WO2022156281A1 - 一种光路瞄准装置、光路瞄准方法及光路瞄准系统 - Google Patents

一种光路瞄准装置、光路瞄准方法及光路瞄准系统 Download PDF

Info

Publication number
WO2022156281A1
WO2022156281A1 PCT/CN2021/124738 CN2021124738W WO2022156281A1 WO 2022156281 A1 WO2022156281 A1 WO 2022156281A1 CN 2021124738 W CN2021124738 W CN 2021124738W WO 2022156281 A1 WO2022156281 A1 WO 2022156281A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical path
aiming device
beacon light
path aiming
prism
Prior art date
Application number
PCT/CN2021/124738
Other languages
English (en)
French (fr)
Inventor
李莹
谢志鹏
曾焱
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112023014708A priority Critical patent/BR112023014708A2/pt
Priority to EP21920659.6A priority patent/EP4261578A4/en
Priority to CA3208454A priority patent/CA3208454A1/en
Priority to MX2023008523A priority patent/MX2023008523A/es
Priority to JP2023544021A priority patent/JP2024503521A/ja
Publication of WO2022156281A1 publication Critical patent/WO2022156281A1/zh
Priority to US18/354,843 priority patent/US20230370175A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/14Monitoring; Testing of transmitters for calibration of the whole transmission and reception path, e.g. self-test loop-back
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements

Definitions

  • the present application relates to the technical field of optical communication, and in particular, to an optical path aiming device, an optical path aiming method and an optical path aiming system.
  • Free space optical communications refers to a communication technology that uses light waves as a carrier to transmit information in a vacuum or atmosphere.
  • the fast and precise acquisition, tracking and pointing (ATP) technology is the necessary core technology to ensure the realization of long-distance optical communication in space.
  • the ATP system includes a target acquisition (coarse tracking) system and a tracking aiming (fine tracking) system, wherein the coarse tracking system is used to capture the target in a larger field of view, usually using a charge-coupled device (CCD) array.
  • CCD charge-coupled device
  • the precise tracking system is used to target and track the target in real time, usually using position-sensitive detectors.
  • position-sensitive detectors When the accuracy of the CCD is relatively far away (for example, the distance between the two ends is greater than 5 meters), the ATP system has a large error when aiming according to the beacon light. Therefore, the ATP system needs to calculate the rotation angle of the servo system according to the information of the position sensitive detector.
  • the information from the position-sensitive detectors is inaccurate, resulting in the inaccurate rotation angle of the servo system calculated by the ATP system, thereby reducing the accuracy of tracking and aiming.
  • the embodiments of the present application provide an optical path aiming method, an optical path aiming device and an optical path aiming system, which are beneficial to improve the accuracy of tracking aiming.
  • an embodiment of the present application provides a first optical path aiming device, where the first optical path aiming device includes a first optical transceiver, a first position-sensitive detector, and a first adjustment module.
  • the first optical transceiver is used for transmitting the first beacon light to the second optical path aiming device; the first optical transceiver is also used for receiving the first beacon light reflected by the second prism in the second optical path aiming device.
  • the first position sensitive detector is used for determining the first alignment angle of the first optical path aiming device according to the position information of the first beacon light reflected by the second prism reaching the first position sensitive detector, and sending the first alignment angle to the first adjustment module. Alignment angle.
  • the first adjustment module is used to adjust the first alignment angle, and the adjusted first alignment angle satisfies the first aiming accuracy threshold.
  • the first optical path aiming device can adjust the first alignment angle of the local end according to the position information of the first beacon light reflected by the second prism at the opposite end reaching the first position sensitive detector, so as to realize the precise aiming of the first optical path aiming device , which is beneficial to improve the accuracy of tracking and aiming.
  • the first optical path sighting device further includes a first prism.
  • the first optical transceiver is also used for receiving the second beacon light emitted by the second optical path aiming device, and for transmitting the second beacon light to the first prism.
  • the first prism is used to reflect the second beacon light, and the position information of the second beacon light reflected by the first prism to the second position sensitive detector of the second optical path aiming device is used to adjust the second pair of the second optical path aiming device alignment angle, and the adjusted second alignment angle satisfies the second aiming accuracy threshold.
  • the first prism in the first optical path aiming device is used to reflect the second beacon light to the second optical path aiming device, so that the second optical path aiming device can reach the second position according to the second beacon light reflected by the first prism
  • the position information of the sensitive detector adjusts the second alignment angle of the local end, so as to realize the precise aiming of the second optical path aiming device, which is beneficial to improve the accuracy of tracking aiming.
  • the first optical transceiver includes a beam splitter and a dichroic mirror.
  • the dichroic mirror is used for receiving the second beacon light emitted by the second optical path aiming device, and the dichroic mirror is also used for emitting the second beacon light to the beam splitter.
  • the beam splitter is used to receive the second beacon light from the dichroic mirror, and the beam splitter is also used to transmit the second beacon light to the first prism.
  • the first optical transceiver may specifically include a beam splitter and a dichroic mirror.
  • the second beacon light is reflected or refracted by the beam splitter and the dichroic mirror, so that the first prism in the first optical path aiming device receives the second beacon light at the opposite end.
  • the dichroic mirror is further used to receive the first beacon light reflected by the second prism, and the dichroic mirror is also used to transmit the first beacon light reflected by the second prism to the beam splitter.
  • the beam splitter is further used for receiving the first beacon light reflected by the second prism from the dichroic mirror, and the beam splitter is also used for transmitting the first beacon light reflected by the second prism to the first position sensitive detector.
  • the first beacon light is reflected or refracted by the beam splitter and the dichroic mirror, and the first position sensitive detector in the first optical path aiming device receives the first beacon light emitted by the local end reflected by the second prism, for precise aiming.
  • the first optical path aiming device further includes a first image acquisition module and a sensor.
  • the first image acquisition module and the sensor are used to acquire the attitude angle between the first optical path aiming device and the second optical path aiming device, and send the attitude angle to the first adjustment module.
  • the first adjustment module is further configured to receive the attitude angle, and adjust the first alignment angle of the first optical path aiming device according to the attitude angle, and the adjusted first alignment angle satisfies the third aiming accuracy threshold; wherein, the third aiming accuracy threshold Greater than the first aiming accuracy threshold or the second aiming accuracy threshold.
  • the first image acquisition module and the sensor of the first optical path aiming device and the first adjustment module can jointly realize the coarse aiming of the first optical path aiming device, wherein the precision of the coarse aiming is lower than that of the fine aiming.
  • the wavelength of the first beacon light and the wavelength of the second beacon light are different.
  • the first optical path aiming device can be provided with a filter to filter out the second beacon light, so that the first position sensitive detector only receives the first beacon light reflected by the second prism, so as to reach the first beacon light according to the first beacon light.
  • the position information of a position sensitive detector adjusts the first alignment angle of the local end.
  • the first optical path sighting device further includes a collimating mirror.
  • the collimating mirror is used to transmit an optical signal to the second optical path aiming device after the first optical path aiming device adjusts the first alignment angle, so as to establish a communication link between the first optical path aiming device and the second optical path aiming device road.
  • the communication link is coupled to the beacon light path for transmitting the first beacon light.
  • the collimating mirror in the first optical path aiming device transmits optical signals to the second optical path aiming device to establish the first optical path aiming device and the second optical path aiming device.
  • the communication link and the beacon light path are mutually coupled, ie when the beacon light path between the first light path aiming device and the second light path aiming device is aligned, the communication link is also aligned.
  • an embodiment of the present application provides a second optical path aiming device, where the second optical path aiming device includes a second optical transceiver, a second position-sensitive detector, and a second adjustment module.
  • the second optical transceiver is used for transmitting the second beacon light to the first optical path aiming device; the second optical transceiver is also used for receiving the second beacon light reflected by the first prism in the first optical path aiming device.
  • the second position sensitive detector is used to determine the second alignment angle of the second optical path aiming device according to the position information of the second beacon light reflected by the first prism reaching the second position sensitive detector, and send the second alignment angle to the second adjustment module. Alignment angle.
  • the second adjustment module is configured to adjust the second alignment angle, and the adjusted second alignment angle satisfies the second aiming accuracy threshold.
  • the second optical path aiming device can adjust the second alignment angle of the local end according to the position information of the second beacon light reflected by the first prism at the opposite end reaching the second position sensitive detector, so as to realize the precise aiming of the second optical path aiming device , which is beneficial to improve the accuracy of tracking and aiming.
  • the second optical path sighting device further includes a second prism.
  • the second optical transceiver is further used for receiving the first beacon light emitted by the first optical path aiming device, and for transmitting the first beacon light to the second prism.
  • the second prism is used for reflecting the first beacon light, and the position information of the first beacon light reflected by the second prism reaching the first position sensitive detector of the first optical path aiming device is used to adjust the first pair of the first optical path aiming device alignment angle, and the adjusted first alignment angle satisfies the first aiming accuracy threshold.
  • the second prism in the second optical path aiming device is used to reflect the first beacon light to the first optical path aiming device, so that the first optical path aiming device can reach the first position according to the first beacon light reflected by the second prism
  • the position information of the sensitive detector adjusts the first alignment angle of the local end, so as to realize the precise aiming of the first optical path aiming device, which is beneficial to improve the accuracy of tracking aiming.
  • the second optical transceiver includes a beam splitter and a dichroic mirror.
  • the dichroic mirror is used for receiving the first beacon light emitted by the first optical path aiming device, and the dichroic mirror is also used for emitting the first beacon light to the beam splitter.
  • the beam splitter is used to receive the first beacon light from the dichroic mirror, and the beam splitter is also used to transmit the first beacon light to the second prism.
  • the second optical transceiver may specifically include a beam splitter and a dichroic mirror.
  • the first beacon light is reflected or refracted by the beam splitter and the dichroic mirror, so that the second prism in the second optical path aiming device receives the first beacon light at the opposite end.
  • the dichroic mirror is further used to receive the second beacon light reflected by the first prism, and the dichroic mirror is also used to transmit the second beacon light reflected by the first prism to the beam splitter.
  • the beam splitter is further used for receiving the second beacon light reflected by the first prism from the dichroic mirror, and the beam splitter is also used for transmitting the second beacon light reflected by the first prism to the second position sensitive detector.
  • the second beacon light is reflected or refracted by the beam splitter and the dichroic mirror, and the second position sensitive detector in the second optical path aiming device receives the second beacon light emitted by the local end reflected by the first prism, for precise aiming.
  • the second optical path aiming device further includes a second image acquisition module and a sensor.
  • the second image acquisition module and the sensor are used to acquire the attitude angle between the second optical path aiming device and the first optical path aiming device, and send the attitude angle to the second adjustment module.
  • the second adjustment module is further configured to receive the attitude angle, and adjust the second alignment angle of the second optical path aiming device according to the attitude angle, and the adjusted second alignment angle satisfies the fourth aiming accuracy threshold; wherein, the fourth aiming accuracy threshold Greater than the first aiming accuracy threshold or the second aiming accuracy threshold.
  • the second image acquisition module and the sensor of the second optical path aiming device and the second adjustment module can jointly realize the coarse aiming of the second optical path aiming device, wherein the precision of the coarse aiming is lower than that of the fine aiming.
  • the wavelength of the first beacon light and the wavelength of the second beacon light are different.
  • the second optical path aiming device can be provided with a filter to filter out the first beacon light, so that the second position sensitive detector only receives the second beacon light reflected by the first prism, so as to reach the first beacon light according to the second beacon light.
  • the position information of the two position sensitive detectors adjusts the second alignment angle of the local end.
  • the second optical path sighting device further includes a collimating mirror.
  • the collimating mirror is used to transmit an optical signal to the first optical path aiming device after the second optical path aiming device adjusts the second alignment angle, so as to establish a communication link between the second optical path aiming device and the first optical path aiming device road.
  • the communication link is coupled to the beacon light path for transmitting the second beacon light.
  • the collimating mirror in the second optical path aiming device transmits optical signals to the first optical path aiming device to establish the second optical path aiming device and the first optical path aiming device.
  • the communication link and the beacon light path are mutually coupled, ie when the beacon light path between the second light path aiming device and the first light path aiming device is aligned, the communication link is also aligned.
  • an embodiment of the present application provides an optical path aiming method, and the method can be performed by the first optical path aiming device in the above-mentioned first aspect.
  • the first optical path aiming device emits the first beacon light to the second optical path aiming device, and the first optical path aiming device receives the first beacon light reflected by the second prism in the second optical path aiming device.
  • the first optical path aiming device adjusts the first alignment angle of the first optical path aiming device according to the position information of the first beacon light reflected by the second prism reaching the first position sensitive detector in the first optical path aiming device. An alignment angle satisfies the first aiming accuracy threshold.
  • the first optical path aiming device can adjust the first alignment angle of the local end according to the position information of the first beacon light reflected by the second prism at the opposite end reaching the first position sensitive detector, so as to realize the precise aiming of the first optical path aiming device , which is beneficial to improve the accuracy of tracking and aiming.
  • the first optical path aiming device receives the second beacon light emitted by the second optical path aiming device, and the first prism in the first optical path aiming device reflects the second beacon light.
  • the position information of the second beacon light reflected by the first prism reaching the second position sensitive detector in the second optical path aiming device is used to adjust the second alignment angle of the second optical path aiming device, and the adjusted second pair of The quasi angle meets the second aiming accuracy threshold.
  • the first prism in the first optical path aiming device is used to reflect the second beacon light to the second optical path aiming device, so that the second optical path aiming device can reach the second position according to the second beacon light reflected by the first prism
  • the position information of the sensitive detector adjusts the second alignment angle of the local end, so as to realize the precise aiming of the second optical path aiming device, which is beneficial to improve the accuracy of tracking aiming.
  • the first optical path aiming device adjusts the first position of the first optical path aiming device according to the position information of the first beacon light reflected by the second prism reaching the first position sensitive detector in the first optical path aiming device Before aligning the angle, the first optical path aiming device obtains the attitude angle between the first optical path aiming device and the second optical path aiming device. The first optical path aiming device adjusts the first alignment angle of the first optical path aiming device according to the attitude angle, and the adjusted first alignment angle satisfies the third aiming accuracy threshold. Wherein, the third aiming accuracy threshold is greater than the first aiming accuracy threshold or the second aiming accuracy threshold.
  • the first optical path aiming device can perform coarse aiming, wherein the precision of the coarse aiming is lower than that of the fine aiming.
  • the wavelength of the first beacon light and the wavelength of the second beacon light are different.
  • the collimating mirror in the first optical path aiming device transmits an optical signal to the second optical path aiming device, so as to establish the relationship between the first optical path aiming device and the second optical path aiming device.
  • a communication link between the second optical path targeting devices. The communication link is coupled to the beacon light path that transmits the first beacon light.
  • the collimating mirror in the first optical path aiming device transmits optical signals to the second optical path aiming device to establish the first optical path aiming device and the second optical path aiming device.
  • the communication link and the beacon light path are mutually coupled, ie when the beacon light path between the first light path aiming device and the second light path aiming device is aligned, the communication link is also aligned.
  • first optical path aiming device in the first aspect and the second optical path aiming device in the second aspect have symmetrical structures, and the second optical path aiming device in the second aspect can also perform the third aspect. Similar optical path aiming method.
  • an embodiment of the present application provides a first optical path aiming device, where the first optical path aiming device may be a device or a chip or circuit provided in the device.
  • the first optical path sighting device may implement the functions implemented by the units and/or modules provided in the first aspect and/or any possible design of the first aspect through the processor.
  • an embodiment of the present application provides a second optical path aiming device, where the second optical path aiming device may be a device or a chip or circuit provided in the device.
  • the first optical path aiming device may implement the functions implemented by the units and/or modules provided in the second aspect and/or any possible design of the second aspect through the processor.
  • an embodiment of the present application provides an optical path aiming system, the optical path aiming system comprising the first optical path aiming device provided in the above-mentioned first aspect or the fourth aspect, and the second optical path aiming device provided in the second aspect or the fifth aspect. device.
  • embodiments of the present application provide a computer-readable storage medium, where the readable storage medium includes a program or an instruction, and when the program or instruction is run on a computer, the computer executes the third aspect or the third aspect. method in any of the possible implementations.
  • an embodiment of the present application provides a chip or a chip system, the chip or chip system includes at least one processor and an interface, the interface and the at least one processor are interconnected through a line, and the at least one processor is used to run a computer program or instruction, to perform the method described in the third aspect or any one of the possible implementations of the third aspect.
  • the interface in the chip may be an input/output interface, a pin or a circuit, or the like.
  • the chip system in the above aspects may be a system on chip (system on chip, SOC), or a baseband chip, etc.
  • the baseband chip may include a processor, a channel encoder, a digital signal processor, a modem, an interface module, and the like.
  • the chip or chip system described above in this application further includes at least one memory, where instructions are stored in the at least one memory.
  • the memory may be a storage unit inside the chip, such as a register, a cache, etc., or a storage unit of the chip (eg, a read-only memory, a random access memory, etc.).
  • the embodiments of the present application provide a computer program or a computer program product, including codes or instructions, when the codes or instructions are run on a computer, the computer executes the third aspect or any of the possible implementations of the third aspect method in .
  • Fig. 1 is the schematic diagram of a kind of optical path system
  • FIG. 2 is a schematic diagram of an optical path aiming system according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an alignment angle provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a beacon optical path in an optical path aiming system provided by an embodiment of the present application
  • 5a is a schematic diagram of another optical path aiming system provided by an embodiment of the application.
  • 5b is a schematic diagram of another optical path aiming system provided by an embodiment of the application.
  • Fig. 5c is a schematic diagram of another optical path aiming system provided by the embodiment of the application.
  • 5d is a schematic diagram of another optical path aiming system provided by an embodiment of the application.
  • Fig. 6 is the schematic diagram of a kind of ATP optical path system that the embodiment of this application provides;
  • FIG. 7 is a schematic flowchart of an optical path aiming method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an optical path after rotation of an optical path aiming device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a first optical path aiming device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a second optical path aiming device according to an embodiment of the present application.
  • Free space optical communications refers to a communication technology that uses light waves as a carrier to transmit information in a vacuum or atmosphere.
  • the fast and precise acquisition, tracking and pointing (ATP) technology is the necessary core technology to ensure the realization of long-distance optical communication in space.
  • ATP systems generally include a target acquisition (coarse tracking) system and a tracking targeting (fine tracking) system.
  • the coarse tracking system is used to capture the target in a large field of view, and the capture range can reach ⁇ 1° to ⁇ 20° or more.
  • the coarse tracking system is usually implemented by a charge-coupled device (CCD) array, and completes coarse tracking together with a bandpass optical filter and a servo system for real-time signal processing.
  • CCD charge-coupled device
  • coarse tracking has a field of view of a few milliradians (mrad), a sensitivity of about 10 picowatts (pW), and a tracking accuracy of tens of mrad.
  • the precise tracking system is used to aim and track the target in real time, usually using a four-quadrant infrared detector (QD) or a Q-APD high-sensitivity position sensor, together with a corresponding servo system.
  • Fine tracking requires a tracking accuracy of a few radians (rad) and a tracking sensitivity of about a few nanowatts (nW).
  • FIG. 1 is a schematic structural diagram of an optical path system.
  • the optical path system includes an access point (access point, AP) and a station (station, STA).
  • the AP is the creator of a network and the central node of the network.
  • a wireless router used in a typical home or office is an AP.
  • Each terminal such as a notebook computer, a PDA (personal digital assistant, PDA) and other user equipment that can be networked
  • a site such as a notebook computer, a PDA (personal digital assistant, PDA) and other user equipment that can be networked
  • the optical path structures on the AP side and the STA side are designed according to the same principle, that is, the AP side and the STA side have the same optical path structure.
  • the optical path structure on the AP side includes a collimating mirror 101, a dichroic mirror 102, a beam splitter 103 and a beam splitter 104, a position sensitive detector (PSD) 105, a light generator 106, an image acquisition module and a sensor 107 , a marker (MARKER) 108 and a servo system 109 .
  • the optical path structure on the STA side includes a collimating mirror 110 , a dichroic mirror 111 , a beam splitter 112 and a beam splitter 113 , a position sensitive detector 114 , a light generator 115 , an image acquisition module and a sensor 116 , a marker 117 and a servo system 118 .
  • dichroic mirrors also known as dichroic mirrors
  • dichroic mirrors are used to refract or transmit the beacon light emitted by the light generator, and can be regarded as a kind of optical transceiver.
  • Dichroic mirrors are characterized by almost complete transmission of certain wavelengths of light and almost complete reflection of other wavelengths of light.
  • the dichroic mirror 102 on the AP side can almost completely transmit the beacon light emitted from the STA side to the beam splitter 103 on the AP side.
