WO2022155883A1 - 一种检测方法以及相关装置 - Google Patents

一种检测方法以及相关装置 Download PDF

Info

Publication number
WO2022155883A1
WO2022155883A1 PCT/CN2021/073255 CN2021073255W WO2022155883A1 WO 2022155883 A1 WO2022155883 A1 WO 2022155883A1 CN 2021073255 W CN2021073255 W CN 2021073255W WO 2022155883 A1 WO2022155883 A1 WO 2022155883A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
output port
voltage signal
main controller
inverter
Prior art date
Application number
PCT/CN2021/073255
Other languages
English (en)
French (fr)
Inventor
徐志武
郭海滨
李琳
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP21920281.9A priority Critical patent/EP4279929A4/en
Priority to PCT/CN2021/073255 priority patent/WO2022155883A1/zh
Priority to CN202180091477.3A priority patent/CN116783817A/zh
Publication of WO2022155883A1 publication Critical patent/WO2022155883A1/zh
Priority to US18/356,406 priority patent/US20230366953A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/55Testing for incorrect line connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present application relates to the field of electric power technology, and in particular, to a detection method and related devices.
  • the output terminals of the converter are usually combined through a confluence device and then output, which can not only meet the high-power scene, but also facilitate unified management.
  • converging the output of the converter there is a clear requirement for which group of converging equipment the pre-selected equipment is connected to.
  • the output is also required due to the different input forms of the converter. Can not be connected together, otherwise it will cause the system to fail to start or even cause equipment damage.
  • the above converging equipment includes, but is not limited to, converging distribution cabinets, transformer cabinets, and other equipment with converging functions.
  • the embodiments of the present application provide a detection method and a related device, which can quickly and accurately determine whether there is a wiring error in the converter bus system in an application scenario where the bus point voltage information cannot be obtained.
  • an embodiment of the present application provides a detection method, including: when the first converter is working and the second converter is not working, the main controller obtains the output port voltage signal of the first converter; the main controller obtains the first converter The output port voltage signal of the second converter; if the output port voltage signal of the first converter and the output port voltage signal of the second converter meet the preset matching relationship, the main controller generates the first information, and the first information is used for It means that the output port of the first converter and the output port of the second converter are connected to the same bus device; if the output port voltage signal of the first converter and the output port voltage signal of the second converter do not meet the preset matching relationship, Then the main controller generates the second information, the second information is used to indicate that the output port of the first converter is not connected to the output port of the second converter. Wiring error.
  • the detection method can determine the first converter by judging the output port voltage signal of the first converter and the output port voltage signal of the second converter in an application scenario in which the voltage information of the confluence point cannot be obtained. Whether the converter and the second converter are connected to the same bus device, so as to generate the first information or the second information to inform the staff. Generally, if the first converter and the second converter in a bus system are not connected to the same bus device, it can be considered that the first converter or the second converter is wired incorrectly. Therefore, the detection method provided by the embodiment of the present application can quickly and accurately determine whether there is a wiring error in the converter bus system.
  • the method before the main controller instructs the first converter to start working, the method further includes: A first inverter is determined, and the bus system includes a first inverter, a second inverter, and a bus device for bussing the plurality of inverters.
  • the master controller pre-determines the master (the first inverter) and the slave (the second inverter) from the plurality of inverters in the bus system, then all the slaves perform the first aspect with the master.
  • the judgment process is one of the specific implementation methods.
  • the master works and the slave does not work, then when all slaves and the master are in the judgment process as in the first aspect, the master does not need to stop but works all the time, and can quickly and orderly convert all the changes. The connection of the device is judged.
  • the confluence device for converging a plurality of converters is one of a converging power distribution cabinet and a split transformer.
  • This implementation provides the specific type of the confluence device, so that the solutions provided by the embodiments of the present application are more comprehensive.
  • the voltage signal is one of a DC signal, an AC signal, or a preset waveform signal.
  • This implementation provides specific types of voltage signals, so that the solutions provided by the embodiments of the present application are more comprehensive.
  • the converter is one of a DC-to-DC converter, a DC-to-AC converter, and an AC-to-DC converter.
  • This implementation provides the specific type of the converter, so that the solutions provided by the embodiments of the present application are more comprehensive.
  • the main controller communicates with the first converter and the second converter through wireless signal communication or wired communication.
  • This implementation provides a communication mode between the main controller and each converter, so that the solutions provided by the embodiments of the present application are more comprehensive.
  • the matching relationship is one of an amplitude relationship, a phase relationship, or a frequency relationship.
  • This implementation provides a specific form of the matching relationship, so that the solutions provided by the embodiments of the present application are more comprehensive.
  • the voltage signal of the output port of the first converter and the voltage signal of the output port of the second converter satisfy a preset matching relationship.
  • the first converter includes: The difference between the component amplitude of the output port voltage at the specified frequency and the component amplitude of the output port voltage of the second converter at the specified frequency is less than the preset fault threshold; the output port voltage signal of the first converter and the second converter The output port voltage signal of the first converter does not meet the preset matching relationship, which specifically includes: the difference between the component amplitude of the output port voltage of the first converter at the specified frequency and the component amplitude of the output port voltage of the second converter at the specified frequency is not equal. less than the preset fault threshold.
  • This implementation provides specific judgment conditions corresponding to the output port voltage signal of the first converter and the output port voltage signal of the second converter, so that the solutions provided by the embodiments of the present application are more comprehensive.
  • an embodiment of the present application provides a main controller, including a processor, a memory and a communication interface; the memory stores a computer program; the communication interface is used for communicating with the converter; the processor is used for executing the computer program stored in the memory , so that the main controller implements the method of the first aspect.
  • an embodiment of the present application provides a detection device, the device includes: an acquisition module, configured to acquire the output port voltage signal of the first converter and the The output port voltage signal of the second converter; the processing module is configured to generate first information when the output port voltage signal of the first converter and the output port voltage signal of the second converter meet a preset matching relationship, and the first information The information is used to indicate that the output port of the first converter is connected to the same bus device as the output port of the second converter; the processing module is also used when the output port voltage signal of the first converter is the same as the output port voltage of the second converter.
  • second information is generated, and the second information is used to indicate that the output port of the first converter is not connected to the same bus device as the output port of the second converter, and to indicate that the first converter is wired Wrong or wrong wiring of second inverter.
  • the processing module is further configured to: determine the first converter from a plurality of converters in the confluence system according to the input instruction, and the confluence system includes the first converter , a second inverter, and a bus device for bussing a plurality of inverters.
  • the confluence device for converging multiple converters is one of a converging power distribution cabinet and a split transformer.
  • the voltage signal is one of a DC signal, an AC signal, or a preset waveform signal.
  • the converter is one of a DC-to-DC converter, a DC-to-AC converter, and an AC-to-DC converter.
  • the communication interface communicates with the first converter and the second converter through wireless signal communication or wired communication.
  • the matching relationship is one of an amplitude relationship, a phase relationship, or a frequency relationship.
  • the output port voltage signal of the first converter and the output port voltage signal of the second converter meeting a preset matching relationship specifically include: the first converter The difference between the component amplitude of the output port voltage at the specified frequency and the component amplitude of the output port voltage of the second converter at the specified frequency is less than the preset fault threshold; the output port voltage signal of the first converter and the second converter The output port voltage signal of the first converter does not meet the preset matching relationship, which specifically includes: the difference between the component amplitude of the output port voltage of the first converter at the specified frequency and the component amplitude of the output port voltage of the second converter at the specified frequency is not equal. less than the preset fault threshold.
  • Fig. 1 is a schematic diagram of a wiring situation
  • FIG. 2 is a flowchart of a detection method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a system architecture in an application example provided by the present application.
  • FIG. 4 is a schematic diagram of the detection steps of the confluence system 1 in the application example of the application;
  • FIG. 5 is a schematic diagram of the detection steps of the confluence system 2 in the application example of the application;
  • FIG. 6 is a schematic diagram of a detection device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a main controller according to an embodiment of the present application.
  • the output terminals of the converter are often combined and then output through the confluence equipment, which can not only meet the high-power scene, but also facilitate unified management.
  • converging the output of the converter there is a clear requirement for which group of converging equipment the pre-selected equipment is connected to.
  • the output is also required due to the different input forms of the converter. Can not be connected together, otherwise it will cause the system to fail to start or even cause equipment damage.
  • the above converging equipment includes, but is not limited to, converging distribution cabinets, transformer cabinets, and other equipment with converging functions. Based on the above requirements, after the converter is wired at the application site, it is necessary to identify wiring errors in advance.
  • Figure 1 is a schematic diagram of a wiring situation.
  • the converter 1, the converter 2...the converter n should all be connected to the bus device 101 (the converter 1 to the converter n need to pass through the bus device 101), the converter n+1, the converter n...
  • the inverters 2n should all be wired to the bus device 102 (inverters n+1 to 2n are busted through the bus device 102).
  • the wiring of the converter n may be incorrectly connected to the bus device 102 as shown by the dotted line (the wiring of the converter n is wrong, and the bus device 102 is wrongly connected) , and the wiring of the converter 2n may also be incorrectly connected to the bus device 101 as shown by the dotted line (the converter 2n is wired incorrectly and is connected to the bus device 101 by mistake).
  • the error shown by the dotted line in Figure 1 can be understood as a wiring error. In practical applications, other errors may also occur, such as no wiring, disconnection of cables, etc., which may also be understood as wiring errors, which are not limited in this embodiment of the present application.
  • the current solution to wiring errors is usually to judge by the relationship between the voltage at the output of the converter and the voltage at the bus point after the rear end of the bus device is powered on in a time-sharing manner.
  • the system includes a central control unit (referred to as: main controller), and the main controller can collect the output terminal voltages of all converters and the voltages at the back ends of the bus devices. When it is detected that the voltage at the confluence point of the confluence equipment is stable, the output terminal voltages of all the converters are collected.
  • the bus device 102 makes the same judgment.
  • the junction point 103 of the bus equipment 101 is connected to the inverter 1 to the inverter n-1, and the inverter n is wrongly connected to the bus point 104 of the bus equipment 102, and the bus point 104 of the bus equipment 102 is connected to Inverter n+1 to Inverter 2n-1, and Inverter 2n is erroneously connected to the bus point 103 of the bus device 101.
  • the main controller can collect the output terminal voltage of all converters and the voltage at the back end of the bus equipment (ie, the bus point voltage of the bus equipment), and then the main controller judges whether the converter port voltage and the bus point voltage meet the preset relationship. .
  • the port voltage of the converter n and the voltage at the bus point do not satisfy the preset relationship, so the main controller can determine that the wiring of the converter n is wrong according to this situation. In the same way, it can be judged that the wiring of the converter 2n is wrong.
  • the controlled output voltage of the converter is judged by the relationship between the output terminal voltage of the converter and the voltage of the confluence point.
  • the system contains a main controller.
  • the main controller controls the preset output voltage of the converter 1 connected to the bus device 101. If the voltage at the bus point 103 of the bus device 101 and the output voltage of the converter 1 meet the preset relationship, then The connection of the converter is correct, otherwise it is judged that the connection of the converter is wrong; similarly, the same judgment is made for other converters preset to be connected to the confluence equipment 101 and other converters preset to be connected to other confluence equipment. Check whether the wiring of the converter is correct one by one.
  • the disadvantage of the above two solutions is that the voltage information at the bus point needs to be obtained.
