WO2022155839A1 - 传输方法、装置和系统 - Google Patents

传输方法、装置和系统 Download PDF

Info

Publication number
WO2022155839A1
WO2022155839A1 PCT/CN2021/073052 CN2021073052W WO2022155839A1 WO 2022155839 A1 WO2022155839 A1 WO 2022155839A1 CN 2021073052 W CN2021073052 W CN 2021073052W WO 2022155839 A1 WO2022155839 A1 WO 2022155839A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
transmission device
upstream
data stream
message
Prior art date
Application number
PCT/CN2021/073052
Other languages
English (en)
French (fr)
Inventor
周伟光
龙华
张振兴
柯建东
钱照华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/073052 priority Critical patent/WO2022155839A1/zh
Priority to EP21920242.1A priority patent/EP4274222A4/en
Priority to CN202180045714.2A priority patent/CN115868154A/zh
Publication of WO2022155839A1 publication Critical patent/WO2022155839A1/zh
Priority to US18/356,854 priority patent/US20230362330A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/10Adaptations for transmission by electrical cable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/4363Adapting the video stream to a specific local network, e.g. a Bluetooth® network
    • H04N21/43632Adapting the video stream to a specific local network, e.g. a Bluetooth® network involving a wired protocol, e.g. IEEE 1394
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/006Details of the interface to the display terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • H04N21/23602Multiplexing isochronously with the video sync, e.g. according to bit-parallel or bit-serial interface formats, as SDI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/4104Peripherals receiving signals from specially adapted client devices
    • H04N21/4122Peripherals receiving signals from specially adapted client devices additional display device, e.g. video projector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/43615Interfacing a Home Network, e.g. for connecting the client to a plurality of peripherals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/14Systems for two-way working
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/10Use of a protocol of communication by packets in interfaces along the display data pipeline
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/12Synchronisation between the display unit and other units, e.g. other display units, video-disc players
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/4363Adapting the video stream to a specific local network, e.g. a Bluetooth® network
    • H04N21/43632Adapting the video stream to a specific local network, e.g. a Bluetooth® network involving a wired protocol, e.g. IEEE 1394
    • H04N21/43635HDMI