  • the beam splitter is used to decompose the white light into monochromatic light of different wavelengths by using a dispersive element (such as a prism or a grating), and forms a continuous visible light spectrum, which can also be regarded as a kind of optical transceiver.
  • a dispersive element such as a prism or a grating
  • the beam splitter on the AP side can refract the beacon light emitted by the STA side to the position sensitive detector 105 on the AP side.
  • the collimating mirror is connected to the optical signal generator through an optical fiber, and is used for receiving the optical signal sent by the optical signal generator through the optical fiber, and sending the optical signal to the opposite end to establish a communication link.
  • the collimating mirror 101 on the AP side is used to send the optical signal in the optical fiber on the AP side to the collimating mirror 110 on the STA side, so as to establish a communication link between the AP side and the STA side.
  • the collimating mirror 110 on the STA side is used to send the optical signal in the optical fiber on the STA side to the collimating mirror 101 on the AP side, so as to establish a communication link between the AP side and the STA side.
  • FIG. 1 is a schematic plan view of the optical path system.
  • the collimating mirror 101 is actually connected to the optical fiber on the AP side, and the optical fiber on the AP side is connected to the optical signal generator for transmitting the optical signal to the collimating mirror. 101 , the optical fiber and the optical signal generator on the AP side are not shown in FIG. 1 .
  • the collimating mirror 110 is actually connected to the optical fiber on the STA side, and the optical fiber on the STA side is connected with the optical signal generator.
  • the optical fiber and the optical signal generator on the STA side are also not shown in FIG. 1 .
  • the light generator is used for generating and emitting beacon light (such as laser light) to establish the beacon light path.
  • the light generator in this embodiment may include, but is not limited to, a laser, a light emitting diode, and the like.
  • the light generator 106 on the AP side generates the beacon light 119 and transmits the beacon light 119 to the beam splitter 104 .
  • the beam splitter 104 transmits the beacon light 119 to the dichroic mirror 102
  • the dichroic mirror 102 receives the beacon light 119 and transmits the beacon light 119 to the dichroic mirror 111 on the STA side.
  • the dichroic mirror 111 on the STA side receives the beacon light 119 and transmits the beacon light 119 to the beam splitter 112 .
  • the beam splitter 112 receives the beacon light 119 and transmits the beacon light 119 to the beam splitter 113 .
  • the beam splitter 113 receives the beacon light 119 and transmits the beacon light 119 to the position sensitive detector 114, thereby establishing a beacon light path from the AP side to the STA side, as shown in FIG. 1 .
  • the light generator 115 on the STA side generates the beacon light 120 and transmits the beacon light 120 to the beam splitter 112 .
  • the beam splitter 112 receives the beacon light 120 and transmits the beacon light 120 to the dichroic mirror 111 .
  • the dichroic mirror 111 receives the beacon light 120 and transmits the beacon light 120 to the dichroic mirror 102 on the AP side.
  • Dichroic mirror 102 receives beacon light 120 and transmits beacon light 120 to beamsplitter 104 .
  • the beam splitter 104 receives the beacon light 120 and transmits the beacon light 120 to the beam splitter 103 .
  • the beam splitter 103 receives the beacon light 120 and transmits the beacon light 120 to the position sensitive detector 105, thereby establishing a beacon light path from the STA side to the AP side.
  • the beacon light emitted by the spectroscope may refer to the beacon light transmitted by the spectroscope, or the beacon light reflected by the spectroscope.
  • the beacon light emitted by the dichroic mirror may refer to the beacon light refracted by the dichroic mirror or the beacon light transmitted by the dichroic mirror, and the specific implementation manner is not limited in this embodiment.
  • the beacon light path from the AP side to the STA side is formed by the reflection or refraction of multiple elements
  • the beacon light 120 from the STA side to the AP side is formed by the reflection or refraction of multiple elements.
  • the beacon optical path forms the beacon optical path between the AP side and the STA side.
  • the communication link between the AP side and the STA side is completely coupled with the beacon optical path, then when the beacon optical paths between the AP side and the STA side are aligned, the AP side and the STA side The communication link between is also aligned.
  • the position sensitive detector has the characteristics of high position resolution, can reduce the interference from sunlight, can measure position and intensity at the same time, high reliability, and can be widely used in the measurement and control of optical position and angle, displacement and vibration monitoring and laser Beam calibration, etc.
  • the PSD can be used to measure the position characteristic, and the PSD is used to calibrate the laser beam.
  • the position sensitive detector 105 on the AP side is used to obtain PSD information on the AP side, and the PSD information may be the displacement of the position sensitive detector 105 caused by the rotation of the servo system 109 on the AP side.
  • the position sensitive detector 105 on the AP side can calculate the alignment angle on the AP side according to the PSD information on the AP side, and adjust the alignment angle on the AP side through the servo system, so as to realize the alignment of the beacon optical paths on the AP side and the STA side.
  • the position sensitive detector 105 and the servo system 109 are used to achieve precise tracking of the target (STA side).
  • the servo system 118 and the position sensitive detector 114 on the STA side also have similar functions, which will not be repeated here.
  • the image acquisition module and sensor are used to acquire image information using a CCD image sensor, and may include the following modules: front-end optical system, CCD image acquisition module, analog-to-digital conversion module, image processing module, data storage module, etc. It should be noted that, in this embodiment, the image acquisition module may be implemented by running a specified software code on the processor, and the image acquisition module may also be implemented by an application-specific integrated circuit, which is not limited in this embodiment.
  • the marker is used to mark the position of the servo system, so that the image acquisition module and the sensor can find the marker to determine the position of the servo system when scanning the area.
  • the servo system is used to carry various elements in the above embodiments (including collimating mirrors, light generators, beam splitters, dichroic mirrors, position-sensitive detectors, image acquisition modules and sensors, markers), and is a A device that can be rotated.
  • the servo system may be a rotating platform, or other systems that can be rotated, which is not limited in this embodiment.
  • the image acquisition module on the AP side, the sensor 107 and the servo system 109 can scan the area to find the marker 117 on the STA side, thereby determining the position of the servo system 118 on the STA side.
  • the image acquisition module on the AP side and the sensor 107 can also determine the attitude angle between the marker 108 on the AP side and the marker 117 on the STA side, and perform rough aiming by adjusting the attitude angle.
  • the image acquisition module on the STA side, the sensor 116 , the marker 117 and the servo system 118 also have similar functions, which will not be repeated here.
  • the optical path system shown in FIG. 1 when the beacon optical paths between the AP side and the STA side are aligned, the communication links are also aligned.
  • the accuracy of the CCD is relatively far away (for example, the distance between the two ends is greater than 5 meters)
  • the optical path system shown in FIG. 1 has a large error when aiming according to the beacon light. Therefore, the precise tracking system composed of the position sensitive detector and the servo system needs to calculate the rotation angle of the servo system according to the information of the position sensitive detector.
  • the information value read by the position-sensitive detector is relatively small and fluctuates, so that the calculated rotation angle of the servo system is inaccurate, thereby reducing the accuracy of tracking and aiming.
  • the embodiments of the present application provide an optical path aiming device, an optical path aiming method and an optical path aiming system, which are beneficial to improve the accuracy of tracking aiming.
  • FIG. 2 is an optical path aiming system provided by an embodiment of the application.
  • the optical path aiming system includes two ends, which are a first optical path aiming device 201 and a second optical path aiming device 202 respectively.
  • the first optical path aiming device 201 includes a first optical transceiver 203 , a first position sensitive detector 204 and a first adjustment module 205 ;
  • the second optical path aiming device 202 includes a second optical transceiver 206 and a second prism 207 .
  • the optical path aiming system shown in FIG. 2 can be regarded as a precise tracking system.
  • the first optical transceiver 203 in the first optical path aiming device 201 is used to transmit the first beacon light to the second optical path aiming device 202 .
  • the first optical transceiver 203 transmits the first beacon light to the second optical transceiver 206 in the second optical path aiming device 202 .
  • the second optical transceiver 206 in the second optical path aiming device 202 receives the first beacon light and transmits the first beacon light to the second prism 207 .
  • the prism can change the propagation direction of light and has the function of symmetrically returning the light path.
  • the prisms in this embodiment may include, but are not limited to, corner cube prisms, triangular prisms, and the like.
  • the second prism 207 in the second optical path aiming device 202 can reflect the received first beacon light according to the optical path of the first beacon light from the first optical path aiming device 201 to the second optical path aiming device 202, and reflect the original path. Back to the first optical path aiming device 201 .
  • the first optical transceiver 203 is also used for receiving the first beacon light reflected by the second prism 207 in the second optical path aiming device 202 .
  • the second prism 207 reflects the first beacon light, ie transmits the first beacon light to the first optical transceiver 203 through the second optical transceiver 206 .
  • the first optical transceiver 203 receives the first beacon light reflected by the second prism 207 and transmits the first beacon light reflected by the second prism 207 to the first position sensitive detector 204 .
  • the first position sensitive detector 204 receives the first beacon light reflected by the second prism 207 .
  • the first position sensitive detector 204 is used to determine the first alignment angle of the first optical path aiming device 201 according to the position information of the first beacon light reflected by the second prism 207 reaching the first position sensitive detector 204, and to the first position sensitive detector 201.
  • the adjustment module 205 sends the first alignment angle.
  • the first alignment angle can be regarded as the alignment angle adjusted in the fine tracking system.
  • the first adjustment module 205 is configured to adjust the first alignment angle of the first optical path aiming device 201 , and the adjusted first alignment angle satisfies the first aiming accuracy threshold.
  • the first adjustment module 205 may be the servo system in the embodiment of FIG. 1 , or may be any rotatable system (eg, a rotating platform), which is not limited in this embodiment.
  • the first adjustment module 205 adjusts the first alignment angle through rotation.
  • the first position sensitive detector 204 may calculate and determine the first alignment angle, and send the first alignment angle to the first adjustment module 205 .
  • the first adjustment module 205 receives the first alignment angle, and adjusts the first alignment angle through rotation, so that the adjusted first alignment angle satisfies the first aiming accuracy threshold.
  • the first aiming accuracy threshold may be accurate to two decimal places or more than three decimal places.
  • the first aiming accuracy threshold may be ⁇ 0.03°, or a smaller unit, and the first aiming accuracy threshold here is only one This example is not limited in this embodiment.
  • FIG. 3 is a schematic diagram of an alignment angle provided by an embodiment of the present application.
  • the optical path represented by the solid line in FIG. 3 is the initial optical path formed by the second prism returning to the first beacon light before the first optical path aiming device rotates.
  • the light path indicated by the dotted line in FIG. 3 is the light path formed by the second prism returning to the first beacon light after the first light path sighting device is rotated.
  • the displacement of the first position-sensitive detector in the rotated first optical path aiming device be ⁇ PSD
  • the displacement ⁇ PSD represents the position where the first beacon light in the initial optical path reaches the first position-sensitive detector, which is the same as the position after the rotation.
  • the position deviation value between the position where the first beacon light in the optical path reaches the first position sensitive detector is L, and the rotation angle of the first optical path aiming device is ⁇ , as shown in FIG. 3 .
  • the rotation angle ⁇ of the first optical path aiming device is equivalent to the first alignment angle.
  • the calculation formula of the first alignment angle of the first optical path aiming device can be deduced as: tan( ⁇ ) ⁇ PSD/L. That is, by returning the first beacon light through the second prism, the first position sensitive detector can calculate the first alignment angle. After calculating and determining the first alignment angle, the first position sensitive detector sends the first alignment angle to the first adjustment module, so that the first adjustment module can adjust the first alignment angle and improve the aiming accuracy of the fine tracking system.
  • FIG. 4 shows the beacon optical path between the first optical path aiming device 201 and the second optical path aiming device 202 in the embodiment of FIG. 2 .
  • the first optical path aiming device 201 transmits the first beacon light to the second optical path aiming device 202 through the first optical transceiver 203, and the beacon optical path is the first optical transceiver 203 and the second optical transceiver 206 in FIG. 4 . shown by the solid line in between.
  • the second optical transceiver 206 in the second optical path aiming device 202 receives the first beacon light and transmits the first beacon light to the second prism 207, and the beacon optical path is shown in the second optical transceiver 203 and the first beacon light in FIG. 4 .
  • the solid lines between the two prisms 204 are shown. That is, the optical path shown by the solid line in FIG. 4 may represent the initial optical path of the first beacon light.
  • the second prism 207 has the function of symmetrically returning the light path, then the second prism 207 can reflect the first beacon light to the second optical transceiver 206, and the beacon light path is as shown in FIG. shown by the dashed line between the regulators 206 .
  • the second optical transceiver 206 receives the first beacon light reflected by the second prism 207 , and transmits the first beacon light reflected by the second prism 207 to the first optical transceiver 203 .
  • the dotted line between the optical transceiver 206 and the first optical transceiver 203 is shown.
  • the first optical transceiver 203 receives the first beacon light reflected by the second prism 207 and transmits the first beacon light reflected by the second prism 207 to the first position sensitive detector 204.
  • the beacon light path is as shown in FIG. 4 .
  • the dotted line between an optical transceiver 203 and the first position sensitive detector 204 is shown. That is to say, the light path shown by the dotted line in FIG. 4 may represent the return light path of the first beacon light, and the return light path and the initial light path of the first beacon light in FIG. 4 may be regarded as symmetrical or coincident light paths.
  • the second prism 207 symmetrically returns the first beacon light emitted by the first optical path aiming device 201 to the first position sensitive detector 204, so that the first optical path aiming device 201 can reach the first beacon light according to the returned first beacon light.
  • the position information of a position sensitive detector 204 determines the first alignment angle.
  • the first position sensitive detector 204 sends the first alignment angle to the first adjustment module 205, so that the first adjustment module can adjust the first alignment angle by rotating, so that the first optical path aiming device 201 and the second optical path aiming device 202
  • the alignment of the beacon optical path is beneficial to improve the aiming accuracy of the precise tracking system.
  • the first optical transceiver 203 may specifically include a dichroic mirror 203a and a beam splitter 203b; similarly, the second optical transceiver 206 may also specifically include a dichroic mirror Mirror 206a and beam splitter 206b, as shown in Figure 5a.
  • the first optical path aiming device 201 further includes a first light generator 208 .
  • the first light generator 208 is used to generate the first beacon light and transmit the first beacon light to the second light path aiming device 202 .
  • the beam splitter 203b is configured to receive the first beacon light emitted by the first light generator 208 and emit the first beacon light to the dichroic mirror 203a.
  • the dichroic mirror 203a is used for receiving the first beacon light emitted by the beam splitter 203b, and emitting the first beacon light to the dichroic mirror 206a in the second optical transceiver.
  • the dichroic mirror 206a is used for receiving the first beacon light emitted by the dichroic mirror 203a, and emitting the first beacon light to the beam splitter 206b.
  • the beam splitter 206b is used to receive the first beacon light emitted by the dichroic mirror 206a and emit the first beacon light to the second prism 207 . It can be seen that the first beacon light is emitted from the first light generator 208, and reaches the second prism through the above-mentioned multiple modules. The initial optical path of the first beacon light is shown by the solid line in FIG. 5a.
  • the second prism 207 is also used to reflect the first beacon light, and reflect the first beacon light to the beam splitter 206b.
  • the beam splitter 206b is also used for receiving the first beacon light reflected by the second prism, and transmitting the first beacon light reflected by the second prism to the dichroic mirror 206a.
  • the dichroic mirror 206a is further configured to receive the first beacon light reflected by the second prism, and transmit the first beacon light reflected by the second prism to the dichroic mirror 203a of the first optical transceiver.
  • the dichroic mirror 203a is also used for receiving the first beacon light reflected by the second prism, and transmitting the first beacon light reflected by the second prism to the beam splitter 203b.
  • the beam splitter 203b is further configured to receive the first beacon light reflected by the second prism, and transmit the first beacon light reflected by the second prism to the first position sensitive detector 204 . It can be seen that the first beacon light is reflected by the second prism and returns to the first position sensitive detector, and the return light path of the first beacon light is shown by the dotted line in Figure 5a.
  • the dichroic mirror 203a and the beam splitter 203b jointly realize the function of the first optical transceiver 203; for the second optical path aiming device 202, the dichroic mirror 206a Together with the beam splitter 206b, the function of the first optical transceiver 203 is realized.
  • the first optical path aiming device 201 further includes a first prism 209
  • the second optical path aiming device further includes a second light generator 210 and a second position sensitive detector 211 and the second adjustment module 212, as shown in FIG. 5b.
  • the second light generator 210 is used to generate the second beacon light, and transmit the second beacon light to the first optical path aiming device 201 .
  • the first prism 209 is used to receive and reflect the second beacon light.
  • the second position sensitive detector 211 is configured to receive the second beacon light reflected by the first prism, and determine the second alignment angle according to the position where the second beacon light reflected by the first prism reaches the second position sensitive detector.
  • the second position sensitive detector 211 is further configured to send the second alignment angle to the second adjustment module 212, and the second adjustment module 212 adjusts the second alignment angle by rotating, so that the adjusted second alignment angle satisfies the second alignment angle Precision threshold.
  • the second aiming accuracy threshold is similar to the first aiming accuracy threshold, and may also be accurate to two decimal places or more than three decimal places.
  • the value range of the second aiming accuracy threshold may be the same as or different from the value range of the first aiming accuracy threshold, which is not limited in this embodiment.
  • the initial optical path for the second optical path aiming device to transmit the second beacon light to the first optical path aiming device can be regarded as including the following sections: the second light generator 210 is used for generating the second beacon light, The second beacon light is emitted to the beam splitter 206b.
  • the beam splitter 206b is used to receive the second beacon light and transmit the second beacon light to the dichroic mirror 206a.
  • the dichroic mirror 206a is used to receive the second beacon light and transmit the second beacon light to the dichroic mirror 203a.
  • the dichroic mirror 203a is used to receive the second beacon light and transmit the second beacon light to the beam splitter 203b.
  • the beam splitter 203b is used to receive the second beacon light and transmit the second beacon light to the first prism 209 . It can be seen that the optical path formed by the second beacon light passing through the above-mentioned multiple elements is the initial optical path of the second beacon light, as shown by the solid line in Fig. 5b.
  • this embodiment defines that the first beacon light and the second beacon light are lights with different wavelengths.
  • the beam splitter 203b can receive the first beacon light reflected by the second prism, and can also receive the second beacon light emitted by the second optical path aiming device. That is, the beam splitter 203b can emit the first beacon light reflected by the second prism and the second beacon light emitted by the second optical path aiming device to the first position sensitive detector 204 .
  • a filter can be set between the first position sensitive detector 204 and the beam splitter 203b to filter the second beacon light, so that the first The position sensitive detector 204 only receives the first beacon light reflected by the second prism, and calculates the first alignment angle according to the position information of the first beacon light reflected by the second prism reaching the first position sensitive detector.
  • the first prism 209 also has the function of symmetrically returning the light path.
  • the return light path of the second beacon light reflected by the second prism 209 can be regarded as including the following sections: the first prism 209 is used to reflect the second beacon light to the beam splitter 203b.
  • the beam splitter 203b is used for receiving the second beacon light reflected by the first prism, and emitting the second beacon light reflected by the first prism to the dichroic mirror 203a.
  • the dichroic mirror 203a is used for receiving the second beacon light reflected by the first prism, and emitting the second beacon light reflected by the first prism to the dichroic mirror 206a.
  • the dichroic mirror 206a is used for receiving the second beacon light reflected by the first prism, and emitting the second beacon light reflected by the first prism to the beam splitter 206b.
  • the beam splitter 206b is used for receiving the second beacon light reflected by the first prism, and transmitting the second beacon light reflected by the first prism to the second position sensitive detector 211 . It can be seen that the optical path formed by the second beacon light passing through the above-mentioned multiple modules is the return optical path of the second beacon light, as shown by the dotted line in Fig. 5b.
  • the second position sensitive detector 211 is configured to receive the second beacon light reflected by the first prism 209, and calculate the second pair according to the position where the second beacon light reflected by the first prism reaches the second position sensitive detector 211 quasi angle.
  • the second position-sensitive detector 211 in the second optical path aiming device 202 and A filter may also be provided between the beam splitters 206b.
  • the filter is used to filter the first beacon light, so that the second position sensitive detector 211 only receives the second beacon light reflected by the first prism 209 and arrives according to the second beacon light reflected by the first prism
  • the second alignment angle is calculated from the position information of the second position sensitive detector 211 .
  • the optical path aiming system shown in Figure 5b by setting the first prism in the first optical path aiming device, and using the characteristic of the first prism to return the optical path symmetrically, the second beacon light emitted by the second optical path aiming device is returned according to The light path is reflected to the second position sensitive detector to adjust the second alignment angle of the second light path aiming device.
