WO2022156105A1 - 一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置 - Google Patents

一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置 Download PDF

Info

Publication number
WO2022156105A1
WO2022156105A1 PCT/CN2021/095635 CN2021095635W WO2022156105A1 WO 2022156105 A1 WO2022156105 A1 WO 2022156105A1 CN 2021095635 W CN2021095635 W CN 2021095635W WO 2022156105 A1 WO2022156105 A1 WO 2022156105A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
magnetic particle
permanent magnet
particle detection
frame
Prior art date
Application number
PCT/CN2021/095635
Other languages
English (en)
French (fr)
Inventor
孙羽辉
王晨宇
李璞
王吉岱
和明远
聂帆
Original Assignee
青岛共享智能制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛共享智能制造有限公司 filed Critical 青岛共享智能制造有限公司
Publication of WO2022156105A1 publication Critical patent/WO2022156105A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • G01N27/84Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields by applying magnetic powder or magnetic ink

Definitions

  • the invention relates to the technical field of machinery and equipment, in particular to an automatic crawling device for magnetic particle detection of a permanent magnet wheel type steel wall surface weld.
  • spherical tanks are mostly high-pressure tanks, and cylindrical tanks are mostly atmospheric tanks.
  • the pressure vessel involved in this patent is a spherical tank, the existing spherical diameter is between 4600 mm and 36300 mm, the thickness of the steel plate of the spherical tank is between 6 mm and 120 mm, and the nominal volume is between 50 m 3 and 25000 m 3 ;
  • the tank is mainly composed of a cylinder, a head and a pillar.
  • the spherical tank itself is a A welded structure with typical geometry. Due to the long-term operation of the spherical tank under the conditions of low temperature, high pressure and strong corrosion, the material of the spherical tank has the possibility of brittle fracture, deterioration, screw cracking and fatigue fracture, and the expansion of the original defects of the container will lead to the failure of the container and the tank. Cracks, pits, holes and other defects may occur on the inner and outer surfaces of the body.
  • the present invention develops a permanent magnet wheel type automatic crawling device for magnetic particle detection of steel wall surface weld seam, which is used to replace manual detection operation by an automatic detection system that satisfies field conditions.
  • the present invention provides a permanent magnet wheel type automatic crawling device for magnetic particle detection of steel wall surface welds.
  • a permanent magnet wheel-type automatic crawling device for magnetic particle detection of steel wall surface welds the automatic crawling device comprises a fixed large base plate and a walking mechanism, a magnetic particle detection mechanism, a tracking mechanism and a travel recording mechanism arranged on the fixed large base plate,
  • the traveling mechanism is driven by four traveling wheels, and the four traveling wheels are independently installed with the traveling wheel DC deceleration motor.
  • Motor encoder the walking wheel is a permanent magnet wheel
  • the DC deceleration motor drives the permanent magnet wheel by changing the transmission direction through the reversing bevel gear set
  • the magnetic powder monitoring mechanism adopts the crossed yoke method
  • the abdomen of the magnetic powder monitoring mechanism is connected to the fixed large wheel.
  • the bottom plate is connected by bolts, and the magnetic particle detection mechanism is provided with four electromagnet pillars in the shape of a gate.
  • the bottom of each electromagnet pillar is provided with a through hole through which the bolt passes.
  • the walking wheel, the battery compartment of the automatic crawling device is located on the upper plane of the magnetic particle detection mechanism, and the two are connected by bolts, and the magnetic particle monitoring mechanism and the tracking mechanism can perform wireless information transmission and control with the outside world.
  • each traveling wheel has a wheel frame, and each wheel frame is connected with a wheel frame connecting plate, and the boss of the wheel frame connecting plate can be fixed on the chute of the large base plate boss.
  • the four corners of the fixed large base plate are left with through holes for the DC gear motor to pass through.
  • the traveling mechanism includes a wheel frame connecting plate, a permanent magnet wheel, a walking wheel frame, a wing bolt I, a wing bolt II, a knurled nut, a stepped shaft, a DC gear motor, a bowl washer, and a hexagon socket bolt.
  • the permanent magnet wheel is connected with the wheel frame of the walking wheel through the rotating shaft
  • the wheel shaft of the permanent magnet wheel is installed with a countersunk bearing and a washer to limit the axial displacement of the permanent magnet wheel
  • the wheel frame of the walking wheel is connected to the wheel frame.
  • the frame connecting plate is connected by the wing bolt I, and the wheel frame connecting plate is machined with a limit boss to limit the rotation of the wheel frame.
  • the limit boss is provided with a cylindrical groove, and a stepped shaft is arranged in the cylindrical groove.
  • the countersunk holes and the threaded holes are processed on the lower plane.
  • the countersunk holes of the stepped shaft and the wing bolts II are fixed by the top screw, and the threaded holes of the stepped shaft are limited by the bowl-shaped washers and the inner hexagon bolts.
  • the chute moves, the DC reduction motor is installed on the motor fixing seat, one side of the motor fixing seat is connected with the wheel frame of the traveling wheel, and the other side is connected with the bevel gear box.
  • the input shaft of the bevel gear set is connected with the output shaft of the reducer of the DC gear motor, and the output shaft is connected with the wheel shaft of the traveling wheel.
  • the wing bolt II is provided with a positioning knurled nut on the upper part that is matched with the boss of the fixed large base plate.
  • the reversing bevel gear set is composed of a pair of straight bevel gears with equal number of teeth.
  • the permanent magnet wheel includes yokes on both sides, a NdFeB strong magnetic ring in the middle, and an inner rubber block.
  • the yokes on both sides are provided with grooves that cooperate with the NdFeB strong magnetic force.
  • the inner diameter of the iron boron strong magnetic ring is matched.
  • the automatic crawling device also includes a light and a camera frame, a switch button, a double-shaped handle, an upper cover, a liquid crystal display screen, a black and white light, a camera and a control box.
  • the liquid crystal display screen is arranged on the upper cover, and the upper cover and the fixed
  • the large bottom plate is connected, the middle of the upper cover is provided with a rectangular through hole, the zigzag handle is connected to the fixed large bottom plate and the front and rear control boxes through the rectangular through hole.
  • the plastic shell and the switch button, the battery compartment is located directly under the handle and is connected to the magnetic particle detection mechanism, the light and the camera frame are fixed on the lower plane of the fixed large base plate by bolts, the camera is embedded in the center of the light and the camera frame, and the four black and white lights are evenly distributed.
  • the camera and black and white lights are connected to the external computer through a wireless network for real-time data transmission and control.
  • the tracking mechanism includes a lower cover plate, a cuboid frame, a limit switch, a micro stepping motor module, a laser rangefinder, a photoelectric sensor, a photoelectric sensor fixing piece and a photoelectric sensor blocking plate, and the lower cover plate wraps the tracking
  • the trace mechanism is connected with the fixed large base plate, the five laser rangefinders are fixed on the cuboid frame by bolts, the cuboid frame is connected with the slider of the micro stepping motor module, the bottom of the micro motor module is connected with the fixed large base plate by bolts, and the two sides are connected by bolts.