Definitions

  • the present application relates to the field of multimedia technology, and more particularly, to a transmission method, apparatus and system in the field of multimedia technology.
  • a traditional multimedia electronic device (such as a TV) usually consists of a display system and a host system.
  • a traditional multimedia electronic device usually consists of a display system and a host system.
  • split-type multimedia electronic devices emerge as the times require.
  • Split TV is to separate the display system of the TV from the host system, breaking the traditional TV's structure mode of integrating the two, solving many problems that the traditional TV has not been able to solve for a long time, and greatly improving the TV.
  • the host system ie, source device
  • the display system including video and/or audio signals
  • HDMI high definition multimedia interface
  • the smart split TV not only needs to support the host system to transmit and play downstream video and audio signals to the display system, At the same time, it is also necessary to support the reverse transmission of the video and audio signals collected by the camera in the display system to the host system.
  • the transmission method, device and system provided by the present application can realize bidirectional transmission of video and audio signals between end devices.
  • an embodiment of the present application provides a transmission system
  • the system may include a first transmission device and a second transmission device
  • the first transmission device includes a first video and audio sending adapter, a first video and audio receiving adapter, a first A multiplexer, a first demultiplexer, a first channel distributor, a first channel de-distributor and a first port
  • the second transmission device includes a second video and audio sending adapter, a second video and audio receiving adapter, a second A multiplexer, a second demultiplexer, a second channel distributor, a second channel de-distributor, and a second port
  • the first port is connected to the second port through a first cable
  • the first cable is including a first number of downlink main link channels and a second number of uplink main link channels;
  • the first video and audio transmission adapter is used to obtain downlink media signals, the downlink media signals include downlink video signals and/or downlink audio signals; encapsulate the downlink media signals to obtain a first downlink message; The multiplexer sends the first downlink message;
  • the first multiplexer is used to fill the first downlink message into the downlink data stream; send the filled downlink data stream to the first channel distributor;
  • the first channel allocator is configured to allocate the downlink data stream to a first downlink main link channel and send it to the second transmission device, wherein the first downlink main link channel includes the first number at least one downlink main link channel of the downlink main link channels;
  • the second channel de-allocator combines the downlink sub-data stream received by the first downlink main link channel into a down-link data stream; and sends the down-link data stream to the second demultiplexer;
  • the second demultiplexer is used to extract the first downlink message from the downlink data stream; send the first downlink message to the second video and audio receiving adapter;
  • the second video and audio receiving adapter is used for decapsulating the first downlink message to obtain downlink media signals
  • the second video and audio transmission adapter is used to obtain an upstream media signal, the upstream media signal includes an upstream video signal and/or an upstream audio signal; encapsulate the upstream media signal to obtain a first upstream message; The user sends the first uplink message;
  • the second multiplexer is used to fill the first upstream message into the upstream data stream; send the filled upstream data stream to the second channel distributor;
  • the second channel allocator is used for allocating the uplink data stream to a first uplink main link channel and sending it to the first transmission device, wherein the first uplink main link channel includes the second number of uplink channels at least one uplink primary link channel in the primary link channel;
  • the first channel de-allocator configured to combine the upstream sub-data stream received by the first uplink main link channel into an upstream data stream; send the upstream data stream to the first demultiplexer;
  • the first demultiplexer is used to extract the first upstream message from the upstream data stream; send the first upstream message to the first video and audio receiving adapter;
  • the first video and audio receiving adapter is used for decapsulating the first uplink message to obtain an uplink media signal.
  • the first transmission device may be (or integrated in) a source device
  • the second transmission device may be (integrated in) a sink device.
  • media signals described in the embodiments of the present application may also be referred to as video and audio signals.
  • a downstream media signal may also be called a downstream video and audio signal
  • an upstream media signal may also be called an upstream video and audio signal
  • two-way transmission of media signals can be implemented between end devices through a cable.
  • the encapsulation and decapsulation described in the embodiments of the present application are all performed based on a unified transmission protocol (eg, the first transmission protocol).
  • the sink device since the first downlink message sent by the source device is obtained by performing one-layer encapsulation of the downlink media signal according to the first transmission protocol, the sink device receives the first downlink message Afterwards, the downlink media signal can be obtained by performing one-layer decapsulation according to the first transmission protocol. Similarly, since the first uplink packet sent by the sink device is obtained by performing one-layer encapsulation of the uplink media signal according to the first transmission protocol, after receiving the first uplink packet, the source device can transmit the packet according to the first transmission protocol. The protocol performs a layer of decapsulation to obtain the upstream media signal.
  • the media signals described in the embodiments of the present application are original media signals generated or collected, including clock signals, vertical synchronization signals, horizontal synchronization signals, display enable, video data, audio data, and the like.
  • the bidirectional transmission of data streams between the source device and the sink device is carried out by wire (that is, through a cable), and only one layer of encapsulation/decapsulation is required for the media signal, without the need for video Encoding/decoding (for example: H264, H265, AVS2/3, etc.), which can reduce the complexity of the source and sink devices of the media signal, reduce the image quality loss caused by video encoding/decoding, and reduce video encoding and decoding. delay, thereby improving transmission efficiency and user experience.
  • video Encoding/decoding for example: H264, H265, AVS2/3, etc.
  • the first number is greater than or equal to the second number.
  • the first number may be greater than the second number.
  • asymmetric bidirectional transmission can be implemented between the source device and the sink device (that is, the first number and the second number are not equal), for example, the first number may be greater than the second number,
  • the requirement of asymmetric bidirectional transmission in which the downlink transmission rate is greater than the uplink transmission rate in practical applications is satisfied.
  • the apparatus further includes: a first third-party protocol adapter and a second third-party protocol adapter;
  • the first third-party protocol adapter is used to obtain a downlink third-party protocol signal; encapsulate the downlink third-party protocol signal to obtain a second downlink message; and send the second downlink message to the first multiplexer;
  • the first multiplexer is specifically configured to multiplex the first downlink message and the second downlink message into the downlink data stream;
  • the second demultiplexer is specifically configured to demultiplex the first downlink packet and the second downlink packet from the downlink data stream;
  • the second demultiplexer is further configured to send the second downlink message to the second third-party protocol adapter;
  • the second third-party protocol adapter is used to decapsulate the second downlink message to obtain a downlink third-party protocol signal
  • the second third-party protocol adapter is also used to obtain an upstream third-party protocol signal; encapsulate the upstream third-party protocol signal to obtain a second upstream message; and send the second upstream message to the second multiplexer;
  • the second multiplexer is specifically configured to multiplex the first upstream message and the second upstream message into the upstream data stream;
  • the first demultiplexer is specifically configured to demultiplex the first upstream message and the second upstream message from the upstream data stream;
  • the first demultiplexer is further configured to send the second uplink message to the first third-party protocol adapter;
  • the first third-party protocol adapter is further configured to decapsulate the second upstream message to obtain an upstream third-party protocol signal.
  • the two-way transmission of third-party protocol signals can also be realized between end devices through the cable, that is, the two-way transmission of media signals and third-party protocol signals between end devices can be realized through the cable. transmission.
  • the apparatus further includes: a first universal data adapter and a second universal data adapter;
  • the first general data adapter is used to obtain downlink general data; encapsulate the downlink general data to obtain a third downlink message; send the third downlink message to the first multiplexer;
  • the first multiplexer is specifically configured to multiplex the first downlink message and the third downlink message into the downlink data stream;
  • the second demultiplexer is specifically configured to demultiplex the first downlink packet and the third downlink packet from the downlink data stream;
  • the second demultiplexer is further configured to send the third downlink message to the second universal data adapter;
  • the second general data adapter is used for decapsulating the third downlink message to obtain downlink general data
  • the second general data adapter is also used to obtain uplink general data; encapsulate the uplink general data to obtain a third uplink message; send the third uplink message to the second multiplexer;
  • the second multiplexer is specifically configured to multiplex the first upstream message and the third upstream message into the upstream data stream;
  • the first demultiplexer is specifically used to demultiplex the first upstream message and the third upstream message from the upstream data stream;
  • the first demultiplexer is further configured to send the third uplink message to the first universal data adapter;
  • the first general data adapter is further configured to decapsulate the third uplink packet to obtain uplink general data.
  • the two-way transmission of general data between end devices can also be realized through the cable, that is, the two-way transmission of media signals and general data between the end devices can be realized through the cable.
  • the apparatus further includes: a first third-party protocol adapter, a second third-party protocol adapter, a first general data adapter, and a second general data adapter;
  • the first third-party protocol adapter is used to obtain a downlink third-party protocol signal; encapsulate the downlink third-party protocol signal to obtain a second downlink message; and send the second downlink message to the first multiplexer;
  • the first general data adapter is used to obtain downlink general data; encapsulate the downlink general data to obtain a third downlink message; send the third downlink message to the first multiplexer;
  • the first multiplexer is specifically configured to multiplex the first downlink message, the second downlink message and the third downlink message into the downlink data stream;
  • the second demultiplexer is specifically configured to demultiplex the first downlink packet, the second downlink packet and the third downlink packet from the downlink data stream;
  • the second demultiplexer is further configured to send the second downlink message to the second third-party protocol adapter; to send the third downlink message to the second universal data adapter;
  • the second third-party protocol adapter is used to decapsulate the second downlink message to obtain a downlink third-party protocol signal
  • the second general data adapter is used for decapsulating the third downlink message to obtain downlink general data
  • the second third-party protocol adapter is also used to obtain an upstream third-party protocol signal; encapsulate the upstream third-party protocol signal to obtain a second upstream message; and send the second upstream message to the second multiplexer;
  • the second general data adapter is also used to obtain uplink general data; encapsulate the uplink general data to obtain a third uplink message; send the third uplink message to the second multiplexer;
  • the second multiplexer is specifically configured to multiplex the first upstream message, the second upstream message and the third upstream message into the upstream data stream;
  • the first demultiplexer is specifically configured to demultiplex the first upstream message, the second upstream message and the third upstream message from the upstream data stream;
  • the first demultiplexer is further configured to send the second upstream message to the first third-party protocol adapter; to send the third upstream message to the first general data adapter;
  • the first third-party protocol adapter is further configured to decapsulate the second upstream message to obtain an upstream third-party protocol signal.
  • the first general data adapter is further configured to decapsulate the third uplink packet to obtain uplink general data.
  • the end devices can also realize the bidirectional transmission of third-party protocol signals and general data through the cable. , to realize bidirectional transmission of at least one of media signals, third-party protocol signals and general data.
  • the apparatus may further include a first management control adapter and a second management control adapter, the first cable further includes an auxiliary link channel, the first management control adapter and the second management control adapter
  • the control adapter is used to realize at least one of the following functions through the auxiliary link channel: plug detection, rollover identification, high-speed transmission link training information exchange, device capability information acquisition, device status information acquisition, and network topology discovery and establishment, content protection information interaction and device interoperability.
  • the system may further include a routing network, the first transmission device is connected to the routing network through the first cable, the routing network is connected to the second transmission device, the routing network is used for routing and forwarding the upstream data flow and the downstream data flow between the first transmission device and the second transmission device;
  • the first channel distributor is specifically configured to send the downstream data stream to the routing network
  • the first channel de-allocator is specifically configured to receive the upstream sub-data stream from the routing network.
  • the system may further include a routing network, the second transmission device is connected to the routing network through the first cable, the routing network is connected to the first transmission device, and the routing network is used for routing and forwarding the upstream data flow and the downstream data flow between the first transmission device and the second transmission device;
  • the second channel de-allocator is specifically configured to receive the downlink sub-data stream from the routing network
  • the second channel distributor is specifically configured to send the upstream data stream to the routing network.
  • the routing network includes at least one level of routing equipment.
  • the networking topology of the transmission system is mesh.
  • a source device, a branch device (branch) (or a switch device (switch)) and a sink device form a "tree" networking topology.
  • a source device forms a "tree" networking topology with multiple sink devices through the branch device/switching device, and the source device can implement unidirectional data flow through the branch device/switching device and the multiple sink devices or bidirectional transmission.
  • multiple source devices can form a "tree" networking topology with one sink device through the branch device/switching device, and the multiple source devices can realize single data flow through the branch device/switching device and the sink device. to or both directions.
  • (one or more) source devices may form a "mesh" networking topology through a routing network and (one or more) sink devices, and any two end devices may
  • the two-way transmission of media signals can be realized through the routing and forwarding of the routing network, and further, the two-way transmission of media signals, general data and/or third-party protocol signals can be realized, and the application scenarios of the system can be expanded.
  • the composition of the first sub-cable and the second sub-cable may be different, for example, the first sub-cable includes a third number of downlink sub-link channels and a fourth number of uplink sub-link channels, and the first sub-cable includes The two sub-cables include a fifth number of downlink sub-link channels and a sixth number of uplink sub-link channels.
  • the third number may be greater than or equal to the fourth number, and the fifth number may be greater than or equal to the sixth number.
  • the third number and/or the fifth number may be equal to the first number
  • the fourth number and/or the sixth number may be equal to the second number
  • an embodiment of the present application further provides a transmission device, and the transmission device may be the first transmission device described in the foregoing first aspect or various possible implementation manners of the first aspect.
  • the transmission apparatus provided in the second aspect may be (or integrated in) a source device.
  • an embodiment of the present application further provides another transmission device, and the transmission device may be the second transmission device described in the foregoing first aspect or various possible implementation manners of the first aspect.
  • the transmission apparatus provided by the third aspect may be (or integrated in) a sink device.
  • an embodiment of the present application provides a transmission method, which can be applied to a transmission system.
  • the system may include a first transmission device and a second transmission device, and the first transmission device and the second transmission device pass through the first transmission device.
  • cable connection the first cable includes a first number of downlink main link channels and a second number of uplink main link channels
  • the method includes: the first transmission device obtains a downlink media signal, and the downlink media signal includes a downlink video signal and/or downlink audio signal; the first transmission device encapsulates the downlink media signal to obtain a first downlink message; the first transmission device fills the first downlink message into the downlink data stream; the The first transmission device allocates the filled downlink data stream to the first downlink main link channel, and sends it to the second transmission device, wherein the first downlink main link channel includes the first number of downlink main link channels.
  • the second transmission device combines the downlink sub-data stream received by the first downlink main link channel into the downlink data stream; the second transmission device from the downlink The first downlink message is extracted from the data stream; the second transmission device decapsulates the first downlink message to obtain the downlink media signal; and the second transmission device obtains the uplink media signal, the uplink The media signal includes an upstream video signal and/or an upstream audio signal; the second transmission device encapsulates the upstream media signal to obtain a first upstream message; the second transmission device fills the first upstream message into the upstream data stream ; The second transmission device allocates the filled upstream data stream to the first uplink main link channel and sends it to the first transmission device, wherein the first uplink main link channel includes the second number of uplink main link channels.
  • the first transmission device combines the uplink sub-data stream received by the first uplink main link channel into the uplink data stream; the first transmission device from the uplink data stream The first upstream message is extracted from the stream; the first transmission device decapsulates the first upstream message to obtain the upstream media signal.
  • the first transmission device may be (or integrated in) a source device
  • the second transmission device may be (integrated in) a sink device.
  • media signal described in this application may also be referred to as a video and audio signal.
  • a downstream media signal may also be called a downstream video and audio signal
  • an upstream media signal may also be called an upstream video and audio signal
  • two-way transmission of media signals can be implemented between end devices through a cable.
  • the encapsulation and decapsulation described in the embodiments of the present application are all performed based on a unified transmission protocol (eg, the first transmission protocol).
  • the sink device since the first downlink message sent by the source device is obtained by performing one-layer encapsulation of the downlink media signal according to the first transmission protocol, the sink device receives the first downlink message Afterwards, the downlink media signal can be obtained by performing one-layer decapsulation according to the first transmission protocol. Similarly, since the first uplink packet sent by the sink device is obtained by performing one-layer encapsulation of the uplink media signal according to the first transmission protocol, after receiving the first uplink packet, the source device can transmit the packet according to the first transmission protocol. The protocol performs a layer of decapsulation to obtain the upstream media signal.
  • the media signals described in the embodiments of the present application are original media signals generated or collected, including clock signals, vertical synchronization signals, horizontal synchronization signals, display enable, video data, audio data, and the like.
  • the bidirectional transmission of data streams between the source device and the sink device is carried out by wire (that is, through a cable), and only one layer of encapsulation/decapsulation is required for the media signal, without the need for video Encoding/decoding (for example: H264, H265, AVS2/3, etc.), which can reduce the complexity of the source and sink devices of the media signal, reduce the image quality loss caused by video encoding/decoding, and reduce video encoding and decoding. delay, thereby improving transmission efficiency and user experience.
  • video Encoding/decoding for example: H264, H265, AVS2/3, etc.
  • the first number is greater than or equal to the second number.
  • the first number may be greater than the second number.
  • asymmetric bidirectional transmission can be implemented between the source device and the sink device (that is, the first number and the second number are not equal), for example, the first number may be greater than the second number,
  • the requirement of asymmetric bidirectional transmission in which the downlink transmission rate is greater than the uplink transmission rate in practical applications is satisfied.
  • the method may further include: acquiring, by the first transmission device, a downlink third-party protocol signal; the first transmission device encapsulating the downlink third-party protocol signal to obtain a second downlink message; wherein The above-mentioned first transmission apparatus fills the first downlink message into the downlink data stream, including: the first transmission apparatus multiplexes the first downlink message and the second downlink message into the downlink data stream.
  • the above-mentioned second transmission device extracting the first downlink message from the downlink data stream includes: the second transmission device demultiplexes the first downlink message and the second downlink message from the downlink data stream.
  • a downlink message; the method may further include: the second transmission device decapsulates the second downlink message to obtain the downlink third-party protocol signal.
  • the method may further include: acquiring, by the second transmission device, an upstream third-party protocol signal; the second transmission device encapsulating the upstream third-party protocol signal to obtain a second upstream message; wherein , the above-mentioned second transmission device fills the first upstream message into the upstream data stream, including: the second transmission device multiplexes the first upstream message and the second upstream message into the upstream data stream.
  • the above-mentioned first transmission device extracting the first upstream message from the upstream data stream includes: the first transmission device demultiplexes the first upstream message and the second upstream message from the upstream data stream.
  • the method may further include: the first transmission device decapsulates the second upstream message to obtain the upstream third-party protocol signal.
  • the two-way transmission of third-party protocol signals can also be realized between end devices through the cable, that is, the two-way transmission of media signals and third-party protocol signals between end devices can be realized through the cable. transmission.
  • the method may further include: the first transmission device obtains downlink general data; the first transmission device encapsulates the downlink general data to obtain a third downlink message; wherein the above-mentioned first
  • the transmission device filling the first downlink message into the downlink data stream includes: the first transmission device multiplexing the first downlink message and the third downlink message into the downlink data stream.
  • the above-mentioned second transmission device extracting the first downlink message from the downlink data stream includes: the second transmission device demultiplexes the third downlink message from the downlink data stream; the method further It may include: the second transmission device decapsulates the third downlink message to obtain the downlink general data.
  • the method may further include: the second transmission device obtains uplink general data; the second transmission device encapsulates the uplink general data to obtain a third uplink message; wherein the above-mentioned second
  • the transmission device filling the first upstream message into the upstream data stream includes: the second transmission device multiplexing the first upstream message and the third upstream message into the upstream data stream.
  • the above-mentioned first transmission device extracting the first upstream message from the upstream data stream includes: the first transmission device demultiplexes the first upstream message and the third upstream message from the upstream data stream. message; the method may further include: the first transmission device decapsulates the third upstream message to obtain the upstream general data.
  • the two-way transmission of general data can also be realized between end devices through the cable, that is, the two-way transmission of media signals and general data between end devices can be realized through the cable.
  • the method may further include: the first transmission device obtains a downlink third-party protocol signal; the first transmission device encapsulates the downlink third-party protocol signal to obtain a second downlink message; the The first transmission device obtains the downlink general data; the first transmission device encapsulates the downlink general data to obtain a third downlink message; wherein, the first transmission device fills the first downlink message into the downlink data stream,
  • the method includes: the first transmission device multiplexes the first downlink message, the second downlink message and the third downlink message into the downlink data stream.
  • the above-mentioned second transmission device extracting the first downlink message from the downlink data stream includes: the second transmission device demultiplexes the first downlink message and the second downlink message from the downlink data stream. the downlink message and the third downlink message; the method may further include: the second transmission device decapsulates the second downlink message to obtain the downlink third-party protocol signal; the second transmission device decapsulates the third downlink message The packet is decapsulated to obtain the downstream general data.
  • the method may further include: obtaining, by the second transmission device, an upstream third-party protocol signal; the second transmission device encapsulating the upstream third-party protocol signal to obtain a second upstream message; the The second transmission device obtains uplink general data; the second transmission device encapsulates the uplink general data to obtain a third uplink message; wherein the second transmission device fills the first uplink message into the upstream data stream, including : the second transmission device multiplexes the first upstream message, the second upstream message and the third upstream message into the upstream data stream.
  • the above-mentioned first transmission device extracting the first upstream message from the upstream data stream includes: the first transmission device demultiplexes the first upstream message and the second upstream message from the upstream data stream. message and a third upstream message; the method may further include: the first transmission device decapsulates the second upstream message to obtain the upstream third-party protocol signal; the first transmission device reports the third upstream message decapsulate the file to obtain the upstream general data.
  • the end devices can also realize the bidirectional transmission of third-party protocol signals and general data through the cable. , to realize bidirectional transmission of at least one of media signals, third-party protocol signals and general data.
  • the first cable further includes an auxiliary link channel, the auxiliary link channel, and the auxiliary link channel pair is used to implement at least one of the following functions: plugging detection, flipping Identification, high-speed transmission link training information exchange, device capability information acquisition, device status information acquisition, discovery and establishment of networking topology, content protection information exchange, and device interoperability.
  • the system may further include a routing network, the first transmission device is connected to the routing network through the first cable, the routing network is connected to the second transmission device, the routing network is used for routing and forwarding the upstream data stream and the downstream data stream between the first transmission device and the second transmission device; wherein, the above-mentioned first transmission device sends the downstream data stream to the second transmission device, including : the first transmission device sends the downstream data stream to the routing network.
  • the system may further include a routing network, the second transmission device is connected to the routing network through the first cable, the routing network is connected to the first transmission device, and the routing network is used for Route and forward the upstream data stream and the downstream data stream between the first transmission device and the second transmission device; wherein, the second transmission device sends the upstream data stream to the first transmission device, including: The second transmission device sends the upstream data stream to the routing network.
  • a routing network the second transmission device is connected to the routing network through the first cable, the routing network is connected to the first transmission device, and the routing network is used for Route and forward the upstream data stream and the downstream data stream between the first transmission device and the second transmission device; wherein, the second transmission device sends the upstream data stream to the first transmission device, including: The second transmission device sends the upstream data stream to the routing network.
  • the routing network includes at least one level of routing equipment.
  • the networking topology of the transmission system is mesh.
  • the source device, the branch device (or the switching device) and the sink device form a "tree" networking topology.
  • a source device forms a "tree" networking topology with multiple sink devices through the branch device/switching device, and the source device can implement unidirectional data flow through the branch device/switching device and the multiple sink devices or bidirectional transmission.
  • multiple source devices can form a "tree" networking topology with one sink device through the branch device/switching device, and the multiple source devices can realize single data flow through the branch device/switching device and the sink device. to or both directions.
  • the source device(s) may form a "mesh" networking topology through the routing network(s) and the sink device(s), and any two end devices may be connected between any two end devices.
  • the two-way transmission of media signals can be realized through the routing and forwarding of the routing network, and further, the two-way transmission of media signals, general data and/or third-party protocol signals can be realized, and the application scenarios of the system can be expanded.
  • the composition of the first sub-cable and the second sub-cable may be different, for example, the first sub-cable includes a third number of downlink sub-link channels and a fourth number of uplink sub-link channels, and the first sub-cable includes The two sub-cables include a fifth number of downlink sub-link channels and a sixth number of uplink sub-link channels.
  • the third number may be greater than or equal to the fourth number, and the fifth number may be greater than or equal to the sixth number.
  • the third number and/or the fifth number may be equal to the first number
  • the fourth number and/or the sixth number may be equal to the second number
  • the present application further provides a transmission method, and the method may include the steps performed by the first transmission device in the foregoing fourth aspect or various possible implementation manners of the fourth aspect.
  • the present application further provides a transmission method, which may include the steps performed by the second transmission device in the fourth aspect or various possible implementation manners of the fourth aspect.
  • FIG. 1 is a schematic block diagram of a transmission system 100 provided by an embodiment of the present application.
  • FIG. 2 is another schematic block diagram of the transmission system 100 provided by an embodiment of the present application.
  • FIG. 3 is another schematic block diagram of the transmission system 100 provided by an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a transmission apparatus 200 provided by an embodiment of the present application.
  • FIG. 5 is another schematic block diagram of the transmission system 100 provided by the embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a transmission system 300 provided by an embodiment of the present application.
  • FIG. 7 is another schematic block diagram of a transmission system 300 provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a routing device 400 provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a transmission method 500 provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a transmission method 600 provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a transmission method 700 provided by an embodiment of the present application.
  • End devices may include source devices, sink devices, and docking stations.
  • a source device is a device that can generate video and audio signals.
  • set-top box digital versatile disc player (digital versatile disc, DVD), personal computer (personal computer, PC), game console, host of split TV.
  • digital versatile disc player digital versatile disc, DVD
  • personal computer personal computer, PC
  • game console host of split TV.
  • the sink device is responsible for receiving the video and audio signals provided by the source device and outputting the video and audio signals, such as displaying video through a display screen, or playing audio through audio.
  • TV split TV display or speakers.
  • Docking station also known as port replicator (port replicator)
  • port replicator by duplicating or even expanding the ports of electronic devices, such as laptops, so that electronic devices can be connected with multiple accessories or external devices, such as power adapters, network cables, mice, external keyboards, Printer and external monitor, convenient one-stop connection.
  • a routing device refers to a device with a routing function
  • the routing function refers to a function that determines the transmission path of a data stream from a source end to a destination end.
  • a routing device including multiple ports can select a transmission path for the data flow of the multiple ports.
  • FIG. 1 and FIG. 2 show schematic block diagrams of a transmission system 100 provided by an embodiment of the present application.
  • the system 100 may include at least one source device (such as the source device 110 shown in FIGS. 1 and 2 ) and at least one sink device (such as the sink device shown in FIGS. 1 and 2 ) 120).
  • the source device 110 may include a transmission device 111 , an audio and video signal source 112 , an audio and video signal processing device 113 , a management control module 114 and a connector 115 .
  • the sink device 120 may include a transmission device 121 , an audio and video signal output device 122 , an audio and video signal acquisition device 123 , a management control module 124 and a connector 125 .
  • the connector 115 and the connector 125 are connected by a cable (ie, a first cable), and the cable may include a plurality of main link channels, and the plurality of main link channels may include a first number of down main link channels (6 down main link channels a1 as shown in Figure 1 or 3 down main link channels a1 as shown in Figure 2) and a second number of uplink main link channels ( 2 uplink main link channels a2 as shown in Figure 1 or 1 uplink main link channel a2 as shown in Figure 2).
  • a cable ie, a first cable
  • the cable may include a plurality of main link channels
  • the plurality of main link channels may include a first number of down main link channels (6 down main link channels a1 as shown in Figure 1 or 3 down main link channels a1 as shown in Figure 2) and a second number of uplink main link channels ( 2 uplink main link channels a2 as shown in Figure 1 or 1 uplink main link channel a2 as shown in Figure 2).
  • video and audio signal source 112 video and audio signal processing device 113, management control module 114, video and audio signal output device 122, video and audio signal acquisition device 123 and management control module 124 may be implemented by hardware, or may be implemented by software. It can be implemented, or can be implemented by a combination of software and hardware; the connector 115 and the connector 125 can be implemented by hardware, which is not limited in this embodiment of the present application.
  • the sink device described in the embodiment of the present application may also be a docking station.
  • the embodiment of the present application only takes the sink device as an example for description, but the description in the present application is not limited thereto.
  • the transmission device 111 and the transmission device 121 may perform bidirectional transmission of video and audio signals through the multiple main link channels.
  • the video and audio signals described in the embodiments of the present application may include video signals and/or audio signals, which are not limited in the embodiments of the present application.
  • video and audio signals described in the embodiments of the present application may also be referred to as media signals, and the media signals include video signals and/or audio signals.
  • bidirectional transmission includes uplink transmission and downlink transmission
  • the downlink transmission refers to the transmission in the direction from the source device to the sink device (or the docking station)
