WO2022155802A1 - 仪表放大器及相关芯片及电子装置 - Google Patents

仪表放大器及相关芯片及电子装置 Download PDF

Info

Publication number
WO2022155802A1
WO2022155802A1 PCT/CN2021/072804 CN2021072804W WO2022155802A1 WO 2022155802 A1 WO2022155802 A1 WO 2022155802A1 CN 2021072804 W CN2021072804 W CN 2021072804W WO 2022155802 A1 WO2022155802 A1 WO 2022155802A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifier
stage
positive
negative
input
Prior art date
Application number
PCT/CN2021/072804
Other languages
English (en)
French (fr)
Inventor
李博
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2021/072804 priority Critical patent/WO2022155802A1/zh
Publication of WO2022155802A1 publication Critical patent/WO2022155802A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/38Positive-feedback circuit arrangements without negative feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers

Definitions

  • the present application relates to an amplifier, in particular to an instrumentation amplifier and related chips and electronic devices.
  • Instrumentation amplifiers are more efficient than op amps and can amplify differential input signals while rejecting common-mode signals.
  • instrumentation amplifiers when used in systems with extremely high signal-to-noise ratio requirements, complex designs and/or high power consumption are often required, which increases the cost of instrumentation amplifiers.
  • the instrumentation amplifier of noise ratio has become one of the problems that need to be solved urgently in this field.
  • One of the objectives of the present application is to disclose an instrumentation amplifier and related chips and electronic devices to solve the above problems.
  • An embodiment of the present application discloses an instrumentation amplifier, the instrumentation amplifier is used to operate in a sampling phase and a holding phase to generate a second positive output signal and a second negative output signal according to a positive input signal and a negative input signal
  • An embodiment of the present application discloses a chip including the above instrumentation amplifier.
  • An embodiment of the present application discloses an electronic device including the above-mentioned chip.
  • the instrumentation amplifier of the present application can improve the signal-to-noise ratio without increasing the power consumption through the innovative setting of the sampling stage and the holding stage.
  • FIG. 1 is a schematic diagram of an embodiment of an instrumentation amplifier of the present application.
  • FIG. 2 is an equivalent schematic diagram of the instrumentation amplifier of FIG. 1 in the sampling phase.
  • FIG. 3 is an equivalent schematic diagram of the instrumentation amplifier of FIG. 1 in the hold-up phase.
  • FIG. 4 is a schematic diagram of an embodiment in which the instrumentation amplifier of the present application is disposed before the analog-to-digital converter.
  • FIG. 5 is a timing diagram of the instrumentation amplifier and analog-to-digital converter of FIG. 4 .
  • first and second features are in direct contact with each other; and may also include Certain embodiments may have additional components formed between the first and second features described above, such that the first and second features may not be in direct contact.
  • present disclosure may reuse reference numerals and/or reference numerals in various embodiments. Such reuse is for brevity and clarity, and does not in itself represent a relationship between the different embodiments and/or configurations discussed.
  • FIG. 1 is a schematic diagram of an embodiment of an instrumentation amplifier 100 of the present application.
  • the instrumentation amplifier 100 of FIG. 1 is used to operate in a sampling phase and a holding phase in sequence to generate a signal according to a positive input signal Vip and a negative input signal Vin
  • the instrumentation amplifier 100 has a positive input terminal and a negative input terminal, which are respectively used for fixedly receiving the positive input signal Vip and the negative input signal Vin.
  • the instrumentation amplifier 100 switches to the first configuration in the sampling phase according to the control signal CLKH and the control signal CLKS; and switches to the second configuration in the hold phase according to the control signal CLKH and the control signal CLKS.
  • the equivalent schematic diagram of the first configuration is shown in FIG. 2 ; the equivalent schematic diagram of the second configuration is shown in FIG. 3 .
  • the instrumentation amplifier 100 includes a first stage amplifier 102 and a second stage amplifier 104 .
  • the second-stage amplifier 104 is coupled after the first-stage amplifier 102 .
  • Instrumentation amplifier 100 also includes switches 110 , 112 , 114 and 116 . By controlling the switches 110 , 112 , 114 and 116 , the positive input terminal and the negative input terminal of the instrumentation amplifier 100 can be correspondingly coupled to the first positive input terminal Nipl and the first negative input of the first-stage amplifier 102 .
  • terminal Nin1, or the positive input terminal and the negative input terminal of the instrumentation amplifier 100 are correspondingly coupled to the first negative input terminal Nin1 and the first positive input terminal Nip1 of the first stage amplifier 102, so that the instrumentation amplifier 100 switching between the sampling stage and the hold stage.
  • the switch 110 is coupled between the first positive input terminal Nip1 of the first-stage amplifier 102 and the positive input terminal of the instrumentation amplifier 100, the switch 110 is turned on during the sampling phase, and is turned on during the sampling phase.