  • the photoelectric sensor shielding plate is installed in the center of the upper surface of the cuboid frame and can shield the photoelectric sensor, the photoelectric sensors on both sides are installed on the photoelectric sensor fixing plate, the photoelectric sensor fixing plate is installed on the fixed large base plate, and the laser rangefinder is along the The width direction of the vehicle body is detected at multiple points in the center, and the detection results are transmitted and displayed in real time through the wireless network signal waveform.
  • the travel recording mechanism is composed of an encoder, an encoder frame and a meter wheel connected with the encoder output shaft, and the encoder frame and the fixed large base plate are connected by bolts nested with springs.
  • the present invention is a permanent magnet wheel type automatic crawling device for magnetic powder detection of steel wall welds.
  • the traveling mechanism adopts four-wheel drive, the drive motor of the traveling wheel is a DC gear motor, and the tail end of each motor is equipped with an electromagnetic brake, which corresponds to the corresponding motor. Motor encoder.
  • the electromagnetic brake prevents the automatic crawling device from slipping back when it stops, and the encoder measures the motor speed.
  • the output shaft of the motor reducer drives the permanent magnet wheel by changing the transmission direction through a pair of equal-tooth spur bevel gears.
  • the fixed plate boss part of the traveling wheel bracket of the traveling mechanism cooperates with the chute of the crawler device for fixing the four corner bosses of the large bottom plate.
  • the magnetic particle detection mechanism adopts the crossed yoke method.
  • the abdomen of the magnetic particle detection mechanism is connected with the fixed large base plate by bolts.
  • the magnetic particle detection mechanism has four electromagnet pillars. The bottom of each pillar is machined with a through hole through which the bolt passes. Each pillar is installed Four walking wheels for the magnetic particle inspection mechanism to cross the weld.
  • the battery compartment of the automatic crawling device is located on the upper plane of the magnetic particle detection mechanism, and the two are connected together by bolts.
  • the boss on the edge of the fixed large base plate is provided with threaded holes and is connected with the upper cover through bolts, and the upper cover is installed with a display.
  • the black and white light and the camera recording the detection process are fixed by its frame, and the frame is connected with the fixed large base plate by bolts.
  • the tracking mechanism is fixed on the corresponding frame by five laser ranging sensors through bolts.
  • the corresponding frame is connected with the slider of the micro-stepping motor module.
  • the bottom of the micro-motor module is connected with the fixed large base plate by bolts, and there are limited positions installed on both sides.
  • switch, the photoelectric sensor block is located on the top of the laser ranging sensor frame, and the photoelectric sensors on both sides are installed on its fixing plates, and the fixing plates are installed on the bosses that fix the openings of the large base plate.
  • the travel recording mechanism is composed of a walking wheel, an encoder and an encoder frame. It is connected to the fixed large base plate through long bolts. The long bolts are nested with springs. full contact.
  • the invention has two modes of wireless control and manual control, which greatly improves the detection efficiency and reduces the labor intensity of workers.
  • the four traveling wheels are independently installed with driving motors, and under the cooperation of the motor drivers and the action of the electromagnetic brake, the forward and backward of the detection device and the braking are realized;
  • the steering device of the present invention is designed as left and right front and rear wheel sets.
  • the torque output by the DC motor is decelerated and delivered to the travel wheel shaft to realize the rotation of the travel wheel. In this way, a group of travel wheels can be individually controlled and coordinated operation can be performed effectively.
  • the size of the turning of the control and detection device is suitable for a variety of use situations;
  • the invention designs the ability of the magnetic particle detection mechanism to span the welding seam.
  • Four small walking wheels are installed on each of the four columns of the magnetic particle detection mechanism to drive the magnetic particle detection mechanism to move through the movement of the vehicle body.
  • the present invention adopts the method of wireless transmission to connect the control signal and detection data of the detector with the operation terminal through the wireless operation control module and the wireless data transmission module, so as to realize the wireless real-time transmission of the control signal and the defect magnetic flux leakage signal, and improve the detection performance.
  • the scope of operation of the instrument is reduced, and the workload of the staff is reduced;
  • the present invention can replace the traditional tank wall detection method, reduce the danger and labor cost of the detection personnel, and improve the detection efficiency and economy.
  • FIG. 1 is a schematic diagram of the overall structure of an automatic crawling device for magnetic particle detection of a permanent magnet wheel type steel wall surface weld of the present invention
  • Fig. 2 is a schematic diagram of the explosion of the overall structure of an automatic crawling device for magnetic particle detection of a permanent magnet wheel type steel wall surface weld according to the present invention
  • FIG. 3 is an exploded schematic diagram of a walking mechanism of an automatic crawling device for magnetic particle detection of a permanent magnet wheel type steel wall surface weld of the present invention
  • FIG. 4 is a schematic structural diagram of a permanent magnet wheel of an automatic crawling device for magnetic particle detection of a permanent magnet wheel type steel wall surface weld according to the present invention
  • FIG. 5 is a schematic diagram of a magnetic particle detection mechanism of an automatic crawling device for magnetic particle detection of a permanent magnet wheel type steel wall surface weld of the present invention
  • FIG. 6 is a schematic diagram of the tracking mechanism of an automatic crawling device for magnetic particle detection of a permanent magnet wheel type steel wall surface weld according to the present invention
  • FIG. 7 is a schematic diagram of a stroke recording mechanism of an automatic crawling device for magnetic particle detection of a permanent magnet wheel type steel wall surface weld of the present invention.
  • FIG. 1 shows the automatic crawling device for permanent magnet wheel type magnetic particle detection provided in this embodiment, which includes a wheel frame connecting plate 100 , a traveling wheel yoke 101 , a traveling wheel wheel frame 102 , wing bolts 103 , and wing bolts 104 , knurled washer 105, fixed large base plate 200, magnetic particle detection mechanism 201, lamp and camera frame 202, detection mechanism walking wheel 203, switch button 204, several-shaped handle 205, upper cover 206, liquid crystal display 207, lower cover 301 , encoder 401, meter wheel 402.
  • FIG. 2 is a schematic diagram showing the explosion of the automatic crawling device for magnetic particle detection provided by the permanent magnet wheel type provided in this embodiment.
  • a rectangular through hole is provided in the middle of the upper cover 206, and the zigzag handle 205 passes through the rectangular through hole and
  • the fixed large base plate 200 and the control box 211 are connected.
  • the lower surface of the magnetic particle detection mechanism 201 is connected to the fixed large base plate 200 , and the upper part of the magnetic particle detection mechanism 201 is a battery compartment 210 .
  • the chute for fixing the four-corner bosses of the large base plate 200 is matched with the bosses of the wheel frame connecting plate 100 .
