network slice at this time point, and accumulates the rates of each session in the same direction, and the accumulated value obtained is used as the cumulative acceleration rate of the session at this time point.
  • the time point may be determined according to the start time and time interval, or may be determined by the UPF according to the start time and the built-in time interval. If the time interval is a built-in value, the built-in time intervals are unified.
  • UPF can measure the session rate of the network slice at multiple time points at the same time interval.
  • the UPF sends a measurement report to the SMF sending the URR, wherein the measurement report includes the cumulative acceleration rate of the session measured by the UPF at multiple time points.
  • a UPF receives URRs from multiple SMFs, the UPF obtains the cumulative acceleration rates of sessions in the same direction of the sessions related to the network slice controlled by different SMFs respectively, and sends the cumulative acceleration rates of the sessions to the corresponding SMFs.
  • the UPFs each receive the corresponding threshold, taking the first UPF as an example, when the first UPF obtains the cumulative acceleration rate of the session at this time point, and compares the cumulative acceleration rate of the session at the current time point with the fourth threshold, when The accumulated acceleration rate of the session at this time point is greater than the fourth threshold, and the first UPF determines to send the accumulated acceleration rate of the session at this time point to the first SMF.
  • Step 507 the SMF obtains the rate of the network slice in the SMF service area.
  • the SMF accumulates the cumulative acceleration rates of the sessions in the same direction at the time point received from the UPF, to obtain the rate of the network slice in the service area of the SMF at the time point.
  • the rate of network slices in the first SMF service area measured by the first SMF is 3
  • the second threshold corresponding to this time point is 5
  • the network slice rate in the second SMF service area measured by the second SMF is 3
  • the rate is 6,
  • the third threshold is 5, and the same is true if the time point is other time points in the table.
  • Step 508 the SMF determines whether the rate of network slices in the SMF service area is greater than the decomposition threshold.
  • the first SMF compares the rate of the network slice at this time point in its own service area with the second threshold
  • the second SMF compares the rate of the network slice at this time point in its own service area with the third threshold
  • step 509 is executed; if the rates of the network slices in each SMF service area are less than the respective thresholds, return to step 505.
  • the rate of network slices in the service area measured by the first SMF is 3, which is less than the second threshold, and the rate of network slices in the service area measured by the second SMF is 3.
  • the rate is 6, the rate is greater than the third threshold, and the rate of network slices in the service area measured by at least one SMF is greater than or equal to the corresponding threshold, and the subsequent step 509 is performed.
  • the rate of network slices in the service area measured by the first SMF is 7, which is greater than the second threshold, and the rate of network slices in the service area measured by the second SMF is 7.
  • the rate is 3, the rate is less than the third threshold, and the rate of network slices in the service area measured by at least one SMF is greater than or equal to the corresponding threshold, and the subsequent step 509 is performed.
  • the rate of network slices in the service area measured by the first SMF is 6, which is less than the second threshold, and the rate of network slices in the service area measured by the second SMF is 6.
  • the rate is 6, the rate is less than the third threshold, and the rates of the network slices in each SMF service area are all less than the respective thresholds, then return to step 505 .
  • the rate of network slices in the service area measured by the first SMF is 6, and the rate is greater than the second threshold, and the rate of network slices in the service area measured by the second SMF is 6.
  • the rate is 8, the rate is greater than the third threshold, and the rate of network slices in the service area measured by at least one SMF is greater than or equal to the corresponding threshold, and the subsequent step 509 is performed.
  • the SMF sends the corresponding updated fourth threshold and fifth threshold in step 504 to the UPF according to the accumulated acceleration rate of the same direction session at the same current time point received from the respective managed UPFs.
  • the first SMF compares the rate of the network slice at the current time point in its own service area with the second threshold, when the rate of the network slice at the current time point is greater than the second threshold, the first SMF will The received cumulative acceleration rate of sessions in the same direction at the same current time point is updated to the fourth threshold.
  • the updated fourth threshold is generally larger than the pre-updated fourth threshold. In this way, the UPF will only follow when the accumulated acceleration rate of the network slice session reaches a higher value.
  • the cumulative acceleration rate of the measured network slice session greater than the updated fourth threshold will be reported to the first SMF, so that the first SMF will only obtain greater self-service later.
  • the rate of network slices within the region is larger (that is, greater than the fourth threshold).
  • Step 509 the SMF sends an event notification message to the PCF.
  • the second SMF sends an event notification message to the PCF, which includes the current The rate corresponding to the time point and the time point. If the current time point is T6 and the rates of network slices in their own service areas measured by the first SMF and the second SMF are both greater than their corresponding thresholds, both the first SMF and the second SMF perform this step. Since both the first SMF and the second SMF send their respective measured rates to the PCF, after the PCF receives the rates of the network slices in the service areas of the respective SMFs, the PCF does not perform step 510, nor does step 511. is executed (this mechanism is not shown in the figure).
  • Step 510 the PCF sends an event report request message to other SMFs.
  • the first SMF does not send the rate of network slices in the first SMF service area corresponding to the current time point to the PCF, and the PCF sends an event report request message to the first SMF, The message includes the time point, and instructs the first SMF to report the rate of the network slice in the first SMF service area corresponding to the time point.
  • Step 511 the other SMFs send the rates of network slices in their respective service areas to the PCF.
  • the first SMF reports the rate of the network slice in the service area of the first SMF corresponding to T1 to the PCF.
  • Step 512 the PCF obtains the used bandwidth of the network slice and determines the maximum used bandwidth of the network slice.
  • the PCF receives the rate of network slices in the respective service areas of the first SMF and the second SMF at the time point in step 507, and accumulates the rates of the network slices in the respective service areas of the first SMF and the second SMF at the time point to obtain the time The bandwidth used by the network slice of the point.
  • the PCF selects the maximum value according to the value of the used bandwidth at the current time point and the value of the used bandwidth at the historical time point recorded by the PCF to determine the maximum used bandwidth of the network slice. In other words, if the PCF obtains that the used bandwidth of the network slice at a time point is greater than the first threshold, the PCF updates the maximum used bandwidth to the used bandwidth of the network slice at the time point.
  • the PCF updates the first threshold.
  • the first threshold may be greater than the first threshold before the update.
  • the first threshold may be the same as the current measurement.
  • the value of the used bandwidth is equal to or greater than the value of the used bandwidth, and the second threshold and the third threshold are updated at the same time.
  • the PCF determines that the maximum used bandwidth of the network slice is the value of the used bandwidth at this time point, That is, the maximum bandwidth used is 9.
  • the used bandwidth of the network slice is equal to the first threshold
  • PCF updates the first threshold to 11, and updates both the second and third thresholds to 5.5, and changes the current
  • the used bandwidth of the network slice at the time point is updated to the maximum used bandwidth of the network slice. At this time, the maximum used bandwidth is 10.
  • the PCF updates the first threshold at the next time point to 12, and the second threshold at the next time point and the first threshold All three thresholds are updated to 6, and the used bandwidth of the network slice at the current time point is updated to the maximum used bandwidth of the network slice, and the maximum used bandwidth is 11 at this time.
  • the PCF updates the first threshold value at the next time point to 13, and the second threshold value and the first threshold value at the next time point All three thresholds are updated to 6.5, and the used bandwidth of the network slice at the current time point is updated to the maximum used bandwidth of the network slice, which is 12 at this time.
  • the PCF has not received any information about the rate reported by the SMF. At this time, the maximum bandwidth used is still 12, and the update of any threshold value at the next time point will not be performed. .
  • PCF updates the first threshold at the next time point to 14, and compares the second threshold at the next time point and the The third thresholds are all updated to 7, and the used bandwidth of the network slice at the current time point is updated to the maximum used bandwidth of the network slice, and the maximum used bandwidth is 14 at this time.
  • the PCF sends the corresponding updated second and third thresholds to the multiple SMFs according to the rates of network slices in the respective service areas of the multiple SMFs received at the current time point in step 507, and at this time.
  • the PCF may not consider the first threshold when updating the second threshold and the third threshold at the next time point, and may only consider the rate of network slices in the service area at the current time point measured by the current first SMF and the rate measured by the second SMF.
  • the rate of network slices in the service area at the current time point is used to update the second threshold and the third threshold at the next time point.
  • Step 513 the PCF sends the corresponding updated thresholds to the corresponding SMFs.
  • the PCF updates the thresholds (eg, the second threshold or the third threshold) corresponding to each SMF, for example, the PCF sends the updated second threshold to the first SMF, and the PCF sends the updated second threshold to the second SMF. third threshold. If only the second threshold corresponding to the first SMF is updated, the PCF only needs to send the updated second threshold to the first SMF, and the PCF does not need to send the unupdated third threshold to the second SMF.
  • the thresholds eg, the second threshold or the third threshold
  • Step 514 the PCF determines whether the time point corresponding to the acquired rate is the termination time point.
  • step 505 If the time point is not the termination time, go to step 505. If the time point is the termination time, step 515 is executed. For example, in combination with the above example, when the time point is any time point from T1 to T5, step 505 is subsequently executed, and when the time point is T6, step 515 is executed.
  • steps 505 to 514 can be completed before the next specified time point for measuring the network slicing rate.
  • the time interval between any two adjacent time points is greater than The time period used for the execution of steps 505 to 514 in this embodiment.
  • the used bandwidth of at least one network slice is greater than or equal to the first threshold, and the largest value of the used bandwidth is updated as the maximum used bandwidth of the network slice.
  • the subsequent PCF executes step 515 .
  • Step 515 the PCF sends the maximum used bandwidth of the network slice.
  • step 501 the PCF receives the network slice identifier, start time and first threshold from the CHF, the PCF sends the CHF the maximum used bandwidth of the network slice, if in step 501 the PCF receives the network slice identifier and start time from the NWDAF and the first threshold, then the PCF sends the maximum used bandwidth of the network slice to the NWDAF, if the PCF receives the identification, start time and first threshold of the network slice from the AF in step 501, then the PCF sends the maximum use of the network slice to the AF. bandwidth.
  • the maximum bandwidth used by this network slice is 14.
  • the PCF sends the time point corresponding to the maximum used bandwidth of the network slice.
  • step 501 after receiving the notification information for terminating the rate measurement of the network slice, the PCF sends the information for terminating the rate of the measurement session to each UPF managed by the PCF in turn through the SMF. Notification information, a measure of the rate at which the UPF terminates the session.
  • step 505 the UPF determines that the start time T1 is reached, and each subsequent UPF executes step 506.
  • the corresponding SMF executes step 507 .
  • the rate of the network slice in the service area measured by the first SMF is 3
  • the rate of the network slice in the service area measured by the second SMF is 6
  • the second threshold corresponding to the first SMF is 5
  • the third threshold corresponding to the second SMF is 5.
  • step 508 the second SMF determines that the rate of the network slice in its own service area is greater than the third threshold, then the second SMF reports the time point and the rate of the network slice in the service area measured at the time point to the PCF in step 509,
  • the PCF notifies the first SMF to report the rate of the network slice in its own service area corresponding to the T1 time point by executing step 510, and the first SMF reports the rate of the network slice within the service area of the first SMF to the PCF through step 511, and the PCF passes Step 512 adds up the rates of the network slice in their respective service areas measured by the first SMF and the second SMF at time T1, and obtains that the used bandwidth of the network slice is 9.
  • time T1 Since time T1 is the start time, it is directly The value is recorded as the maximum used bandwidth for this network slice. And because the value of the used bandwidth is less than the first threshold, the PCF does not update the first threshold, nor does it update the second threshold and the third threshold, then the PCF executes step 514, and determines that the time T1 is not the termination time point, and the UPF executes the following steps. 505.
  • the subsequent UPF executes step 506 .
  • the SMF performs step 507.
  • the rate of the network slice in the service area measured by the first SMF is 3
  • the rate of the network slice in the service area measured by the second SMF is 7, and the first SMF corresponds to the first SMF.
  • the second threshold is 5, and the third threshold corresponding to the second SMF is 5.
  • the second SMF determines that the rate of the network slice in its service area is greater than the third threshold, then the second SMF executes step 509, the second SMF Report the time point and the rate of the network slice in the service area measured at the time point to the PCF.
  • the PCF notifies the first SMF by performing step 510. Report the rate of the network slice in the service area corresponding to the T2 time point, the first SMF reports the rate of the network slice in the service area of the first SMF to the PCF through step 511, and the PCF reports the first SMF at the time point T2 through step 512.
  • the rates of the network slice in their respective service areas measured by the SMF and the second SMF are added, and the used bandwidth of the network slice is obtained as 10.
  • PCF Since the maximum used bandwidth of the network slice at the time point T1 is 9, which is less than the current time point The used bandwidth of the network slice, PCF records the used bandwidth of the network slice corresponding to the T2 time point as the maximum used bandwidth of the network slice, and updates the first threshold to 11, the second threshold to 5.5, and the third threshold to 5.5. Step 513 is executed, the PCF sends the updated second threshold value to the first SMF, and the updated third threshold value to the second SMF, then the PCF executes step 514, determines that time T2 is not the termination time point, and the UPF continues to step 505.
  • the subsequent UPF executes step 506 .
  • the SMF performs step 507.
  • the rate of the network slice in the service area measured by the first SMF is 4
  • the rate of the network slice in the service area measured by the second SMF is 7, and the first SMF corresponds to the first SMF.
  • the second threshold is 5.5
  • the third threshold corresponding to the second SMF is 5.5.
  • the second SMF determines that the rate of the network slice in its service area is greater than the third threshold, then the second SMF executes step 509, the second SMF Report the time point and the rate of the network slice in the service area measured at the time point to the PCF.
  • the PCF notifies the first SMF by performing step 510.
  • Report the rate of the network slice in the service area corresponding to the time point T3 the first SMF reports the rate of the network slice in the service area of the first SMF to the PCF through step 511, and the PCF reports the rate of the network slice at the time point T3 through step 512.
  • the rates of the network slice in their respective service areas measured by the SMF and the second SMF are added together, and the used bandwidth of the network slice is obtained as 11. Because the maximum used bandwidth of the network slice at the time point T2 is 10, which is less than the current time point The used bandwidth of the network slice.
  • PCF records the used bandwidth of the network slice corresponding to the time point T3 as the maximum used bandwidth of the network slice, and updates the first threshold to 12, the second threshold to 6, and the third threshold to 6. Step 513 is executed, the PCF sends the updated second threshold value to the first SMF and the updated third threshold value to the second SMF, and then the PCF executes step 514 and determines that time T3 is not the termination time point, and the UPF proceeds to step 505 .
  • the subsequent UPF executes step 506 .
  • the SMF executes step 507.
  • the rate of the network slice in the service area measured by the first SMF is 5
  • the rate of the network slice in the service area measured by the second SMF is 7, and the first SMF corresponds to the first SMF.
  • the second threshold is 6, and the third threshold corresponding to the second SMF is 6.
  • the second SMF determines that the rate of the network slice in its service area is greater than the third threshold, then the second SMF executes step 509, the second SMF Report the time point and the rate of the network slice in the service area measured at the time point to the PCF.
  • the PCF notifies the first SMF by performing step 510. Report the rate of the network slice in the service area corresponding to the time point T4, the first SMF reports the rate of the network slice in the service area of the first SMF to the PCF through step 511, and the PCF reports the rate of the network slice at the time point T4 through step 512.
  • the rates of the network slice in their respective service areas measured by the SMF and the second SMF are added, and the used bandwidth of the network slice is 12. Since the maximum used bandwidth of the network slice at the time point T3 is 11, which is less than the current time point The used bandwidth of the network slice.
  • PCF records the used bandwidth of the network slice corresponding to the time point T4 as the maximum used bandwidth of the network slice, and updates the first threshold to 13, the second threshold to 6.5, and the third threshold to 6.5. Step 513 is executed, the PCF sends the updated second threshold value to the first SMF, and the updated third threshold value to the second SMF, then the PCF executes step 514 and determines that time T4 is not the termination time point, and the UPF proceeds to step 505 .
  • the subsequent UPF executes step 506 .
  • the SMF executes step 507.
  • the rate of the network slice in the service area measured by the first SMF is 6
  • the rate of the network slice in the service area measured by the second SMF is 6
  • the rate of the network slice corresponding to the first SMF is 6.
  • the second threshold is 6.5
  • the third threshold corresponding to the second SMF is 6.5.
  • the first SMF and the second SMF both determine that the rate of the network slice in their own service area is less than the corresponding threshold, then the UPF continues to step 505 .
  • the subsequent UPF executes step 506 .
  • the SMF executes step 507.
  • the rate of the network slice in the service area measured by the first SMF is 6
  • the rate of the network slice in the service area measured by the second SMF is 8, and the rate of the network slice corresponding to the first SMF is 8.
  • the second threshold is 6.5
  • the third threshold corresponding to the second SMF is 6.5.
  • the second SMF determines that the rate of the network slice in its service area is greater than the third threshold
  • the first SMF determines that the network in its service area is greater than the third threshold.
  • the second SMF and the first SMF both perform step 509, the first SMF reports the time point and the rate of the network slice in the service area measured at the time point to the PCF, and the second SMF reports to the PCF Report the time point and the rate of the network slice in the service area measured at the time point.
  • the PCF adds up the rates of the network slice in their respective service areas measured by the first SMF and the second SMF at the time point T6, and obtains that the used bandwidth of the network slice is 12. Since the maximum used bandwidth of the network slice is at T4 time point is 12, which is less than the used bandwidth of the network slice at the current time point.
  • PCF records the used bandwidth of the network slice corresponding to the T6 time point as the maximum used bandwidth of the network slice, and updates the first threshold to 14, and updates the second The threshold value is 7, and the third threshold value is updated to 7.
  • Step 513 is executed.
  • the PCF sends the updated second threshold value to the first SMF, and sends the updated third threshold value to the second SMF.
  • the PCF executes step 514 and determines that the time T6 is terminated.
  • the PCF executes step 515, and the PCF sends the maximum used bandwidth of the network slice (the value is 14).
  • the PCF After the PCF obtains the used bandwidth of the network slice at each time point, it compares it with the first threshold.
  • the first threshold value may not be updated all the time, and the second threshold value or the third threshold value may not be updated either.
  • the PCF performs reporting of the used bandwidth corresponding to the time point.
  • the PCF no longer determines the maximum used bandwidth of the network slice, but the network device that receives the used bandwidth determines the value of the maximum used bandwidth.
  • the network device is the network device that sent the analysis subscription message or the analysis information request message to the PCF in step 501. .
  • the first threshold value is not updated, when the value of the used bandwidth at this time point is greater than or equal to the first threshold value, then the PCF compares the currently recorded value of the maximum used bandwidth with the value of the used bandwidth at this time point, if the time If the value of the used bandwidth at the point is greater than the value of the currently recorded maximum used bandwidth, the PCF updates the currently recorded value of the maximum used bandwidth to the value of the used bandwidth at the time point, and the PCF finally realizes the determination of the maximum used bandwidth.
  • the PCF obtains a first threshold, and sets corresponding thresholds for different SMFs according to the first threshold.
  • the rate of measurement is not performed. It reduces the number of rate reports in the network and reduces the load of the network.
  • the embodiment shown in FIG. 6 is another method for measuring the maximum used bandwidth of a network slice according to the present application.
  • the measured network slice includes at least two SMFs, and one SMF manages one or more UPFs.
  • This embodiment is described by taking the following situation as an example, where the measured network slice includes two SMFs ( For example, a first SMF and a second SMF) and the first SMF manages the first UPF and the second SMF manages the second UPF.
  • the PCF-related example in FIG. 5 For an example of this step, reference may be made to the PCF-related example in FIG. 5 .
  • the method includes the following steps:
  • Step 601 NWDAF acquires the identifier and start time of the network slice.
  • NWDAF receives the analysis subscription message from CHF, and requests to obtain the maximum used bandwidth of the network slice;
  • the NWDAF receives the analysis subscription message from the PCF and requests to obtain the maximum used bandwidth of the network slice;
  • the NWDAF receives the analysis information request message from the AF, and requests to obtain the maximum used bandwidth of the network slice;
  • the above analysis subscription message or analysis information request message includes the identifier of the network slice (for example, S-NSSAI), and the start time, and the start time may be a current or a certain time point in history, or a certain time point in the future .
  • the above analysis subscription message or analysis information request message further includes a termination time.
  • the analysis subscription message or the analysis information request message further includes an analysis precision requirement, where the analysis precision requirement is used to determine the subsequent time interval.
  • the analysis subscription message or the analysis information request message further includes a first threshold, where the first threshold is used for the NWDAF to report the maximum used bandwidth for network slicing.
  • Step 602 NWDAF determines a first threshold, and decomposes the first threshold.
  • NWDAF obtains each SMF (for example, the first SMF and the second SMF) that supports the network slice according to the identifier of the network slice. For example, NWDAF queries the network repository function (NRF) according to the identifier of the network slice. If step 601 does not include the first threshold, the NWDAF determines the first threshold based on the historical measured rate of each SMF (perhaps the result of historical measurements obtained from SMF, or performance statistics obtained from OAM). For example, this threshold may be 90% of the maximum value of the historical rate of the SMF measurement over the historical time.
  • NRF network repository function
  • NWDAF cannot obtain the maximum value of the rate measured by the SMF in the historical time, NWDAF can determine the first threshold as 0, and in the subsequent steps, NWDAF can use the maximum bandwidth of the network slice, or according to the obtained SMF service area network The rate of slices, the first threshold is updated.
  • the first threshold is decomposed, and the decomposed threshold is set for each SMF. For example, a second threshold is set for the first SMF, and a third threshold is set for the second SMF, and the second threshold and the third threshold are added together. is equal to or less than the first threshold.
  • the second threshold and the third threshold may be the same or different.
  • step 501 reference may be made to the description about the first threshold in step 501 or step 502 in the embodiment shown in FIG. 5 .
  • Step 603 the NWDAF sends the identifier and start time of the network slice to the SMF.
  • the NWDAF sends an event subscription request message including the identifier and start time of the network slice to both the first SMF and the second SMF, requesting each SMF to send the measurement result of the rate of the network slice in its own service area to the NDWDAF.
  • an event subscription request message including the identifier and start time of the network slice to both the first SMF and the second SMF, requesting each SMF to send the measurement result of the rate of the network slice in its own service area to the NDWDAF.
  • the NWDAF can determine the time interval based on the analytical precision requirement. If the NWDAF does not receive the analysis accuracy requirement, the NWDAF can determine the appropriate time interval according to the analysis accuracy requirement configured by itself or the analysis accuracy requirement in the local policy. If the analysis accuracy requirements are high, the time interval is small, and if the analysis accuracy requirements are low, the time interval is large.
  • the event subscription request message sent by the NWDAF to each SMF may include the termination time.
  • Each subsequent SMF sends the measurement results no later than the termination time.
  • NWDAF will subsequently send an event subscription cancellation message to each SMF, so that each SMF stops measuring the rate of the network slice, so that each SMF sends no later than the termination time measurement results.
  • Step 604 the SMF sends the identifier and start time of the network slice to the respective managed UPFs that support the network slice.
  • Step 604 reference may be made to the description of step 504 in FIG. 5 .
  • Step 605 the UPF determines whether the current time point is a specified time point. If the current time point is the specified time point, step 606 is executed. If the current time is not the specified time point, continue to perform this step.
  • Step 606 the UPF reports the measured cumulative acceleration rate of the session to the SMF.
  • Step 606 the UPF reports the measured cumulative acceleration rate of the session to the SMF.
  • Step 607 the SMF obtains the rate of network slices in the SMF service area.
  • Step 607 reference may be made to the description of step 507 in FIG. 5 .
  • Step 608 the SMF determines whether the rate of network slices in the SMF service area is greater than the decomposition threshold.
  • the first SMF compares the rate of the network slice at this time point in its own service area with the second threshold
  • the second SMF compares the rate of the network slice at this time point in its own service area with the third threshold
  • step 609 is performed; if the rate of the network slice in each SMF service area is less than the respective threshold, step 605 is performed.
  • the rate of network slices in the service area measured by the first SMF is 3, which is less than the second threshold, and the rate of network slices in the service area measured by the second SMF is 3.
  • the rate is 6, the rate is greater than the third threshold, and the rate of network slices in the service area measured by at least one SMF is greater than or equal to the corresponding threshold, and the subsequent step 609 is performed.
  • the rate of network slices in the service area measured by the first SMF is 7, which is greater than the second threshold, and the rate of network slices in the service area measured by the second SMF is 7.
  • the rate is 3, the rate is less than the third threshold, and the rate of network slices in the service area measured by at least one SMF is greater than or equal to the corresponding threshold, and the subsequent step 609 is performed.
  • the rate of network slices in the service area measured by the first SMF is 6, which is less than the second threshold, and the rate of network slices in the service area measured by the second SMF is 6.
  • the rate is 6, the rate is less than the third threshold, and the rates of the network slices in each SMF service area are all less than the respective thresholds, then return to step 605 .
  • the rate of network slices in the service area measured by the first SMF is 6, and the rate is greater than the second threshold, and the rate of network slices in the service area measured by the second SMF is 6.
  • the rate is 8, the rate is greater than the third threshold, and the rate of network slices in the service area measured by at least one SMF is greater than or equal to the corresponding threshold, and the subsequent step 609 is performed.
  • the SMF sends the corresponding updated fourth threshold and fifth threshold in step 604 to the UPF according to the accumulated acceleration rate of the same direction session at the same current time point received from the respective managed UPFs.
  • the first SMF compares the rate of the network slice at this time point in its own service area with the second threshold, when the rate of the network slice at this time point is already greater than the second threshold, the first SMF receives the data from the first UPF according to the rate received from the first UPF.
  • the cumulative acceleration rate of the sessions in the same direction at the same current time point is updated to the fourth threshold.
  • the updated fourth threshold is generally larger than the fourth threshold before the update, so that the cumulative acceleration rate of UPF subsequent sessions only in the network slice reaches a larger value.
  • the cumulative acceleration rate of the measured network slice session greater than the updated fourth threshold is reported to the first SMF, so that the first SMF will only obtain a larger network in its own service area subsequently. Slice rate.
  • Step 609 the SMF sends an event notification message to the PCF.
  • the second SMF sends an event notification message to the PCF, and the message includes the current time The rate corresponding to the point and the time point. If the time point is T6, and the rates of network slices in their respective service areas measured by the first SMF and the second SMF are both greater than their corresponding thresholds, then both the first SMF and the second SMF perform this step, and step 610 and step 611 are no longer executed.
  • Step 610 the NWDAF sends an event report request message to other SMFs.
  • Step 611 other SMFs send the rate of network slices in their respective service areas to the NWDAF.
  • Step 612 the NWDAF obtains the used bandwidth of the network slice and determines the maximum used bandwidth of the network slice.
  • Step 613 the NWDAF sends the corresponding updated thresholds to the corresponding SMFs.
  • Steps 610 to 613 may refer to the description of the PCF in steps 510 to 513 in FIG. 5 .