  • the uplink transmission refers to the Transmitted in the direction of the source device from the sink device (or docking station).
  • the data stream transmitted downstream is referred to as the downstream data stream; the data stream transmitted upstream is referred to as the upstream data stream.
  • the downlink main link channel is used to transmit the downlink data stream; the uplink main link channel is used to transmit the uplink data stream.
  • the video and audio signal source 112 is used to generate a downlink video and audio signal, and send the downlink video and audio signal to the transmission device 111 .
  • the downlink video and audio signal includes a clock signal 1 , a vertical synchronization signal 1 , a horizontal synchronization signal 1 , a display enable 1 , video data 1 and audio data 1 .
  • the transmission device 111 is configured to receive the downlink video and audio signal from the video and audio signal source 112; encapsulate the downlink video and audio signal according to the first transmission protocol to obtain downlink message 1 (ie, the first downlink message); The device 121 sends the downlink packet 1 .
  • the transmission device 111 is specifically configured to send the downlink packet 1 to the transmission device 121 through a first downlink main link channel, where the first downlink main link channel includes the first number of at least one downlink main link channel of the downlink main link channels.
  • the transmission device 121 is configured to decapsulate the downlink message 1 according to the first transmission protocol to obtain the downlink video and audio signal; and send the downlink video and audio signal to the media output device 122 .
  • the transmission device 121 is specifically configured to receive the downlink packet 1 from the transmission device 111 through the first downlink main link channel.
  • the video and audio signal output device 122 is used for outputting the downstream video and audio signal.
  • the embodiment of the present application does not limit the specific form of the media output device 122 .
  • the media output device 122 is a sound box
  • the above-mentioned media output device 122 is specifically configured to play the downlink audio signal.
  • downstream video and audio signals include downstream video signals
  • the media output device 122 is a display screen
  • the media output device 122 is specifically configured to display the downstream video signals.
  • the video and audio signal collection device 123 is used for collecting the upstream video and audio signals; and sends the upstream video and audio signals to the transmission device 121 .
  • the upstream video and audio signal includes a clock signal 2 , a vertical synchronization signal 2 , a horizontal synchronization signal 2 , a display enable 2 , video data 2 and audio data 2 .
  • the transmission device 121 is configured to encapsulate the upstream video and audio signal according to the first transmission protocol to obtain an upstream message 1 (ie, the first upstream message); and send the upstream message 1 to the transmission device 111 .
  • the transmission device 121 is specifically configured to send the uplink packet 1 to the transmission device 111 through the first uplink main link channel, where the first uplink main link channel includes the second number of At least one of the uplink main link channels.
  • the transmission device 111 is configured to decapsulate the upstream message 1 according to the first transmission protocol to obtain the upstream video and audio signal, and send the upstream video and audio signal to the video and audio signal processing device 113 .
  • the transmission device 111 is specifically configured to receive the uplink packet 1 from the transmission device 121 through the first uplink main link channel.
  • the video and audio signal processing device 113 is used for processing the upstream video and audio signal.
  • the transmission system provided by the embodiments of the present application provides a full-process solution based on a unified transmission protocol for data transmission between a source device and a sink device.
  • the source device and sink device adopting this solution can pass through multiple main chains
  • the two-way transmission of video and audio signals is carried out through the channel.
  • the sink device can The transmission protocol performs a layer of decapsulation to obtain the downlink video and audio signal.
  • the source device can The transmission protocol performs a layer of decapsulation to obtain the upstream video and audio signal.
  • the video and audio signals described in the embodiments of the present application are original video and audio signals generated or collected, including clock signals, vertical synchronization signals, horizontal synchronization signals, display enable, video data, and audio data.
  • the bidirectional transmission of data streams between the source device and the sink device is carried out by wire (that is, through a cable), and only one layer of encapsulation/decapsulation is required for the video and audio signals, without the need for Video encoding/decoding (for example: H264, H265, AVS2/3, etc.), which can reduce the complexity of the source and sink devices of video and audio signals, reduce image quality loss caused by video encoding/decoding, and reduce video encoding and decoding. The delay brought by, thereby improving the transmission efficiency and user experience.
  • main link lane (lane) described in the embodiment of the present application may be implemented in various manners, which is not limited in the embodiment of the present application.
  • the main link channel may be a differential channel, and one differential channel may include one differential line pair.
  • the main link channel may be an optical channel, and an optical channel may be an optical fiber or a channel formed by a specific wavelength in the optical fiber.
  • a single channel only supports one-way transmission, that is, downlink transmission or uplink transmission.
  • a single channel can support working at multiple transmission rates.
  • the transmission rates of the channels in the same direction are the same, and the transmission rates of the channels in the reverse direction can be the same or different.
  • a single channel can support 2 gigabits per second (Gbps), 4Gbps, 6Gbps, 8Gbps, 12Gbps, 16Gbps, 24Gbps, or other transfer rates.
  • Gbps gigabits per second
  • 4Gbps 4Gbps
  • 6Gbps 6Gbps
  • 8Gbps 12Gbps
  • 16Gbps 16Gbps
  • 24Gbps 24Gbps
  • this embodiment of the present application does not limit the number of the multiple primary link channels.
  • the number of the multiple main link channels may be eight.
  • the number of the multiple main link channels may be four.
  • this embodiment of the present application does not limit the first quantity and the second quantity.
  • the first number may be greater than or equal to the second number. Further, the first number may be greater than the second number.
  • the configuration modes shown in Table 1 below may be adopted for the 8 primary link channels.
  • the 8 main link channels can be divided into 6 downlink main link channels and 2 uplink main link channels.
  • the maximum downlink transmission rate is 144Gbps
  • the maximum uplink transmission rate of the 2 uplink main link channels is 48Gbps.
  • Table 1 only schematically shows the configuration mode 6+2 and the configuration mode 4+4, but the embodiment of the present application is not limited to this.
  • the 8 main link channel pairs may also be configured in other configuration modes, for example, a configuration mode of 8+0 or 0+8, which is not limited in this embodiment of the present application.
  • the configuration modes shown in Table 2 below can be adopted for the 4 primary link channels.
  • the 4 main link channels can be divided into 3 downlink main link channels and 1 uplink main link channel.
  • the maximum downlink transmission rate is 72Gbps, and the maximum uplink transmission rate of one uplink main link channel is 24Gbps.
  • Table 2 only schematically shows the configuration mode 3+1 and the configuration mode 2+2, but the embodiment of the present application is not limited thereto.
  • the four main link channels may also be configured in other configuration modes, such as a 4+0 or 0+4 configuration mode, which is not limited in this embodiment of the present application.
  • asymmetric bidirectional transmission can be implemented between the source device and the sink device (that is, the first number and the second number are not equal), for example, the first number may be greater than the second number,
  • the requirement of asymmetric bidirectional transmission in which the downlink transmission rate is greater than the uplink transmission rate in practical applications is satisfied.
  • the cable may further include an auxiliary link channel (such as the auxiliary link channel shown in FIG. 1 or the auxiliary link channel shown in FIG. 2 ).
  • an auxiliary link channel such as the auxiliary link channel shown in FIG. 1 or the auxiliary link channel shown in FIG. 2 ).
  • auxiliary link channel described in the embodiment of the present application may be implemented in various manners, which is not limited in the embodiment of the present application.
  • an auxiliary link channel may include an auxiliary line pair, and the auxiliary line pair may include a downlink auxiliary line and an uplink auxiliary line.
  • the auxiliary line pair can work in a full-duplex transmission mode.
  • the transmission device 111 and the transmission device 121 can implement at least one of the following auxiliary functions through the auxiliary link channel: plug detection, flip identification, high-speed transmission link training information exchange , Device capability information acquisition, device status information acquisition, network topology discovery and establishment, content protection information exchange and device interoperability.
  • the transmission device 111 is used to generate a control command 1 (or data 1 or signal 1 ) and report it to the management control module 114 .
  • the management control module 114 is configured to perform corresponding processing according to the control command 1 (or data 1 or signal 1).
  • the management control module 114 receives the control command 1, the control command 1 is used to indicate that the port 139 and the port 149 are connected, and the operation of reading the peer capability can be started.
  • the management control module 114 receives the control command 1, and the control command 1 is used to instruct the cable connection between the connector 115 and the connector 125 to be reversed, so as to adjust the related line sequence configuration and so on.
  • the management control module 114 is also used to generate the control command 2 (or the data 2 or the signal 2 ) and send it to the transmission device 111 .
  • the transmission device 111 is further configured to perform corresponding processing according to the control command 2 (or the data 2 or the signal 2).
  • control command 2 or the data 2 or the signal 2
  • the transmission device 121 For example, adjust the relevant parameters of the transmission device, or transmit the control command 2 (or the data 2 or the signal 2) to the transmission device 121 through the downlink auxiliary line, and so on.
  • the transmission device 111 is further configured to receive the control command 3 (or data 3 or signal 3 ) from the transmission device 121 through the uplink auxiliary line, and perform corresponding processing according to the control command 3 (or data 3 or signal 3 ).
  • control command 3 or data 3 or signal 3
  • management control module 114 For example, adjust the parameters related to the transmission device, or send the control command 3 (or data 3 or signal 3) to the management control module 114 for processing.
  • the management control module 114 is further configured to receive the control command 3 (or data 3 or signal 3 ) from the transmission device 111 , and perform corresponding processing according to the control command 3 (or data 3 or signal 3 ).
  • the management control module 114 is further configured to receive a control command input by the user, and send the control command 4 (or data 4 or signal 4 ) corresponding to the control command to the transmission device 121 through the transmission device 111 and the downlink auxiliary line.
  • the functions of the transmission device 121 and the management control module 124 in the process of implementing each auxiliary function may refer to the transmission device 111 and the management control module 114, which are not repeated here to avoid repetition.
  • the transmission device 111 and the transmission device 121 may implement bidirectional transmission of at least one of video and audio signals, general data and third-party protocol signals through the multiple main link channels in a time-division multiplexing manner.
  • the third-party protocol signal described in the embodiments of the present application refers to a signal capable of supporting a third-party protocol, and the third-party protocol signal can implement transparent transmission of the third-party protocol through a protocol tunnel.
  • the above-mentioned third-party protocol may include a universal serial bus (universal serial bus, USB) protocol, a peripheral component interconnect express (peripheral component interconnect express, PCIe) protocol and/or other third-party protocols, etc.
  • a universal serial bus universal serial bus, USB
  • a peripheral component interconnect express peripheral component interconnect express, PCIe
  • PCIe peripheral component interconnect express
  • the third-party protocol signals may include USB protocol signals and/or PCIe protocol signals.
  • the general data described in the embodiments of the present application is a general data interaction scheme, which can support the interaction of low-speed data and high-speed data at the same time. data exchange.
  • the above general data may include data other than video and audio signals and third-party protocol signals.
  • general data may include data generated during the process of accessing and controlling the mass storage device by the transmission means 111.
  • FIG. 3 shows another schematic block diagram of the transmission system 100 provided by this embodiment of the present application.
  • the system 100 may include at least one source device (as shown in FIG. 3 ) outgoing source device 110) and sink device (sink device 120 as shown in FIG. 3).
  • the source device 110 may include a transmission device 111 , a connector 115 , an audio and video signal source 112 , an audio and video signal processing device 113 , a management control module 114 , a third-party protocol controller 116 and a general data transceiver 117 .
  • the sink device 120 may include a transmission device 121 , a connector 125 , an audio and video signal output device 122 , an audio and video signal acquisition device 123 , a management control module 124 , a third-party protocol device 126 and a general data transceiver device 127 .
  • the connector 115 and the connector 125 are connected by a cable (ie, a first cable), and the cable includes a plurality of main link channels, and the plurality of main link channels include a first number of downlink channels Main link channels (6 down main link channels a1 as shown in Figure 3) and a second number of uplink main link channels (2 uplink main link channels a2 as shown in Figure 3).
  • FIG. 3 It should be noted that, for the parts not introduced in FIG. 3 , reference may be made to FIG. 1 and FIG. 2 , which are not repeated here to avoid repetition.
  • the video and audio signal source 112 is used to generate a downlink video and audio signal; and send the downlink video and audio signal to the transmission device 111 .
  • the downlink video and audio signal includes a clock signal 1 , a vertical synchronization signal 1 , a horizontal synchronization signal 1 , a display enable 1 , video data 1 and audio data 1 .
  • the transmission device 111 is configured to encapsulate the downlink video and audio signal to obtain downlink message 1 (ie, the first downlink message).
  • the third-party protocol controller 116 is configured to generate a downlink third-party protocol signal; and send the downlink third-party protocol signal to the transmission device 111 .
  • the transmission device 111 is further configured to encapsulate the downlink third-party protocol signal to obtain downlink packet 2 (ie, the second downlink packet).
  • the general data transceiver 117 is configured to generate downlink general data; and send the downlink general data to the transmission device 111 .
  • the transmission device 111 is further configured to encapsulate the downlink general data to obtain downlink packet 3 (ie, the third downlink packet).
  • the transmission device 111 is further configured to send the downlink packet 1 , the downlink packet 2 and the downlink packet 3 to the transmission device 121 in a time division multiplexing manner.
  • the transmission device 111 is specifically configured to send the downlink packet 1, the downlink packet 2 and the Downlink packet 3, the first downlink main link channel includes at least one downlink main link channel in the first number of downlink main link channels.
  • the transmission device 121 is further configured to decapsulate the downlink message 1 to obtain the downlink video and audio signal; and send the downlink video and audio signal to the video and audio signal output device 122 .
  • the video and audio signal output device 122 is used for outputting the downstream video and audio signal.
  • the transmission device 121 is further configured to decapsulate the downlink packet 2 to obtain the downlink third-party protocol signal; and send the downlink third-party protocol signal to the third-party protocol device 126 .
  • the third-party protocol device 126 is used for processing the downlink third-party protocol signal.
  • the transmission device 121 is further configured to decapsulate the downlink message 3 to obtain the downlink general data; and send the downlink general data to the general data transceiver 127 .
  • the general data transceiver 127 is used for processing the downlink general data.
  • the above downlink packet 1, downlink packet 2 and downlink packet 3 all follow a unified transmission protocol, that is, they are all encapsulated based on the unified transmission protocol (such as the first transmission protocol). owned.
  • the video and audio signal collection device 123 is configured to generate an upstream video and audio signal; and send the upstream video and audio signal to the transmission device 121 .
  • the upstream video and audio signal includes a clock signal 2 , a vertical synchronization signal 2 , a horizontal synchronization signal 2 , a display enable 2 , video data 2 and audio data 2 .
  • the transmission device 121 is further configured to encapsulate the upstream video and audio signal to obtain the upstream message 1 (ie, the first upstream message).
  • the third-party protocol device 126 is further configured to generate an upstream third-party protocol signal; and send the upstream third-party protocol signal to the transmission device 121 .
  • the transmission device 121 is further configured to encapsulate the upstream third-party protocol signal to obtain the upstream message 2 (ie, the second upstream message).
  • the general data transceiver 127 is further configured to generate uplink general data; and send the uplink general data to the transmission device 121 .
  • the transmission device 121 is further configured to encapsulate the upstream general data to obtain the upstream message 3 (ie, the third upstream message).
  • the transmission device 121 is further configured to send the uplink packet 1 , the uplink packet 2 and the uplink packet 3 to the transmission device 111 in a time division multiplexing manner.
  • the transmission device 121 is specifically configured to send the uplink packet 1 , the uplink packet 2 and the uplink packet to the transmission device 111 in a time division multiplexing manner through the first uplink auxiliary link channel
  • the first uplink main link channel includes at least one uplink main link channel in the second number of uplink main link channels.
  • the transmission device 111 is further configured to decapsulate the upstream message 1 to obtain the upstream video and audio signal; and send the upstream video and audio signal to the video and audio signal processing device 113 .
  • the video and audio signal processing device 113 is also used for processing the upstream video and audio signal.
  • the transmission device 111 is further configured to decapsulate the upstream packet 2 to obtain the upstream third-party protocol signal; and send the upstream third-party protocol signal to the third-party protocol controller 116 .
  • the third-party protocol controller 116 is also used for processing the upstream third-party protocol signal.
  • the transmission device 111 is further configured to decapsulate the uplink packet 3 to obtain the uplink general data; and send the uplink general data to the general data transceiver 117 .
  • the general data transceiver 117 is also used for processing the uplink general data.
  • the above-mentioned uplink packet 1, uplink packet 2 and uplink packet 3 all follow a unified transmission protocol, that is, they can all be decoded based on the unified transmission protocol (eg, the first transmission protocol). package.
  • the transmission system provided by the embodiments of the present application provides a full-process solution based on a unified transmission protocol for data transmission between a source device and a sink device.
  • the source device and sink device using this solution can
  • the link channel is used to realize the bidirectional transmission of video and audio signals, general data and third-party protocol signals.
  • the above only schematically shows the structure diagram of the system 100 for bidirectional transmission of video and audio signals, general data and third-party protocol data, but the embodiments of the present application are not limited thereto.
  • the structure involved in the bidirectional transmission of video and audio signals and general data by the system 100 and the structure involved in the bidirectional transmission of video and audio signals and third-party protocol data, please refer to the structure of the relevant part in FIG. 3 .
  • system 100 only schematically shows one channel of video and audio signals, one channel of general data and one channel of third-party protocol signals, that is, the structures corresponding to the bidirectional transmission of the three types of signals (or data). Embodiments are not limited thereto.
  • the system 100 may include a structure corresponding to bidirectional transmission of at least one channel of video and audio signals, at least one channel of general data and/or at least one channel of third-party protocol signals, wherein, for each type of signal, each channel of the The specific structures and designs involved in the bidirectional transmission of this type of signal are similar, and are not repeated here in order to avoid repetition.
  • FIG. 1 to FIG. 3 only schematically illustrate that the system 100 includes the source device 110 and the sink device 120, but the embodiments of the present application are not limited thereto.
  • system 100 may further include at least one other source device and at least one other sink device, which is not limited in this embodiment of the present application.
  • connection mode and transmission between any two end devices in the system 100 (such as between any source device and any sink device, between any two source devices, or between any two sink devices)
  • connection mode and transmission mode between the source device 110 and the sink device 120 are not repeated here to avoid repetition.
  • the transmission system 100 provided by the embodiments of the present application is described above with reference to FIG. 1 to FIG. 3 , and the transmission device 111 and the transmission device 121 in the system 100 will be further described below.
  • FIG. 4 shows a schematic block diagram of a transmission apparatus 200 provided by an embodiment of the present application, where the transmission apparatus 200 may be the transmission apparatus 111 or the transmission apparatus 121 in the foregoing system 100 .
  • the apparatus 200 may include a video and audio signal sending adapter 201 , a switch 202 , a port 203 , a video and audio signal receiving adapter 204 and a management control adapter 205 .
  • the switch 202 may include a multiplexer 202-1, a channel distributor 202-2, a demultiplexer 202-3, and a channel dedistributor 202-202-2 not shown in FIG. 4 . 4.
  • the apparatus 200 may also include at least one of a generic data adapter 206 and a third-party protocol adapter.
  • each component included in the apparatus 200 is implemented by hardware, and the specific function of each component is described in the following description.
  • FIG. 5 shows another schematic block diagram of the transmission system 100 provided by this embodiment of the present application.
  • the system 100 may include: a source device 110 and a sink device 120 , and the source device 110 may include a transmission apparatus 111 , a The audio signal source 112 and the connector 115 and the sink device 120 may include a transmission device 121 , an audio and video signal output device 122 and a connector 125 .
  • the transmission device 111 may include a video and audio transmission adapter 131, a multiplexer 132, a channel splitter 133, and a port 139 including a first number of differential transmitters 152 (6 as shown in FIG. 5 ).
  • the transmission device 121 may include a channel de-distributor 141, a de-multiplexer 142, an AV receiver adapter 143, and a port 149 including a first number of differential receivers 162 (6 differential receivers as shown in FIG. 5). 162).
  • the output end of the video and audio signal source 112 is coupled to the input end of the video and audio transmission adapter 131, the output end of the video and audio transmission adapter 131 is coupled to the first input end of the multiplexer 132, and the output end of the multiplexer 132 is coupled to
  • the input terminals of the channel distributor 133 and the output terminals of the first number of channel distributors 133 are respectively coupled to the input terminals of the first number of differential transmitters 152 , and the output terminals of the first number of differential transmitters 152 are connected through the connectors 115 and 152 respectively.
  • a first number of downstream differential pairs between connectors 125 are coupled to inputs of a first number of differential receivers 162 , and outputs of the first number of differential receivers 162 are coupled to a first number of channel de-splitters 141
  • the input end of the channel de-distributor 141 is coupled to the input end of the de-multiplexer 142, and the first output end of the de-multiplexer 142 is coupled to the input end of the video and audio receiving adapter 143.
  • the output terminal is coupled to the input terminal of the video and audio signal output device 122 .
  • the video and audio transmission adapter 131 is used to obtain downstream video and audio signals (including clock signal 1, vertical synchronization signal 1, horizontal synchronization signal 1, display output 1, video data 1 and audio as shown in FIG. 5 ) from the video and audio signal source 112 Data 1), the downlink video and audio signals include downlink video signals and/or downlink audio signals; encapsulate the downlink video and audio signals to obtain a first downlink message; send the first downlink message to the multiplexer 132 .
  • the multiplexer 132 is configured to fill the first downlink message into the downlink data stream; and send the downlink data stream to the channel distributor 133 .
  • the downlink main link channel between the transmission device 111 and the transmission device 121 belongs to a high-speed link channel. Once the downlink main link channel is established, the downlink data stream will be transmitted. At this time, the downlink data stream It is formed by multiple empty packets. When the first downlink packet needs to be transmitted, the first downlink packet is filled (or inserted) into the downstream data stream and the corresponding empty packet is replaced, and further The stuffed (or inserted) downstream data stream is transmitted.
  • the multiplexer 132 is configured to multiplex the first downstream packet and the null packet into the downstream data stream, so that the rate of the downstream data stream is the same as the actual rate of the first number of downstream differential line pairs rate matching.
  • the multiplexer 132 needs to generate 4 Gbps null packets and fill them into the downstream data stream, so that the rate of the downstream data stream obtained after filling is the same as the rate of the first number of downstream differential line pairs. Matching of the actual transmission rate.
  • the channel allocator 133 is configured to allocate the downlink data stream to the first downlink main link channel, and send it to the channel de-allocator 141, wherein the first downlink main link channel includes at least one downlink channel group.
  • the channel allocator 133 may allocate the downstream data stream to some or all of the downstream differential line pairs of the first number included in the port 139 according to the data volume or other transmission conditions of the downstream data stream primary link channel.
  • the channel de-allocator 141 is configured to combine the downlink sub-data stream received by the first downlink main link channel into a downlink data stream; and send the downlink data stream to the demultiplexer 142 .
  • the demultiplexer 142 is configured to extract the first downlink message from the downlink data stream; and send the first downlink message to the video and audio receiving adapter 143 .
  • the function of the demultiplexer 142 is the inverse process of the function of the multiplexer 132, that is, to extract the first downlink message filled in the downlink data stream.
  • the video and audio receiving adapter 143 is used for decapsulating the first downlink message to obtain the downlink video and audio signal; and sending the downlink video and audio signal to the video and audio signal output device 122 .
  • the video and audio signal output device 122 is used for outputting the downstream video and audio signal.
  • the source device 110 may further include a video and audio signal processing device 113
  • the transmission device 111 may further include a channel de-distributor 134, a demultiplexer 135 and a video and audio receiving adapter 136
  • the port 139 may further include a second number of differential Receivers 153 (2 differential receivers 153 as shown in Figure 5).
  • the sink device 120 may further include a video and audio signal acquisition device 123
  • the transmission device 121 may further include a video and audio transmission adapter 144, a multiplexer 145 and a channel divider 146
  • the port 149 may further include a second number of differential transmitters 163 (eg 2 differential transmitters 163 shown in Figure 5).
  • the output end of the video and audio signal acquisition device 123 is coupled to the input end of the video and audio transmission adapter 144, the output end of the video and audio transmission adapter 144 is coupled to the input end of the multiplexer 145, and the output end of the multiplexer 145 is coupled to the channel
  • the input terminals of the splitter 146 and the output terminals of the second number of channel splitters 146 are respectively coupled to the input terminals of the second number of differential transmitters 163, and the output terminals of the second number of differential transmitters 163 are connected through the connectors 125 and
  • the second number of upstream differential pairs between the receivers 115 are coupled to the inputs of the second number of differential receivers 153, the outputs of the second number of differential receivers 153 are coupled to the inputs of the channel de-distributor 134, the channel
  • the output end of the demultiplexer 134 is coupled to the input end of the demultiplexer 135, the output end of the demultiplexer 135 is coupled to the input end of
  • the video and audio transmission adapter 144 is used to obtain the upstream video and audio signals (including the clock signal 2, the vertical synchronization signal 2, the horizontal synchronization signal 2, the display output 2, the video data 2 as shown in FIG. 5 from the video and audio signal acquisition device 123) and audio data 2), this upstream video and audio signal includes upstream video signal and/or upstream audio signal; this upstream video and audio signal is encapsulated to obtain the first upstream message; Send this first upstream message to the multiplexer 145 .
  • this upstream video and audio signal includes upstream video signal and/or upstream audio signal; this upstream video and audio signal is encapsulated to obtain the first upstream message; Send this first upstream message to the multiplexer 145 .
  • the multiplexer 145 is used for filling the first upstream message into the upstream data stream; and sending the upstream data stream to the channel distributor 146 .
  • the uplink main link channel between the transmission device 111 and the transmission device 121 belongs to a high-speed link channel. Once the uplink main link channel is established, the uplink data stream will be transmitted. At this time, the uplink data stream It is formed by multiple empty messages. When the first upstream message needs to be transmitted, the first upstream message is filled (or inserted) into the upstream data stream and the corresponding empty message is replaced. or insert) the upstream data stream for transmission.
  • the multiplexer 145 is configured to multiplex the first upstream message and the null message into the upstream data stream, so that the rate of the upstream data stream is the same as the actual rate of the second number of upstream differential line pairs match.
  • the channel allocator 146 is configured to allocate the upstream data stream to a first uplink main link channel, and send it to the channel de-allocator 134, wherein the first uplink main link channel includes the second number of uplink main links at least one of the uplink primary link channels.
  • the channel de-allocator 134 is configured to combine the upstream sub-data stream received by the first uplink main link channel into an upstream data stream; and send the upstream data stream to the demultiplexer 135 .
  • the demultiplexer 135 is configured to demultiplex the upstream data stream into a first upstream message; and send the first upstream message to the video and audio receiving adapter 136 .
  • the function of the demultiplexer 135 is the inverse process of the function of the multiplexer 145, that is, to extract the first upstream message filled in the upstream data stream.
  • the video and audio receiving adapter 136 is used for decapsulating the first upstream message to obtain the upstream video and audio signal; and sending the upstream video and audio signal to the video and audio signal processing device 113 .
  • the video and audio signal processing device 113 is used for further processing the upstream video and audio signal.
  • the source device 110 may further include a third-party protocol controller 116
  • the transmission device 111 may further include a third-party protocol adapter 137
  • the sink device may further include a third-party protocol device 126
  • the transmission device 121 may also include A third party protocol adapter 147 is included.
  • the output end of the third-party protocol controller 116 is coupled to the input end of the third-party protocol adapter 137 , and the output end of the third-party protocol adapter 137 is coupled to the second input end of the multiplexer 132 .
  • the second output terminal of the demultiplexer 142 is coupled to the input terminal of the third-party protocol adapter 147 , and the output terminal of the third-party protocol adapter 147 is coupled to the input terminal of the third-party signal transceiving device 126 .
  • the third-party protocol adapter 137 is used to obtain the downlink third-party protocol signal (the third-party protocol signal 1 shown in FIG. 5 ) from the third-party protocol controller 116; encapsulate the downlink third-party protocol signal to obtain the second downlink report. message; send the second downlink message to the multiplexer 132 .
  • the multiplexer 132 is specifically configured to multiplex the first downlink packet and the second downlink packet into the downlink data stream.
  • the demultiplexer 142 is specifically configured to demultiplex the first downlink packet and the second downlink packet from the downlink data stream;
  • the demultiplexer 142 is further configured to send the second downlink message to the third-party protocol adapter 147 .
  • the third-party protocol adapter 147 is configured to decapsulate the second downlink packet to obtain a downlink third-party protocol signal; and send the downlink third-party protocol signal to the third-party protocol device 126 .
  • the third-party protocol device 126 is used for further processing the downstream third-party protocol signal.
  • the third-party protocol adapter 147 is also used to obtain the upstream third-party protocol signal (the third-party protocol signal 2 shown in FIG. 5 ) from the third-party protocol device 126; the upstream third-party protocol signal is encapsulated to obtain the second upstream report message; send the second uplink message to the multiplexer 145 .
  • the multiplexer 145 is specifically configured to multiplex the first upstream packet and the second upstream packet into the upstream data stream.
  • the demultiplexer 135 is specifically configured to demultiplex the first upstream message and the second upstream message from the upstream data stream;
  • the demultiplexer 135 is further configured to send the second uplink message to the third-party protocol adapter 137 .
  • the third-party protocol adapter 137 is further configured to decapsulate the second upstream packet to obtain the upstream third-party protocol signal; and send the upstream third-party protocol signal to the third-party protocol controller 116 .
  • the third-party protocol controller 116 is also used for further processing the upstream third-party protocol signal.
  • the third-party protocol controller 116 may be a USB controller
  • the downstream third-party protocol signal is a USB protocol signal
  • the third-party protocol device 126 is a USB device.
  • the third-party protocol controller 116 may be a PCIe controller
  • the downstream third-party protocol signal is a PCIe protocol signal
  • the third-party protocol device 126 is a PCIe device .
  • the encapsulation and decapsulation described in the embodiments of the present application are all performed based on a unified transmission protocol, such as the first transmission protocol.
  • the source device 110 may further include a universal data transceiver 117
  • the transmission device 111 may further include a universal data adapter 138
  • the sink device 120 may further include a universal data transceiver 127
  • the transmission device 121 may further include Universal Data Adapter 148.
  • the output terminal of the universal data transceiver 117 is coupled to the input terminal of the universal data adapter 138 , and the output terminal of the universal data adapter 138 is coupled to the third input terminal of the multiplexer 132 .
  • the third output terminal of the demultiplexer 142 is coupled to the input terminal of the general data adapter 148 , and the output terminal of the general data adapter 148 is coupled to the input terminal of the general data transceiver 127 .
  • the general data adapter 138 is used to obtain downlink general data (general data 1 shown in FIG. 5 ) from the general data transceiver 117 ; encapsulate the downlink general data to obtain a third downlink message; send it to the multiplexer 132 the third downlink message.
  • downlink general data generally data 1 shown in FIG. 5
  • the general data adapter 138 is used to obtain downlink general data (general data 1 shown in FIG. 5 ) from the general data transceiver 117 ; encapsulate the downlink general data to obtain a third downlink message; send it to the multiplexer 132 the third downlink message.
  • the multiplexer 132 is specifically configured to multiplex the first downlink packet and the third downlink packet into the downlink data stream.
  • the demultiplexer 142 is specifically configured to demultiplex the first downlink packet and the third downlink packet from the downlink data stream;
  • the demultiplexer 142 is also configured to send the third downstream message to the universal data adapter 148 .
  • the general data adapter 148 is further configured to decapsulate the third downlink message to obtain downlink general data; and send the downlink general data to the general data transceiver 127 .
  • the general data transceiver 127 is used for further processing the downlink general data.
  • the universal data adapter 148 is also used to obtain uplink general data (general data 2 shown in FIG. 5 ) from the general data transceiver 127 ; encapsulate the uplink general data to obtain a third uplink message; send the data to the multiplexer 142 Send the third uplink message.
  • uplink general data generally data 2 shown in FIG. 5