  • the optical path sighting system shown in Fig. 5b uses the second prism in the second optical path sighting device to reflect the first beacon light emitted by the first optical path sighting device according to the return optical path to the The first position sensitive detector is used to adjust the first alignment angle of the first optical path aiming device, which is beneficial to improve the aiming accuracy of the fine tracking system.
  • the first optical path aiming device 201 further includes a first image acquisition module, a sensor 213 and a marker 214
  • the second optical path aiming device 202 further includes a second image acquisition module and The sensor 215 and the marker 216, the above-mentioned multiple modules are used to realize the rough aiming between the first optical path aiming device and the second optical path aiming device, as shown in Fig. 5c.
  • the first image acquisition module and the sensor 213 are used to acquire the attitude angle between the first optical path aiming device 201 and the second optical path aiming device 202 , and send the attitude angle to the first adjustment module 205 .
  • the first adjustment module 205 is configured to receive the attitude angle, and adjust the first alignment angle of the first optical path aiming device 201 according to the attitude angle, and the adjusted first alignment angle satisfies the third aiming accuracy threshold.
  • the attitude angle is the angle (including the horizontal angle and the vertical angle) between the center of the first image acquisition module and the sensor 213 and the marker 216 of the second optical path aiming device. That is to say, the first image acquisition module and sensor 213 and the first adjustment module 205 are used to realize the rough aiming between the first optical path aiming device 201 and the second optical path aiming device 202 .
  • the second image acquisition module and the sensor 215 also have similar functions to the first image acquisition module and the sensor 213 , and are used to realize rough aiming between the second optical path aiming device 202 and the first optical path aiming device 201 .
  • the third aiming accuracy threshold is the aiming accuracy threshold for coarse aiming, that is to say, the third aiming accuracy threshold is greater than the first aiming accuracy threshold or the second aiming accuracy threshold.
  • the third aiming accuracy threshold may be accurate to one decimal place, for example, the third aiming accuracy threshold may be ⁇ 0.1°, which is not limited in this embodiment.
  • the first optical path aiming device 201 further includes a first collimating mirror 217
  • the second optical path aiming device 202 further includes a second collimating mirror 218 , as shown in FIG. 5 d .
  • the first collimating mirror 217 is used to transmit the optical signal to the second optical path aiming device 202 to establish communication between the first optical path aiming device 201 and the second optical path aiming device 202 link, as shown by the dashed line in Fig. 5d.
  • the communication link is coupled with the beacon optical path for transmitting the first beacon light, that is, when the beacon optical path between the first optical path aiming device 201 and the second optical path aiming device 202 is aligned, it is The optically coupled communication links are also aligned.
  • the second collimating mirror 218 also has a similar function to that of the first collimating mirror 217 , and is used for transmitting the optical signal to the first optical path aiming device 201 .
  • the first collimating mirror 217 or the second collimating mirror 218 can be connected to the optical signal generating device through an optical fiber, and receive the optical signal through the optical fiber.
  • FIG. 6 is a schematic structural diagram of an ATP optical path system according to an embodiment of the present application.
  • the AP side includes a collimating mirror 301, a dichroic mirror 302, a beam splitter 303, a beam splitter 304, a prism 305, a position sensitive detector 306, a light generator 307, an image acquisition module and sensor 308, a marker 309 and an adjustment Module 310. It can be seen that, compared with the AP side in the optical path system shown in FIG.
  • a prism 305 is added to the AP side in the ATP optical path system shown in FIG.
  • a prism 305 is added to the AP side in the ATP optical path system shown in FIG.
  • the STA side includes a dichroic mirror 311, a collimating mirror 312, a beam splitter 313, a beam splitter 314, a prism 315, a position sensitive detector 316, a light generator 317, an image acquisition module and sensor 318, a marker 319 and an adjustment Module 320.
  • a prism 315 is newly added to the STA side in the ATP optical path system shown in FIG. 6 , which is used to realize the second prism in FIGS. 4 to 5d
  • FIGS. 4 to 5d For the implemented functions and specific implementation manners, reference may be made to the relevant description of the second prism in the foregoing embodiments, which will not be repeated here.
  • the beacon light at the opposite end is reflected by a prism between the AP side and the STA side to align the optical paths.
  • the light generator 307 in the AP side transmits the first beacon light
  • the first beacon light is transmitted to the dichroic mirror 302 through the beam splitter 303, and then transmitted to the STA through the dichroic mirror 302 Dichroic mirror 311 on the side.
  • the dichroic mirror 311 receives the first beacon light and transmits the first beacon light to the beam splitter 313 , the beam splitter 313 transmits the first beacon light to the beam splitter 314 , and the beam splitter 314 transmits the first beacon light to the prism 315 . cursor.
  • the STA side uses the characteristic of the prism 315 to return the optical path symmetrically.
  • the optical path of the prism 315 to reflect the first beacon light is the same as the optical path of the AP side to transmit the first beacon light, that is, the first beacon light returns to the beam splitting in the same way Mirror 303.
  • the beam splitter 303 emits the first beacon light to the beam splitter 304, and the beam splitter 304 emits the first beacon light to the position sensitive detector 306, so that the position sensitive detector 306 reaches the position sensitive detector according to the first beacon light position to calculate the first alignment angle.
  • the servo system 310 adjusts the first alignment angle so that the AP side and the STA side are aligned.
  • the second beacon light emitted by the STA side passes through the beam splitter 313 , the dichroic mirror 311 , the dichroic mirror 302 , the beam splitter 303 and the beam splitter 304 It is emitted to the prism 305, and the prism 305 is used for the symmetrical return optical path.
  • the optical path of the prism 305 to reflect the second beacon light is the same as the optical path of the STA side to transmit the second beacon light, that is, the original path of the second beacon light. Return to beam splitter 313 .
  • the beam splitter 313 emits the second beacon light to the beam splitter 314, and the beam splitter 314 emits the second beacon light to the position sensitive detector 316, so that the position sensitive detector 316 reaches the position sensitive detector according to the second beacon light position to calculate the second alignment angle.
  • the servo system 320 adjusts the second alignment angle so that the STA side and the AP side are aligned.
  • the beam splitter 314 can also refract the first beacon light to the position sensitive detector 316 on the STA side, but a filter can be set between the position sensitive detector 316 and the beam splitter 314 to filter the first beacon light That is, the first beacon light does not reach the position sensitive detector 316 .
  • the beam splitter 304 can also refract the second beacon light to the position sensitive detector 306 on the AP side, but a filter can be set between the position sensitive detector 306 and the beam splitter 304 to filter the second beacon light, namely The second beacon light does not reach the position sensitive detector 306 .
  • FIG. 7 provides an optical path aiming method for an embodiment of the application.
  • the optical path aiming method can be performed by the first optical path aiming device in the optical path aiming system as shown in FIG. 2, and specifically includes the following steps:
  • the first optical path aiming device emits a first beacon light to the second optical path aiming device
  • the first optical path aiming device receives the first beacon light reflected by the second prism in the second optical path aiming device
  • the first optical path aiming device adjusts the first alignment angle of the first optical path aiming device according to the position information of the first beacon light reflected by the second prism reaching the first position sensitive detector in the first optical path aiming device, and after the adjustment The first alignment angle of satisfies the first aiming accuracy threshold.
  • the first optical path aiming device transmits the first beacon light to the second optical path aiming device.
  • the first optical transceiver in the first optical path aiming device may transmit the first beacon light to the second optical transceiver in the second optical path aiming device.
  • a beacon light the second optical transceiver transmits the first beacon light to the second prism in the second optical path aiming device.
  • the first optical path aiming device receives the first beacon light reflected by the second prism in the second optical path aiming device, specifically, the first optical transceiver in the first optical path aiming device receives the first beacon light reflected by the second prism. beacon light, and the first optical transceiver transmits the first beacon light reflected by the second prism to the first position sensitive detector. That is, the first position sensitive detector receives the first beacon light reflected by the second prism.
  • the first position-sensitive detector in the first optical path aiming device can determine the first alignment angle according to the position information of the first beacon light reflected by the second prism reaching the first position-sensitive detector.
  • the first position sensitive detector then sends the first alignment angle to the first adjustment module in the first optical path aiming device, and the first adjustment module can adjust the first alignment angle so that the adjusted first alignment angle satisfies the first alignment angle.
  • Aiming accuracy threshold For a specific implementation, reference may be made to the relevant descriptions of the first position sensitive detector, the first alignment angle, and the first adjustment module in the embodiments of FIGS. 2 to 5 d , which are not repeated here.
  • FIG. 8 is a schematic diagram of an optical path after rotation of an optical path aiming device according to an embodiment of the present application.
  • the first optical path aiming device is simplified as a rotating platform 1 in FIG. 8, and the rotating platform 1 includes a light generator, an optical transceiver, a prism and a position-sensitive detector;
  • the second optical path aiming device is simplified as a rotating platform The platform 2,
  • the rotating platform 2 includes a light generator, a light transceiver, a prism and a position sensitive detector.
  • the optical transceiver in the rotating platform 1 transmits beacon light to the rotating platform 2 .
  • the prism in the rotating platform 2 returns the beacon light symmetrically, and the optical transceiver in the rotating platform 1 receives the beacon light symmetrically returned by the prism, and emits the beacon light symmetrically returned by the prism to the position sensitive detector, forming the initial optical path, as shown in the figure
  • the initial optical path in 8 is shown.
  • the first position-sensitive detector can calculate the alignment angle according to the position information of the beacon light in the initial optical path reaching the position-sensitive detector. If the alignment angle satisfies the preset first aiming accuracy threshold, the first optical path is aiming at the initial state. The device is aligned with the second optical path aiming device.
  • the rotating platform 2 can also perform the above steps through a light generator, an optical transceiver, a prism and a position-sensitive detector to establish an initial optical path and determine that the first optical path aiming device is aligned with the second optical path aiming device in the initial state, here No longer.
  • the position-sensitive detector in the rotating platform 1 can judge whether the rotated optical paths are aligned according to the position information of the local beacon light reaching the position-sensitive detector. For example, the light generator in the rotating platform 1 continuously transmits the beacon light to the rotating platform 2, the prism in the rotating platform 2 returns the beacon light symmetrically, and the optical transceiver in the rotating platform 1 receives the beacon light symmetrically returned by the prism, and The prismatic symmetrical return beacon light is emitted to the position-sensitive detector to form a rotated optical path, as shown in the rotated optical path in FIG. 8 . Comparing the initial optical path and the rotated optical path, the alignment angle ⁇ of the rotating platform 1 is shown in FIG. 8 .
  • the alignment angle can be determined by the position information of the beacon light of the initial optical path reaching the position sensitive detector, and the position information of the beacon light of the rotated optical path reaching the position sensitive detector. description, which will not be repeated here. It can be seen that the beacon light returned by the rotating platform 1 symmetrically through the prism in the rotating platform 2 can realize the initial optical path alignment or the rotated optical path alignment.
  • the first optical path aiming device can also obtain the attitude angle between the first optical path aiming device and the second optical path aiming device, and adjust the first alignment angle of the first optical path aiming device according to the attitude angle.
  • the latter first alignment angle satisfies the third aiming accuracy threshold, and the third aiming accuracy threshold is greater than the first aiming accuracy threshold or the second aiming accuracy threshold.
  • the first optical path aiming device may acquire the attitude angle between the first optical path aiming device and the second optical path aiming device through the image acquisition module and the sensor, and send the attitude angle to the first adjustment module.
  • the first adjustment module can adjust the first alignment angle of the first optical path aiming device according to the attitude angle, and the adjusted first alignment angle satisfies the third aiming accuracy threshold.
  • the collimating mirror in the first optical path aiming device transmits an optical signal to the second optical path aiming device to establish the relationship between the first optical path aiming device and the second optical path aiming device.
  • the first optical path aiming device further includes a collimating mirror.
  • the first optical path aiming device transmits an optical signal to the second optical path aiming device through the collimating mirror, so as to establish a communication link between the first optical path aiming device and the second optical path aiming device.
  • the first optical path aiming device in the embodiment of Fig. 2 to Fig. 5 d can perform a kind of optical path aiming method as shown in Fig. 7, and the first optical path aiming device receives the first light reflected by the second prism in the second optical path aiming device.
  • a beacon light, the first alignment angle can be adjusted to realize the alignment of the beacon optical path between the first optical path aiming device and the second optical path aiming device, so as to realize the alignment of the communication link.
  • the second optical path aiming device can also perform an optical path as shown in FIG. 7 .
  • the aiming method that is, the second optical path aiming device can adjust the second alignment angle by receiving the second beacon light reflected by the first prism in the first optical path aiming device, so as to realize the first optical path aiming device and the second optical path aiming device
  • the beacon optical path between them is aligned, so as to realize the alignment of the communication link.
  • the first optical path aiming device or the second optical path aiming device in the foregoing embodiment may be a device or a chip or circuit provided in the device.
  • FIG. 9 is a schematic structural diagram of a first optical path aiming device according to an embodiment of the present application.
  • the first optical path aiming device may be a device (eg, a chip) that performs the optical path aiming method in the embodiments of FIGS. 7 and 8 .
  • the first optical path aiming device may include a transceiver 501 , at least one processor 502 and a memory 503 .
  • the transceiver 501, the processor 502 and the memory 503 may be connected to each other through one or more communication buses, or may be connected to each other in other ways.
  • the transceiver 501 may be used for sending data or receiving data. It can be understood that the transceiver 501 is a general term and may include a receiver and a transmitter.
  • the processor 502 may be used to process the data of the first optical path aiming device.
  • the processor 502 may include one or more processors, for example, the processor 502 may be one or more central processing units (CPUs), network processors (NPs), hardware chips or any combination thereof .
  • the processor 502 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the memory 503 is used for storing program codes and the like.
  • the memory 503 may include volatile memory (volatile memory), such as random access memory (RAM); the memory 503 may also include non-volatile memory (non-volatile memory), such as read-only memory (read- only memory, ROM), flash memory (flash memory), hard disk drive (HDD) or solid-state drive (solid-state drive, SSD); the memory 503 may also include a combination of the above-mentioned types of memory.
  • processor 502 and memory 503 may be coupled through an interface, or may be integrated together, which is not limited in this embodiment.
  • the above transceiver 501 and processor 502 can be used to implement the optical path aiming method in the embodiments of FIG. 7 and FIG. 8 , wherein the specific implementation is as follows:
  • the transceiver 501 is used for transmitting the first beacon light to the second optical path aiming device;
  • the transceiver 501 is further configured to receive the first beacon light reflected by the second prism in the second optical path aiming device;
  • the processor 502 is configured to adjust the first alignment angle of the first optical path aiming device according to the position information of the first beacon light reflected by the second prism reaching the first position sensitive detector in the first optical path aiming device, and the adjusted first alignment angle. An alignment angle satisfies the first aiming accuracy threshold.
  • the transceiver 501 is further configured to receive the second beacon light emitted by the second optical path aiming device;
  • the transceiver 501 is further configured to reflect the second beacon light to the second optical path aiming device, wherein the position information of the second beacon light reflected by the first prism reaching the second position sensitive detector in the second optical path aiming device is used for The second alignment angle of the second optical path aiming device is adjusted, and the adjusted second alignment angle satisfies the second aiming accuracy threshold.
  • the processor 502 is further configured to acquire the attitude angle between the first optical path aiming device and the second optical path aiming device, adjust the first alignment angle of the first optical path aiming device according to the attitude angle, and the adjusted The first alignment angle satisfies the third aiming accuracy threshold, and the third aiming accuracy threshold is greater than the first aiming accuracy threshold or the second aiming accuracy threshold.
  • the wavelength of the first beacon light and the wavelength of the second beacon light are different.
  • the transceiver 501 is further configured to transmit an optical signal to the second optical path aiming device to establish the first optical path aiming device and the second optical path aiming device communication link between.
  • the communication link is coupled to the beacon light path that transmits the first beacon light.
  • FIG. 10 is a schematic structural diagram of a second optical path aiming device provided by an embodiment of the present application.
  • the second optical path aiming device may include a transceiver 601 , at least one processor 602 and a memory 603 .
  • the transceiver 601, the processor 602 and the memory 603 may be connected to each other through one or more communication buses, and may also be connected to each other in other ways.
  • the transceiver 601 may be used for sending data or receiving data. It can be understood that the transceiver 601 is a general term and may include a receiver and a transmitter.
  • the processor 602 may be used to process the data of the second optical path aiming device.
  • the processor 602 may include one or more processors, for example, the processor 602 may be one or more central processing units (CPUs), network processors (NPs), hardware chips or any combination thereof .
  • the processor 602 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the memory 603 is used for storing program codes and the like.
  • the memory 603 may include a volatile memory (volatile memory), such as random access memory (RAM); the memory 603 may also include a non-volatile memory (non-volatile memory), such as a read-only memory (read- only memory, ROM), flash memory (flash memory), hard disk drive (HDD) or solid-state drive (solid-state drive, SSD); the memory 603 may also include a combination of the above-mentioned types of memory.
  • processor 602 and memory 603 may be coupled through an interface, or may be integrated together, which is not limited in this embodiment.
  • transceiver 601 The specific implementation of the transceiver 601 and the processor 602 is as follows:
  • the transceiver 601 is used for transmitting the second beacon light to the first optical path aiming device
  • the transceiver 601 is further configured to receive the second beacon light reflected by the first prism in the first optical path aiming device;
  • the processor 602 is configured to determine the second alignment angle of the second optical path aiming device according to the position information of the second beacon light reflected by the first prism reaching the second position sensitive detector, and adjust the second alignment angle.
  • the second alignment angle satisfies the second aiming accuracy threshold.
  • the transceiver 601 is further configured to receive the first beacon light emitted by the first optical path aiming device, and is also configured to emit the first beacon light to the second prism;
  • the transceiver 601 is further configured to reflect the first beacon light to the first optical path aiming device, wherein the position information of the first beacon light reflected by the second prism reaching the first position sensitive detector of the first optical path aiming device is used for adjustment The first alignment angle of the first optical path aiming device, and the adjusted first alignment angle satisfies the first aiming accuracy threshold.
  • the processor 602 is further configured to obtain the attitude angle between the second optical path aiming device and the first optical path aiming device, and adjust the second alignment angle of the second optical path aiming device according to the attitude angle.
  • the second alignment angle of satisfies the fourth aiming accuracy threshold; wherein, the fourth aiming accuracy threshold is greater than the first aiming accuracy threshold or the second aiming accuracy threshold.
  • the wavelength of the first beacon light and the wavelength of the second beacon light are different.
  • the transceiver 601 is further configured to transmit an optical signal to the first optical path aiming device, so as to establish the second optical path aiming device and the first optical path aiming device A communication link between devices.
  • the communication link is coupled to the beacon light path for transmitting the second beacon light.
  • the embodiments of the present application provide a computer-readable storage medium, where a program or an instruction is stored in the computer-readable storage medium, and when the program or the instruction runs on a computer, the computer executes the optical path aiming method in the embodiment of the present application.
  • An embodiment of the present application provides a chip or a chip system, the chip or chip system includes at least one processor and an interface, the interface and the at least one processor are interconnected by a line, and the at least one processor is used to run a computer program or instruction to perform the present application
  • the optical path aiming method in the embodiment is used to run a computer program or instruction to perform the present application.
  • the interface in the chip may be an input/output interface, a pin or a circuit, or the like.
  • the chip system in the above aspects may be a system on chip (system on chip, SOC), or a baseband chip, etc.
  • the baseband chip may include a processor, a channel encoder, a digital signal processor, a modem, an interface module, and the like.
  • the chip or chip system described above in this application further includes at least one memory, where instructions are stored in the at least one memory.
  • the memory may be a storage unit inside the chip, such as a register, a cache, etc., or a storage unit of the chip (eg, a read-only memory, a random access memory, etc.).
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored on or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to transmit to another website site, computer, server or data center.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state disks, SSD)) etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Position Input By Displaying (AREA)
  • Optical Communication System (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种光路瞄准装置、光路瞄准方法及光路瞄准系统,其中,光路瞄准系统包括第一光路瞄准装置(201)和第二光路瞄准装置(202)。第一光路瞄准装置(201)中的第一光收发器(203)向第二光路瞄准装置(202)发射第一信标光,并接收第二光路瞄准装置(202)中的第二棱镜(207)反射的第一信标光。第一光路瞄准装置(201)中的第一位置敏感探测器(204)根据第二棱镜(207)反射的第一信标光到达第一位置敏感探测器(204)的位置信息,确定第一光路瞄准装置(201)的第一对准角度,并向第一调整模块(205)发送第一对准角度。第一调整模块(205)调整第一对准角度,调整后的第一对准角度满足第一瞄准精度阈值。可见,通过棱镜(207)反射的信标光可以使第一光路瞄准装置(201)和第二光路瞄准装置(202)的信标光路对齐,有利于提高精跟踪系统的瞄准精度。