  • the hold phase is non-conductive;
  • the switch 112 is coupled between the first negative input terminal Nin1 of the first-stage amplifier 102 and the negative input terminal of the instrumentation amplifier 100, the switch 112 is turned on in the sampling phase, and
  • the hold phase is non-conductive;
  • the switch 114 is coupled between the first negative input terminal Nin1 of the first-stage amplifier 102 and the positive input terminal of the instrumentation amplifier 100, the switch 114 is non-conductive in the sampling phase, and in all The hold phase is turned on;
  • the switch 116 is coupled between the first positive input terminal Nip1 of the first-stage amplifier 102 and the negative input terminal of the instrumentation amplifier 100, the switch 116 is non-conductive during the sampling phase, and in all The hold phase is turned on.
  • the following will first describe the operations of the first-stage amplifier 102 in the sampling phase and the holding phase, and then describe the operations of the second-stage amplifier 104 in the sampling phase and the holding phase.
  • the first stage amplifier 102 is used to provide the first gain, and the first stage amplifier 102 has a first positive input terminal Nipl, a first negative input terminal Nin1, a first positive output terminal Nop1 and a first negative output terminal Non1.
  • control signal CLKS turns on switches 110 and 112 in FIG. 1 ; and control signal CLKH turns off switches 114 and 116 in FIG. 1 . Therefore, as shown in FIG. 2 , the first-stage amplifier 102 receives the positive input signal Vip from the first positive input terminal Nip1 and the negative input signal Vin from the first negative input terminal Nin1 in the sampling phase, and generates the The first positive output signal Vop1 in the sampling stage, and the first negative output signal Von1 in the sampling stage is generated, the first positive output signal Vop1 is output from the first positive output terminal Nop1, and the first negative output signal Von1 is output from the first negative output terminal Non1 output, where:
  • control signal CLKS turns off switches 110 and 112 of FIG. 1 ; and control signal CLKH turns on switches 114 and 116 of FIG. 1 , that is, turns on the positive input of first stage amplifier 102
  • the signal Vip and the negative input signal Vin are swapped. Therefore, as shown in FIG.
  • the first-stage amplifier 102 receives the negative input signal Vin from the first positive input terminal Nip1 and the positive input signal Vip from the first negative input terminal Nin1 in the hold phase, and generates the The first positive output signal Vop1 in the hold phase, and the first negative output signal Vop1 in the hold phase is generated, the first positive output signal Vop1 is output from the first positive output terminal Nop1, and the first negative output signal Von1 is output from the first negative output Terminal Non1 output, where:
  • the first stage amplifier 102 when the signal is input to the first-stage amplifier 102, input noise will be generated, which will be amplified by the first-stage amplifier 102 and then output.
  • the first stage amplifier 102 also generates the first positive output noise Vop1_N in the sampling stage, and generates the first negative output noise Von1_N and the first positive output noise Vop1_N in the sampling stage It is output from the first positive output terminal Nop1, and the first negative output noise Von1_N is output from the first negative output terminal Non1, wherein:
  • the first-stage amplifier 102 also generates the first positive output noise Vop1_N of the hold phase, and generates the first negative output noise Von1_N of the hold phase, and the first positive output noise Vop1_N starts from the first positive output noise Vop1_N.
  • the output terminal Nop1 is output, and the first negative output noise Von1_N is output from the first negative output terminal Non1, wherein:
  • the first-stage amplifier 102 includes: a first amplifier 1022, a second amplifier 1024, a first feedback resistor 1026, a second feedback resistor 1028, a first input resistor 1030, a second input resistor 1032, and a third feedback resistor Capacitor 1034 and fourth feedback capacitor 1036 .
  • the positive input terminal of the first amplifier 1022 is used as the first positive input terminal Nip1 of the first-stage amplifier 102
  • the positive input terminal of the second amplifier 1024 is used as the first negative input terminal Nin1 of the first-stage amplifier 102 .
  • the first feedback resistor 1026 has a first resistance value RF, and the first feedback resistor 1026 is coupled between the negative input terminal of the first amplifier 1022 and the output terminal of the first amplifier 1022 .
  • the second feedback resistor 1028 matches the first feedback resistor 1026 , that is, the second feedback resistor 1028 also has the first resistance value RF, and the second feedback resistor 1028 is coupled to the negative input terminal of the second amplifier 1024 and the output of the second amplifier 1024 between the ends.
  • the first input resistor 1030 has a second resistance value RI
  • the second input resistor 1032 matches the first input resistor 1030, that is, the second input resistor 1032 also has a second resistance value RI
  • the first input resistor 1030 and the second input resistor 1032 It is connected in series between the negative input terminal of the first amplifier 1022 and the negative input terminal of the second amplifier 1024 .
  • the third feedback capacitor 1034 and the first feedback resistor 1026 are arranged in parallel; and the fourth feedback capacitor 1036 and the second feedback resistor 1028 are arranged in parallel.