  • the micro stepping motor module 304 , the light and camera frame 202 , and the meter wheel frame 402 are located on the lower plane of the fixed large base plate 200 .
  • the four traveling mechanisms are located around the fixed large bottom plate 200 and are matched with the chute of the fixed large bottom plate 200 through the bosses of the wheel frame connecting plate. Spur bevel gear fit.
  • FIG. 3 is an exploded schematic diagram of the traveling mechanism of the automatic crawling device for magnetic particle detection provided by the permanent magnet wheel type provided in this embodiment, and the traveling mechanism adopts four-wheel drive.
  • the magnetic adsorption wheel is connected with the traveling wheel frame 102 through the rotating shaft, the boss of the traveling wheel frame 102 is machined with threaded holes, and the wing bolts 103 pass through the through holes of the wheel frame connecting plate 100 to cooperate with the traveling wheel frame 102 to realize permanent magnetism Wheel wall adaptation.
  • each wheel frame connecting plate There is a stepped shaft 106 in the inner cylindrical groove of each wheel frame connecting plate.
  • One end of the stepped shaft 106 on which the upper plane is installed is machined with countersunk holes, and one end of the lower plane is machined with threaded holes.
  • the wing bolt II 104 is fitted with a positioning knurled nut 105 on the upper part of the boss of the fixed large base plate 200 .
  • One end of the lower plane is connected with a hexagon socket head bolt 112, and further, one end of the lower plane is bolted with a bowl-shaped washer 111.
  • the bowl-shaped washer 111 is located at the lower part of the wheel frame connecting plate 100, which limits the displacement of the moving mechanism in the vertical direction of the vehicle body and limits the wheel.
  • the frame connecting plate 100 moves along the boss chute on which the large base plate 200 is fixed, and the travel mechanism is lifted and lowered by rotating the wing bolt II104. Further, the traveling wheel frame 102 is connected with the wheel frame connecting plate 100, and the thread of the wing bolt I103 is processed on the traveling wheel frame 102, and the wing bolt I103 realizes the connection of the traveling mechanism through the through hole of the wheel frame connecting plate 100.
  • Surface adaptation
  • the DC deceleration motor is equipped with a DC motor 108, a decelerator 107, an electromagnetic brake 109, and a motor encoder 110.
  • the DC deceleration motor is fixed on a motor fixing seat 113, and the motor fixing seat 113 is provided with a bolt through hole for installing the decelerator 107 and a motor deceleration.
  • the through hole of the output shaft of the motor is connected to the side of the motor fixing seat 113 and the wheel frame 102 of the traveling wheel is connected, and the other side covers the bevel gear box 115 .
  • the input shaft of the reversing bevel gear set is connected to the output shaft of the reducer 107, and the output shaft is connected to the traveling wheel axle.
  • the traveling wheel axle is installed on the traveling wheel frame.
  • the traveling wheel axle is installed with a countersunk bearing and a washer to limit the axial displacement of the traveling wheel. .
  • the output shaft of the reducer 107 and the input spur bevel gear are fixed by a top wire, and the rotating shaft of the permanent magnet wheel cooperates with the output spur bevel gear to realize the reversing of the transmission.
  • the reducer 107 is fixed on the motor fixing base 113 , one side of the motor fixing base 113 is connected with the traveling wheel frame 102 , and the other side is connected with the bevel gear box 115 .
  • FIG. 4 is a schematic diagram showing the structure of the permanent magnet wheel of the automatic crawling device for magnetic particle detection provided by the present embodiment.
  • the permanent magnet wheel includes yokes 101 on both sides, a NdFeB strong magnetic ring 114 in the middle, and an inner support function. rubber block 116.
  • the yokes 101 on both sides are provided with grooves for matching with the NdFeB strong magnet 114 , and the outer diameter of the rubber block 116 matches the inner diameter of the NdFeB magnet ring 114 .
  • FIG. 5 is a schematic diagram of the magnetic particle detection mechanism of the automatic crawling device for permanent magnet wheel type magnetic particle detection provided by this embodiment.
  • the upper cover 206 of the instrument is connected to the fixed large base plate 200, and the upper cover is installed with a liquid crystal display screen 207, and the upper cover 206 is connected to
  • the fixed large base plate 200 is connected, and a through hole for a zigzag handle 205 is opened in the middle position of the upper cover 206.
  • the zigzag handle 205 is connected with the two control boxes 211 and the fixed large base plate 200, and a wiring groove is opened inside the zigzag handle 205 , a plastic lampshade and a switch button 204 are installed outside.
  • the battery compartment 210 is located directly below the zigzag handle 205 and is connected to the magnetic particle detection mechanism 201 .
  • the four electromagnet pillars of the magnetic particle detection mechanism 201 are in the shape of a gate, and the bottom of each pillar is machined with through holes through which the bolts pass.
  • the fixed large base plate is connected 200.
  • the light and the camera frame 202 are installed on the plane under the fixed large base plate.
  • the network can realize real-time transmission of wireless data and real-time display of signal waveforms.
  • FIG. 6 is a schematic diagram of the tracking structure of the automatic crawling device for magnetic particle detection provided by the permanent magnet wheel type provided in this embodiment.
  • the five laser ranging sensors 305 of the tracking mechanism are fixed on the cuboid frame 302 by bolts, and the cuboid frame 302 is left with
  • the sensor transmits and receives laser openings, and is connected to the slider of the micro-stepping motor module 304.
  • the bottom of the micro-motor module 304 is connected to the fixed large base plate by bolts, and limit switches 303 are installed on both sides, and the slider of the micro-stepping motor module is installed left and right Limit switch to achieve precise left and right movement of the laser rangefinder frame.
  • the photoelectric sensor block 308 is located on the top of the laser ranging sensor frame 302 and can block the photoelectric sensor 306.
  • the photoelectric sensors 306 on both sides are installed on the photoelectric sensor fixing plate 307, and the photoelectric sensor fixing plate 307 is installed on the fixed large base plate 200.
  • the laser distance measuring sensor The 305 detects multiple points at the center along the width of the vehicle body, and displays the signal waveform in real time through the wireless network.
  • the lower cover plate 301 wraps the tracking mechanism and is connected to the fixed large bottom plate 200 .
  • the five laser rangefinders 305 are fixed on the frame 302 by bolts, the photoelectric sensor shielding sheet 308 is installed on the center of the upper surface of the frame 302, and the photoelectric sensor shielding sheet moves back and forth with the slider of the micro stepping motor module 304, The left and right strokes are limited by limit switches 303 .
  • FIG. 7 is a schematic diagram of the stroke recording mechanism of the automatic crawling device for magnetic particle detection provided by the permanent magnet wheel type provided in this embodiment, including a meter wheel 402 , an encoder 401 , and an encoder frame 403 .
  • the meter wheel 402 connected to the encoder output shaft
  • the encoder frame 403 is connected to the fixed large bottom plate by bolts
  • the springs 404 are nested in the bolts to adjust the contact between the traveling wheel 402 and the working wall.
  • the encoder realizes the addition and subtraction of data through the positive and negative rotation of the connected meter wheel, and realizes the measurement and recording of the displacement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Manipulator (AREA)