  • it is often impossible to obtain bus point voltage information because traditional bus equipment generally does not have a detection module to measure the bus point voltage information. Therefore, in order to realize the above two solutions, it is necessary to install a module for obtaining the voltage information of the confluence point, which requires a relatively high cost transformation.
  • FIG. 2 is a flowchart of a detection method provided by an embodiment of the present application.
  • the detection method is applicable to when the first converter works and the second converter does not work. The following describes the situation in which the first converter works and the second converter does not work.
  • two bus systems are included, one of which is composed of a bus device 101 and converters 1 to n, and the other is composed of a bus device 102 and converters n+1 to n. device 2n composition.
  • the first confluence system is used as an example for explanation, and the other confluence system can be implemented by reference, which is not repeated in the embodiment of the present application.
  • the main controller may select one of the converters 1 to n as the host computer, and the selection method may be selected according to a certain algorithm or directly and randomly, which is not limited in the embodiment of the present application .
  • the host may also be selected by the staff, which is not limited.
  • the main controller in this embodiment of the present application may be an independent device, or may be the converter itself.
  • the master controller communicates with the various transducers by means of wireless or limited communication.
  • the main controller can be implemented by the logic circuit in the inverter 1, or by the processor in the inverter 1 executing the code in the memory, or in other forms. Implementation is not repeated in this application.
  • the master controller may instruct the master (the first inverter) to work and the slave (the second inverter) to not work.
  • the operation of the host means that the converter operates according to the functions possessed by the converter.
  • the converter is an inverter (DC-to-AC converter, DC/AC converter), and the operation of the converter means that the inverter realizes the function of converting direct current into alternating current.
  • the converter may also be a DC-to-DC converter (DC/DC converter), an AC-to-DC converter (AC/DC converter), which is not limited in this embodiment of the present application.
  • the working conditions of the converter are not necessarily the same each time, which may lead to certain errors.
  • the main controller may instruct the host to output according to a preset disturbance signal (hereinafter referred to as a disturbance signal).
  • a disturbance signal hereinafter referred to as a disturbance signal
  • the host controller may instruct the host to output a preset waveform signal.
  • the main controller may also instruct the host to output a DC signal, an AC signal, etc., which is not limited in this embodiment of the present application.
  • the circuit/module on the converter for detecting the voltage signal of the output port of the converter is still powered on and running when the converter is not working, and can detect the voltage signal of the output port of the converter. Therefore, whether the master is working or the slave is not working, the converter can detect the voltage signal of the output port and report it to the master controller.
  • the main controller can perform the following processes:
  • the voltage signal of the output port of the first converter may be a preset "disturbance signal".
  • the detection circuit in the first converter can detect the output port voltage signal and upload it to the main controller, so that the main controller obtains the output port voltage signal of the first converter.
  • the main controller may send an instruction to the first converter for instructing the detection circuit in the first converter to detect the output port voltage signal and upload it to the main controller.
  • the detection circuit in the first converter detects the output port voltage signal at regular intervals and uploads it to the main controller. This embodiment of the present application does not limit this.
  • the detected voltage signal of the output port of the second converter may be referred to as a "characteristic signal".
  • the detection circuit in the second converter can detect the output port voltage signal and upload it to the main controller, so that the main controller obtains the output port voltage signal of the second converter.
  • the main controller may send an instruction to the second converter for instructing the detection circuit in the second converter to detect the output port voltage signal and upload it to the main controller.
  • the detection circuit in the second converter detects the output port voltage signal at regular intervals and uploads it to the main controller. This embodiment of the present application does not limit this.
  • step 203 Determine whether the output port voltage signal of the first converter and the output port voltage signal of the second converter satisfy a preset matching relationship, if yes, go to step 204, if not, go to step 205;
  • the main controller receives the output port voltage signal of the first converter (also referred to as disturbance signal, disturbance voltage) and the output port voltage signal of the second converter (also referred to as characteristic signal, disturbance voltage) characteristic voltage), it can be determined whether the output port voltage signal of the first converter and the output port voltage signal of the second converter satisfy a preset matching relationship.
  • the matching relationship may be an amplitude relationship, a phase relationship, or a frequency relationship, etc., which is not limited in this embodiment of the present application.
  • the amplitude relationship will be used as an example for description below. For other situations, reference may be made to the embodiments of the present application, which will not be repeated.
  • the absolute value of the difference between the voltage amplitude of the disturbance signal and the voltage amplitude of the characteristic signal is less than the fault threshold.
  • the voltage amplitude of the disturbance signal is 10V
  • the voltage amplitude of the characteristic signal is 10.1V
  • the fault threshold is 1V
  • the absolute value of the difference between the voltage amplitude of the disturbance signal and the voltage amplitude of the characteristic signal is 0.1V, which is less than If the fault threshold is 1V, the main controller can determine that the output port voltage signal (disturbance signal) of the first converter and the output port voltage signal (characteristic signal) of the second converter meet a preset matching relationship according to the situation. In practical applications, other set matching relationships can also implement the solution of the present application, which is not limited in this embodiment of the present application.
  • whether the disturbance signal and the characteristic signal satisfy the preset matching relationship may include the following specific judgment method: firstly obtain the component amplitude of the output port voltage signal of the first converter at a specified frequency, for example, from the first converter The amplitude of the output port voltage determined at 20Hz is U1A_PE. Then, the component amplitude at the specified frequency of the output port voltage signal of the second converter is obtained, for example, the component amplitude at 20 Hz is determined from the output port voltage of the second converter as U2A_PE. Then compare whether the difference between U1A_PE and U2A_PE exceeds the preset fault threshold. In practical applications of this solution, other matching relationships may also exist, which are not limited in this embodiment of the present application.
  • the main controller can determine that the first inverter and the second inverter are connected correctly, and execute step 204 . If the output port voltage signal of the first converter and the output port voltage signal of the second converter do not meet the preset matching relationship, the main controller may determine that the first converter or the second converter is wired incorrectly, and execute step 205 .
  • the main controller can simultaneously determine the output port voltage signal of the first converter and the output ports of the plurality of second converters Whether the voltage signal satisfies the preset matching relationship, if both meet the preset matching relationship, it means that the first converter and the multiple second converters are connected to the same bus device, and the first converter and the multiple second converters are determined. If the cables are all connected correctly, go to step 204. In some embodiments, if it is determined that the output port voltage signals of the first converter and one of the second converters do not meet the preset matching relationship, it means that the first converter and the second converter are not connected to the same bus. If there must be an inverter (the first inverter or the second inverter) that is wired incorrectly, the main controller can execute step 205 .
  • the matching relationship may be a database preset in the main controller.
  • the main controller executes step 203, it can read the relevant matching relationship from the database and perform corresponding calculation and judgment, which is not limited in this embodiment of the present application.
  • the main controller may generate the first information.
  • the first information is used to indicate that the output port of the first converter is connected to the same bus device as the output port of the second converter.
  • the main controller can generate the first information, and display the first information to the wiring staff or perform further processing according to the first information.
  • the numbers of the first converter and the second converter can be linked (for example, wiring, setting the same color, etc.), then the staff can determine the first converter and the second converter.
  • the two converters are connected to the same bus device.
  • the master controller can display or combine the first information of the first converter and each second converter one by one Demonstration enables the staff to confirm that the first converter and the plurality of second converters are all connected to the same bus device, and that the first converter and the plurality of second converters are all wired correctly.
  • the main controller can determine that the first converter and the second converter are connected to the same bus device according to the instructions of the first information, so as to perform the operations that can be performed under this condition. For example, the main controller can determine that all the converters in the bus system are correctly wired and then start the entire bus system, then the main controller can only start the entire bus system after obtaining the first information of the first converter and all the second converters. .
  • the main controller may generate the second information.
  • the second information is used to indicate that the output port of the first converter is not connected to the output port of the second converter with the same bus device, and to indicate that the wiring of the first converter or the wiring of the second converter is incorrect.
  • the main controller can simultaneously determine the output port voltage signal of the first converter and the output ports of the plurality of second converters Whether the voltage signal satisfies the preset matching relationship. If it is judged that the output port voltage signals of the first converter and one of the second converters do not meet the preset matching relationship, it means that the first converter and the second converter are not connected to the same bus device, and there must be a converter If the converter (either the first converter or the second converter) is wired incorrectly, the main controller can generate a second message.
  • the main controller After the main controller generates the second information, it can display the second information to the wiring staff or perform further processing according to the second information.
  • the numbers of the first converter and the second converter can be opposed (for example, different colors are set, or the numbers are tick and crossed, etc.), then the staff can clearly know The first inverter or the second inverter is wired incorrectly.
  • the staff can know the wiring error of the first inverter or the second inverter through the displayed second information, and can check the first inverter or the second inverter.
  • the master controller may connect the first inverter with the second inverter of some of the second inverters If the information is displayed, and the display related to other second converters is to display the first information, the staff can generally determine that the "certain second converters" are wired incorrectly.
  • the main controller can determine, according to the instructions of the second information, that the first converter and the second converter are not connected to the same bus device, and then perform operations that can be performed under this condition. For example, the main controller can determine that a second converter in the bus system is not connected to the same bus equipment as the first converter, and the main controller can issue an alarm to inform the staff that the second converter is wired incorrectly.
  • the main controller can generate the first information according to the above steps, but will not generate the second information (wrong wiring will generate the second information). Therefore, if the main controller generates the first information after performing the steps of the above detection method on the bus system, then the bus system has no wiring error.
  • the selected first converter happens to be the only one with wrong wiring in the bus system, so the first converter and other second converters (slaves) are not connected to each other.
  • the main controller will generate multiple second messages without generating the first messages. Since most of the converters are generally wired correctly, in this case, the first converter is likely to be a wrongly wired converter, and the other second converters are likely to be correctly wired. Therefore, the staff can focus on checking the wiring of the first converter according to the first information and the second information, and can quickly determine the converter with wrong wiring.
  • the master controller may re-select one of the second inverters as the new master and perform the detection again.
  • the main controller can generate several pieces of first information and several pieces of second information after executing the above detection method, and display this information. After viewing the first information and the second information, the staff can focus on checking the converter corresponding to the second information, and determine the converter with wrong wiring.
  • the main controller may directly determine that the converter corresponding to the first information is the converter with correct wiring, and the converter corresponding to the second information is the converter with wrong wiring, and issue an alarm to prompt the staff "Which converter Wiring error".
  • the main controller can display the serial number of the wrongly wired converter on the display screen, and can also configure corresponding indicator lights for all converters. If the converter is wired correctly, the indicator light will display green. If the wiring is wrong, the indicator light will show red. In practical applications, the main controller may also be displayed in other forms, which are not limited in this embodiment of the present application.
  • the above-mentioned confluence equipment may be a confluence power distribution cabinet, a split transformer, a combiner box, or other equipment for converging the output of the converter, which is not limited in the embodiment of the present application.