  • the universal data adapter 148 is also used to obtain uplink general data (general data 2 shown in FIG. 5 ) from the general data transceiver 127 ; encapsulate the uplink general data to obtain a third uplink message; send the data to the multiplexer 142 Send the third uplink message.
  • the multiplexer 142 is specifically configured to multiplex the first upstream packet and the third upstream packet into the upstream data stream.
  • the demultiplexer 135 is specifically configured to demultiplex the first upstream message and the third upstream message from the upstream data stream;
  • the demultiplexer 135 is also configured to send the third upstream message to the universal data adapter 138 .
  • the general data adapter 138 is further configured to decapsulate the third uplink packet to obtain uplink general data; and send the uplink general data to the general data transceiver 117 .
  • the general data transceiver 117 is also used for further processing the uplink general data.
  • the source device 110 may further include a third-party protocol controller 116 and a general data transceiver 117
  • the transmission device 111 may further include a third-party protocol adapter 137 and a general data adapter 138
  • the sink device may also Including the third-party protocol device 126 and the general data transceiver 127
  • the transmission device 121 may also include a third-party protocol adapter 147 and a general data adapter 148 .
  • the system 100 can perform two-way transmission of video and audio signals, general data and third-party protocol signals. For details, refer to the two-way transmission process of video and audio signals and general data and the two-way transmission process of video and audio signals and third-party protocol signals.
  • the source device 110 may further include a management control module 114
  • the transmission apparatus 111 may further include a management control adapter 1310 and an arbiter 1311
  • the port 139 may further include a transmitter 154 and a receiver 155
  • the sink device 120 may further include a management control module 124
  • the transmission apparatus 121 may further include a management control adapter 1410 and an arbiter 1411
  • the port 149 may further include a transmitter 164 and a receiver 165 .
  • the first end of the management control module 114 is coupled to the first end of the management control adapter 1310, the second end of the management control adapter 1310 is coupled to the first end of the arbiter 1311, and the second end of the arbiter 1311 is coupled to the transmitter
  • the input terminal of 154, the third terminal of the arbiter 1311 is coupled to the output terminal of the receiver 155, the first terminal of the management control module 124 is coupled to the first terminal of the management control adapter 1410, and the second terminal of the management control adapter 1410 is coupled to The first terminal of the arbiter 1411, the second terminal of the arbiter 1411 is coupled to the output terminal of the receiver 164, and the third terminal of the arbiter 1411 is coupled to the input terminal of the transmitter 165, wherein the output terminal of the transmitter 154 is connected by The downstream auxiliary line between the connector 115 and the connector 125 is coupled to the input of the receiver 164, and the downstream auxiliary line is used to transmit the downstream control commands sent by the management control adapter 13
  • the management control adapter 1310 and the management control adapter 1410 are used to implement at least one of the following functions through the downlink auxiliary line and the uplink auxiliary line: plug detection, rollover identification, high-speed transmission link training information exchange, device capability information acquisition, device status Information acquisition, discovery and establishment of networking topology, content protection information exchange and device interoperability.
  • management control adapter 1310 for the functions of the management control adapter 1310 and the management control adapter 1410, reference may be made to the relevant introduction in FIG. 4 , and details are not repeated here.
  • the port 139 may further include a detector 151 for detecting that the port 139 and the port 149 have been connected/disconnected, and/or whether the cable is connected between the connector 115 and the connector 125 Invert, and feed back the detection result 1 to the management control adapter 1310 .
  • a detector 151 for detecting that the port 139 and the port 149 have been connected/disconnected, and/or whether the cable is connected between the connector 115 and the connector 125 Invert, and feed back the detection result 1 to the management control adapter 1310 .
  • the management control adapter 1310 is used to receive the detection result 1 from the detector 151; generate a control command a (or data a or signal a) based on the detection result 1; send the control command a (or signal a) to the management control module 114 of the application layer a or data a) for further processing.
  • the management control adapter 1310 is also used to receive a control command b (or signal b or data b) from the management control module 114; based on the control command b (or signal b or data b), the configuration and management of the entire transmission device 111 are implemented .
  • the management control adapter 1310 is also used to receive the control command c (or signal c or data c) from the transmission device 121 through the uplink auxiliary line; configuration and management.
  • the management control adapter 1310 is also used for receiving the control command d (or signal d or data d) from other devices; sending the control command d (or signal d or data d) to the transmission device 121 through the downlink auxiliary line.
  • the port 149 may further include a detector 161 for detecting that the port 139 is connected/disconnected from the port 149 , and feeding back the detection result 2 to the management control adapter 1410 .
  • the management control adapter 1410 is used to receive the detection result 2 from the detector 161; generate a control command e (or data e or signal e) based on the detection result 2; send the control command e (or signal e) to the management control module 124 of the application layer e or data e) for further processing.
  • the management control adapter 1410 is also used to receive a control command f (or signal f or data f) from the management control module 124; based on the control command f (or signal f or data f), the configuration and management of the entire transmission device 121 are implemented .
  • the management control adapter 1410 is also used to receive the control command c (or signal c or data c) from the transmission device 111 through the downlink auxiliary line; configuration and management.
  • the management control adapter 1310 is also used to receive the control command b (or signal b or data b) from other devices; send the control command b (or signal b or data b) to the transmission device 111 through the downlink auxiliary line.
  • the foregoing system 100 only takes the direct connection between the source device and the sink device as an example for description, but this is not limited in this embodiment of the present application.
  • the source device and the sink device may also be connected via a routing network.
  • FIG. 6 shows a schematic block diagram of a transmission system 300 provided by an embodiment of the present application.
  • the system 300 may include at least one source device (as shown in FIG. 6 ) source device 310 and source device 330), at least one sink device (such as sink device 320 and sink device 340 as shown in FIG. 6), and a routing network 350, which is used for video and audio signals transmitted between different end devices , general data and/or third-party protocol signals for routing and forwarding.
  • source device as shown in FIG. 6
  • sink device such as sink device 320 and sink device 340 as shown in FIG. 6
  • a routing network 350 which is used for video and audio signals transmitted between different end devices , general data and/or third-party protocol signals for routing and forwarding.
  • the source device 310 may include the transmission device 311
  • the sink device 320 may include the transmission device 321
  • the source device 330 may include the transmission device 331
  • the sink device 340 may include the transmission device 341 .
  • Routing network 350 includes routing device 351 .
  • the transmission device 311 may forward and transmit via the routing device 351 through the cable J between the transmission device 311 and the routing device 351 and the cable K between the routing device 351 and the transmission device 321
  • the device 321 performs bidirectional transmission of video and audio signals, general data and/or third party protocol signals.
  • the above-mentioned cable J may include a plurality of main link channels J and auxiliary main link channels J
  • the above-mentioned cable K may include a plurality of main link channels K and auxiliary main link channels K.
  • composition of the plurality of main link channels J and the composition of the plurality of main link channels K may be the same or different, which is not limited in this embodiment of the present application.
  • the transmission device 311 may forward and transmit via the routing device 351 through the cable J between the transmission device 311 and the routing device 351 and the cable N between the routing device 351 and the transmission device 341
  • the device 341 performs bidirectional transmission of video and audio signals, general data and/or third party protocol signals.
  • the above-mentioned cable N may include a plurality of main link channels N and auxiliary main link channels N.
  • composition of the plurality of main link channels J and the composition of the plurality of main link channels N may be the same or different, which is not limited in this embodiment of the present application.
  • the transmission device 331 may forward and transmit via the routing device 351 through the cable M between the transmission device 331 and the routing device 351 and the cable K between the routing device 351 and the transmission device 321 .
  • the device 321 performs bidirectional transmission of video and audio signals, general data and/or third party protocol signals.
  • the above-mentioned cable M may include a plurality of main link channels M and auxiliary main link channels M.
  • composition of the plurality of main link channels M and the composition of the plurality of main link channels K may be the same or different, which is not limited in this embodiment of the present application.
  • composition of the cables between the devices in Figure 6 and the bidirectional transmission process of the data stream please refer to Figures 1 to 3 for the composition of the cables between the source device and the end device and the bidirectional transmission of the data stream. The process will not be repeated here.
  • FIG. 6 only schematically takes two source devices and two sink devices as an example for introduction, but the embodiment of the present application is not limited thereto, and the system 300 may include at least one source device and at least one sink device.
  • a source device, a branch device (or a switch device) and a sink device form a "tree" networking topology.
  • a source device forms a "tree" networking topology with multiple sink devices through the branch device/switching device, and the source device can implement unidirectional data flow through the branch device/switching device and the multiple sink devices or bidirectional transmission.
  • multiple source devices can form a "tree" networking topology with one sink device through the branch device/switching device, and the multiple source devices can realize single data flow through the branch device/switching device and the sink device. to or both directions.
  • multiple source devices may form a "mesh" networking topology structure through a routing network and multiple sink devices, and any two end devices may be implemented by routing and forwarding of the routing network.
  • Bidirectional transmission of video and audio signals further, bidirectional transmission of video and audio signals, general data and/or third-party protocol signals can be realized, which can expand the application scenarios of the system 100 .
  • FIG. 7 shows another schematic block diagram of the transmission system 300 provided by this embodiment of the present application.
  • the system 300 may include at least one source device (as shown in FIG. 7 ) shown source device 310, source device 330, and source device 380), at least one sink device (sink device 320, sink device 340, and sink device 370 as shown in FIG. 7), and a routing network 350 for Route and forward the video and audio signals, general data and/or third-party protocol signals transmitted between different end devices.
  • the source device 310 may include transmission means 311
  • the sink device 320 may include transmission means 321
  • the source device 330 may include transmission means 331
  • the sink device 340 may include transmission means 341
  • the sink device 370 may include transmission means 371
  • Source device 380 may include transmission means 381 .
  • Routing network 350 includes routing device 351 and routing device 352 .
  • routing device 351 and the routing device 352 form a two-level cascaded routing network, and jointly complete the routing and forwarding of video and audio signals, general data and/or third-party protocol signals transmitted between different end devices.
  • FIG. 7 only schematically shows a possible cascading manner of the routing device 351 and the routing device 352 , that is, the routing device 351 is connected to the routing device 352 through the cable S shown in FIG. 7 .
  • the embodiment of the present application is not limited to this, and the routing network 350 may also include other numbers of routing devices, which are connected in different cascading manners, which are not limited in the embodiment of the present application.
  • the transmission device 311 may forward and transmit via the routing network 350 through the cable M between the transmission device 311 and the routing network 350 and the cable P between the routing network 350 and the transmission device 381 .
  • the device 381 performs bidirectional transmission of video and audio signals, general data and/or third party protocol signals.
  • the transmission device 381 may forward and transmit via the routing network 350 through the cable P between the transmission device 381 and the routing network 350 and the cable N between the routing network 350 and the transmission device 341
  • the device 341 performs bidirectional transmission of video and audio signals, general data and/or third party protocol signals.
  • the transmission device 311 may forward and transmit via the routing network 350 through the cable J between the transmission device 311 and the routing network 350 and the cable K between the routing network 350 and the transmission device 321
  • the device 321 performs bidirectional transmission of video and audio signals, general data and/or third party protocol signals.
  • composition of each cable and the bidirectional transmission process of the data stream in FIG. 7 can refer to the composition of the cable between the source device and the end device and the bidirectional transmission process of the data stream in FIG. 1 to FIG. 3 , here No longer.
  • FIG. 7 only schematically takes three source devices and three sink devices as an example for introduction, but the embodiment of the present application is not limited thereto, and the system 300 may include at least one source device and at least one sink device.
  • each source device and each sink device construct a "mesh" networking topology structure through multi-level routing devices, which can increase the transmission distance.
  • the transmission system 300 provided by the embodiment of the present application is described above with reference to FIG. 6 and FIG. 7 , and the routing device provided by the embodiment of the present application will be described below.
  • FIG. 8 shows a schematic block diagram of a routing device 400 provided by an embodiment of the present application, where the routing device 400 may be the routing device 351 or the routing device 352 in the system 300 .
  • the device 400 may include a routing device 410 and a plurality of connectors (taking the connector 420 and the connector 430 as shown in FIG. 8 as an example), and the routing device 410 may include a port 411, a channel distribution/ Dedistributor 412 , multiplexer/demultiplexer 413 , switch 414 , multiplexer/demultiplexer 415 , channel assigner/demultiplexer 416 and port 417 .
  • the port 411 is connected to the first device through the connector 420
  • the port 417 is connected to the second device through the connector 430 .
  • the first device may be integrated in an end device or a routing device (or may be an end device or a routing device), and similarly, the second device may be integrated in an end device or a routing device (or may be an end device or a routing device). equipment), which is not limited in this embodiment of the present application.
  • the first device when the device 400 is the routing device 351 , the first device may be the transmission device 311 , and the second device may be the 341 in the system 300 .
  • the first device may transmit the device 311 , and the second device may be integrated into the routing device 352 in the system 300 .
  • connection between the device 400 and the first device and the device 400 and the second device may refer to the connection between the transmission device 111 and the transmission device 121 in the system 100; the device 400 and the first device and the device 400
  • the functions of each component can refer to the description of each component in the transmission device 111 and the transmission device 121 introduced in FIG. 5 . Function.
  • the switch 414 is configured to forward the received upstream data flow (or downstream data flow) through a port corresponding to the destination end of the upstream data flow (or downstream data flow).
  • FIG. 8 only schematically shows the structure of the routing apparatus 410 when the device 400 includes four connectors, but the embodiment of the present application is not limited to this.
  • this embodiment of the present application does not limit the manner in which the switch 414 performs routing and forwarding of video and audio signals, general data, and/or third-party protocol signals between ports.
  • an existing routing and forwarding manner may be referred to.
  • the routing device provided by the embodiment of the present application is described above with reference to FIG. 8 , and the transmission method provided by the embodiment of the present application will be described below.
  • FIG. 9 shows a schematic flowchart of a transmission method 500 provided by an embodiment of the present application, and the method 500 may be applied to the above-mentioned system 100 .
  • the method 500 may include S501 to S514 , wherein S501 to S507 are downlink transmission processes, and S508 to S514 are uplink transmission processes, and the two processes are independent of each other and are executed in no particular order.
  • the first transmission device acquires a downlink video and audio signal, where the downlink video and audio signal includes a downlink video signal and/or a downlink audio signal.
  • the first transmission device may be the transmission device 111 in the system 100 .
  • the first transmission device may receive the downstream video and audio signals from a video and audio signal source.
  • the first transmission device encapsulates the downlink video and audio signal to obtain a first downlink message.
  • the first transmission apparatus fills the first downlink message into the downlink data stream.
  • the first transmission device allocates the downlink data stream to the first downlink main link channel, and sends it to the second transmission device, wherein the first transmission device is connected to the second transmission device through a first cable , the first cable includes a first number of downlink main link channels, and the first downlink main link channel includes at least one downlink main link channel in the first number of downlink main link channels; correspondingly , the second transmission device receives the downlink sub-data stream from the first transmission device through the first downlink main link channel.
  • the second transmission device may be the transmission device 121 in the system 100 .
  • the second transmission apparatus combines the downlink sub-data stream received by the first downlink main link channel into the downlink data stream.
  • the second transmission apparatus extracts the first downlink message from the downlink data stream.
  • the second transmission device decapsulates the first downlink message to obtain the downlink video and audio signal.
  • the second transmission device acquires an upstream video and audio signal, where the upstream video and audio signal includes an upstream video signal and/or an upstream audio signal.
  • the second transmission device may receive the upstream video and audio signal from the video and audio signal collection device.
  • the second transmission device encapsulates the upstream video and audio signal to obtain a first upstream message.
  • the second transmission apparatus fills the first upstream message into the upstream data stream.
  • the second transmission device allocates the uplink data stream to a first uplink main link channel, and sends it to the first transmission device, wherein the first cable further includes a second number of uplink main link channels , the first uplink main link channel includes at least one uplink main link channel in the second number of uplink main link channels; correspondingly, the first transmission device receives data from the first uplink main link channel through the first uplink main link channel The upstream sub-data stream of the second transmission device.
  • the first transmission apparatus combines the uplink sub-data stream received by the first uplink main link channel into the uplink data stream.
  • the first transmission apparatus extracts the first upstream packet from the upstream data stream.
  • the first transmission device decapsulates the first upstream message to obtain the upstream video and audio signal.
  • the first cable may also include an auxiliary line pair, and the auxiliary line pair includes a downlink auxiliary line and an upward auxiliary line, and the first transmission device and the second transmission device can implement the following through the auxiliary line pair: At least one of the auxiliary functions: (1) plug-in detection, (2) flip identification, (3) high-speed transmission link training information exchange, (4) device capability information acquisition, (5) device status information acquisition, (6) ) discovery and establishment of networking topology, (7) content protection information exchange and (8) device interoperability.
  • the auxiliary line pair includes a downlink auxiliary line and an upward auxiliary line
  • the first transmission device and the second transmission device can implement the following through the auxiliary line pair: At least one of the auxiliary functions: (1) plug-in detection, (2) flip identification, (3) high-speed transmission link training information exchange, (4) device capability information acquisition, (5) device status information acquisition, (6) ) discovery and establishment of networking topology, (7) content protection information exchange and (8) device interoperability.
  • the first transmission device may detect a plugging and unplugging state of the first cable on the second transmission device, where the plugging and unplugging state includes plugging in Or pull out; when it is detected that the first cable is inserted into the second transmission device, and the second transmission device is powered on and the link establishment is completed, S504 is performed.
  • the first transmission device may detect the insertion direction of the first cable on the second transmission device, where the insertion direction includes forward insertion or reverse insertion; and determine the downlink main link channel from the plurality of main link channels based on the insertion direction of the second transmission device.
  • the first transmission device may transmit to the second transmission device through the first number of downlink main link channels based on the first transmission rate training data; the first transmission device receives the high-speed training information from the second transmission device through the uplink auxiliary line, the high-speed training information is used to instruct to increase or decrease the first transmission rate; the first transmission device Based on the high-speed training information, the first transmission rate is adjusted to a second transmission rate.
  • the second transmission device receives the training data from the first transmission device through the first number of downlink main link channels based on the first transmission rate; the second transmission device receives the training data based on the above In the case, the high-speed training information is determined; the second transmission device sends the high-speed training information to the first transmission device through the uplink auxiliary line.
  • S504 may include: the first transmission apparatus allocates the downlink data stream to the first downlink main link channel, and sends the downlink data stream to the second transmission apparatus based on the second transmission rate.
  • the first transmission device may send a device capability request to the second transmission device through the downlink auxiliary line, where the device capability request is used to request
  • the second transmission device reports at least one of bidirectional transmission capability, video capability, audio capability and enhanced video capability;
  • the first transmission device receives equipment capability information from the second transmission device through the uplink auxiliary line, the The device capability information is used to indicate at least one of bidirectional transmission capability, video capability, audio capability and enhanced video capability of the second transmission apparatus.
  • the second transmission device receives the device capability request from the first transmission device through the downlink auxiliary line; the second transmission device sends the device capability request to the first transmission device through the uplink auxiliary line based on the device capability request The device capability information.
  • S504 may include: the first transmission apparatus allocates the downlink data stream to the first downlink main link channel based on the device capability information, and sends it to the second transmission apparatus.
  • the above-mentioned two-way transmission capability may include: bidirectional transmission capability of video and audio signals, general data and/or third-party protocol signals, etc.; the above-mentioned video capability may include: resolution, frame rate, color depth and color gamut, etc.; the above-mentioned Enhanced video capabilities may include: high-dynamic range (high-dynamic range, HDR) and China Ultra High Definition Video Industry Alliance (CUVA) HDR, etc.; the above audio capabilities may include: sampling rate, sampling depth and encoding format.
  • high-dynamic range high-dynamic range, HDR
  • CUVA China Ultra High Definition Video Industry Alliance
  • the first transmission device may send a networking broadcast message to the second transmission device through the downlink auxiliary line; the first transmission device passes the The uplink auxiliary line receives a networking feedback message from the second transmission device, where the feedback message is used to indicate that the second transmission device can establish a network topology with the first transmission device; the first transmission device is based on the networking Feedback messages to establish a network topology with the second transmission device.
  • the second transmission device is configured to receive the networking broadcast message from the first transmission device through the downlink auxiliary line; the second transmission device sends to the network broadcast message through the uplink auxiliary line based on the networking broadcast message.
  • the first transmission device sends the networking feedback message.
  • the first transmission device may receive status information from the second transmission device through the uplink auxiliary line, where the status information is used to indicate the second transmission device at least one of the standby state, the power state and the working state.
  • the second transmission device sends the status information to the first transmission device through the uplink auxiliary line.
  • the first transmission device can perform identity authentication on the second transmission device through the auxiliary line pair; when the identity of the second transmission device is After the authentication is passed, S504 is executed.
  • the downstream data stream may be an encrypted downstream data stream.
  • the first transmission device may also send key information to the second transmission device through the downlink auxiliary line, where the key information is used to indicate a key and/or an encryption method of the encrypted downstream data stream.
  • the second transmission device can receive the key information from the first transmission device through the downlink auxiliary line; the second transmission device can decrypt the encrypted downstream data stream based on the key information.
  • the first transmission device may send control information to the second transmission device through the downlink auxiliary line, where the control information is used to control the second transmission device to perform
  • the first operation includes a playback operation, a standby operation, a source switching operation, or a volume control operation.
  • the second transmission device can receive the control information from the first transmission device through the downlink auxiliary line; in response to the control information, the second transmission device performs the first operation.
  • FIG. 10 shows a schematic flowchart of a transmission method 600 provided by an embodiment of the present application, and the method 600 may be applied to the foregoing system 100 .
  • the first transmission device acquires a downlink video and audio signal, where the downlink video and audio signal includes a downlink video signal and/or a downlink audio signal.
  • the first transmission device may be the transmission device 111 in the system 100 .
  • the first transmission device may receive the downstream video and audio signals from a video and audio signal source.
  • the first transmission device encapsulates the downlink video and audio signal according to a first transmission protocol to obtain a first downlink message.
  • the first transmission apparatus acquires a downlink third-party protocol signal.
  • the first transmission device may receive the downlink video and audio signals from a third-party protocol controller.
  • the first transmission device encapsulates the downlink third-party protocol signal according to the first transmission protocol to obtain a second downlink message.
  • the first transmission apparatus acquires downlink general data.
  • the first transmission device may receive the downlink video and audio signal from the first universal data transceiver device.
  • the first transmission device encapsulates the downlink general data according to the first transmission protocol to obtain a third downlink message.
  • the first transmission apparatus multiplexes the first downlink packet, the second downlink packet, and the third downlink packet into a downlink data stream.
  • the first transmission device allocates the downlink data stream to the first downlink main link channel, and sends it to the second transmission device, wherein the first transmission device is connected to the second transmission device through a first cable , the first cable includes a first number of downlink main link channels, and the first downlink main link channel includes at least one downlink main link channel in the first number of downlink main link channels; correspondingly , the second transmission device receives the downlink sub-data stream from the first transmission device through the first downlink main link channel.
  • the second transmission device may be the transmission device 121 in the system 100 .
  • the second transmission apparatus combines the downlink sub-data stream received by the first downlink main link channel into the downlink data stream.
  • the second transmission apparatus demultiplexes the first downlink packet, the second downlink packet, and the third downlink packet from the downlink data stream.
  • the second transmission device decapsulates the first downlink message according to the first transmission protocol to obtain the downlink video and audio signal.
  • the second transmission device decapsulates the second downlink message according to the first transmission protocol to obtain the downlink third-party protocol signal.
  • the second transmission device decapsulates the third downlink message according to the first transmission protocol to obtain the downlink general data.
  • S601 and S602 are the encapsulation processes of downlink video and audio signals
  • S603 and S604 are the encapsulation processes of downlink third-party protocol signals
  • S605 and S606 are the encapsulation processes of downlink general data.
  • the above three encapsulation processes are independent of each other and execute In no particular order.
  • S611 is the decapsulation process of the first downlink packet
  • S612 is the decapsulation process of the second downlink packet
  • S613 is the decapsulation process of the third downlink packet.
  • the above three decapsulation processes are independent of each other and execute In no particular order.
  • S601 to S613 shown in FIG. 10 are the downlink transmission process, the uplink transmission process is similar to the downlink transmission process, and the downlink transmission process can be referred to. To avoid repetition, details are not described here.
  • first transmission device and the second transmission device may also implement various auxiliary functions through the auxiliary line pair, for details, please refer to the introduction in the method 500 .
  • FIG. 11 shows a schematic flowchart of a transmission method 700 provided by an embodiment of the present application, and the method 700 may be applied to the system 300 .
  • the first transmission device acquires a downlink video and audio signal, where the downlink video and audio signal includes a downlink video signal and/or a downlink audio signal.
  • the first transmission device may be the transmission device 311 in the system 300 .
  • the first transmission device may receive the downstream video and audio signals from a video and audio signal source.
  • the first transmission device encapsulates the downlink video and audio signal to obtain a fourth downlink message.
  • the first transmission apparatus fills the fourth downlink packet into the first downlink data stream.
  • the first transmission device allocates the first downlink data stream to a first downlink sub-link channel, and sends it to the routing network, wherein the first transmission device is connected to the routing network through a first sub-cable , the routing network is used to route and forward the data flow between the first transmission device and the second transmission device, and the first sub-cable includes a third number of downlink sub-link channels and a fourth number of uplink channels a sublink channel, the first downlink sublink channel includes at least one downlink sublink channel in the third number of downlink sublink channels; correspondingly, the routing network passes through the first port (ie port 411) The first downlink sub-link channel in the first downlink sub-link channel receives the first downlink sub-data stream from the first transmission device.
  • the second transmission device may be the transmission device 321 in the system 300 .
  • the third number and the fifth number may be the same or different, and the fourth number and the sixth number may be the same or different.
  • the routing network combines the downlink sub-data stream received by the first downlink sub-link channel into the first downlink data stream.
  • the routing network extracts the fourth downlink packet from the first downlink data stream.
  • the routing network decapsulates the fourth downlink packet to obtain the downlink video and audio signal.
  • the routing network determines, based on the destination of the downlink video and audio signal, the output port of the downlink video and audio signal as the second port (ie, port 417).
  • the routing network encapsulates the downlink video and audio signal to obtain a fifth downlink packet.
  • the routing network multiplexes the fifth downlink packet into the second downlink data stream.
  • the routing network allocates the second downlink data stream to the second downlink sub-link channel, and sends it to the second transmission device through the second port, wherein the second transmission device communicates with the second sub-cable through the second sub-cable.
  • routing network connections the second sub-cable includes a fifth number of downlink sublink channels and a sixth number of uplink sublink channels, the second downlink sublink channel includes the fifth number of downlink sublink channels at least one downlink sub-link channel in the channel; correspondingly, the second transmission device receives the downlink sub-data stream from the routing network through the second downlink sub-link channel.
  • the second transmission apparatus combines the downlink sub-data stream received by the second downlink sub-link channel into the second downlink data stream.
  • the second transmission apparatus demultiplexes the second downlink data stream into the fifth downlink packet.
  • the second transmission apparatus demultiplexes the second downlink data stream into the fifth downlink packet.
  • S701 to S714 shown in FIG. 11 are the downlink transmission process, the uplink transmission process is similar to the downlink transmission process, and reference may be made to the downlink transmission process. In order to avoid repetition, details are not repeated here.
  • routing network may include at least one-level routing devices, which is not limited in this embodiment of the present application. Further, the embodiment of the present application does not limit the cascading mode between at least one-level routing devices.
  • the method 700 may be referred to for the transmission process of each route routing device.
  • the protocol stack may include the following four layers.
  • Application layer including applications related to various data streams.
  • the application layer of the source device 110 may include a video and audio signal source 112 , a video and audio signal processing device 113 , a management control module 114 , a third-party protocol controller 116 and a general data transceiver device 117 .
  • the application layer of the sink device 120 may include a video and audio signal output device 122 , a video and audio signal collection device 123 , a management control module 124 , a third-party protocol device 126 and a general data transceiver device 127 .
  • Adaptor layer It is used to describe the management and control inside the transmission system and the docking specification between various internal components and external components in the transmission system.
  • the adaptation layer of the source device 110 may include a video and audio transmission adapter 131 , a video and audio reception adapter 136 , a management control adapter 1310 , a third-party protocol adapter 137 and a general data adapter 138 .
  • the adaptation layer of the sink device 120 may include video and audio transmission adapter 144 , video and audio reception adapter 143 , management control adapter 1410 , third-party protocol adapter 147 and general data adapter 148 .
  • Transport layer It is used to describe the transport layer protocol specification of the system, including the definition and arrangement of data type, structure, routing control, bandwidth management, etc.
  • the transport layer of the source device 110 may include a multiplexer 132 , a channel distributor 133 , a channel de-distributor 134 , a demultiplexer 135 and an arbiter 1311 .
  • the transport layer of the sink device 120 may include a channel allocator 141 , a multiplexer 142 , a demultiplexer 145 , a channel de-allocator 146 and an arbiter 1411 .
  • Physical layer The physical layer specification used to describe the system.
  • the physical layer includes: (1) a logical sublayer; (2) an electrical sublayer; (3) a connector.
  • Logical sublayer used to describe the relevant specifications of the logical sublayer, including 128b/132b codec, scrambling and descrambling, FEC codec, link training, etc.
  • the physical layer of source device 110 includes port 139 and connector 115 .
  • the physical layer of the sink device 120 includes the port 149 and the connector 125 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供了一种传输方法、装置和系统,能够实现端设备间的视音频信号的双向传输。该传输系统可以包括:第一传输装置和第二传输装置,该第一传输装置通过第一线缆与第二传输装置连接,所述第一线缆中包括第一数量的下行主链路通道和第二数量的上行主链路通道;该第一传输装置与该第二传输装置通过该第一线缆进行视音频信号的双向传输。