  • the connection of the first amplifier 1022, the first feedback resistor 1026, the first input resistor 1030 and the third feedback capacitor 1034 enables the first amplifier 1022 to be configured to form a first inverting amplifier with a gain of -1*RF/RI;
  • the connection of the second amplifier 1024 , the second feedback resistor 1028 , the second input resistor 1032 and the fourth feedback capacitor 1036 enables the second amplifier 1024 to be configured to form a second inverting amplifier with a gain of ⁇ 1*RF/RI. Therefore, the overall first gain of the first stage amplifier 102 is -1*RF/RI.
  • the value of RF/RI is designed to be greater than 1 to meet the requirement of high gain.
  • the method of the first-stage amplifier 102 of the present application is not limited to the above-mentioned embodiment.
  • the second stage amplifier 104 has a second positive input terminal Nip2, a second negative input terminal Nin2, a second positive output terminal Nop2 and a second negative output terminal Non2.
  • the second positive input terminal Nip2 is coupled to the first positive output terminal Nop1 of the first stage amplifier 102
  • the second negative input terminal Nin2 is coupled to the first negative output terminal Non1 of the first stage amplifier 102 .
  • the second stage amplifier 104 includes a fully differential amplifier 1042 , a first input capacitor 1044 , a second input capacitor 1046 , a first feedback capacitor 1048 , a second feedback capacitor 1050 , a first switch 1052 and a second switch 1054 .
  • the fully differential amplifier 1042 has a positive input terminal, a negative input terminal, a positive output terminal and a negative output terminal.
  • the positive output terminal of the fully differential amplifier 1042 is used as the second positive output terminal Nop2 of the second stage amplifier 104 for outputting the second positive output terminal. the output signal Vop2; and the negative output terminal of the fully differential amplifier 1042 as the second negative output terminal Non2 of the second stage amplifier 104 for outputting the second negative output signal Von2.
  • the first input capacitor 1044 has a first capacitance value CL, and the first input capacitor 1044 is coupled between the second positive input terminal Nip2 and the positive input terminal of the fully differential amplifier 1042 .
  • the second input capacitor 1046 matches the first input capacitor 1044 , that is, the second input capacitor 1046 also has the first capacitance value CL, and the second input capacitor 1046 is coupled between the second negative input terminal Nin2 and the negative input terminal of the fully differential amplifier 1042 between.
  • the first feedback capacitor 1048 has a second capacitance value CF
  • the first feedback capacitor 1048 is coupled between the positive input terminal of the fully differential amplifier 1042 and the negative output terminal of the fully differential amplifier 1042
  • the second feedback capacitor 1050 matches the first feedback capacitor 1048 , that is, the second feedback capacitor 1050 also has a second capacitance value CF
  • the second feedback capacitor 1050 is coupled between the negative input terminal of the fully differential amplifier 1042 and the positive output terminal of the fully differential amplifier 1042 .
  • the first switch 1052 is coupled to both ends of the first feedback capacitor 1048
  • the second switch 1054 is coupled to both ends of the second feedback capacitor 1050 .
  • the first switch 1052 and the second switch 1054 are turned on according to the control of the control signal CLKS.
  • the second-stage amplifier 104 is in a reset state, and the first input capacitor 1044 samples the first positive output signal Vop1 in the sampling stage generated by the first-stage amplifier 102 and stores the corresponding charge Qp,
  • the second input capacitor 1046 samples the first negative output signal Von1 of the sampling stage generated by the first-stage amplifier 102 and stores the corresponding charge Qn.
  • the first switch 1052 and the second switch 1054 are turned off according to the control of the control signal CLKS, so that the instrumentation amplifier 100 enters the hold phase.
  • the signal-related charge Qp of the first input capacitor 1044 will be transferred to the first feedback capacitor 1048
  • the signal-related charge Qn of the second input capacitor 1046 will be transferred to the second feedback capacitor 1050 .
  • the schematic diagram is equivalent to performing positive-phase amplification on the first positive output signal Vop1 of the sampling stage and the first negative output signal Von1 of the sampling stage, and amplifying the first positive output signal Vop1 and the second negative output terminal Non2 between the second positive output terminal Nop2 and the second negative output terminal Non2.
  • the first signal voltage that contributes between them is:
  • the second gain is CL/CF. That is to say, the first positive output signal Vop1 and the first negative output signal Von1 output by the first-stage amplifier 102 in the sampling stage will be reflected in the output of the second-stage amplifier 104 in the holding stage, more specifically , the voltage difference between the first positive output signal Vop1 and the first negative output signal Von1 during the sampling phase will wait until the holding phase before contributing the difference between the second positive output terminal Nop2 and the second negative output terminal Non2 the first signal voltage.
  • the first positive output signal Vop1 of the hold phase is output from the first positive output terminal Nop1 of the first stage amplifier 102
  • the first negative output signal Von1 of the hold phase is output from the first stage
  • the first negative output terminal Non1 of the amplifier 102 outputs the output.