  • the above-mentioned converters may be DC-to-DC converters, DC-to-AC converters, AC-to-DC converters, etc., which are not limited in the embodiments of the present application.
  • the main controller and each converter may communicate with each other through wireless signal or wired communication, so that the main controller may obtain the voltage signal of the output port of the converter from each converter.
  • FIG. 3 is a schematic diagram of a system architecture in an application example provided by the present application.
  • the converter is specifically an inverter, and the DC side of the inverter is installed in series in pairs.
  • the confluence device is the transformer winding, and the low-voltage winding 1 and the low-voltage winding 2 are different confluence devices.
  • the communication mode between the inverters and the communication mode between the inverters and the main controller is AC power line communication (PLC).
  • inverter 1 and inverter 2 are installed in pairs on the DC side.
  • the DC side input of inverter 1 is +BUS and 0V
  • the DC side of inverter 2 Inputs are 0V and -BUS. Since the DC side of inverter 1 and inverter 2 are input in series, the outputs of inverter 1 and inverter 2 need to be isolated by two sets of low-voltage windings of the double-split transformer, otherwise the bus will be short-circuited during operation.
  • the inverters whose DC input is generally set to +BUS and 0V are preset to connect to low-voltage winding 1 (hereinafter referred to as bus system 1), and the inverters whose DC input is 0V and -BUS are preset.
  • the low-voltage winding 2 (hereinafter referred to as the bus system 2) is preset to be connected. Therefore, the system architecture shown in Figure 3 actually includes two bus systems. In the bus system 1, the inverters whose DC inputs are +BUS and 0V are combined through the low-voltage winding 1. Inverter with input 0V and -BUS for commutation.
  • Inverter 1 and Inverter 3 are inverters with DC input of +BUS and 0V, and should be connected to low-voltage winding 1, while Inverter 2 and Inverter 4 are DC input of 0V and - BUS inverter should be connected to low voltage winding 2.
  • the current wiring situation is that the inverter 4 is incorrectly connected to the low-voltage winding 1. Once the inverter is started, it will cause short-circuit damage to BUS+ and BUS-. Therefore, it is necessary to accurately identify similar wiring errors.
  • Inverter 1 and inverter 3 are two inverters that are preset to be connected to bus system 1.
  • the A-phase grid-connected relay RA of inverter 1 is closed, and the A-phase bridge arm of inverter 1 works and controls Phase A outputs a sine wave with an amplitude of 50V and a frequency of 20Hz.
  • the inverter can usually collect the PE voltage at the output end, and after sampling the A-to-PE voltage, the 20Hz component amplitude in the calculated voltage is recorded as U1A_PE, and this value is used as the disturbance voltage amplitude.
  • Inverter 1 uses the disturbance voltage amplitude. The value is passed to the main controller. Detect the A-to-PE voltage of the inverter 3.
  • the 20Hz component amplitude is recorded as U3A_PE, and this value is used as the characteristic voltage amplitude.
  • the inverter 3 transmits the characteristic voltage amplitude to the main control.
  • the main control receives the feedback from inverter 1 and inverter 3 and compares them. If the absolute value of the difference between the characteristic voltage amplitude and the disturbance voltage amplitude is less than the fault threshold, it means that inverter 3 and inverter 1 are connected to each other. On the same bus system, if the difference between the two is greater than the fault threshold, it means that inverter 1 and inverter 3 are not connected to the same bus system. It can be seen from FIG. 3 that the wiring of inverter 1 and inverter 3 is correct, so the difference between the two voltages is less than the fault threshold.
  • the fault threshold here is 20V.
  • FIG. 4 is a schematic diagram of the detection steps of the confluence system 1 in the application example of the present application.
  • the detection step includes:
  • the staff can preset the inverter 1 as the main controller.
  • the main controller selects inverter 1 as the host of bus system 1;
  • the master is the above-mentioned first converter
  • the slave is the above-mentioned second converter
  • the host of the bus system 1 controls the grid-connected relay RA to close; in this application example, the grid-connected relay RA is closed to connect the A-phase line of the inverter 1, so that the inverter 1 works.
  • the main controller obtains the disturbance voltage
  • Inverter A-phase inverter bridge arm works, control A-phase output amplitude is 50V, frequency is 20Hz sine wave, detect A-phase PE voltage and calculate the 20Hz component amplitude U1A_PE in the voltage, the voltage amplitude is the disturbance voltage amplitude value, the host transmits the disturbance voltage amplitude to the host controller;
  • the master controller obtains the characteristic voltage of the slave
  • the slave in the bus system 1 detects the voltage of A relative to PE and calculates the 20Hz component amplitude UxA_PE in the voltage (x is the slave number in the bus system 1, for example, the component amplitude of the inverter 3 is recorded as U3A_PE), the voltage amplitude is the characteristic voltage amplitude, the slave transmits the characteristic voltage amplitude to the master controller;
  • the main controller determines whether the absolute value of the difference between the characteristic voltage and the disturbance voltage is greater than the fault threshold
  • the master controller receives the characteristic voltage amplitudes of all slaves in the bus system 1, and compares them with the disturbance voltage amplitude. If the absolute value of the difference between the two is greater than the fault threshold, it means that there is a wiring error in the bus system 1, and the fault threshold is 20V;
  • the difference between the two voltages is less than the fault threshold, so the main controller can determine that inverter 1 and inverter 3 are wired correctly.
  • the main controller can generate and display the first information (used to indicate that the inverter 1 and the inverter 3 are connected correctly), and after seeing the first information, the staff can clearly know that the inverter 1 and the inverter 3 are connected correctly. Inverter 3 is wired correctly.
  • the main controller can issue a shutdown command to the host in the confluence system 1, and the host of the confluence system 1 stops.
  • the main controller can also perform the same detection on the inverters 2 and 4 that are preset to be connected to the bus system 2 . Specifically, firstly, the A-phase grid-connected relay RA of the inverter 2 is closed, the A-phase bridge arm of the inverter 2 works, and the A-phase output is controlled to output a sine wave with an amplitude of 50V and a frequency of 20Hz. After sampling the A-to-PE voltage, the 20Hz component amplitude in the calculated voltage is recorded as U2A_PE, and this value is used as the disturbance voltage amplitude. Inverter 2 transmits the disturbance voltage amplitude to the main controller. Then, the A-to-PE voltage of the inverter 4 is detected.
  • the 20Hz component amplitude is obtained and recorded as U4A_PE. This value is used as the characteristic voltage amplitude.
  • the inverter 4 transmits the characteristic voltage amplitude to the main controller.
  • the main controller makes a comparison after receiving the feedback from inverter 2 and inverter 4. In the application example of Fig. 3, due to the wrong wiring of the inverter 4, the absolute value of the difference between the disturbance voltage amplitude from the inverter 2 and the characteristic voltage amplitude from the inverter 4 is greater than the fault threshold, so the main controller can Determine the wiring error, and then alarm the wiring error.
  • FIG. 5 is a schematic diagram of the detection steps of the confluence system 2 in the application example of the present application.
  • the detection step includes:
  • the main controller selects the inverter 2 as the host of the bus system 2;
  • the main controller can normally receive the output port voltage signals of inverter 2, inverter 4, etc.
  • the inverter 2 is selected as the master of the bus system 2, and the other inverters in the bus system 2 are the slaves.
  • the host of the bus system 2 controls the grid-connected relay RA to close.
  • the main controller obtains the disturbance voltage
  • the inverter A-phase inverter bridge arm works, and the A-phase output amplitude is 50V and the frequency is 20Hz sine wave.
  • the host detects the voltage of A relative to PE and calculates the 20Hz component amplitude U2A_PE in the voltage, which is the disturbance voltage amplitude, and the host transmits the disturbance voltage amplitude to the main controller.
  • the master controller obtains the characteristic voltage of the slave
  • the slave in the bus system 2 detects the voltage of A relative to PE and calculates the 20Hz component amplitude UyA_PE in the voltage (y is the slave number in the bus system 2, for example, the component amplitude of the inverter 4 is recorded as U4A_PE), the voltage amplitude For the characteristic voltage amplitude, the slave transmits the characteristic voltage amplitude to the master controller.
  • the main controller determines whether the absolute value of the difference between the characteristic voltage and the disturbance voltage is greater than the fault threshold
  • the master controller receives the characteristic voltage amplitudes of all slaves in the bus system 2, and compares it with the disturbance voltage amplitude. If the absolute value of the difference between the two is greater than the fault threshold, it means that there is a wiring error in the bus system 2, and the fault threshold is 20V.
  • the main controller can determine the wiring error and then issue a wiring error alarm .
  • the staff can check whether there is alarm information before the system architecture shown in Figure 3 starts to run, and if there is alarm information, check the wiring first. In some cases, the staff may also focus on checking the wiring errors of the inverter 2 and the inverter 4 according to the alarm information.
  • the main controller After the wiring detection of the confluence system 2 is completed, the main controller issues a shutdown command to the host in the confluence system 2, and the host of the confluence system 2 stops.
  • the wiring error detection scheme can be applied to different types of confluence equipment
  • the disturbance voltage is injected by the host as the detection signal, and it is not necessary to power on the post-stage equipment of the bus system; for multiple bus systems with coupling, the disturbance voltage can be injected in a time-sharing manner and detected separately.
  • the wiring error detection scheme does not require the information at the confluence point of the confluence equipment, and the detection scheme is simple--reason:
  • the wiring detection criterion only depends on the port voltage information of each converter, and the voltage information can only be converted by the existing hardware circuit of the inverter. Uploading to the main controller does not require the information of the confluence point of the confluence equipment, avoiding the complicated design caused by the detection of the confluence point information.
  • FIG. 6 is a schematic diagram of a detection apparatus provided by an embodiment of the present application.
  • the detection device 600 includes:
  • an acquisition module 601 configured to perform steps 201 and 202 in the respective embodiments corresponding to FIG. 2;
  • the processing module 602 is configured to execute step 203 , step 204 and step 205 in the respective embodiments corresponding to FIG. 2 above.
  • FIG. 7 is a schematic structural diagram of a main controller according to an embodiment of the present application.
  • the main controller 700 includes: one or more processors 701 , a memory 703 and a communication interface 704 .
  • the processor 701 , the memory 703 and the communication interface 704 can be connected through a communication bus 702 .
  • the memory 703 is used to store one or more programs; the one or more processors 701 are used to run the one or more programs, so that the main controller 700 executes the methods corresponding to the foregoing method embodiments .
  • the processor 701 may be a general-purpose central processing unit (CPU), a network processor (NP), a microprocessor, or may be one or more integrated circuits for implementing the solutions of the present application, such as , an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general-purpose array logic (generic array logic, GAL) or any combination thereof.
  • the communication bus 702 is used to transfer information between the aforementioned components.
  • the communication bus 702 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 7, but it does not mean that there is only one bus or one type of bus.
  • the memory 703 can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, or can be random access memory (RAM) or can store information and instructions Other types of dynamic storage devices, it can also be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage , optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, blu-ray disc, etc.), magnetic disk storage medium or other magnetic storage device, or can be used to carry or store desired program code in the form of instructions or data structures and any other medium that can be accessed by a computer, but is not limited thereto.
  • the memory 703 may exist independently and be connected to the processor 701 through the communication bus 702 .
  • the memory 703 may also be integrated with the processor 701 .
  • the Communication interface 704 uses any transceiver-like device for communicating with other devices or a communication network.
  • the communication interface 704 includes a wired communication interface and may also include a wireless communication interface.
  • the wired communication interface may be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface or a combination thereof.
  • the wireless communication interface may be a wireless local area network (wireless local area networks, WLAN) interface, a cellular network communication interface or a combination thereof, and the like.
  • the processor 701 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 7 .
  • the main controller 700 may include multiple processors, such as the processor 701 and the processor 705 shown in FIG. 7 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the main controller 700 may further include an output device and an input device.
  • the output device communicates with the processor 701 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, a projector, or the like.
  • the input device communicates with the processor 701 and can receive user input in a variety of ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensor device, or the like.
  • the memory 703 is used to store the program code 710 for executing the solutions of the present application, and the processor 701 can execute the program code 710 stored in the memory 703 . That is, the main controller 700 may implement the detection method provided by the method embodiment through the processor 701 and the program code 710 in the memory 703 .
  • the main controller 700 in this embodiment of the present application may correspond to the main controller in the above method embodiments, and the processor 701, the communication interface 704, etc. in the main controller 700 may implement the main controller in the above method embodiments.
  • the functions and/or the various steps and methods implemented by the controller are not repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Bus Control (AREA)
  • Inverter Devices (AREA)