Description

传输方法、装置和系统 技术领域
本申请涉及多媒体技术领域,并且更具体的,涉及多媒体技术领域中的传输方法、装置和系统。
背景技术
传统的多媒体电子设备(如电视机),通常由显示系统和主机系统组成。然而,随着多媒体电子设备向更轻薄的方向不断发展,分体式多媒体电子设备应运而生。
分体电视是把电视机的显示系统和主机系统分离开来,打破了传统电视机将二者集成一体的结构模式,解决了传统电视机长期以来无法解决的诸多问题,大幅度提升了电视机的使用寿命、音响效果、功能实用性升级导致的体验问题。通常情况下,分体电视机中的主机系统(即源设备)生成视音频信号(包括视频信号和/或音频信号),并通过高清多媒体接口(high definition multimedia interface,HDMI)向该显示系统(即宿设备)传输该视音频信号,然后由该显示系统播放该视音频信号。
智能分体电视机作为家庭的智慧交互中心、跨屏体验中心、物联网(internet of things,IoT)控制中心与影音娱乐中心,不但需要支持主机系统向显示系统传输下行视音频信号并进行播放,同时还需要支持显示系统中的摄像头向主机系统反向传输采集到的视音频信号。
因此,亟需提供一种能够解决端设备间视音频信号的双向传输的技术方案。
发明内容
本申请提供的传输方法、装置和系统,能够实现端设备间的视音频信号的双向传输。
第一方面,本申请实施例提供一种传输系统,该系统可以包括第一传输装置和第二传输装置,该第一传输装置包括第一视音频发送适配器、第一视音频接收适配器、第一复用器、第一解复用器、第一通道分配器、第一通道解分配器和第一端口,该第二传输装置包括第二视音频发送适配器、第二视音频接收适配器、第二复用器、第二解复用器、第二通道分配器、第二通道解分配器和第二端口,该第一端口通过第一线缆与该第二端口连接,该第一线缆中包括第一数量的下行主链路通道和第二数量的上行主链路通道;
该第一视音频发送适配器,用于获取下行媒体信号,该下行媒体信号包括下行视频信号和/或下行音频信号;对该下行媒体信号进行封装,得到第一下行报文;向该第一复用器发送该第一下行报文;
该第一复用器,用于将该第一下行报文填充到下行数据流;向该第一通道分配器发送填充后的下行数据流;
该第一通道分配器,用于将该下行数据流分配到第一下行主链路通道,并发送至该第二传输装置,其中,该第一下行主链路通道包括该第一数量的下行主链路通道中的至少一个下行主链路通道;
该第二通道解分配器,将该第一下行主链路通道接收到的下行子数据流合并为下行数据流;向该第二解复用器发送该下行数据流;
该第二解复用器,用于从该下行数据流中提取出第一下行报文;向该第二视音频接收适配器发送该第一下行报文;
该第二视音频接收适配器,用于对该第一下行报文进行解封装,得到下行媒体信号;
该第二视音频发送适配器,用于获取上行媒体信号,该上行媒体信号包括上行视频信号和/或上行音频信号;对该上行媒体信号进行封装,得到第一上行报文;向该第二复用器发送该第一上行报文;
该第二复用器,用于将该第一上行报文填充到上行数据流;向该第二通道分配器发送填充后的上行数据流;
该第二通道分配器,用于将该上行数据流分配到第一上行主链路通道,并发送至该第一传输装置,其中,该第一上行主链路通道包括该第二数量的上行主链路通道中的至少一个上行主链路通道;
该第一通道解分配器,用于将该第一上行主链路通道接收到的上行子数据流合并为上行数据流;向该第一解复用器发送该上行数据流;
该第一解复用器,用于从该上行数据流中提取出第一上行报文;向该第一视音频接收适配器发送该第一上行报文;
该第一视音频接收适配器,用于对该第一上行报文进行解封装,得到上行媒体信号。
需要说明的是,该第一传输装置可以为(或集成于)源设备,该第二传输装置可以为(集成于)宿设备。
还需要说明的是,本申请实施例中所述的媒体信号,也可以称为视音频信号。
例如:下行媒体信号也可以称为下行视音频信号,上行媒体信号也可以称为上行视音频信号。
采用本申请实施例提供的传输系统,端设备间能够通过一根线缆实现媒体信号的双向传输。
在一种可能的实现方式中,本申请实施例中所述的封装和解封装都是基于统一的传输协议(如第一传输协议)进行的。
采用本申请实施例提供的传输系统,由于源设备发送的第一下行报文是下行媒体信号按照第一传输协议进行一层封装得到的,因此,宿设备收到该第一下行报文后,可以按照该第一传输协议进行一层解封装得到该下行媒体信号。类似地,由于宿设备发送的第一上行报文是上行媒体信号按照该第一传输协议进行一层封装得到的,因此,源设备收到该第一上行报文后,可以按照该第一传输协议进行一层解封装得到该上行媒体信号。
此外,本申请实施例中所述的媒体信号为生成或采集的原始媒体信号,其中包括时钟信号、垂直同步信号、水平同步信号、显示使能、视频数据和音频数据等。在实际应用的场景中,源设备和宿设备之间通过有线方式(即通过一根线缆)进行数据流的双向传输,可以仅需要对媒体信号进行一层封装/解封装,而无需进行视频编码/解码(例如:H264、H265、AVS2/3等),这样能够降低媒体信号的信号源和宿设备的复杂度,减少视频编码/解码带来的图像质量损失,并降低视频编解码带来的时延,从而提升传输效率和用户体验。
在一种可能的实现方式中,该第一数量大于或者等于该第二数量。
进一步地,该第一数量可以大于该第二数量。
采用本申请实施例提供的传输系统,源设备与宿设备之间能够实现非对称的双向传输(即该第一数量与该第二数量不相等),例如该第一数量可以大于第二数量,从而满足实际应用中下行传输速率大于上行传输速率的非对称双向传输的需求。
在一种可能的实现方式中,该装置还包括:第一第三方协议适配器和第二第三方协议适配器;
该第一第三方协议适配器,用于获取下行第三方协议信号;对该下行第三方协议信号进行封装,得到第二下行报文;向该第一复用器发送该第二下行报文;
该第一复用器具体用于将该第一下行报文和该第二下行报文复用到该下行数据流;
该第二解复用器具体用于从该下行数据流中解复用出该第一下行报文和第二下行报文;
该第二解复用器还用于向该第二第三方协议适配器发送该第二下行报文;
该第二第三方协议适配器,用于对该第二下行报文进行解封装,得到下行第三方协议信号;
该第二第三方协议适配器还用于获取上行第三方协议信号;对该上行第三方协议信号进行封装,得到第二上行报文;向该第二复用器发送该第二上行报文;
该第二复用器具体用于将该第一上行报文和该第二上行报文复用到该上行数据流;
该第一解复用器具体用于从该上行数据流中解复用出该第一上行报文和第二上行报文;
该第一解复用器还用于向该第一第三方协议适配器发送该第二上行报文;
该第一第三方协议适配器还用于对该第二上行报文进行解封装,得到上行第三方协议信号。
采用本申请实施例提供的传输系统,端设备间还能够通过该线缆实现第三方协议信号的双向传输,也就是说,端设备间能够通过该线缆实现媒体信号和第三方协议信号的双向传输。
在一种可能的实现方式中,该装置还包括:第一通用数据适配器和第二通用数据适配器;
该第一通用数据适配器,用于获取下行通用数据;对该下行通用数据进行封装,得到第三下行报文;向该第一复用器发送该第三下行报文;
该第一复用器具体用于将该第一下行报文和该第三下行报文复用到该下行数据流;
该第二解复用器具体用于从该下行数据流中解复用出该第一下行报文和第三下行报文;
该第二解复用器还用于向该第二通用数据适配器发送该第三下行报文;
该第二通用数据适配器,用于对该第三下行报文进行解封装,得到下行通用数据;
该第二通用数据适配器还用于获取上行通用数据;对该上行通用数据进行封装,得到第三上行报文;向该第二复用器发送该第三上行报文;
该第二复用器具体用于将该第一上行报文和该第三上行报文复用到该上行数据流;
该第一解复用器具体用于从该上行数据流中解复用出该第一上行报文和第三上行报 文;
该第一解复用器还用于向该第一通用数据适配器发送该第三上行报文;
该第一通用数据适配器还用于对该第三上行报文进行解封装,得到上行通用数据。
采用本申请实施例提供的传输系统,端设备间还能够通过该线缆实现通用数据的双向传输,也就是说,端设备间能够通过该线缆实现媒体信号和通用数据的双向传输。
在一种可能的实现方式中,该装置还包括:第一第三方协议适配器、第二第三方协议适配器、第一通用数据适配器和第二通用数据适配器;
该第一第三方协议适配器,用于获取下行第三方协议信号;对该下行第三方协议信号进行封装,得到第二下行报文;向该第一复用器发送该第二下行报文;
该第一通用数据适配器,用于获取下行通用数据;对该下行通用数据进行封装,得到第三下行报文;向该第一复用器发送该第三下行报文;
该第一复用器具体用于将该第一下行报文、该第二下行报文和该第三下行报文复用到该下行数据流;
该第二解复用器具体用于从该下行数据流中解复用出该第一下行报文、第二下行报文和该第三下行报文;
该第二解复用器还用于向该第二第三方协议适配器发送该第二下行报文;向该第二通用数据适配器发送该第三下行报文;
该第二第三方协议适配器,用于对该第二下行报文进行解封装,得到下行第三方协议信号;
该第二通用数据适配器,用于对该第三下行报文进行解封装,得到下行通用数据;
该第二第三方协议适配器还用于获取上行第三方协议信号;对该上行第三方协议信号进行封装,得到第二上行报文;向该第二复用器发送该第二上行报文;
该第二通用数据适配器还用于获取上行通用数据;对该上行通用数据进行封装,得到第三上行报文;向该第二复用器发送该第三上行报文;
该第二复用器具体用于将该第一上行报文、该第二上行报文和该第三上行报文复用到该上行数据流;
该第一解复用器具体用于从该上行数据流中解复用出该第一上行报文、第二上行报文和该第三上行报文;
该第一解复用器还用于向该第一第三方协议适配器发送该第二上行报文;向该第一通用数据适配器发送该第三上行报文;
该第一第三方协议适配器还用于对该第二上行报文进行解封装,得到上行第三方协议信号。
该第一通用数据适配器还用于对该第三上行报文进行解封装,得到上行通用数据。
采用本申请实施例提供的传输系统,端设备间还能够通过该线缆实现第三方协议信号和通用数据的双向传输,也就是说,端设备间能够通过该线缆,采用时分复用的方式,实现媒体信号、第三方协议信号和通用数据中的至少一种的双向传输。
在一种可能的实现方式中,该装置还可以包括第一管理控制适配器和第二管理控制适配器,该第一线缆中还包括辅助链路通道,该第一管理控制适配器和该第二管理控制适配器用于通过该辅助链路通道实现以下功能中的至少一种:插拔检测、翻转识别、高速传输 链路训练信息交互、设备能力信息获取、设备状态信息获取、组网拓扑结构的发现和建立、内容保护信息交互和设备互操作。
在一种可能的实现方式中,该系统还可以包括路由网络,该第一传输装置通过该第一线缆与该路由网络连接,该路由网络与该第二传输装置连接,该路由网络用于对该第一传输装置和该第二传输装置之间的该上行数据流和该下行数据流进行路由转发;
该第一通道分配器具体用于将该下行数据流发送至该路由网络;
该第一通道解分配器具体用于接收来自该路由网络的该上行子数据流。
在一种可能的实现方式中,该系统还可以包括路由网络,该第二传输装置通过该第一线缆与该路由网络连接,该路由网络与该第一传输装置连接,该路由网络用于对该第一传输装置和该第二传输装置之间的该上行数据流和该下行数据流进行路由转发;
该第二通道解分配器具体用于接收来自该路由网络的该下行子数据流;
该第二通道分配器具体用于将该上行数据流发送至该路由网络。
在一种可能的实现方式中,该路由网络包括至少一级路由设备。
在一种可能的实现方式中,该传输系统的组网拓扑结构为网状。
现有的传输系统中,源设备、分支设备(branch)(或交换设备(switch))和宿设备构成“树状”的组网拓扑结构。例如一个源设备通过该分支设备/交换设备与多个宿设备构成“树状”的组网拓扑结构,该源设备可以通过该分支设备/交换设备与该多个宿设备实现数据流的单向或双向传输。又如多个源设备可以通过该分支设备/交换设备与一个宿设备构成“树状”组网拓扑结构,该多个源设备可以通过该分支设备/交换设备与该宿设备实现数据流的单向或双向传输。
而本申请实施例提供的传输系统中,(一个或多个)源设备可以通过路由网络和(一个或多个)宿设备构成“网状”组网拓扑结构,任意两个端设备之间可以通过路由网络的路由转发实现媒体信号的双向传输,进一步地,可以实现媒体信号、通用数据和/或第三方协议信号的双向传输,能够扩展系统的应用场景。
可选地,该第一子线缆和该第二子线缆的组成可以不同,如第一子线缆包括第三数量的下行子链路通道和第四数量的上行子链路通道,第二子线缆包括第五数量的下行子链路通道和第六数量的上行子链路通道。
在一种可能的实现方式中,该第三数量可以大于或等于该第四数量,该第五数量可以大于或等于该第六数量。
可选地,该第三数量和/或该第五数量可以等于该第一数量,该第四数量和/或该第六数量可以等于该第二数量。
第二方面,本申请实施例还提供一种传输装置,该传输装置可以为上述第一方面或第一方面的各种可能的实现方式中所述的第一传输装置。
该第二方面提供的传输装置所涉及的具体结构和设计可以参见第一方面的阐述。
在一种可能的实现方式中,该第二方面提供的传输装置可以为(或集成于)源设备。
第三方面,本申请实施例还提供另一种传输装置,该传输装置可以为上述第一方面或第一方面的各种可能的实现方式中所述的第二传输装置。
该第三方面提供的传输装置所涉及的具体结构和设计可以参见第一方面的阐述。
在一种可能的实现方式中,该第三方面提供的传输装置可以为(或集成于)宿设备。
第四方面,本申请实施例提供一种传输方法,该方法可以应用于传输系统,该系统可以包括第一传输装置和第二传输装置,该第一传输装置和该第二传输装置通过第一线缆连接,该第一线缆中包括第一数量的下行主链路通道和第二数量的上行主链路通道,该方法包括:第一传输装置获取下行媒体信号,该下行媒体信号包括下行视频信号和/或下行音频信号;该第一传输装置对该下行媒体信号进行封装,得到第一下行报文;该第一传输装置将该第一下行报文填充到下行数据流;该第一传输装置将填充后的下行数据流分配到第一下行主链路通道,并发送至该第二传输装置,其中,该第一下行主链路通道包括该第一数量的下行主链路通道中的至少一个下行主链路通道;该第二传输装置将该第一下行主链路通道接收到的下行子数据流合并为该下行数据流;该第二传输装置从该下行数据流中提取出该第一下行报文;该第二传输装置对该第一下行报文进行解封装,得到该下行媒体信号;以及,该第二传输装置获取上行媒体信号,该上行媒体信号包括上行视频信号和/或上行音频信号;该第二传输装置对该上行媒体信号进行封装,得到第一上行报文;该第二传输装置将该第一上行报文填充到上行数据流;该第二传输装置将填充后的上行数据流分配到第一上行主链路通道,并发送至该第一传输装置,其中,该第一上行主链路通道包括该第二数量的上行主链路通道中的至少一个上行主链路通道;该第一传输装置将该第一上行主链路通道接收到的上行子数据流合并为该上行数据流;该第一传输装置从该上行数据流中提取出该第一上行报文;该第一传输装置对该第一上行报文进行解封装,得到该上行媒体信号。
需要说明的是,该第一传输装置可以为(或集成于)源设备,该第二传输装置可以为(集成于)宿设备。
还需要说明的是,本申请所述中所述的媒体信号,也可以称为视音频信号。
例如:下行媒体信号也可以称为下行视音频信号,上行媒体信号也可以称为上行视音频信号。
采用本申请实施例提供的传输方法,端设备间能够通过一根线缆实现媒体信号的双向传输。
在一种可能的实现方式中,本申请实施例中所述的封装和解封装都是基于统一的传输协议(如第一传输协议)进行的。
采用本申请实施例提供的传输方法,由于源设备发送的第一下行报文是下行媒体信号按照第一传输协议进行一层封装得到的,因此,宿设备收到该第一下行报文后,可以按照该第一传输协议进行一层解封装得到该下行媒体信号。类似地,由于宿设备发送的第一上行报文是上行媒体信号按照该第一传输协议进行一层封装得到的,因此,源设备收到该第一上行报文后,可以按照该第一传输协议进行一层解封装得到该上行媒体信号。
此外,本申请实施例中所述的媒体信号为生成或采集的原始媒体信号,其中包括时钟信号、垂直同步信号、水平同步信号、显示使能、视频数据和音频数据等。在实际应用的场景中,源设备和宿设备之间通过有线方式(即通过一根线缆)进行数据流的双向传输,可以仅需要对媒体信号进行一层封装/解封装,而无需进行视频编码/解码(例如:H264、H265、AVS2/3等),这样能够降低媒体信号的信号源和宿设备的复杂度,减少视频编码/解码带来的图像质量损失,并降低视频编解码带来的时延,从而提升传输效率和用户体验。
在一种可能的实现方式中,该第一数量大于或者等于该第二数量。
进一步地,该第一数量可以大于该第二数量。
采用本申请实施例提供的传输系统,源设备与宿设备之间能够实现非对称的双向传输(即该第一数量与该第二数量不相等),例如该第一数量可以大于第二数量,从而满足实际应用中下行传输速率大于上行传输速率的非对称双向传输的需求。
在一种可能的实现方式中,该方法还可以包括:该第一传输装置获取下行第三方协议信号;该第一传输装置对该下行第三方协议信号进行封装,得到第二下行报文;其中,上述第一传输装置将该第一下行报文填充到下行数据流,包括:该第一传输装置将该第一下行报文和该第二下行报文复用到该下行数据流。
相应地,上述第二传输装置从该下行数据流中提取出第一下行报文,包括:该第二传输装置从该下行数据流中解复用出该第一下行报文和第二下行报文;该方法还可以包括:该第二传输装置对该第二下行报文进行解封装,得到该下行第三方协议信号。
在一种可能的实现方式中,该方法还可以包括:该第二传输装置获取上行第三方协议信号;该第二传输装置对该上行第三方协议信号进行封装,得到第二上行报文;其中,上述第二传输装置将该第一上行报文填充到上行数据流,包括:该第二传输装置将该第一上行报文和该第二上行报文复用到该上行数据流。
相应地,上述第一传输装置从所述上行数据流中提取出第一上行报文,包括:该第一传输装置从该上行数据流解复用出该第一上行报文和第二上行报文;该方法还可以包括:该第一传输装置对该第二上行报文进行解封装,得到该上行第三方协议信号。
采用本申请实施例提供的传输方法,端设备间还能够通过该线缆实现第三方协议信号的双向传输,也就是说,端设备间能够通过该线缆实现媒体信号和第三方协议信号的双向传输。
在一种可能的实现方式中,该方法还可以包括:该第一传输装置获取下行通用数据;该第一传输装置对该下行通用数据进行封装,得到第三下行报文;其中,上述第一传输装置将该第一下行报文填充到下行数据流,包括:该第一传输装置将该第一下行报文和该第三下行报文复用到该下行数据流。
相应地,上述第二传输装置从该下行数据流中提取出第一下行报文,包括:该第二传输装置从该下行数据流中解复用出该第三下行报文;该方法还可以包括:该第二传输装置对该第三下行报文进行解封装,得到该下行通用数据。
在一种可能的实现方式中,该方法还可以包括:该第二传输装置获取上行通用数据;该第二传输装置对该上行通用数据进行封装,得到第三上行报文;其中,上述第二传输装置将该第一上行报文填充到上行数据流,包括:该第二传输装置将该第一上行报文和该第三上行报文复用到该上行数据流。
相应地,上述第一传输装置从所述上行数据流中提取出第一上行报文,包括:该第一传输装置从该上行数据流中解复用出该第一上行报文和第三上行报文;该方法还可以包括:该第一传输装置对该第三上行报文进行解封装,得到该上行通用数据。
采用本申请实施例提供的传输方法,端设备间还能够通过该线缆实现通用数据的双向传输,也就是说,端设备间能够通过该线缆实现媒体信号和通用数据的双向传输。
在一种可能的实现方式中,该方法还可以包括:该第一传输装置获取下行第三方协议 信号;该第一传输装置对该下行第三方协议信号进行封装,得到第二下行报文;该第一传输装置获取下行通用数据;该第一传输装置对该下行通用数据进行封装,得到第三下行报文;其中,上述第一传输装置将该第一下行报文填充到下行数据流,包括:该第一传输装置将该该第一下行报文、该第二下行报文和该第三下行报文复用到该下行数据流。
相应地,上述第二传输装置从该下行数据流中提取出第一下行报文,包括:该第二传输装置从该下行数据流中解复用出该第一下行报文、第二下行报文和第三下行报文;该方法还可以包括:该第二传输装置对该第二下行报文进行解封装,得到该下行第三方协议信号;该第二传输装置对该第三下行报文进行解封装,得到该下行通用数据。
在一种可能的实现方式中,该方法还可以包括:该第二传输装置获取上行第三方协议信号;该第二传输装置对该上行第三方协议信号进行封装,得到第二上行报文;该第二传输装置获取上行通用数据;该第二传输装置对该上行通用数据进行封装,得到第三上行报文;其中,上述第二传输装置将该第一上行报文填充到上行数据流,包括:该第二传输装置将该第一上行报文、该第二上行报文和该第三上行报文复用到该上行数据流。
相应地,上述第一传输装置从所述上行数据流中提取出第一上行报文,包括:该第一传输装置从该上行数据流中解复用出该第一上行报文、第二上行报文和第三上行报文;该方法还可以包括:该第一传输装置对该第二上行报文进行解封装,得到该上行第三方协议信号;该第一传输装置对该第三上行报文进行解封装,得到该上行通用数据。
采用本申请实施例提供的传输系统,端设备间还能够通过该线缆实现第三方协议信号和通用数据的双向传输,也就是说,端设备间能够通过该线缆,采用时分复用的方式,实现媒体信号、第三方协议信号和通用数据中的至少一种的双向传输。
在一种可能的实现方式中,该第一线缆中还包括辅助链路通道,该辅助链路通道,该辅助链路通道对用于实现以下功能中的至少一种:插拔检测、翻转识别、高速传输链路训练信息交互、设备能力信息获取、设备状态信息获取、组网拓扑结构的发现和建立、内容保护信息交互和设备互操作。
在一种可能的实现方式中,该系统还可以包括路由网络,该第一传输装置通过该第一线缆与该路由网络连接,该路由网络与该第二传输装置连接,该路由网络用于对该第一传输装置和该第二传输装置之间的该上行数据流和该下行数据流进行路由转发;其中,上述上述第一传输装置将该下行数据流发送至该第二传输装置,包括:该第一传输装置将该下行数据流发送至该路由网络。
在一种可能的实现方式中,该系统还可以包括路由网络,该第二传输装置通过该第一线缆与该路由网络连接,该路由网络与该第一传输装置连接,该路由网络用于对该第一传输装置和该第二传输装置之间的该上行数据流和该下行数据流进行路由转发;其中,上述第二传输装置将该上行数据流发送至该第一传输装置,包括:该第二传输装置将该上行数据流发送至该路由网络。
在一种可能的实现方式中,该路由网络包括至少一级路由设备。
在一种可能的实现方式中,该传输系统的组网拓扑结构为网状。
现有的传输方法中,源设备、分支设备(或交换设备)和宿设备构成“树状”的组网拓扑结构。例如一个源设备通过该分支设备/交换设备与多个宿设备构成“树状”的组网拓扑结构,该源设备可以通过该分支设备/交换设备与该多个宿设备实现数据流的单向或 双向传输。又如多个源设备可以通过该分支设备/交换设备与一个宿设备构成“树状”组网拓扑结构,该多个源设备可以通过该分支设备/交换设备与该宿设备实现数据流的单向或双向传输。
而本申请实施例提供的传输方法中,(一个或多个)源设备可以通过路由网络和(一个或多个)宿设备构成“网状”组网拓扑结构,任意两个端设备之间可以通过路由网络的路由转发实现媒体信号的双向传输,进一步地,可以实现媒体信号、通用数据和/或第三方协议信号的双向传输,能够扩展系统的应用场景。
可选地,该第一子线缆和该第二子线缆的组成可以不同,如第一子线缆包括第三数量的下行子链路通道和第四数量的上行子链路通道,第二子线缆包括第五数量的下行子链路通道和第六数量的上行子链路通道。
在一种可能的实现方式中,该第三数量可以大于或等于该第四数量,该第五数量可以大于或等于该第六数量。
可选地,该第三数量和/或该第五数量可以等于该第一数量,该第四数量和/或该第六数量可以等于该第二数量。
第五方面,本申请还提供一种传输方法,该方法可以包括上述第四方面或第四方面的各种可能的实现方式中由第一传输装置执行的步骤。
第六方面,本申请还提供一种传输方法,该方法可以包括上述第四方面或第四方面的各种可能的实现方式中由第二传输装置执行的步骤。
附图说明
图1是本申请实施例提供的传输系统100的示意性框图;
图2是本申请实施例提供的传输系统100的另一示意性框图;
图3是本申请实施例提供的传输系统100的又一示意性框图;
图4是本申请实施例提供的传输装置200的示意性框图;
图5是本申请实施例提供的传输系统100的又一示意性框图;
图6是本申请实施例提供的传输系统300的示意性框图;
图7是本申请实施例提供的传输系统300的另一示意性框图;
图8是本申请实施例提供的路由设备400的示意性框图;
图9是本申请实施例提供的传输方法500的示意性流程图;
图10是本申请实施例提供的传输方法600的示意性流程图;
图11是本申请实施例提供的传输方法700的示意性流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
首先对本申请实施例中提到的部分专业术语做一下介绍。
1、端设备
端设备可以包括源设备、宿设备和扩展坞。
2、源设备
源设备是指可以生成视音频信号的设备。
例如:机顶盒、数字多功能光盘播放器(digital versatile disc,DVD)、个人计算机(personal computer,PC)、游戏机、分体式电视机的主机。
3、宿设备
宿设备是指负责接收源设备提供的视音频信号,并输出该视音频信号,如通过显示屏展示视频,或通过音响播放音频。
例如:电视机、分体式电视机的显示屏或音箱。
4、扩展坞(docking station)
扩展坞,又称端口复制器(port replicator),通过复制甚至扩展电子设备,如笔记本电脑的端口,使电子设备与多个配件或外置设备,如电源适配器、网线、鼠标、外置键盘、打印机及外置显示器,方便的一站式连接。
5、路由设备
路由设备是指具有路由功能的设备,路由(routing)功能是指决定数据流从源端到目的端的传输路径的功能。
例如:一个包括多个端口的路由设备,可以为该多个端口的数据流选择传输路径。
首先介绍一下本申请实施例提供的传输方法所应用的传输系统。
图1和图2示出了本申请实施例提供的传输系统100的示意性框图。如图1和图2所示,系统100可以包括至少一个源设备(如图1和图2中示出的源设备110)和至少一个宿设备(如图1和图2中示出的宿设备120)。
在图1和图2中,源设备110可以包括传输装置111、视音频信号源112、视音频信号处理装置113、管理控制模块114和连接器115。
在图1和图2中,宿设备120可以包括传输装置121、视音频信号输出装置122、视音频信号采集装置123、管理控制模块124和连接器125。
此外,连接器115与连接器125之间通过一根线缆(即第一线缆)连接,该线缆中可以包括多个主链路通道,该多个主链路通道可以包括第一数量的下行主链路通道(如图1中示出的6个下行主链路通道a1或如图2中示出的3个下行主链路通道a1)和第二数量的上行主链路通道(如图1中示出的2个上行主链路通道a2或如图2中示出的1个上行主链路通道a2)。
可选地,上述视音频信号源112、视音频信号处理装置113、管理控制模块114、视音频信号输出装置122、视音频信号采集装置123和管理控制模块124可以通过硬件实现,或者可以通过软件实现,或者可以通过软件和硬件相结合的方式实现;连接器115和连接器125可以通过硬件实现,本申请实施例对此不做限定。
需要说明的是,本申请实施例中所述的宿设备还可以为扩展坞,为清楚起见,本申请实施例仅以宿设备为例进行介绍,但本申请所述不限于此。
在一种可能的实现方式中,传输装置111和传输装置121可以通过该该多个主链路通道进行视音频信号的双向传输。
可选地,本申请实施例中所述的视音频信号可以包括视频信号和/或音频信号,本申请实施例对此不做限定。
需要说明的是,本申请实施例中所述的视音频信号也可以称为媒体信号,该媒体信号包括视频信号和/或音频信号。
需要说明的是,在本申请实施例中,双向传输包括上行传输和下行传输,该下行传输是指沿着由源设备向宿设备(或扩展坞)的方向传输,该上行传输是指沿着由宿设备(或扩展坞)向源设备的方向传输。
还需要说明的是,在本申请实施例中,下行传输的数据流称为下行数据流;上行传输的数据流称为上行数据流。
需要说明的是,在本申请实施例中,下行主链路通道用于传输下行数据流;上行主链路通道用于传输上行数据流。
下面将介绍传输装置111和传输装置121通过该多个主链路通道,进行视音频信号的双向传输的过程。
1、下行传输过程
视音频信号源112用于生成下行视音频信号,向传输装置111发送该下行视音频信号。
在一种可能的实现方式中,该下行视音频信号包括时钟信号1、垂直同步信号1、水平同步信号1、显示使能1、视频数据1和音频数据1。
传输装置111用于接收来自视音频信号源112的该下行视音频信号;按照第一传输协议对该下行视音频信号进行封装,得到下行报文1(即第一下行报文);向传输装置121发送该下行报文1。
在一种可能的实现方式中,传输装置111具体用于通过第一下行主链路通道,向传输装置121发送该下行报文1,该第一下行主链路通道包括该第一数量的下行主链路通道中的至少一个下行主链路通道。
传输装置121用于按照该第一传输协议对该下行报文1进行解封装,得到该下行视音频信号;向媒体输出装置122发送该下行视音频信号。
在一种可能的实现方式中,传输装置121具体用于通过该第一下行主链路通道,接收来自该传输装置111的该下行报文1。
视音频信号输出装置122用于输出该下行视音频信号。
可选地,本申请实施例对媒体输出装置122的具体形式不做限定。
在一种可能的实现方式中,若该下行视音频信号包括下行音频信号,媒体输出装置122为音箱,则上述媒体输出装置122具体用于播放该下行音频信号。
在另一种可能的实现方式中,若该下行视音频信号包括下行视频信号,媒体输出装置122为显示屏,则上述媒体输出装置122具体用于显示该下行视频信号。
2、上行传输过程
视音频信号采集装置123用于采集上行视音频信号;向传输装置121发送该上行视音频信号。
在一种可能的实现方式中,该上行视音频信号包括时钟信号2、垂直同步信号2、水平同步信号2、显示使能2、视频数据2和音频数据2。
传输装置121用于按照该第一传输协议对该上行视音频信号进行封装,得到上行报文1(即第一上行报文);向传输装置111发送该上行报文1。
在一种可能的实现方式中,传输装置121具体用于通过该第一上行主链路通道,向传输装置111发送该上行报文1,该第一上行主链路通道包括该第二数量的上行主链路通道中的至少一个上行主链路通道。
传输装置111用于按照该第一传输协议,对该上行报文1进行解封装,得到该上行视音频信号,向视音频信号处理装置113发送该上行视音频信号。
在一种可能的实现方式中,传输装置111具体用于通过该第一上行主链路通道,接收来自传输装置121的该上行报文1。
视音频信号处理装置113用于对该上行视音频信号进行处理。
本申请实施例提供的传输系统,为源设备和宿设备之间的数据传输提供了一种基于统一传输协议的全流程解决方案,采用该解决方案的源设备和宿设备可以通过多个主链路通道进行视音频信号的双向传输。
此外,由于源设备发送的第一下行报文是下行视音频信号按照第一传输协议进行一层封装得到的,因此,宿设备收到该第一下行报文后,可以按照该第一传输协议进行一层解封装得到该下行视音频信号。类似地,由于宿设备发送的第一上行报文是上行视音频信号按照该第一传输协议进行一层封装得到的,因此,源设备收到该第一上行报文后,可以按照该第一传输协议进行一层解封装得到该上行视音频信号。
此外,本申请实施例中所述的视音频信号为生成或采集的原始视音频信号,其中包括时钟信号、垂直同步信号、水平同步信号、显示使能、视频数据和音频数据等。在实际应用的场景中,源设备和宿设备之间通过有线方式(即通过一根线缆)进行数据流的双向传输,可以仅需要对视音频信号进行一层封装/解封装,而无需进行视频编码/解码(例如:H264、H265、AVS2/3等),这样能够降低视音频信号的信号源和宿设备的复杂度,减少视频编码/解码带来的图像质量损失,并降低视频编解码带来的时延,从而提升传输效率和用户体验。
可选地,本申请实施例中所述的主链路通道(lane)可以通过多种方式实现,本申请实施例对此不作限定。
在一种可能的实现方式中,如图1和图2中所示,主链路通道可以为差分通道,一个差分通道可以包括一个差分线对。
在另一种可能的实现方式中,主链路通道可以为光通道,一个光通道可以为一根光纤或光纤内一个特定波长构成的通道。
需要说明的是,单个通道仅支持单向传输,即下行传输或上行传输。单个通道可以支持在多种传输速率下工作,同向传输的通道的传输速率相同,反向传输的通道的传输速率可以相同也可以不同。
例如:单个通道可以支持2千兆比特每秒(Gbps)、4Gbps、6Gbps、8Gbps、12Gbps、16Gbps、24Gbps或其他传输速率。
可选地,本申请实施例对该多个主链路通道的数量不做限定。
在一种可能的实现方式中,如图1所示,该多个主链路通道的数量可以为8。
在一种可能的实现方式中,如图2所示,该多个主链路通道的数量可以为4。
可选地,本申请实施例对该第一数量和该第二数量不做限定。
在一种可能的实现方式中,该第一数量可以大于或等于该第二数量。进一步地,该第一数量可以大于该第二数量。
例如,以该多个主链路通道的数量为8,且每个主链路通道的传输速率为24Gbps为例,8个主链路通道可以采用如下表一中所示的配置模式。
表一
Figure PCTCN2021073052-appb-000001
例如:以表一中的配置模式6+2为例,8个主链路通道可以分为6个下行主链路通道和2个上行主链路通道,其中,6个下行主链路通道的下行最大传输速率为144Gbps,2个上行主链路通道的上行最大传输速率为48Gbps。
需要说明的是,表一中仅示意性示出配置模式6+2以及配置模式4+4,但本申请实施例不限于此。可选地,该8个主链路通道对还可以采用其他配置模式进行配置,例如8+0或0+8的配置模式,本申请实施例对此不做限定。
例如,以该多个主链路通道的数量为4,且每个主链路通道的传输速率为24Gbps为例,4个主链路通道可以采用如下表二中所示的配置模式。
表二
Figure PCTCN2021073052-appb-000002
例如:以表二中的配置模式3+1为例,4个主链路通道可以分为3个下行主链路通道和1个上行主链路通道,其中,3个下行主链路通道的下行最大传输速率为72Gbps,1个上行主链路通道的上行最大传输速率为24Gbps。
需要说明的是,表二中仅示意性示出配置模式3+1以及配置模式2+2,但本申请实施例不限于此。可选地,该4个主链路通道还可以采用其他配置模式进行配置,例如4+0或0+4的配置模式,本申请实施例对此不做限定。
采用本申请实施例提供的传输系统,源设备与宿设备之间能够实现非对称的双向传输(即该第一数量与该第二数量不相等),例如该第一数量可以大于第二数量,从而满足实际应用中下行传输速率大于上行传输速率的非对称双向传输的需求。