  • Step 614 NWDAF determines whether the time point corresponding to the acquired rate is the termination time point.
  • step 615 is executed. For example, in combination with the above example, when the time point is any time point from T1 to T5, step 605 is subsequently performed, and when the time point is T6, step 615 is performed.
  • step 605 to step 614 can be completed before the next specified time point for measuring the network slicing rate, for example, the time interval between any two adjacent time points in the above example are larger than the time period used for the execution of steps 605 to 614 in this embodiment.
  • Step 615 the NWDAF sends the maximum used bandwidth of the network slice.
  • the NWDAF sends the maximum used bandwidth of the network slice to the CHF. If the NWDAF receives the identifier and start time of the network slice from the PCF in step 601, the NWDAF sends the The PCF sends the maximum used bandwidth of the network slice. If the PCF receives the identifier and start time of the network slice from the AF in step 601, the NWDAF sends the maximum used bandwidth of the network slice to the AF.
  • the maximum bandwidth used by this network slice is 14.
  • the NWDAF sends the time point corresponding to the maximum used bandwidth of the network slice.
  • step 601 after receiving the notification information for terminating the rate of measuring the network slice, the NWDAF sends the rate of terminating the measurement session to each UPF under the NWDAF through the SMF in turn. Notification information, a measure of the rate at which the UPF terminates the session.
  • this embodiment may further include the following solution: the updating of the first threshold information is an optional action, and the NWDAF compares with the first threshold after obtaining the used bandwidth of the network slice at each time point. When the value of the used bandwidth at this time point is greater than or equal to the first threshold, the NWDAF performs the reporting of the used bandwidth corresponding to this time point, and the NWDAF will no longer determine the maximum used bandwidth of the network slice, but will receive the used bandwidth.
  • the network device determines the value of the maximum used bandwidth, and the network device is the network device that sends the identifier of the network slice and the start time to the NWDAF in step 601; or, when the value of the used bandwidth at this time point is greater than or equal to the first threshold, Then NWDAF compares the value of the currently recorded maximum used bandwidth with the value of the used bandwidth at this time point. If the value of the used bandwidth at this time point is greater than the currently recorded maximum used bandwidth value, the current recorded maximum used bandwidth value will be used. After updating to the value of the used bandwidth at this point in time, NWDAF finally realizes the determination of the maximum used bandwidth.
  • NWDAF obtains a first threshold, and sets corresponding thresholds for different SMFs according to the first thresholds. When the respective measured rates of each SMF at this time point are less than the corresponding thresholds, the measurement is not performed.
  • the rate reporting reduces the number of rate reporting in the network and reduces the network load. Since NWDAF has the functions of data analysis and prediction, the initial first threshold, second threshold or third threshold in this embodiment can be set according to historical measurement values, which can make each threshold closer to the actual situation.
  • the embodiment shown in FIG. 7 is another method for measuring the maximum used bandwidth of a network slice according to the present application.
  • the measured network slice includes one SMF, and the SMF manages one or more UPFs.
  • the SMF manages the first UPF and the second UPF.
  • the method includes the following steps:
  • Step 701 the PCF receives the network slice identifier, start time and first threshold.
  • step 501 For this step, reference may be made to the description of step 501 shown in FIG. 5 .
  • Step 702 the PCF sets a second threshold.
  • the PCF sets a threshold for the SMF according to the first threshold, and the second threshold and the first threshold may be the same or different.
  • the second threshold is used to indicate the SMF.
  • the SMF reports the rate of the network slice corresponding to the time point in the service area to the PCF. Otherwise, SMF only measures the rate of network slices in the service area at each time point and caches it locally.
  • the first threshold is 10 and the second threshold is 5.
  • Step 703 the PCF sends the network slice identifier, start time and second threshold to the SMF.
  • the PCF sends an event subscription request message to the SMF containing the identification start time of the network slice and the second threshold.
  • the event subscription request message further includes a time interval.
  • the subscribed event is the result of the rate of this network slice.
  • the same start time and time interval are to ensure that the measurement results of the SMF and the multiple UPFs managed by the SMF are the same time points as specified (including the start time and N time points, and between adjacent time points.
  • the time interval is the measurement result of the above time interval, where N is an integer). If the time interval is not included in the event subscription request message, the time interval can be any built-in value in PCF, SMF or UPF, and each built-in The time interval is uniform.
  • the PCF also sends a second threshold value to the SMF, eg, the PCF sends a second threshold value to the SMF, eg, the second threshold value is 5.
  • the PCF also sends the termination time to the SMF.
  • the event subscription request message sent by the PCF to the SMF may include the termination time. Subsequent SMFs send measurement results no later than the termination time.
  • the PCF subsequently sends an event subscription cancellation message to the SMF, so that the SMF stops measuring the rate of the network slice, so that the SMF sends the measurement result no later than the termination time.
  • Step 704 the SMF sends the identifier and start time of the network slice to the managed UPF that supports the network slice.
  • step 303 For this step, reference may be made to the description of step 303 in the embodiment shown in FIG. 3 .
  • the SMF may further decompose the second threshold into a third threshold and a fourth threshold. Refer to the description of step 502 shown in FIG. 5 for the decomposition method, which will not be repeated.
  • the SMF sends the third threshold to the first UPF and the SMF sends the fourth threshold to the second UPF.
  • the SMF also sends the termination time to the respective managed UPFs that support the network slice.
  • Step 705 the UPF determines whether the current time point is a specified time point. If the current time point is the specified time point, step 706 is executed. If the current time is not the specified time point, continue to perform this step.
  • Step 706 the UPF reports the measured cumulative acceleration rate of the session to the SMF.
  • Step 706 the UPF reports the measured cumulative acceleration rate of the session to the SMF.
  • Step 707 the SMF obtains the rate of network slices in the SMF service area.
  • the SMF accumulates the cumulative acceleration rates of the sessions in the same direction at the time point received from the UPF, to obtain the rate of the network slice in the service area of the SMF at the time point.
  • the rate values measured by the first UPF, the second UPF and the SMF are shown in Table 13:
  • the rate at which the SMF measures network slices in the service area is 9
  • the second threshold corresponding to this time point is 5, and the same is true if the time point is other time points in the table.
  • Step 708 the SMF determines whether the rate of network slices in the SMF service area is greater than the decomposition threshold.
  • the SMF compares the rate of network slices within the service area at that point in time to a second threshold.
  • the SMF executes step 709 , and if the rate of the network slices in the SMF service area is less than or equal to the respective thresholds, the process returns to step 705 .
  • the rate of network slices in the service area measured by SMF is 9, the second threshold corresponding to this moment is 5, and the rate is greater than the second threshold, and the subsequent step 709 is executed. .
  • the rate of network slices in the service area measured by SMF is 12, the second threshold corresponding to this moment is 12, and the rate is equal to the second threshold, and the subsequent step 705 is executed. .
  • the SMF sends the corresponding updated third threshold and fourth threshold in step 704 to the UPF according to the accumulated acceleration rate of the same direction session at the same current time point received from the respective managed UPFs. For example, after the SMF compares the rate of the network slice at this time point in its own service area with the second threshold, when the rate of the network slice at this time point is greater than the second threshold, the SMF will receive the same rate from the first UPF according to the same
  • the third threshold is updated for the cumulative acceleration rate of the sessions in the same direction at the current time point.
  • the updated third threshold is generally larger than the third threshold before the update. In this way, the first UPF will only have a larger cumulative acceleration rate of the sessions in the network slice. value (that is, greater than the third threshold), the cumulative acceleration rate of the measured network slice session that is greater than the updated third threshold will be reported to the SMF, so that the SMF will only obtain a larger rate of the network slice within its own service area. .
  • Step 709 the SMF sends the rate of the network slice in the service area at the time point to the PCF.
  • the rate of network slices in the service area of SMF itself is greater than the second threshold, then the rate of network slices in the service area of the second SMF to PCF at this time point.
  • Step 710 the PCF obtains the used bandwidth of the network slice, determines the maximum used bandwidth of the network slice, and updates the second threshold.
  • the rate at which the PCF receives the network slice at this time point in the SMF service area, and the rate is the used bandwidth of the network slice at this time point.
  • the maximum value is selected to determine the maximum used bandwidth of the network slice.
  • the PCF updates the value of the used bandwidth at the current time point to the maximum used bandwidth of the network slice.
  • the PCF determines that the maximum used bandwidth of the network slice is the value of the used bandwidth at this time point, that is, the maximum used bandwidth is 9. Subsequently, the PCF updates the second threshold to 9.
  • the used bandwidth of the network slice is 10.
  • the used bandwidth of the network slice corresponding to this time point is greater than the value of the maximum used bandwidth of the network slice recorded at time T1
  • the PCF determines that the maximum used bandwidth of the network slice is the value of the used bandwidth at this time point, that is, the maximum used bandwidth is 10. Subsequently, the PCF updates the second threshold to 10.
  • the PCF determines that the maximum used bandwidth of the network slice is the value of the used bandwidth at this time point, that is, the maximum used bandwidth is 11. Subsequently, the PCF updates the second threshold to 11.
  • the PCF determines that the maximum used bandwidth of the network slice is the value of the used bandwidth at this time point, that is, the maximum used bandwidth is 12. Subsequently, the PCF updates the second threshold to 12.
  • the used bandwidth of the network slice is 12.
  • the PCF does not receive a value for the rate from the SMF.
  • the used bandwidth of the network slice is 14.
  • the used bandwidth of the network slice corresponding to this time point is greater than the value of the maximum used bandwidth of the network slice recorded at time T4, then the PCF determines that the maximum used bandwidth of the network slice is the value of the used bandwidth at this time point, that is, the maximum used bandwidth is 14.
  • Step 711 the PCF sends the corresponding updated thresholds to the SMF.
  • step 710 the PCF updates the second threshold
  • the PCF sends the updated second threshold to the SMF, and if the PCF does not update the second threshold, this step is not performed.
  • Step 712 the PCF determines whether the time point corresponding to the acquired rate is the termination time point.
  • step 705 If the time point is not the termination time, proceed to step 705 . If the time point is the termination time, step 713 is executed. For example, in combination with the above example, when the time point is any one of time points from T1 to T5, step 705 is subsequently performed, and when the time point is T6, step 713 is performed.
  • step 705 to step 712 can be completed before the next specified time point for measuring the network slicing rate, for example, the time interval between any two adjacent time points in the above example are larger than the time period used for the execution of steps 705 to 712 in this embodiment.
  • Step 713 the PCF sends the maximum used bandwidth of the network slice.
  • step 701 the PCF receives the identifier, start time and first threshold of the network slice from the CHF, the PCF sends the CHF the maximum used bandwidth of the network slice, if in step 701 the PCF receives the identifier and start time of the network slice from the NWDAF and the first threshold, then the PCF sends the maximum used bandwidth of the network slice to the NWDAF, if the PCF receives the identification, start time and first threshold of the network slice from the AF in step 701, then the PCF sends the maximum used bandwidth of the network slice to the AF bandwidth.
  • the maximum bandwidth used by this network slice is 14.
  • the PCF sends the time point corresponding to the maximum used bandwidth of the network slice.
  • step 701 after receiving the notification information for terminating the rate of measuring the network slice, the PCF sends the rate of terminating the measurement session to each UPF managed by the PCF in turn through the SMF. Notification information, a measure of the rate at which the UPF terminates the session.
  • step 705 the UPF determines that the start time T1 is reached, and the subsequent UPF executes step 706.
  • the SMF executes step 707. At this time, the rate of the network slice in the service area measured by the SMF is 9, and the second threshold corresponding to the SMF is 5.
  • step 708 the SMF determines that the rate of the network slice in its own service area is greater than the second threshold, then the SMF reports the time point and the rate of the network slice in the service area measured at the time point to the PCF in step 709, and the PCF obtains the time The used bandwidth of the network slice at the point, that is, the rate of the network slice in the service area measured at the time point reported by the SMF, and the used bandwidth is recorded as the maximum used bandwidth of the network slice. Subsequently, the PCF executes step 711, updates the second threshold value to 9 according to the rate of the network slice in the service area at the current time point, and sends the updated second threshold value to the SMF. Subsequently, the PCF executes step 712, and determines that the time T1 is not the termination time point, and the subsequent UPF executes step 705.
  • the subsequent UPF executes step 706.
  • the SMF executes step 707.
  • the rate of the network slice in the service area measured by the SMF is 10, and the second threshold corresponding to the SMF is 9.
  • the SMF determines that the rate of the network slice in its own service area is greater than the second threshold, then the SMF reports the time point and the rate of the network slice in the service area measured at the time point to the PCF in step 709, and the PCF obtains the time
  • the used bandwidth of the network slice at the point that is, the rate of the network slice in the service area measured at the time point reported by SMF, and the used bandwidth is recorded as the maximum used bandwidth of the network slice, and the maximum used bandwidth is 10 at this time.
  • the PCF executes step 711, updates the second threshold value to 10 according to the rate of the network slice in the service area at the current time point, and sends the updated second threshold value to the SMF. Subsequently, the PCF executes step 712, and determines that the time T2 is not the termination time point, and the subsequent UPF executes step 705.
  • the subsequent UPF executes step 706 .
  • the SMF executes step 707.
  • the rate of the network slice in the service area measured by the SMF is 11, and the second threshold corresponding to the SMF is 10.
  • the SMF determines that the rate of the network slice in its own service area is greater than the second threshold, then the SMF reports the time point and the rate of the network slice in the service area measured at the time point to the PCF in step 709, and the PCF obtains the time
  • the used bandwidth of the network slice at the point that is, the rate of the network slice in the service area measured at the time point reported by SMF, and the used bandwidth is recorded as the maximum used bandwidth of the network slice.
  • the maximum used bandwidth is 11.
  • the PCF executes step 711, updates the second threshold value to 11 according to the rate of the network slice in the service area at the current time point, and sends the updated second threshold value to the SMF. Subsequently, the PCF executes step 712, and determines that the time T3 is not the termination time point, and the subsequent UPF executes step 705.
  • the subsequent UPF executes step 706.
  • the SMF executes step 707.
  • the rate of the network slice in the service area measured by the SMF is 12, and the second threshold corresponding to the SMF is 11.
  • the SMF determines that the rate of the network slice in its own service area is greater than the second threshold, then the SMF reports the time point and the rate of the network slice in the service area measured at the time point to the PCF in step 709, and the PCF obtains the time
  • the used bandwidth of the network slice at the point that is, the rate of the network slice in the service area measured at the time point reported by SMF, and the used bandwidth is recorded as the maximum used bandwidth of the network slice, which is 12 at this time.
  • the PCF executes step 711, updates the second threshold value to 12 according to the rate of the network slice in the service area at the current time point, and sends the updated second threshold value to the SMF. Subsequently, the PCF executes step 712, and determines that the time T4 is not the termination time point, and the subsequent UPF executes step 705.
  • the subsequent UPF executes step 706.
  • the SMF executes step 707.
  • the rate of the network slice in the service area measured by the SMF is 12, and the second threshold corresponding to the SMF is 12.
  • the SMF determines that the rate of the network slice in its own service area is equal to the second threshold, and then the UPF executes step 705.
  • the subsequent UPF executes step 706.
  • the SMF executes step 707.
  • the rate of the network slice in the service area measured by the SMF is 14, and the second threshold corresponding to the SMF is 12.
  • the SMF determines that the rate of the network slice in its own service area is greater than the second threshold, then the SMF reports the time point and the rate of the network slice in the service area measured at the time point to the PCF in step 709, and the PCF obtains the time
  • the used bandwidth of the network slice at the point that is, the rate of the network slice in the service area measured at the time point reported by SMF, and the used bandwidth is recorded as the maximum used bandwidth of the network slice.
  • the maximum used bandwidth is 14.
  • the PCF executes step 711, updates the second threshold value to 14 according to the rate of the network slice in the service area at the current time point, and sends the updated second threshold value to the SMF.
  • the PCF executes step 712, and determines that time T6 is the termination time point, and the subsequent PCF executes step 713, where the PCF sends the maximum used bandwidth, and the value of the maximum used bandwidth is 14.
  • the PCF sets a threshold for the SMF, and when the rate measured by the SMF is less than or equal to the corresponding threshold, the reporting of the measured rate is not performed, reducing the network The number of reports of the rate measured in , reduces the load on the network.
  • FIG. 8 is another method for measuring the maximum used bandwidth of a network slice according to the present application.
  • the method is performed by a network device, and the network device may be the NWDAF in FIG. 3 and FIG. 6 , or the PCF in FIG. 4 , FIG. 5 and FIG. 7 .
  • the method includes the following steps:
  • Step 801 the network device sends the identifier of the network slice and the first start moment of measuring the rate of the network slice.
  • the identifier of the network slice is used to identify the measured network slice
  • the first start time is the start time of measuring the network slice
  • the first start time in the subsequent steps is the start time, which will not be repeated hereafter.
  • the method further includes: the network device instructs the session management function network element to report multiple rates at multiple times.
  • the multiple time points are specified multiple time points (including N time points starting from the start time, and the time interval between adjacent time points is a fixed time interval, where N is an integer).
  • a plurality of time points in other steps in this embodiment are the same time points as specified in this embodiment, and details are not repeated here.
  • the network device sends the usage reporting rule to the user plane functional network element through the session management function network element, and the usage reporting rule includes the identifier of the network slice and the first start time. That is to say, the usage reporting rule is used to inform the user plane functional network element to measure the rate of the network slice corresponding to the identifier of the network slice, and to inform the user plane functional network element to start the measurement from the first start time.
  • the usage reporting rule is used to inform the user plane functional network element to measure the rate of the network slice corresponding to the identifier of the network slice, and to inform the user plane functional network element to start the measurement from the first start time.
  • this step further includes: the network device obtains the accuracy requirement information, determines the time interval information according to the accuracy requirement information, and then sends the time interval information by the network device, and the time interval information is used for one or more after the first start time. Determination of multiple moments.
  • the time interval information in this embodiment is the time interval between adjacent time points in the embodiment described in FIG. 5 to FIG. 7 , that is, the time interval information can be used to specify the network performing the measurement of the rate of network slicing.
  • the element or device performs rate measurements at a specified number of times. For this embodiment, reference may be made to the descriptions of steps 301 and 302 in the embodiment shown in FIG. 3 , the descriptions of steps 401 and 403 in the embodiment shown in FIG.
  • step 601 and step 603 in the embodiment shown in FIG. 6 the description of step 701 and step 703 in the embodiment shown in FIG. 7 .
  • step 302 in the embodiment shown in FIG. 3
  • step 403 in the embodiment shown in FIG. 4
  • step 503 in the embodiment shown in FIG. 5
  • embodiment shown in FIG. 6 the embodiment shown in FIG. 6 .
  • step 603 in FIG. 7 and the description of step 703 in the embodiment shown in FIG. 7 are the description of step 302 in the embodiment shown in FIG. 3 and the description of step 403 in the embodiment shown in FIG. 4 .
  • Step 802 the network device receives multiple rates at multiple times.
  • the multiple times include a first start time and one or more times after the first start time, wherein each of the multiple times corresponds to multiple rates.
  • the network device receives multiple rates at multiple times from the session management function network element.
  • the method further includes: the network device receives the identifier of the user plane function network element from the session management function network element, and the identifier of the user plane function network element is used to indicate that multiple rates at multiple times are user plane functions. Measured by functional network elements. The identifier of the user plane function network element is used to distinguish multiple rates at multiple times, which can prevent multiple rates measured by the same user plane function network element from being repeatedly calculated, and reduce the probability that the final maximum used bandwidth is inaccurate.
  • step 306 refers to the description of step 306 in the embodiment shown in FIG. 3 , the description of step 407 in the embodiment shown in FIG. 4 , the description of step 509 or step 511 in the embodiment shown in FIG. 5 , and the description of step 511 in the embodiment shown in FIG. 6 .
  • step 609 or step 611 in the embodiment shown in FIG. 7 and the description of step 709 in the embodiment shown in FIG. 7 .
  • Step 803 the network device determines multiple first rates at multiple times.
  • the first rate corresponding to each moment in the multiple first rates is equal to the sum of the multiple rates at each moment.
  • the first rate is the used bandwidth of the network slice in the embodiments shown in FIG. 3 to FIG. 7 , and the first rates in other steps in this embodiment are the same, and are not repeated here.
  • Step 804 the network device determines the maximum used bandwidth according to multiple first rates at multiple times.
  • the network device determines the maximum used bandwidth according to the largest first rate among multiple first rates at multiple times.
  • steps 803 and 804 reference may be made to the description of step 307 in the embodiment shown in FIG. 3 , the description of step 408 in the embodiment shown in FIG. 4 , the description of step 512 in the embodiment shown in FIG. 5 , and the description of step 512 in the embodiment shown in FIG. 6 .
  • Step 805 the network device sends the maximum used bandwidth.
  • the network device acquires first threshold information, and when the maximum used bandwidth is greater than or equal to the first threshold information, the network device sends the maximum used bandwidth.
  • the network device may acquire the historical maximum used bandwidth of the network slice, and the network device determines the first threshold information according to the historical maximum used bandwidth.
  • the method further includes: the network device sends the second threshold information associated with the first threshold information to the session management function network element, when the first moment among the plurality of moments is associated with the session management function network element.
  • the rate is greater than the second threshold information, and the second threshold information is used to trigger the reporting of multiple rates at the first moment. That is to say, when the rate associated with the session management function network element at the first moment among the multiple moments is less than or equal to the second threshold information, the rate associated with the session management function network element at the first moment will not be reported. It also reduces the data transmission in the network and reduces the burden on the network.
  • the second threshold information in this embodiment is the second threshold information corresponding to the first SMF in the embodiments shown in FIG. 5 and FIG.
  • step 503 in the embodiment shown in FIG. 5 the description of step 603 in the embodiment shown in FIG. 6
  • step 703 in the embodiment shown in FIG. 7 the description of step 703 in the embodiment shown in FIG. 7 .
  • the method further includes: the network device updates the second threshold information to third threshold information according to multiple rates at the first time among the multiple times; the network device sends the third threshold information to the session management function network element Threshold information, when the rate associated with the session management function network element at the second time in multiple times is greater than the third threshold information, the third threshold information is used to trigger the reporting of multiple rates at the second time, and the second time is later than first moment.
  • the third threshold information may be the updated second threshold and the third threshold in the embodiment shown in FIG. 5 , or the updated second threshold and the third threshold in the embodiment shown in FIG. 6 , or may be the updated second threshold and the third threshold in the embodiment shown in FIG. 7 .
  • the updated second threshold in the exemplary embodiment.
  • step 308 in the embodiment shown in FIG. 3
  • step 409 in the embodiment shown in FIG. 4
  • step 515 in the embodiment shown in FIG. 5
  • step 615 in the embodiment shown in FIG. 7
  • step 713 in the embodiment shown in FIG. 7 .
  • the network device can determine multiple first rates at multiple times according to multiple rates at multiple times, and finally determine the maximum used bandwidth according to the multiple first rates at multiple times, so that the determined maximum used bandwidth is Bandwidth is more accurate.
  • FIG. 9 is another method for measuring the maximum used bandwidth of a network slice according to the present application.
  • the method is performed by the session management function network element.
  • the session management function network element may be the SMF in FIG. 3 , FIG. 4 or FIG. 7 , the first SMF or the second SMF in FIG. 5 , or the first SMF or the second SMF in FIG. 6 .
  • the method includes the following steps:
  • Step 901 the session management function network element receives the identification of the network slice and the first start moment of measuring the rate of the network slice from the network device.
  • the network device may be the NWDAF in FIG. 3 and FIG. 6 , or the PCF in FIG. 4 , FIG. 5 and FIG. 7 .
  • the identification of the network slice is used to identify the measured network slice.
  • the first start time is the start time of measuring the network slice
  • the first start time in the subsequent steps is the start time, and details are not repeated here.
  • the method further includes: the session management function network element receives the first threshold information from the network device.
  • the first threshold information may be the second threshold or the third threshold in the embodiment shown in FIG. 5 , may be the second threshold or the third threshold in the embodiment shown in FIG. 6 , and may be the one shown in FIG. 7 .
  • the second threshold in the embodiment.
  • the first threshold information is used for the corresponding session management function network element to judge and report the rate within the service area measured to the network device.
  • step 302 in the embodiment shown in FIG. 3
  • step 403 in the embodiment shown in FIG. 4
  • step 503 in the embodiment shown in FIG. 5
  • description of FIG. 6 The description of step 603 in the embodiment of FIG. 7
  • description of step 703 in the embodiment shown in FIG. 7 is the description of step 302 in the embodiment shown in FIG. 3 .
  • Step 902 the session management function network element sends the identifier of the network slice and the first start time to the user plane function network element.
  • the session management function network element sends usage reporting rules to the user plane function network elements, where the usage reporting rules include the identifier of the network slice and the first start time, or the usage reporting rules also include time intervals. information, the time interval information is used to determine one or more times after the first start time.
  • step 303 in the embodiment shown in FIG. 3
  • step 404 in the embodiment shown in FIG. 4
  • step 504 in the embodiment shown in FIG. 5
  • step 604 in the embodiment shown in FIG. 7
  • step 704 in the embodiment shown in FIG. 7 .
  • Step 903 the session management function network element receives multiple rates at multiple times from the user plane function network element.
  • the multiple time points are specified multiple time points (including N time points starting from the start time, and the time interval between adjacent time points is a fixed time interval, where N is an integer).
  • a plurality of time points in other steps in this embodiment are the same time points as specified in this embodiment, and details are not repeated here.
  • the multiple times include a first start time and one or more times after the first start time, wherein each of the multiple times corresponds to one or more rates.
  • the method further includes: the session management function network element receives the identifier of the user plane function network element, and the identifier of the user plane function network element is used to indicate that multiple rates at multiple times are the user plane function network element. measured.
  • the identifier of the user plane function network element is used to distinguish multiple rates at multiple times, which can prevent multiple rates measured by the same user plane function network element from being repeatedly calculated, and reduce the probability that the final maximum used bandwidth is inaccurate.
  • step 304 in the embodiment shown in FIG. 3
  • step 405 in the embodiment shown in FIG. 4
  • step 506 in the embodiment shown in FIG. 5
  • step 6 The description of step 606 in the embodiment shown in FIG. 7 and the description of step 706 in the embodiment shown in FIG. 7 .
  • Step 904 the session management function network element sends rate information associated with multiple rates at multiple times to the network device.
  • the rate information includes multiple rates at multiple times. That is to say, with this embodiment, the session management function network element sends to the network device multiple rates at multiple times received from the user plane function network element.
  • the rate information includes multiple first rates at multiple times, wherein when each of the multiple times corresponds to multiple rates, the first rate corresponding to each of the multiple first rates is It is equal to the sum of multiple rates at each moment, or, when each moment of the multiple times corresponds to a rate, the first rate corresponding to each of the multiple first rates is equal to a rate at each moment. That is to say, the session management function network element accumulates the rates at multiple times received by the user plane function network element at the same time, and sends the accumulated rate value to the network device.