  • the second stage amplifier 104 is equivalent to the first positive output signal Vop1 of the holding phase and the first negative output signal Von1 of the holding phase. Inverting amplification and contributing the second signal voltage between the second positive output terminal Nop2 and the second negative output terminal Non2 is:
  • the first positive output signal Vop1 and the first negative output signal Von1 output by the first-stage amplifier 102 in the hold phase will immediately reflect the output of the second-stage amplifier 104 in the hold phase, more specifically That is, the voltage difference between the first positive output signal Vop1 and the first negative output signal Von1 during the holding phase will immediately contribute the second signal voltage between the second positive output terminal Nop2 and the second negative output terminal Non2 . Therefore, in the hold phase, the voltage related to the signal output by the second stage amplifier 104 (that is, the signal output by the instrumentation amplifier 100) will be the first signal voltage superimposed on the second signal voltage. which is:
  • the instrumentation amplifier 100 of the present application can add the output signal caused by the input signal of the sampling stage and the holding stage, which is equal to twice the obtained signal amount, in other words, Compared with the general practice, the signal quantity obtained by the instrumentation amplifier 100 of the present application is multiplied.
  • the second stage amplifier 104 also amplifies the noise output by the first stage amplifier 102 .
  • the first input capacitor 1044 samples the first positive output noise Vop1_N in the sampling stage generated by the first-stage amplifier 102 and stores the corresponding charge QNp, and the second input capacitor 1046
  • the first negative output noise Von1_N of the sampling stage generated by the first stage amplifier 102 is sampled and the corresponding charge QNn is stored.
  • the noise-related charge QNp of the first input capacitor 1044 will be transferred to the first feedback capacitor 1048
  • the noise-related charge QNn of the second input capacitor 1046 will be transferred to the second feedback capacitor 1050
  • the first noise voltage contributed between the second positive output terminal Nop2 and the second negative output terminal Non2 is:
  • the input noise Vin_N received by the first-stage amplifier 102 in the sampling stage will be reflected in the output of the second-stage amplifier 104 in the holding stage. More specifically, the first positive output noise Vop1_N and the The voltage difference of a negative output noise Von1_N during the sampling phase will not contribute to the first noise voltage between the second positive output terminal Nop2 and the second negative output terminal Non2 until the holding phase.
  • the first positive output noise Vop1_N of the hold phase is output from the first positive output terminal Nop1 of the amplifier 102 of the first stage
  • the first negative output noise Von1_N of the hold phase is output from the first stage
  • the first negative output terminal Non1 of the amplifier 102 outputs, and contributes a second noise voltage between the second positive output terminal Nop2 and the second negative output terminal Non2 of the second stage amplifier 104 as follows:
  • the input noise Vin_N received by the first-stage amplifier 102 during the hold phase will be immediately reflected in the output of the second-stage amplifier 104 during the hold phase. More specifically, the first positive output noise Vop1_N and The voltage difference of the first negative output noise Von1_N during the holding phase will immediately contribute the second noise voltage between the second positive output terminal Nop2 and the second negative output terminal Non2. Therefore, in the holding phase, the voltage related to noise output by the second stage amplifier 104 (ie, the noise output by the instrumentation amplifier 100 ) will be the first noise voltage superimposed on the second noise voltage. which is:
  • the first noise voltage+the second noise voltage the input noise Vin_N in the sampling phase*the first gain*the second gain ⁇ 1*the input noise in the hold phase Vin_N*the first gain * the second gain.
  • the instrumentation amplifier 100 of the present application can subtract the output noise caused by the input noise Vin_N of the sampling stage and the holding stage, because the input noise Vin_N of the sampling stage and the holding stage There is a time difference between the input noise Vin_N of the stages, so the lower frequency signal can be subtracted more completely, that is, the better the suppression effect.
  • thermal noise that is, white noise, which has the characteristics of consistent noise in the whole frequency band
  • the noise output from the instrumentation amplifier 100 is only 1.4 times that of the general practice.
  • the noise amount obtained by the amplifier 100 is not multiplied, but compared with the general practice, the signal amount obtained by the instrumentation amplifier 100 of the present application is doubled, so the final signal-to-noise ratio can be improved by 1.4 times compared with the general practice.
  • the second stage amplifier 104 of the instrumentation amplifier 100 and the second stage amplifier of the existing instrumentation amplifier have the same gain
  • the first stage amplifier can be
  • the first gain of the first stage amplifier 102 is designed to be half of the gain of the first stage amplifier of the general existing instrumentation amplifier, so that the same overall gain can be achieved, and the signal-to-noise ratio can be improved without increasing the power consumption. 1.4 times that of existing instrumentation amplifiers.
  • the instrumentation amplifier 100 may additionally add a first resistor 106 to be coupled to the first positive output terminal Nop1 of the first stage amplifier 102 and the second positive input of the second stage amplifier 104 between the terminals Nip2 ; and a second resistor 108 coupled between the first negative output terminal Non1 of the first stage amplifier 102 and the second negative input terminal Nin2 of the second stage amplifier 104 .