可选地,如图1和图2所示,该线缆中还可以包括辅助链路通道(如图1中示出的辅助链路通道或如图2中示出的辅助链路通道)。
可选地,本申请实施例中所述的辅助链路通道可以通过多种方式实现,本申请实施例对此不作限定。
在一种可能的实现方式中,如图1和图2中所示,一个辅助链路通道可以包括一个辅助线对,该辅助线对可以包括下行辅助线和上行辅助线。
在一种可能的实现方式中,该辅助线对可以工作在全双工传输模式。
在一种可能的实现方式中,传输装置111和传输装置121可以通过该辅助链路通道实现以下辅助功能中的至少一项:插拔检测、翻转(flip)识别、高速传输链路训练信息交互、设备能力信息获取、设备状态信息获取、组网拓扑结构的发现和建立、内容保护信息 交互和设备互操作。
下面将介绍在实现各辅助功能的过程中传输装置111和管理控制模块114的功能。
传输装置111用于产生控制命令1(或数据1或信号1),并上报给管理控制模块114。
管理控制模块114用于根据该控制命令1(或数据1或信号1)进行相应的处理。
例如:管理控制模块114收到控制命令1,该控制命令1用于指示端口139与端口149已连接,则可以启动读取对端能力操作。
又例如:管理控制模块114收到控制命令1,该控制命令1用于指示该线缆在连接器115与连接器125之间的连接翻转,则调整相关线序配置等。
管理控制模块114还用于产生控制命令2(或数据2或信号2),并发送给传输装置111。
传输装置111还用于根据该控制命令2(或数据2或信号2)进行相应的处理。
例如:调整传输装置相关参数,或者通过下行辅助线将该控制命令2(或数据2或信号2)传输给传输装置121等。
传输装置111还用于通过上行辅助线接收来自传输装置121的控制命令3(或数据3或信号3),并根据该控制命令3(或数据3或信号3)进行相应的处理。
例如:调整传输装置相关参数,或者将该控制命令3(或数据3或信号3)发送给管理控制模块114处理。
管理控制模块114还用于接收来自传输装置111该控制命令3(或数据3或信号3),并根据该控制命令3(或数据3或信号3)进行相应的处理。
例如:执行音量加减操作、切源操作等。
管理控制模块114还用于接收用户输入的控制指令,通过传输装置111和下行辅助线将与该控制指令对应的控制命令4(或数据4或信号4)发送给传输装置121。
需要说明的是,在实现各辅助功能的过程中传输装置121和管理控制模块124的功能可以参考传输装置111和管理控制模块114,为避免重复,此处不再赘述。
还需要说明的是,传输装置111和传输装置121通过该辅助线对实现各辅助功能的过程可以参考现有技术,或者可以参考下文中的进一步介绍,此处不再赘述。
可选地,传输装置111和传输装置121可以通过该多个主链路通道,采用时分复用的方式,实现视音频信号、通用数据和第三方协议信号中的至少一种的双向传输。
需要说明的是,本申请实施例中所述的第三方协议信号是指能够支持第三方协议的信号,该第三方协议信号可以通过协议隧道实现第三方协议透明传输。
可选地,上述第三方协议可以包括通用串行总线(universal serial bus,USB)协议、快捷外围部件互连标准(peripheral component interconnect express,PCIe)协议和/或其他第三方协议等。
例如:第三方协议信号可以包括USB协议信号和/或PCIe协议信号。
需要说明的是,本申请实施例中所述的通用数据是一种通用的数据交互方案,可同时支持低速数据和高速数据的交互,通用数据通过应用层的扩展支持设备之间的相互访问和数据交换。
可选地,上述通用数据可以包括除视音频信号和第三方协议信号外的数据。
例如:通用数据可以包括传输装置111对大容量存储设备进行访问和控制过程中产生 的数据。
在一种可能的实现方式中,图3示出了本申请实施例提供的传输系统100的另一示意性框图,如图3所示,系统100可以包括至少一个源设备(如图3中示出的源设备110)和宿设备(如图3中示出的宿设备120)。
在图3中,源设备110可以包括传输装置111、连接器115、视音频信号源112、视音频信号处理装置113、管理控制模块114、第三方协议控制器116和通用数据收发装置117。
在图3中,宿设备120可以包括传输装置121、连接器125、视音频信号输出装置122、视音频信号采集装置123、管理控制模块124、第三方协议装置126和通用数据收发装置127。
此外,连接器115与连接器125之间通过一根线缆(即第一线缆)连接,该线缆中包括多个主链路通道,该多个主链路通道包括第一数量的下行主链路通道(如图3中示出的6个下行主链路通道a1)和第二数量的上行主链路通道(如图3中示出的2个上行主链路通道a2)。
需要说明的是,图3中未介绍的部分可以参考图1和图2,为避免重复,此处不再赘述。
下面将介绍传输装置111和传输装置121通过该多个主链路通道进行视音频信号、通用数据和第三方协议信号的双向传输的过程。
1、下行传输过程
视音频信号源112用于生成下行视音频信号;向传输装置111发送该下行视音频信号。
在一种可能的实现方式中,该下行视音频信号包括时钟信号1、垂直同步信号1、水平同步信号1、显示使能1、视频数据1和音频数据1。
传输装置111用于对该下行视音频信号进行封装,得到下行报文1(即第一下行报文)。
第三方协议控制器116用于生成下行第三方协议信号;向传输装置111发送该下行第三方协议信号。
传输装置111还用于对该下行第三方协议信号进行封装,得到下行报文2(即第二下行报文)。
通用数据收发装置117用于生成下行通用数据;向传输装置111发送该下行通用数据。
传输装置111还用于对该下行通用数据进行封装,得到下行报文3(即第三下行报文)。
传输装置111还用于采用时分复用的方式,向传输装置121发送该下行报文1、该下行报文2和该下行报文3。
在一种可能的实现方式中,传输装置111具体用于通过第一下行主链路通道,采用时分复用的方式,向传输装置121发送该下行报文1、该下行报文2和该下行报文3,该第一下行主链路通道包括该第一数量的下行主链路通道中的至少一个下行主链路通道。
传输装置121还用于对该下行报文1进行解封装,得到该下行视音频信号;向视音频信号输出装置122发送该下行视音频信号。
视音频信号输出装置122用于输出该下行视音频信号。
传输装置121还用于对该下行报文2进行解封装,得到该下行第三方协议信号;向第三方协议装置126发送该下行第三方协议信号。
第三方协议装置126用于对该下行第三方协议信号进行处理。
传输装置121还用于对该下行报文3进行解封装,得到该下行通用数据;向通用数据收发装置127发送该下行通用数据。
通用数据收发装置127用于对该下行通用数据进行处理。
在一种可能的实现方式中,上述下行报文1、下行报文2和下行报文3都遵循一个统一的传输协议,即都是基于该统一的传输协议(如第一传输协议)进行封装得到的。
2、上行传输过程
视音频信号采集装置123用于生成上行视音频信号;向传输装置121发送该上行视音频信号。
在一种可能的实现方式中,该上行视音频信号包括时钟信号2、垂直同步信号2、水平同步信号2、显示使能2、视频数据2和音频数据2。
传输装置121还用于对该上行视音频信号进行封装,得到上行报文1(即第一上行报文)。
第三方协议装置126还用于生成上行第三方协议信号;向传输装置121发送该上行第三方协议信号。
传输装置121还用于对该上行第三方协议信号进行封装,得到上行报文2(即第二上行报文)。
通用数据收发装置127还用于生成上行通用数据;向传输装置121发送该上行通用数据。
传输装置121还用于对该上行通用数据进行封装,得到上行报文3(即第三上行报文)。
传输装置121还用于采用时分复用的方式,向传输装置111发送该上行报文1、该上行报文2和该上行报文3。
在一种可能的实现方式中,传输装置121具体用于通过第一上行辅助链路通道,采用时分复用的方式,向传输装置111发送该上行报文1、该上行报文2和该上行报文3,该第一上行主链路通道包括该第二数量的上行主链路通道中的至少一个上行主链路通道。
传输装置111还用于对该上行报文1进行解封装,得到该上行视音频信号;向视音频信号处理装置113发送该上行视音频信号。
视音频信号处理装置113还用于对该上行视音频信号进行处理。
传输装置111还用于对该上行报文2进行解封装,得到该上行第三方协议信号;向第三方协议控制器116发送该上行第三方协议信号。
第三方协议控制器116还用于对该上行第三方协议信号进行处理。
传输装置111还用于对该上行报文3进行解封装,得到该上行通用数据;向通用数据收发装置117发送该上行通用数据。
通用数据收发装置117还用于对该上行通用数据进行处理。
在一种可能的实现方式中,上述上行报文1、上行报文2和上行报文3都遵循一个统一的传输协议,即都可以基于该统一的传输协议(如第一传输协议)进行解封装。
本申请实施例提供的传输系统,为源设备和宿设备之间的数据传输提供了一种基于统一传输协议的全流程解决方案,采用该解决方案的源设备和宿设备可以通过该多个主链路通道进行实现视音频信号、通用数据和第三方协议信号的双向传输。
需要说明的是,上面仅示意性示出该系统100对视音频信号、通用数据和第三方协议数据进行双向传输的结构图,但本申请实施例不限于此。该系统100对视音频信号和通用数据进行双向传输所涉及的结构,以及对视音频信号和第三方协议数据进行双向传输所涉及的结构可以参考图3中相关部分的结构。
还需要说明的是,系统100中仅示意性示出一路视音频信号、一路通用数据和一路第三方协议信号,即三种类型的信号(或数据)的双向传输所对应的结构,但本申请实施例不限于此。
可选地,该系统100可以包括至少一路视音频信号、至少一路通用数据和/或至少一路第三方协议信号的双向传输所对应的结构,其中,对每种类型的信号来说,每一路该该种类信号的双向传输所涉及的具体结构和设计类似,为避免重复,此处不再赘述。
需要说明的是,图1至图3仅示意性示出系统100包括源设备110和宿设备120但本申请实施例不限于此。
可选地,系统100中还可以包括至少一个其他源设备和至少一个其它宿设备,本申请实施例对此不做限定。
还需要说明的是,系统100中任意两个端设备之间(如任意一个源设备和任意一个宿设备之间、任意两个源设备之间或任意两个宿设备之间)的连接方式和传输方式,具体可以参考上述源设备110和宿设备120之间的连接方式和传输方式,为避免重复,此处不再赘述。
上面结合图1至图3介绍了本申请实施例提供的传输系统100,下面将进一步介绍系统100中的传输装置111和传输装置121。
图4示出了本申请实施例提供的传输装置200的示意性框图,该传输装置200可以为上述系统100中的传输装置111或传输装置121。如图4所示,该装置200可以包括视音频信号发送适配器201、交换器202、端口203、视音频信号接收适配器204和管理控制适配器205。
在一种可能的实现方式中,该交换器202可以包括图4中未示出的复用器202-1、通道分配器202-2、解复用器202-3和通道解分配器202-4。
可选地,装置200还可以包括通用数据适配器206和第三方协议适配器中的至少一个。
需要说明的是,装置200中包括的各组成部分均通过硬件实现,其中,各组成部分的具体功能详见下文中的介绍。
图5示出了本申请实施例提供的传输系统100的又一示意性框图,如图5所示,系统100可以包括:源设备110和宿设备120,源设备110可以包括传输装置111、视音频信号源112和连接器115,宿设备120可以包括传输装置121、视音频信号输出装置122和连接器125。
如图5所示,传输装置111可以包括视音频发送适配器131、复用器132、通道分配器133和端口139,端口139包括第一数量的差分发射器152(如图5中示出的6个差分发射器152)。传输装置121可以包括通道解分配器141、解复用器142、视音频接收适配器143和端口149,端口149包括第一数量的差分接收器162(如图5中示出的6个差分接收器162)。
其中,视音频信号源112的输出端耦合至视音频发送适配器131的输入端,视音频发 送适配器131的输出端耦合至复用器132的第一输入端,复用器132的输出端耦合至通道分配器133的输入端,通道分配器133的第一数量的输出端分别耦合至第一数量的差分发射器152的输入端,第一数量的差分发射器152的输出端通过连接器115和连接器125之间的第一数量的下行差分线对耦合至第一数量的差分接收器162的输入端,第一数量的差分接收器162的输出端耦合至通道解分配器141的第一数量的输入端,通道解分配器141的输出端耦合至解复用器142的输入端,解复用器142的第一输出端耦合至视音频接收适配器143的输入端,视音频接收适配器143的输出端耦合至视音频信号输出装置122的输入端。
视音频发送适配器131用于从视音频信号源112获取下行视音频信号(包括如图5中示出的时钟信号1、垂直同步信号1、水平同步信号1、显示输出1、视频数据1和音频数据1),该下行视音频信号包括下行视频信号和/或下行音频信号;对该下行视音频信号进行封装,得到第一下行报文;向复用器132发送该第一下行报文。
复用器132用于将该第一下行报文填充至下行数据流;向通道分配器133发送该下行数据流。
需要说明的是,传输装置111与传输装置121之间的下行主链路通道属于一种高速链路通道,该下行主链路通道一旦建立,就会传输下行数据流,这时候的下行数据流是由多个空报文形成的,当第一下行报文需要传输时,将该第一下行报文填充(或插入)至下行数据流中并替换掉相应的空报文,进一步对填充(或插入)后的下行数据流进行传输。
换句话说,该复用器132用于将该第一下行报文和空报文复用到该下行数据流,使该下行数据流的速率与该第一数量的下行差分线对的实际速率匹配。
例如:当第一数量的下行差分线对的实际传输速率为12Gbps,该第一下行报文的速率为8Gbps时,为保证复用后得到的下行数据流的速率适配该第一数量的下行差分线对的实际传输速率,复用器132需要生成4Gbps的空报文并进行填充进下行数据流中,使得填充后得到的下行数据流的速率与该第一数量的下行差分线对的实际传输速率的匹配。
通道分配器133用于将该下行数据流分配到第一下行主链路通道,并发送至通道解分配器141,其中,该第一下行主链路通道包括该下行通道组中的至少一个下行主链路通道。
也就是说,该通道分配器133可以根据该下行数据流的数据量或其他传输情况,将该下行数据流分配到端口139中包括的该第一数量的下行差分线对中的部分或全部下行主链路通道。
通道解分配器141用于将该第一下行主链路通道接收到的下行子数据流合并为下行数据流;向解复用器142发送该下行数据流。
解复用器142用于从所述下行数据流中提取出该第一下行报文;向视音频接收适配器143发送该第一下行报文。
解复用器142的功能为复用器132的功能的逆过程,即将下行数据流中填充的该第一下行报文提取出来。
视音频接收适配器143用于对该第一下行报文进行解封装,得到该下行视音频信号;向视音频信号输出装置122发送该下行视音频信号。
视音频信号输出装置122用于输出该下行视音频信号。
进一步地,源设备110还可以包括视音频信号处理装置113,传输装置111还可以包 括通道解分配器134、解复用器135和视音频接收适配器136,端口139还可以包括第二数量的差分接收器153(如图5中示出的2个差分接收器153)。宿设备120还可以包括视音频信号采集装置123,传输装置121还可以包括视音频发送适配器144、复用器145和通道分配器146,端口149还可以包括第二数量的差分发射器163(如图5中示出的2个差分发射器163)。
其中,视音频信号采集装置123的输出端耦合至视音频发送适配器144的输入端,视音频发送适配器144的输出端耦合至复用器145的输入端,复用器145的输出端耦合至通道分配器146的输入端,通道分配器146的第二数量的输出端分别耦合至第二数量的差分发射器163的输入端,第二数量的差分发射器163的输出端通过连接器125和连接器115之间的第二数量的上行差分线对耦合至第二数量的差分接收器153的输入端,第二数量的差分接收器153的输出端耦合至通道解分配器134的输入端,通道解分配器134的输出端耦合至解复用器135的输入端,解复用器135的输出端耦合至视音频接收适配器136的输入端,视音频接收适配器136的输出端耦合至视音频信号处理装置113的输入端。
视音频发送适配器144,用于从视音频信号采集装置123获取上行视音频信号(包括如图5中示出的时钟信号2、垂直同步信号2、水平同步信号2、显示输出2、视频数据2和音频数据2),该上行视音频信号包括上行视频信号和/或上行音频信号;对该上行视音频信号进行封装,得到第一上行报文;向复用器145发送该第一上行报文。
复用器145用于将该第一上行报文填充至上行数据流;向通道分配器146发送该上行数据流。
需要说明的是,传输装置111与传输装置121之间的上行主链路通道属于一种高速链路通道,该上行主链路通道一旦建立,就会传输上行数据流,这时候的上行数据流是由多个空报文形成的,当第一上行报文需要传输时,将该第一上行报文填充(或插入)至上行数据流中并替换掉相应的空报文,进一步对填充(或插入)后的上行数据流进行传输。
换句话说,该复用器145用于将该第一上行报文和空报文复用到该上行数据流,使该上行数据流的速率与该第二数量的上行差分线对的实际速率匹配。
通道分配器146用于将该上行数据流分配到第一上行主链路通道,并发送至通道解分配器134,其中,该第一上行主链路通道包括该第二数量的上行主链路中的至少一个上行主链路通道。
通道解分配器134用于将该第一上行主链路通道接收到的上行子数据流合并为上行数据流;向解复用器135发送该上行数据流。
解复用器135用于将该上行数据流解复用为第一上行报文;向视音频接收适配器136发送该第一上行报文。
解复用器135的功能为复用器145的功能的逆过程,即将上行数据流中填充的该第一上行报文提取出来。
视音频接收适配器136用于对该第一上行报文进行解封装,得到上行视音频信号;向视音频信号处理装置113发送该上行视音频信号。
视音频信号处理装置113用于对该上行视音频信号进行进一步处理。
在一种可能的实现方式中,源设备110还可以包括第三方协议控制器116,传输装置111还可以包括第三方协议适配器137,宿设备还可以包括第三方协议装置126,传输装 置121还可以包括第三方协议适配器147。
其中,第三方协议控制器116的输出端耦合至第三方协议适配器137的输入端,第三方协议适配器137的输出端耦合至复用器132的第二输入端。解复用器142的第二输出端耦合至第三方协议适配器147的输入端,第三方协议适配器147的输出端耦合至第三方信号收发装置126的输入端。
第三方协议适配器137用于从第三方协议控制器116获取下行第三方协议信号(如图5中示出的第三方协议信号1);对该下行第三方协议信号进行封装,得到第二下行报文;向复用器132发送该第二下行报文。
复用器132具体用于将该第一下行报文和该第二下行报文复用到该下行数据流。
解复用器142具体用于从该下行数据流中解复用出该第一下行报文和第二下行报文;
解复用器142还用于向第三方协议适配器147发送该第二下行报文。
第三方协议适配器147用于对该第二下行报文进行解封装,得到下行第三方协议信号;向第三方协议装置126发送该下行第三方协议信号。
第三方协议装置126用于对该下行第三方协议信号进行进一步处理。
第三方协议适配器147还用于从第三方协议装置126获取上行第三方协议信号(如图5中示出的第三方协议信号2);对该上行第三方协议信号进行封装,得到第二上行报文;向复用器145发送该第二上行报文。
复用器145具体用于将该第一上行报文和该第二上行报文复用到该上行数据流。
解复用器135具体用于从该上行数据流中解复用出该第一上行报文和第二上行报文;
解复用器135还用于向第三方协议适配器137发送该第二上行报文。
第三方协议适配器137还用于对该第二上行报文进行解封装,得到上行第三方协议信号;向第三方协议控制器116发送该上行第三方协议信号。
第三方协议控制器116还用于对该上行第三方协议信号进行进一步处理。
在一种可能的实现方式中,该第三方协议为USB协议时,第三方协议控制器116可以为USB控制器,该下行第三方协议信号为USB协议信号,第三方协议装置126为USB装置。
在另一种可能的实现方式中,该第三方协议为PCIe协议时,第三方协议控制器116可以为PCIe控制器,该下行第三方协议信号为PCIe协议信号,第三方协议装置126为PCIe装置。
在一种可能的实现方式中,本申请实施例中所述的封装和解封装都是基于统一的传输协议,如第一传输协议进行的。
在另一种可能的实现方式中,源设备110还可以包括通用数据收发装置117,传输装置111还可以包括通用数据适配器138,宿设备120还可以包括通用数据收发装置127,传输装置121还包括通用数据适配器148。
其中,通用数据收发装置117的输出端耦合至通用数据适配器138的输入端,通用数据适配器138的输出端耦合至复用器132的第三输入端。解复用器142的第三输出端耦合至通用数据适配器148的输入端,通用数据适配器148的输出端耦合至通用数据收发装置127的输入端。
通用数据适配器138用于从通用数据收发装置117获取下行通用数据(如图5中示出 的通用数据1);对该下行通用数据进行封装,得到第三下行报文;向复用器132发送该第三下行报文。
复用器132具体用于将该第一下行报文和该第三下行报文复用到该下行数据流。
解复用器142具体用于从该下行数据流中解复用出该第一下行报文和第三下行报文;
解复用器142还用于向通用数据适配器148发送该第三下行报文。
通用数据适配器148还用于对该第三下行报文进行解封装,得到下行通用数据;向通用数据收发装置127发送该下行通用数据。
通用数据收发装置127用于对该下行通用数据进行进一步处理。
通用数据适配器148还用于从通用数据收发装置127获取上行通用数据(如图5中示出的通用数据2);对该上行通用数据进行封装,得到第三上行报文;向复用器142发送该第三上行报文。
复用器142具体用于将该第一上行报文和该第三上行报文复用到该上行数据流。
解复用器135具体用于从该上行数据流中解复用出该第一上行报文和第三上行报文;
解复用器135还用于向通用数据适配器138发送该第三上行报文。
通用数据适配器138还用于对该第三上行报文进行解封装,得到上行通用数据;向通用数据收发装置117发送该上行通用数据。
通用数据收发装置117还用于对该上行通用数据进行进一步处理。
在又一种可能的实现方式中,源设备110还可以包括第三方协议控制器116和通用数据收发装置117,传输装置111还可以包括第三方协议适配器137和通用数据适配器138,宿设备还可以包括第三方协议装置126和通用数据收发装置127,传输装置121还可以包括第三方协议适配器147和通用数据适配器148。系统100可以进行视音频信号、通用数据和第三方协议信号的双向传输,具体可以参考视音频信号和通用数据的双向传输过程以及视音频信号和第三方协议信号的双向传输过程。
在一种可能的实现方式中,源设备110还可以包括管理控制模块114,传输装置111还可以包括管理控制适配器1310和仲裁器1311,端口139还可以包括发射器154和接收器155。宿设备120还可以包括管理控制模块124,传输装置121还可以包括管理控制适配器1410和仲裁器1411,端口149还可以包括发射器164和接收器165。
其中,管理控制模块114的第一端耦合至管理控制适配器1310的第一端,管理控制适配器1310的第二端耦合至仲裁器1311的第一端,仲裁器1311的第二端耦合至发射器154的输入端,仲裁器1311的第三端耦合至接收器155的输出端,管理控制模块124的第一端耦合至管理控制适配器1410的第一端,管理控制适配器1410的第二端耦合至仲裁器1411的第一端,仲裁器1411的第二端耦合至接收器164的输出端,仲裁器1411的第三端耦合至发射器165的输入端,其中,发射器154的输出端通过连接器115和连接器125之间的下行辅助线耦合至接收器164的输入端,下行辅助线用于传输由管理控制适配器1310发送至管理控制适配器1410的下行控制命令,发射器165通过连接器115与连接器125之间的上行辅助线耦合至接收器155,上行辅助线用于传输由管理控制适配器1410发送至管理控制适配器1310的上行控制命令。
管理控制适配器1310和管理控制适配器1410用于通过下行辅助线和上行辅助线实现以下功能中的至少一种:插拔检测、翻转识别、高速传输链路训练信息交互、设备能力信 息获取、设备状态信息获取、组网拓扑结构的发现和建立、内容保护信息交互和设备互操作。
需要说明的是,管理控制适配器1310和管理控制适配器1410的功能可以参考图4中的相关介绍,此处不再赘述。
可选地,端口139还可以包括检测器151,检测器151用于检测端口139与端口149已连接/断开,和/或,该线缆在连接器115与连接器125之间的连接是否翻转,并将检测结果1反馈至管理控制适配器1310。
管理控制适配器1310用于接收来自检测器151的检测结果1;基于该检测结果1产生控制命令a(或数据a或信号a);向应用层的管理控制模块114发送该控制命令a(或信号a或数据a)进行进一步处理。
管理控制适配器1310还用于接收来自管理控制模块114的控制命令b(或信号b或数据b);基于该控制命令b(或信号b或数据b),实现对整个传输装置111的配置与管理。
管理控制适配器1310还用于通过上行辅助线接收来自传输装置121的控制命令c(或信号c或数据c);并基于该控制命令c(或信号c或数据c),实现对整个传输装置111的配置与管理。
管理控制适配器1310还用于接收来自其他设备的控制命令d(或信号d或数据d);通过下行辅助线将该控制命令d(或信号d或数据d)发送给传输装置121。
可选地,端口149还可以包括检测器161,检测器161用于检测端口139与端口149已连接/断开,并将检测结果2反馈至管理控制适配器1410。
管理控制适配器1410用于接收来自检测器161的检测结果2;基于该检测结果2产生控制命令e(或数据e或信号e);向应用层的管理控制模块124发送该控制命令e(或信号e或数据e)进行进一步处理。
管理控制适配器1410还用于接收来自管理控制模块124的控制命令f(或信号f或数据f);基于该控制命令f(或信号f或数据f),实现对整个传输装置121的配置与管理。
管理控制适配器1410还用于通过下行辅助线接收来自传输装置111的控制命令c(或信号c或数据c);并基于该控制命令c(或信号c或数据c),实现对整个传输装置121的配置与管理。
管理控制适配器1310还用于接收来自其他设备的控制命令b(或信号b或数据b);通过下行辅助线将该控制命令b(或信号b或数据b)发送给传输装置111。
还需要说明的是,上述系统100中仅以源设备和宿设备之间直接连接为例进行介绍,但本申请实施例对此不做限定。
可选地,源设备和宿设备之间还可以经由路由网络连接。
在一种可能的实现方式中,图6示出了本申请实施例提供的传输系统300的示意性框图,如图6所示,系统300可以包括至少一个源设备(如图6中示出的源设备310和源设备330)、至少一个宿设备(如图6中示出的宿设备320和宿设备340)和路由网络350,路由网络350用于对不同端设备之间传输的视音频信号、通用数据和/或第三方协议信号进行路由转发。
在图6中,源设备310可以包括传输装置311,宿设备320可以包括传输装置321, 源设备330可以包括传输装置331,宿设备340可以包括传输装置341。路由网络350包括路由设备351。
在一种可能的实现方式中,传输装置311可以通过传输装置311和路由设备351之间的线缆J以及路由设备351和传输装置321之间的线缆K,经由路由设备351的转发与传输装置321进行视音频信号、通用数据和/或第三方协议信号的双向传输。
需要说明的是,上述线缆J中可以包括多个主链路通道J和辅助主链路通道J,上述线缆K中可以包括多个主链路通道K和辅助主链路通道K。
可选地,该多个主链路通道J的组成与该多个主链路通道K的组成可以相同或不同,本申请实施例对此不作限定。
在一种可能的实现方式中,传输装置311可以通过传输装置311和路由设备351之间的线缆J以及路由设备351和传输装置341之间的线缆N,经由路由设备351的转发与传输装置341进行视音频信号、通用数据和/或第三方协议信号的双向传输。
需要说明的是,上述线缆N中可以包括多个主链路通道N和辅助主链路通道N。
可选地,该多个主链路通道J的组成与该多个主链路通道N的组成可以相同或不同,本申请实施例对此不作限定。
在一种可能的实现方式中,传输装置331可以通过传输装置331和路由设备351之间的线缆M以及路由设备351和传输装置321之间的线缆K,经由路由设备351的转发与传输装置321进行视音频信号、通用数据和/或第三方协议信号的双向传输。
需要说明的是,上述线缆M中可以包括多个主链路通道M和辅助主链路通道M。
可选地,该多个主链路通道M的组成与该多个主链路通道K的组成可以相同或不同,本申请实施例对此不作限定。
需要说明的是,图6中各设备之间的线缆的组成和数据流的双向传输过程,可以参考图1至图3中源设备与端设备之间线缆的组成和数据流的双向传输过程,此处不再赘述。
还需要说明的是,图6中未介绍的部分可参考图1至图5中的相应介绍。
还需要说明的是,图6中仅示意性以2个源设备和2个宿设备为例进行介绍,但本申请实施例不限于此,系统300可以包括至少一个源设备和至少一个宿设备。
现有的传输系统中,源设备、分支设备(或交换设备)和宿设备构成“树状”的组网拓扑结构。例如一个源设备通过该分支设备/交换设备与多个宿设备构成“树状”的组网拓扑结构,该源设备可以通过该分支设备/交换设备与该多个宿设备实现数据流的单向或双向传输。又如多个源设备可以通过该分支设备/交换设备与一个宿设备构成“树状”组网拓扑结构,该多个源设备可以通过该分支设备/交换设备与该宿设备实现数据流的单向或双向传输。
而本申请实施例提供的传输系统300中,多个源设备可以通过路由网络和多个宿设备构成“网状”组网拓扑结构,任意两个端设备之间可以通过路由网络的路由转发实现视音频信号的双向传输,进一步地,可以实现视音频信号、通用数据和/或第三方协议信号的双向传输,能够扩展系统100的应用场景。
在另一种可能的实现方式中,图7示出了本申请实施例提供的传输系统300的另一示意性框图,如图7所示,系统300可以包括至少一个源设备(如图7中示出的源设备310、源设备330和源设备380)、至少一个宿设备(如图7中示出的宿设备320、宿设备340 和宿设备370)和路由网络350,路由网络350用于对不同端设备之间传输的视音频信号、通用数据和/或第三方协议信号进行路由转发。
在图7中,源设备310可以包括传输装置311,宿设备320可以包括传输装置321,源设备330可以包括传输装置331,宿设备340可以包括传输装置341,宿设备370可以包括传输装置371,源设备380可以包括传输装置381。路由网络350包括路由设备351和路由设备352。
需要说明的是,路由设备351和路由设备352构成两级级联的路由网络,并共同完成对不同端设备之间传输的视音频信号、通用数据和/或第三方协议信号进行路由转发。
还需要说明的是,图7中仅示意性示出路由设备351和路由设备352的一种可能的级联方式,即路由设备351通过如图7中所示的线缆S与路由设备352连接,但本申请实施例不限于此,路由网络350还可以包括其它数量的路由设备,并采用不同的级联方式进行连接,本申请实施例对此不作限定。
在一种可能的实现方式中,传输装置311可以通过传输装置311和路由网络350之间的线缆M以及路由网络350和传输装置381之间的线缆P,经由路由网络350的转发与传输装置381进行视音频信号、通用数据和/或第三方协议信号的双向传输。
在一种可能的实现方式中,传输装置381可以通过传输装置381和路由网络350之间的线缆P以及路由网络350和传输装置341之间的线缆N,经由路由网络350的转发与传输装置341进行视音频信号、通用数据和/或第三方协议信号的双向传输。
在一种可能的实现方式中,传输装置311可以通过传输装置311和路由网络350之间的线缆J以及路由网络350和传输装置321之间的线缆K,经由路由网络350的转发与传输装置321进行视音频信号、通用数据和/或第三方协议信号的双向传输。
需要说明的是,图7中各线缆的组成和数据流的双向传输过程可以参考图1至图3中源设备与端设备之间的线缆的组成和数据流的双向传输过程,此处不再赘述。
需要说明的是,图7中未介绍的部分可参考图1至图5中的相应介绍。
还需要说明的是,图7中仅示意性以3个源设备和3个宿设备为例进行介绍,但本申请实施例不限于此,系统300可以包括至少一个源设备和至少一个宿设备。
本申请实施例提供的传输系统300中,各源设备和各宿设备通过多级路由设备构建“网状”组网拓扑结构,能够增加传输距离。
上面结合图6和图7介绍了本申请实施例提供的传输系统300,下面将介绍本申请实施例提供的路由装置。
图8示出了本申请实施例提供的路由设备400的示意性框图,该路由设备400可以为系统300中的路由设备351或路由设备352。如图8所示,该设备400可以包括路由装置410和多个连接器(以如图8中示出的连接器420和连接器430为例),路由装置410可以包括端口411、通道分配/解分配器412、复用/解复用器413,交换器414、复用/解复用器415、通道分配/解分配器416和端口417。其中,端口411通过连接器420与该第一装置连接,端口417通过连接器430与第二装置连接。
可选地,该第一装置可以集成于端设备或路由设备(或可以为端设备或路由设备),类似地,该第二装置可以集成于端设备或路由设备(或可以为端设备或路由设备),本申请实施例对此不作限定。
在一种可能的实现方式中,如图6所示,设备400为路由设备351时,该第一装置可以为传输装置311,该第二装置可以为系统300中的341。
在另一种可能的实现方式中,如图7所示,设备400为路由设备351时,该第一装置可以传输装置311,该第二装置可以集成于系统300中的路由设备352。
需要说明的是,设备400与第一装置以及设备400与第二装置之间的连接方式可以参考系统100中传输装置111和传输装置121之间的连接方式;设备400与第一装置以及设备400与第二装置之间进行视音频信号、通用数据和/或第三方协议信号的双向传输过程中,各组成部分的功能可以参考图5中介绍的传输装置111和传输装置121中各组成部分的功能。
此外,交换器414用于将接收到的上行数据流(或下行数据流)通过与该上行数据流(或下行数据流)的目的端相应的端口转发出去。
需要说明的是,图8中仅示意性示出设备400包括4个连接器时路由装置410的结构,但本申请实施例不限于此。
可选地,本申请实施例对交换器414对各端口间的视音频信号、通用数据和/或第三方协议信号进行路由转发的方式不做限定,如可以参考现有的路由转发方式。