  • the method further includes: when the first rate corresponding to the first moment in the plurality of moments is greater than or equal to the first threshold information, the session management function network element reports the first moment corresponding to the first moment to the network device. a rate.
  • the first threshold information may be the second threshold corresponding to the first SMF in FIG. 5 , or the third threshold corresponding to the second SMF, or the second threshold corresponding to the first SMF in FIG. 6 , or The third threshold corresponding to the second SMF may also be the second threshold corresponding to the SMF in FIG. 7 .
  • the session management function network element sends the second threshold value information associated with the first threshold value information to the user plane function network element, the second threshold value is the updated first threshold value, and the second threshold value information is used to trigger multiple time instants
  • the report of the rate associated with the user plane functional network element may be made to the descriptions of steps 507, 508, 509 and 511 in the embodiment shown in FIG. 5, and the descriptions of steps 607, 608, 609 and 611 in the embodiment shown in FIG. 6, And the description of step 707 , step 708 and step 709 in the embodiment shown in FIG. 7 .
  • step 508 for this step, reference may be made to the descriptions of steps 305 and 306 in the embodiment shown in FIG. 3 , the descriptions of steps 406 and 407 in the embodiment shown in FIG. Description of step 508, step 509 and step 511, description of step 607, step 608, step 609 and step 611 in the embodiment shown in FIG. 6, and step 707, step 708 and step in the embodiment shown in FIG. 7 709 description.
  • the session management function network element sends rate information to the network device, where the rate information is rate information associated with multiple rates at multiple times, the rate information reflects the rate information at multiple times of the network slice, and the rate information is The rate information is finally used to determine the maximum used bandwidth, and the accuracy of the measurement of the maximum used bandwidth can be improved through the rate information.
  • FIG. 10 is another method for measuring the maximum used bandwidth of a network slice according to the present application.
  • the method is performed by a user plane functional network element.
  • the user plane function network element may be the UPF in FIG. 3 or FIG. 4 , the first UPF or the second UPF in FIG. 5 , the first UPF or the second UPF in FIG. 6 , or the The first UPF or the second UPF in FIG. 7 .
  • the method includes the following steps:
  • Step 1001 the user plane function network element receives the identifier of the network slice and the first start moment of measuring the rate of the network slice.
  • the identification of the network slice is used to identify the measured network slice.
  • the first start time is the start time of measuring the network slice
  • the first start time in the subsequent steps is the start time, and details are not repeated here.
  • the user plane function network element receives the usage reporting rule from the session management function network element, and the usage reporting rule includes the identifier of the network slice and the first start moment of measuring the rate of the network slice.
  • the method further includes: the user plane function network element receives time interval information from the session management function, or receives time interval information from the network device through the session management function network element; the user plane function network element receives the time interval information according to the time interval.
  • the information identifies one or more times after the first start time.
  • the multiple time points are specified multiple time points (including N time points starting from the start time, and the time interval between adjacent time points is a fixed time interval, where N is an integer).
  • a plurality of time points in other steps in this embodiment are the same time points as specified in this embodiment, and details are not repeated here.
  • step 303 in the embodiment shown in FIG. 3
  • step 404 in the embodiment shown in FIG. 4
  • step 504 in the embodiment shown in FIG. 5
  • step 604 in the embodiment shown in FIG. 7
  • step 704 in the embodiment shown in FIG. 7 .
  • Step 1002 the user plane function network element measures the rates of multiple sessions at multiple times of the network slice.
  • the multiple times include the first start time and one or more times after the first start time, wherein each time of the multiple times corresponds to the rate of the multiple sessions.
  • Step 1003 the user plane function network element determines multiple first rates at multiple times.
  • the first rate corresponding to each moment in the multiple first rates is equal to the sum of the rates of the multiple sessions at each moment.
  • the first rate is the cumulative rate of the session measured by the UPF in the embodiments shown in FIGS. 5 to 7 .
  • Step 1004 the user plane function network element sends multiple first rates at multiple times to the network device through the session management function network element.
  • multiple first rates at multiple times are used to determine the maximum used bandwidth.
  • the network device may be the NWDAF in FIG. 3 and FIG. 6 , or the PCF in FIG. 4 , FIG. 5 and FIG. 7 .
  • the method further includes: the user plane function network element receives the first threshold information, and when the first rate corresponding to the first moment after the first starting moment is greater than or equal to the first threshold information, the user plane function The network element reports the first rate corresponding to the first moment to the network device according to the first threshold information. That is, when the first rate at the first moment measured by the user plane function network element is less than the first threshold information, the first rate corresponding to the first moment will not be reported.
  • Steps 1002 to 1004 may refer to the description of step 304 in the embodiment shown in FIG. 3 , the description of step 405 in the embodiment shown in FIG. 4 , the description of step 506 in the embodiment shown in FIG. The description of step 606 in the embodiment shown in FIG. 6 and the description of step 706 in the embodiment shown in FIG. 7 .
  • the user plane function network element measures the rate of each session of the network slice at each of the multiple times at multiple times, and sends the rate of each session at each time to the network device, and the rate can be more accurate It reflects the bandwidth used in the network slice at each time point, so the maximum bandwidth used by this rate can be more accurate.
  • FIG. 11 is a schematic diagram of a communication apparatus provided according to an embodiment of the present application.
  • the communication device includes a processing module 1101 , a receiving module 1102 and a sending module 1103 .
  • the processing module 1101 is used to implement data processing by the communication device.
  • the receiving module 1102 is used to receive the content of the communication device and other units or network elements, and the sending module 1103 is used to receive the content of the communication device and other units or network elements.
  • the processing module 1101 in this embodiment of the present application may be implemented by a processor or a processor-related circuit component (or referred to as a processing circuit), and the receiving module 1102 may be implemented by a receiver or a receiver-related circuit component.
  • the sending module 1103 may be implemented by a transmitter or a transmitter-related circuit component.
  • the communication device may be a communication device device, or a chip applied in the communication device device or other combined devices, components, etc. having the functions of the above-mentioned communication device device.
  • the communication device may be any of the network equipment in FIG. 8 to FIG. 10 , may be the NWDAF in FIG. 3 or FIG. 6 , may be the PCF in FIG. 4 , FIG. 5 or FIG. 7 ; the communication device may be the The user plane function network element in any of 8 to 10 may be the UPF in FIG. 3 or FIG. 4 , the first UPF or the second UPF in FIG. 5 , and the first UPF or the first UPF in FIG. 6 .
  • the second UPF may be the first UPF or the second UPF in FIG. 7 ;
  • the communication device may be any of the session management function network elements in FIG. 8 to FIG. 10 , and may be the SMF in FIG. 3 , FIG. 4 or FIG. 7 , It may be the first SMF or the second SMF in FIG. 5 , and may be the first SMF or the second SMF in FIG. 6 .
  • the sending module 1103 is used to send the identification of the network slice and the first start moment of measuring the rate of the network slice (for example, step 302 in FIG. 3 , step 403 in FIG.
  • the network slice identifier is used to identify the measured network slice;
  • the receiving module 1102 is used to receive multiple Multiple rates of time (eg step 306 in Figure 3, step 407 in Figure 4, step 509 or step 511 in Figure 5, step 609 or step 611 in Figure 6, step 709 in Figure 7, Figure 8 In step 802), the multiple times include the first start time and one or more times after the first start time, wherein each time of the multiple times corresponds to multiple rates; the processing module 1101 is used to determine the multiple times.
  • a plurality of first rates eg, step 307 in FIG. 3, step 408 in FIG. 4, step 512 in FIG. 5, step 612 in FIG.
  • the first rate corresponding to each moment in the multiple first rates is equal to the sum of the multiple rates at each moment; the processing module 1101 is configured to determine the maximum used bandwidth according to the multiple first rates at the multiple moments (for example, in FIG. 3 ) Step 307 in Figure 4, Step 408 in Figure 4, Step 512 in Figure 5, Step 612 in Figure 6, Step 710 in Figure 7, Step 804 in Figure 8); the sending module 1103 is used to send the maximum used bandwidth ( For example, step 308 in FIG. 3 , step 409 in FIG. 4 , step 515 in FIG. 5 , step 615 in FIG. 6 , step 713 in FIG. 7 , step 805 in FIG. 8 ).
  • the receiving module 1102 is configured to receive the identification of the network slice and the first start moment of measuring the rate of the network slice from the network device (for example, step 302 in FIG. Step 403 in Figure 5, Step 603 in Figure 6, Step 703 in Figure 7, Step 901 in Figure 9), the network slice identifier is used to identify the measured network slice; the sending module 1103 uses In order to send the identification of the network slice and the first start time to the user plane function network element (for example, step 303 in FIG. 3, step 404 in FIG. 4, step 504 in FIG. 5, step 604 in FIG. step 704 in FIG. 9 , step 902 in FIG.
  • the receiving module 1102 is configured to receive multiple rates at multiple times from the user plane functional network element (for example, step 304 in FIG. 3 , step 405 in FIG. 4 , and in FIG. 5 step 506 in FIG. 6 , step 606 in FIG. 6 , step 706 in FIG. 7 , step 903 in FIG. 9 ), the multiple times include the first start time and one or more times after the first start time, wherein multiple times Each moment of time corresponds to one or more rates; the sending module 1103 is used to send rate information associated with multiple rates at multiple times to the network device (for example, step 306 in FIG. 3 , step 407 in FIG. 4 , and FIG. Step 509 or Step 511 in Figure 5, Step 609 or Step 611 in Figure 6, Step 709 in Figure 7, Step 904 in Figure 9).
  • the user plane functional network element for example, step 304 in FIG. 3 , step 405 in FIG. 4 , and in FIG. 5 step 506 in FIG. 6 , step 606 in FIG. 6 , step 706
  • the receiving module 1102 is configured to receive the identifier of the network slice and the first start moment of measuring the rate of the network slice (eg step 303 in FIG. 3 , step 404 in FIG. 4 ) , Step 504 in Figure 5, Step 604 in Figure 6, Step 704 in Figure 7, Step 1001 in Figure 10), the identification of the network slice is used to identify the measured network slice; the processing module 1101 is used to measure the network The rate of multiple sessions at multiple times of the slice (eg step 304 in FIG. 3, step 405 in FIG. 4, step 506 in FIG. 5, step 606 in FIG. 6, step 706 in FIG. 7, step 706 in FIG.
  • the multiple times include the first start time and one or more times after the first start time, wherein each time of the multiple times corresponds to the rate of multiple sessions; the processing module 1101 is used to determine multiple Multiple first rates at the moment (eg step 304 in FIG. 3 , step 405 in FIG. 4 , step 506 in FIG. 5 , step 606 in FIG. 6 , step 706 in FIG. 7 , step 1003 in FIG.
  • the sending module 1103 is used to send the multiple times of the multiple times to the network device through the session management function network element multiple first rates, and multiple first rates at multiple times are used to determine the maximum bandwidth used (for example, step 304 in FIG. 3 , step 405 in FIG. 4 , step 506 in FIG. 5 , and step 606 in FIG. 6 ) , step 706 in FIG. 7 , step 1004 in FIG. 10 ).
  • FIG. 12 is a schematic diagram of another communication apparatus provided according to an embodiment of the present application.
  • the communication apparatus includes: a processor 1201 , a communication interface 1202 , and a memory 1203 .
  • the processor 1201, the communication interface 1202 and the memory 1203 can be connected to each other through a bus 1204; the bus 1204 can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the above-mentioned bus 1204 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one line is shown in FIG. 12, but it does not mean that there is only one bus or one type of bus.
  • the processor 1201 may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general-purpose array logic (Generic Array Logic, GAL) or any combination thereof.
  • Memory 1203 may be volatile memory or nonvolatile memory, or may include both volatile and nonvolatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • the processor 1201 is used for implementing data processing operations of the communication device, and the communication interface 1202 is used for implementing receiving operations and sending operations of the communication device.
  • the communication device may be any of the network equipment in FIG. 8 to FIG. 10 , may be the NWDAF in FIG. 3 or FIG. 6 , may be the PCF in FIG. 4 , FIG. 5 or FIG. 7 ; the communication device may be the The user plane function network element in any of 8 to 10 may be the UPF in FIG. 3 or FIG. 4 , the first UPF or the second UPF in FIG. 5 , and the first UPF or the first UPF in FIG. 6 .
  • the second UPF may be the first UPF or the second UPF in FIG. 7 ;
  • the communication device may be any of the session management function network elements in FIG. 8 to FIG. 10 , and may be the SMF in FIG. 3 , FIG. 4 or FIG. 7 , It may be the first SMF or the second SMF in FIG. 5 , and may be the first SMF or the second SMF in FIG. 6 .
  • the communication interface 1202 is used to send the identification of the network slice and the first start moment of measuring the rate of the network slice (for example, step 302 in FIG. 3 , step 403 in FIG.
  • the network slice identifier is used to identify the measured network slice;
  • the communication interface 1202 is used to receive multiple Multiple rates of time (eg step 306 in Figure 3, step 407 in Figure 4, step 509 or step 511 in Figure 5, step 609 or step 611 in Figure 6, step 709 in Figure 7, Figure 8 In step 802), the multiple times include the first start time and one or more times after the first start time, wherein each time of the multiple times corresponds to multiple rates; the processor 1201 is used to determine the multiple times.
  • a plurality of first rates eg, step 307 in FIG. 3, step 408 in FIG. 4, step 512 in FIG. 5, step 612 in FIG.
  • the first rate corresponding to each moment in the multiple first rates is equal to the sum of the multiple rates at each moment; the processor 1201 is configured to determine the maximum used bandwidth according to the multiple first rates at the multiple moments (for example, in FIG. 3 ) Step 307 in Figure 4, Step 408 in Figure 4, Step 512 in Figure 5, Step 612 in Figure 6, Step 710 in Figure 7, Step 804 in Figure 8); the communication interface 1202 is used to send the maximum used bandwidth ( For example, step 308 in FIG. 3 , step 409 in FIG. 4 , step 515 in FIG. 5 , step 615 in FIG. 6 , step 713 in FIG. 7 , step 805 in FIG. 8 ).
  • the communication interface 1202 is used to receive the identification of the network slice from the network device and the first start moment of measuring the rate of the network slice (eg step 302 in FIG. 3 , step 302 in FIG. Step 403 in Figure 5, Step 503 in Figure 5, Step 603 in Figure 6, Step 703 in Figure 7, Step 901 in Figure 9), the network slice identifier is used to identify the measured network slice; the communication interface 1202 uses In order to send the identification of the network slice and the first start time to the user plane function network element (for example, step 303 in FIG. 3, step 404 in FIG. 4, step 504 in FIG. 5, step 604 in FIG. step 704 in FIG. 9 , step 902 in FIG.
  • the user plane function network element for example, step 303 in FIG. 3, step 404 in FIG. 4, step 504 in FIG. 5, step 604 in FIG. step 704 in FIG. 9 , step 902 in FIG.
  • the communication interface 1202 is used to receive multiple rates at multiple times from the user plane functional network element (for example, step 304 in FIG. 3 , step 405 in FIG. step 506 in FIG. 6 , step 606 in FIG. 6 , step 706 in FIG. 7 , step 903 in FIG. 9 ), the multiple times include the first start time and one or more times after the first start time, wherein multiple times Each time instant corresponds to one or more rates; the communication interface 1202 is used to send rate information associated with multiple rates at multiple times to the network device (for example, step 306 in FIG. 3 , step 407 in FIG. 4 , and FIG. Step 509 or Step 511 in Figure 5, Step 609 or Step 611 in Figure 6, Step 709 in Figure 7, Step 904 in Figure 9).
  • the user plane functional network element for example, step 304 in FIG. 3 , step 405 in FIG. step 506 in FIG. 6 , step 606 in FIG. 6 , step 706 in FIG. 7 , step 903 in FIG. 9
  • the communication interface 1202 is used to receive the identifier of the network slice and the first start moment of measuring the rate of the network slice (eg step 303 in FIG. 3 , step 404 in FIG. 4 ) , step 504 in Fig. 5, step 604 in Fig. 6, step 704 in Fig. 7, step 1001 in Fig. 10), the identification of the network slice is used to identify the measured network slice; the processor 1201 is used to measure the network The rate of multiple sessions at multiple times of the slice (eg step 304 in FIG. 3, step 405 in FIG. 4, step 506 in FIG. 5, step 606 in FIG. 6, step 706 in FIG. 7, step 706 in FIG.
  • the multiple times include the first start time and one or more times after the first start time, wherein each time of the multiple times corresponds to the rate of multiple sessions;
  • the processor 1201 is used to determine multiple Multiple first rates at the moment (eg step 304 in FIG. 3 , step 405 in FIG. 4 , step 506 in FIG. 5 , step 606 in FIG. 6 , step 706 in FIG. 7 , step 1003 in FIG. 10 ), wherein the first rate corresponding to each moment in the multiple first rates is equal to the sum of the rates of the multiple sessions at each moment;
  • the communication interface 1202 is used to send the multiple times of the multiple times to the network device through the session management function network element.
  • multiple first rates, and multiple first rates at multiple times are used to determine the maximum bandwidth used (for example, step 304 in FIG. 3 , step 405 in FIG. 4 , step 506 in FIG. 5 , and step 606 in FIG. 6 ) , step 706 in FIG. 7 , step 1004 in FIG. 10 ).
  • An embodiment of the present application provides a communication system, which includes the aforementioned network device (eg, NWDAF or PCF), a session management network element (eg, SMF), and a user plane function network element (eg, UPF), wherein the network device executes Figure 8 to The network device in any one of FIG. 10 , the NWDAF in any one of FIG. 3 or FIG. 6 , the method performed by the PCF in FIG. 4 , FIG. 5 or FIG. 7 , and the session management apparatus executes the session in any one of FIGS. 8 to 10
  • the method performed by the first SMF or the second SMF in FIG. 6 is performed by the user plane function network element.
  • the user plane functional network element in any of Fig. 8 to Fig. 10, the UPF in Fig. 3 or Fig. 4, the first UPF or the second UPF in Fig. 5, the first UPF or the second UPF in Fig. 6, and the Fig. 7 The method performed by the first UPF or the second UPF in .
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium.
  • the computer can implement FIG. 8 to FIG. 10 provided by the foregoing method embodiments.
  • the embodiment shown in FIG. 3 or FIG. 6 is related to the NWDAF, and in the embodiment shown in FIG. 4, FIG. 5 or FIG.
  • the computer can implement the network element with the session management function in any of the embodiments shown in FIG. 8 to FIG. 10 provided by the above method embodiments, and the SMF in the embodiment shown in FIG. 3, FIG. 4 or FIG. 7, and FIG.
  • the process related to the first SMF or the second SMF in the embodiment shown in FIG. 6 is related to the first SMF or the second SMF.
  • the computer may implement FIG. 8 provided by the above method embodiment.
  • the user plane function network element in the embodiment shown in FIG. 3 or FIG. 4 and the UPF, they may be the first UPF or the second UPF in the embodiment shown in FIG. 5 .
  • UPF, the first UPF or the second UPF in the embodiment shown in FIG. 6 and the process related to the first UPF or the second UPF in the embodiment shown in FIG. 7 .
  • An embodiment of the present application further provides a computer program product, where the computer program product is used to store a computer program, and when the computer program is executed by a computer, the computer can implement any one of FIG. 8 to FIG. 10 provided by the foregoing method embodiments.
  • the illustrated embodiment relates to the network device, the embodiment illustrated in FIG. 3 or FIG. 6 relates to the NWDAF, the embodiment illustrated in FIG. 4, FIG. 5 or FIG. 7 relates to the PCF, or the computer may Implement the network element with the session management function in any of the embodiments shown in FIG. 8 to FIG. 10 provided by the above method embodiments, and the SMF in the embodiment shown in FIG. 3, FIG. 4 or FIG.
  • the first SMF or the second SMF in the embodiment, the process related to the first SMF or the second SMF in the embodiment shown in FIG. 6 , or the computer may implement FIG. 8 to FIG. 10 provided by the above method embodiment.
  • the user plane function network element in any of the embodiments shown in FIG. 3 or the UPF in the embodiment shown in FIG. 4 may be the first UPF or the second UPF in the embodiment shown in FIG. 5 .
  • the first UPF or the second UPF in the embodiment shown in FIG. 7 is the process related to the first UPF or the second UPF in the embodiment shown in FIG. 7 .
  • the present application also provides a chip including a processor.