Abstract

本发明公开一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置,所述自动爬行装置包括固定大底板和设置在固定大底板上的行走机构、磁粉检测机构、循迹机构和行程记录机构,所述行走机构采用四个行走轮驱动,四个行走轮独立安装行走轮直流减速电机,所述行走轮为永磁轮,直流减速电机通过换向锥齿轮组改变传动方向驱动永磁轮,所述磁粉监测机构采用交叉磁轭法,磁粉检测机构设有四个电磁铁支柱呈门形,每个电磁铁支柱安装四个供磁粉检测机构跨越焊缝的行走小轮,磁粉监测机构和循迹机构能够与外界进行无线信息传输与控制。本发明有无线与手动两种控制方式,极大提高了检测效率,减轻了工人劳动强度,提高了检测效率和经济性。

Description

一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置 技术领域
本发明涉及机器设备技术领域,尤其涉及一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置。
背景技术
大型承压容器按照外形不同,可分为球罐和圆柱形罐。一般来说,球罐多为高压罐,圆柱形罐多为常压罐。本专利所涉及的压力容器为球罐,现有的球耀直径在4600 mm到36300 mm之间,球罐的钢板厚度在6mm到120mm之间,公称容积在50m 3至25000m 3之间;球罐主要由筒体、封头、支柱组成,由于筒体是通过钢板卷制后焊接而成的,而筒体与封头、支柱之间的连接也是通过焊接完成的,所以球罐本身就是一种具有典型几何形状的焊接结构件。由于球罐长期在低温、高压、强腐烛条件下运作,其材料存在脆断、劣化、螺变开裂和疲劳断裂的可能性,加上容器原有缺陷的扩展,将会导致容器失效,罐体内外表面可能产生裂纹、凹坑、孔洞等缺陷,这些缺陷不仅会造成油品、高压液态气体的泄漏,甚至可能引起爆炸、火灾等毁灭性后果,因而须定期对其进行检测。根据规定,化工容器外部检验周期最长为1年,内部检验周期最长为6年。现阶段,在役球罐定期检验多在设备停止运行时,在罐体内外搭建脚手架,由人工借助无损探伤设备完成。由于设备必须处在停机状态进行检测,会造成企业生产过程的不连续,从而降低了企业的生产效益;同时受工作条件及环境限制,工人工作量繁杂,效率低下且危险性高。因此,本发明开发研制出一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置用于满足于现场条件的自动检测系统代替人工进行检测操作。
技术解决方案
为了克服现有技术中的不足,解决传统储罐罐壁检测危险性高、劳动强度大等问题,本发明提供一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置。
一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置,所述自动爬行装置包括固定大底板和设置在固定大底板上的行走机构、磁粉检测机构、循迹机构和行程记录机构,所述行走机构采用四个行走轮驱动,四个行走轮独立安装行走轮直流减速电机,每个行走轮的直流减速电机均装配有直流电机、电磁制动器、减速器和与直流减速电机相对应的电机编码器,所述行走轮为永磁轮,直流减速电机通过换向锥齿轮组改变传动方向驱动永磁轮,所述磁粉监测机构采用交叉磁轭法,磁粉监测机构腹部与所述固定大底板采用螺栓连接,磁粉检测机构设有四个电磁铁支柱呈门形,每个电磁铁支柱底部设有螺栓穿过的通孔,每个电磁铁支柱安装四个供磁粉检测机构跨越焊缝的行走小轮,所述自动爬行装置的电池仓位于磁粉检测机构上平面且两者通过螺栓连在一起,所述磁粉监测机构和循迹机构能够与外界进行无线信息传输与控制。
进一步地,行走轮设置在爬行装置车体四周,每个行走轮有一个轮架,每个轮架连接有轮架连接板,轮架连接板的凸台可在固定大底板凸台的滑槽内移动,固定大底板四角留有直流减速电机穿过的通孔。
进一步地,所述行走机构包括轮架连接板、永磁轮、行走轮轮架、翼型螺栓I、翼型螺栓II、滚花螺母、阶梯轴、直流减速电机、碗形垫圈、内六角螺栓、电机固定座和锥齿轮箱,所述永磁轮通过转轴与行走轮轮架连接,永磁轮的轮轴安装有沉头轴承和垫圈限定永磁轮轴向位移,所述行走轮轮架与轮架连接板通过翼型螺栓I连接,轮架连接板加工有限位凸台限制轮架的旋转,所述限位凸台内设有圆柱槽,圆柱槽内设置有阶梯轴,阶梯轴在上平面加工沉孔、下平面加工螺纹孔,阶梯轴的沉孔与翼型螺栓II通过顶丝固定,阶梯轴的螺纹孔通过碗形垫圈与内六角螺栓限制轮架连接板沿固定大底板的凸台滑槽移动,直流减速电机安装在电机固定座上,电机固定座一侧面与行走轮轮架连接、另一侧面与锥齿轮箱连接,所述换向锥齿轮组设置在锥齿轮箱内,换向锥齿轮组的输入轴与直流减速电机的减速器的输出轴连接、输出轴与行走轮轮轴连接,翼型螺栓II在与固定大底板凸台相配合的上部设有定位滚花螺母。
进一步地,所述换向锥齿轮组由一对等齿数直齿锥齿轮组成。
进一步地,所述永磁轮包括两侧轭铁、中部钕铁硼强磁环和内部的橡胶块,两侧轭铁开有与钕铁硼强磁配合的凹槽,橡胶块外径与钕铁硼强磁环内径配合。