Abstract

一种检测方法以及相关装置,通过第一变换器的输出端口电压信号和第二变换器的输出端口电压信号进行判断,确定第一变换器和第二变换器是否连接相同的汇流设备(101,102),从而生成第一信息或第二信息告知工作人员。一般地,若一个汇流系统中第一变换器和第二变换器没有连接相同的汇流设备(101,102),那么可以认为第一变换器或第二变换器接线错误。该检测方法以及相关装置,能够在无法获取汇流点(103,104)电压信息的应用场景下,快速,准确的判断变换器汇流系统是否存在接线错误。

Description

一种检测方法以及相关装置 技术领域
本申请涉及电力技术领域,尤其涉及一种检测方法以及相关装置。
背景技术
变换器在实际应用时,通常通过汇流设备将变换器的输出端汇流后再输出,既可以满足大功率场景,又便于进行统一管理。在对变换器的输出进行汇流时,对预先选定的设备接入哪组汇流设备有明确的需求,一方面为了实现功率分配满足设计要求,另一方面因变换器的输入形式不同也要求输出不能连接在一起,否则会引起系统无法启动甚至造成设备损坏。以上汇流设备包括但不限于汇流配电柜、变压器柜、其他具备汇流功能的设备。
基于以上要求,变换器在应用现场完成接线后,需要对接线错误进行提前识别,防止接线错误导致的意外事故发生。
目前通过检测变换器输出端电压与汇流点电压来判断变换器的输出端是否正确地接到对应的汇流设备。然而这种方法需要汇流设备能够检测到汇流点的电压信息,对于没有相关电压检测模块的汇流设备,该方法无法实现。
发明内容
本申请实施例提供了一种检测方法以及相关装置,能够在无法获取汇流点电压信息的应用场景下,能够快速,准确的判断变换器汇流系统是否存在接线错误。
第一方面,本申请实施例提供一种检测方法,包括:在第一变换器工作,第二变换器不工作时,主控制器获取第一变换器的输出端口电压信号;主控制器获取第二变换器的输出端口电压信号;若第一变换器的输出端口电压信号与第二变换器的输出端口电压信号满足预设的匹配关系,则主控制器生成第一信息,第一信息用于表示第一变换器的输出端口与第二变换器的输出端口连接相同的汇流设备;若第一变换器的输出端口电压信号与第二变换器的输出端口电压信号不满足预设的匹配关系,则主控制器生成第二信息,第二信息用于表示第一变换器的输出端口与第二变换器的输出端口连接不相同的汇流设备,以及表示第一变换器接线错误或第二变换器接线错误。
在本申请实施例中,该检测方法能够在无法获取汇流点电压信息的应用场景下,通过第一变换器的输出端口电压信号和第二变换器的输出端口电压信号进行判断,确定第一变换器和第二变换器是否连接相同的汇流设备,从而生成第一信息或第二信息告知工作人员。一般地,若一个汇流系统中第一变换器和第二变换器没有连接相同的汇流设备,那么可以认为第一变换器或第二变换器接线错误。因此,本申请实施例提供的检测方法能够快速,准确的判断变换器汇流系统是否存在接线错误。
结合第一方面,在本申请实施例提供的一种实现方式中,主控制器指示第一变换器开始工作之前,方法还包括:主控制器根据输入指令从汇流系统中的多个变换器中确定第一变换器,汇流系统包括第一变换器、第二变换器和用于汇流多个变换器的汇流设备。在该实现方式中,主控制器预先从汇流系统的多个变换器中确定主机(第一变换器)和从机(第 二变换器),则所有从机都与主机进行如第一方面的判断流程,为其中一种具体的实现方式。并且该实现方式中,主机工作而从机不工作,那么当所有从机都与主机进行如第一方面的判断流程时,主机无需停机而是一直工作即可,能够快速有序地将所有变换器的连接情况都判断出来。
结合第一方面,在本申请实施例提供的一种实现方式中,汇流多个变换器的汇流设备为汇流配电柜、分裂变压器的其中一种。该实现方式提供了汇流设备的具体类型,使得本申请实施例提供的方案更具全面性。
结合第一方面,在本申请实施例提供的一种实现方式中,电压信号为直流信号、交流信号或预设波形信号的其中一种。该实现方式提供了电压信号的具体类型,使得本申请实施例提供的方案更具全面性。
结合第一方面,在本申请实施例提供的一种实现方式中,变换器为直流转直流变换器,直流转交流变换器,交流转直流变换器的其中一种。该实现方式提供了变换器的具体类型,使得本申请实施例提供的方案更具全面性。
结合第一方面,在本申请实施例提供的一种实现方式中,主控制器与第一变换器、第二变换器通过无线信号通信或有线通信。该实现方式提供了主控制器与各个变换器之间的通信方式,使得本申请实施例提供的方案更具全面性。
结合第一方面,在本申请实施例提供的一种实现方式中,匹配关系为幅值关系、相位关系或频率关系中的一种。该实现方式提供了匹配关系的具体形式,使得本申请实施例提供的方案更具全面性。
结合第一方面,在本申请实施例提供的一种实现方式中,第一变换器的输出端口电压信号与第二变换器的输出端口电压信号满足预设的匹配关系具体包括:第一变换器的输出端口电压在指定频率的分量幅值与第二变换器的输出端口电压在指定频率的分量幅值的差值小于预设故障阈值;第一变换器的输出端口电压信号与第二变换器的输出端口电压信号不满足预设的匹配关系具体包括:第一变换器的输出端口电压在指定频率的分量幅值与第二变换器的输出端口电压在指定频率的分量幅值的差值不小于预设故障阈值。该实现方式提供了第一变换器的输出端口电压信号与第二变换器的输出端口电压信号所对应的具体判断条件,使得本申请实施例提供的方案更具全面性。
第二方面,本申请实施例提供了一种主控制器,包括处理器、存储器和通信接口;存储器存储有计算机程序;通信接口用于与变换器通信;处理器用于执行存储器中存储的计算机程序,使得主控制器实现第一方面的方法。
第三方面,本申请实施例提供了一种检测装置,该装置包括:获取模块,用于在第二变换器不工作,第一变换器工作时,获取第一变换器的输出端口电压信号和第二变换器的输出端口电压信号;处理模块,用于当第一变换器的输出端口电压信号与第二变换器的输出端口电压信号满足预设的匹配关系时,生成第一信息,第一信息用于表示第一变换器的输出端口与第二变换器的输出端口连接相同的汇流设备;处理模块,还用于当第一变换器的输出端口电压信号与第二变换器的输出端口电压信号不满足预设的匹配关系时,生成第二信息,第二信息用于表示第一变换器的输出端口与第二变换器的输出端口连接不相同的 汇流设备,以及表示第一变换器接线错误或第二变换器接线错误。本申请第三方面的装置的技术效果可参照上述第一方面的方法部分的相关效果进行理解,此处不再赘述。
结合第三方面,在本申请实施例提供的一种实现方式中,处理模块还用于:根据输入指令从汇流系统中的多个变换器中确定第一变换器,汇流系统包括第一变换器、第二变换器和用于汇流多个变换器的汇流设备。
结合第三方面,在本申请实施例提供的一种实现方式中,汇流多个变换器的汇流设备为汇流配电柜、分裂变压器的其中一种。
结合第三方面,在本申请实施例提供的一种实现方式中,电压信号为直流信号、交流信号或预设波形信号的其中一种。
结合第三方面,在本申请实施例提供的一种实现方式中,变换器为直流转直流变换器,直流转交流变换器,交流转直流变换器的其中一种。
结合第三方面,在本申请实施例提供的一种实现方式中,通信接口与第一变换器、第二变换器通过无线信号通信或有线通信。
结合第三方面,在本申请实施例提供的一种实现方式中,匹配关系为幅值关系、相位关系或频率关系中的一种。
结合第三方面,在本申请实施例提供的一种实现方式中,第一变换器的输出端口电压信号与第二变换器的输出端口电压信号满足预设的匹配关系具体包括:第一变换器的输出端口电压在指定频率的分量幅值与第二变换器的输出端口电压在指定频率的分量幅值的差值小于预设故障阈值;第一变换器的输出端口电压信号与第二变换器的输出端口电压信号不满足预设的匹配关系具体包括:第一变换器的输出端口电压在指定频率的分量幅值与第二变换器的输出端口电压在指定频率的分量幅值的差值不小于预设故障阈值。
附图说明
图1为一种接线情况的示意图;
图2为本申请实施例提供的检测方法的流程图;
图3为本申请提供的一种应用例中系统架构的示意图;
图4为本申请应用例中汇流系统1的检测步骤示意图;
图5为本申请应用例中汇流系统2的检测步骤示意图;
图6为本申请实施例提供的一种检测装置的示意图;
图7为本申请实施例提供的主控制器的架构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行详细描述。
变换器在实际应用时,多通过汇流设备将变换器的输出端汇流后再输出,既可满足大功率场景,又便于进行统一管理。在对变换器的输出进行汇流时,对预先选定的设备接入哪组汇流设备有明确的需求,一方面为了实现功率分配满足设计要求,另一方面因变换器的输入形式不同也要求输出不能连接在一起,否则会引起系统无法启动甚至造成设备损坏。 以上汇流设备包括但不限于汇流配电柜、变压器柜、其他具备汇流功能的设备。基于以上要求,变换器在应用现场完成接线后,需要对接线错误进行提前识别。