上面结合图8介绍了本申请实施例提供的路由设备,下面将介绍本申请实施例提供的传输方法。
图9示出了本申请实施例提供的传输方法500的示意性流程图,该方法500可以应用于上述系统100。
需要说明的是,如图9所示,该方法500可以包括S501至S514,其中,S501至S507为下行传输过程,S508至S514为上行传输过程,两个过程相互独立,执行顺序不分先后。
1、下行传输过程
S501,第一传输装置获取下行视音频信号,该下行视音频信号包括下行视频信号和/或下行音频信号。
需要说明的是,该第一传输装置可以为系统100中的传输装置111。
在一种可能的实现方式中,该第一传输装置可以接收来自视音频信号源的该下行视音频信号。
S502,该第一传输装置对该下行视音频信号进行封装,得到第一下行报文。
S503,该第一传输装置将该第一下行报文填充到下行数据流。
S504,该第一传输装置将该下行数据流分配到第一下行主链路通道,并发送至该第二传输装置,其中,该第一传输装置通过第一线缆与第二传输装置连接,该第一线缆中包括第一数量的下行主链路通道,该第一下行主链路通道包括该第一数量的下行主链路通道中的至少一个下行主链路通道;相应地,该第二传输装置通过该第一下行主链路通道,接收来自该第一传输装置的下行子数据流。
需要说明的是,该第二传输装置可以为系统100中的传输装置121。
S505,该第二传输装置将该第一下行主链路通道接收到的下行子数据流合并为该下行数据流。
S506,该第二传输装置从该下行数据流中提取出该第一下行报文。
S507,该第二传输装置对该第一下行报文进行解封装,得到该下行视音频信号。
2、上行传输过程
S508,第二传输装置获取上行视音频信号,该上行视音频信号包括上行视频信号和/或上行音频信号。
在一种可能的实现方式中,该第二传输装置可以接收来自视音频信号采集装置的该上行视音频信号。
S509,该第二传输装置对该上行视音频信号进行封装,得到第一上行报文。
S510,该第二传输装置将该第一上行报文填充到上行数据流。
S511,该第二传输装置将该上行数据流分配到第一上行主链路通道,并发送至该第一传输装置,其中,该第一线缆中还包括第二数量的上行主链路通道,该第一上行主链路通道包括该第二数量的上行主链路通道中的至少一个上行主链路通道;相应地,该第一传输装置通过该第一上行主链路通道,接收来自该第二传输装置的上行子数据流。
S512,该第一传输装置将该第一上行主链路通道接收到的上行子数据流合并为该上行数据流。
S513,该第一传输装置从该上行数据流中提取出该第一上行报文。
S514,该第一传输装置对该第一上行报文进行解封装,得到该上行视音频信号。
可选地,该第一线缆中还可以包括辅助线对,该辅助线对包括下行辅助线和上行辅助线,该第一传输装置和该第二传输装置可以通过该辅助线对实现以下各种辅助功能中至少一种:(1)插拔检测、(2)翻转识别、(3)高速传输链路训练信息交互、(4)设备能力信息获取、(5)设备状态信息获取、(6)组网拓扑结构的发现和建立、(7)内容保护信息交互和(8)设备互操作。
下面将以第一传输装置通过辅助线对实现上述各辅助功能的过程为例进行介绍,第二传输装置通过辅助线对实现上述各辅助功能的过程可以参考第一传输装置。
在一种可能的实现方式中,对于辅助功能(1),在S504之前,该第一传输装置可以检测该第一线缆在该第二传输装置上的插拔状态,该插拔状态包括插入或拔出;当检测到该第一线缆插入该第二传输装置,且该第二传输装置已上电并完成链路建立后,执行S504。
在一种可能的实现方式中,对于辅助功能(2),在S504之前,该第一传输装置可以检测该第一线缆在该第二传输装置上的插入方向,该插入方向包括正向插入或反向插入;并基于该第二传输装置的插入方向,从多个主链路通道中确定该下行主链路通道。
在一种可能的实现方式中,对于辅助功能(3),在S504之前,该第一传输装置可以基于第一传输速率,通过该第一数量的下行主链路通道向该第二传输装置发送训练数据;该第一传输装置通过该上行辅助线,接收来自该第二传输装置的该高速训练信息,该高速训练信息用于指示调高或调低该第一传输速率;该第一传输装置基于该高速训练信息,将该第一传输速率调整为第二传输速率。
相应地,该第二传输装置基于该第一传输速率,通过该第一数量的下行主链路通道,接收来自该第一传输装置的该训练数据;该第二传输装置基于上述训练数据的接收情况,确定该高速训练信息;该第二传输装置通过该上行辅助线,向该第一传输装置发送该高速训练信息。
进一步地,S504可以包括:该第一传输装置将该下行数据流分配到该第一下行主链路通道,并基于该第二传输速率发送至该第二传输装置。
在一种可能的实现方式中,对于辅助功能(4),在S504之前,该第一传输装置可以通过该下行辅助线,向该第二传输装置发送设备能力请求,该设备能力请求用于请求该第二传输装置上报双向传输能力、视频能力,音频能力和增强类视频能力中的至少一项;该第一传输装置通过该上行辅助线,接收来自该第二传输装置的设备能力信息,该设备能力信息用于指示该第二传输装置的双向传输能力、视频能力,音频能力和增强类视频能力中的至少一项。
相应地,该第二传输装置通过该下行辅助线,接收来自该第一传输装置的设备能力请求;该第二传输装置基于该设备能力请求,通过该上行辅助线,向该第一传输装置发送该设备能力信息。
进一步地,S504可以包括:该第一传输装置基于该设备能力信息,将该下行数据流分配到该第一下行主链路通道,并发送至该第二传输装置。
可选地,上述双向传输能力可以包括:视音频信号、通用数据和/或第三方协议信号的双向传输能力等;上述视频能力可以包括:分辨率、帧率、色深和色域等;上述增强类视频能力可以包括:高动态范围图像(high-dynamic range,HDR)和中国超高清视频产业联盟(CUVA)HDR等;上述音频能力可以包括:采样率、采样深度和编码格式。
在一种可能的实现方式中,对于辅助功能(5),在S504之前,该第一传输装置可以通过该下行辅助线,向该第二传输装置发送组网广播消息;该第一传输装置通过该上行辅助线,接收来自该第二传输装置的组网反馈消息,该反馈消息用于指示该第二传输装置能够与该第一传输装置建立网络拓扑结构;该第一传输装置基于该组网反馈消息,建立与该第二传输装置之间的网络拓扑结构。
相应地,该第二传输装置用于通过该下行辅助线,接收来自该第一传输装置的该组网广播消息;该第二传输装置基于该组网广播消息,通过该上行辅助线,向该第一传输装置发送该组网反馈消息。
在一种可能的实现方式中,对于辅助功能(6),该第一传输装置可以通过该上行辅助线,接收来自该第二传输装置的状态信息,该状态信息用于指示该第二传输装置的待机状态、电源状态和工作状态中的至少一项。
相应地,该第二传输装置通过该上行辅助线,向该第一传输装置发送该状态信息。
在一种可能的实现方式中,对于辅助功能(7),在S504之前,该第一传输装置可以通过该辅助线对,对该第二传输装置进行身份认证;当该第二传输装置的身份认证通过后,执行S504。
可选地,该下行数据流可以为经过加密的下行数据流。该第一传输装置还可以通过该下行辅助线,向该第二传输装置发送密钥信息,该密钥信息用于指示该加密的下行数据流的密钥和/或加密方式。
相应地,该第二传输装置可以通过该下行辅助线,接收来自该第一传输装置的该密钥信息;该第二传输装置可以基于该密钥信息,对该加密的下行数据流进行解密。
在一种可能的实现方式中,对于辅助功能(8),该第一传输装置可以通过该下行辅助线,向该第二传输装置发送控制信息,该控制信息用于控制该第二传输装置执行第一操作,该第一操作包括播放操作、待机操作、切源操作或控制音量操作。
相应地,该第二传输装置可以通过该下行辅助线,接收来自该第一传输装置的该控制 信息;响应于该控制信息,该第二传输装置执行该第一操作。
图10示出了本申请实施例提供的传输方法600的示意性流程图,该方法600可以应用于上述系统100。
S601,第一传输装置获取下行视音频信号,该下行视音频信号包括下行视频信号和/或下行音频信号。
需要说明的是,该第一传输装置可以为系统100中的传输装置111。
在一种可能的实现方式中,该第一传输装置可以接收来自视音频信号源的该下行视音频信号。
S602,该第一传输装置按照第一传输协议对该下行视音频信号进行封装,得到第一下行报文。
S603,该第一传输装置获取下行第三方协议信号。
在一种可能的实现方式中,该第一传输装置可以接收来自第三方协议控制器的该下行视音频信号。
S604,该第一传输装置按照该第一传输协议对该下行第三方协议信号进行封装,得到第二下行报文。
S605该第一传输装置获取下行通用数据。
在一种可能的实现方式中,该第一传输装置可以接收来自第一通用数据收发装置的该下行视音频信号。
S606该第一传输装置按照该第一传输协议对该下行通用数据进行封装,得到第三下行报文。
S607,该第一传输装置将该第一下行报文、该第二下行报文和该第三下行报文复用到下行数据流。
S608,该第一传输装置将该下行数据流分配到第一下行主链路通道,并发送至该第二传输装置,其中,该第一传输装置通过第一线缆与第二传输装置连接,该第一线缆中包括第一数量的下行主链路通道,该第一下行主链路通道包括该第一数量的下行主链路通道中的至少一个下行主链路通道;相应地,该第二传输装置通过该第一下行主链路通道,接收来自该第一传输装置的下行子数据流。
需要说明的是,该第二传输装置可以为系统100中的传输装置121。
S609,该第二传输装置将该第一下行主链路通道接收到的下行子数据流合并为该下行数据流。
S610,该第二传输装置从该下行数据流中解复用出该第一下行报文、该第二下行报文和该第三下行报文。
S611,该第二传输装置按照该第一传输协议对该第一下行报文进行解封装,得到该下行视音频信号。
S612,该第二传输装置按照该第一传输协议对该第二下行报文进行解封装,得到该下行第三方协议信号。
S613,该第二传输装置按照该第一传输协议对该第三下行报文进行解封装,得到该下行通用数据。
需要说明的是,S601和S602是下行视音频信号的封装过程,S603和S604是下行第 三方协议信号的封装过程,S605和S606是下行通用数据的封装过程,上述三个封装过程相互独立,执行顺序不分先后。类似地,S611是第一下行报文的解封装过程、S612是第二下行报文的解封装过程,S613是第三下行报文的解封装过程,上述三个解封装过程相互独立,执行顺序不分先后。
还需要说明的是,图10中示出的S601至S613为下行传输过程,上行传输过程与下行传输过程类似,可以参考下行传输过程,为避免重复,此处不再赘述。
还需要说明的是,该第一传输装置和该第二传输装置还可以通过该辅助线对实现各种辅助功能,具体可以参考方法500中的介绍。
图11示出了本申请实施例提供的传输方法700的示意性流程图,该方法700可以应用于系统300。
下面将以该方法700应用于如图6所示的系统300为例进行介绍,该方法700应用于如图7所示的系统300时可以参考下文中的介绍。
S701,第一传输装置获取下行视音频信号,该下行视音频信号包括下行视频信号和/或下行音频信号。
需要说明的是,该第一传输装置可以为系统300中的传输装置311。
在一种可能的实现方式中,该第一传输装置可以接收来自视音频信号源的该下行视音频信号。
S702,该第一传输装置对该下行视音频信号进行封装,得到第四下行报文。
S703,该第一传输装置将该第四下行报文填充到第一下行数据流。
S704,该第一传输装置将该第一下行数据流分配到第一下行子链路通道,并发送至该路由网络,其中,该第一传输装置通过第一子线缆与路由网络连接,该路由网络用于对该第一传输装置和该第二传输装置之间的数据流进行路由转发,该第一子线缆中包括第三数量的下行子链路通道和第四数量的上行子链路通道,该第一下行子链路通道包括该第三数量的下行子链路通道中的至少一个下行子链路通道;相应地,该路由网络通过第一端口(即端口411)中的该第一下行子链路通道,接收来自该第一传输装置的第一下行子数据流。
需要说明的是,该第二传输装置可以为系统300中的传输装置321。
需要说明的是,该第三数量和该第四数量的关系,以及第五数量和第六数量的关系,均可以参考图1和图2中介绍的第一数量和第二数量的关系。
可选地,该第三数量与该第五数量可以相同或不同,该第四数量与该第六数量可以相同也可以不同。
S705,该路由网络将该第一下行子链路通道接收到的下行子数据流合并为该第一下行数据流。
S706,该路由网络从该第一下行数据流中提取出该第四下行报文。
S707,该路由网络对该第四下行报文进行解封装,得到该下行视音频信号。
S708,该路由网络基于该下行视音频信号的目的端,确定该下行视音频信号的输出端口为第二端口(即端口417)。
S709,该路由网络对该下行视音频信号进行封装,得到第五下行报文。
S710,该路由网络将该第五下行报文复用到第二下行数据流。
S711,该路由网络将该第二下行数据流分配到第二下行子链路通道,并通过该第二端 口发送至该第二传输装置,其中,该第二传输装置通过第二子线缆与路由网络连接,该第二子线缆中包括第五数量的下行子链路通道和第六数量的上行子链路通道,该第二下行子链路通道包括该第五数量的下行子链路通道中的至少一个下行子链路通道;相应地,该第二传输装置通过该第二下行子链路通道,接收来自该路由网络的下行子数据流。
S712,该第二传输装置将该第二下行子链路通道接收到的下行子数据流合并为该第二下行数据流。
S713,该第二传输装置将该第二下行数据流解复用为该第五下行报文。
S714,该第二传输装置将该第二下行数据流解复用为该第五下行报文。
需要说明的是,图11中示出的S701至S714为下行传输过程,上行传输过程与下行传输过程类似,可以参考下行传输过程,为避免重复,此处不再赘述。
需要说明的是,该第一传输装置与该第二传输装置之间经由路由网络进行视音频信号、第三方协议信号和/或通用数据的双向传输的过程可以结合参考方法600和方法700,为避免重复,此处不再赘述。
还需要说明的是,上述路由网络可以包括至少一级路由设备,本申请实施例对此不做限定。进一步地,本申请实施例对至少一级路由设备之间的级联方式不做限定。
还需要说明的是,当路由网络包括多级路由设备时,每个路路由设备的传输过程均可以参考方法700。
上面结合图9至图11介绍了本申请实施例提供的传输方法,下面将进一步介绍本申请实施例提供的传输系统所遵循的协议栈。
该协议栈可以包括以下四层。
1、应用层(application layer):包括各种数据流相关的应用。
例如:在图5中,源设备110的应用层可以包括视音频信号源112、视音频信号处理装置113、管理控制模块114、第三方协议控制器116和通用数据收发装置117。
又例如:在图5中,宿设备120的应用层可以包括视音频信号输出装置122、视音频信号采集装置123、管理控制模块124、第三方协议装置126和通用数据收发装置127。
2、适配层(adaptor layer):用于描述传输系统内部的管理和控制以及传输系统中各内部组件和外部组件之间的对接规范。
例如:在图5中,源设备110的适配层可以包括视音频发送适配器131、视音频接收适配器136、管理控制适配器1310、第三方协议适配器137和通用数据适配器138。
又例如:在图5中,宿设备120的适配层可以包括视音频发送适配器144、视音频接收适配器143、管理控制适配器1410、第三方协议适配器147和通用数据适配器148。
3、传输层(transportation layer):用于描述系统的传输层协议规范,包括数据类型、结构的定义及排布,路由控制,带宽管理等。
例如:在图5中,源设备110的传输层可以包括复用器132、通道分配器133、通道解分配器134、解复用器135和仲裁器1311。
又例如:在图5中,宿设备120的传输层可以包括通道分配器141、复用器142、、解复用器145、通道解分配器146和仲裁器1411。
4、物理层(physical layer):用于描述系统的物理层规范。
物理层包括:(1)逻辑子层;(2)电气子层;(3)连接器。
(1)逻辑子层:用于描述逻辑子层相关规范,包括128b/132b编解码、扰码与解扰码、FEC编解码、链路训练等。
(2)电气子层:用于描述电气子层相关规范,包括信号的电气特性等。
(3)连接器。
例如:在图5中,源设备110的物理层包括端口139和连接器115。
又例如:在图5中,宿设备120的物理层包括端口149和连接器125。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种传输装置,其特征在于,包括:第一视音频发送适配器、第一视音频接收适配器、第一复用器、第一解复用器、第一通道分配器、第一通道解分配器和第一端口,所述第一端口通过第一线缆与第二传输装置连接,所述第一线缆中包括第一数量的下行主链路通道和第二数量的上行主链路通道;
    所述第一视音频发送适配器,用于获取下行媒体信号,所述下行媒体信号包括下行视频信号和/或下行音频信号;对所述下行媒体信号进行封装,得到第一下行报文;向所述第一复用器发送所述第一下行报文;
    所述第一复用器,用于将所述第一下行报文填充到下行数据流;向所述第一通道分配器发送填充后的下行数据流;
    所述第一通道分配器,用于将所述下行数据流分配到第一下行主链路通道,并发送至所述第二传输装置,其中,所述第一下行主链路通道包括所述第一数量的下行主链路通道中的至少一个下行主链路通道;
    所述第一通道解分配器,用于通过第一上行通道接收来自所述第二传输装置的上行子数据流,其中,所述第一上行主链路通道包括所述第二数量的上行主链路通道中的至少一个上行主链路通道;将所述第一上行主链路通道接收到的所述上行子数据流合并为上行数据流;向所述第一解复用器发送所述上行数据流;
    所述第一解复用器,用于从所述上行数据流中提取出第一上行报文;向所述第一视音频接收适配器发送所述第一上行报文;
    所述第一视音频接收适配器,用于对所述第一上行报文进行解封装,得到上行媒体信号。
  2. 根据权利要求1所述的装置,其特征在于,所述装置还包括:第一第三方协议适配器;
    所述第一第三方协议适配器,用于获取下行第三方协议信号;对所述下行第三方协议信号进行封装,得到第二下行报文;向所述第一复用器发送所述第二下行报文;
    所述第一复用器具体用于将所述第一下行报文和所述第二下行报文复用到所述下行数据流;
    所述第一解复用器具体用于从所述上行数据流中解复用出所述第一上行报文和第二上行报文;
    所述第一解复用器还用于向所述第一第三方协议适配器发送所述第二上行报文;
    所述第一第三方协议适配器还用于对所述第二上行报文进行解封装,得到上行第三方协议信号。
  3. 根据权利要求1所述的装置,其特征在于,所述装置还包括:第一通用数据适配器;
    所述第一通用数据适配器,用于获取下行通用数据;对所述下行通用数据进行封装,得到第三下行报文;向所述第一复用器发送所述第三下行报文;
    所述第一复用器具体用于将所述第一下行报文和所述第三下行报文复用到所述下行 数据流;
    所述第一解复用器具体用于从所述上行数据流中解复用出所述第一上行报文和第三上行报文;
    所述第一解复用器还用于向所述第一通用数据适配器发送所述第三上行报文;
    所述第一通用数据适配器还用于对所述第三上行报文进行解封装,得到上行通用数据。
  4. 根据权利要求1至3中任一项所述的装置,其特征在于,所述封装和所述解封装都是基于第一传输协议进行的。
  5. 根据权利要求1至4中任一项所述的装置,其特征在于,所述装置还包括第一管理控制适配器,所述第一线缆中还包括辅助链路通道;
    所述第一管理控制适配器,用于通过所述辅助链路通道实现以下功能中的至少一种:插拔检测、翻转识别、高速传输链路训练信息交互、设备能力信息获取、设备状态信息获取、组网拓扑结构的发现和建立、内容保护信息交互和设备互操作。
  6. 根据权利要求1至5中任一项所述的装置,其特征在于,所述装置通过所述第一线缆与路由网络连接,所述路由网络与所述第二传输装置连接,所述路由网络用于对所述装置和所述第二传输装置之间的所述上行数据流和所述下行数据流进行路由转发;
    所述第一通道分配器具体用于将所述下行数据流发送至所述路由网络;
    所述第一通道解分配器具体用于接收来自所述路由网络的所述上行子数据流。
  7. 根据权利要求6所述的装置,其特征在于,所述路由网络包括至少一级路由设备。
  8. 根据权利要求1至7中任一项所述的装置,其特征在于,所述第一数量大于或者等于所述第二数量。
  9. 一种传输装置,其特征在于,包括:第二视音频发送适配器、第二视音频接收适配器、第二复用器、第二解复用器、第二通道分配器、第二通道解分配器和第二端口,所述第二端口通过第一线缆与第二传输装置连接,所述第一线缆中包括第一数量的下行主链路通道和第二数量的上行主链路通道;
    所述第二视音频发送适配器,用于获取上行媒体信号,所述上行媒体信号包括上行视频信号和/或上行音频信号;对所述上行媒体信号进行封装,得到第一上行报文;向所述第二复用器发送所述第一上行报文;
    所述第二复用器,用于将所述第一上行报文填充到上行数据流;向所述第二通道分配器发送填充后的上行数据流;
    所述第二通道分配器,用于将所述上行数据流分配到第一上行主链路通道,并发送至所述第一传输装置,其中,所述第一上行主链路通道包括所述第二数量的上行主链路通道中的至少一个上行主链路通道;
    所述第二通道解分配器,用于通过第一下行主链路通道,接收来自所述第一传输装置的下行子数据流,其中,所述第一下行主链路通道包括所述第一数量的下行主链路通道中的至少一个下行主链路通道;将所述第一下行主链路通道接收到的所述下行子数据流合并为下行数据流;向所述第二解复用器发送所述下行数据流;
    所述第二解复用器,用于从所述下行数据流中提取出第一下行报文;向所述第二视音频接收适配器发送所述第一下行报文;
    所述第二视音频接收适配器,用于对所述第一下行报文进行解封装,得到下行媒体信号。
  10. 根据权利要求9所述的装置,其特征在于,所述装置还包括:第二第三方协议适配器;
    所述第二第三方协议适配器,用于获取上行第三方协议信号;对所述上行第三方协议信号进行封装,得到第二上行报文;向所述第二复用器发送所述第二上行报文;
    所述第二复用器具体用于将所述第一上行报文和所述第二上行报文复用到所述上行数据流;
    所述第二解复用器具体用于从所述下行数据流中解复用出所述第一下行报文和第二下行报文;
    所述第二解复用器还用于向所述第二第三方协议适配器发送所述第二下行报文;
    所述第二第三方协议适配器还用于对所述第二下行报文进行解封装,得到下行第三方协议信号。
  11. 根据权利要求9所述的装置,其特征在于,所述装置还包括:第二通用数据适配器;
    所述第二通用数据适配器,用于获取上行通用数据;对所述上行通用数据进行封装,得到第三上行报文;向所述第二复用器发送所述第三上行报文;
    所述第二复用器具体用于将所述第一上行报文和所述第三上行报文复用到所述上行数据流;
    所述第二解复用器具体用于从所述下行数据流中解复用出第三下行报文;
    所述第二解复用器还用于向所述第二通用数据适配器发送所述第三下行报文;
    所述第二通用数据适配器还用于对所述第三下行报文进行解封装,得到下行通用数据。
  12. 根据权利要求9至11中任一项所述的装置,其特征在于,所述封装和所述解封装都是基于第一传输协议进行的。
  13. 根据权利要求9至12中任一项所述的装置,其特征在于,所述装置还包括第二管理控制适配器,所述第一线缆中还包括辅助链路通道,所述第二管理控制适配器,用于通过所述辅助链路通道实现以下功能中的至少一种:插拔检测、翻转识别、高速传输链路训练信息交互、设备能力信息获取、设备状态信息获取、组网拓扑结构的发现和建立、内容保护信息交互和设备互操作。
  14. 根据权利要求9至13中任一项所述的装置,其特征在于,所述装置通过所述第一线缆与路由网络连接,所述路由网络与所述第一传输装置连接,所述路由网络用于对所述装置和所述第一传输装置之间的所述上行数据流和所述下行数据流进行路由转发;
    所述第二通道分配器,用于将所述上行数据流发送至所述路由网络;
    所述第二通道解分配器,用于接收来自所述路由网络的所述下行子数据流。
  15. 根据权利要求14所述的装置,其特征在于,所述路由网络包括至少一级路由设备。
  16. 根据权利要求9至15中任一项所述的装置,其特征在于,所述第一数量大于或者等于所述第二数量。
  17. 一种传输方法,其特征在于,包括:
    第一传输装置从媒体信号源获取下行媒体信号,所述下行媒体信号包括下行视频信号和/或下行音频信号;
    所述第一传输装置对所述下行媒体信号进行封装,得到第一下行报文;
    所述第一传输装置将所述第一下行报文填充到下行数据流;
    所述第一传输装置将填充后的下行数据流分配到第一下行主链路通道,并发送至所述第二传输装置,其中,所述第一传输装置通过第一线缆与第二传输装置连接,所述第一线缆中包括第一数量的下行主链路通道,所述第一下行主链路通道包括所述第一数量的下行主链路通道中的至少一个下行主链路通道;
    以及,
    所述第一传输装置通过第一上行主链路通道,接收来自所述第二传输装置的上行子数据流,其中,所述第一线缆中还包括第二数量的上行主链路通道,所述第一上行主链路通道包括所述第二数量的上行主链路通道中的至少一个上行主链路通道;
    所述第一传输装置将所述第一上行主链路通道接收到的所述上行子数据流合并为上行数据流;
    所述第一传输装置从所述上行数据流中提取出第一上行报文;
    所述第一传输装置对所述第一上行报文进行解封装,得到上行媒体信号。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述第一传输装置获取下行第三方协议信号;
    所述第一传输装置对所述下行第三方协议信号进行封装,得到第二下行报文;
    所述第一传输装置将所述第一下行报文填充到下行数据流,包括:
    所述第一传输装置将所述第一下行报文和所述第二下行报文复用到所述下行数据流。
  19. 根据权利要求17所述的方法,其特征在于,
    所述第一传输装置从所述上行数据流中提取出第一上行报文,包括:
    所述第一传输装置从所述上行数据流中解复用出所述第一上行报文和第二上行报文;
    所述方法还包括:
    所述第一传输装置对所述第二上行报文进行解封装,得到上行第三方协议信号。
  20. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述第一传输装置获取下行通用数据;
    所述第一传输装置对所述下行通用数据进行封装,得到第三下行报文;
    所述第一传输装置将所述第一下行报文填充到下行数据流,包括:
    所述第一传输装置将所述第一下行报文和所述第三下行报文复用到所述下行数据流。
  21. 根据权利要求17所述的方法,其特征在于,
    所述第一传输装置从所述上行数据流中提取出第一上行报文,包括:
    所述第一传输装置从所述上行数据流解复用出所述第一上行报文和第三上行报文;
    所述方法还包括:
    所述第一传输装置对所述第三上行报文进行解封装,得到上行通用数据。
  22. 根据权利要求17至21中任一项所述的方法,其特征在于,所述封装和所述解封装都是基于第一传输协议进行的。
  23. 根据权利要求17至22中任一项所述的方法,其特征在于,所述第一线缆中还包括辅助线对,所述辅助线对包括下行辅助线和上行辅助线,所述方法还包括:
    所述第一传输装置通过所述辅助线对实现以下功能中的至少一种:插拔检测、翻转识别、高速传输链路训练信息交互、设备能力信息获取、设备状态信息获取、组网拓扑结构的发现和建立、内容保护信息交互和设备互操作。
  24. 根据权利要求17至23中任一项所述的方法,其特征在于,所述第一传输装置通过所述第一线缆与路由网络连接,所述路由网络与所述第二传输装置连接,所述路由网络用于对所述第一传输装置和所述第二传输装置之间的所述上行数据流和所述下行数据流进行路由转发;
    所述第一传输装置将填充后的下行数据流发送至所述第二传输装置,包括:
    所述第一传输装置通过所述路由网络,向所述第二传输装置发送所述下行数据流;
    所述第一传输装置接收来自所述第二传输装置的上行子数据流,包括:
    所述第一传输装置接收所述路由网络转发的所述上行子数据流。
  25. 根据权利要求24所述的方法,其特征在于,所述路由网络包括至少一级路由设备。
  26. 根据权利要求17至25中任一项所述的方法,其特征在于,所述第一数量大于或者等于所述第二数量。
  27. 一种传输方法,其特征在于,包括:
    第二传输装置从媒体信号采集装置获取上行媒体信号,所述上行媒体信号包括上行视频信号和/或上行音频信号;
    所述第二传输装置对所述上行媒体信号进行封装,得到第一上行报文;
    所述第二传输装置将所述第一上行报文填充到上行数据流;
    所述第二传输装置将填充后的上行数据流分配到第一上行主链路通道,并发送至所述第一传输装置,其中,所述第一传输装置通过第一线缆与第二传输装置连接,所述第一线缆中包括第二数量的上行主链路通道,所述第一上行主链路通道包括所述第二数量的上行主链路通道中的至少一个上行主链路通道;
    以及,
    所述第二传输装置通过第一下行主链路通道,接收来自所述第一传输装置的下行子数据流,其中,所述第一线缆中还包括第一数量的下行主链路通道,所述第一下行主链路通道包括所述第一数量的下行主链路通道中的至少一个下行主链路通道;
    所述第二传输装置将所述第一下行主链路通道接收到的下行子数据流合并为下行数据流;
    所述第二传输装置从所述下行数据流中提取出第一下行报文;
    所述第二传输装置对所述第一下行报文进行解封装,得到下行媒体信号。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    所述第二传输装置获取上行第三方协议信号;
    所述第二传输装置对所述上行第三方协议信号进行封装,得到第二上行报文;
    所述第二传输装置将所述第一上行报文填充到上行数据流,包括:
    所述第二传输装置将所述第一上行报文和所述第二上行报文复用到所述上行数据流。
  29. 根据权利要求27所述的方法,其特征在于,
    所述第二传输装置从所述下行数据流中提取出第一下行报文,包括:
    所述第二传输装置从所述下行数据流中解复用出所述第一下行报文和第二下行报文;
    所述方法还包括:
    所述第二传输装置对所述第二下行报文进行解封装,得到下行第三方协议信号。
  30. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    所述第二传输装置获取上行通用数据;
    所述第二传输装置对所述上行通用数据进行封装,得到第三上行报文;
    所述第二传输装置将所述第一上行报文填充到上行数据流,包括:
    所述第二传输装置将所述第一上行报文和所述第三上行报文复用到所述上行数据流。
  31. 根据权利要求27所述的方法,其特征在于,
    所述第二传输装置从所述下行数据流中提取出第一下行报文,包括:
    所述第二传输装置从所述下行数据流中解复用出所述第一下行报文和第三下行报文;
    所述方法还包括:
    所述第二传输装置对所述第三下行报文进行解封装,得到下行通用数据。
  32. 根据权利要求27至31中任一项所述的方法,其特征在于,所述封装和所述解封装都是基于第一传输协议进行的。
  33. 根据权利要求27至32中任一项所述的方法,其特征在于,所述第一线缆中还包括辅助线对,所述辅助线对包括下行辅助线和上行辅助线,所述方法还包括:
    所述第一传输装置通过所述辅助线对实现以下功能中的至少一种:插拔检测、翻转识别、高速传输链路训练信息交互、设备能力信息获取、设备状态信息获取、组网拓扑结构的发现和建立、内容保护信息交互和设备互操作。
  34. 根据权利要求27至33中任一项所述的方法,其特征在于,所述第二传输装置通过所述第一线缆与路由网络连接,所述路由网络与所述第一传输装置连接,所述路由网络用于对所述第一传输装置和所述第二传输装置之间的所述上行数据流和所述下行数据流进行路由转发;
    所述第二传输装置将填充后的上行数据流发送至所述第一传输装置,包括:
    所述第二传输装置通过所述路由网络,向所述第一传输装置发送所述上行数据流;
    所述第二传输装置接收来自所述第一传输装置的下行子数据流,包括:
    所述第二传输装置接收所述路由网络转发的所述下行子数据流。
  35. 根据权利要求34所述的方法,其特征在于,所述路由网络包括至少一级路由设备。
  36. 根据权利要求27至35中任一项所述的方法,其特征在于,所述第一数量大于或者等于所述第二数量。
  37. 一种传输系统,其特征在于,所述系统包括如权利要求1至8中任一项所述的传输装置和如权利要求9至16中任一项所述的传输装置。
  38. 根据权利要求37所述的系统,其特征在于,所述系统还包括路由网络,所述路由网络包括至少一级路由设备。
  39. 根据权利要求38所述的系统,其特征在于,所述系统的组网拓扑结构为网状。
PCT/CN2021/073052 2021-01-21 2021-01-21 传输方法、装置和系统 WO2022155839A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/073052 WO2022155839A1 (zh) 2021-01-21 2021-01-21 传输方法、装置和系统
EP21920242.1A EP4274222A4 (en) 2021-01-21 2021-01-21 METHOD, APPARATUS AND TRANSMISSION SYSTEM
CN202180045714.2A CN115868154A (zh) 2021-01-21 2021-01-21 传输方法、装置和系统
US18/356,854 US20230362330A1 (en) 2021-01-21 2023-07-21 Transmission Method, Apparatus, and System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073052 WO2022155839A1 (zh) 2021-01-21 2021-01-21 传输方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/356,854 Continuation US20230362330A1 (en) 2021-01-21 2023-07-21 Transmission Method, Apparatus, and System