进一步地,所述自动爬行装置还包括灯与摄像头框架、开关按键、几字形把手、上盖、液晶显示屏、黑白灯、摄像头和控制箱,液晶显示屏设置在上盖上,上盖与固定大底板连接,上盖的中部设有长方形的通孔,几字形把手穿过长方形的通孔与固定大底板、前后两个控制箱连接,几字形把手内部开有走线凹槽,外部安装有塑料外壳与开关按键,所述电池仓位于把手正下方与磁粉检测机构连接,灯与摄像机框架通过螺栓固定于固定大底板下平面,摄像机嵌在灯与摄像头框架中心,四个黑白灯均布在摄像头四周,摄像头与黑白灯通过无线网络与外界电脑连接进行实时数据传输与控制。
进一步地,所述循迹机构包括下盖板、长方体框架、限位开关、微型步进电机模组、激光测距仪、光电传感器、光电传感器固定片和光电传感器挡片,下盖板包裹循迹机构与固定大底板连接,5个激光测距仪通过螺栓固定在长方体框架上,长方体框架与微型步进电机模组滑块连接,微型电机模组底部与固定大底板通过螺栓连接且两侧安装有限位开关,光电传感器遮挡片安装在长方体框架上表面中心且可遮挡光电传感器,两侧光电传感器安装在光电传感器固定片上,光电传感器固定片安装在固定大底板上,激光测距仪沿着车体宽度方向在中心处多点检测且检测结果通过无线网络信号波形实时传输并显示。
进一步地,所述行程记录机构由编码器、编码器框架以及与编码器输出轴连接的记米轮组成,编码器框架与固定大底板通过嵌套有弹簧的螺栓连接
本发明一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置,行走机构采用四轮驱动,行走轮驱动电机为直流减速电机,每个电机尾端各配有一个电磁制动器,与对应电机编码器。通过电磁制动器防止自动爬行装置停止时不发生后溜,编码器测量电机转速。电机减速器输出轴通过一对等齿数直齿锥齿轮改变传动方向驱动永磁轮。行走机构的行走轮支架固定板凸台部分与爬行装置固定大底板四角凸台的滑槽配合,所述固定大底板四角凸台中心加工有螺纹孔可通过翼型螺栓转动调节行走机构高度。磁粉检测机构采用交叉磁轭法,所述磁粉检测机构腹部与固定大底板采用螺栓连接,磁粉检测机构有四个电磁铁支柱,每个支柱底部加工有螺栓穿过的通孔,每个支柱安装四个可供磁粉检测机构跨越焊缝的行走小轮。自动爬行装置电池仓位于磁粉检测机构上平面,两者通过螺栓连在一起。固定大底板边上凸台开有螺纹孔通过螺栓与上盖连接,上盖安装有显示器。黑白光灯与记录检测过程的摄像机通过其框架固定,所述框架与固定大底板通过螺栓连接。循迹机构由五个激光测距传感器通过螺栓固定在相应框架上,相应框架与微型步进电机模组滑块连接,微型电机模组底部与固定大底板通过螺栓连接,且两侧安装有限位开关,光电传感器挡片位于激光测距传感器框架顶部,两侧光电传感器安装在其固定片上,其固定片安装在固定大底板开孔的凸台上。行程记录机构由行走轮、编码器以及编码器框架组成通过长螺栓与固定大底板连接,长螺栓嵌套弹簧,计米轮框架在长螺栓可以滑动且通过弹簧定位使计米轮能够与作业壁面充分接触。本发明有无线控制与手动控制两种方式,极大提高了检测效率,减轻了工人劳动强度。
有益效果
1)本发明将四个行走轮独立安装驱动电机,在电机驱动器配合和电磁制动器作用下,实现检测装置的前进和后退以及刹车制动;
2)本发明设计转向装置为左右前后轮组,将直流电机输出的扭矩减速并递给行走轮轴,实现行走轮的转动,这样即可单独控制一组行走轮,又能进行配合操作,可以有效的控制检测装置转弯的大小,满足多种使用情况;
3)本发明设计了磁粉检测机构跨越焊缝的能力,在磁粉检测机构四立柱上各安装四个行走小轮,通过车体移动带动磁粉检测机构移动。
4)本发明采用无线传输的方式,将检测仪的控制信号和检测数据通过无线操作控制模块和无线数据传输模块与操作终端相连,实现控制信号与缺陷漏磁信号的无线实时传输,提高了检测仪的作业范围,并减轻了工作人员的劳动量;
5)本发明可代替传统的罐壁检测方法,降低检测人员危险性和劳动成本,提高了检测效率和经济性。
附图说明
图1为本发明一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置整体结构示意图;
图2为本发明一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置整体结构爆炸示意图;
图3为本发明一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置行走机构爆炸示意图;
图4为本发明一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置永磁轮结构示意图;
图5为本发明一种一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置磁粉检测机构示意图;
图6为本发明一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置循迹机构示意图;
图7为本发明一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置行程记录机构示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
图1所示是本实施例提供的永磁轮式磁粉检测用自动爬行装置,其包括轮架连接板100、行走轮轭铁101、行走轮轮架102、翼型螺栓103、翼型螺栓104、滚花垫圈105、固定大底板200、磁粉检测机构201、灯与摄像头框架202、检测机构行走轮203、开关按键204、几字形把手205、上盖206、液晶显示屏207、下盖板301、编码器401、计米轮402。