  • the processor is configured to read and run the computer program stored in the memory to perform the corresponding operations and/or processes of the NWDAF, PCF, SMF or UPF in the method for registering to a plurality of networks provided by the present application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used for reading and executing the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive processed data and/or information, and the processor acquires the data and/or information from the communication interface and processes the data and/or information.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, etc. on the chip.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the above-mentioned chip can also be replaced by a chip system, which will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual conditions to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Abstract

本申请实施例提供一种网络切片的通信方法、装置和系统。该方法包括:网络设备根据从用户面装置获取的各个时间点的会话的累加速率,获取各个时间点的网络切片的使用带宽,并根据各个时间点的网络切片的使用带宽,最终确定网络切片的最大使用带宽。通过上述方法,网络设备可以获取更加准确的网络切片的最大使用带宽。

Description

网络切片通信的方法、装置和系统
本申请要求于2021年01月19日提交中国国家知识产权局、申请号为202110066253.9、申请名称为“网络切片通信的方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种网络切片的通信方法、装置和系统。
背景技术
网络切片(network slice)是在运营商的通信网络中划分出来的一个具备特定网络特性的逻辑网络。以5G网络为例,一个5G的物理网络可以被抽象划分成多个网络切片,每个网络切片构成一个逻辑网络,彼此之间逻辑上是隔离的,互不影响。每个网络切片的业务都使用单个网络切片选择辅助信息(Single-Network slice selection assistance information,S-NSSAI)来标识。网络根据终端业务请求中包括的单个网络切片选择辅助信息为终端业务选择网络切片,并在所选择的网络切片内传输终端业务的数据。
运营商根据客户的需求,与客户签署网络切片的服务等级协议(Service Level Agreement,SLA),客户签约使用的网络切片的资源由网络切片的SLA确定,不同客户签约的网络切片的SLA往往是不同的。SLA中规定的网络切片的一个属性是网络切片的最大使用带宽,即该网络切片中通过会话传输的业务所使用的网络带宽总和的最大值,同时也是该网络切片内各个用户设备所使用带宽的总和的最大值。
运营商应当为该网络切片准备足够的网络资源以满足客户的需求,若运营商为该网络切片分配的传输带宽大于客户在使用过程中的最大使用带宽,会造成运营商资源的浪费,若运营商为该网络切片分配的传输带宽小于客户在使用过程中的最大使用带宽,可能会导致不能满足客户的业务需求,因此,运营商准确测量一个网络切片的最大使用带宽是非常有必要的。但是目前运营商不能准确测量一个网络切片的最大使用带宽。
发明内容
本申请描述了一种网络切片的通信的方法、装置和系统。
第一方面,本申请的实施例提供了一种网络切片的通信方法,该方法由网络设备执行。该方法包括:网络设备发送网络切片的标识和测量网络切片的速率的第一起始时刻,网络切片的标识用于标识被测量的网络切片;网络设备接收多个时刻的多个速率,多个时刻包括第一起始时刻以及第一起始时刻后的一个或多个时刻,其中多个时刻的每个时刻对应多个速率;网络设备确定多个时刻的多个第一速率,其中多个第一 速率中每个时刻对应的第一速率等于每个时刻的多个速率之和;网络设备根据多个时刻的多个第一速率确定最大使用带宽;网络设备发送最大使用带宽。通过上述方法,该网络设备可以根据多个时刻的多个速率,确定的多个时刻的多个第一速率,最终根据多个时刻的多个第一速率确定最大使用带宽,使得确定的最大使用带宽更加准确。
例如,第一起始时刻为测量该网络切片的起始时间。例如,该时间间隔用于根据第一起始时刻确定应执行测量动作的多个时间点,多个时刻即为该多个时间点,每个相邻的时间点之间的时间间隔即为该时间间隔。以上阐述对于其他方面均适用,后续不再赘述。
一种可能的实施方式中,该方法还包括:网络设备指示会话管理功能网元上报多个时刻的多个速率。例如,该网络设备通过拒绝响应消息指示会话管理功能网元上报多个时刻的多个速率。
一种可能的实施方式中,网络设备发送最大使用带宽,包括:网络设备获取第一阈值信息,当最大使用带宽大于或等于第一阈值信息时,网络设备发送最大使用带宽。网络设备可以根据第一阈值信息,确认最大使用带宽,减少网络中网络设备的上报,因而网络的负担减轻。
一种可能的实施方式中,网络设备获取第一阈值信息,包括:网络设备获取网络切片的历史最大使用带宽,网络设备根据历史最大使用带宽确定第一阈值信息。网络设备根据历史最大使用带宽确定的第一阈值信息更加符合网络中该网络切片的实际情况,达到减少第一阈值信息被更新的次数的效果。
一种可能的实施方式中,该方法还包括:网络设备向会话管理功能网元发送与第一阈值信息关联的第二阈值信息,当多个时刻中的第一时刻的与会话管理功能网元关联的速率大于第二阈值信息,第二阈值信息用于触发第一时刻的多个速率的上报。也就是说,当多个时刻中的第一时刻的与会话管理功能网元关联的速率小于或等于第二阈值信息,该第一时刻的与会话管理功能网元关联的速率不会被上报,也减少网络中网络设备的上报,因而网络的负担减轻。
一种可能的实施方式中,该方法还包括:网络设备根据多个时刻中的第一时刻的多个速率,将第二阈值信息更新为第三阈值信息;网络设备向会话管理功能网元发送第三阈值信息,当多个时刻中的第二时刻的与会话管理功能网元关联的速率大于第三阈值信息,第三阈值信息用于触发第二时刻的多个速率的上报,第二时刻晚于第一时刻。也就是说,在该方法中,第二阈值信息会不断被更新,只有当多个时刻中的第二时刻的与会话管理功能网元关联的速率大于更新后的第二阈值信息,该速率才会被上报,同样网络的负担减轻。
一种可能的实施方式中,网络设备发送网络切片的标识和第一起始时刻,包括:网络设备通过会话管理功能网元向用户面功能网元发送使用量上报规则,使用量上报规则中包括网络切片的标识和第一起始时刻。也就是说,该使用量上报规则用于告知用户面功能网元测量该网络切片的标识所对应的网络切片的速率,以及告知用户面功能网元从第一起始时刻开始测量。
一种可能的实施方式中,网络设备接收多个时刻的多个速率,包括:网络设备从 会话管理功能网元接收多个时刻的多个速率。
一种可能的实施方式中,该方法还包括:网络设备从会话管理功能网元接收用户面功能网元的标识,用户面功能网元的标识用于表示多个时刻的多个速率是用户面功能网元测量的。该用户面功能网元的标识被用于区分多个时刻的多个速率,可以防止同一个用户面功能网元所测量的多个速率被重复计算,降低最终的最大使用带宽不准确的概率。
一种可能的实施方式中,该方法还包括:网络设备获取精度要求信息;网络设备根据精度要求信息确定时间间隔信息;网络设备发送时间间隔信息,时间间隔信息用于第一起始时刻后的一个或多个时刻的确定。也就是说,该时间间隔信息可以用来规定多个时刻,执行测量网络切片的速率的网元或装置在规定的多个时刻进行速率的测量。
一种可能的实施方式中,网络设备根据多个时刻的多个第一速率确定最大使用带宽,包括:网络设备根据多个时刻的多个第一速率中最大的第一速率确定最大使用带宽。
一种可能的实施方式中,网络设备为策略控制功能网元或者网络数据分析功能网元或者网络切片配额控制功能网元。
第二方面,本申请的实施例提供了一种网络切片的通信方法,该方法由会话管理功能网元执行。该方法包括:会话管理功能网元从网络设备接收网络切片的标识和测量网络切片的速率的第一起始时刻,网络切片的标识用于标识被测量的网络切片;会话管理功能网元向用户面功能网元发送网络切片的标识和第一起始时刻;会话管理功能网元从用户面功能网元接收多个时刻的多个速率,多个时刻包括第一起始时刻以及第一起始时刻后的一个或多个时刻,其中多个时刻的每个时刻对应一个或多个速率;会话管理功能网元向网络设备发送与多个时刻的多个速率关联的速率信息。通过上述方法,会话管理功能网元向网络设备发送速率信息,该速率信息为多个时刻的多个速率所关联的速率信息,该速率信息体现了该网络切片的多个时刻的实际的速率信息,该速率信息最终用于最大使用带宽的确定,通过该速率信息确定得到的最大使用带宽更加准确。
一种可能的实施方式中,速率信息包括多个时刻的多个速率。也就是说,通过该实施方式,会话管理功能网元向网络设备发送从用户面功能网元接收到的多个时刻的多个速率。
一种可能的实施方式中,速率信息包括多个时刻的多个第一速率,其中,当多个时刻的每个时刻对应多个速率,多个第一速率中每个时刻对应的第一速率等于每个时刻的多个速率之和,或者,当多个时刻的每个时刻对应一个速率,多个第一速率中每个时刻对应的第一速率等于每个时刻的一个速率。也就是说,会话管理功能网元将用户面功能网元接收到的多个时刻的多个速率按照相同的时刻进行速率的累加,并向网络设备发送该累加后的速率值。
一种可能的实施方式中,该方法还包括:会话管理功能网元从网络设备接收第一阈值信息;当多个时刻中的第一时刻对应的第一速率大于或等于第一阈值信息,会话 管理功能网元向网络设备上报第一时刻对应的第一速率。会话管理功能网元通过使用第一阈值信息,减少向网络设备上报测量的速率的值,网络的负担得到了减轻。
一种可能的实施方式中,该方法还包括:会话管理功能网元向用户面功能网元发送与第一阈值信息关联的第二阈值信息,第二阈值信息用于触发多个时刻中的与用户面功能网元关联的速率的上报。会话管理功能网元通过使用第二阈值信息,减少向网络设备上报测量的速率的值,网络的负担得到了减轻。
一种可能的实施方式中,该方法还包括:会话管理功能网元接收用户面功能网元的标识,用户面功能网元的标识用于表示多个时刻的多个速率是用户面功能网元测量的。该用户面功能网元的标识被用于区分多个时刻的多个速率,可以防止同一个用户面功能网元所测量的多个速率被重复计算,降低最大使用带宽不准确的概率。
一种可能的实施方式中,会话管理功能网元向用户面功能网元发送网络切片的标识和第一起始时刻,包括:会话管理功能网元向用户面功能网元发送使用量上报规则,使用量上报规则包括网络切片的标识和第一起始时刻;或者,使用量上报规则包括网络切片的标识、第一起始时刻和时间间隔信息,时间间隔信息用于第一起始时刻后的一个或多个时刻的确定。
一种可能的实施方式中,网络设备为策略控制功能网元或者网络数据分析功能网元或者网络切片配额控制功能网元。
第三方面,本申请的实施例提供了一种网络切片的通信方法,该方法由用户面功能网元执行。该方法包括:用户面功能网元接收网络切片的标识和测量网络切片的速率的第一起始时刻,网络切片的标识用于标识被测量的网络切片;用户面功能网元测量网络切片的多个时刻的多个会话的速率,多个时刻包括第一起始时刻以及第一起始时刻后的一个或多个时刻,其中多个时刻的每个时刻对应多个会话的速率;用户面功能网元确定多个时刻的多个第一速率,其中多个第一速率中每个时刻对应的第一速率等于每个时刻的多个会话的速率之和;用户面功能网元通过会话管理功能网元向网络设备发送多个时刻的多个第一速率,多个时刻的多个第一速率用于最大使用带宽的确定。通过该方法,用户面功能网元在多个时刻测量该网络切片在该多个时刻中的各个时刻的各个会话的速率,并向网络设备发送各个时刻的各个会话的速率,该速率能够更加准确的体现该网络切片中在各个时间点的使用带宽,因此通过该速率获取的最大使用带宽能够更加准确。
一种可能的实施方式中,该方法还包括:用户面功能网元接收第一阈值信息,当第一起始时刻后的第一时刻对应的第一速率大于或等于第一阈值信息,第一阈值信息用于第一时刻对应的第一速率的上报。也就是说,当用户面功能网元所测量得到的第一时刻的第一速率小于第一阈值信息,该第一时刻所对应的第一速率不会被上报,因此减少了网络中上报的速率信息的数量,网络的负担得到了减轻。
一种可能的实施方式中,用户面功能网元接收网络切片的标识和测量网络切片的速率的第一起始时刻,包括:用户面功能网元从会话管理功能网元接收使用量上报规则,使用量上报规则中包括网络切片的标识和测量网络切片的速率的第一起始时刻。
一种可能的实施方式中,该方法还包括:用户面功能网元从会话管理功能接收时 间间隔信息,或者通过会话管理功能网元从网络设备接收时间间隔信息;用户面功能网元根据时间间隔信息确定第一起始时刻后的一个或多个时刻。
一种可能的实施方式中,网络设备为策略控制功能网元或者网络数据分析功能网元或者网络切片配额控制功能网元。
第四方面,本申请的实施例提供了一种通信装置,包括处理器,该处理器用于从存储器中读取并运行程序,以实现如前面第一方面或任一可能的实施方式的方法(例如,当该通信装置为网络设备),或者,以实现如前面第二方面或任一可能的实施方式的方法(例如,当该通信装置为会话管理功能网元),或者,以实现如前面第三方面或任一可能的实施方式的方法(例如,当该通信装置为用户面功能网元)。
第五方面,本申请的实施例提供了一种通信系统,包括网络设备、会话管理功能网元和用户面功能网元,该网络设备可以执行第一方面或任一可能的实施方式的方法,该会话管理功能网元可以执行第二方面或任一可能的实施方式的方法,该用户面功能网元可以执行第三方面或任一可能的实施方式的方法。
第六方面,本申请的实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如第一方面或任一可能的实施方式的方法,或第二方面或任一可能的实施方式的方法,或第三方面或任一可能的实施方式的方法。
第七方面,本申请的实施例提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得处理器执行如第一方面或任一可能的实施方式的方法,或第二方面或任一可能的实施方式的方法,或第三方面或任一可能的实施方式的方法。
附图说明
图1为本申请适用的一种5G的网络架构;
图2为一种测量网络切片的最大使用带宽的方法示意图;
图3为本申请的一种测量网络切片的最大使用带宽的方法;
图4为本申请的另一种测量网络切片的最大使用带宽的方法;
图5为本申请的又一种测量网络切片的最大使用带宽的方法;
图6为本申请的又一种测量网络切片的最大使用带宽的方法;
图7为本申请的又一种测量网络切片的最大使用带宽的方法;
图8为本申请的又一种测量网络切片的最大使用带宽的方法;
图9为本申请的又一种测量网络切片的最大使用带宽的方法;
图10为本申请的又一种测量网络切片的最大使用带宽的方法;
图11为根据本申请实施例提供的一种通信装置的示意图;
图12为根据本申请实施例提供的另一种通信装置的示意图。
具体实施方式
本申请实施例的技术方案可以应用于各种通信系统,例如长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)移动通信系统 或新无线(new radio,NR)系统,或者应用于未来的通信系统或其它类似的通信系统等。此外,本申请实施例还可以适用于面向未来的其他通信技术。本申请描述的网络架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
本申请以5G系统为例,图1所示为本申请适用的一种5G的网络架构。上述网络架构中均可包括以下几个部分,分别是终端设备、无线接入网(radio access network,RAN)、核心网网络和数据网络(data network,DN)。
下面对该网络架构中涉及的部分进行具体说明:
终端设备,是一种具有无线收发功能的设备。终端设备通过无线方式与接入网设备相连,从而接入到通信系统中。终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、或智慧家庭中的无线终端等等。本申请实施例对终端设备所采用的具体技术和具体设备形态不作限定。作为示例而非限定,终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
无线接入网用于实现无线有关的功能。无线接入网中的节点又可称为接入网设备或基站,用于将终端设备接入到无线网络。所述接入网设备可以是基站(base station)、LTE系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(evolved NodeB,eNodeB)、5G通信系统中的下一代基站(next generation NodeB,gNB)、发送接收点(transmission reception point,TRP)、基带单元(base band unit,BBU)、WiFi接入点(access point,AP)、未来移动通信系统中的基站或WiFi系统中的接入节点等。无线接入网设备也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),或者分布式单元(distributed unit,DU)。本申请实施例对无线接入网设备所采用的具体技术和具体设备形态不作限定。例如,在一种网络结构中,无线接入网设备可以为CU节点、或DU节点、或为包括CU节点和DU节点的接入网设备。具体的,CU节点用于支持无线资源控制(radio resource control,RRC)、分组数据汇聚协议(packet data convergence protocol,PDCP)、业务数据适配协议(service data adaptation protocol,SDAP)等协议;DU节点用于支持无线链路控制(radio  link control,RLC)层协议、媒体接入控制(medium access control,MAC)层协议和物理层协议。
核心网网络可包括以下网元中的一个或多个:接入与移动性管理功能(access and mobility management function,AMF)网元、会话管理功能网元(session management function,SMF)网元、用户面功能(user plane function,UPF)网元、应用功能(application function,AF)网元、网络开放功能(Network Exposure Function,NEF)网元、计费功能(charging function,CHF)网元、策略控制功能(policy control function,PCF)网元、网络数据分析功能(network data analytics function,NWDAF)网元、统一数据管理(unified data management,UDM)网元、统一数据存储(unified data repository,UDR)网元、网络仓库功能(network repository function,NRF)网元和网络切片配额接入控制(Network Slice Quota related Access Control,NSQAC)网元。
接入与移动性管理功能网元:主要用于移动网络中的终端的附着和移动性管理。
会话管理功能网元:主要用于移动网络中的会话管理,如会话建立、修改、释放。具体功能如为终端分配互联网协议(internet protocol,IP)地址、选择提供报文转发功能的用户面网元等。
用户面功能网元:主要负责对用户报文进行处理,如转发、计费、合法监听等。用户面网元也可以称为协议数据单元(protocol data unit,PDU)会话锚点(PDU session anchor,PSA)。
应用功能网元:主要用于向终端设备提供应用层服务。应用功能网元代表应用与其他控制网元进行交互,包括提供服务质量(quality of service,QoS)需求、计费(Charging)策略(Policy)需求和路由策略需求等。
网络开放功能网元:主要用于对外提供5G网络能力和事件的开放,以及接收相关的外部信息等。
计费功能网元:主要用于根据各个功能网元所产生的计费信息来进行计费。
策略控制功能网元:包含用户签约数据管理功能、策略控制功能、计费策略控制功能、服务质量(quality of service,QoS)控制等。需要指出实际网络中按照层次或功能,PCF可以有多种形态,例如全局PCF和网络切片内的PCF,或者会话管理PCF(Session Management PCF,SM-PCF)和接入管理PCF(Access Management PCF,AM-PCF)。
网络数据分析功能网元:可以从各个网络功能(network function,NF)网元,例如策略控制功能网元、会话管理功能网元、用户面功能网元、应用功能网元等网元,收集数据,并进行分析和预测。
统一数据管理网元:负责管理终端的签约信息。
统一数据存储网元:负责存储结构化的数据信息,其中包括签约信息,策略信息,以及网络数据或业务数据。
网络仓库功能网元:负责维护各个网元的信息以及它们各自支持的服务。
网络切片配额接入控制网元:负责管理和控制网络切片相关配额,监测网络切片当前上行或下行的聚合数据速率(即网络切片的使用带宽),并检查当前上行或下行的聚合数据速率是否在SLA指定的网络切片允许的最大比特速率(Slice Maximum Bit  Rate,Slice-MBR)范围内。网络切片配额接入控制网元可以是一个独立的网元,也可以是现有网元(例如,PCF)的一部分,或者与现有网元合并部署。
多个网络切片往往公用同一个网络数据分析功能网元、统一数据管理网元或统一数据存储网元,会话管理功能网元和用户面功能网元一般是属于某一个特定网络网络切片的。
以上“网元”也可以称为“实体”或“装置”,本申请并不做限制。为了便于描述,会话管理功能网元简称为SMF、用户面功能网元简称为UPF,应用功能网元简称为AF,计费功能网元简称为CHF,策略控制功能网元简称为PCF,网络数据分析功能网元简称为NWDAF,统一数据管理网元简称为UDM,统一数据存储网元简称为UDR。
数据网络:为终端提供数据传输服务,可以是公用数据网(public data network,PDN)网络,如因特网(internet)等,也可以是本地接入数据网络(LADN,Local Access Data Network),如移动边缘计算(MEC,Mobile Edge Computing)节点的网络等。
图2所示为一种测量网络切片的最大使用带宽的方法示意图。在一个网络切片中,一般会存在多个用户面功能网元。目前使用的测量网络切片的最大使用带宽的方法如图所示。以一个网络切片中使用两个用户面功能网元为例,图2示出在一段时间内,用户面功能网元1和用户面功能网元2所测得的速率和时间的关系,其中点1对应的速率为用户面功能网元1在一段时间内的最大速率,其中点2对应的速率为用户面功能网元2在一段时间内的最大速率。目前,根据用户面功能网元1在一段时间内的最大速率和用户面功能网元2在一段时间内的最大速率测量,两者相加得到测量的网络切片的最大使用速率,也就是点3所示的网络切片的最大使用带宽。但是由于在实际情况中,用户面功能网元1和用户面功能网元2不能在同时达到最大速率,所以目前将各个用户面功能网元最大速率之和作为测量的网络切片的最大使用带宽极有可能是不准确的,这样的最大使用带宽不能准确的体现真实的最大使用带宽。本申请所要解决的问题是,如何更加准确地测量一段时间内的网络切片的最大使用带宽。
其中,需要特别说明的是,该速率为网络切片内会话的速率,该速率可以分为上行速率和下行速率,上行指的是终端设备向核心网侧进行会话传输的方向,下行指的是核心网侧向终端设备进行会话传输的方向,该速率可以为比特速率,也可以是波特速率,因此,测量的网络切片的最大使用带宽可以是以比特为单位的最大使用带宽,也可以是以波特为单位的最大使用带宽,本申请中并不进行限制。此外,本申请中提到的各个速率的累加,均为相同的时间点的多个速率的同方向(上行或下行)累加,而非所有时间点的速率的累加。
图3所示的实施例为本申请的一种测量网络切片的最大使用带宽的方法。
在本实施例适用的网络架构中,被测量的网络切片中包括SMF和UPF,SMF和UPF的数量情况可以有以下几种,一种情况是,该网络切片中包括一个SMF,且该SMF管理至少两个UPF,一种情况是,该网络切片中包括至少两个SMF,每一个SMF管理一个UPF,一种情况是,该网络切片中包括至少两个SMF,每一个SMF管理多个UPF。但不论上述哪一种情况下,该网络切片中包括至少两个UPF。
该方法包括以下步骤:
步骤301,NWDAF接收网络切片的标识和起始时间。
运营商的操作管理和运维(operation,administration and maintenance,OAM)装置为了获取网络切片的最大使用带宽,向NWDAF发送分析订阅消息(Analytics Subscription),以便根据网络切片的最大使用带宽为网络切片分配足够的网络资源,满足切片客户的需求。
或者,CHF向NWDAF发送分析订阅消息,请求获取网络切片的最大使用带宽,以便根据网络切片的最大使用带宽进行计费。
或者,PCF向NWDAF发送分析订阅消息,请求获取网络切片的最大使用带宽,以便根据网络切片的最大使用带宽,按照运营商设定的策略,改变新注册到网络切片或当前已经注册到该网络切片上的终端设备的授权切片最大数据速率,或者,改变该网络切片内新建立会话或已经建立的会话的授权最大数据速率,该会话可以是PDU会话。
或者,AF向NWDAF发送分析信息请求消息,请求获取网络切片的最大使用带宽,以便根据当前网络切片的最大使用带宽,调整业务数据流的QoS参数等。
上述分析订阅消息或分析信息请求消息中包括网络切片的标识(例如,S-NSSAI)以及起始时间。该起始时间为测量网络切片的速率的起始时间。例如,该起始时间可以是当前或历史某个时间点,也可以是未来某个时间点。可选的,上述分析订阅消息或分析信息请求消息中还包括终止时间,该终止时间用于结束测量速率的动作。可选的,分析订阅消息或分析信息请求消息中还包括分析精度要求,该分析精度要求用于后续步骤中各个测量时间点之间的时间间隔的确定。
步骤302,NWDAF向SMF发送网络切片的标识和起始时间。
例如,NWDAF根据网络切片的标识,获得支持该网络切片的各个SMF,例如,NWDAF根据网络切片的标识查询网络仓库功能网元。例如,NWDAF分别向支持该网络切片的各SMF发送事件订阅请求消息,要求该SMF向NWDAF发送该SMF服务区域内该网络切片的速率的测量结果。其中,事件订阅请求消息中包括步骤301中收到的网络切片的标识和起始时间。
可选的,事件订阅请求消息中还包括时间间隔。相同的起始时间和时间间隔是为了保证各SMF的测量结果为规定的相同时间点(包括从起始时间开始的和N个时间点,且相邻时间点之间的时间间隔为上述时间间隔,其中N为整数)的测量结果。可选的,分析订阅消息或分析信息请求消息中还包括分析精度要求,NWDAF可以根据分析精度要求,确定时间间隔。如果分析订阅消息或分析信息请求消息中没有包括分析精度要求,NWDAF可以根据自身配置的分析精度要求或本地策略中的分析精度要求确定合适的时间间隔。若分析精度要求高,则时间间隔小,若分析精度要求低,则时间间隔大。
如果步骤301中分析订阅消息或分析信息请求消息中包括终止时间,则NWDAF向各SMF发送的事件订阅请求消息中还可以包括终止时间。后续各SMF发送不晚于终止时间的测量结果。
如果NWDAF向各SMF发送的事件订阅请求消息中不包括终止时间,那么NWDAF后续可以向各SMF发送事件订阅取消消息,使各SMF停止测量该网络切片 的速率,使得各个SMF发送不晚于终止时间的测量结果。
步骤303,SMF向各自管理的支持该网络切片的UPF发送网络切片的标识和起始时间。
SMF确定自身管理的支持该网络切片的UPF。每个SMF向各自管理的支持该网络切片的UPF发送网络切片的标识和起始时间。例如,SMF向UPF发送使用量上报规则(Usage Reporting Rule,URR),URR中包括网络切片的标识和起始时间,可选的,URR还包括时间间隔。URR用于指示UPF后续上报使用量报告,该使用量报告中包括UPF在各个时间点得到的会话的累加速率,该累加速率为该网络切片的上行和/或下行的速率。
例如,UPF测量的会话的累加速率为UPF通过与数据网络的接口转发的该网络切片在上述每个时间点各个会话的上行数据速率的累加结果,和/或上述各个会话的下行数据速率的累加结果。可选的,UPF测量的会话的累加速率也可以是UPF通过与无线接入网的接口转发的该网络切片在上述每个时间点各个会话的上行数据速率的累加结果,和/或上述各个会话的下行数据速率的累加结果。
如果起始时间点是一个历史时间点,则UPF上报缓存的历史时间点的会话的累加速率。
可选的,SMF向UPF发送终止时间。
步骤304,UPF向SMF上报会话的累加速率。
UPF按照URR,在规定的每个时间点,测量该网络切片的各个会话的速率,并将同方向的各个会话的速率分别进行累加,得到的累加值作为该时间点的会话的累加速率。该时间点可以是根据起始时间和时间间隔确定的,也可以是UPF根据起始时间和内置的时间间隔确定的,若时间间隔为内置的值,则各个内置的时间间隔为统一的。总之,UPF可以按照同样的时间间隔测量多个时间点的该网络切片的会话的速率。
例如,UPF向下发URR的SMF发送测量报告,其中,测量报告包括UPF在多个时间点测量的会话的累加速率。
如果某个UPF收到来自多个SMF的URR,UPF分别获取不同的SMF分别控制的指定网络切片相关的会话在多个时间点的同方向的会话的累加速率,向相应的SMF发送会话的累加速率。UPF也可以不执行累加的动作,而是将测量到的不同的SMF的各个会话的同方向的多个时间点的速率进行累加,这时UPF向SMF上报的会话的累加速率时,还要上报UPF标识,以防在后续步骤中,同一个UPF所测量的会话的累加速率被重复计算。
步骤305,SMF累加UPF上报的会话的累加速率。
SMF将各自从UPF接收的同方向的会话的累加速率按照相同时间点进行汇总累加,得到SMF服务区域内网络切片的速率。
或者,步骤305可被如下步骤替换:SMF可以不执行累加UPF上报的会话的累加速率的动作。这样的话,SMF还从UPF接收UPF的标识。该UPF的标识用于标识该会话的累加速率为该标识所对应的UPF测量的。例如,SMF可以通过上述步骤304从UPF接收UPF的标识。
步骤306,SMF向NWDAF发送速率信息。
该速率信息包括以下两种情况,第一种情况,步骤305中SMF将各自从UPF接收的会话的累加速率进行累加,速率信息用于指示该SMF累加的速率,即该SMF服务区域内网络切片的速率。
第二种情况,步骤305中SMF没有执行累加的动作,则速率信息用于指示从UPF接收的包括UPF标识的会话的累加速率。
例如,SMF可以通过事件通知消息向NWDAF发送上述速率信息。SMF每隔一个时间间隔的时间向NWDAF发送一次事件通知消息,直到到达终止时间或者SMF接收到事件订阅取消消息。
相应的,NWDAF从SMF接收SMF服务区域内网络切片的速率,或者接收会话的累加速率(UPF测量的)。
步骤307,NWDAF获取网络切片的最大使用带宽。
该步骤包括以下几种情况:
第一种情况,该网络切片中包括一个SMF,该SMF下管理至少两个UPF,以该SMF管理两个UPF(例如第一UPF和第二UPF)为例:
该情况下的一种可选的情况,步骤305中,SMF将第一UPF测量的会话的累加速率和第二UPF测量的会话的累加速率按照相同的时间点进行累加,得到该SMF服务区域内网络切片的速率,通过步骤306向NWDAF发送该SMF服务区域内网络切片的速率。NWDAF将SMF测得的速率按照相同的时间点进行累加,并选择其中速率的最大值作为该网络切片的最大使用带宽,由于只有一个SMF服务区域内网络切片的速率,该步骤中NWDAF可以不执行累加的操作。以一共测量了6个时间点的值为例,第一UPF、第二UPF、SMF和NWDAF各自测量的速率值如表1所示:
表1 SMF执行累加时各个网元测量的速率
Figure PCTCN2022072650-appb-000001
网络切片的速率为NWDAF对应的上述六个时间点的速率值,其中最大的值为T6时刻的速率,则T6时刻对应的速率为该网络切片的最大使用带宽。
该情况下的另一种可选的情况,步骤305中,SMF没有对第一UPF测量的会话的累加速率和第二UPF测量的会话的累加速率按照相同的时间点进行累加,SMF将第一UPF测量的会话的累加速率和第二UPF测量的会话的累加速率以及第一UPF的标识和第二UPF的标识通过步骤306向NWDAF发送,那么该步骤中NWDAF将第一UPF测量的会话的累加速率和第二UPF测量的会话的累加速率按照相同的时间点进行累加,得到该网络切片的速率,并选择其中速率的最大值作为该网络切片的最大使用带宽。例如,第一UPF、第二UPF和NWDAF各自测量的速率值如表2所示:
表2 SMF不执行累加时各个网元测量的速率
Figure PCTCN2022072650-appb-000002
网络切片的速率为NWDAF对应的上述六个时间点的速率值,其中最大的值为T6时刻的速率,则T6时刻对应的速率为该网络切片的最大使用带宽。
第二种情况,该网络切片中包括至少两个SMF,以两个SMF为例,例如,该网络切片中包括第一SMF和第二SMF,第一SMF下管理第一UPF,第二SMF下管理第二UPF,那么第一SMF测量的值即为第一UPF测量的会话的累加速率的值,第二SMF同理。步骤305中,第一SMF通过步骤306向NWDAF发送第一UPF测量的会话的累加速率以及第一UPF的标识,第二SMF通过步骤306向NWDAF发送第二UPF测量的会话的累加速率以及第二UPF的标识,那么该步骤中NWDAF将第一UPF测量的会话的累加速率和第二UPF测量的会话的累加速率按照相同的时间点进行累加,得到该网络切片的速率,并选择其中速率的最大值作为该网络切片的最大使用带宽。例如,第一UPF、第二UPF、第一SMF、第二SMF和NWDAF各自测量的速率值如表3所示:
表3 各个网元测量的速率
Figure PCTCN2022072650-appb-000003
网络切片的速率为NWDAF对应的上述六个时间点的速率值,其中最大的值为T6时刻的速率,则T6时刻对应的速率为该网络切片的最大使用带宽。
第三种情况,该网络切片中包括至少两个SMF,以两个SMF为例,例如,该网络切片中包括第一SMF和第二SMF,第一SMF下管理第一UPF和第二UPF,第二SMF下管理第三UPF和第四UPF。
该情况下的一种可选的情况,步骤305中,第一SMF将第一UPF测量的会话的 累加速率和第二UPF测量的会话的累加速率按照相同的时间点进行累加得到第一SMF服务区域内网络切片的速率,通过步骤306向NWDAF发送第一SMF服务区域内网络切片的速率,第二SMF将第三UPF测量的会话的累加速率和第四UPF测量的会话的累加速率,按照相同的时间点进行累加得到第二SMF服务区域内网络切片的速率,通过步骤306向NWDAF发送第二SMF服务区域内网络切片的速率,该步骤中NWDAF执行累加的操作,即将第一SMF服务区域内网络切片的速率和第二SMF服务区域内网络切片的速率累加,得到该网路切片的速率,并选择其中速率的最大值作为该网络切片的最大使用带宽。
例如,第一UPF、第二UPF、第三UPF、第四UPF、第一SMF、第二SMF和NWDAF各自测量的速率值如表4所示:
表4 各个网元测量的速率
Figure PCTCN2022072650-appb-000004
网络切片的速率为NWDAF对应的上述六个时间点的速率值,其中最大的值为T6时刻的速率,则T6时刻对应的速率为该网络切片的最大使用带宽。
该情况下的另一种可选的情况,步骤305中,第一SMF直接将第一UPF测量的会话的累加速率和第二UPF测量的会话的累加速率以及第一UPF的标识和第二UPF的标识通过步骤306向NWDAF发送,第二SMF直接将第三UPF测量的会话的累加速率和第四UPF测量的会话的累加速率以及第三UPF的标识和第四UPF的标识通过步骤306向NWDAF发送,那么该步骤中NWDAF将第一UPF测量的会话的累加速率、第二UPF测量的会话的累加速率、第三UPF测量的会话的累加速率和第四UPF测量的会话的累加速率按照相同的时间点进行累加,得到该网络切片的速率,并选择其中速率的最大值作为该网络切片的最大使用带宽。例如,第一UPF、第二UPF、第三UPF、第四UPF、第一SMF、第二SMF和NWDAF各自测量的速率值如表5所示:
表5 各个网元测量的速率
Figure PCTCN2022072650-appb-000005
Figure PCTCN2022072650-appb-000006
网络切片的速率为NWDAF对应的上述六个时间点的速率值,其中最大的值为T6时刻的速率,则T6时刻对应的速率为该网络切片的最大使用带宽。
步骤308:NWDAF发送网络切片的最大使用带宽。
NWDAF可以向步骤301中发送分析订阅消息请求的OAM或CHF或PCF发送网络切片的最大使用带宽。例如,NWDAF可以通过分析通知消息向步骤301中发送分析订阅消息请求的OAM或CHF或PCF发送网络切片的最大使用带宽。
或者,NWDAF可以向AF发送网络切片的最大使用带宽。例如,NWDAF通过分析信息响应消息向AF发送网络切片的最大使用带宽。
若UPF与核心网中控制面网元之间部署了服务化接口,则UPF可以直接从NWDAF接收网络切片的标识和起始时间。UPF得到会话的累加速率后,也可以向NWDAF发送会话的累加速率,由NWDAF执行会话的累加速率的累加,最终NWDAF得到网络切片的最大使用带宽。
通过该实施例所述的方法,NWDAF可以获取到网络切片的各个时间点的速率,选择各个时间点的速率中的最大的速率为网络切片的最大使用带宽,因此通过该实施例所示的方法可以更加准确的测量网络切片的最大使用带宽。
图4所示的实施例为本申请的另一种测量网络切片的最大使用带宽的方法。
在本实施例中,如果被测量的网络切片内只有一个PCF,这个PCF可以本地存储各个时间点的网络切片的速率;如果被测量的网络切片内有多个PCF,对于某个SMF,SMF为该网络切片的会话策略控制选择其中一个PCF,那么每个PCF可以将自己负责的各个会话的各个时间点的网络切片速率存储到UDR中,任何一个PCF都可以从UDR获取其他的PCF测量的速率,进一步计算出各个时间点的整个网络切片的速率。下面以该网络切片只有一个PCF为例进行阐述,不再赘述多个PCF的情况的具体流程。该方法包括以下步骤:
步骤401,PCF接收测量网络切片的最大使用带宽的触发信息。
PCF从OAM接收触发信息来设置被测量的网络切片所支持的最大比特速率(Slice Maximum Bit Rate,Slice-MBR),以此PCF被要求监测该网络切片的使用带宽,并检查该网络切片的使用带宽是否在SLA指定的网络切片所支持的Slice-MBR范围内,例如,PCF中可以包括NSQAC(图中未示出)。
或者,PCF从OAM接收触发信息,PCF被请求创建测量网络切片使用带宽的性能的任务,后续PCF定时向OAM上报性能的测量结果,即上报被测量的网络切片的最大使用带宽。
或者,PCF从CHF或者NWDAF接收触发信息,该触发信息为事件订阅消息,或者AF(可以通过NEF)向PCF发送触发信息,该触发信息为事件订阅消息,触发信息通知PCF获取被测量的网络切片的最大使用带宽。触发信息中包括该网络切片的标识。
PCF接收到上述触发信息后,设置计算网络切片最大使用带宽的状态标志,并记录网络切片的标识。
步骤402,SMF向PCF发送建立会话策略控制请求消息。
当终端设备请求在该网络切片内建立会话连接,SMF在接收到会话建立请求消息后(图中未示出),SMF向PCF发送建立会话策略控制请求消息,其中包括会话对应的网络切片的标识。
步骤403,PCF向SMF发送建立会话策略控制响应消息,该建立会话策略控制响应消息中包括网络切片的标识和起始时间,可选的,该建立会话策略控制响应消息中还包括时间间隔。该建立会话策略控制响应消息用于指示该SMF上报其服务区域内网络切片的速率。该网络切片的标识为被测量的网络切片的标识。
可选的,若PCF收到建立会话策略控制请求消息后,判断会话对应的网络切片的标识和被测量的网络切片的标识是否相同,如果这个SMF没有向PCF上报过SMF服务区域内网络切片的速率,PCF向SMF发送被测量的网络切片的标识和起始时间。可选的,PCF向SMF还发送时间间隔。例如,PCF可以通过拒绝响应消息向SMF发送被测量的网络切片的标识和起始时间。该拒绝响应消息还可以包括原因值,该原因值指示SMF应上报SMF服务区域内网络切片的速率。PCF向SMF发送上述拒绝响应消息后,在SMF执行速率的测量期间,PCF可以不再向该SMF发送上述拒绝响应消息。
步骤404,SMF向UPF发送网络切片的标识和起始时间。
此步骤可参考图3所示实施例中步骤303的描述。
步骤405,UPF向SMF上报测量的会话的累加速率。
此步骤可参考图3所示实施例中步骤304的描述。
步骤406,SMF累加UPF上报的会话的累加速率。
SMF将各自从UPF接收的相同时间点的同方向的会话的累加速率进行汇总累加,得到SMF服务区域内网络切片的速率。
或者,该步骤可被如下步骤替换:SMF不执行累加UPF上报的会话的累加速率的动作,SMF从UPF接收UPF的标识。该UPF的标识用于标识该会话的累加速率为该标识所对应的UPF测量的。
若步骤403中PCF向SMF发送拒绝响应消息,SMF在累加UPF上报的会话的累 加速率后,再次向PCF发送建立会话策略控制请求消息。再次向PCF发送建立会话策略控制请求消息的原因可能是SMF接收到拒绝响应消息,也可能是新的会话的建立。该建立会话策略控制请求消息中包括SMF服务区域内网络切片的速率。后续SMF会接收到PCF的建立会话策略控制响应消息(图中未示出)。
步骤407,SMF向PCF发送速率信息。
该速率信息包括以下两种情况,第一种情况,步骤406中SMF将各自从UPF接收的会话的累加速率进行累加,速率信息用于指示该SMF累加的速率,即该SMF服务区域内网络切片的速率。第二种情况,步骤406中SMF没有执行累加的动作,则速率信息用于指示从UPF接收的包括UPF标识的会话的累加速率。
例如,SMF可以通过事件通知消息向NWDAF发送上述速率信息。SMF每隔一个时间间隔的时间向PCF发送一次事件通知消息,直到到达终止时间或者SMF接收到事件订阅取消消息。
相应的,PCF从SMF接收SMF服务区域内网络切片的速率,或者接收会话的累加速率(UPF测量的)。
步骤408,PCF获取该网络切片的最大使用带宽。
该步骤包括以下几种情况:
第一种情况,该网络切片中包括一个SMF,该SMF下管理至少两个UPF,以该SMF管理两个UPF(例如第一UPF和第二UPF)为例:
该情况下的一种可选的情况,步骤406中,SMF将第一UPF测量的会话的累加速率和第二UPF测量的会话的累加速率按照相同的时间点进行累加,得到该SMF服务区域内网络切片的速率,SMF通过步骤407向PCF发送该SMF服务区域内网络切片的速率,PCF将SMF测得的速率按照相同的时间点进行累加,并选择其中速率的最大值作为该网络切片的最大使用带宽,由于只有一个SMF服务区域内网络切片的速率,该步骤中PCF可以不执行累加的操作。
以一共测量了6个时间点的值为例,第一UPF、第二UPF、SMF和PCF各自测量的速率值如表6所示:
表6 SMF执行累加时各个网元测量的速率
Figure PCTCN2022072650-appb-000007
网络切片的速率为PCF对应的上述六个时间点的速率值,其中最大的值为T6时刻的速率,则T6时刻对应的速率为该网络切片的最大使用带宽。
另一种可选的情况,步骤406中,SMF没有对第一UPF测量的会话的累加速率和第二UPF测量的会话的累加速率按照相同的时间点进行累加,SMF通过步骤407向PCF发送第一UPF测量的会话的累加速率、第二UPF测量的会话的累加速率、第一 UPF的标识和第二UPF的标识,那么该步骤中PCF将第一UPF测量的会话的累加速率和第二UPF测量的会话的累加速率按照相同的时间点进行累加,得到该网络切片的速率,并选择其中速率的最大值作为该网络切片的最大使用带宽。
例如,第一UPF、第二UPF和PCF各自测量的速率值如表7所示:
表7 SMF不执行累加时各个网元测量的速率
Figure PCTCN2022072650-appb-000008
网络切片的速率为PCF对应的上述六个时间点的速率值,其中最大的值为T6时刻的速率,则T6时刻对应的速率为该网络切片的最大使用带宽。
第二种情况,该网络切片中包括至少两个SMF,以两个SMF为例,例如,该网络切片中包括第一SMF和第二SMF,第一SMF下管理第一UPF,第二SMF下管理第二UPF,那么第一SMF测量的值即为第一UPF测量的会话的累加速率的值,第二SMF同理。步骤406中,第一SMF通过步骤407向PCF发送第一UPF测量的会话的累加速率以及第一UPF的标识,第二SMF通过步骤407向PCF发送第二UPF测量的会话的累加速率以及第二UPF的标识,那么该步骤中PCF将第一UPF测量的会话的累加速率和第二UPF测量的会话的累加速率按照相同的时间点进行累加,得到该网络切片的速率,并选择其中速率的最大值作为该网络切片的最大使用带宽。例如,第一UPF、第二UPF、第一SMF、第二SMF和PCF各自测量的速率值如表8所示:
表8 各个网元测量的速率
Figure PCTCN2022072650-appb-000009
网络切片的速率为PCF对应的上述六个时间点的速率值,其中最大的值为T6时刻的速率,则T6时刻对应的速率为该网络切片的最大使用带宽。
第三种情况,该网络切片中包括至少两个SMF,以两个SMF为例,例如,该网络切片中包括第一SMF和第二SMF,第一SMF下管理第一UPF和第二UPF,第二SMF下管理第三UPF和第四UPF。
该情况下的一种可选的情况,步骤406中,第一SMF将第一UPF测量的会话的累加速率和第二UPF测量的会话的累加速率按照相同的时间点进行累加得到第一SMF服务区域内网络切片的速率,通过步骤407向PCF发送第一SMF服务区域内网络切片的速率,第二SMF将第三UPF测量的会话的累加速率和第四UPF测量的会话的累加速率按照相同的时间点进行累加得到第二SMF服务区域内网络切片的速率,通过步骤407向PCF发送第二SMF服务区域内网络切片的速率,该步骤中PCF执行累加的操作,即将第一SMF服务区域内该网络切片的速率和第二SMF服务区域内该网络切片的速率累加,得到该网路切片的速率,并选择其中速率的最大值作为该网络切片的最大使用带宽。例如,第一UPF、第二UPF、第三UPF、第四UPF、第一SMF、第二SMF和PCF各自测量的速率值如表9所示:
表9 各个网元测量的速率
Figure PCTCN2022072650-appb-000010
网络切片的速率为PCF对应的上述六个时间点的速率值,其中最大的值为T6时刻的速率,则T6时刻对应的速率为该网络切片的最大使用带宽。
另一种可选的情况,步骤406中,第一SMF直接通过步骤407向PCF发送第一UPF测量的会话的累加速率和第二UPF测量的会话的累加速率以及第一UPF的标识和第二UPF的标识,第二SMF直接通过步骤407向PCF发送第三UPF测量的会话的累加速率和第四UPF测量的会话的累加速率以及第三UPF的标识和第四UPF的标识,那么该步骤中PCF将第一UPF测量的会话的累加速率、第二UPF测量的会话的累加速率、第三UPF测量的会话的累加速率和第四UPF测量的会话的累加速率按照相同的时间点进行累加,得到该网络切片的速率,并选择其中速率的最大值作为该网络切片的最大使用带宽。例如,第一UPF、第二UPF、第三UPF、第四UPF、第一SMF、第二SMF和PCF各自测量的速率值如10所示:
表10 各个网元测量的速率
Figure PCTCN2022072650-appb-000011
Figure PCTCN2022072650-appb-000012
网络切片的速率为PCF对应的上述六个时间点的速率值,其中最大的值为T6时刻的速率,则T6时刻对应的速率为该网络切片的最大使用带宽。
如该实施例在前所述,当该网络切片中存在多个PCF时,每个PCF均可以将自己获取到的自身PCF服务区域内网络切片的速率存储到具有存储功能的网络装置中,例如,该网络装置为UDR。其中一个PCF在UDR中获取其他PCF所获取到的自身PCF服务区域内网络切片的速率,并按照相同的时间点进行累加,得到该网络切片的在各个时间点的速率,并选取速率值中最大的为该网络切片的最大使用带宽。
步骤409,PCF向步骤401中发送触发信息的装置(OAM或者CHF或者NWDAF或者AF)发送该网络切片的最大使用带宽。
若UPF与核心网中控制面网元之间部署了服务化接口,则UPF可以直接从PCF接收网络切片的标识和起始时间。UPF得到会话的累加速率后,也可以向PCF发送会话的累加速率,由PCF执行会话的累加速率的累加,最终PCF得到网络切片的最大使用带宽。
通过该实施例所示的方法,PCF可以测量出网络切片的各个时间点的速率。若该网络切片只有一个PCF,那么该PCF测量得到的PCF自身服务范围内的网络切片的各个时间点的速率即为该网络切片的速率,若该网络切片中包括至少两个PCF,那么其中的一个PCF可以获取其他PCF在各个时间点的测量的值,并按照时间点进行累加,获取该网络切片的速率。最终,PCF将该网络切片的速率中,选择各个时间点的速率中的最大的速率为网络切片的最大使用带宽,因此通过该实施例所示的方法可以更加准确的测量网络切片的最大使用带宽。
图5所示的实施例为本申请的又一种测量网络切片的最大使用带宽的方法。
在本实施例中,被测量的网络切片中包括至少两个SMF,且各个SMF管理一个或多个UPF,本实施例以下述情况为例进行描述,被测量的网络切片中包括两个SMF(例如,第一SMF和第二SMF)且第一SMF管理第一UPF,第二SMF管理第二UPF。
该方法包括以下步骤:
步骤501,PCF接收网络切片的标识、起始时间和第一阈值。
例如,PCF从CHF接收事件订阅消息,请求获取网络切片的最大使用带宽;
或者,PCF从NWDAF接收事件订阅消息,请求获取网络切片的最大使用带宽;
或者,PCF从AF接收事件订阅消息,请求获取网络切片的最大使用带宽。
上述事件订阅消息中包括网络切片的标识(例如,S-NSSAI),起始时间和第一阈值,该起始时间可以是当前或历史某个时间点,也可以是未来某个时间点。所述第一阈值的作用为,为多个SMF分解对应的阈值,并使得当各个SMF在各自的服务区域内网络切片的速率的值大于各自对应的阈值时,则上报该速率的值,当各个SMF在各自的服务区域内网络切片的速率的值小于各自对应的阈值时,则可以不上报该速率的值。当各个SMF得到服务区域内网络切片的速率的值等于各自对应的阈值时,可以上报该速率的值,或者可以不上报该速率的值,这可以取决于具体实现。本实施例以各个SMF得到服务区域内网络切片的速率的值大于或等于各自对应的阈值时执行上报的动作为例进行阐述。PCF收到的该第一阈值一般情况下是个非常小的值,或者第一阈值被设置为0,该情况下可以保证PCF后续得到的网络切片的使用带宽大于第一阈值。
如果PCF获取到在一个时间点的网络切片的使用带宽大于第一阈值,则PCF将该时间点的网络切片的使用带宽记录为最大使用带宽。或者说,如果PCF获取到在一个时间点的网络切片的使用带宽大于第一阈值,PCF将最大使用带宽更新为该时间点的网络切片的使用带宽。
可选的,上述事件订阅消息中包括终止时间。若事件订阅消息中不包括终止时间,那么后续PCF接收到终止测量的指示信息,并下发该指示信息。
步骤502,PCF分解第一阈值。
PCF根据网络切片的标识查询NRF,确定支持该网络切片的SMF为第一SMF和第二SMF。PCF将第一阈值进行分解,为第一SMF和第二SMF分别设置分解的阈值,例如,为第一SMF设置第二阈值,为第二SMF设置第三阈值,且第二阈值和第三阈值加起来等于或小于第一阈值。第二阈值和第三阈值可以相同,也可以不同。第二阈值或第三阈值用于指示对应的SMF,当在SMF各自服务区域内网络切片在某一个测量的时间点的速率大于或等于自身对应的第二阈值或第三阈值时,SMF向PCF上报各自服务区域内该时间点对应的网络切片的速率。否则,SMF只测量各个时间点的各自服务区域内网络切片的速率,并做本地缓存。例如,第一阈值为10,为两个SMF进行阈值的分解,得到第二阈值为5,第三阈值为5。
步骤503,PCF向SMF发送网络切片的标识和起始时间。
例如,PCF均向第一SMF和第二SMF发送包含网络切片的标识和起始时间的事件订阅请求消息。可选的,事件订阅请求消息中还包括时间间隔。订阅的事件为该网络切片的速率的结果。相同的起始时间和时间间隔是为了保证各SMF的测量结果为相同的各个规定的时间点(包括从起始时间开始的N个时间点,且相邻时间点之间的时间间隔为上述时间间隔,其中N为整数)的测量结果,若事件订阅请求消息中不包括时间间隔,那么该时间间隔可以为任意一个PCF或SMF或UPF中内置的值,且各个内置的时间间隔为统一的。
PCF还向各个SMF发送设置的分解的阈值,例如,PCF向第一SMF发送第二阈值,PCF向第二SMF发送第三阈值。例如,第二阈值为5,第三阈值为5。
可选的,PCF均还向第一SMF和第二SMF发送终止时间。可选的,如果步骤501中PCF接收到终止时间,则PCF向各个SMF发送的事件订阅请求消息中可以包括终止时间。后续各个SMF发送不晚于终止时间的测量结果。
如果PCF向各个SMF发送的事件订阅请求消息中不包括终止时间,那么PCF后续可以向各个SMF发送事件订阅取消消息,使各个SMF停止测量该网络切片的速率,使得各个SMF发送不晚于终止时间的测量结果。
步骤504,SMF向各自管理的支持该网络切片的UPF发送网络切片的标识和起始时间。
该步骤可参考图3所示实施例中步骤303的描述。
此外,可选的,以第一SMF为例,且以第一SMF管理UPF1和UPF2为例,第一SMF可以进一步将第二阈值进行分解得到第四阈值和第五阈值,分解的方法参考步骤502的描述,不再赘述。第一SMF向第一UPF发送第四阈值,第一SMF向第二UPF发送第五阈值。
可选的,SMF向各自管理的支持该网络切片的UPF还发送终止时间。
步骤505,UPF判断当前时间点是否为规定的时间点。若当前时间点为规定的时间点,则执行步骤506。若当前的时间不是规定的时间点,继续执行本步骤。
例如,规定的时间点包括从起始时间到终止时间之间的N个时间点,且相邻时间点之间的时间间隔为上述时间间隔,其中N为整数。
步骤506,UPF向SMF上报测量的会话的累加速率。
UPF按照URR,在该时间点,测量该网络切片的各个会话的速率,并将同方向的各个会话的速率分别进行累加,得到的累加值作为该时间点的会话的累加速率。该时间点可以是根据起始时间和时间间隔确定的,也可以是UPF根据起始时间和内置的时间间隔确定的,若时间间隔为内置的值,则各个内置的时间间隔为统一的。总之,UPF可以按照同样的时间间隔测量多个时间点的该网络切片的会话的速率。
例如,UPF向下发URR的SMF发送测量报告,其中,测量报告包括UPF在多个时间点测量的会话的累加速率。
如果某个UPF收到来自多个SMF的URR,UPF分别获取不同的SMF分别控制的该网络切片相关的会话的同方向的会话的累加速率,向相应的SMF发送会话的累加速率。
可选的,若UPF各自收到对应的阈值,以第一UPF为例,当第一UPF得到该时间点的会话的累加速率,并比较当前时间点的会话的累加速率与第四阈值,当该时间点的会话的累加速率大于第四阈值,第一UPF确定向第一SMF发送该时间点的会话的累加速率。
步骤507,SMF获取SMF服务区域内网络切片的速率。
SMF将各自从UPF接收的该时间点的同方向的会话的累加速率进行累加,得到SMF该时间点的服务区域内网络切片的速率。
例如,第一SMF、第二SMF各自测量的速率值以及各个时刻各自所对应的阈值如表11所示:
表11 各个网元测量的速率以及各自对应的阈值
  T1 T2 T3 T4 T5 T6
第一SMF 3|5 7|5 4|5.5 5|6 6|6.5 6|6.5
第二SMF 6|5 3|5 7|5.5 7|6 6|6.5 8|6.5
该表格中,字符“|”的左边代表各个网元测量的速率,字符“|”的右边代表各个网元各自对应的阈值。后续表格中不再赘述。
若该时间点为T1,那么第一SMF测量的第一SMF服务区域内网络切片的速率为3,该时间点对应的第二阈值为5,第二SMF测量的第二SMF服务区域内网络切片的速率为6,第三阈值为5,若该时间点为表格内的其他时间点也同理。
步骤508,SMF判断SMF服务区域内网络切片的速率是否大于分解的阈值。
第一SMF将自身服务区域内该时间点的网络切片的速率与第二阈值进行比较,第二SMF将自身服务区域内该时间点的网络切片的速率与第三阈值进行比较。
若其中一个SMF自身服务区域内的网络切片在该时间点的速率大于或等于各自的阈值,则执行步骤509,若各个SMF服务区域内网络切片的速率均小于各自的阈值,则返回步骤505。
例如,若该时间点为T1,如表11所示,第一SMF测得的服务区域内网络切片的速率为3,该速率小于第二阈值,第二SMF测得的服务区域内网络切片的速率为6,该速率大于第三阈值,存在至少一个SMF所测得的服务区域内网络切片的速率大于或等于各自对应的阈值,执行后续步骤509。
例如,若该时间点为T2,如表11所示,第一SMF测得的服务区域内网络切片的速率为7,该速率大于第二阈值,第二SMF测得的服务区域内网络切片的速率为3,该速率小于第三阈值,存在至少一个SMF所测得的服务区域内网络切片的速率大于或等于各自对应的阈值,执行后续步骤509。
例如,若该时间点为T5,如表11所示,第一SMF测得的服务区域内网络切片的速率为6,该速率小于第二阈值,第二SMF测得的服务区域内网络切片的速率为6,该速率小于第三阈值,各个SMF服务区域内网络切片的速率均小于各自的阈值,则返回步骤505。
例如,若该时间点为T6,如表11所示,第一SMF测得的服务区域内网络切片的速率为6,该速率大于第二阈值,第二SMF测得的服务区域内网络切片的速率为8,该速率大于第三阈值,存在至少一个SMF所测得的服务区域内网络切片的速率大于或等于各自对应的阈值,执行后续步骤509。
若该时间点为表11中的其他时间点,同理。
可选的,SMF根据从各自管理的UPF接收的相同的当前时间点的同方向的会话的累加速率,向UPF发送对应的更新的步骤504中的第四阈值和第五阈值。例如,第一SMF将自身服务区域内当前时间点的网络切片的速率与第二阈值进行比较后,当当前时间点的网络切片的速率已经大于第二阈值,第一SMF会根据从第一UPF接收的相同的当前时间点的同方向的会话的累加速率更新第四阈值,更新后的第四阈值一般比更新前的第四阈值大,这样UPF后续只有在网络切片的会话的累加速率达到更大的值(即大于第四阈值)后,才会向第一SMF上报大于更新后的第四阈值的该测量的网络切片的会话的累加速率,以便第一SMF后续只获得更大的自身服务区域内网络切片的 速率。
步骤509,SMF向PCF发送事件通知消息。
例如,结合上面的例子,以当前时间点为T1为例,第二SMF自身服务区域内的网络切片的速率大于第三阈值,则第二SMF向PCF发送事件通知消息,该消息中包括当前的时间点对应的速率以及该时间点。若当前时间点为T6,第一SMF和第二SMF测得的各自的自身服务区域内的网络切片的速率均大于各自对应的阈值,那么第一SMF和第二SMF均执行该步骤。由于第一SMF和第二SMF均向PCF发送了各自测得的速率,PCF收到各个SMF的服务区域内的网络切片的速率后,则PCF不再执行步骤510,且步骤511也不再被执行(该机制未在图中示出)。
步骤510,PCF向其他的SMF发送事件报告请求消息。
例如,结合上面的例子,以当前时间点为T1为例,第一SMF没有向PCF发送当前时间点对应的第一SMF服务区域内网络切片的速率,PCF向第一SMF发送事件报告请求消息,该消息中包括该时间点,指示第一SMF上报该时间点对应的第一SMF服务区域内网络切片的速率。
步骤511,其他的SMF向PCF发送各自服务区域内网络切片的速率。
例如,结合上面的例子,若该时间点为T1,第一SMF向PCF上报T1对应的第一SMF服务区域内网络切片的速率。
步骤512,PCF获取网络切片的使用带宽并确定网络切片的最大使用带宽。
PCF收到第一SMF和第二SMF在步骤507中时间点的各自服务区域内网络切片的速率,累加第一SMF和第二SMF各自服务区域内该时间点的网络切片的速率,得到该时间点的网络切片的使用带宽。PCF根据当前时间点的使用带宽的值和PCF记录的历史时间点的使用带宽的值,选择最大的值,确定网络切片的最大使用带宽。或者说,如果PCF获取到在一个时间点的网络切片的使用带宽大于第一阈值,PCF将最大使用带宽更新为该时间点的网络切片的使用带宽。
可选的,当该时间点的网络切片的使用带宽大于或等于第一阈值,则PCF更新第一阈值,第一阈值可以大于更新前的第一阈值,例如,该第一阈值可以与当前测量的使用带宽的值相等,也可以大于该使用带宽的值,并同时更新第二阈值和第三阈值。
继续结合表11所述的例子,得到表12:
表12 各个网元测量的速率以及各自对应的阈值
  T1 T2 T3 T4 T5 T6
第一SMF 3|5 3|5 4|5.5 5|6 6|6.5 6|6.5
第二SMF 6|5 7|5 7|5.5 7|6 6|6.5 8|6.5
PCF 9|10 10|10 11|11 12|12 /|13 14|13
若当前时间点为T1,且当前第一阈值为10,网络切片的使用带宽小于第一阈值。PCF不会执行第一阈值的更新,也没有将第二阈值或第三阈值进行更新,由于T1为起始时刻,则PCF确定该网络切片的最大使用带宽为该时间点的使用带宽的值,即最大使用带宽为9。
若该时间点为T2,且当前第一阈值为10,网络切片的使用带宽等于第一阈值,PCF更新第一阈值为11,且将第二阈值和第三阈值均更新为5.5,并将当前时间点的 网络切片的使用带宽更新为网络切片的最大使用带宽,此时最大使用带宽为10。
若该时间点为T3,且当前第一阈值为11,网络切片的使用带宽等于第一阈值,PCF更新下一个时间点的第一阈值为12,且将下一个时间点的第二阈值和第三阈值均更新为6,并将当前时间点的网络切片的使用带宽更新为网络切片的最大使用带宽,此时最大使用带宽为11。
若该时间点为T4,且当前第一阈值为12,网络切片的使用带宽等于第一阈值,PCF更新下一个时间点的第一阈值为13,且将下一个时间点的第二阈值和第三阈值均更新为6.5,并将当前时间点的网络切片的使用带宽更新为网络切片的最大使用带宽,此时最大使用带宽为12。
若该时间点为T5,且当前第一阈值为13,PCF没有收到任何一个SMF上报的速率的信息,此时最大使用带宽仍为12,同时也不执行下一个时间点的任何阈值的更新。
若该时间点为T6,且当前第一阈值仍为13,网络切片的使用带宽大于第一阈值,PCF更新下一个时间点的第一阈值为14,且将下一个时间点的第二阈值和第三阈值均更新为7,并将当前时间点的网络切片的使用带宽更新为网络切片的最大使用带宽,此时最大使用带宽为14。
可选的,PCF根据收到的多个SMF在步骤507中当前时间点的各自服务区域内网络切片的速率,向该多个SMF发送对应的更新的第二阈值和第三阈值,且此时PCF在更新下一个时间点的第二阈值和第三阈值时可以不考虑第一阈值,只根据当前第一SMF测得的当前时间点的服务区域内网络切片的速率和第二SMF测得的当前时间点的服务区域内网络切片的速率来更新下一个时间点的第二阈值和第三阈值。
步骤513,PCF向对应的SMF发送各自对应的更新后的阈值。
若在步骤512中,PCF更新了各个SMF所对应的阈值(例如第二阈值或第三阈值),例如,PCF向第一SMF发送更新后的第二阈值,PCF向第二SMF发送更新后的第三阈值。若只更新了第一SMF所对应的第二阈值,那么PCF只需要向第一SMF发送更新后的第二阈值,PCF无需向第二SMF发送没有被更新的第三阈值。
步骤514,PCF判断获取的速率对应的时间点是否为终止时间点。
若该时间点不是终止时间,则继续执行步骤505。若该时间点为终止时间,执行步骤515。例如,结合上述例子,当该时间点为T1至T5中的任意一个时间点,后续执行步骤505,当该时间点为T6,则执行步骤515.