  • the first resistor 106 and the second resistor 108 can be used to provide filtering effects to further reduce noise in a specific frequency band.
  • the instrumentation amplifier 100 may be disposed before the analog-to-digital converter, as shown in FIG. 4 , the instrumentation amplifier 100 may be disposed before the analog-to-digital converter 402 , and the analog-to-digital converter 402 is controlled by the control signal adc_s to The second positive output signal Vop2 and the second negative output signal Von2 are sampled.
  • FIG. 5 is a timing diagram of the control signal CLKH of the instrumentation amplifier 100, the control signal CLKS, and the control signal adc_s of the analog-to-digital converter 402, wherein at time points t1 to t2, the control signal CLKS transitions from a low level to a high level to enable
  • the switch 110, the switch 112, the switch 1052 and the switch 1054 are turned on, and the control signal CLKH is kept at a low level so that the switch 114 and the switch 116 are not turned on, so that the instrumentation amplifier 100 enters the sampling phase, and the control signal adc_s is kept at a low level at this stage , so that the analog-to-digital converter 402 does not convert.
  • the control signal CLKS changes from a high level to a low level to make the switch 110, switch 112, switch 1052 and switch 1054 non-conductive, and the control signal CLKH changes from a low level to a high level to make
  • the switch 114 and the switch 116 are turned on, so that the instrumentation amplifier 100 enters the hold phase.
  • the control signal adc_s changes from a low level to a high level, so that the analog-to-digital converter 402 performs conversion.
  • the operation of FIG. 5 may continue to be repeated.
  • the present application also provides a chip that includes an instrumentation amplifier 100 and, in some embodiments, an analog-to-digital converter 402.
  • the present application also provides an electronic device including the instrumentation amplifier 100 or the chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

一种仪表放大器(100)及相关芯片和电子装置。仪表放大器(100)用来依序操作在采样阶段以及保持阶段,以依据正输入信号(Vip)及负输入信号(Vin)来产生第二正输出信号(Vop2)及第二负输出信号(Von2),仪表放大器(100)包括:第一级放大器(102)以及第二级放大器(104),第二级放大器(104)包括:全差分放大器(1042)、第一输入电容(1044)、第二输入电容(1046)、第一反馈电容(1048)、第二反馈电容(1050)、第一开关(1052)以及第二开关(1054)。第一开关(1052)耦接于第一反馈电容(1048)的两端,第一开关(1052)在采样阶段导通,以及在保持阶段不导通。第二开关(1054)耦接于第二反馈电容(1050)的两端,第二开关(1054)在采样阶段导通,以及在保持阶段不导通。