图2所示是本实施例提供的永磁轮式磁粉检测用自动爬行装置爆炸示意图,本实施例中上盖206的中部设有长方形的通孔,几字形把手205穿过长方形的通孔与固定大底板200、控制箱211连接。磁粉检测机构201下表面与固定大底板200连接,磁粉检测机构201上部为电池仓210。固定大底板200四角凸台的滑槽与轮架连接板100的凸台配合。微型步进电机模组304、灯与摄像头框架202、计米轮框架402位于固定大底板200下平面。四个行走机构位于固定大底板200四周通过轮架连接板的凸台与固定大底板200的滑槽配合,所述行走机构永磁轮在行走轮轮架102中,通过旋转轴、平键与直齿锥齿轮配合。
图3所示是本实施例提供的永磁轮式磁粉检测用自动爬行装置行走机构爆炸示意图,行走机构采用四轮驱动。磁吸附轮通过转轴与行走轮轮架102连接,行走轮轮架102的凸台中加工有螺纹孔,翼型螺栓103穿过轮架连接板100的通孔与行走轮轮架102配合实现永磁轮的壁面适应。
每个轮架连接板内部圆柱槽内有一个阶梯轴106,阶梯轴106安装上平面一端加工有沉孔,下平面一端加工有螺纹孔,上平面一端与翼型螺栓II104通过顶丝固定连接,翼型螺栓II104在固定大底板200凸台上部配合有定位滚花螺母105。下平面一端与内六角螺栓112连接, 进一步的,下平面一端螺栓嵌套碗形垫圈111,碗形垫圈111在轮架连接板100下部,限定移动机构在车体竖直方向的位移,限制轮架连接板100沿固定大底板200的凸台滑槽移动,通过旋转翼型螺栓II104实现行走机构的升降。进一步的,所述行走轮轮架102与轮架连接板100连接,行走轮轮架102上加工有翼型螺栓I103的螺纹,翼型螺栓I103通过轮架连接板100的通孔实现行走机构的曲面适应。
直流减速电机装配有直流电机108、减速器107、电磁制动器109、电机编码器110,直流减速电机固定于电机固定座113上,电机固定座113设有安装减速器107的螺栓通孔以及电机减速器输出轴的通孔,所述电机固定座113侧面与行走轮轮架102连接,另一侧面覆盖锥齿轮箱115。换向锥齿轮组的输入轴连接减速器107输出轴,输出轴连接行走轮轴,所述行走轮轴安装于行走轮轮架上,所述行走轮轴安装有沉头轴承与垫圈,限定行走轮轴向位移。
减速器107的输出轴与输入直齿锥齿轮通过顶丝固定,永磁轮转轴与输出直齿锥齿轮配合实现传动的换向。减速器107固定在电机固定座113上,电机固定座113一侧与行走轮框架102连接,另一侧与锥齿轮箱115连接。
图4所示是本实施例提供的永磁轮式磁粉检测用自动爬行装置永磁轮结构示意图,永磁轮包括两侧轭铁101,中部钕铁硼强磁环114,以及内部起支撑作用的橡胶块116。两侧轭铁101开有与钕铁硼强磁114配合的凹槽,橡胶块116外径与钕铁硼强磁环114内径配合。
图5所示是本实施例提供的永磁轮式磁粉检测用自动爬行装置磁粉检测机构示意图,仪器上盖206与固定大底板200连接,且上盖安装有液晶显示屏207,上盖206与固定大底板200连接,在上盖206中间位置开有几字形把手205的通孔,几字形把手205与两个控制箱211、固定大底板200连接,几字形把手205内部开有走线凹槽,外部安装有塑料灯罩与开关按键204。电池仓210位于几字形把手205正下方与磁粉检测机构201连接。
磁粉检测机构201四个电磁铁支柱呈门形,每个支柱底部加工有螺栓穿过的通孔,每个支柱安装四个可供磁粉检测机构跨越焊缝的行走小轮203,其下平面与固定大底板连接200,固定大底板下平面安装有灯与摄像机框架202,黑白灯208共四个、嵌在灯与摄像头框架202四角,黑白灯和中部为摄像头209能够与外界电脑连接,通过无线网络能够实现无线数据的实时传输,信号波形实时显示。
图6所示是本实施例提供的永磁轮式磁粉检测用自动爬行装置循迹结构示意图,循迹机构的五个激光测距传感器305通过螺栓固定在长方体框架302上,长方体框架302留有传感器收发激光开口,与微型步进电机模组304滑块连接,微型电机模组304底部与固定大底板通过螺栓连接,且两侧安装有限位开关303,微型步进电机模组滑块左右安装有限位开关,实现激光测距仪框架左右的精确移动。光电传感器挡片308位于激光测距传感器框架302顶部可遮挡光电传感器306,两侧光电传感器306安装在光电传感器固定片307上,光电传感器固定片307安装在固定大底板200上,激光测距传感器305沿着车体宽度方向在中心处多点检测,通过无线网络信号波形实时显示。下盖板301包裹循迹机构与固定大底板200连接。
本实施例中5个激光测距仪305通过螺栓固定在框架302上,光电传感器遮挡片308安装在框架302上表面中心,光电传感器遮挡片随微型步进电机模组304的滑块来回移动,通过限位开关303限制左右的行程。
图7所示是本实施例提供的永磁轮式磁粉检测用自动爬行装置行程记录机构示意图,包括计米轮402,编码器401,编码器框架403。编码器输出轴连接的记米轮402,编码器框架403通过螺栓与固定大底板连接,螺栓内嵌套弹簧404,调节行走轮402与作业壁面的接触。所述的编码器通过其连接的记米轮的正反转实现数据的加减,实现位移的测量记录。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (8)