为了下述各实施例的描述清楚,首先对接线错误的含义进行详细的说明。图1为一种接线情况的示意图。图1中,变换器1、变换器2……变换器n应当均接线到汇流设备101(变换器1~变换器n需要经过汇流设备101汇流),变换器n+1、变换器n……变换器2n应当均接线到汇流设备102(变换器n+1~变换器2n经过汇流设备102汇流)。然而,当工作人员对变换器进行接线,发生接线错误时,可能会导致变换器n的接线如虚线所示,错误地接到了汇流设备102(变换器n接线错误,错接入汇流设备102),而变换器2n的接线也可能如虚线所示,错误地接到了汇流设备101(变换器2n接线错误,错接入汇流设备101)。如图1虚线所示的错误,可以理解为接线错误。在实际应用中,也可能发生其他错误,例如没有接线,线缆断开等,也可以理解为接线错误,本申请实施例对此不做限定。
当前对于接线错误的解决方案通常是汇流设备后端分时上电后,通过变换器输出端电压与汇流点电压关系进行判断。具体地,系统中含有一个中央控制单元(简称:主控制器),主控制器能够采集所有变换器的输出端电压和汇流设备后端的电压。当检测到汇流设备汇流点电压稳定后,采集所有变换器的输出端电压,若与汇流设备101连接的变换器端口电压与汇流点处电压满足预先设定的关系,则此变换器接线正确;否则,判断此变换器接线错误;同理,汇流设备102做相同判断。如图1所示,汇流设备101的汇流点103连接了变换器1~变换器n-1,而变换器n错误地连接到了汇流设备102的汇流点104,汇流设备102的汇流点104连接了变换器n+1~变换器2n-1,而变换器2n错误地连接到了汇流设备101的汇流点103。此时主控制器可以采集所有变换器的输出端电压和汇流设备后端的电压(即汇流设备汇流点电压),然后主控制器判断变换器端口电压与汇流点处电压是否满足预先设定的关系。一般地,变换器n的端口电压与汇流点处电压不会满足预设关系,从而主控制器可以根据这个情况确定变换器n接线错误。同理可以判断变换器2n接线错误。
然而,这种方案不能兼容所有的汇流设备,如分裂变压器的两组或多组低压绕组,可看做不同的汇流设备,多组汇流设备无法分时上电,又如汇流设备后端为负载,无法提供稳定电压。
另一种方案是:变换器受控输出电压,通过变换器输出端电压与汇流点电压关系进行判断。系统中含有一个主控制器,主控制器控制预先设定与汇流设备101连接的变换器1输出电压,若汇流设备101汇流点103处电压与变换器1输出电压满足预先设定的关系,则此变换器接线正确,否则判断此变换器接线错误;同理,对预先设定连接到汇流设备101上的其他变换器和预先设定连接到其他汇流设备上的其他变换器做相同判断,可一一判断变换器接线是否正确。
然而,上述两种方案的缺点都是需要获取汇流点处电压信息。在目前大多数传统的汇流设备应用场景中,经常无法获取汇流点电压信息,原因是传统的汇流设备一般不会设置有检测模块去测量汇流点电压信息。因此要实现上述两个方案则需要另外加装获取汇流点电压信息的模块,需要较高的成本改造。
有鉴于此,本申请实施例提供了一种检测方法,能够在无法获取汇流点电压信息的应 用场景下,能够快速,准确的判断变换器汇流系统是否存在接线错误。图2为本申请实施例提供的检测方法的流程图。该检测方法适用于第一变换器工作,第二变换器不工作时,以下对第一变换器工作,第二变换器不工作的情况进行详细的描述。
如图1所示的接线情况中,包括两个汇流系统,其中一个汇流系统由汇流设备101与变换器1~变换器n组成,另一个汇流系统由汇流设备102和变换器n+1~变换器2n组成。本申请实施例中以第一个汇流系统为例进行解释,另一个汇流系统可以参照实施,本申请实施例对此不再赘述。
该汇流系统中,变换器1~变换器n均应该连接到汇流设备101,因此可以从变换器1~变换器n中选定一个作为主机(也可以称为第一变换器),并将其他变换器作为从机(也可以称为非主机变换器、第二变换器)。在本申请实施例中,可以由主控制器从变换器1~变换器n中选定一个作为主机,选择的方式可以根据一定的算法或者直接随机选定,本申请实施例对此不做限定。在实际应用中,还可以由工作人员选定主机,对此不做限定。
本申请实施例中的主控制器可以是一个独立的设备,也可以是变换器本身。例如,当主控制器是独立设备时,该主控制器通过无线或有限通信的方式与各个变换器进行通信。又例如,当主控制器是变换器1本身时,则主控制器可以由变换器1中的逻辑电路实现,或者由变换器1中的处理器执行存储器中的代码来实现,又或者以其他形式实现,本申请对此不做赘述。
在本申请实施例中,主控制器可以指示主机(第一变换器)工作,从机(第二变换器)不工作。具体地,主机工作是指该变换器按照变换器所具备的功能进行工作。示例性的,该变换器是逆变器(直流转交流变换器,DC/AC变换器),则该变换器工作是指该逆变器实现将直流电转换为交流电的功能。在其他情况中,变换器还可能是直流转直流变换器(DC/DC变换器)、交流转直流变换器(AC/DC变换器),本申请实施例对此不做限定。在一些实施例中,变换器每次工作的情况不一定相同,会导致一定的误差。因此,为了更加准确检测接线错误,主控制器可以指示主机按照预先设定的扰动信号(以下简称:扰动信号)输出。示例性的,主控制器可以指示主机输出预设波形信号。在实际应用中,主控制器还可以指示主机输出直流信号、交流信号等,本申请实施例对此不做限定。
在本申请实施例中,变换器上用于检测变换器输出端口电压信号的电路/模块在变换器不工作时,该电路/模块仍然通电运行,可以检测变换器输出端口电压信号。因此,无论是主机在工作还是从机不在工作的情况,变换器都能检测到输出端口电压信号并上报给主控制器。
根据上述情况,主控制器可以执行以下流程:
201、获取第一变换器的输出端口电压信号;
在本申请实施例中,第一变换器工作时,第一变换器的输出端口电压信号可以为预先设定的“扰动信号”。第一变换器中的检测电路可以检测到该输出端口电压信号并上传至主控制器,使得主控制器获取到第一变换器的输出端口电压信号。
在一些实施例中,主控制器可以向第一变换器发送指令,用于指示第一变换器中的检测电路检测到该输出端口电压信号并上传至主控制器。在另一些实施例中,第一变换器中 的检测电路每隔一段时间则会检测该输出端口电压信号并上传至主控制器。本申请实施例对此不做限定。
202、获取第二变换器的输出端口电压信号;
在本申请实施例中,第二变换器不工作时,检测到的第二变换器的输出端口电压信号可以称为“特征信号”。第二变换器中的检测电路可以检测到该输出端口电压信号并上传至主控制器,使得主控制器获取到第二变换器的输出端口电压信号。
在一些实施例中,主控制器可以向第二变换器发送指令,用于指示第二变换器中的检测电路检测到该输出端口电压信号并上传至主控制器。在另一些实施例中,第二变换器中的检测电路每隔一段时间则会检测该输出端口电压信号并上传至主控制器。本申请实施例对此不做限定。
203、判断第一变换器的输出端口电压信号与第二变换器的输出端口电压信号是否满足预设的匹配关系,若是,则执行步骤204,若否,则执行步骤205;
在本申请实施例中,主控制器接收到第一变换器的输出端口电压信号(也可以称为扰动信号、扰动电压)与第二变换器的输出端口电压信号(也可以称为特征信号、特征电压)后,可以判断第一变换器的输出端口电压信号与第二变换器的输出端口电压信号是否满足预设的匹配关系。
该匹配关系可以是幅值关系、相位关系或频率关系等,本申请实施例对此不做限定。以下将以幅值关系为例进行描述,其他情况可参照本申请实施例,将不再赘述。示例性的,扰动信号和特征信号满足预设的匹配关系可以为扰动信号的电压幅值与特征信号的电压幅值的差值的绝对值小于故障阈值。比如扰动信号的电压幅值为10V,特征信号的电压幅值为10.1V,故障阈值为1V,则扰动信号的电压幅值与特征信号的电压幅值的差值的绝对值为0.1V,小于故障阈值1V,则主控制器可以根据该情况确定第一变换器的输出端口电压信号(扰动信号)与第二变换器的输出端口电压信号(特征信号)满足预设的匹配关系。在实际应用中,其他设定的匹配关系也可以实现本申请的方案,本申请实施例对此不做限定。
在实际应用中,扰动信号和特征信号是否满足预设的匹配关系可以包括以下具体判断方式:首先获取第一变换器的输出端口电压信号在指定频率的分量幅值,例如,从第一变换器的输出端口电压中确定在20Hz的分量幅值为U1A_PE。然后获取第二变换器的输出端口电压信号在指定频率的分量幅值,例如,从第二变换器的输出端口电压中确定在20Hz的分量幅值为U2A_PE。然后比较U1A_PE和U2A_PE的差值是否超出预设的故障阈值。在该方案的实际应用中,还可能存在其他匹配关系,本申请实施例对此不做限定。
当汇流系统中仅有第一变换器(主机)和第二变换器(从机)时,若第一变换器的输出端口电压信号与第二变换器的输出端口电压信号满足预设的匹配关系,则主控制器可以确定第一变换器和第二变换器接线正确,执行步骤204。若第一变换器的输出端口电压信号与第二变换器的输出端口电压信号不满足预设的匹配关系,则主控制器可以确定第一变换器或第二变换器接线错误,执行步骤205。
当汇流系统中有第一变换器(主机)和多个第二变换器(从机)时,主控制器可以同时判断第一变换器的输出端口电压信号与多个第二变换器的输出端口电压信号是否满足预 设的匹配关系,若均满足预设的匹配关系,则说明第一变换器和多个第二变换器均连接相同的汇流设备,确定第一变换器和多个第二变换器均接线正确,执行步骤204。在一些实施例中,若判断第一变换器与其中一个第二变换器的输出端口电压信号不满足预设的匹配关系,则说明该第一变换器与该第二变换器没有连接相同的汇流设备,必定有一个变换器(该第一变换器或该第二变换器)接线错误,则主控制器可以执行步骤205。