Description

仪表放大器及相关芯片及电子装置 技术领域
本申请涉及一种放大器,尤其涉及一种仪表放大器及相关芯片及电子装置。
背景技术
随着电子技术的飞速发展,运算放大电路也得到广泛的应用。仪表放大器的效能优于运算放大器,可以在抑制共模信号的同时放大差分输入信号。然而,当应用在对于信噪比要求极高的系统中,往往需要复杂的设计及/或耗费较高的功耗,使仪表放大器的成本上升,因此,如何设计出兼具低成本与高信噪比的仪表放大器,已成为本领域亟需解决的问题之一。
发明内容
本申请的目的之一在于公开一种仪表放大器及相关芯片及电子装置,来解决上述问题。
本申请的一实施例公开了一种仪表放大器,所述仪表放大器用来操作在采样阶段以及保持阶段,以依据正输入信号及负输入信号来产生第二正输出信号及第二负输出信号,所述仪表放大器包括:第一级放大器,具有第一正输入端、第一负输入端、第一正输出端以及第一负输出端,所述第一级放大器提供第一增益,且所述第一级放大器:在所述采样阶段,从所述第一正输入端接收所述正输入信号,以及从所述第一负输入端接收所述负输入信号,并产生所述采样阶段之第一正输出信号,并将所述第一正输出信号从所述第一正输出端输出,以 及产生采样阶段之第一负输出信号,并将所述第一负输出信号从所述第一负输出端输出,其中,(所述采样阶段之所述第一正输出信号-所述采样阶段之所述第一负输出信号)=(所述采样阶段之所述正输入信号-所述采样阶段之所述负输入信号)*所述第一增益;以及在所述保持阶段,从所述第一正输入端接收所述负输入信号,以及从所述第一负输入端接收所述正输入信号,并产生所述保持阶段之第一正输出信号,所述保持阶段之所述第一正输出信号从所述第一正输出端输出,以及产生所述保持阶段之第一负输出信号,所述保持阶段之所述第一负输出信号从所述第一负输出端输出,其中,(所述保持阶段之所述第一正输出信号-所述保持阶段之所述第一负输出信号)=(所述保持阶段之所述负输入信号-所述保持阶段之所述正输入信号)*所述第一增益;以及第二级放大器,具有第二正输出端、第二负输出端、耦接至所述第一级放大器的所述第一正输出端的第二正输入端、以及耦接至所述第一级放大器的所述第一负输出端的第二负输入端,所述第二级放大器包括:差分放大器,具有正输入端、负输入端、正输出端以及负输出端,所述差分放大器的所述正输出端作为所述第二级放大器的所述第二正输出端,用来输出所述第二正输出信号,所述差分放大器的所述负输出端作为所述第二级放大器的所述第二负输出端,用来输出所述第二负输出信号;第一输入电容,所述第一输入电容耦接于所述第二正输入端以及所述差分放大器的正输入端之间;第二输入电容,所述第二输入电容耦接于所述第二负输入端以及所述差分放大器的负输入端之间;第一反馈电容,所述第一反馈电容耦接于所述差分放大器的所述正输入端以及所述差分放大器的负输出端之间;第二反馈电容,所述第二反馈电容耦接于所述差分放大器的所述负输入端以及所述差分放大器的正输出端之间;第一开关,耦接于所述第一反馈电容的两端,所述第一开关在所述采样阶段导通,以及在所述保持阶段不导通;以及第二开关,耦接于所述第二反馈电容的两端,所述第二开关在所述采样阶段导通,以及在所述保持阶段不导通。
本申请的一实施例公开了一种芯片,包括上述的仪表放大器。
本申请的一实施例公开了一种电子装置,包括上述的芯片。
本申请的仪表放大器通过创新的采样阶段及保持阶段的设置,可以在不增加功耗的情况下提高信噪比。
附图说明
图1为本申请的仪表放大器的实施例的示意图。
图2为图1的仪表放大器在采样阶段的等效示意图。
图3为图1的仪表放大器在保持阶段的等效示意图。
图4为本申请的仪表放大器设置于模拟数字转换器之前的实施例的示意图。
图5为图4的仪表放大器和模拟数字转换器的时序图。
具体实施方式
以下揭示内容提供了多种实施方式或例示,其能用以实现本揭示内容的不同特征。下文所述之组件与配置的具体例子系用以简化本揭示内容。当可想见,这些叙述仅为例示,其本意并非用于限制本揭示内容。举例来说,在下文的描述中,将一第一特征形成于一第二特征上或之上,可能包括某些实施例其中所述的第一与第二特征彼此直接接触;且也可能包括某些实施例其中还有额外的组件形成于上述第一与第二特征之间,而使得第一与第二特征可能没有直接接触。此外,本揭示内容可能会在多个实施例中重复使用组件符号和/或标号。此种重复使用乃是基于简洁与清楚的目的,且其本身不代表所讨论的不同实施例和/或组态之间的关系。
虽然用以界定本申请较广范围的数值范围与参数皆是约略的数值,此处已尽可能精确地呈现具体实施例中的相关数值。然而,任何数值本质上不可避免地含有因个别测试方法所致的标准偏差。在此处, 「约」通常系指实际数值在一特定数值或范围的正负10%、5%、1%或0.5%之内。或者是,「约」一词代表实际数值落在平均值的可接受标准误差之内,视本申请所属技术领域中具有通常知识者的考虑而定。当可理解,除了实验例之外,或除非另有明确的说明,此处所用的所有范围、数量、数值与百分比(例如用以描述材料用量、时间长短、温度、操作条件、数量比例及其他相似者)均经过「约」的修饰。因此,除非另有相反的说明,本说明书与附随申请专利范围所揭示的数值参数皆为约略的数值,且可视需求而更动。至少应将这些数值参数理解为所指出的有效位数与套用一般进位法所得到的数值。在此处,将数值范围表示成由一端点至另一端点或介于二端点之间;除非另有说明,此处所述的数值范围皆包括端点。