Description

一种光路瞄准装置、光路瞄准方法及光路瞄准系统
本申请要求于2021年1月21日提交中国国家知识产权局、申请号为202110082565.9、申请名称为“一种光路瞄准装置、光路瞄准方法及光路瞄准系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种光路瞄准装置、光路瞄准方法及光路瞄准系统。
背景技术
自由空间光通信(free space optical communications,FSO)是指以光波为载体,在真空或大气中传递信息的通信技术。其中,快速、精确的捕获、跟踪和瞄准(acquisition tracking and pointing,ATP)技术是保证实现空间远距离光通信的必要核心技术。ATP系统包括目标捕获(粗跟踪)系统和跟踪瞄准(精跟踪)系统,其中,粗跟踪系统用于在较大视场范围内捕获目标,通常采用电荷耦合元件(charge-coupled device,CCD)阵列来实现,并与带通光滤波器、信号实时处理的伺服系统共同完成粗跟踪。在完成目标捕获后,精跟踪系统用于对目标进行瞄准和实时跟踪,通常采用位置敏感探测器来实现。其中,CCD的精度在距离比较远的场景(例如两端的距离大于5米)下,ATP系统根据信标光进行瞄准时误差较大。因此ATP系统需要根据位置敏感探测器的信息来计算伺服系统的旋转角度。但是,在此场景下,位置敏感探测器的信息不太准确,从而导致ATP系统计算的伺服系统的旋转角度也不准确,从而降低跟踪瞄准的精度。
发明内容
本申请实施例提供一种光路瞄准方法、光路瞄准装置及光路瞄准系统,有利于提高跟踪瞄准的精度。
第一方面,本申请实施例提供一种第一光路瞄准装置,该第一光路瞄准装置包括第一光收发器、第一位置敏感探测器和第一调整模块。其中,第一光收发器用于向第二光路瞄准装置发射第一信标光;第一光收发器还用于接收第二光路瞄准装置中的第二棱镜反射的第一信标光。第一位置敏感探测器用于根据第二棱镜反射的第一信标光到达第一位置敏感探测器的位置信息确定第一光路瞄准装置的第一对准角度,并向第一调整模块发送第一对准角度。第一调整模块用于调整第一对准角度,调整后的第一对准角度满足第一瞄准精度阈值。
可见,第一光路瞄准装置可以根据对端的第二棱镜反射的第一信标光到达第一位置敏感探测器的位置信息对本端的第一对准角度进行调整,实现第一光路瞄准装置的精瞄准,有利于提高跟踪瞄准的精度。
在一种可能的设计中,第一光路瞄准装置还包括第一棱镜。其中,第一光收发器还用于接收第二光路瞄准装置发射的第二信标光,以及,用于向第一棱镜发射第二信标光。第一棱镜用于反射第二信标光,第一棱镜反射的第二信标光到达第二光路瞄准装置的第二位置敏感 探测器的位置信息用于调整第二光路瞄准装置的第二对准角度,调整后的第二对准角度满足第二瞄准精度阈值。
可见,第一光路瞄准装置中的第一棱镜用于向第二光路瞄准装置反射第二信标光,以使第二光路瞄准装置可以根据第一棱镜反射的第二信标光到达第二位置敏感探测器的位置信息对本端的第二对准角度进行调整,实现第二光路瞄准装置的精瞄准,有利于提高跟踪瞄准的精度。
在一种可能的设计中,第一光收发器包括分光镜和二相色镜。其中,二相色镜用于接收第二光路瞄准装置发射的第二信标光,二相色镜还用于向分光镜发射第二信标光。分光镜用于从二相色镜接收第二信标光,分光镜还用于向第一棱镜发射第二信标光。
可见,第一光收发器具体可以包括分光镜和二相色镜。通过分光镜和二相色镜对第二信标光进行反射或折射,使得第一光路瞄准装置中的第一棱镜接收对端的第二信标光。
在一种可能的设计中,二相色镜还用于接收第二棱镜反射的第一信标光,二相色镜还用于向分光镜发射第二棱镜反射的第一信标光。分光镜还用于从二相色镜接收第二棱镜反射的第一信标光,分光镜还用于向第一位置敏感探测器发射第二棱镜反射的第一信标光。
可见,通过分光镜和二相色镜对第一信标光进行反射或折射,第一光路瞄准装置中的第一位置敏感探测器接收第二棱镜反射的本端发出的第一信标光,从而进行精瞄准。
在一种可能的设计中,第一光路瞄准装置还包括第一图像采集模块和传感器。其中,第一图像采集模块和传感器用于获取第一光路瞄准装置与第二光路瞄准装置之间的姿态角,并向第一调整模块发送姿态角。第一调整模块还用于接收姿态角,并根据姿态角调整第一光路瞄准装置的第一对准角度,调整后的第一对准角度满足第三瞄准精度阈值;其中,第三瞄准精度阈值大于第一瞄准精度阈值或第二瞄准精度阈值。
可见,第一光路瞄准装置的第一图像采集模块和传感器,以及第一调整模块可以共同实现第一光路瞄准装置的粗瞄准,其中,粗瞄准的精度低于精瞄准的精度。
在一种可能的设计中,第一信标光的波长和第二信标光的波长不同。
可见,第一光路瞄准装置可以设置滤光片滤除第二信标光,以使第一位置敏感探测器仅接收第二棱镜反射的第一信标光,从而根据第一信标光到达第一位置敏感探测器的位置信息对本端的第一对准角度进行调整。
在一种可能的设计中,第一光路瞄准装置还包括准直镜。其中,准直镜用于在第一光路瞄准装置调整第一对准角度之后,将光信号发射至第二光路瞄准装置,以建立第一光路瞄准装置与第二光路瞄准装置之间的通信链路。通信链路与用于传输第一信标光的信标光路相互耦合。
可见,在第一光路瞄准装置调整第一对准角度之后,第一光路瞄准装置中的准直镜通过向第二光路瞄准装置发射光信号,以建立第一光路瞄准装置与第二光路瞄准装置之间的通信链路。该通信链路与信标光路相互耦合,即当第一光路瞄准装置与第二光路瞄准装置之间的信标光路对齐时,通信链路也对齐。
第二方面,本申请实施例提供一种第二光路瞄准装置,该第二光路瞄准装置包括第二光收发器、第二位置敏感探测器和第二调整模块。其中,第二光收发器用于向第一光路瞄准装置发射第二信标光;第二光收发器还用于接收第一光路瞄准装置中的第一棱镜反射的第二信标光。第二位置敏感探测器用于根据第一棱镜反射的第二信标光到达第二位置敏感探测器的位置信息确定第二光路瞄准装置的第二对准角度,并向第二调整模块发送第二对准角度。第二调整模块用于调整第二对准角度,调整后的第二对准角度满足第二瞄准精度阈值。
可见,第二光路瞄准装置可以根据对端的第一棱镜反射的第二信标光到达第二位置敏感探测器的位置信息对本端的第二对准角度进行调整,实现第二光路瞄准装置的精瞄准,有利于提高跟踪瞄准的精度。
在一种可能的设计中,第二光路瞄准装置还包括第二棱镜。其中,第二光收发器还用于接收第一光路瞄准装置发射的第一信标光,以及,用于向第二棱镜发射第一信标光。第二棱镜用于反射第一信标光,第二棱镜反射的第一信标光到达第一光路瞄准装置的第一位置敏感探测器的位置信息用于调整第一光路瞄准装置的第一对准角度,调整后的第一对准角度满足第一瞄准精度阈值。
可见,第二光路瞄准装置中的第二棱镜用于向第一光路瞄准装置反射第一信标光,以使第一光路瞄准装置可以根据第二棱镜反射的第一信标光到达第一位置敏感探测器的位置信息对本端的第一对准角度进行调整,实现第一光路瞄准装置的精瞄准,有利于提高跟踪瞄准的精度。
在一种可能的设计中,第二光收发器包括分光镜和二相色镜。其中,二相色镜用于接收第一光路瞄准装置发射的第一信标光,二相色镜还用于向分光镜发射第一信标光。分光镜用于从二相色镜接收第一信标光,分光镜还用于向第二棱镜发射第一信标光。
可见,第二光收发器具体可以包括分光镜和二相色镜。通过分光镜和二相色镜对第一信标光进行反射或折射,使得第二光路瞄准装置中的第二棱镜接收对端的第一信标光。
在一种可能的设计中,二相色镜还用于接收第一棱镜反射的第二信标光,二相色镜还用于向分光镜发射第一棱镜反射的第二信标光。分光镜还用于从二相色镜接收第一棱镜反射的第二信标光,分光镜还用于向第二位置敏感探测器发射第一棱镜反射的第二信标光。
可见,通过分光镜和二相色镜对第二信标光进行反射或折射,第二光路瞄准装置中的第二位置敏感探测器接收第一棱镜反射的本端发出的第二信标光,从而进行精瞄准。
在一种可能的设计中,第二光路瞄准装置还包括第二图像采集模块和传感器。其中,第二图像采集模块和传感器用于获取第二光路瞄准装置与第一光路瞄准装置之间的姿态角,并向第二调整模块发送姿态角。第二调整模块还用于接收姿态角,并根据姿态角调整第二光路瞄准装置的第二对准角度,调整后的第二对准角度满足第四瞄准精度阈值;其中,第四瞄准精度阈值大于第一瞄准精度阈值或第二瞄准精度阈值。
可见,第二光路瞄准装置的第二图像采集模块和传感器,以及第二调整模块可以共同实现第二光路瞄准装置的粗瞄准,其中,粗瞄准的精度低于精瞄准的精度。
在一种可能的设计中,第一信标光的波长和第二信标光的波长不同。
可见,第二光路瞄准装置可以设置滤光片滤除第一信标光,以使第二位置敏感探测器仅接收第一棱镜反射的第二信标光,从而根据第二信标光到达第二位置敏感探测器的位置信息对本端的第二对准角度进行调整。
在一种可能的设计中,第二光路瞄准装置还包括准直镜。其中,准直镜用于在第二光路瞄准装置调整第二对准角度之后,将光信号发射至第一光路瞄准装置,以建立第二光路瞄准装置与第一光路瞄准装置之间的通信链路。通信链路与用于传输第二信标光的信标光路相互耦合。
可见,在第二光路瞄准装置调整第二对准角度之后,第二光路瞄准装置中的准直镜通过向第一光路瞄准装置发射光信号,以建立第二光路瞄准装置与第一光路瞄准装置之间的通信链路。该通信链路与信标光路相互耦合,即当第二光路瞄准装置与第一光路瞄准装置之间的信标光路对齐时,通信链路也对齐。
第三方面,本申请实施例提供一种光路瞄准方法,该方法可以由上述第一方面中的第一光路瞄准装置所执行。其中,第一光路瞄准装置向第二光路瞄准装置发射第一信标光,第一光路瞄准装置接收第二光路瞄准装置中的第二棱镜反射的第一信标光。第一光路瞄准装置根据第二棱镜反射的第一信标光到达第一光路瞄准装置中第一位置敏感探测器的位置信息,调整第一光路瞄准装置的第一对准角度,调整后的第一对准角度满足第一瞄准精度阈值。
可见,第一光路瞄准装置可以根据对端的第二棱镜反射的第一信标光到达第一位置敏感探测器的位置信息对本端的第一对准角度进行调整,实现第一光路瞄准装置的精瞄准,有利于提高跟踪瞄准的精度。
在一种可能的设计中,第一光路瞄准装置接收第二光路瞄准装置发射的第二信标光,第一光路瞄准装置中的第一棱镜反射第二信标光。其中,第一棱镜反射的第二信标光到达第二光路瞄准装置中的第二位置敏感探测器的位置信息用于调整第二光路瞄准装置的第二对准角度,调整后的第二对准角度满足第二瞄准精度阈值。
可见,第一光路瞄准装置中的第一棱镜用于向第二光路瞄准装置反射第二信标光,以使第二光路瞄准装置可以根据第一棱镜反射的第二信标光到达第二位置敏感探测器的位置信息对本端的第二对准角度进行调整,实现第二光路瞄准装置的精瞄准,有利于提高跟踪瞄准的精度。
在一种可能的设计中,在第一光路瞄准装置根据第二棱镜反射的第一信标光到达第一光路瞄准装置中第一位置敏感探测器的位置信息调整第一光路瞄准装置的第一对准角度之前,第一光路瞄准装置获取第一光路瞄准装置与第二光路瞄准装置之间的姿态角。第一光路瞄准装置根据姿态角调整第一光路瞄准装置的第一对准角度,调整后的第一对准角度满足第三瞄准精度阈值。其中,第三瞄准精度阈值大于第一瞄准精度阈值或第二瞄准精度阈值。
可见,第一光路瞄准装置可以进行粗瞄准,其中,粗瞄准的精度低于精瞄准的精度。
在一种可能的设计中,第一信标光的波长和第二信标光的波长不同。
在一种可能的设计中,在第一光路瞄准装置调整第一对准角度之后,第一光路瞄准装置中的准直镜向第二光路瞄准装置发射光信号,以建立第一光路瞄准装置与第二光路瞄准装置之间的通信链路。通信链路与传输第一信标光的信标光路相互耦合。
可见,在第一光路瞄准装置调整第一对准角度之后,第一光路瞄准装置中的准直镜通过向第二光路瞄准装置发射光信号,以建立第一光路瞄准装置与第二光路瞄准装置之间的通信链路。该通信链路与信标光路相互耦合,即当第一光路瞄准装置与第二光路瞄准装置之间的信标光路对齐时,通信链路也对齐。
注意的是,上述第一方面中的第一光路瞄准装置和上述第二方面中的第二光路瞄准装置具备对称的结构,则上述第二方面中的第二光路瞄准装置也可以执行第三方面类似的光路瞄准方法。
第四方面,本申请实施例提供一种第一光路瞄准装置,该第一光路瞄准装置可以为设备或设置于设备中的芯片或电路。该第一光路瞄准装置可以通过处理器实现如上述第一方面和/或第一方面的任意一种可能的设计中所提供的单元和/或模块所实现的功能。
第五方面,本申请实施例提供一种第二光路瞄准装置,该第二光路瞄准装置可以为设备或设置于设备中的芯片或电路。该第一光路瞄准装置可以通过处理器实现如上述第二方面和/或第二方面的任意一种可能的设计中所提供的单元和/或模块所实现的功能。
第六方面,本申请实施例提供一种光路瞄准系统,该光路瞄准系统包括上述第一方面或第四方面提供的第一光路瞄准装置,以及第二方面或第五方面提供的第二光路瞄准装置。
第七方面,本申请实施例提供一种计算机可读存储介质,该可读存储介质包括程序或指令,当所述程序或指令在计算机上运行时,使得计算机执行第三方面或第三方面中任一种可能实现方式中的方法。
第八方面,本申请实施例提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和接口,接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以进行第三方面或第三方面的任一种可能的实现方式中任一项所描述的方法。
其中,芯片中的接口可以为输入/输出接口、管脚或电路等。
上述方面中的芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
在一种可能的实现中,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
第九方面,本申请实施例提供一种计算机程序或计算机程序产品,包括代码或指令,当代码或指令在计算机上运行时,使得计算机执行第三方面或第三方面中任一种可能实现方式中的方法。
附图说明
图1为一种光路系统的示意图;
图2为本申请实施例提供的一种光路瞄准系统的示意图;
图3为本申请实施例提供的一种对准角度的示意图;
图4为本申请实施例提供的一种光路瞄准系统中的信标光路的示意图;
图5a为本申请实施例提供的另一种光路瞄准系统的示意图;
图5b为本申请实施例提供的另一种光路瞄准系统的示意图;
图5c为本申请实施例提供的另一种光路瞄准系统的示意图;
图5d为本申请实施例提供的另一种光路瞄准系统的示意图;
图6为本申请实施例提供的一种ATP光路系统的示意图;
图7为本申请实施例提供的一种光路瞄准方法的流程示意图;
图8为本申请实施例提供的一种光路瞄准装置旋转后的光路的示意图;
图9为本申请实施例提供的一种第一光路瞄准装置的结构示意图;
图10为本申请实施例提供的一种第二光路瞄准装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
自由空间光通信(free space optical communications,FSO)是指以光波为载体,在真空或大气中传递信息的通信技术。其中,快速、精确的捕获、跟踪和瞄准(acquisition tracking and pointing,ATP)技术是保证实现空间远距离光通信的必要核心技术。ATP系统通常包括目标捕获(粗跟踪)系统和跟踪瞄准(精跟踪)系统。
其中,粗跟踪系统用于在较大视场范围内捕获目标,捕获范围可达±1°~±20°或更大。粗跟踪系统通常采用电荷耦合元件(charge-coupled device,CCD)阵列来实现,并与带通光滤波器、信号实时处理的伺服系统共同完成粗跟踪。通常来说,粗跟踪的视场角为几毫弧度 (mrad),灵敏度约为10皮瓦(pW),跟踪精度为几十mrad。
在完成目标捕获后,精跟踪系统用于对目标进行瞄准和实时跟踪,通常采用四象限红外探测器(QD)或Q-APD高灵敏度位置传感器来实现,并配以相应伺服系统。精跟踪要求跟踪精度为几弧度(rad),跟踪灵敏度大约为几毫微瓦(nW)。
请参见图1,图1为一种光路系统的结构示意图。该光路系统包括接入点(access point,AP)和站点(station,STA)。其中,AP是一个网络的创建者,是网络的中心节点。例如,一般家庭或办公室使用的无线路由器就是一个AP。每一个连接到无线网络中的终端(如笔记本电脑、掌上电脑(personal digital assistant,PDA)及其它可以联网的用户设备)都可称为一个站点。
在图1所示的光路系统中,AP侧和STA侧的光路结构是按照相同的原理进行设计的,即AP侧和STA侧具有相同的光路结构。其中,AP侧的光路结构包括准直镜101、二相色镜102、分光镜103和分光镜104、位置敏感探测器(position sensitive detector,PSD)105、光产生器106、图像采集模块和传感器107、标记器(MARKER)108和伺服系统109。STA侧的光路结构包括准直镜110、二相色镜111、分光镜112和分光镜113、位置敏感探测器114、光产生器115、图像采集模块和传感器116、标记器117和伺服系统118。
其中,二相色镜(dichroic mirrors)又称双色镜,用于对光产生器发射的信标光进行折射或透射,可以视为一种光收发器。二相色镜的特点是对一定波长的光几乎完全透过,而对另一些波长的光几乎完全反射。例如,AP侧的二相色镜102可以将STA侧发射的信标光几乎完全透射至AP侧的分光镜103。
其中,分光镜用于利用色散元件(如三棱镜或光栅)将白光分解成不同波长的单色光,且构成连续的可见光光谱,也可以视为一种光收发器。例如,AP侧的分光镜可以将STA侧发射的信标光折射到AP侧的位置敏感探测器105上。
其中,准直镜通过光纤与光信号产生器相连接,用于通过光纤接收光信号产生器发送的光信号,并向对端发送光信号,以建立通信链路。
例如,AP侧的准直镜101用于将AP侧的光纤中的光信号发送至STA侧的准直镜110,以建立AP侧和STA侧之间的通信链路。类似的,STA侧的准直镜110用于将STA侧的光纤中的光信号发送至AP侧的准直镜101,以建立AP侧和STA侧之间的通信链路。
注意的是,图1为光路系统的一个平面示意图,准直镜101实际还与AP侧的光纤相连接,AP侧的光纤与光信号产生器相连接,用于将光信号传输至准直镜101,AP侧的光纤和光信号产生器并未在图1中示出。类似的,准直镜110实际还与STA侧的光纤相连接,STA侧的光纤与光信号产生器相连接,STA侧的光纤和光信号产生器也未在图1中示出。
其中,光产生器用于产生并发射信标光(如激光),以建立信标光路。其中,本实施例中的光产生器可以包括但不限于激光器、发光二极管等。
例如,在图1所示的光路系统中,AP侧的光产生器106产生信标光119,并向分光镜104发射信标光119。分光镜104向二相色镜102发射信标光119,二相色镜102接收信标光119,并向STA侧的二相色镜111发射信标光119。STA侧的二相色镜111接收信标光119,并向分光镜112发射信标光119。分光镜112接收信标光119,并向分光镜113发射信标光119。分光镜113接收信标光119,并向位置敏感探测器114发射信标光119,从而建立AP侧至STA侧的信标光路,如图1所示。
又例如,在图1所示的光路系统中,STA侧的光产生器115产生信标光120,并向分光镜112发射信标光120。分光镜112接收信标光120,并向二相色镜111发射信标光120。二 相色镜111接收信标光120,并向AP侧的二相色镜102发射信标光120。二相色镜102接收信标光120,并向分光镜104发射信标光120。分光镜104接收信标光120,并向分光镜103发射信标光120。分光镜103接收信标光120,并向位置敏感探测器105发射信标光120,从而建立STA侧至AP侧的信标光路。
注意的是,本实施例中的分光镜发射信标光可以是指分光镜透射信标光,也可以是指分光镜反射信标光。类似的,二相色镜发射信标光可以是指二相色镜折射信标光,也可以是指二相色镜透射信标光,具体实现方式本实施例不作限定。
综上所述,AP侧至STA侧的信标光119经过多个元件的反射或折射构成的信标光路,以及STA侧至AP侧的信标光120经过多个元件的反射或折射构成的信标光路,形成了AP侧和STA侧之间的信标光路。其中,在图1所示的光路系统中,AP侧和STA侧之间的通信链路和信标光路完全耦合,则当AP侧和STA侧之间的信标光路对准时,AP侧和STA侧之间的通信链路也对准。