  1. 一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置,所述自动爬行装置包括固定大底板和设置在固定大底板上的行走机构、磁粉检测机构、循迹机构和行程记录机构,其特征在于,所述行走机构采用四个行走轮驱动,四个行走轮独立安装行走轮直流减速电机,每个行走轮的直流减速电机均装配有直流电机、电磁制动器、减速器和与直流减速电机相对应的电机编码器,所述行走轮为永磁轮,直流减速电机通过换向锥齿轮组改变传动方向驱动永磁轮,所述磁粉监测机构采用交叉磁轭法,磁粉监测机构腹部与所述固定大底板采用螺栓连接,磁粉检测机构设有四个电磁铁支柱呈门形,每个电磁铁支柱底部设有螺栓穿过的通孔,每个电磁铁支柱安装四个供磁粉检测机构跨越焊缝的行走小轮,所述自动爬行装置的电池仓位于磁粉检测机构上平面且两者通过螺栓连在一起,所述磁粉监测机构和循迹机构能够与外界进行无线信息传输与控制。
  2. 根据权利要求1所述的一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置,其特征在于,行走轮设置在爬行装置车体四周,每个行走轮有一个轮架,每个轮架连接有轮架连接板,轮架连接板的凸台可在固定大底板凸台的滑槽内移动,固定大底板四角留有直流减速电机穿过的通孔。
  3. 根据权利要求1所述的一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置,其特征在于,所述行走机构包括轮架连接板、永磁轮、行走轮轮架、翼型螺栓I、翼型螺栓II、滚花螺母、阶梯轴、直流减速电机、碗形垫圈、内六角螺栓、电机固定座和锥齿轮箱,所述永磁轮通过转轴与行走轮轮架连接,永磁轮的轮轴安装有沉头轴承和垫圈限定永磁轮轴向位移,所述行走轮轮架与轮架连接板通过翼型螺栓I连接,轮架连接板加工有限位凸台限制轮架的旋转,所述限位凸台内设有圆柱槽,圆柱槽内设置有阶梯轴,阶梯轴在上平面加工沉孔、下平面加工螺纹孔,阶梯轴的沉孔与翼型螺栓II通过顶丝固定,阶梯轴的螺纹孔通过碗形垫圈与内六角螺栓限制轮架连接板沿固定大底板的凸台滑槽移动,直流减速电机安装在电机固定座上,电机固定座一侧面与行走轮轮架连接、另一侧面与锥齿轮箱连接,所述换向锥齿轮组设置在锥齿轮箱内,换向锥齿轮组的输入轴与直流减速电机的减速器的输出轴连接、输出轴与行走轮轮轴连接,翼型螺栓II在与固定大底板凸台相配合的上部设有定位滚花螺母。
  4. 根据权利要求1所述的一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置,其特征在于,所述换向锥齿轮组由一对等齿数直齿锥齿轮组成。
  5. 根据权利要求1所述的一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置,其特征在于,所述永磁轮包括两侧轭铁、中部钕铁硼强磁环和内部的橡胶块,两侧轭铁开有与钕铁硼强磁配合的凹槽,橡胶块外径与钕铁硼强磁环内径配合。
  6. 根据权利要求1所述的一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置,其特征在于,所述自动爬行装置还包括灯与摄像头框架、开关按键、几字形把手、上盖、液晶显示屏、黑白灯、摄像头和控制箱,液晶显示屏设置在上盖上,上盖与固定大底板连接,上盖的中部设有长方形的通孔,几字形把手穿过长方形的通孔与固定大底板、前后两个控制箱连接,几字形把手内部开有走线凹槽,外部安装有塑料外壳与开关按键,所述电池仓位于把手正下方与磁粉检测机构连接,灯与摄像机框架通过螺栓固定于固定大底板下平面,摄像机嵌在灯与摄像头框架中心,四个黑白灯均布在摄像头四周,摄像头与黑白灯通过无线网络与外界电脑连接进行实时数据传输与控制。
  7. 根据权利要求1所述的一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置,其特征在于,所述循迹机构包括下盖板、长方体框架、限位开关、微型步进电机模组、激光测距仪、光电传感器、光电传感器固定片和光电传感器挡片,下盖板包裹循迹机构与固定大底板连接,5个激光测距仪通过螺栓固定在长方体框架上,长方体框架与微型步进电机模组滑块连接,微型电机模组底部与固定大底板通过螺栓连接且两侧安装有限位开关,光电传感器遮挡片安装在长方体框架上表面中心且可遮挡光电传感器,两侧光电传感器安装在光电传感器固定片上,光电传感器固定片安装在固定大底板上,激光测距仪沿着车体宽度方向在中心处多点检测且检测结果通过无线网络信号波形实时传输并显示。
  8. 根据权利要求1-7之一所述的一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置,其特征在于,所述行程记录机构由编码器、编码器框架以及与编码器输出轴连接的记米轮组成,编码器框架与固定大底板通过嵌套有弹簧的螺栓连接。
PCT/CN2021/095635 2021-01-19 2021-05-25 一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置 WO2022156105A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110065468.9A CN112924539B (zh) 2021-01-19 2021-01-19 一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置
CN202110065468.9 2021-01-19