特别说明的是,步骤505至步骤514的执行均能够在测量网络切片速率的下一个规定的时间点到来之前完成,例如,上述例子中任何两个相邻的时间点之间的时间间隔均大于该实施例中步骤505至步骤514的执行所使用的时间段。
以上步骤中,存在至少一个网络切片的使用带宽大于或等于第一阈值,且该使用带宽中最大的值被更新为网络切片的最大使用带宽。后续PCF执行步骤515。
步骤515,PCF发送网络切片的最大使用带宽。
若步骤501中PCF从CHF接收网络切片的标识、起始时间和第一阈值,则PCF向CHF发送该网络切片的最大使用带宽,若步骤501中PCF从NWDAF接收网络切片的标识、起始时间和第一阈值,则PCF向NWDAF发送该网络切片的最大使用带宽,若步骤501中PCF从AF接收网络切片的标识、起始时间和第一阈值,则PCF向AF 发送该网络切片的最大使用带宽。
以上述例子为例,该网络切片的最大使用带宽为14。
可选的,PCF发送该网络切片的最大使用带宽对应的时间点。
在该实施例中,若终止时间没有被规定,那么在步骤501中PCF接收到终止测量网络切片的速率的通知信息后,依次通过SMF向该PCF下各个管理的UPF发送终止测量会话的速率的通知信息,UPF终止会话的速率的测量。
以上述例子为例,按照时间的顺序,进行描述。假设在步骤505时,UPF判断出到达起始时刻T1,后续各个UPF执行步骤506。对应的SMF执行步骤507。例如,此时第一SMF所测量的服务区域内该网络切片的速率为3,第二SMF所测量的服务区域内该网络切片的速率为6,第一SMF所对应的第二阈值为5,第二SMF所对应的第三阈值为5。步骤508中第二SMF判断出自身服务区域内该网络切片的速率大于第三阈值,则第二SMF在步骤509向PCF上报该时间点以及该时间点测量的服务区域内该网络切片的速率,PCF通过执行步骤510通知第一SMF上报T1时间点所对应的自身服务区域内该网络切片的速率,第一SMF通过步骤511向PCF上报第一SMF自身服务区域内该网络切片的速率,PCF通过步骤512将T1时刻的第一SMF和第二SMF测量的各自自身服务区域内该网络切片的速率相加,得到该网络切片的使用带宽为9,由于T1时刻为起始时间,所以直接将该值记录为该网络切片的最大使用带宽。且由于使用带宽的值小于第一阈值,因此PCF没有更新第一阈值,且也没有更新第二阈值和第三阈值,随后PCF执行步骤514,判断出T1时刻不是终止时间点,后续UPF执行步骤505。
当UPF判断出当前时刻为T2,后续UPF执行步骤506。SMF执行步骤507,此时此时第一SMF所测量的服务区域内该网络切片的速率为3,第二SMF所测量的服务区域内该网络切片的速率为7,第一SMF所对应的第二阈值为5,第二SMF所对应的第三阈值为5,步骤508中第二SMF判断出自身服务区域内该网络切片的速率大于第三阈值,则第二SMF执行步骤509,第二SMF向PCF上报该时间点以及该时间点测量的服务区域内该网络切片的速率,由于在步骤509中第一SMF没有上报自身服务区域内该网络切片的速率,PCF通过执行步骤510通知第一SMF上报T2时间点所对应的自身服务区域内该网络切片的速率,第一SMF通过步骤511向PCF上报第一SMF自身服务区域内该网络切片的速率,PCF通过步骤512将T2时间点的第一SMF和第二SMF测量的各自自身服务区域内该网络切片的速率相加,得到该网络切片的使用带宽为10,由于该网络切片的最大使用带宽在T1时间点为9,小于当前时间点的网络切片的使用带宽,PCF将T2时间点对应的网络切片的使用带宽记录为该网络切片的最大使用带宽,并更新第一阈值为11,更新第二阈值为5.5,更新第三阈值为5.5,执行步骤513,PCF向第一SMF发送更新的第二阈值,向第二SMF发送更新的第三阈值,随后PCF执行步骤514,判断出T2时刻不是终止时间点,UPF继续步骤505。
当UPF判断出当前时刻为T3,后续UPF执行步骤506。SMF执行步骤507,此时此时第一SMF所测量的服务区域内该网络切片的速率为4,第二SMF所测量的服务区域内该网络切片的速率为7,第一SMF所对应的第二阈值为5.5,第二SMF所对应的第三阈值为5.5,步骤508中第二SMF判断出自身服务区域内该网络切片的速率 大于第三阈值,则第二SMF执行步骤509,第二SMF向PCF上报该时间点以及该时间点测量的服务区域内该网络切片的速率,由于在步骤509中第一SMF没有上报自身服务区域内该网络切片的速率,PCF通过执行步骤510通知第一SMF上报T3时间点所对应的自身服务区域内该网络切片的速率,第一SMF通过步骤511向PCF上报第一SMF自身服务区域内该网络切片的速率,PCF通过步骤512将T3时间点的第一SMF和第二SMF测量的各自自身服务区域内该网络切片的速率相加,得到该网络切片的使用带宽为11,由于该网络切片的最大使用带宽在T2时间点为10,小于当前时间点的网络切片的使用带宽,PCF将T3时间点对应的网络切片的使用带宽记录为该网络切片的最大使用带宽,并更新第一阈值为12,更新第二阈值为6,更新第三阈值为6,执行步骤513,PCF向第一SMF发送更新的第二阈值,向第二SMF发送更新的第三阈值,随后PCF执行步骤514,判断出T3时刻不是终止时间点,UPF继续步骤505。
当UPF判断出当前时刻为T4,后续UPF执行步骤506。SMF执行步骤507,此时此时第一SMF所测量的服务区域内该网络切片的速率为5,第二SMF所测量的服务区域内该网络切片的速率为7,第一SMF所对应的第二阈值为6,第二SMF所对应的第三阈值为6,步骤508中第二SMF判断出自身服务区域内该网络切片的速率大于第三阈值,则第二SMF执行步骤509,第二SMF向PCF上报该时间点以及该时间点测量的服务区域内该网络切片的速率,由于在步骤509中第一SMF没有上报自身服务区域内该网络切片的速率,PCF通过执行步骤510通知第一SMF上报T4时间点所对应的自身服务区域内该网络切片的速率,第一SMF通过步骤511向PCF上报第一SMF自身服务区域内该网络切片的速率,PCF通过步骤512将T4时间点的第一SMF和第二SMF测量的各自自身服务区域内该网络切片的速率相加,得到该网络切片的使用带宽为12,由于该网络切片的最大使用带宽在T3时间点为11,小于当前时间点的网络切片的使用带宽,PCF将T4时间点对应的网络切片的使用带宽记录为该网络切片的最大使用带宽,并更新第一阈值为13,更新第二阈值为6.5,更新第三阈值为6.5,执行步骤513,PCF向第一SMF发送更新的第二阈值,向第二SMF发送更新的第三阈值,随后PCF执行步骤514,判断出T4时刻不是终止时间点,UPF继续步骤505。
当UPF判断出当前时刻为T5,后续UPF执行步骤506。SMF执行步骤507,此时此时第一SMF所测量的服务区域内该网络切片的速率为6,第二SMF所测量的服务区域内该网络切片的速率为6,第一SMF所对应的第二阈值为6.5,第二SMF所对应的第三阈值为6.5,步骤508中第一SMF和第二SMF均判断出自身服务区域内该网络切片的速率小于各自对应的阈值,则UPF继续步骤505。
当UPF判断出当前时刻为T6,后续UPF执行步骤506。SMF执行步骤507,此时此时第一SMF所测量的服务区域内该网络切片的速率为6,第二SMF所测量的服务区域内该网络切片的速率为8,第一SMF所对应的第二阈值为6.5,第二SMF所对应的第三阈值为6.5,步骤508中第二SMF判断出自身服务区域内该网络切片的速率大于第三阈值,第一SMF判断出自身服务区域内该网络切片的速率大于第二阈值,则第二SMF和第一SMF均执行步骤509,第一SMF向PCF上报该时间点以及该时间点测量的服务区域内该网络切片的速率,第二SMF向PCF上报该时间点以及该时间点测量的服务区域内该网络切片的速率。PCF通过步骤512将T6时间点的第一SMF和 第二SMF测量的各自自身服务区域内该网络切片的速率相加,得到该网络切片的使用带宽为12,由于该网络切片的最大使用带宽在T4时间点为12,小于当前时间点的网络切片的使用带宽,PCF将T6时间点对应的网络切片的使用带宽记录为该网络切片的最大使用带宽,并更新第一阈值为14,更新第二阈值为7,更新第三阈值为7,执行步骤513,PCF向第一SMF发送更新的第二阈值,向第二SMF发送更新的第三阈值,随后PCF执行步骤514,判断出T6时刻是终止时间点,PCF执行步骤515,PCF发送该网络切片的最大使用带宽(值为14)。
可选的,该实施例中还可以包括下述方案:
PCF获取到各个时间点的网络切片的使用带宽后,将其与第一阈值进行比较。该第一阈值可以一直不被更新,且第二阈值或第三阈值也没有被更新。当该时间点的使用带宽的值大于或等于第一阈值,那么PCF执行该时间点对应的使用带宽的上报。PCF不再确定该网络切片的最大使用带宽,而是接收该使用带宽的网络装置来确定最大使用带宽的值,该网络装置为步骤501中向PCF发送分析订阅消息或分析信息请求消息的网络装置。
或者,该第一阈值不被更新,当该时间点的使用带宽的值大于或等于第一阈值,那么PCF比较当前记录的最大使用带宽的值与该时间点的使用带宽的值,若该时间点的使用带宽的值大于当前记录的最大使用带宽的值,则PCF将当前记录的最大使用带宽的值更新为该时间点的使用带宽的值,PCF最终实现最大使用带宽的确定。
通过该实施例所示的方法,PCF获取第一阈值,根据第一阈值为不同的SMF设置相应的阈值,当该时间点各个SMF各自测量的速率均小于对应的阈值时,不执行测量的速率的上报,减少了网络中速率上报的次数,降低了网络的负载。
图6所示的实施例为本申请的又一种测量网络切片的最大使用带宽的方法。
在本实施例中,被测量的网络切片中包括至少两个SMF,且一个SMF管理一个或多个UPF,本实施例以下述情况为例进行描述,被测量的网络切片中包括两个SMF(例如,第一SMF和第二SMF)且第一SMF管理第一UPF,第二SMF管理第二UPF。该步骤中的举例可参考图5中与PCF相关的举例。
该方法包括以下步骤:
步骤601,NWDAF获取网络切片的标识和起始时间。
NWDAF从CHF接收分析订阅消息,请求获取网络切片的最大使用带宽;
或者,NWDAF从PCF接收分析订阅消息,请求获取网络切片的最大使用带宽;
或者,NWDAF从AF接收分析信息请求消息,请求获取网络切片的最大使用带宽;
上述分析订阅消息或分析信息请求消息中包括网络切片的标识(例如,S-NSSAI),以及起始时间,该起始时间可以是当前或历史某个时间点,也可以是未来某个时间点。可选的,上述分析订阅消息或分析信息请求消息中还包括终止时间。
可选的,分析订阅消息或分析信息请求消息中还包括分析精度要求,该分析精度要求用于后续时间间隔的确定。
可选的,分析订阅消息或分析信息请求消息中还包括第一阈值,第一阈值用于NWDAF进行网络切片的最大使用带宽的上报。
步骤602,NWDAF确定第一阈值,并分解第一阈值。
NWDAF根据网络切片的标识,获得支持该网络切片的各个SMF(例如,第一SMF和第二SMF),例如,NWDAF根据网络切片的标识查询网络仓库功能(network repository function,NRF)。如果步骤601没有包括第一阈值,NWDAF根据各个SMF的历史的测量的速率(可能是从SMF获得的历史的测量的结果,也可能是从OAM获得的性能统计数据),确定第一阈值。例如,这个阈值可以是历史时间内该SMF测量的历史速率的最大值的90%。如果NWDAF无法获得历史时间内该SMF测量的速率的最大值,NWDAF可以将第一阈值确定为0,并在后续步骤中NWDAF根据该网络切片的最大使用带宽,或者根据获取的SMF服务区域内网络切片的速率,对第一阈值进行更新。
NWDAF确定第一阈值后,将第一阈值分解,为各个SMF设置分解的阈值,例如,为第一SMF设置第二阈值,为第二SMF设置第三阈值,且第二阈值和第三阈值加起来等于或小于第一阈值。第二阈值和第三阈值可以相同,也可以不同。
该步骤可参考图5所示实施例的步骤501或步骤502中关于第一阈值的描述。
步骤603,NWDAF向SMF发送网络切片的标识和起始时间。
例如,NWDAF均向第一SMF和第二SMF发送包含网络切片的标识和起始时间的事件订阅请求消息,要求各个SMF向NDWDAF发送自身服务区域内该网络切片的速率的测量结果。该步骤可参考图5所示实施例中步骤503的PCF的描述。
此外,如果NWDAF接收到分析精度要求,NWDAF可以根据分析精度要求,确定时间间隔。如果NWDAF没有接收到包括分析精度要求,NWDAF可以根据自身配置的分析精度要求或本地策略中的分析精度要求确定合适的时间间隔。若分析精度要求高,则时间间隔小,若分析精度要求低,则时间间隔大。
可选的,如果步骤601中NWDAF接收到终止时间,则NWDAF向各个SMF发送的事件订阅请求消息中可以包括终止时间。后续各个SMF发送不晚于终止时间的测量结果。
如果NWDAF向各个SMF发送的事件订阅请求消息中不包括终止时间,那么NWDAF后续会向各个SMF发送事件订阅取消消息,使各个SMF停止测量该网络切片的速率,使得各个SMF发送不晚于终止时间的测量结果。
步骤604,SMF向各自管理的支持该网络切片的UPF发送网络切片的标识和起始时间。该步骤可参考图5中步骤504的描述。
步骤605,UPF判断当前时间点是否为规定的时间点。若当前时间点为规定的时间点,则执行步骤606。若当前的时间不是规定的时间点,继续执行本步骤。
步骤606,UPF向SMF上报测量的会话的累加速率。该步骤可参考图5中步骤506的描述。
步骤607,SMF获取SMF服务区域内网络切片的速率。该步骤可参考图5中步骤507的描述。
步骤608,SMF判断SMF服务区域内网络切片的速率是否大于分解的阈值。
第一SMF将自身服务区域内该时间点的网络切片的速率与第二阈值进行比较,第二SMF将自身服务区域内该时间点的网络切片的速率与第三阈值进行比较。
若其中一个SMF自身服务区域内的网络切片在该时间点的速率大于或等于各自的阈值,则执行步骤609,若各个SMF服务区域内网络切片的速率均小于各自的阈值,则执行步骤605。
例如,若该时间点为T1,如表11所示,第一SMF测得的服务区域内网络切片的速率为3,该速率小于第二阈值,第二SMF测得的服务区域内网络切片的速率为6,该速率大于第三阈值,存在至少一个SMF所测得的服务区域内网络切片的速率大于或等于各自对应的阈值,执行后续步骤609。
例如,若该时间点为T2,如表11所示,第一SMF测得的服务区域内网络切片的速率为7,该速率大于第二阈值,第二SMF测得的服务区域内网络切片的速率为3,该速率小于第三阈值,存在至少一个SMF所测得的服务区域内网络切片的速率大于或等于各自对应的阈值,执行后续步骤609。
例如,若该时间点为T5,如表11所示,第一SMF测得的服务区域内网络切片的速率为6,该速率小于第二阈值,第二SMF测得的服务区域内网络切片的速率为6,该速率小于第三阈值,各个SMF服务区域内网络切片的速率均小于各自的阈值,则返回步骤605。
例如,若该时间点为T6,如表11所示,第一SMF测得的服务区域内网络切片的速率为6,该速率大于第二阈值,第二SMF测得的服务区域内网络切片的速率为8,该速率大于第三阈值,存在至少一个SMF所测得的服务区域内网络切片的速率大于或等于各自对应的阈值,执行后续步骤609。
若该时间点为表11中的其他时间点,同理。
可选的,SMF根据从各自管理的UPF接收的相同的当前时间点的同方向的会话的累加速率,向UPF发送对应的更新的步骤604中的第四阈值和第五阈值。例如,第一SMF将自身服务区域内该时间点的网络切片的速率与第二阈值进行比较后,当该时间点的网络切片的速率已经大于第二阈值,第一SMF根据从第一UPF接收的相同的当前时间点的同方向的会话的累加速率更新第四阈值,更新后的第四阈值一般比更新前的第四阈值大,这样UPF后续只有在网络切片的会话的累加速率达到更大的值(即大于第四阈值)后,向第一SMF上报大于更新后的第四阈值的该测量的网络切片的会话的累加速率,以便第一SMF后续只获得更大的自身服务区域内网络切片的速率。
步骤609,SMF向PCF发送事件通知消息。
例如,结合上面的例子,以时间点为T1为例,第二SMF自身服务区域内的网络切片的速率大于第三阈值,则第二SMF向PCF发送事件通知消息,该消息中包括当前的时间点对应的速率以及该时间点。若该时间点为T6,第一SMF和第二SMF测得的各自的自身服务区域内的网络切片的速率均大于各自对应的阈值,那么第一SMF和第二SMF均执行该步骤,且步骤610和步骤611不再执行。
步骤610,NWDAF向其他的SMF发送事件报告请求消息。
步骤611,其他的SMF向NWDAF发送各自服务区域内网络切片的速率。
步骤612,NWDAF获取网络切片的使用带宽并确定网络切片的最大使用带宽。
步骤613,NWDAF向对应的SMF发送各自对应的更新后的阈值。
步骤610至步骤613可参考图5中步骤510至步骤513中PCF的描述。
步骤614,NWDAF判断获取的速率对应的时间点是否为终止时间点。
若该时间点不是终止时间,则继续执行步骤605。若该时间点为终止时间,执行步骤615。例如,结合上述例子,当该时间点为T1至T5中的任意一个时间点,后续执行步骤605,当该时间点为T6,则执行步骤615。
特别说明的是,从步骤605至步骤614的执行均能够在测量网路切片速率的下一个规定的时间点到来之前完成,例如,上述例子中任何两个相邻的时间点之间的时间间隔均大于该实施例中步骤605至步骤614的执行所使用的时间段。
步骤615,NWDAF发送网络切片的最大使用带宽。
若步骤601中NWDAF从CHF接收网络切片的标识、起始时间,则NWDAF向CHF发送该网络切片的最大使用带宽,若步骤601中NWDAF从PCF接收网络切片的标识、起始时间,则NWDAF向PCF发送该网络切片的最大使用带宽,若步骤601中PCF从AF接收网络切片的标识、起始时间,则NWDAF向AF发送该网络切片的最大使用带宽。
以上述例子为例,该网络切片的最大使用带宽为14。
可选的,NWDAF发送该网络切片的最大使用带宽对应的时间点。
在该实施例中,若终止时间没有被规定,那么在步骤601中NWDAF接收到终止测量网络切片的速率的通知信息后,依次通过SMF向该NWDAF下各个管理的UPF发送终止测量会话的速率的通知信息,UPF终止会话的速率的测量。
可选的,该实施例中还可以包括下述方案:第一阈值信息的更新为可选的动作,NWDAF获取到各个时间点的网络切片的使用带宽后,与第一阈值进行比较。当该时间点的使用带宽的值大于或等于第一阈值,那么NWDAF执行该时间点对应的使用带宽的上报,不再由NWDAF确定该网络切片的最大使用带宽,而是由接收该使用带宽的网络装置来确定最大使用带宽的值,该网络装置为步骤601中向NWDAF发送网络切片的标识和起始时间的网络装置;或者,当该时间点的使用带宽的值大于或等于第一阈值,那么NWDAF比较当前记录的最大使用带宽的值与该时间点的使用带宽的值,若该时间点的使用带宽的值大于当前记录的最大使用带宽的值,则将当前记录的最大使用带宽的值更新为该时间点的使用带宽的值,NWDAF最终实现最大使用带宽的确定。
通过该实施例所示的方法,NWDAF获取第一阈值,根据第一阈值为不同的SMF设置相应的阈值,当该时间点的各个SMF各自测量的速率均小于对应的阈值时,不执行测量的速率的上报,减少了网络中速率上报的次数,降低了网络的负载。由于NWDAF具有数据分析和预测的功能,该实施例中的初始的第一阈值、第二阈值或者第三阈值均可以根据历史的测量值进行设置,可以使得各个阈值更加贴近实际情况。
图7所示的实施例为本申请的又一种测量网络切片的最大使用带宽的方法。
在本实施例中,被测量的网络切片中包括一个SMF,且该SMF管理一个或多个UPF,本实施例以下述情况为例进行描述:该SMF管理第一UPF和第二UPF。
该方法包括以下步骤:
步骤701,PCF接收网络切片的标识、起始时间和第一阈值。
该步骤可参考图5所示步骤501的描述。
步骤702,PCF设置第二阈值。
PCF根据第一阈值为SMF设置阈值,第二阈值和第一阈值可以相同,也可以不同。第二阈值用于指示SMF,当在SMF服务区域内网络切片在某一个测量的时间点的速率超过第二阈值时,SMF向PCF上报服务区域内该时间点对应的网络切片的速率。否则,SMF只测量各个时间点的服务区域内网络切片的速率,并做本地缓存。例如,第一阈值为10,第二阈值为5。
步骤703,PCF向SMF发送网络切片的标识、起始时间和第二阈值。
例如,PCF向SMF发送包含网络切片的标识起始时间和第二阈值的事件订阅请求消息。可选的,事件订阅请求消息中还包括时间间隔。订阅的事件为该网络切片的速率的结果。相同的起始时间和时间间隔是为了保证SMF和该SMF管理的多个UPF的测量结果为规定的相同时间点(包括从起始时间开始的和N个时间点,且相邻时间点之间的时间间隔为上述时间间隔,其中N为整数)的测量结果,若事件订阅请求消息中不包括时间间隔,那么该时间间隔可以为任意一个PCF或SMF或UPF中内置的值,且各个内置的时间间隔为统一的。
PCF还向SMF发送第二阈值,例如,PCF向SMF发送第二阈值,例如,第二阈值为5。
可选的,PCF还向SMF发送终止时间。可选的,如果步骤701中PCF接收到终止时间,则PCF向SMF发送的事件订阅请求消息中可以包括终止时间。后续SMF发送不晚于终止时间的测量结果。
如果PCF向SMF发送的事件订阅请求消息中不包括终止时间,那么PCF后续向SMF发送事件订阅取消消息,使SMF停止测量该网络切片的速率,使得SMF发送不晚于终止时间的测量结果。
步骤704,SMF向管理的支持该网络切片的UPF发送网络切片的标识和起始时间。
该步骤可参考图3所示实施例中步骤303的描述。
此外,可选的,SMF可以进一步将第二阈值进行分解第三阈值和第四阈值,分解的方法参考图5所示步骤502的描述,不再赘述。SMF向第一UPF发送第三阈值,SMF向第二UPF发送第四阈值。
可选的,SMF还向各自管理的支持该网络切片的UPF发送终止时间。
步骤705,UPF判断当前时间点是否为规定的时间点。若当前时间点为规定的时间点,则执行步骤706。若当前的时间不是规定的时间点,继续执行本步骤。
步骤706,UPF向SMF上报测量的会话的累加速率。该步骤可参考图5中步骤506的描述。
步骤707,SMF获取SMF服务区域内网络切片的速率。
SMF将各自从UPF接收的该时间点的同方向的会话的累加速率进行累加,得到SMF该时间点的服务区域内网络切片的速率。
例如,第一UPF、第二UPF和SMF各自测量的速率值如表13所示:
表13 各个网元测量的速率以及各自对应的阈值
  T1 T2 T3 T4 T5 T6
第一UPF 3 7 4 5 6 6
第二UPF 6 3 7 7 6 8
SMF 9|5 10|9 11|10 12|11 12|12 14|12
若该时间点为T1,那么SMF测量服务区域内网络切片的速率为9,该时间点对应的第二阈值为5,若该时间点为表格内的其他时间点也同理。
步骤708,SMF判断SMF服务区域内网络切片的速率是否大于分解的阈值。
SMF将服务区域内该时间点的网络切片的速率与第二阈值进行比较。
若SMF自身服务区域内的网络切片在该时间点的速率大于第二阈值,则SMF执行步骤709,若SMF服务区域内网络切片的速率小于或等于各自的阈值,则返回步骤705。
例如,若该时间点为T1,如表13所示,SMF测得的服务区域内网络切片的速率为9,该时刻对应的第二阈值为5,该速率大于第二阈值,执行后续步骤709。
例如,若该时间点为T5,如表13所示,SMF测得的服务区域内网络切片的速率为12,该时刻对应的第二阈值为12,该速率等于第二阈值,执行后续步骤705。
若该时间点为表13中的其他时间点,同理。
可选的,SMF根据从各自管理的UPF接收的相同的当前时间点的同方向的会话的累加速率,向UPF发送对应的更新的步骤704中的第三阈值和第四阈值。例如,SMF将自身服务区域内该时间点的网络切片的速率与第二阈值进行比较后,当该时间点的网络切片的速率已经大于第二阈值,SMF会根据从第一UPF接收的相同的当前时间点的同方向的会话的累加速率更新第三阈值,更新后的第三阈值一般比更新前的第三阈值大,这样第一UPF后续只有在网络切片的会话的累加速率达到更大的值(即大于第三阈值)后,才会向SMF上报大于更新后的第三阈值的该测量的网络切片的会话的累加速率,以便SMF后续只获得更大的自身服务区域内网络切片的速率。
步骤709,SMF向PCF发送该时间点的服务区域内网络切片的速率。
例如,结合上面的例子,若当前时间点为T1为例,SMF自身服务区域内的网络切片的速率大于第二阈值,则第二SMF向PCF该时间点的服务区域内网络切片的速率。
步骤710,PCF获取网络切片的使用带宽,确定网络切片的最大使用带宽,更新第二阈值。
PCF收到SMF服务区域内该时间点的网络切片的速率,该速率即为该时间点的网络切片的使用带宽。并根据当前时间点的使用带宽的值和PCF记录的历史时间点的使用带宽的值,选择最大的值,确定网络切片的最大使用带宽。可选的,PCF将当前时间点的使用带宽的值更新为网络切片的最大使用带宽。
继续结合表13所述的例子,得到表14:
表14 各个网元测量的速率以及SMF的阈值
Figure PCTCN2022072650-appb-000013
若当前时间点为T1,网络切片的使用带宽为9。由于T1为起始时刻,则PCF确 定该网络切片的最大使用带宽为该时间点的使用带宽的值,即最大使用带宽为9。随后,PCF更新第二阈值为9。
若该时间点为T2,网络切片的使用带宽为10。该时间点所对应的网络切片的使用带宽大于T1时刻记录的该网络切片的最大使用带宽的值,则PCF确定该网络切片的最大使用带宽为该时间点的使用带宽的值,即最大使用带宽为10。随后,PCF更新第二阈值为10。
若该时间点为T3,网络切片的使用带宽为11。该时间点所对应的网络切片的使用带宽大于T2时刻记录的该网络切片的最大使用带宽的值,则PCF确定该网络切片的最大使用带宽为该时间点的使用带宽的值,即最大使用带宽为11。随后,PCF更新第二阈值为11。
若该时间点为T4,网络切片的使用带宽为12。该时间点所对应的网络切片的使用带宽大于T3时刻记录的该网络切片的最大使用带宽的值,则PCF确定该网络切片的最大使用带宽为该时间点的使用带宽的值,即最大使用带宽为12。随后,PCF更新第二阈值为12。
若该时间点为T5,网络切片的使用带宽为12。PCF没有从SMF接收到速率的值。
若该时间点为T6,网络切片的使用带宽为14。该时间点所对应的网络切片的使用带宽大于T4时刻记录的该网络切片的最大使用带宽的值,则PCF确定该网络切片的最大使用带宽为该时间点的使用带宽的值,即最大使用带宽为14。
步骤711,PCF向SMF发送各自对应的更新后的阈值。
若在步骤710中,PCF更新了第二阈值,PCF向SMF发送更新后的第二阈值,若PCF没有更新第二阈值,那么该步骤不被执行。
步骤712,PCF判断获取的速率对应的时间点是否为终止时间点。
若该时间点不是终止时间,则继续执行步骤705。若该时间点为终止时间,执行步骤713。例如,结合上述例子,当该时间点为T1至T5中的任意一个时间点,后续执行步骤705,当该时间点为T6,则执行步骤713。
特别说明的是,从步骤705至步骤712的执行均能够在测量网路切片速率的下一个规定的时间点到来之前完成,例如,上述例子中任何两个相邻的时间点之间的时间间隔均大于该实施例中步骤705至步骤712的执行所使用的时间段。