其中,位置敏感探测器具有位置分辨率高、可减少来自日光的干扰、可以同时测量位置和强度、可靠性高等特性,可以广泛应用于光学位置和角度的测量与控制、位移和振动监测和激光光束校准等。其中,本实施例利用PSD可以测量位置的特性,采用PSD进行激光光束校准。
例如,AP侧的位置敏感探测器105用于获取AP侧的PSD信息,该PSD信息可以是AP侧的伺服系统109旋转后所导致的位置敏感探测器105的位移。AP侧的位置敏感探测器105可以根据AP侧的PSD信息来计算AP侧的对准角度,并通过伺服系统调整AP侧的对准角度,从而实现AP侧与STA侧的信标光路对准。可以理解的是,对于AP侧来说,位置敏感探测器105与伺服系统109用于实现对目标(STA侧)的精跟踪。对应的,STA侧的伺服系统118和位置敏感探测器114也具有类似的功能,在此不再赘述。
其中,图像采集模块和传感器用于采用CCD图像传感器对图像信息进行采集,可以包括以下多个模块:前端光学系统,CCD图像采集模块,模数转换模块,图像处理模块,数据存储模块等。注意的是,本实施例可以通过在处理器上运行指定的软件代码来实现图像采集模块,也可以通过专用集成电路来实现图像采集模块,本实施例不作限定。标记器用于标记伺服系统的位置,使得图像采集模块和传感器在进行区域扫描时,可以找到标记器从而确定伺服系统的位置。伺服系统用于承载上文实施例中的各类元件(包括准直镜、光产生器、分光镜、二相色镜、位置敏感探测器、图像采集模块和传感器、标记器),并且是一种可以旋转的设备。例如,伺服系统可以是旋转平台,或者其他可以旋转的系统,本实施例不作限定。
例如,AP侧的图像采集模块和传感器107和伺服系统109可以进行区域扫描,找到STA侧的标记器117,从而确定STA侧的伺服系统118的位置。其中,AP侧的图像采集模块和传感器107还可以确定AP侧的标记器108到STA侧的标记器117之间的姿态角,通过调整姿态角进行粗瞄准。对应的,STA侧的图像采集模块和传感器116、标记器117和伺服系统118也具有类似的功能,在此不再赘述。
可见,基于如图1所示的光路系统的设计,当AP侧和STA侧之间的信标光路对准时,通信链路也会对准。但是,CCD的精度在距离比较远的场景(例如两端的距离大于5米)下,图1所示的光路系统根据信标光进行瞄准时误差较大。因此由位置敏感探测器和伺服系统组成的精跟踪系统需要根据位置敏感探测器的信息来计算伺服系统的旋转角度。但是,在此场景下,位置敏感探测器读取的信息值比较小,并且有波动,从而导致计算的伺服系统的旋转角度也不准确,从而降低跟踪瞄准的精度。
为了解决上述问题,本申请实施例提供一种光路瞄准装置、光路瞄准方法及光路瞄准系统,有利于提高跟踪瞄准的精度。
请参见图2,图2为本申请实施例提供的一种光路瞄准系统,该光路瞄准系统包括两端,分别为第一光路瞄准装置201和第二光路瞄准装置202。其中,第一光路瞄准装置201包括第一光收发器203、第一位置敏感探测器204和第一调整模块205;第二光路瞄准装置202包括第二光收发器206、第二棱镜207。其中,图2所示的光路瞄准系统可以视为一种精跟踪系统。
第一光路瞄准装置201中的第一光收发器203用于向第二光路瞄准装置202发射第一信标光。例如,第一光收发器203向第二光路瞄准装置202中的第二光收发器206发射第一信标光。对应的,第二光路瞄准装置202中的第二光收发器206接收第一信标光,并向第二棱镜207发射第一信标光。
其中,棱镜可以改变光的传播方向,具备对称返回光路的功能。本实施例中的棱镜可以包括但不限于角锥棱镜、三角棱镜等。例如,第二光路瞄准装置202中的第二棱镜207可以将接收到的第一信标光按照第一信标光从第一光路瞄准装置201到第二光路瞄准装置202的光路,原路反射回第一光路瞄准装置201。
第一光收发器203还用于接收第二光路瞄准装置202中的第二棱镜207反射的第一信标光。例如,第二棱镜207反射第一信标光,即通过第二光收发器206向第一光收发器203发射第一信标光。第一光收发器203接收第二棱镜207反射的第一信标光,并向第一位置敏感探测器204发射第二棱镜207反射的第一信标光。对应的,第一位置敏感探测器204接收第二棱镜207反射的第一信标光。
第一位置敏感探测器204用于根据第二棱镜207反射的第一信标光到达第一位置敏感探测器204的位置信息确定第一光路瞄准装置201的第一对准角度,并向第一调整模块205发送第一对准角度。其中,第一对准角度可以视为精跟踪系统中调整的对准角度。
第一调整模块205用于调整第一光路瞄准装置201的第一对准角度,调整后的第一对准角度满足第一瞄准精度阈值。其中,第一调整模块205可以是图1实施例中的伺服系统,也可以是任意一种可旋转的系统(如旋转平台),本实施例不作限定。第一调整模块205通过旋转调整第一对准角度。
例如,第一位置敏感探测器204可以计算确定第一对准角度,并向第一调整模块205发送第一对准角度。第一调整模块205接收第一对准角度,并通过旋转调整第一对准角度,使得调整后的第一对准角度满足第一瞄准精度阈值。
其中,第一瞄准精度阈值可以精确到小数点后两位或小数点后三位以上,例如,第一瞄准精度阈值可以是±0.03°,或者更小单位,此处的第一瞄准精度阈值仅为一种示例,本实施例不作限定。
例如,图3为本申请实施例提供的一种对准角度的示意图。以第一光路瞄准装置为例,图3中的实线所表示的光路为第一光路瞄准装置旋转前,第二棱镜返回第一信标光所形成的初始光路。图3中的虚线所表示的光路为第一光路瞄准装置旋转后,第二棱镜返回第一信标光所形成的光路。图3中令旋转后的第一光路瞄准装置中的第一位置敏感探测器的位移为ΔPSD,位移ΔPSD表示初始光路中的第一信标光到达第一位置敏感探测器的位置,与旋转后的光路中的第一信标光到达第一位置敏感探测器的位置,之间的位置偏差值。第一位置敏感探测器和第二棱镜之间的光路的距离为L,第一光路瞄准装置的旋转角度为α,如图3所示。其中,第一光路瞄准装置的旋转角度α即等价于第一对准角度。
根据图3中描述的各个参数,可以推导第一光路瞄准装置的第一对准角度的计算式为:tan(α)≈ΔPSD/L。也就是说,通过第二棱镜返回第一信标光,第一位置敏感探测器可以计算第一对准角度。第一位置敏感探测器计算确定第一对准角度后,向第一调整模块发送第一对准角度,使得第一调整模块可以调整第一对准角度,提高精跟踪系统的瞄准精度。
请参见图4,图4中示出了图2实施例中的第一光路瞄准装置201与第二光路瞄准装置202之间的信标光路。其中,第一光路瞄准装置201通过第一光收发器203向第二光路瞄准装置202发射第一信标光,信标光路如图4中的第一光收发器203和第二光收发器206之间的实线所示。第二光路瞄准装置202中的第二光收发器206接收第一信标光,并向第二棱镜207发射第一信标光,信标光路如图4中的第二光收发器203和第二棱镜204之间的实线所示。也就是说,图4中的实线所示的光路可以表示第一信标光的初始光路。
其中,第二棱镜207具备对称返回光路的功能,则第二棱镜207可以向第二光收发器206反射第一信标光,信标光路如图4中的第二棱镜207与第二光收发器206之间的虚线所示。第二光收发器206接收第二棱镜207反射的第一信标光,并向第一光收发器203发射第二棱镜207反射的第一信标光,信标光路如图4中的第二光收发器206和第一光收发器203之间的虚线所示。第一光收发器203接收第二棱镜207反射的第一信标光,并向第一位置敏感探测器204发射第二棱镜207反射的第一信标光,信标光路如图4中的第一光收发器203与第一位置敏感探测器204之间的虚线所示。也就是说,图4中的虚线所示的光路可以表示第一信标光的返回光路,该返回光路与图4中的第一信标光的初始光路可以视为对称或重合的光路。
可见,第二棱镜207将第一光路瞄准装置201发射的第一信标光对称返回至第一位置敏感探测器204,以使第一光路瞄准装置201可以根据返回的第一信标光到达第一位置敏感探测器204的位置信息确定第一对准角度。第一位置敏感探测器204向第一调整模块205发送第一对准角度,使得第一调整模块可以通过旋转调整第一对准角度,从而使第一光路瞄准装置201和第二光路瞄准装置202的信标光路对齐,有利于提高精跟踪系统的瞄准精度。
在一种示例中,基于图2所示的光路瞄准系统,第一光收发器203具体可以包括二相色镜203a和分光镜203b;类似的,第二光收发器206具体也包括二相色镜206a和分光镜206b,如图5a所示。可选的,第一光路瞄准装置201还包括第一光产生器208。第一光产生器208用于产生第一信标光,并向第二光路瞄准装置202发射第一信标光。
在一种实现方式中,分光镜203b用于接收第一光产生器208发射的第一信标光,并向二相色镜203a发射第一信标光。二相色镜203a用于接收分光镜203b发射的第一信标光,并向第二光收发器中的二相色镜206a发射第一信标光。二相色镜206a用于接收二相色镜203a发射的第一信标光,并向分光镜206b发射第一信标光。分光镜206b用于接收二相色镜206a发射的第一信标光,并向第二棱镜207发射第一信标光。可见,第一信标光从第一光产生器208发出,经过上述多个模块到达第二棱镜,第一信标光的初始光路如图5a中的实线所示。
在一种实现方式中,第二棱镜207还用于反射第一信标光,将第一信标光反射至分光镜206b。分光镜206b还用于接收第二棱镜反射的第一信标光,并向二相色镜206a发射第二棱镜反射的第一信标光。二相色镜206a还用于接收第二棱镜反射的第一信标光,并向第一光收发器的二相色镜203a发射第二棱镜反射的第一信标光。二相色镜203a还用于接收第二棱镜反射的第一信标光,并向分光镜203b发射第二棱镜反射的第一信标光。分光镜203b还用于接收第二棱镜反射的第一信标光,并向第一位置敏感探测器204发射第二棱镜反射的第一信标光。可见,第一信标光通过第二棱镜的反射,返回到达第一位置敏感探测器,第一信标光 的返回光路如图5a中的虚线所示。
也就是说,对于第一光路瞄准装置201来说,二相色镜203a和分光镜203b共同实现了第一光收发器203的功能;对于第二光路瞄准装置202来说,二相色镜206a和分光镜206b共同实现了第一光收发器203的功能。
在一种示例中,基于图5a所示的光路瞄准系统,第一光路瞄准装置201还包括第一棱镜209,第二光路瞄准装置还包括第二光产生器210、第二位置敏感探测器211和第二调整模块212,如图5b所示。
其中,第二光产生器210用于产生第二信标光,并向第一光路瞄准装置201发射第二信标光。第一棱镜209用于接收并反射第二信标光。第二位置敏感探测器211用于接收第一棱镜反射的第二信标光,并根据第一棱镜反射的第二信标光到达第二位置敏感探测器的位置确定第二对准角度。第二位置敏感探测器211还用于向第二调整模块212发送第二对准角度,第二调整模块212通过旋转调整第二对准角度,使得调整后的第二对准角度满足第二瞄准精度阈值。其中,第二瞄准精度阈值与第一瞄准精度阈值类似,也可以精确到小数点后两位或小数点后三位以上。其中,第二瞄准精度阈值的取值范围与第一瞄准精度阈值的取值范围可以相同,也可以不相同,本实施例不作限定。
在一种实现方式中,第二光路瞄准装置发射第二信标光到第一光路瞄准装置的初始光路可以视为包括以下几段:第二光产生器210用于产生第二信标光,并向分光镜206b发射第二信标光。分光镜206b用于接收第二信标光,并向二相色镜206a发射第二信标光。二相色镜206a用于接收第二信标光,并向二相色镜203a发射第二信标光。二相色镜203a用于接收第二信标光,并向分光镜203b发射第二信标光。分光镜203b用于接收第二信标光,并向第一棱镜209发射第二信标光。可见,第二信标光经过上述多个元件,形成的光路即为第二信标光的初始光路,如图5b中的实线所示。
其中,本实施例限定第一信标光和第二信标光为波长不同的光。对于第一光路瞄准装置201来说,分光镜203b可以接收第二棱镜反射的第一信标光,也可以接收第二光路瞄准装置发射的第二信标光。也就是说,分光镜203b可以向第一位置敏感探测器204发射第二棱镜反射的第一信标光和第二光路瞄准装置发射的第二信标光。由于第一信标光和第二信标光为波长不同的光,第一位置敏感探测器204和分光镜203b之间可以设置滤光片,用于过滤第二信标光,以使第一位置敏感探测器204仅接收第二棱镜反射的第一信标光,并根据第二棱镜反射的第一信标光到达第一位置敏感探测器的位置信息计算第一对准角度。
在一种实现方式中,类似于第二棱镜207,第一棱镜209也具备对称返回光路的功能。在图5b中,第二棱镜209反射第二信标光的返回光路可以视为包括以下几段:第一棱镜209用于向分光镜203b反射第二信标光。分光镜203b用于接收第一棱镜反射的第二信标光,并向二相色镜203a发射第一棱镜反射的第二信标光。二相色镜203a用于接收第一棱镜反射的第二信标光,并向二相色镜206a发射第一棱镜反射的第二信标光。二相色镜206a用于接收第一棱镜反射的第二信标光,并向分光镜206b发射第一棱镜反射的第二信标光。分光镜206b用于接收第一棱镜反射的第二信标光,并向第二位置敏感探测器211发射第一棱镜反射的第二信标光。可见,第二信标光经过上述多个模块,形成的光路即为第二信标光的返回光路,如图5b中的虚线所示。
其中,第二位置敏感探测器211用于接收第一棱镜209反射的第二信标光,并根据第一棱镜反射的第二信标光到达第二位置敏感探测器211的位置计算第二对准角度。具体实现方式,可以参考图3实施例中的对准角度的计算,在此不再赘述。
其中,由于第一信标光和第二信标光为波长不同的光,类似于第一光路瞄准装置201中设置滤光片,第二光路瞄准装置202中的第二位置敏感探测器211和分光镜206b之间也可以设置滤光片。该滤光片用于过滤第一信标光,以使第二位置敏感探测器211仅接收由第一棱镜209反射的第二信标光,并根据第一棱镜反射的第二信标光到达第二位置敏感探测器211的位置信息计算第二对准角度。
可见,图5b所示的光路瞄准系统,通过在第一光路瞄准装置中设置第一棱镜,并利用第一棱镜对称返回光路的特性,将第二光路瞄准装置发射的第二信标光按照返回光路反射至第二位置敏感探测器,以调整第二光路瞄准装置的第二对准角度。图5b所示的光路瞄准系统通过在第二光路瞄准装置中设置第二棱镜,并利用第二棱镜对称返回光路的特性,将第一光路瞄准装置发射的第一信标光按照返回光路反射至第一位置敏感探测器,以调整第一光路瞄准装置的第一对准角度,有利于提高精跟踪系统的瞄准精度。
可选的,基于如图5b所示的光路瞄准系统,第一光路瞄准装置201还包括第一图像采集模块和传感器213和标记器214,第二光路瞄准装置202还包括第二图像采集模块和传感器215和标记器216,上述多个模块用于实现第一光路瞄准装置和第二光路瞄准装置之间的粗瞄准,如图5c所示。
其中,第一图像采集模块和传感器213用于获取第一光路瞄准装置201与第二光路瞄准装置202之间的姿态角,并向第一调整模块205发送姿态角。第一调整模块205用于接收姿态角,并根据姿态角调整第一光路瞄准装置201的第一对准角度,调整后的第一对准角度满足第三瞄准精度阈值。其中,姿态角为第一图像采集模块和传感器213的中心到第二光路瞄准装置的标记器216之间的角度(包括水平角度和垂直角度)。也就是说,第一图像采集模块和传感器213和第一调整模块205用于实现第一光路瞄准装置201和第二光路瞄准装置202之间的粗瞄准。
类似的,第二图像采集模块和传感器215也具备和第一图像采集模块和传感器213类似的功能,用于实现第二光路瞄准装置202与第一光路瞄准装置201之间的粗瞄准。注意的是,第三瞄准精度阈值为粗瞄准的瞄准精度阈值,也就是说第三瞄准精度阈值大于第一瞄准精度阈值或第二瞄准精度阈值。例如,第三瞄准精度阈值可以是精确到小数点后一位,如第三瞄准精度阈值可以是±0.1°,本实施例不作限定。
可选的,基于如图5b所示的光路瞄准系统,第一光路瞄准装置201还包括第一准直镜217,第二光路瞄准装置202还包括第二准直镜218,如图5d所示。其中,在第一光路瞄准装置201中,第一准直镜217用于将光信号发射至第二光路瞄准装置202,以建立第一光路瞄准装置201与第二光路瞄准装置202之间的通信链路,如图5d中的虚线所示。其中,该通信链路与用于传输第一信标光的信标光路相互耦合,也就是说,当第一光路瞄准装置201与第二光路瞄准装置202之间的信标光路对齐时,与信标光路耦合的通信链路也对齐。类似的,第二准直镜218也具备和第一准直镜217类似的功能,用于将光信号发射至第一光路瞄准装置201。注意的是,第一准直镜217或第二准直镜218可以通过光纤与光信号产生装置相连接,通过光纤接收光信号。
基于上述图2至图5d中对光路瞄准系统的瞄准,下面通过一个具体的示例详细描述一种ATP光路系统。请参见图6,图6为本申请实施例提供的一种ATP光路系统的结构示意图。其中,AP侧包括准直镜301、二相色镜302、分光镜303、分光镜304、棱镜305、位置敏感探测器306、光产生器307、图像采集模块和传感器308、标记器309和调整模块310。可见,相较于图1所示的光路系统中的AP侧,图6所示的ATP光路系统中的AP侧中新增了棱镜 305,用于实现如图5b至图5d实施例中的第一棱镜所实现的功能,具体实现方式可以参考前文实施例中对第一棱镜的相关描述,在此不再赘述。
其中,STA侧包括二相色镜311、准直镜312、分光镜313、分光镜314、棱镜315、位置敏感探测器316、光产生器317、图像采集模块和传感器318、标记器319和调整模块320。可见,相较于图1所示的光路系统中的STA侧,图6所示的ATP光路系统中的STA侧中新增了棱镜315,用于实现如图4至图5d中的第二棱镜所实现的功能,具体实现方式可以参考前文实施例中对第二棱镜的相关描述,在此不再赘述。
例如,在图6所示的ATP光路系统中,AP侧和STA侧之间通过棱镜互相反射对端的信标光进行光路对齐。其中,对于AP侧来说,AP侧中的光产生器307发射第一信标光,第一信标光通过分光镜303发射至二相色镜302,再通过二相色镜302发射至STA侧的二相色镜311。二相色镜311接收第一信标光,并向分光镜313发射第一信标光,分光镜313再向分光镜314发射第一信标光,分光镜314再向棱镜315发射第一信标光。
STA侧利用棱镜315对称返回光路的特性,本实施例中令棱镜315反射第一信标光的光路与AP侧发射第一信标光的光路相同,即第一信标光原路返回至分光镜303。分光镜303将第一信标光发射至分光镜304,分光镜304将第一信标光发射至位置敏感探测器306,从而使位置敏感探测器306根据第一信标光到达位置敏感探测器的位置计算第一对准角度。伺服系统310调整第一对准角度使得AP侧和STA侧对齐。
又例如,对于STA侧来说,采用类似于AP侧的流程,STA侧发射的第二信标光通过分光镜313、二相色镜311、二相色镜302、分光镜303和分光镜304发射至棱镜305,利用棱镜305对称返回光路的特性,本实施例中令棱镜305反射第二信标光的光路与STA侧发射第二信标光的光路相同,即第二信标光原路返回至分光镜313。分光镜313将第二信标光发射至分光镜314,分光镜314将第二信标光发射至位置敏感探测器316,从而使位置敏感探测器316根据第二信标光到达位置敏感探测器的位置计算第二对准角度。伺服系统320调整第二对准角度使得STA侧和AP侧对齐。
注意的是,分光镜314也可以向STA侧的位置敏感探测器316折射第一信标光,但是位置敏感探测器316与分光镜314之间可以设置滤光片,从而过滤第一信标光即第一信标光不会到达位置敏感探测器316。类似的,分光镜304也可以向AP侧的位置敏感探测器306折射第二信标光,但是位置敏感探测器306与分光镜304之间可以设置滤光片,从而过滤第二信标光即第二信标光不会到达位置敏感探测器306。
基于上述图2至图6实施例中对光路瞄准系统的描述,下面对应用于上述光路瞄准系统中的一种光路瞄准方法进行详细的描述。请参见图7,图7为本申请实施例提供一种光路瞄准方法,该光路瞄准方法可以由如图2所示的光路瞄准系统中的第一光路瞄准装置所执行,具体包括以下步骤:
401,第一光路瞄准装置向第二光路瞄准装置发射第一信标光;
402,第一光路瞄准装置接收第二光路瞄准装置中的第二棱镜反射的第一信标光;
403,第一光路瞄准装置根据第二棱镜反射的第一信标光到达第一光路瞄准装置中第一位置敏感探测器的位置信息,调整第一光路瞄准装置的第一对准角度,调整后的第一对准角度满足第一瞄准精度阈值。