可以理解的是,该匹配关系可以是预先设定在主控制器中的数据库。当主控制器执行步骤203时,可以从数据库中读取到相关的匹配关系并进行相应的计算和判断,本申请实施例对此不做限定。
204、生成第一信息;
当主控制器确定第一变换器的输出端口电压信号与第二变换器的输出端口电压信号满足预设的匹配关系时,主控制器可以生成第一信息。在本申请实施例中,第一信息用于表示第一变换器的输出端口与第二变换器的输出端口连接相同的汇流设备。
可以理解的是,第一变换器的输出端口电压信号与第二变换器的输出端口电压信号满足预设的匹配关系时,说明第一变换器的输出端口与第二变换器的输出端口连接相同的汇流设备,主控制器可以生成第一信息,并将第一信息展示给接线的工作人员或者根据第一信息做进一步的处理。
其中,将第一信息展示给接线的工作人员可以是将第一变换器和第二变换器的编号联系(例如连线、设置相同颜色等)起来,则工作人员可以确定第一变换器和第二变换器连接相同的汇流设备。当汇流系统中有第一变换器(主机)和多个第二变换器(从机)时,主控制器可以将第一变换器与各个第二变换器的第一信息进行一一展示或者联合展示,使得工作人员可以确定第一变换器和多个第二变换器均连接相同的汇流设备,确定第一变换器和多个第二变换器均接线正确。
当主控制器做进一步的处理时,主控制器可以根据第一信息的指示,确定第一变换器和第二变换器连接相同的汇流设备,以执行该条件下可以执行的操作。例如,主控制器可以确定汇流系统中所有变换器都接线正确指挥,才启动整个汇流系统,则当主控制器得到第一变换器与所有第二变换器的第一信息后,才启动整个汇流系统。
205、生成第二信息;
当主控制器确定第一变换器的输出端口电压信号与第二变换器的输出端口电压信号不满足预设的匹配关系时,主控制器可以生成第二信息。在本申请实施例中,第二信息用于表示第一变换器的输出端口与第二变换器的输出端口连接不相同的汇流设备,以及表示第一变换器接线错误或第二变换器接线错误。
可以理解的是,当汇流系统中仅有第一变换器(主机)和第二变换器(从机)时,若判断第一变换器与其中一个第二变换器的输出端口电压信号不满足预设的匹配关系,则说明该第一变换器与该第二变换器没有连接相同的汇流设备,必定有一个变换器(该第一变换器或该第二变换器)接线错误,则主控制器可以生成第二信息。
当汇流系统中有第一变换器(主机)和多个第二变换器(从机)时,主控制器可以同时判断第一变换器的输出端口电压信号与多个第二变换器的输出端口电压信号是否满足预 设的匹配关系。若判断第一变换器与其中一个第二变换器的输出端口电压信号不满足预设的匹配关系,则说明该第一变换器与该第二变换器没有连接相同的汇流设备,必定有一个变换器(该第一变换器或该第二变换器)接线错误,则主控制器可以生成第二信息。
主控制器生成第二信息之后,可以将第二信息展示给接线的工作人员或者根据第二信息做进一步的处理。
其中,将第二信息展示给接线的工作人员可以是将第一变换器和第二变换器的编号对立(例如设置不相同颜色,或者编号分别打钩打叉等)起来,则工作人员可以明确知道第一变换器或第二变换器接线错误。工作人员能够通过展示的第二信息得知第一变换器或第二变换器的接线错误,则可以针对第一变换器或第二变换器进行检查。在一些情况中,当汇流系统中有第一变换器(主机)和多个第二变换器(从机)时,主控制器可以将第一变换器与某几个第二变换器的第二信息进行展示,而与其他第二变换器相关的展示则是展示第一信息,那么工作人员一般可以确定该“某几个第二变换器”接线错误。
当主控制器做进一步的处理时,主控制器可以根据第二信息的指示,确定第一变换器和第二变换器没有连接相同的汇流设备,然后执行该条件下可以执行的操作。例如,主控制器可以确定汇流系统中某第二变换器与第一变换器没有连接相同的汇流设备,则主控制器可以发出告警,用于告知工作人员该第二变换器接线错误。
在一些实施例中,若汇流系统中的变换器均接线正确,则主控制器根据上述步骤可以生成第一信息,而不会生成第二信息(接线错误会生成第二信息)。因此,若主控制器对汇流系统执行上述检测方法的步骤后,进生成了第一信息,那么该汇流系统没有接线错误。
在另一些实施例中,被选中的第一变换器(主机)恰好是该汇流系统中唯一一个接线错误的变换器,则该第一变换器与其他第二变换器(从机)均没有接到相同的汇流系统,则主控制器将会生成多个第二信息,而没有生成第一信息。由于一般大部分变换器都是接线正确的,因此在这种情况下,第一变换器很可能是接线错误的变换器,其他第二变换器很可能是接线正确的。因此,工作人员根据这些第一信息和第二信息可以重点检查第一变换器的接线情况,则可以迅速地确定接线错误的变换器。另一方面,主控制器可以重新选择这些第二变换器中的一个变换器作为新的主机,重新进行检测。
可以理解的是,当系统架构中仅有两个汇流系统时,若主控制器生成多个第二信息,而没有生成第一信息,则有两种可能,一种可能是第一变换器错误地接线到了另一个汇流系统,其他第二变换器正确接线到当前汇流系统。另一种可能是第一变换器正确接线到当前汇流系统,其他第二变换器错误接线到另一汇流系统。总之,工作人员根据上述两种情况,进行实际判断即可。
在一些实施例中,汇流系统中有部分第二变换器没有与第一变换器连接相同的汇流设备,那么主控制器执行上述检测方法后能生成若干个第一信息和若干个第二信息,并对这些信息进行展示。工作人员查看到第一信息和第二信息后,可以针对第二信息对应的变换器进行重点排查,确定接线错误的变换器。
在一些实施例中,主控制器可以直接确定第一信息对应的变换器为接线正确的变换器,第二信息对应的变换器为接线错误的变换器,并发出告警提示工作人员“哪些变换器接线 错误”。具体地,主控制器可以将接线错误的变换器的编号展示在显示屏上,也可以为所有变换器配置对应的指示灯,若该变换器接线正确,则指示灯展示绿色,若该变换器接线错误,则指示灯展示红色。在实际应用中,主控制器还可以进行其他形式的展示,本申请实施例对此不做限定。
在本申请实施例中,上述的汇流设备可以是汇流配电柜、分裂变压器、汇流箱等用于对变换器输出进行汇流的设备,本申请实施例对此不做限定。
在本申请实施例中,上述的变换器可以是直流转直流变换器,直流转交流变换器,交流转直流变换器等,本申请实施例对此不做限定。
在本申请实施例中,主控制器与各个变换器可以通过无线信号通信或者有线通信,从而主控制器可以从各个变换器中获取到该变换器输出端口的电压信号。
图3为本申请提供的一种应用例中系统架构的示意图。该系统架构中,变换器具体为逆变器,逆变器直流侧串联成对安装。汇流设备为变压器绕组,低压绕组1和低压绕组2为不同的汇流设备。逆变器之间通讯方式以及逆变器与主控制器之间的通讯方式为交流电力线载波通信(power line communication,PLC)。
图3中,逆变器直流侧串流成对安装,如图3中逆变器1和逆变器2所示,逆变器1直流侧输入为+BUS和0V,逆变器2直流侧输入为0V和-BUS。由于逆变器1和逆变器2直流侧串联输入,逆变器1和逆变器2的输出需通过双分裂变压器的两组低压绕组隔离,否则运行时会造成母线短路。因此,在本应用例中,一般设定直流输入为+BUS和0V的逆变器预先设定接入低压绕组1(以下简称:汇流系统1),直流输入为0V和-BUS的逆变器预先设定接入低压绕组2(以下简称:汇流系统2)。因此,图3所示的系统架构实际上包括两个汇流系统,汇流系统1中通过低压绕组1对直流输入为+BUS和0V的逆变器进行汇流,汇流系统2中通过低压绕组2对直流输入为0V和-BUS的逆变器进行汇流。
在图3中,逆变器1和逆变器3为直流输入为+BUS和0V的逆变器,应当连接低压绕组1,而逆变器2和逆变器4为直流输入为0V和-BUS的逆变器,应当连接低压绕组2。然而,当前的接线情况为,逆变器4错误连接低压绕组1,一旦启机运行,会造成BUS+与BUS-短路损坏,因此需要准确识别类似接线错误。
一、关于汇流系统1:
逆变器1和逆变器3为预先设定接入汇流系统1的两台逆变器,闭合逆变器1的A相并网继电器RA,逆变器1的A相桥臂工作,控制A相输出幅值为50V,频率为20Hz的正弦波。逆变器通常可采集输出端对PE电压,采样得到A相对PE电压后,计算得到电压中的20Hz分量幅值记做U1A_PE,将该值作为扰动电压幅值,逆变器1将扰动电压幅值传递到主控制器。检测逆变器3的A相对PE电压,相同处理后得到20Hz分量幅值记做U3A_PE,将该值作为特征电压幅值,逆变器3将特征电压幅值传递给主控制。主控制接收到逆变器1和逆变器3的反馈后进行比较,若特征电压幅值与扰动电压幅值之差绝对值小于故障阈值,则说明逆变器3和逆变器1连接在同一个汇流系统上,若两者之差大于故障阈值,则说明逆变器1和逆变器3未连接在同一个汇流系统上。通过图3可知,逆变器1和逆变器3接线正确,因此两者电压之差小于故障阈值。此处故障阈值取值20V。
本申请提供的检测方法通过主控制器采集各个逆变器的输出端口电压信号,并根据该电压信号进行判断,确定汇流系统中接线错误的逆变器。具体地,图4为本申请应用例中汇流系统1的检测步骤示意图。该检测步骤包括:
401:设定逆变器1为主控制器;
本应用例中,工作人员可以预先设定逆变器1为主控制器。