步骤713,PCF发送网络切片的最大使用带宽。
若步骤701中PCF从CHF接收网络切片的标识、起始时间和第一阈值,则PCF向CHF发送该网络切片的最大使用带宽,若步骤701中PCF从NWDAF接收网络切片的标识、起始时间和第一阈值,则PCF向NWDAF发送该网络切片的最大使用带宽,若步骤701中PCF从AF接收网络切片的标识、起始时间和第一阈值,则PCF向AF发送该网络切片的最大使用带宽。
以上述例子为例,该网络切片的最大使用带宽为14。
可选的,PCF发送该网络切片的最大使用带宽对应的时间点。
在该实施例中,若终止时间没有被规定,那么在步骤701中PCF接收到终止测量网络切片的速率的通知信息后,依次通过SMF向该PCF下各个管理的UPF发送终止测量会话的速率的通知信息,UPF终止会话的速率的测量。
以该实施例中的举例,该实施例以时间的顺序阐述如下:
假设在步骤705时,UPF判断到达起始时刻T1,后续UPF执行步骤706。SMF执行步骤707,此时SMF所测量的服务区域内该网络切片的速率为9,SMF所对应的第二阈值为5。步骤708中SMF判断出自身服务区域内该网络切片的速率大于第二阈值,则SMF在步骤709向PCF上报该时间点以及该时间点测量的服务区域内该网络切片的速率,PCF获取该时间点的网络切片的使用带宽,即SMF上报的该时间点测量的服务区域内该网络切片的速率,并将该使用带宽记录为该网络切片的最大使用带宽。随后PCF执行步骤711,根据当前时间点的服务区域内该网络切片的速率更新第二阈值为9,向SMF发送更新后的第二阈值。随后PCF执行步骤712,判断出T1时刻不是终止时间点,后续UPF执行步骤705。
当UPF判断出当前时刻为T2,后续UPF执行步骤706。SMF执行步骤707,此时SMF所测量的服务区域内该网络切片的速率为10,SMF所对应的第二阈值为9。步骤708中SMF判断出自身服务区域内该网络切片的速率大于第二阈值,则SMF在步骤709向PCF上报该时间点以及该时间点测量的服务区域内该网络切片的速率,PCF获取该时间点的网络切片的使用带宽,即SMF上报的该时间点测量的服务区域内该网络切片的速率,并将该使用带宽记录为该网络切片的最大使用带宽,此时最大使用带宽为10。随后PCF执行步骤711,根据当前时间点的服务区域内该网络切片的速率更新第二阈值为10,向SMF发送更新后的第二阈值。随后PCF执行步骤712,判断出T2时刻不是终止时间点,后续UPF执行步骤705。
当UPF判断出当前时刻为T3,后续UPF执行步骤706。SMF执行步骤707,此时SMF所测量的服务区域内该网络切片的速率为11,SMF所对应的第二阈值为10。步骤708中SMF判断出自身服务区域内该网络切片的速率大于第二阈值,则SMF在步骤709向PCF上报该时间点以及该时间点测量的服务区域内该网络切片的速率,PCF获取该时间点的网络切片的使用带宽,即SMF上报的该时间点测量的服务区域内该网络切片的速率,并将该使用带宽记录为该网络切片的最大使用带宽,此时最大使用带宽为11。随后PCF执行步骤711,根据当前时间点的服务区域内该网络切片的速率更新第二阈值为11,向SMF发送更新后的第二阈值。随后PCF执行步骤712,判断出T3时刻不是终止时间点,后续UPF执行步骤705。
当UPF判断出当前时刻为T4,后续UPF执行步骤706。SMF执行步骤707,此时SMF所测量的服务区域内该网络切片的速率为12,SMF所对应的第二阈值为11。步骤708中SMF判断出自身服务区域内该网络切片的速率大于第二阈值,则SMF在步骤709向PCF上报该时间点以及该时间点测量的服务区域内该网络切片的速率,PCF获取该时间点的网络切片的使用带宽,即SMF上报的该时间点测量的服务区域内该网络切片的速率,并将该使用带宽记录为该网络切片的最大使用带宽,此时最大使用带宽为12。随后PCF执行步骤711,根据当前时间点的服务区域内该网络切片的速率更新第二阈值为12,向SMF发送更新后的第二阈值。随后PCF执行步骤712,判断出T4时刻不是终止时间点,后续UPF执行步骤705。
当UPF判断出当前时刻为T5,后续UPF执行步骤706。SMF执行步骤707,此时SMF所测量的服务区域内该网络切片的速率为12,SMF所对应的第二阈值为12。 步骤708中SMF判断出自身服务区域内该网络切片的速率等于第二阈值,随后UPF执行步骤705。
当UPF判断出当前时刻为T6,后续UPF执行步骤706。SMF执行步骤707,此时SMF所测量的服务区域内该网络切片的速率为14,SMF所对应的第二阈值为12。步骤708中SMF判断出自身服务区域内该网络切片的速率大于第二阈值,则SMF在步骤709向PCF上报该时间点以及该时间点测量的服务区域内该网络切片的速率,PCF获取该时间点的网络切片的使用带宽,即SMF上报的该时间点测量的服务区域内该网络切片的速率,并将该使用带宽记录为该网络切片的最大使用带宽,此时最大使用带宽为14。随后PCF执行步骤711,根据当前时间点的服务区域内该网络切片的速率更新第二阈值为14,向SMF发送更新后的第二阈值。随后PCF执行步骤712,判断出T6时刻是终止时间点,后续PCF执行步骤713,PCF发送最大使用带,最大使用带宽的值为14。
当一个网络切片中只包括一个SMF时,通过该实施例所示的方法,PCF为SMF设置阈值,当SMF测量的速率小于或等于对应的阈值时,不执行测量的速率的上报,减少了网络中测量的速率的上报的次数,降低了网络的负载。
图8为本申请的又一种测量网络切片的最大使用带宽的方法。该方法由网络设备执行,该网络设备可以是图3、图6中的NWDAF,也可以是图4、图5和图7中的PCF。
该方法包括以下步骤:
步骤801,网络设备发送网络切片的标识和测量网络切片的速率的第一起始时刻。
例如,网络切片的标识用于标识被测量的网络切片,该第一起始时刻为测量该网络切片的起始时间,后续步骤中的第一起始时刻均为该起始时间,后面不再赘述。
一种可能的实施方式中,该方法还包括:网络设备指示会话管理功能网元上报多个时刻的多个速率。该多个时刻为规定的多个时间点(包括从起始时间开始的和N个时间点,且相邻时间点之间的时间间隔为固定的时间间隔,其中N为整数)。该实施例中的其他步骤中的多个时刻均为该规定的相同的时间点,不再赘述。该实施方式可参考图4所示的实施例中步骤403的描述。
一种可能的实施方式中,网络设备通过会话管理功能网元向用户面功能网元发送使用量上报规则,使用量上报规则中包括网络切片的标识和第一起始时刻。也就是说,该使用量上报规则用于告知用户面功能网元测量该网络切片的标识所对应的网络切片的速率,以及告知用户面功能网元从第一起始时刻开始进行测量。该实施方式可参考图3所示的实施例中步骤303的描述,图4所示的实施例中步骤404的描述,图5所示的实施例中步骤504的描述,图6所示的实施例中步骤604的描述和图7所示的实施例中步骤704的描述。
一种可能的实施方式中,该步骤还包括:网络设备获取精度要求信息,根据精度要求信息确定时间间隔信息,然后网络设备发送时间间隔信息,时间间隔信息用于第一起始时刻后的一个或多个时刻的确定。该实施方式中的时间间隔信息为图5至图7所述实施例中的相邻时间点之间的时间间隔,也就是说,该时间间隔信息可以用来规定执行测量网络切片的速率的网元或装置在规定的多个时刻进行速率的测量。该实施 方式可参考图3所示的实施例中步骤301和步骤302的描述,图4所示的实施例中步骤401和步骤403的描述,图5所示的实施例中步骤501和步骤503的描述,图6所示的实施例中步骤601和步骤603的描述和图7所示的实施例中步骤701和步骤703的描述。
该步骤可参考图3所示的实施例中步骤302的描述,图4所示的实施例中步骤403的描述,图5所示的实施例中步骤503的描述,图6所示的实施例中步骤603的描述和图7所示的实施例中步骤703的描述。
步骤802,网络设备接收多个时刻的多个速率。
例如,多个时刻包括第一起始时刻以及第一起始时刻后的一个或多个时刻,其中多个时刻的每个时刻对应多个速率。
一种可能的实施方式中,网络设备从会话管理功能网元接收多个时刻的多个速率。
一种可能的实施方式中,该方法还包括:网络设备从会话管理功能网元接收用户面功能网元的标识,用户面功能网元的标识用于表示多个时刻的多个速率是用户面功能网元测量的。该用户面功能网元的标识被用于区分多个时刻的多个速率,可以防止同一个用户面功能网元所测量的多个速率被重复计算,降低最终的最大使用带宽不准确的概率。
该步骤可参考图3所示的实施例中步骤306的描述,图4所示的实施例中步骤407的描述,图5所示的实施例中步骤509或步骤511的描述,图6所示的实施例中步骤609或步骤611的描述,以及图7所示的实施例中步骤709的描述。
步骤803,网络设备确定多个时刻的多个第一速率。
例如,多个第一速率中每个时刻对应的第一速率等于每个时刻的多个速率之和。
例如,该第一速率为图3至图7所示的实施例中该网络切片的使用带宽,该实施例中的其他步骤中的第一速率同理,不再赘述。
步骤804,网络设备根据多个时刻的多个第一速率确定最大使用带宽。
一种可能的实施方式中,网络设备根据多个时刻的多个第一速率中最大的第一速率确定最大使用带宽。
步骤803和步骤804可参考图3所示的实施例中步骤307的描述,图4所示的实施例中步骤408的描述,图5所示的实施例中步骤512的描述,图6所示的实施例中步骤612的描述和图7所示的实施例中步骤710的描述。
步骤805,网络设备发送最大使用带宽。
一种可能的实施方式中,网络设备获取第一阈值信息,当最大使用带宽大于或等于第一阈值信息时,网络设备发送最大使用带宽。例如,网络设备可以获取网络切片的历史最大使用带宽,网络设备根据历史最大使用带宽确定第一阈值信息。该实施方式可参考图5所示的实施例中的步骤501的描述,图6所示的实施例中的步骤601和步骤602的描述,以及图7所示的实施例中的步骤701的描述。
在该实施方式中,该方法还包括:网络设备向会话管理功能网元发送与第一阈值信息关联的第二阈值信息,当多个时刻中的第一时刻的与会话管理功能网元关联的速率大于第二阈值信息,第二阈值信息用于触发第一时刻的多个速率的上报。也就是说,当多个时刻中的第一时刻的与会话管理功能网元关联的速率小于或等于第二阈值信息, 该第一时刻的与会话管理功能网元关联的速率不会被上报,也减少了网络中数据传输,减轻网络的负担。该实施方式中的第二阈值信息为图5和图6所示的实施例中与第一SMF对应的第二阈值信息,或者与第二SMF对应的第三阈值信息,亦或者第二阈值信息为图7中与SMF对应的第二阈值信息。该实施方式可参考图5所示的实施例中的步骤503的描述,图6所示的实施例中的步骤603的描述,以及图7所示的实施例中的步骤703的描述。
在该实施方式中,该方法还包括:网络设备根据多个时刻中的第一时刻的多个速率,将第二阈值信息更新为第三阈值信息;网络设备向会话管理功能网元发送第三阈值信息,当多个时刻中的第二时刻的与会话管理功能网元关联的速率大于第三阈值信息,第三阈值信息用于触发第二时刻的多个速率的上报,第二时刻晚于第一时刻。该第三阈值信息可以是图5所示实施例中的更新的第二阈值和第三阈值,或者图6所示实施例中的更新的第二阈值和第三阈值,或者可以是图7所示实施例中的更新的第二阈值。该方法可参考图5所示的实施例中的步骤512和步骤513的描述,图6所示的实施例中的步骤612和步骤613的描述,以及图7所示的实施例中的步骤710和步骤711的描述。
该步骤可参考图3所示的实施例中的步骤308的描述,图4所示的实施例中的步骤409的描述,图5所示的实施例中的步骤515的描述,图6所示的实施例中的步骤615的描述,以及图7所示的实施例中的步骤713的描述。
通过上述方法,该网络设备可以根据多个时刻的多个速率,确定的多个时刻的多个第一速率,最终根据多个时刻的多个第一速率确定最大使用带宽,使得确定的最大使用带宽更加准确。
图9为本申请的又一种测量网络切片的最大使用带宽的方法。该方法由会话管理功能网元执行。该会话管理功能网元可以是图3、图4或图7中的SMF,也可以是图5中的第一SMF或者第二SMF,也可以是图6中的第一SMF或者第二SMF。该方法包括以下步骤:
步骤901,会话管理功能网元从网络设备接收网络切片的标识和测量网络切片的速率的第一起始时刻。
例如,该网络设备可以是图3、图6中的NWDAF,也可以是图4、图5和图7中的PCF。
例如,网络切片的标识用于标识被测量的网络切片。
例如,第一起始时刻为测量该网络切片的起始时间,后续步骤中的第一起始时刻均为该起始时间,不再赘述。
一种可能的实施方式中,该方法还包括:会话管理功能网元从网络设备接收第一阈值信息。该第一阈值信息可以为图5所示的实施例中的第二阈值或者第三阈值,可以为图6所示的实施例中的第二阈值或者第三阈值,可以为图7所示的实施例中的第二阈值。该第一阈值信息用于对应的会话管理功能网元判断向网络设备上报各自测量的服务区域内的速率。该实施方式可参考图5所示的实施例中的步骤503的描述,图6所示的实施例中的步骤603的描述,以及图7所示的实施例中的步骤703的描述。
该步骤可参考图3所示的实施例中的步骤302的描述,图4所示的实施例中的步 骤403的描述,图5所示的实施例中的步骤503的描述,图6所示的实施例中的步骤603的描述,以及图7所示的实施例中的步骤703的描述。
步骤902,会话管理功能网元向用户面功能网元发送网络切片的标识和第一起始时刻。
一种可能的实施方式中,会话管理功能网元向用户面功能网元发送使用量上报规则,使用量上报规则包括网络切片的标识和第一起始时刻,或者,使用量上报规则还包括时间间隔信息,时间间隔信息用于第一起始时刻后的一个或多个时刻的确定。
该步骤可参考图3所示的实施例中的步骤303的描述,图4所示的实施例中的步骤404的描述,图5所示的实施例中的步骤504的描述,图6所示的实施例中的步骤604的描述,以及图7所示的实施例中的步骤704的描述。
步骤903,会话管理功能网元从用户面功能网元接收多个时刻的多个速率。
例如,该多个时刻为规定的多个时间点(包括从起始时间开始的和N个时间点,且相邻时间点之间的时间间隔为固定的时间间隔,其中N为整数)。该实施例中的其他步骤中的多个时刻均为该规定的相同的时间点,不再赘述。
例如,多个时刻包括第一起始时刻以及第一起始时刻后的一个或多个时刻,其中多个时刻的每个时刻对应一个或多个速率。
一种可能的实施方式中,该方法还包括:会话管理功能网元接收用户面功能网元的标识,用户面功能网元的标识用于表示多个时刻的多个速率是用户面功能网元测量的。该用户面功能网元的标识被用于区分多个时刻的多个速率,可以防止同一个用户面功能网元所测量的多个速率被重复计算,降低最终的最大使用带宽不准确的概率。该步骤可参考图3所示的实施例中的步骤304的描述,图4所示的实施例中的步骤405的描述。
该步骤可参考图3所示的实施例中的步骤304的描述,图4所示的实施例中的步骤405的描述,图5所示的实施例中的步骤506的描述,图6所示的实施例中的步骤606的描述,以及图7所示的实施例中的步骤706的描述。
步骤904,会话管理功能网元向网络设备发送与多个时刻的多个速率关联的速率信息。
一种可能的实施方式中,速率信息包括多个时刻的多个速率。也就是说,通过该实施方式,会话管理功能网元向网络设备发送从用户面功能网元接收到的多个时刻的多个速率。
一种可能的实施方式中,速率信息包括多个时刻的多个第一速率,其中,当多个时刻的每个时刻对应多个速率,多个第一速率中每个时刻对应的第一速率等于每个时刻的多个速率之和,或者,当多个时刻的每个时刻对应一个速率,多个第一速率中每个时刻对应的第一速率等于每个时刻的一个速率。也就是说,会话管理功能网元将用户面功能网元接收到的多个时刻的多个速率按照相同的时刻进行速率的累加,并向网络设备发送该累加后的速率值。
一种可能的实施方式中,该方法还包括:当多个时刻中的第一时刻对应的第一速率大于或等于第一阈值信息,会话管理功能网元向网络设备上报第一时刻对应的第一速率。该第一阈值信息可以是图5中的与第一SMF对应的第二阈值,或者与第二SMF 对应的第三阈值,也可以是图6中的与第一SMF对应的第二阈值,或者与第二SMF对应的第三阈值,也可以是图7中的与SMF对应的第二阈值。若会话管理功能网元向用户面功能网元发送与第一阈值信息关联的第二阈值信息,该第二阈值为更新后的第一阈值,且该第二阈值信息用于触发多个时刻中的与用户面功能网元关联的速率的上报。该实施方式可参考图5所示的实施例中的步骤507、步骤508、步骤509和步骤511的描述,图6所示的实施例中步骤607、步骤608、步骤609和步骤611的描述,以及图7所示的实施例中的步骤707、步骤708和步骤709的描述。
该步骤可参考图3所示的实施例中的步骤305和步骤306的描述,图4所示的实施例中的步骤406和步骤407的描述,图5所示的实施例中的步骤507、步骤508、步骤509和步骤511的描述,图6所示的实施例中步骤607、步骤608、步骤609和步骤611的描述,以及图7所示的实施例中的步骤707、步骤708和步骤709的描述。
通过上述方法,会话管理功能网元向网络设备发送速率信息,该速率信息为多个时刻的多个速率所关联的速率信息,该速率信息体现了该网络切片的多个时刻的速率信息,该速率信息最终用于最大使用带宽的确定,通过该速率信息可以提升最大使用带宽的测量的准确性。
图10为本申请的又一种测量网络切片的最大使用带宽的方法。该方法由用户面功能网元执行。该用户面功能网元可以是图3或图4中的UPF,也可以是图5中的第一UPF或者第二UPF,也可以是图6中的第一UPF或者第二UPF,也可以是图7中的第一UPF或者第二UPF。该方法包括以下步骤:
步骤1001,用户面功能网元接收网络切片的标识和测量网络切片的速率的第一起始时刻。
例如,网络切片的标识用于标识被测量的网络切片。
例如,第一起始时刻为测量该网络切片的起始时间,后续步骤中的第一起始时刻均为该起始时间,不再赘述。
一种可能的实施方式中,用户面功能网元从会话管理功能网元接收使用量上报规则,使用量上报规则中包括网络切片的标识和测量网络切片的速率的第一起始时刻。
一种可能的实施方式中,该方法还包括:用户面功能网元从会话管理功能接收时间间隔信息,或者通过会话管理功能网元从网络设备接收时间间隔信息;用户面功能网元根据时间间隔信息确定第一起始时刻后的一个或多个时刻。该多个时刻为规定的多个时间点(包括从起始时间开始的和N个时间点,且相邻时间点之间的时间间隔为固定的时间间隔,其中N为整数)。该实施例中的其他步骤中的多个时刻均为该规定的相同的时间点,不再赘述。
该步骤可参考图3所示的实施例中的步骤303的描述,图4所示的实施例中的步骤404的描述,图5所示的实施例中的步骤504的描述,图6所示的实施例中步骤604的描述,以及图7所示的实施例中的步骤704的描述。
步骤1002,用户面功能网元测量网络切片的多个时刻的多个会话的速率。
例如,多个时刻包括第一起始时刻以及第一起始时刻后的一个或多个时刻,其中多个时刻的每个时刻对应多个会话的速率。
步骤1003,用户面功能网元确定多个时刻的多个第一速率。
例如,多个第一速率中每个时刻对应的第一速率等于每个时刻的多个会话的速率之和。该第一速率为图5至图7所示的实施例中UPF测量的会话的累加速率。
步骤1004,用户面功能网元通过会话管理功能网元向网络设备发送多个时刻的多个第一速率。
例如,多个时刻的多个第一速率用于最大使用带宽的确定。
例如,该网络设备可以是图3、图6中的NWDAF,也可以是图4、图5和图7中的PCF。
一种可能的实施方式中,该方法还包括:用户面功能网元接收第一阈值信息,当第一起始时刻后的第一时刻对应的第一速率大于或等于第一阈值信息,用户面功能网元根据第一阈值信息向网络设备上报第一时刻对应的第一速率。也就是说,当用户面功能网元所测量得到的第一时刻的第一速率小于第一阈值信息,该第一时刻所对应的第一速率不会被上报。
步骤1002至步骤1004可参考图3所示的实施例中的步骤304的描述,图4所示的实施例中的步骤405的描述,图5所示的实施例中的步骤506的描述,图6所示的实施例中步骤606的描述,以及图7所示的实施例中的步骤706的描述。
通过该方法,用户面功能网元在多个时刻测量该网络切片在该多个时刻中的各个时刻的各个会话的速率,并向网络设备发送各个时刻的各个会话的速率,该速率能够更加准确的体现该网络切片中在各个时间点的使用带宽,因此通过该速率获取的最大使用带宽能够更加准确。
图11为根据本申请实施例提供的一种通信装置的示意图。
通信装置包括处理模块1101、接收模块1102和发送模块1103。处理模块1101用于实现通信装置对数据的处理。接收模块1102用于接收通信装置与其他单元或者网元的内容,发送模块1103用于接收通信装置与其他单元或者网元的内容。应理解,本申请实施例中的处理模块1101可以由处理器或处理器相关电路组件(或者,称为处理电路)实现,接收模块1102可以由接收器或接收器相关电路组件实现。发送模块1103可以由发送器或发送器相关电路组件实现。
示例性地,通信装置可以是通信装置设备,也可以是应用于通信装置设备中的芯片或者其他具有上述通信装置设备功能的组合器件、部件等。
示例性的,通信装置可以是图8至图10中任一的网络设备,可以是图3或图6中的NWDAF,可以是图4、图5或图7中的PCF;通信装置可以是图8至图10中任一的用户面功能网元,可以是图3或图4中的UPF,可以是图5中的第一UPF或者第二UPF,可以是图6中的第一UPF或者第二UPF,可以是图7中的第一UPF或者第二UPF;通信装置可以是图8至图10中任一的会话管理功能网元,可以是图3、图4或图7中的SMF,可以是图5中的第一SMF或者第二SMF,可以是图6中的第一SMF或者第二SMF。
当该通信装置为网络设备或PCF或NWDAF时,发送模块1103用于发送网络切片的标识和测量网络切片的速率的第一起始时刻(例如图3中的步骤302,图4中的步骤403,图5中的步骤503,图6中的步骤603,图7中的步骤703,图8中的步骤801),网络切片的标识用于标识被测量的网络切片;接收模块1102用于接收多个时 刻的多个速率(例如图3中的步骤306,图4中的步骤407,图5中的步骤509或步骤511,图6中的步骤609或步骤611,图7中的步骤709,图8中的步骤802),多个时刻包括第一起始时刻以及第一起始时刻后的一个或多个时刻,其中多个时刻的每个时刻对应多个速率;处理模块1101用于确定多个时刻的多个第一速率(例如图3中的步骤307,图4中的步骤408,图5中的步骤512,图6中的步骤612,图7中的步骤710,图8中的步骤803),其中多个第一速率中每个时刻对应的第一速率等于每个时刻的多个速率之和;处理模块1101用于根据多个时刻的多个第一速率确定最大使用带宽(例如图3中的步骤307,图4中的步骤408,图5中的步骤512,图6中的步骤612,图7中的步骤710,图8中的步骤804);发送模块1103用于发送最大使用带宽(例如图3中的步骤308,图4中的步骤409,图5中的步骤515,图6中的步骤615,图7中的步骤713,图8中的步骤805)。
此外,上述各个模块还可以用于支持本文所描述的技术的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为会话管理功能网元或SMF时,接收模块1102用于从网络设备接收网络切片的标识和测量网络切片的速率的第一起始时刻(例如图3中的步骤302,图4中的步骤403,图5中的步骤503,图6中的步骤603,图7中的步骤703,图9中的步骤901),网络切片的标识用于标识被测量的网络切片;发送模块1103用于向用户面功能网元发送网络切片的标识和第一起始时刻(例如图3中的步骤303,图4中的步骤404,图5中的步骤504,图6中的步骤604,图7中的步骤704,图9中的步骤902);接收模块1102用于从用户面功能网元接收多个时刻的多个速率(例如图3中的步骤304,图4中的步骤405,图5中的步骤506,图6中的步骤606,图7中的步骤706,图9中的步骤903),多个时刻包括第一起始时刻以及第一起始时刻后的一个或多个时刻,其中多个时刻的每个时刻对应一个或多个速率;发送模块1103用于向网络设备发送与多个时刻的多个速率关联的速率信息(例如图3中的步骤306,图4中的步骤407,图5中的步骤509或步骤511,图6中的步骤609或步骤611,图7中的步骤709,图9中的步骤904)。
此外,上述各个模块还可以用于支持本文所描述的技术的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为用户面功能网元或者UPF时,接收模块1102用于接收网络切片的标识和测量网络切片的速率的第一起始时刻(例如图3中的步骤303,图4中的步骤404,图5中的步骤504,图6中的步骤604,图7中的步骤704,图10中的步骤1001),网络切片的标识用于标识被测量的网络切片;处理模块1101用于测量网络切片的多个时刻的多个会话的速率(例如图3中的步骤304,图4中的步骤405,图5中的步骤506,图6中的步骤606,图7中的步骤706,图10中的步骤1002),多个时刻包括第一起始时刻以及第一起始时刻后的一个或多个时刻,其中多个时刻的每个时刻对应多个会话的速率;处理模块1101用于确定多个时刻的多个第一速率(例如图3中的步骤304,图4中的步骤405,图5中的步骤506,图6中的步骤606,图7中的步骤706,图10中的步骤1003),其中多个第一速率中每个时刻对应的第一速率等于每个时刻的多个会话的速率之和;发送模块1103用于通过会话管理功能网元向网络 设备发送多个时刻的多个第一速率,多个时刻的多个第一速率用于最大使用带宽的确定(例如图3中的步骤304,图4中的步骤405,图5中的步骤506,图6中的步骤606,图7中的步骤706,图10中的步骤1004)。
此外,上述各个模块还可以用于支持本文所描述的技术的其它过程。有益效果可参考前面的描述,此处不再赘述。
图12为根据本申请实施例提供的另一种通信装置的示意图,该通信装置包括:处理器1201、通信接口1202、存储器1203。其中,处理器1201、通信接口1202以及存储器1203可以通过总线1204相互连接;总线1204可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。上述总线1204可以分为地址总线、数据总线和控制总线等。为便于表示,图12中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。处理器1201可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(Generic Array Logic,GAL)或其任意组合。存储器1203可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。
其中,处理器1201用于实现通信装置的数据处理操作,通信接口1202用于实现通信装置的接收操作和发送操作。