其中,第一光路瞄准装置向第二光路瞄准装置发射第一信标光,具体可以是第一光路瞄准装置中的第一光收发器向第二光路瞄准装置中的第二光收发器发射第一信标光,第二光收发器再向第二光路瞄准装置中的第二棱镜发射第一信标光。具体实现方式,可以参考图2至 图5d实施例中对第一光收发器、第二光收发器、第二棱镜以及第一信标光的初始光路的相关描述,在此不再赘述。
其中,第一光路瞄准装置接收第二光路瞄准装置中的第二棱镜反射的第一信标光,具体可以是第一光路瞄准装置中的第一光收发器接收第二棱镜反射的第一信标光,并且第一光收发器向第一位置敏感探测器发射第二棱镜反射的第一信标光。也就是说,第一位置敏感探测器接收第二棱镜反射的第一信标光。具体实现方式,可以参考图2至图5d实施例中对第一光收发器、第二光收发器、第二棱镜、第一位置敏感探测器以及第一信标光的返回光路的相关描述,在此不再赘述。
其中,第一光路瞄准装置中的第一位置敏感探测器可以根据第二棱镜反射的第一信标光到达第一位置敏感探测器的位置信息,确定第一对准角度。第一位置敏感探测器再向第一光路瞄准装置中的第一调整模块发送第一对准角度,第一调整模块可以调整第一对准角度,使得调整后的第一对准角度满足第一瞄准精度阈值。具体实现方式,可以参考图2至图5d实施例中对第一位置敏感探测器、第一对准角度、第一调整模块的相关描述,在此不再赘述。
例如,请参见图8,图8为本申请实施例提供的一种光路瞄准装置旋转后的光路的示意图。为了便于描述对准角度,图8中将第一光路瞄准装置简化为旋转平台1,旋转平台1包括光产生器、光收发器、棱镜和位置敏感探测器;将第二光路瞄准装置简化为旋转平台2,旋转平台2包括光产生器、光收发器、棱镜和位置敏感探测器。其中,当旋转平台1和旋转平台2均未旋转时,对于旋转平台1来说,旋转平台1中的光收发器向旋转平台2发射信标光。旋转平台2中的棱镜对称返回信标光,旋转平台1中的光收发器接收棱镜对称返回的信标光,并向位置敏感探测器发射棱镜对称返回的信标光,形成初始光路,如图8中的初始光路所示。第一位置敏感探测器可以根据初始光路中的信标光到达位置敏感探测器的位置信息计算对准角度,若对准角度满足预设的第一瞄准精度阈值,则初始状态下第一光路瞄准装置与第二光路瞄准装置对齐。类似的,旋转平台2也可以通过光产生器、光收发器、棱镜和位置敏感探测器执行上述步骤,建立初始光路并确定初始状态下第一光路瞄准装置与第二光路瞄准装置对齐,在此不再赘述。
当旋转平台1旋转一定的角度后,旋转平台1中的位置敏感探测器可以根据本端的信标光到达位置敏感探测器的位置信息来判断旋转后的光路是否对齐。例如,旋转平台1中的光产生器持续向旋转平台2发射信标光,旋转平台2中的棱镜对称返回信标光,旋转平台1中的光收发器接收棱镜对称返回的信标光,并向位置敏感探测器发射棱镜对称返回信标光,形成旋转后的光路,如图8中的旋转后的光路所示。将初始光路和旋转后的光路进行比较,旋转平台1的对准角度α如图8所示。其中,对准角度可以由初始光路的信标光到达位置敏感探测器的位置信息、旋转后的光路的信标光到达位置敏感探测器的位置信息确定,具体实现方式可以参考图3实施例中的描述,在此不再赘述。可见,旋转平台1通过旋转平台2中的棱镜对称返回的信标光,可以实现初始光路对齐或者旋转后的光路对齐。
在一种实现方式中,第一光路瞄准装置还可以获取第一光路瞄准装置与第二光路瞄准装置之间的姿态角,并根据姿态角调整第一光路瞄准装置的第一对准角度,调整后的第一对准角度满足第三瞄准精度阈值,第三瞄准精度阈值大于第一瞄准精度阈值或第二瞄准精度阈值。
其中,第一光路瞄准装置具体可以通过图像采集模块和传感器获取第一光路瞄准装置与第二光路瞄准装置之间的姿态角,并向第一调整模块发送姿态角。第一调整模块根据姿态角,可以调整第一光路瞄准装置的第一对准角度,调整后的第一对准角度满足第三瞄准精度阈值。具体实现方式,可以参考图5c所示的实施例中对图像采集模块和传感器的相关描述,在此不 再赘述。
在一种实现方式中,在第一光路瞄准装置调整第一对准角度之后,第一光路瞄准装置中的准直镜向第二光路瞄准装置发射光信号,以建立第一光路瞄准装置与第二光路瞄准装置之间的通信链路,通信链路与传输第一信标光的信标光路相互耦合。
其中,第一光路瞄准装置还包括准直镜。第一光路瞄准装置通过准直镜将光信号发射至第二光路瞄准装置,以建立第一光路瞄准装置与第二光路瞄准装置之间的通信链路。具体实现方式,可以参考图5d所示的实施例中对准直镜的相关描述,在此不再赘述。
可见,图2至图5d实施例中的第一光路瞄准装置可以执行如图7所示的一种光路瞄准方法,第一光路瞄准装置通过接收第二光路瞄准装置中的第二棱镜反射的第一信标光,可以调整第一对准角度,以实现第一光路瞄准装置与第二光路瞄准装置之间的信标光路对齐,从而实现通信链路对齐。注意的是,由于第一光路瞄准装置和第二光路瞄准装置互为对称的装置(即包括的元器件是相同的),则第二光路瞄准装置也可以执行如图7所示的一种光路瞄准方法,即第二光路瞄准装置通过接收第一光路瞄准装置中的第一棱镜反射的第二信标光,可以调整第二对准角度,以实现第一光路瞄准装置与第二光路瞄准装置之间的信标光路对齐,从而实现通信链路对齐。
在一种示例中,前文实施例中的第一光路瞄准装置或第二光路瞄准装置可以为设备或设置于设备中的芯片或电路。请参见图9,图9为本申请实施例提供的一种第一光路瞄准装置的结构示意图。该第一光路瞄准装置可以为具有执行图7和图8实施例中的光路瞄准方法的设备(例如芯片)。该第一光路瞄准装置可以包括收发器501、至少一个处理器502和存储器503。其中,收发器501、处理器502和存储器503可以通过一条或多条通信总线相互连接,也可以通过其它方式相连接。
其中,收发器501可以用于发送数据,或者接收数据。可以理解的是,收发器501是统称,可以包括接收器和发送器。
其中,处理器502可以用于对第一光路瞄准装置的数据进行处理。处理器502可以包括一个或多个处理器,例如该处理器502可以是一个或多个中央处理器(central processing unit,CPU),网络处理器(network processor,NP),硬件芯片或者其任意组合。在处理器502是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
其中,存储器503用于存储程序代码等。存储器503可以包括易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM);存储器503也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器503还可以包括上述种类的存储器的组合。
其中,上述处理器502和存储器503可以通过接口耦合,也可以集成在一起,本实施例不作限定。
上述收发器501和处理器502可以用于实现图7和图8实施例中的光路瞄准方法,其中,具体实现方式如下:
收发器501用于向第二光路瞄准装置发射第一信标光;
收发器501还用于接收第二光路瞄准装置中的第二棱镜反射的第一信标光;
处理器502用于根据第二棱镜反射的第一信标光到达第一光路瞄准装置中第一位置敏感探测器的位置信息,调整第一光路瞄准装置的第一对准角度,调整后的第一对准角度满足第一瞄准精度阈值。
在一种实现方式中,收发器501还用于接收第二光路瞄准装置发射的第二信标光;
收发器501还用于向第二光路瞄准装置反射第二信标光,其中,第一棱镜反射的第二信标光到达第二光路瞄准装置中的第二位置敏感探测器的位置信息用于调整第二光路瞄准装置的第二对准角度,调整后的第二对准角度满足第二瞄准精度阈值。
在一种实现方式中,处理器502还用于获取第一光路瞄准装置与第二光路瞄准装置之间的姿态角,根据姿态角调整第一光路瞄准装置的第一对准角度,调整后的第一对准角度满足第三瞄准精度阈值,第三瞄准精度阈值大于第一瞄准精度阈值或第二瞄准精度阈值。
在一种实现方式中,第一信标光的波长和第二信标光的波长不同。
在一种实现方式中,在第一光路瞄准装置调整第一对准角度之后,收发器501还用于向第二光路瞄准装置发射光信号,以建立第一光路瞄准装置与第二光路瞄准装置之间的通信链路。通信链路与传输第一信标光的信标光路相互耦合。
请参见图10,图10是本申请实施例提供的一种第二光路瞄准装置的结构示意图。该第二光路瞄准装置可以包括收发器601、至少一个处理器602和存储器603。其中,收发器601、处理器602和存储器603可以通过一条或多条通信总线相互连接,也可以通过其它方式相连接。
其中,收发器601可以用于发送数据,或者接收数据。可以理解的是,收发器601是统称,可以包括接收器和发送器。
其中,处理器602可以用于对第二光路瞄准装置的数据进行处理。处理器602可以包括一个或多个处理器,例如该处理器602可以是一个或多个中央处理器(central processing unit,CPU),网络处理器(network processor,NP),硬件芯片或者其任意组合。在处理器602是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
其中,存储器603用于存储程序代码等。存储器603可以包括易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM);存储器603也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器603还可以包括上述种类的存储器的组合。
其中,上述处理器602和存储器603可以通过接口耦合,也可以集成在一起,本实施例不作限定。
上述收发器601和处理器602的具体实现方式如下:
收发器601用于向第一光路瞄准装置发射第二信标光;
收发器601还用于接收第一光路瞄准装置中的第一棱镜反射的第二信标光;
处理器602用于根据第一棱镜反射的第二信标光到达第二位置敏感探测器的位置信息确定第二光路瞄准装置的第二对准角度,并调整第二对准角度,调整后的第二对准角度满足第二瞄准精度阈值。
在一种实现方式中,收发器601还用于接收第一光路瞄准装置发射的第一信标光,以及,还用于向第二棱镜发射第一信标光;
收发器601还用于向第一光路瞄准装置反射第一信标光,其中,第二棱镜反射的第一信标光到达第一光路瞄准装置的第一位置敏感探测器的位置信息用于调整第一光路瞄准装置的第一对准角度,调整后的第一对准角度满足第一瞄准精度阈值。
在一种实现方式中,处理器602还用于获取第二光路瞄准装置与第一光路瞄准装置之间的姿态角,并根据姿态角调整第二光路瞄准装置的第二对准角度,调整后的第二对准角度满 足第四瞄准精度阈值;其中,第四瞄准精度阈值大于第一瞄准精度阈值或第二瞄准精度阈值。
在一种实现方式中,第一信标光的波长和第二信标光的波长不同。
在一种实现方式中,在第二光路瞄准装置调整第二对准角度之后,收发器601还用于将光信号发射至第一光路瞄准装置,以建立第二光路瞄准装置与第一光路瞄准装置之间的通信链路。通信链路与用于传输第二信标光的信标光路相互耦合。
本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有程序或指令,当所述程序或指令在计算机上运行时,使得计算机执行本申请实施例中的光路瞄准方法。
本申请实施例提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和接口,接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以进行本申请实施例中的光路瞄准方法。
其中,芯片中的接口可以为输入/输出接口、管脚或电路等。
上述方面中的芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
在一种实现方式中,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种第一光路瞄准装置,其特征在于,包括第一光收发器、第一位置敏感探测器和第一调整模块;其中,
    所述第一光收发器用于向第二光路瞄准装置发射第一信标光;
    所述第一光收发器还用于接收所述第二光路瞄准装置中的第二棱镜反射的第一信标光;
    所述第一位置敏感探测器用于根据所述第二棱镜反射的第一信标光到达所述第一位置敏感探测器的位置信息确定所述第一光路瞄准装置的第一对准角度,并向所述第一调整模块发送所述第一对准角度;
    所述第一调整模块用于调整所述第一对准角度,调整后的第一对准角度满足第一瞄准精度阈值。
  2. 根据权利要求1所述的第一光路瞄准装置,其特征在于,所述第一光路瞄准装置还包括第一棱镜;
    所述第一光收发器还用于接收所述第二光路瞄准装置发射的第二信标光,以及,用于向所述第一棱镜发射所述第二信标光;
    所述第一棱镜用于反射所述第二信标光,所述第一棱镜反射的第二信标光到达所述第二光路瞄准装置的第二位置敏感探测器的位置信息用于调整所述第二光路瞄准装置的第二对准角度,调整后的第二对准角度满足第二瞄准精度阈值。
  3. 根据权利要求1所述的第一光路瞄准装置,其特征在于,所述第一光收发器包括分光镜和二相色镜;其中,
    所述二相色镜用于接收所述第二光路瞄准装置发射的第二信标光;
    所述二相色镜还用于向所述分光镜发射所述第二信标光;
    所述分光镜用于从所述二相色镜接收所述第二信标光;
    所述分光镜还用于向所述第一棱镜发射所述第二信标光。
  4. 根据权利要求3所述的第一光路瞄准装置,其特征在于,
    所述二相色镜还用于接收所述第二棱镜反射的第一信标光;
    所述二相色镜还用于向所述分光镜发射所述第二棱镜反射的第一信标光;
    所述分光镜还用于从所述二相色镜接收所述第二棱镜反射的第一信标光;
    所述分光镜还用于向所述第一位置敏感探测器发射所述第二棱镜反射的第一信标光。
  5. 根据权利要求1至4任意一项所述的第一光路瞄准装置,其特征在于,所述第一光路瞄准装置还包括第一图像采集模块和传感器;
    所述第一图像采集模块和传感器用于获取所述第一光路瞄准装置与所述第二光路瞄准装置之间的姿态角,并向所述第一调整模块发送所述姿态角;
    所述第一调整模块还用于接收所述姿态角,并根据所述姿态角调整所述第一光路瞄准装置的第一对准角度,调整后的第一对准角度满足第三瞄准精度阈值,所述第三瞄准精度阈值大于所述第一瞄准精度阈值或所述第二瞄准精度阈值。
  6. 根据权利要求1至5任意一项所述的第一光路瞄准装置,其特征在于,所述第一信标光的波长和所述第二信标光的波长不同。
  7. 根据权利要求1至6任意一项所述的第一光路瞄准装置,其特征在于,所述第一光路瞄准装置还包括准直镜;
    所述准直镜用于在所述第一光路瞄准装置调整所述第一对准角度之后,将光信号发射至所述第二光路瞄准装置,以建立所述第一光路瞄准装置与所述第二光路瞄准装置之间的通信 链路;所述通信链路与用于传输所述第一信标光的信标光路相互耦合。
  8. 一种光路瞄准方法,其特征在于,所述方法包括:
    所述第一光路瞄准装置向第二光路瞄准装置发射第一信标光;
    所述第一光路瞄准装置接收所述第二光路瞄准装置中的第二棱镜反射的第一信标光;
    所述第一光路瞄准装置根据所述第二棱镜反射的第一信标光到达所述第一光路瞄准装置中第一位置敏感探测器的位置信息,调整所述第一光路瞄准装置的第一对准角度,调整后的第一对准角度满足第一瞄准精度阈值。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述第一光路瞄准装置接收所述第二光路瞄准装置发射的第二信标光;
    所述第一光路瞄准装置中的第一棱镜反射所述第二信标光,所述第一棱镜反射的第二信标光到达所述第二光路瞄准装置中的第二位置敏感探测器的位置信息用于调整所述第二光路瞄准装置的第二对准角度,调整后的第二对准角度满足第二瞄准精度阈值。
  10. 根据权利要求8或9所述的方法,其特征在于,在所述第一光路瞄准装置根据所述第二棱镜反射的第一信标光到达所述第一光路瞄准装置中第一位置敏感探测器的位置信息调整所述第一光路瞄准装置的第一对准角度之前,所述方法还包括:
    所述第一光路瞄准装置获取所述第一光路瞄准装置与所述第二光路瞄准装置之间的姿态角,所述第一光路瞄准装置根据所述姿态角调整所述第一光路瞄准装置的所述第一对准角度,调整后的第一对准角度满足第三瞄准精度阈值,所述第三瞄准精度阈值大于所述第一瞄准精度阈值或所述第二瞄准精度阈值。
  11. 根据权利要求8至10任意一项所述的方法,其特征在于,所述第一信标光的波长和所述第二信标光的波长不同。
  12. 根据权利要求8至11任意一项所述的方法,其特征在于,所述方法还包括:
    在所述第一光路瞄准装置调整所述第一对准角度之后,所述第一光路瞄准装置中的准直镜向所述第二光路瞄准装置发射光信号,以建立所述第一光路瞄准装置与所述第二光路瞄准装置之间的通信链路;所述通信链路与传输所述第一信标光的信标光路相互耦合。
  13. 一种光路瞄准系统,其特征在于,包括如权利要求1至7中任意一项所述的第一光路瞄准装置和第二光路瞄准装置。
PCT/CN2021/124738 2021-01-21 2021-10-19 一种光路瞄准装置、光路瞄准方法及光路瞄准系统 WO2022156281A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112023014708A BR112023014708A2 (pt) 2021-01-21 2021-10-19 Aparelho de apontamento de percurso óptico, método de apontamento de percurso óptico, e sistema de apontamento de percurso óptico
EP21920659.6A EP4261578A4 (en) 2021-01-21 2021-10-19 DEVICE FOR ALIGNING A LIGHT PATH, METHOD FOR ALIGNING A LIGHT PATH AND SYSTEM FOR ALIGNING A LIGHT PATH
CA3208454A CA3208454A1 (en) 2021-01-21 2021-10-19 Optical path pointing apparatus, optical path pointing method, and optical pointing system
MX2023008523A MX2023008523A (es) 2021-01-21 2021-10-19 Aparato de se?alizacion de trayectoria optica, metodo de se?alizacion de trayectoria optica y sistema de se?alizacion de trayectoria optica.
JP2023544021A JP2024503521A (ja) 2021-01-21 2021-10-19 光パスポインティング装置、光パスポインティング方法、及び光パスポインティングシステム
US18/354,843 US20230370175A1 (en) 2021-01-21 2023-07-19 Optical path pointing apparatus, optical path pointing method, and optical path pointing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110082565.9 2021-01-21
CN202110082565.9A CN114815084B (zh) 2021-01-21 2021-01-21 一种光路瞄准装置、光路瞄准方法及光路瞄准系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/354,843 Continuation US20230370175A1 (en) 2021-01-21 2023-07-19 Optical path pointing apparatus, optical path pointing method, and optical path pointing system