402:主控制器选定逆变器1为汇流系统1主机;
本应用例中,主机即上述的第一变换器,从机即上述的第二变换器。
403:汇流系统1主机工作;
汇流系统1主机控制并网继电器RA闭合;本应用例中,并网继电器RA闭合可以接通逆变器1的A相线路,使得逆变器1工作。
404:主控制器获取扰动电压;
逆变器A相逆变桥臂工作,控制A相输出幅值为50V,频率为20Hz的正弦波,检测A相对PE电压并计算电压中20Hz分量幅值U1A_PE,该电压幅值为扰动电压幅值,主机将扰动电压幅值传递到主控制器;
405:主控制器获取从机特征电压;
汇流系统1中从机检测A相对PE电压并计算电压中20Hz分量幅值UxA_PE(x为汇流系统1中的从机编号,例如逆变器3的分量幅值记做U3A_PE),该电压幅值为特征电压幅值,从机将特征电压幅值传递到主控制器;
406:主控制器判断特征电压与扰动电压差值绝对值是否大于故障阈值;
主控制器接收到汇流系统1中所有从机的特征电压幅值,与扰动电压幅值对比,若两者之差绝对值大于故障阈值则说明汇流系统1存在接线错误,故障阈值取值20V;
本应用例中,两者电压之差小于故障阈值,因此主控制器可以确定逆变器1和逆变器3接线正确。在一些情况中,主控制器可以生成并展示第一信息(用于表示逆变器1和逆变器3接线正确),则工作人员看到第一信息后,可以清楚知道逆变器1和逆变器3接线正确。
407:汇流系统1接线检测完成;
在汇流系统1接线检测完成后,主控制器可以对汇流系统1中主机下发停机指令,汇流系统1主机停机。
二、关于汇流系统2:
主控制器还可以对预先设定接入汇流系统2上的逆变器2和逆变器4进行相同检测。具体地,首先闭合逆变器2的A相并网继电器RA,逆变器2的A相桥臂工作,控制A相输出幅值为50V,频率为20Hz的正弦波。采样得到A相对PE电压后,计算得到电压中的20Hz分量幅值记做U2A_PE,将该值作为扰动电压幅值,逆变器2将扰动电压幅值传递到主控制器。然后检测逆变器4的A相对PE电压,相同处理后得到20Hz分量幅值记做U4A_PE,将该值作为特征电压幅值,逆变器4将特征电压幅值传递给主控制器。主控制器接收到逆变器2和逆变器4的反馈后进行比较。图3的应用例中,由于逆变器4接线错误,来自逆变器2的扰动电压幅值和来自逆变器4的特征电压幅值差值的绝对值大于故障阈值,因此主 控制器可以判断出接线错误,然后进行接线错误告警。
具体地,图5为本申请应用例中汇流系统2的检测步骤示意图。该检测步骤包括:
501、主控制器选定逆变器2为汇流系统2主机;
本应用例中,在图3的系统架构中,若预先选定了逆变器1为主控制器,则不需要再进行主控制器的确定。由于逆变器之间可以通过PLC进行通信,因此主控制器可以正常接收到逆变器2、逆变器4等的输出端口电压信号。
本应用例中,选定逆变器2为汇流系统2主机,则汇流系统2中的其他逆变器即为从机。
502、汇流系统2主机工作;
本应用例中,汇流系统2主机控制并网继电器RA闭合。
503、主控制器获取扰动电压;
逆变器A相逆变桥臂工作,控制A相输出幅值为50V,频率为20Hz的正弦波。主机检测A相对PE电压并计算电压中20Hz分量幅值U2A_PE,该电压幅值为扰动电压幅值,主机将扰动电压幅值传递到主控制器。
504、主控制器获取从机特征电压;
汇流系统2中从机检测A相对PE电压并计算电压中20Hz分量幅值UyA_PE(y为汇流系统2中的从机编号,例如逆变器4的分量幅值记做U4A_PE),该电压幅值为特征电压幅值,从机将特征电压幅值传递到主控制器。
505、主控制器判断特征电压与扰动电压差值绝对值是否大于故障阈值;
主控制器接收到汇流系统2中所有从机的特征电压幅值,与扰动电压幅值对比,若两者之差绝对值大于故障阈值则说明汇流系统2存在接线错误,故障阈值取值20V。
本应用例中,来自逆变器2的扰动电压幅值和来自逆变器4的特征电压幅值差值的绝对值大于故障阈值,因此主控制器可以判断出接线错误,然后进行接线错误告警。工作人员可以在图3所示的系统架构启动运行之前,检查是否有告警信息,若有告警信息,则先进行接线检查。在一些情况中,工作人员还可以根据告警信息针对性地对逆变器2和逆变器4进行接线错误的重点排查。
506、汇流系统2接线检测完成。
汇流系统2接线检测完成后,主控制器对汇流系统2中主机下发停机指令,汇流系统2主机停机。
至此,图3所示的系统接线错误检测完成。
根据上述各个实施例和各个应用例可见,本申请实施例提供的检测方案具有以下优点:
1.接线错误检测方案可适用于不同种类的汇流设备;
--原因:通过主机注入扰动电压作为检测信号,不需要汇流系统后级设备上电;对于存在耦合的多个汇流系统,扰动电压可以分时注入,分别检测。
2.接线错误检测方案不需要汇流设备汇流点处的信息,检测方案简单--原因:接线检测判据仅依赖各变换器的端口电压信息,可以仅依靠逆变器现有硬件电路将电压信息上传至主控制器,不需要汇流设备汇流点的信息,避免因检测汇流点信息带来的复杂设计。
图6为本申请实施例提供的一种检测装置的示意图。该检测装置600包括:
获取模块601,用于执行上述图2对应的各个实施例中的步骤201、步骤202;
处理模块602,用于执行上述图2对应的各个实施例中的步骤203、步骤204和步骤205。
图7为本申请实施例提供的主控制器的架构示意图。该主控制器700包括:一个或多个处理器701、存储器703和通信接口704,处理器701、存储器703和通信接口704可以通过通信总线702相连。所述存储器703用于存储一个或多个程序;所述一个或多个处理器701用于运行所述一个或多个程序,使得所述主控制器700执行如上述各个方法实施例对应的方法。
处理器701可以是一个通用中央处理器(central processing unit,CPU)、网络处理器(network processer,NP)、微处理器、或者可以是一个或多个用于实现本申请方案的集成电路,例如,专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
通信总线702用于在上述组件之间传送信息。通信总线702可以分为地址总线、数据总线、控制总线等。为便于表示,附图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器703可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其它类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或者可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only Memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其它光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。存储器703可以是独立存在,并通过通信总线702与处理器701相连接。存储器703也可以和处理器701集成在一起。
通信接口704使用任何收发器一类的装置,用于与其它设备或通信网络通信。通信接口704包括有线通信接口,还可以包括无线通信接口。其中,有线通信接口例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线通信接口可以为无线局域网(wireless local area networks,WLAN)接口,蜂窝网络通信接口或其组合等。
在具体实现中,作为一种实施例,处理器701可以包括一个或多个CPU,如附图7中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,主控制器700可以包括多个处理器,如附图7中所示的处理器701和处理器705。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个 设备、电路、和/或用于处理数据(如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,主控制器700还可以包括输出设备和输入设备。输出设备和处理器701通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD)、发光二级管(light emitting diode,LED)显示设备、阴极射线管(cathode ray tube,CRT)显示设备或投影仪(projector)等。输入设备和处理器701通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
在一些实施例中,存储器703用于存储执行本申请方案的程序代码710,处理器701可以执行存储器703中存储的程序代码710。也即是,主控制器700可以通过处理器701以及存储器703中的程序代码710,来实现方法实施例提供的检测方法。
本申请实施例的主控制器700可对应于上述各个方法实施例中的主控制器,并且,该主控制器700中的处理器701、通信接口704等可以实现上述各个方法实施例中的主控制器所具有的功能和/或所实施的各种步骤和方法。为了简洁,在此不再赘述。