示例性的,通信装置可以是图8至图10中任一的网络设备,可以是图3或图6中的NWDAF,可以是图4、图5或图7中的PCF;通信装置可以是图8至图10中任一的用户面功能网元,可以是图3或图4中的UPF,可以是图5中的第一UPF或者第二UPF,可以是图6中的第一UPF或者第二UPF,可以是图7中的第一UPF或者第二UPF;通信装置可以是图8至图10中任一的会话管理功能网元,可以是图3、图4或图7中的SMF,可以是图5中的第一SMF或者第二SMF,可以是图6中的第一SMF或者第二SMF。
当该通信装置为网络设备或PCF或NWDAF时,通信接口1202用于发送网络切片的标识和测量网络切片的速率的第一起始时刻(例如图3中的步骤302,图4中的步骤403,图5中的步骤503,图6中的步骤603,图7中的步骤703,图8中的步骤801),网络切片的标识用于标识被测量的网络切片;通信接口1202用于接收多个时刻的多个速率(例如图3中的步骤306,图4中的步骤407,图5中的步骤509或步骤511,图6中的步骤609或步骤611,图7中的步骤709,图8中的步骤802),多个时刻包括第一起始时刻以及第一起始时刻后的一个或多个时刻,其中多个时刻的每个 时刻对应多个速率;处理器1201用于确定多个时刻的多个第一速率(例如图3中的步骤307,图4中的步骤408,图5中的步骤512,图6中的步骤612,图7中的步骤710,图8中的步骤803),其中多个第一速率中每个时刻对应的第一速率等于每个时刻的多个速率之和;处理器1201用于根据多个时刻的多个第一速率确定最大使用带宽(例如图3中的步骤307,图4中的步骤408,图5中的步骤512,图6中的步骤612,图7中的步骤710,图8中的步骤804);通信接口1202用于发送最大使用带宽(例如图3中的步骤308,图4中的步骤409,图5中的步骤515,图6中的步骤615,图7中的步骤713,图8中的步骤805)。
此外,上述各个模块还可以用于支持本文所描述的技术的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为会话管理功能网元或SMF时,通信接口1202用于从网络设备接收网络切片的标识和测量网络切片的速率的第一起始时刻(例如图3中的步骤302,图4中的步骤403,图5中的步骤503,图6中的步骤603,图7中的步骤703,图9中的步骤901),网络切片的标识用于标识被测量的网络切片;通信接口1202用于向用户面功能网元发送网络切片的标识和第一起始时刻(例如图3中的步骤303,图4中的步骤404,图5中的步骤504,图6中的步骤604,图7中的步骤704,图9中的步骤902);通信接口1202用于从用户面功能网元接收多个时刻的多个速率(例如图3中的步骤304,图4中的步骤405,图5中的步骤506,图6中的步骤606,图7中的步骤706,图9中的步骤903),多个时刻包括第一起始时刻以及第一起始时刻后的一个或多个时刻,其中多个时刻的每个时刻对应一个或多个速率;通信接口1202用于向网络设备发送与多个时刻的多个速率关联的速率信息(例如图3中的步骤306,图4中的步骤407,图5中的步骤509或步骤511,图6中的步骤609或步骤611,图7中的步骤709,图9中的步骤904)。
此外,上述各个模块还可以用于支持本文所描述的技术的其它过程。有益效果可参考前面的描述,此处不再赘述。
当该通信装置为用户面功能网元或者UPF时,通信接口1202用于接收网络切片的标识和测量网络切片的速率的第一起始时刻(例如图3中的步骤303,图4中的步骤404,图5中的步骤504,图6中的步骤604,图7中的步骤704,图10中的步骤1001),网络切片的标识用于标识被测量的网络切片;处理器1201用于测量网络切片的多个时刻的多个会话的速率(例如图3中的步骤304,图4中的步骤405,图5中的步骤506,图6中的步骤606,图7中的步骤706,图10中的步骤1002),多个时刻包括第一起始时刻以及第一起始时刻后的一个或多个时刻,其中多个时刻的每个时刻对应多个会话的速率;处理器1201用于确定多个时刻的多个第一速率(例如图3中的步骤304,图4中的步骤405,图5中的步骤506,图6中的步骤606,图7中的步骤706,图10中的步骤1003),其中多个第一速率中每个时刻对应的第一速率等于每个时刻的多个会话的速率之和;通信接口1202用于通过会话管理功能网元向网络设备发送多个时刻的多个第一速率,多个时刻的多个第一速率用于最大使用带宽的确定(例如图3中的步骤304,图4中的步骤405,图5中的步骤506,图6中的步骤606,图7中的步骤706,图10中的步骤1004)。
此外,上述各个模块还可以用于支持本文所描述的技术的其它过程。有益效果可参考前面的描述,此处不再赘述。
本申请实施例提供一种通信系统,其包括前述的网络设备(例如NWDAF或者PCF)、会话管理网元(例如SMF)以及用户面功能网元(例如UPF),其中,网络设备执行图8至图10中任一的网络设备,图3或图6中的任一的NWDAF,图4、图5或图7中的PCF执行的方法,会话管理装置执行图8至图10中任一的会话管理功能网元,图3、图4或图7中的SMF,图5中的第一SMF或者第二SMF,图6中的第一SMF或者第二SMF执行的方法,用户面功能网元执行图8至图10中任一的用户面功能网元,图3或图4中的UPF,图5中的第一UPF或者第二UPF,图6中的第一UPF或者第二UPF,图7中的第一UPF或者第二UPF执行的方法。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图8至图10中任一所示的实施例中与网络设备,图3或图6所示的实施例中与NWDAF,图4、图5或图7所示的实施例中与PCF相关的流程,或者,所述计算机可以实现上述方法实施例提供的图8至图10中任一所示的实施例中与会话管理功能网元,图3、图4或图7所示的实施例中与SMF,图5所示的实施例中与第一SMF或者第二SMF,图6所示的实施例中与第一SMF或者第二SMF相关的流程,或者,所述计算机可以实现上述方法实施例提供的图8至图10中任一所示的实施例中与用户面功能网元,图3或图4所示的实施例中与UPF,可以是图5所示的实施例中与第一UPF或者第二UPF,图6所示的实施例中与第一UPF或者第二UPF,图7所示的实施例中与第一UPF或者第二UPF相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图8至图10中任一所示的实施例中与网络设备,图3或图6所示的实施例中与NWDAF,图4、图5或图7所示的实施例中与PCF相关的流程,或者,所述计算机可以实现上述方法实施例提供的图8至图10中任一所示的实施例中与会话管理功能网元,图3、图4或图7所示的实施例中与SMF,图5所示的实施例中与第一SMF或者第二SMF,图6所示的实施例中与第一SMF或者第二SMF相关的流程,或者,所述计算机可以实现上述方法实施例提供的图8至图10中任一所示的实施例中与用户面功能网元,图3或图4所示的实施例中与UPF,可以是图5所示的实施例中与第一UPF或者第二UPF,图6所示的实施例中与第一UPF或者第二UPF,图7所示的实施例中与第一UPF或者第二UPF相关的流程。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的用于注册至多个网络的方法中由NWDAF、PCF、SMF或UPF的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是该芯片上的输入/输出接口、接口电路、输出电路、 输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
上述的芯片也可以替换为芯片系统,这里不再赘述。
本申请中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
另外,本申请的说明书和权利要求书及所述附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (29)

  1. 一种网络切片的通信方法,其特征在于,所述方法包括:
    网络设备发送网络切片的标识和测量所述网络切片的速率的第一起始时刻,所述网络切片的标识用于标识被测量的网络切片;
    所述网络设备接收多个时刻的多个速率,所述多个时刻包括所述第一起始时刻以及所述第一起始时刻后的一个或多个时刻,其中所述多个时刻的每个时刻对应多个速率;
    所述网络设备确定所述多个时刻的多个第一速率,其中所述多个第一速率中每个时刻对应的第一速率等于所述每个时刻的多个速率之和;
    所述网络设备根据所述多个时刻的多个第一速率确定最大使用带宽;
    所述网络设备发送所述最大使用带宽。
  2. 根据权利要求1所述的方法,还包括:
    所述网络设备指示会话管理功能网元上报所述多个时刻的多个速率。
  3. 根据权利要求1或2所述的方法,所述网络设备发送所述最大使用带宽,包括:
    所述网络设备获取第一阈值信息,当所述最大使用带宽大于或等于所述第一阈值信息时,所述网络设备发送所述最大使用带宽。
  4. 根据权利要求3所述的方法,所述网络设备获取第一阈值信息,包括:
    所述网络设备获取所述网络切片的历史最大使用带宽,所述网络设备根据所述历史最大使用带宽确定所述第一阈值信息。
  5. 根据权利要求3或4所述的方法,还包括:
    所述网络设备向会话管理功能网元发送与所述第一阈值信息关联的第二阈值信息,当所述多个时刻中的第一时刻的与所述会话管理功能网元关联的速率大于所述第二阈值信息,所述第二阈值信息用于触发所述第一时刻的多个速率的上报。
  6. 根据权利要求5所述的方法,还包括:
    所述网络设备根据所述多个时刻中的第一时刻的多个速率,将所述第二阈值信息更新为第三阈值信息;
    所述网络设备向所述会话管理功能网元发送所述第三阈值信息,当所述多个时刻中的第二时刻的与所述会话管理功能网元关联的速率大于所述第三阈值信息,所述第三阈值信息用于触发所述第二时刻的多个速率的上报,所述第二时刻晚于所述第一时刻。
  7. 根据权利要求1至6中任一项所述的方法,所述网络设备发送网络切片的标识和第一起始时刻,包括:
    所述网络设备通过会话管理功能网元向用户面功能网元发送使用量上报规则,所述使用量上报规则中包括所述网络切片的标识和所述第一起始时刻。
  8. 根据权利要求1至7中任一项所述的方法,所述网络设备接收多个时刻的多个 速率,包括:
    所述网络设备从会话管理功能网元接收所述多个时刻的多个速率。
  9. 根据权利要求1至8中任一项所述的方法,还包括:
    所述网络设备从所述会话管理功能网元接收所述用户面功能网元的标识,所述用户面功能网元的标识用于表示所述多个时刻的多个速率是所述用户面功能网元测量的。
  10. 根据权利要求1至9中任一项所述的方法,还包括:
    所述网络设备获取精度要求信息;
    所述网络设备根据所述精度要求信息确定时间间隔信息;
    所述网络设备发送所述时间间隔信息,所述时间间隔信息用于所述第一起始时刻后的一个或多个时刻的确定。
  11. 根据权利要求1至10中任一项所述的方法,所述网络设备根据所述多个时刻的多个第一速率确定最大使用带宽,包括:
    所述网络设备根据所述多个时刻的多个第一速率中最大的第一速率确定所述最大使用带宽。
  12. 根据权利要求1至11中任一项所述的方法,所述网络设备为策略控制功能网元或者网络数据分析功能网元或者网络切片配额控制功能网元。
  13. 一种网络切片的通信方法,其特征在于,所述方法包括:
    会话管理功能网元从网络设备接收网络切片的标识和测量所述网络切片的速率的第一起始时刻,所述网络切片的标识用于标识被测量的网络切片;
    所述会话管理功能网元向用户面功能网元发送所述网络切片的标识和所述第一起始时刻;
    所述会话管理功能网元从所述用户面功能网元接收多个时刻的多个速率,所述多个时刻包括所述第一起始时刻以及所述第一起始时刻后的一个或多个时刻,其中所述多个时刻的每个时刻对应一个或多个速率;
    所述会话管理功能网元向所述网络设备发送与所述多个时刻的多个速率关联的速率信息。
  14. 根据权利要求13所述的方法,所述速率信息包括所述多个时刻的多个速率。
  15. 根据权利要求13所述的方法,所述速率信息包括所述多个时刻的多个第一速率,其中,当所述多个时刻的每个时刻对应多个速率,所述多个第一速率中每个时刻对应的第一速率等于所述每个时刻的多个速率之和,或者,当所述多个时刻的每个时刻对应一个速率,所述多个第一速率中每个时刻对应的第一速率等于所述每个时刻的一个速率。
  16. 根据权利要求15所述的方法,还包括:
    所述会话管理功能网元从所述网络设备接收第一阈值信息;
    当所述多个时刻中的第一时刻对应的第一速率大于或等于所述第一阈值信息,所述会话管理功能网元向所述网络设备上报所述第一时刻对应的第一速率。
  17. 根据权利要求16所述的方法,还包括:
    所述会话管理功能网元向所述用户面功能网元发送与所述第一阈值信息关联的第二阈值信息,所述第二阈值信息用于触发所述多个时刻中的与所述用户面功能网元关联的速率的上报。
  18. 根据权利要求14至17中任一项所述的方法,还包括:
    所述会话管理功能网元接收所述用户面功能网元的标识,所述用户面功能网元的标识用于表示所述多个时刻的多个速率是所述用户面功能网元测量的。
  19. 根据权利要求14至18中任一项所述的方法,所述会话管理功能网元向用户面功能网元发送所述网络切片的标识和所述第一起始时刻,包括:
    所述会话管理功能网元向所述用户面功能网元发送使用量上报规则,所述使用量上报规则包括所述网络切片的标识和所述第一起始时刻;或者,所述使用量上报规则包括所述网络切片的标识、所述第一起始时刻和时间间隔信息,所述时间间隔信息用于所述第一起始时刻后的一个或多个时刻的确定。
  20. 根据权利要求15至19中任一项所述的方法,所述网络设备为策略控制功能网元或者网络数据分析功能网元或者网络切片配额控制功能网元。
  21. 一种网络切片的通信方法,其特征在于,所述方法包括:
    用户面功能网元接收网络切片的标识和测量所述网络切片的速率的第一起始时刻,所述网络切片的标识用于标识被测量的网络切片;
    所述用户面功能网元测量所述网络切片的多个时刻的多个会话的速率,所述多个时刻包括所述第一起始时刻以及所述第一起始时刻后的一个或多个时刻,其中所述多个时刻的每个时刻对应多个会话的速率;
    所述用户面功能网元确定所述多个时刻的多个第一速率,其中所述多个第一速率中每个时刻对应的第一速率等于所述每个时刻的多个会话的速率之和;
    所述用户面功能网元通过会话管理功能网元向网络设备发送所述多个时刻的多个第一速率,所述多个时刻的多个第一速率用于最大使用带宽的确定。
  22. 根据权利要求21所述的方法,还包括:
    所述用户面功能网元接收第一阈值信息,当所述第一起始时刻后的第一时刻对应的第一速率大于或等于所述第一阈值信息,所述第一阈值信息用于所述第一时刻对应的第一速率的上报。
  23. 根据权利要求21或22所述的方法,所述用户面功能网元接收网络切片的标识和测量所述网络切片的速率的第一起始时刻,包括:
    所述用户面功能网元从所述会话管理功能网元接收使用量上报规则,所述使用量上报规则中包括所述网络切片的标识和所述测量所述网络切片的速率的第一起始时刻。
  24. 根据权利要求21至23中任一项所述的方法,还包括:
    所述用户面功能网元从会话管理功能接收时间间隔信息,或者通过所述会话管理功能网元从所述网络设备接收时间间隔信息;
    所述用户面功能网元根据所述时间间隔信息确定所述第一起始时刻后的一个或多个时刻。
  25. 根据权利要求21至24中任一项所述的方法,所述网络设备为策略控制功能网元或者网络数据分析功能网元或者网络切片配额控制功能网元。
  26. 一种通信装置,其特征在于,包括处理器;
    所述处理器用于从存储器中读取并运行程序,以实现如权利要求1至25中任一项所述的方法。
  27. 一种通信系统,其特征在于,包括网络设备、会话管理功能网元和用户面功能网元,所述网络设备执行如权利要求1至12中任一项所述的方法,所述会话管理功能网元执行如权利要求13至20中任一项所述的方法,所述用户面功能网元执行如权利要求21至25中任一项所述的方法。
  28. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1至25中任一项所述的方法。
  29. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得处理器执行如权利要求1至25中任一项所述的方法。
PCT/CN2022/072650 2021-01-19 2022-01-19 网络切片通信的方法、装置和系统 WO2022156691A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110066253.9 2021-01-19
CN202110066253.9A CN114828103A (zh) 2021-01-19 2021-01-19 网络切片通信的方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2022156691A1 true WO2022156691A1 (zh) 2022-07-28

Family

ID=82525126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072650 WO2022156691A1 (zh) 2021-01-19 2022-01-19 网络切片通信的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN114828103A (zh)
WO (1) WO2022156691A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116886541A (zh) * 2023-08-04 2023-10-13 中国联合网络通信有限公司深圳市分公司 一种业务宽带5gcpe保护和带宽实时分配方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347736A (zh) * 2017-01-25 2018-07-31 维沃移动通信有限公司 资源共享的控制方法、执行实体及资源共享配置实体
US20190053010A1 (en) * 2017-08-14 2019-02-14 Qualcomm Incorporated Systems and methods for 5g location support using service based interfaces
US20190182875A1 (en) * 2017-12-08 2019-06-13 Comcast Cable Communications, Llc User Plane Function Selection For Isolated Network Slice
CN110383877A (zh) * 2017-03-10 2019-10-25 华为技术有限公司 网络策略优化的系统和方法
CN110769468A (zh) * 2018-07-26 2020-02-07 中国移动通信有限公司研究院 网络切片的处理方法、接入网网元及用户终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347736A (zh) * 2017-01-25 2018-07-31 维沃移动通信有限公司 资源共享的控制方法、执行实体及资源共享配置实体
CN110383877A (zh) * 2017-03-10 2019-10-25 华为技术有限公司 网络策略优化的系统和方法
US20190053010A1 (en) * 2017-08-14 2019-02-14 Qualcomm Incorporated Systems and methods for 5g location support using service based interfaces
US20190182875A1 (en) * 2017-12-08 2019-06-13 Comcast Cable Communications, Llc User Plane Function Selection For Isolated Network Slice
CN110769468A (zh) * 2018-07-26 2020-02-07 中国移动通信有限公司研究院 网络切片的处理方法、接入网网元及用户终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on enhancement of network slicing; Phase 2 (Release 17)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 23.700-40, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. V1.2.0, 30 November 2020 (2020-11-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 224, XP051961720 *
HUAWEI, HISILICON: "KI#5: Update of solution #20", 3GPP DRAFT; S2-2100847, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. e-meeting; 20210224 - 20210309, 18 February 2021 (2021-02-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052173345 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116886541A (zh) * 2023-08-04 2023-10-13 中国联合网络通信有限公司深圳市分公司 一种业务宽带5gcpe保护和带宽实时分配方法及系统

Also Published As

Publication number Publication date
CN114828103A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US20210014739A1 (en) Data processing method and apparatus, and data sending method and apparatus
US11751118B2 (en) Methods and apparatus for selecting a network route for data communications for IoT devices
US11202240B2 (en) Systems and methods for managing and monitoring communication sessions
US20210314795A1 (en) Data Collection Method, Device, and System
WO2017193427A1 (zh) 分组交换业务识别方法及终端
EP3627865A1 (en) Policy control method, network elements and system
WO2021082903A1 (zh) 一种网络切片选择方法及相关产品
EP3691206A1 (en) Strategy update method and apparatus
US11019470B2 (en) Convergent charging method and device
US11089516B2 (en) Systems and methods for network performance monitoring, event detection, and remediation
JP2022509188A (ja) ユーザアクセス制御方法、情報送信方法および装置
CN112104469B (zh) 数据处理方法及装置
WO2020108002A1 (zh) 一种传输策略确定方法、策略控制方法及装置
WO2022156691A1 (zh) 网络切片通信的方法、装置和系统
WO2022007847A1 (zh) 一种通信方法及装置
US20220104217A1 (en) Systems and methods for dynamic uplink grant policy based on medium access control ("mac") protocol data unit ("pdu") padding
US11903073B2 (en) Dynamic adjustment method and apparatus for PDU session
CN113727390A (zh) 一种数据传输方法、装置及通信系统
CN116455771A (zh) 用于QoS通知的方法和网络节点
US11509723B1 (en) Systems and methods for dynamic and efficient device monitoring via a network
US11711719B2 (en) Systems and methods for device-anonymous performance monitoring in a wireless network
US20240040494A1 (en) Systems and methods for network slice modification by policy control function in a wireless network
US11876688B1 (en) Systems and methods for policy-based monitoring of network key performance indicators
US20240107595A1 (en) Systems and methods for real-time frequency band monitoring in a wireless network
US20230284089A1 (en) Systems and methods for dynamic maximum transmission unit adjustment in a wireless network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742170

Country of ref document: EP

Kind code of ref document: A1