图1为本申请的仪表放大器100的实施例的示意图,具体来说,图1的仪表放大器100用来依序操作在采样阶段以及保持阶段,以依据正输入信号Vip及负输入信号Vin来产生第二正输出信号Vop2及第二负输出信号Von2。具体来说,仪表放大器100具有正输入端及负输入端,分别用来固定地接收正输入信号Vip及负输入信号Vin。仪表放大器100并依据控制信号CLKH及控制信号CLKS来在所述采样阶段切换为第一组态;以及依据控制信号CLKH及控制信号CLKS来在所述保持阶段切换为第二组态。其中所述第一组态的等效示意图绘示于图2;所述第二组态的等效示意图绘示于图3。
仪表放大器100包括第一级放大器102以及第二级放大器104。第二级放大器104耦接于第一级放大器102之后。仪表放大器100还包括开关110、112、114及116。通过控制开关110、112、114及116,可以将仪表放大器100的所述正输入端及所述负输入端对应地耦接至第一级放大器102的第一正输入端Nip1及第一负输入端Nin1,或将仪表放大器100的所述正输入端及所述负输入端对应地耦接至第一级放大器102的第一负输入端Nin1及第一正输入端Nip1,以使仪表放大器100于所述采样阶及所述保持阶段之间切换。
在本实施例中,开关110耦接于第一级放大器102的第一正输入 端Nip1及仪表放大器100的所述正输入端之间,开关110在所述采样阶段导通,以及在所述保持阶段不导通;开关112耦接于第一级放大器102的第一负输入端Nin1及仪表放大器100的所述负输入端之间,开关112在所述采样阶段导通,以及在所述保持阶段不导通;开关114耦接于第一级放大器102的第一负输入端Nin1及仪表放大器100的所述正输入端之间,开关114在所述采样阶段不导通,以及在所述保持阶段导通;开关116耦接于第一级放大器102的第一正输入端Nip1及仪表放大器100的所述负输入端之间,开关116在所述采样阶段不导通,以及在所述保持阶段导通。
以下将先针对第一级放大器102在所述采样阶段以及所述保持阶段的操作进行说明,然后再针对第二级放大器104在所述采样阶段以及所述保持阶段的操作进行说明。
第一级放大器的概述
第一级放大器102用来提供第一增益,且第一级放大器102具有第一正输入端Nip1、第一负输入端Nin1、第一正输出端Nop1以及第一负输出端Non1。
第一级放大器的信号部分
在所述采样阶段,控制信号CLKS使图1中的开关110及112导通;以及控制信号CLKH使图1中的开关114及116不导通。因此,如图2所示,第一级放大器102在所述采样阶段,从第一正输入端Nip1接收正输入信号Vip,以及从第一负输入端Nin1接收负输入信号Vin,并产生所述采样阶段之第一正输出信号Vop1,以及产生采样阶段之第一负输出信号Von1,第一正输出信号Vop1从第一正输出端Nop1输出,第一负输出信号Von1从第一负输出端Non1输出,其中:
(所述采样阶段之第一正输出信号Vop1-所述采样阶段之第一负输出信号Von1)=(所述采样阶段之正输入信号Vip-所述采样阶段之负输入信号Vin)*所述第一增益。
在所述保持阶段,控制信号CLKS使图1中的开关110及112不 导通;以及控制信号CLKH使图1中的开关114及116导通,也就是使进入第一级放大器102的正输入信号Vip和负输入信号Vin交换。因此,如图3所示,第一级放大器102在所述保持阶段,从第一正输入端Nip1接收负输入信号Vin,以及从第一负输入端Nin1接收正输入信号Vip,并产生所述保持阶段之第一正输出信号Vop1,以及产生所述保持阶段之第一负输出信号Vop1,第一正输出信号Vop1从第一正输出端Nop1输出,第一负输出信号Von1从第一负输出端Non1输出,其中:
(所述保持阶段之第一正输出信号Vop1-所述保持阶段之第一负输出信号Von1)=(所述保持阶段之负输入信号Vin-所述保持阶段之所述正输入信号Vip)*所述第一增益。
第一级放大器的噪声部分
此外,在信号输入第一级放大器102时,会产生输入噪声,并经第一级放大器102放大后输出。具体来说,在所述采样阶段,第一级放大器102还会产生所述采样阶段之第一正输出噪声Vop1_N,以及产生所述采样阶段之第一负输出噪声Von1_N,第一正输出噪声Vop1_N从第一正输出端Nop1输出,第一负输出噪声Von1_N从第一负输出端Non1输出,其中:
(所述采样阶段之第一正输出噪声Vop1_N-所述采样阶段之第一负输出噪声Von1_N)=所述采样阶段之输入噪声Vin_N*所述第一增益。
在所述保持阶段,第一级放大器102还会产生所述保持阶段之第一正输出噪声Vop1_N,以及产生所述保持阶段之第一负输出噪声Von1_N,第一正输出噪声Vop1_N从第一正输出端Nop1输出,第一负输出噪声Von1_N从第一负输出端Non1输出,其中:
(所述保持阶段之第一正输出噪声Vop1_N-所述保持阶段之第一负输出噪声Von1_N)=所述保持阶段之输入噪声Vin_N*所述第一增益。