Publications (1)

Publication Number Publication Date
WO2022155839A1 true WO2022155839A1 (zh) 2022-07-28

Family

ID=82548366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073052 WO2022155839A1 (zh) 2021-01-21 2021-01-21 传输方法、装置和系统

Country Status (4)

Country Link
US (1) US20230362330A1 (zh)
EP (1) EP4274222A4 (zh)
CN (1) CN115868154A (zh)
WO (1) WO2022155839A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7268783B2 (ja) * 2021-09-17 2023-05-08 株式会社プロテリアル ケーブル状態管理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1460817A1 (en) * 2003-03-19 2004-09-22 Alcatel Method and system for the concurrent use of a multiple terminals during an audio and/or video telecommunication
CN104767949A (zh) * 2014-11-08 2015-07-08 晶晨半导体(上海)有限公司 分体式电视
CN105915827A (zh) * 2015-12-14 2016-08-31 乐视致新电子科技(天津)有限公司 音视频播放装置及其供电方法
CN110876041A (zh) * 2018-09-04 2020-03-10 青岛海信电器股份有限公司 分体电视

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3185863B2 (ja) * 1997-09-22 2001-07-11 日本電気株式会社 データ多重化方法および装置
EP0986267A3 (de) * 1998-09-07 2003-11-19 Robert Bosch Gmbh Verfahren zur Einbindung von audiovisueller codierter Information in einen vorgegebenen Übertragungsstandard sowie Endgeräte hierzu
US8059673B2 (en) * 2003-05-01 2011-11-15 Genesis Microchip Inc. Dynamic resource re-allocation in a packet based video display interface
US8031743B2 (en) * 2006-10-31 2011-10-04 Panasonic Corporation Apparatuses and method for multiplexing elementary streams based on a multiplexing pattern indicating an order of types of data to be multiplexed
KR101341518B1 (ko) * 2007-07-30 2014-01-02 엘지전자 주식회사 방송 수신기 및 데이터 처리 방법
US10025748B2 (en) * 2013-09-27 2018-07-17 Intel Corporation Lane division multiplexing of an I/O link

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1460817A1 (en) * 2003-03-19 2004-09-22 Alcatel Method and system for the concurrent use of a multiple terminals during an audio and/or video telecommunication
CN104767949A (zh) * 2014-11-08 2015-07-08 晶晨半导体(上海)有限公司 分体式电视
CN105915827A (zh) * 2015-12-14 2016-08-31 乐视致新电子科技(天津)有限公司 音视频播放装置及其供电方法
CN110876041A (zh) * 2018-09-04 2020-03-10 青岛海信电器股份有限公司 分体电视

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4274222A4 *

Also Published As

Publication number Publication date
US20230362330A1 (en) 2023-11-09
EP4274222A4 (en) 2024-03-20
EP4274222A1 (en) 2023-11-08
CN115868154A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
JP5815008B2 (ja) モバイル用High−DefinitionMultimediaInterfaceを構築し、円滑化するための方法、装置およびシステム
US20020049879A1 (en) Cable and connection with integrated DVI and IEEE 1394 capabilities
US9462308B2 (en) Audiovisual distribution network
JP5516905B2 (ja) 映像音声用双方向デジタル・インタフェース(DiiVA)
US9065673B2 (en) Method and system for a centralized vehicular electronics system utilizing ethernet with audio video bridging
US8397272B2 (en) Multi-stream digital display interface
KR102146867B1 (ko) 비디오 데이터와 함께 고속 데이터 전송을 제공하기 위한 방법 및 디바이스
US9398329B2 (en) Video management and control in home multimedia network
JP6514333B2 (ja) 送信装置、dpソース機器、受信装置及びdpシンク機器
TWI528827B (zh) 於複製模式中作無線多播的方法與設備及電腦可讀取媒體
TWI514842B (zh) 數據處理裝置及其方法
CN112565823A (zh) 高清视频数据的发送、接收方法及设备
US20120151537A1 (en) Method and system for asynchronous and isochronous data transmission in a high speed video network
US20230362330A1 (en) Transmission Method, Apparatus, and System
CN112887305A (zh) 一种音频数据的发送、接收方法及设备
KR101868555B1 (ko) 상이한 인터페이스들을 통한 무선 영상 전송을 위한 방법 및 시스템
US8973062B2 (en) Multimode physical layer module for supporting delivery of high-speed data services in home multimedia networks
WO2011139060A2 (en) Method and system for communication of stereoscopic three dimensional video information
KR20130128266A (ko) 컨텐츠 수신 장치, 디스플레이 장치 및 그 방법
CN210351397U (zh) 时分复用传输接口
US8923326B2 (en) High-definition multimedia interface copper adapter
WO2014068630A1 (ja) 中継装置および送受信方法
CN117119157B (zh) 一种光纤视频坐席多画面拼合重传方法及系统
CN210225630U (zh) 音视频传输装置、视频处理装置和多媒体播放装置
Yamashita et al. A 100gbps interface for 4k/8k uhdtv signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920242

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021920242

Country of ref document: EP

Effective date: 20230801

NENP Non-entry into the national phase

Ref country code: DE