Claims (17)

  1. 一种检测方法,其特征在于,包括:
    在第一变换器工作,第二变换器不工作时,主控制器获取所述第一变换器的输出端口电压信号;
    所述主控制器获取所述第二变换器的输出端口电压信号;
    若所述第一变换器的输出端口电压信号与所述第二变换器的输出端口电压信号满足预设的匹配关系,则所述主控制器生成第一信息,所述第一信息用于表示所述第一变换器的输出端口与所述第二变换器的输出端口连接相同的汇流设备;
    若所述第一变换器的输出端口电压信号与所述第二变换器的输出端口电压信号不满足预设的匹配关系,则所述主控制器生成第二信息,所述第二信息用于表示所述第一变换器的输出端口与所述第二变换器的输出端口连接不相同的汇流设备,以及表示所述第一变换器接线错误或所述第二变换器接线错误。
  2. 根据权利要求1所述的方法,其特征在于,所述主控制器指示第一变换器开始工作之前,所述方法还包括:
    所述主控制器根据输入指令从汇流系统中的多个变换器中确定所述第一变换器,所述汇流系统包括所述第一变换器、所述第二变换器和用于汇流所述多个变换器的汇流设备。
  3. 根据权利要求2所述的方法,其特征在于,所述汇流所述多个变换器的汇流设备为汇流配电柜、分裂变压器的其中一种。
  4. 根据权利要求1至3任意一项所述的方法,其特征在于,所述电压信号为直流信号、交流信号或预设波形信号的其中一种。
  5. 根据权利要求1至4任意一项所述的方法,其特征在于,所述变换器为直流转直流变换器,直流转交流变换器,交流转直流变换器的其中一种。
  6. 根据权利要求1至5任意一项所述的方法,其特征在于,所述主控制器与所述第一变换器、所述第二变换器通过无线信号通信或有线通信。
  7. 根据权利要求1至6任意一项所述的方法,其特征在于,所述匹配关系为幅值关系、相位关系或频率关系中的一种。
  8. 根据权利要求1至7任意一项所述的方法,其特征在于,所述第一变换器的输出端口电压信号与所述第二变换器的输出端口电压信号满足预设的匹配关系具体包括:
    所述第一变换器的输出端口电压幅值与所述第二变换器的输出端口电压幅值的差值小于预设故障阈值;
    所述第一变换器的输出端口电压信号与所述第二变换器的输出端口电压信号不满足预设的匹配关系具体包括:
    所述第一变换器的输出端口电压幅值与所述第二变换器的输出端口电压幅值的差值不小于预设故障阈值。
  9. 一种主控制器,其特征在于,包括处理器、存储器和通信接口;
    所述存储器存储有计算机程序;
    所述通信接口用于与变换器通信;
    所述处理器用于执行所述存储器中存储的所述计算机程序,使得所述主控制器实现权利要求1至8任意一项所述的方法。
  10. 一种检测装置,其特征在于,所述装置包括:
    获取模块,用于在第二变换器不工作,第一变换器工作时,获取所述第一变换器的输出端口电压信号和所述第二变换器的输出端口电压信号;
    处理模块,用于当所述第一变换器的输出端口电压信号与所述第二变换器的输出端口电压信号满足预设的匹配关系时,生成第一信息,所述第一信息用于表示所述第一变换器的输出端口与所述第二变换器的输出端口连接相同的汇流设备;
    处理模块,还用于当所述第一变换器的输出端口电压信号与所述第二变换器的输出端口电压信号不满足预设的匹配关系时,生成第二信息,所述第二信息用于表示所述第一变换器的输出端口与所述第二变换器的输出端口连接不相同的汇流设备,以及表示所述第一变换器接线错误或所述第二变换器接线错误。
  11. 根据权利要求10所述的装置,其特征在于,所述处理模块还用于:
    根据输入指令从汇流系统中的多个变换器中确定所述第一变换器,所述汇流系统包括所述第一变换器、所述第二变换器和用于汇流所述多个变换器的汇流设备。
  12. 根据权利要求11所述的装置,其特征在于,所述汇流所述多个变换器的汇流设备为汇流配电柜、分裂变压器的其中一种。
  13. 根据权利要求10至12任意一项所述的装置,其特征在于,所述电压信号为直流信号、交流信号或预设波形信号的其中一种。
  14. 根据权利要求10至13任意一项所述的装置,其特征在于,所述变换器为直流转直流变换器,直流转交流变换器,交流转直流变换器的其中一种。
  15. 根据权利要求10至14任意一项所述的装置,其特征在于,所述通信接口与所述第一变换器、所述第二变换器通过无线信号通信或有线通信。
  16. 根据权利要求10至15任意一项所述的装置,其特征在于,所述匹配关系为幅值关系、相位关系或频率关系中的一种。
  17. 根据权利要求10至16任意一项所述的装置,其特征在于,所述第一变换器的输出端口电压信号与所述第二变换器的输出端口电压信号满足预设的匹配关系具体包括:
    所述第一变换器的输出端口电压幅值与所述第二变换器的输出端口电压幅值的差值小于预设故障阈值;
    所述第一变换器的输出端口电压信号与所述第二变换器的输出端口电压信号不满足预设的匹配关系具体包括:
    所述第一变换器的输出端口电压幅值与所述第二变换器的输出端口电压幅值的差值不小于预设故障阈值。
PCT/CN2021/073255 2021-01-22 2021-01-22 一种检测方法以及相关装置 WO2022155883A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21920281.9A EP4279929A4 (en) 2021-01-22 2021-01-22 DETECTION METHOD AND ASSOCIATED DEVICE
PCT/CN2021/073255 WO2022155883A1 (zh) 2021-01-22 2021-01-22 一种检测方法以及相关装置
CN202180091477.3A CN116783817A (zh) 2021-01-22 2021-01-22 一种检测方法以及相关装置
US18/356,406 US20230366953A1 (en) 2021-01-22 2023-07-21 Detection method and related apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073255 WO2022155883A1 (zh) 2021-01-22 2021-01-22 一种检测方法以及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/356,406 Continuation US20230366953A1 (en) 2021-01-22 2023-07-21 Detection method and related apparatus

Publications (1)

Publication Number Publication Date
WO2022155883A1 true WO2022155883A1 (zh) 2022-07-28

Family

ID=82549209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073255 WO2022155883A1 (zh) 2021-01-22 2021-01-22 一种检测方法以及相关装置

Country Status (4)

Country Link
US (1) US20230366953A1 (zh)
EP (1) EP4279929A4 (zh)
CN (1) CN116783817A (zh)
WO (1) WO2022155883A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204046512U (zh) * 2014-07-09 2014-12-24 无锡隆玛科技股份有限公司 具有自检测模块的汇流箱
CN104796082A (zh) * 2015-04-22 2015-07-22 中国科学院广州能源研究所 一种光伏发电系统在线故障诊断系统及方法
CN106771834A (zh) * 2017-02-25 2017-05-31 华为技术有限公司 一种多直流源输入接线检测系统及光伏组串式逆变器系统
CN107247213A (zh) * 2017-06-27 2017-10-13 株洲中车时代电气股份有限公司 一种光伏发电系统的集散电源熔断器状态检测方法及装置
CN110708014A (zh) * 2019-08-05 2020-01-17 浙江腾圣储能技术有限公司 一种基于光伏汇流板的检测系统及其方法
CN111123051A (zh) * 2020-01-03 2020-05-08 浙江正泰新能源开发有限公司 汇流箱直流串联故障电弧的检测装置及其方法
WO2020099157A1 (en) * 2018-11-12 2020-05-22 Eaton Intelligent Power Limited Photovoltaic string combiner box with protection functions
CN111543004A (zh) * 2018-01-05 2020-08-14 Abb瑞士股份有限公司 检测多通道逆变器的输入通道配置的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241789A (ja) * 2004-05-06 2004-08-26 Mitsubishi Heavy Ind Ltd 太陽光発電システム、太陽電池モジュール、及び太陽光発電システムの施工方法
US8760896B2 (en) * 2010-08-05 2014-06-24 Toshiba International Corporation Multilevel regeneration drive system
EP2536018B1 (en) * 2011-06-17 2015-12-30 Ingeteam Technology S.A. DC-AC converter with a plurality of inverters connected in parallel, and method
AT517620B1 (de) * 2015-07-07 2017-03-15 Omicron Electronics Gmbh Verfahren und Prüfvorrichtung zum Prüfen einer Verdrahtung von Wandlern

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204046512U (zh) * 2014-07-09 2014-12-24 无锡隆玛科技股份有限公司 具有自检测模块的汇流箱
CN104796082A (zh) * 2015-04-22 2015-07-22 中国科学院广州能源研究所 一种光伏发电系统在线故障诊断系统及方法
CN106771834A (zh) * 2017-02-25 2017-05-31 华为技术有限公司 一种多直流源输入接线检测系统及光伏组串式逆变器系统
CN107247213A (zh) * 2017-06-27 2017-10-13 株洲中车时代电气股份有限公司 一种光伏发电系统的集散电源熔断器状态检测方法及装置
CN111543004A (zh) * 2018-01-05 2020-08-14 Abb瑞士股份有限公司 检测多通道逆变器的输入通道配置的方法
WO2020099157A1 (en) * 2018-11-12 2020-05-22 Eaton Intelligent Power Limited Photovoltaic string combiner box with protection functions
CN110708014A (zh) * 2019-08-05 2020-01-17 浙江腾圣储能技术有限公司 一种基于光伏汇流板的检测系统及其方法
CN111123051A (zh) * 2020-01-03 2020-05-08 浙江正泰新能源开发有限公司 汇流箱直流串联故障电弧的检测装置及其方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4279929A4 *

Also Published As

Publication number Publication date
EP4279929A1 (en) 2023-11-22
EP4279929A4 (en) 2024-03-27
US20230366953A1 (en) 2023-11-16
CN116783817A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
EP2607912B1 (en) Low-voltage testing device for high-voltage frequency converter of serial superposition voltage type
CN113014198B (zh) 光伏系统
WO2020134259A1 (zh) 一种ups制式的检测方法及系统
TW201342762A (zh) 多相電子電相位識別
TWI616047B (zh) 雙向電源轉換裝置
WO2022155883A1 (zh) 一种检测方法以及相关装置
CN104682354B (zh) 检测短接二极管
CN107623379B (zh) 一种基于电压差包络线的港船接岸电的系统及方法
KR101950190B1 (ko) 전압형 컨버터 시스템의 이상 진단 장치 및 방법
CN111596177B (zh) 发电机转子匝间绝缘的检测方法、装置、设备及存储介质
WO2023197539A1 (zh) 基于阀间横纵向状态差异的换流器阀级故障定位方法及系统
US11808794B2 (en) Method and device for approximately determining voltages at a high-voltage side of a transformer
Nguyen et al. Sensor fault diagnosis technique applied to three-phase induction motor drive
CN216792319U (zh) 适用于电能质量监测终端的检测系统
KR20160077350A (ko) 마이크로그리드의 전력계통 동기 투입을 제어하기 위한 장치 및 그 방법
CN112366805B (zh) 不间断电源并联控制设备、方法和逆变电源系统
BR102018006795A2 (pt) sistemas para recuperação de falha de rede e método para recuperação de falha rede
CN113884777A (zh) 三相交流电源的缺相检测方法、电路、装置及电器设备
CN211554105U (zh) 一种换流站直流电压测量异常快速诊断电路
JP2017169264A (ja) パワーコンディショナおよびそれに接続したケーブルの盗難検知方法
CN216900723U (zh) 三相交流电源检测器及包括其的梯度功率放大器
CN112345977B (zh) 电气设备及其pt二次回路断线判断方法、系统和装置
CN204886144U (zh) 用以防止变频器输入输出错接的保护装置
CN117075027B (zh) 一种ct互感器故障识别方法及其识别系统
CN204166031U (zh) 电路结构以及对应的逆变器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920281

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180091477.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021920281

Country of ref document: EP

Effective date: 20230818