Publications (1)

Publication Number Publication Date
WO2022156281A1 true WO2022156281A1 (zh) 2022-07-28

Family

ID=82524085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124738 WO2022156281A1 (zh) 2021-01-21 2021-10-19 一种光路瞄准装置、光路瞄准方法及光路瞄准系统

Country Status (8)

Country Link
US (1) US20230370175A1 (zh)
EP (1) EP4261578A4 (zh)
JP (1) JP2024503521A (zh)
CN (1) CN114815084B (zh)
BR (1) BR112023014708A2 (zh)
CA (1) CA3208454A1 (zh)
MX (1) MX2023008523A (zh)
WO (1) WO2022156281A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872960B2 (en) * 2001-04-18 2005-03-29 Raytheon Company Robust infrared countermeasure system and method
CN1713019A (zh) * 2005-05-31 2005-12-28 哈尔滨工业大学 收发离轴式卫星光通信跟瞄装置
CN102195717A (zh) * 2011-05-24 2011-09-21 中国科学院上海技术物理研究所 一种兼容激光通信的量子通信系统
CN109029925A (zh) * 2018-06-12 2018-12-18 中国科学院上海技术物理研究所 一种用于瞄准监测望远镜光轴的立方棱镜光校装置
CN110579872A (zh) * 2019-09-27 2019-12-17 网络通信与安全紫金山实验室 一种跟瞄系统及调整方法
CN111736358A (zh) * 2020-06-24 2020-10-02 黑龙江瑞霭科技有限公司 激光通信终端收发同轴实时校准方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2034073B (en) * 1978-11-03 1982-10-20 Barr & Stroud Ltd Dual optical sighting systems
US5710652A (en) * 1992-08-27 1998-01-20 Trex Communications Laser communication transceiver and system
WO2014184616A1 (en) * 2013-05-14 2014-11-20 Nokia Corporation Alignment of optical devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872960B2 (en) * 2001-04-18 2005-03-29 Raytheon Company Robust infrared countermeasure system and method
CN1713019A (zh) * 2005-05-31 2005-12-28 哈尔滨工业大学 收发离轴式卫星光通信跟瞄装置
CN102195717A (zh) * 2011-05-24 2011-09-21 中国科学院上海技术物理研究所 一种兼容激光通信的量子通信系统
CN109029925A (zh) * 2018-06-12 2018-12-18 中国科学院上海技术物理研究所 一种用于瞄准监测望远镜光轴的立方棱镜光校装置
CN110579872A (zh) * 2019-09-27 2019-12-17 网络通信与安全紫金山实验室 一种跟瞄系统及调整方法
CN111736358A (zh) * 2020-06-24 2020-10-02 黑龙江瑞霭科技有限公司 激光通信终端收发同轴实时校准方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4261578A4

Also Published As

Publication number Publication date
EP4261578A4 (en) 2024-06-19
US20230370175A1 (en) 2023-11-16
CA3208454A1 (en) 2022-07-28
BR112023014708A2 (pt) 2023-12-12
JP2024503521A (ja) 2024-01-25
EP4261578A1 (en) 2023-10-18
CN114815084B (zh) 2023-07-07
CN114815084A (zh) 2022-07-29
MX2023008523A (es) 2023-07-28

Similar Documents

Publication Publication Date Title
US11680794B2 (en) Low drift reference for laser radar
US10139492B2 (en) Radar systems with dual fiber coupled lasers
US8537376B2 (en) Enhanced position detector in laser tracker
US9638799B2 (en) Scan mirrors for laser radar
US7064817B1 (en) Method to determine and adjust the alignment of the transmitter and receiver fields of view of a LIDAR system
CN112284302B (zh) 扫描法测量主动光电系统激光收发同轴度的装置及方法
EP2353025A1 (en) Telescope based calibration of a three dimensional optical scanner
CN108955537A (zh) 一种可实现离轴反射镜高低点位置精确测量的系统及方法
JP6637827B2 (ja) 焦点調整機構を有するスキャナ・トラッカ複合装置
CN109541545B (zh) 一种多波长激光空间定位系统及方法
WO2022156281A1 (zh) 一种光路瞄准装置、光路瞄准方法及光路瞄准系统
US20230361884A1 (en) Beam tracking module, free-space quantum communication device, and free-space optical communication device
WO2020177076A1 (zh) 一种探测装置初始状态标定方法及装置
WO2022036714A1 (zh) 激光测距方法、测距装置和可移动平台
Lu et al. Automatic alignment of optical-beam-based GPS for a free-space laser communication system
US20220113388A1 (en) Dual photodiode light detection and ranging
CN112504169A (zh) 一种主动光电系统激光收发同轴度的测试装置及方法
WO2020133038A1 (zh) 探测系统和具有该探测系统的可移动平台
CN114280563B (zh) 一种脉冲多普勒激光雷达测速测距外标定装置及方法
RU2821597C1 (ru) Способ наведения лазерного луча на объект
CN109632262B (zh) 一种立方棱镜的标定系统
RU2620765C1 (ru) Лазерный дальномер
WO2020142879A1 (zh) 数据处理方法、探测装置、数据处理装置、可移动平台
CN117346700A (zh) 一种运用ccd矩阵的激光测距仪准直系统
CN105698697A (zh) 一种检测晶片基底二维形貌的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920659

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317046937

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 3208454

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/008523

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2023544021

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021920659

Country of ref document: EP

Effective date: 20230714

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023014708

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112023014708

Country of ref document: BR

Free format text: APRESENTAR NOVA FOLHA DE RESUMO, ADAPTADA A INSTRUCAO NORMATIVA 031, DE 04/12/2013, ART. 22, III.

ENP Entry into the national phase

Ref document number: 112023014708

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230721