Publications (1)

Publication Number Publication Date
WO2022156105A1 true WO2022156105A1 (zh) 2022-07-28

Family

ID=76163460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095635 WO2022156105A1 (zh) 2021-01-19 2021-05-25 一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置

Country Status (2)

Country Link
CN (1) CN112924539B (zh)
WO (1) WO2022156105A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115932200A (zh) * 2022-12-16 2023-04-07 山东省地质矿产勘查开发局第五地质大队(山东省第五地质矿产勘查院) 一种基于人工智能地下水动态监测警报器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114939860A (zh) * 2022-07-05 2022-08-26 沈阳工业大学 一种焊缝损伤弱磁检测机器人及检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242762A (ja) * 2005-03-03 2006-09-14 Railway Technical Res Inst 鉄道車輪踏面の磁粉探傷検査方法及び磁粉探傷検査装置
CN103171640A (zh) * 2013-04-15 2013-06-26 山东科技大学 一种基于永磁吸附结构的爬壁机器人
CN108828060A (zh) * 2018-08-01 2018-11-16 深圳市神视检验有限公司 一种用于焊缝检测的检测车
CN209821124U (zh) * 2019-04-30 2019-12-20 深圳市神视检验有限公司 一种磁粉探伤机
CN111426746A (zh) * 2020-03-31 2020-07-17 中海石油技术检测有限公司 一种罐壁自动爬行漏磁检测仪

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2733185B2 (ja) * 1993-04-09 1998-03-30 川崎製鉄株式会社 平板磁粉探傷装置
JPH09311124A (ja) * 1996-05-22 1997-12-02 Chiyouriyou Kensa Kk 半自動蛍光磁粉探傷装置
CN102346151A (zh) * 2010-07-29 2012-02-08 上海宝钢工业检测公司 直缝焊管内壁焊趾裂纹自动磁粉检测装置
CN205404481U (zh) * 2016-02-23 2016-07-27 池州市特种设备监督检验中心 一种磁粉自动检测装置
CN206990497U (zh) * 2017-07-21 2018-02-09 北京国电电科院检测科技有限公司 一种工型充电变频磁力弹珠探头
CN206990499U (zh) * 2017-08-04 2018-02-09 广东省特种设备检测研究院惠州检测院 一种交叉磁轭法磁粉检测自动爬行装置
CN209006012U (zh) * 2018-09-10 2019-06-21 中国石油天然气第七建设有限公司 磁粉检测用智能爬行装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242762A (ja) * 2005-03-03 2006-09-14 Railway Technical Res Inst 鉄道車輪踏面の磁粉探傷検査方法及び磁粉探傷検査装置
CN103171640A (zh) * 2013-04-15 2013-06-26 山东科技大学 一种基于永磁吸附结构的爬壁机器人
CN108828060A (zh) * 2018-08-01 2018-11-16 深圳市神视检验有限公司 一种用于焊缝检测的检测车
CN209821124U (zh) * 2019-04-30 2019-12-20 深圳市神视检验有限公司 一种磁粉探伤机
CN111426746A (zh) * 2020-03-31 2020-07-17 中海石油技术检测有限公司 一种罐壁自动爬行漏磁检测仪

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115932200A (zh) * 2022-12-16 2023-04-07 山东省地质矿产勘查开发局第五地质大队(山东省第五地质矿产勘查院) 一种基于人工智能地下水动态监测警报器

Also Published As

Publication number Publication date
CN112924539A (zh) 2021-06-08
CN112924539B (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2022156105A1 (zh) 一种永磁轮式钢制壁面焊缝磁粉检测用自动爬行装置
CN102673671B (zh) 一种复合磁吸附式视频检测爬壁机器人
CN103171640A (zh) 一种基于永磁吸附结构的爬壁机器人
CN105643612B (zh) 一种用于更换螺旋衬板的机器人
CN110015350B (zh) 金属壁面自适应攀爬机器人
CN113619703B (zh) 一种履带式管道外壁爬行机器人
CN202608930U (zh) 一种复合磁吸附式视频检测爬壁机器人
CN104668948A (zh) 一种径向螺栓拧紧装置
CN114986539A (zh) 一种防爆巡检机器人
CN111516771A (zh) 一种用于船舶清洗的磁力爬壁装备
CN104020138A (zh) 车身外覆盖件视觉检测自动定位装置
CN106224615A (zh) 一种智能控制的精小型电动执行机构
CN108199292A (zh) 一种可越障的高压线缆自动检测机器人
CN216747570U (zh) 自适应tofd检测机器人
CN205938089U (zh) 一种行星齿轮结构的部分回转电动执行机构
CN204925810U (zh) 一种升高旋转平台控制系统
CN105731184B (zh) 一种用于焊丝层绕工序的自动拆装轴装置
CN112008381B (zh) 一种轨道车辆多轴拧紧装置
CN207015420U (zh) 一种电磁驱动锁止分离式液压对中缸
CN209037659U (zh) 一种新型舵轮驱动装置
CN111426746A (zh) 一种罐壁自动爬行漏磁检测仪
CN212646572U (zh) 一种罐壁自动爬行漏磁检测仪
CN213393774U (zh) 一种具有显示结构的电动执行器
CN214184448U (zh) 一种罐车捣渣机器人
CN216646344U (zh) 自适应爬壁磁粉检测机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920489

Country of ref document: EP

Kind code of ref document: A1