在本实施例中,第一级放大器102包括:第一放大器1022、第二放大器1024、第一反馈电阻1026、第二反馈电阻1028、第一输入电阻1030、第二输入电阻1032、第三反馈电容1034以及第四反馈电容1036。其中第一放大器1022的正输入端作为第一级放大器102的第一正输入端Nip1,第二放大器1024的正输入端作为第一级放大器102的第一负输入端Nin1。第一反馈电阻1026具有第一电阻值RF,第一反馈电阻1026耦接于第一放大器1022的负输入端以及第一放大器1022的输出端之间。第二反馈电阻1028和第一反馈电阻1026匹配,即第二反馈电阻1028也具有第一电阻值RF,第二反馈电阻1028耦接于第二放大器1024的负输入端以及第二放大器1024的输出端之间。第一输入电阻1030具有第二电阻值RI,第二输入电阻1032和第一输入电阻1030匹配,即第二输入电阻1032也具有第二电阻值RI,第一输入电阻1030及第二输入电阻1032串接于第一放大器1022的负输入端以及第二放大器1024的负输入端之间。第三反馈电容1034和第一反馈电阻1026并联设置;以及第四反馈电容1036和第二反馈电阻1028并联设置。
其中,第一放大器1022、第一反馈电阻1026、第一输入电阻1030以及第三反馈电容1034的连接方式使第一放大器1022配置形成第一反相放大器,并具有增益-1*RF/RI;第二放大器1024、第二反馈电阻1028、第二输入电阻1032以及第四反馈电容1036的连接方式使第二放大器1024配置形成第二反相放大器,并具有增益-1*RF/RI。因此第一级放大器102的整体的第一增益为-1*RF/RI。在本实施例中,RF/RI的值会设计为大于1以符合高增益的需求。然而应注意的是,本申请的第一级放大器102的作法并不限于上述实施方式。
第二级放大器的概述
第二级放大器104,具有第二正输入端Nip2、第二负输入端Nin2、第二正输出端Nop2以及第二负输出端Non2。其中第二正输入端Nip2耦接至第一级放大器102的第一正输出端Nop1,以及第二负输入端Nin2耦接至第一级放大器102的第一负输出端Non1。第二级放大器 104包括全差分放大器1042、第一输入电容1044、第二输入电容1046、第一反馈电容1048、第二反馈电容1050、第一开关1052以及第二开关1054。
其中全差分放大器1042具有正输入端、负输入端、正输出端以及负输出端,全差分放大器1042的正输出端作为第二级放大器104的第二正输出端Nop2,用来输出第二正输出信号Vop2;以及全差分放大器1042的负输出端作为第二级放大器104的第二负输出端Non2,用来输出第二负输出信号Von2。第一输入电容1044具有第一电容值CL,第一输入电容1044耦接于第二正输入端Nip2以及全差分放大器1042的正输入端之间。第二输入电容1046匹配第一输入电容1044,即第二输入电容1046也具有第一电容值CL,第二输入电容1046耦接于第二负输入端Nin2以及全差分放大器1042的负输入端之间。第一反馈电容1048具有第二电容值CF,第一反馈电容1048耦接于全差分放大器1042的正输入端以及全差分放大器1042的负输出端之间,第二反馈电容1050匹配第一反馈电容1048,即第二反馈电容1050也具有第二电容值CF,第二反馈电容1050耦接于全差分放大器1042的负输入端以及全差分放大器1042的正输出端之间。第一开关1052耦接于第一反馈电容1048的两端,第二开关1054耦接于第二反馈电容1050的两端。
第二级放大器的 信号部分
在所述采样阶段,第一开关1052以及第二开关1054依据控制信号CLKS的控制而导通。如图2所示,第二级放大器104处在重置状态,第一输入电容1044对第一级放大器102产生的所述采样阶段之第一正输出信号Vop1进行采样并储存对应的电荷Qp,第二输入电容1046对第一级放大器102产生的所述采样阶段之第一负输出信号Von1进行采样并储存对应的电荷Qn。
接着,第一开关1052以及第二开关1054依据控制信号CLKS的控制而不导通,使仪表放大器100进入所述保持阶段。如图3所示,第一输入电容1044的关于信号的电荷Qp会转移到第一反馈电容 1048,第二输入电容1046的关于信号的电荷Qn会转移到第二反馈电容1050,依据图3的示意图,等效于对所述采样阶段之第一正输出信号Vop1及所述采样阶段之第一负输出信号Von1进行正相放大,并在第二正输出端Nop2和第二负输出端Non2之间贡献第一信号电压为:
(所述采样阶段之第一正输出信号Vop1-所述采样阶段之第一负输出信号Von1)*第二增益=(所述采样阶段之正输入信号Vip1-所述采样阶段之负输入信号Vin1)*所述第一增益*所述第二增益。
其中所述第二增益为CL/CF。也就是说,第一级放大器102在所述采样阶段输出的第一正输出信号Vop1和第一负输出信号Von1,会在所述保持阶段反映在第二级放大器104的输出,更具体地说,第一正输出信号Vop1和第一负输出信号Von1在所述采样阶段时的电压差,会等到所述保持阶段,才在第二正输出端Nop2和第二负输出端Non2之间贡献所述第一信号电压。
此外,在所述保持阶段,所述保持阶段之第一正输出信号Vop1从第一级放大器102的第一正输出端Nop1输出,以及所述保持阶段之第一负输出信号Von1从第一级放大器102的第一负输出端Non1输出,依据图3的示意图,第二级放大器104等效于对所述保持阶段之第一正输出信号Vop1及所述保持阶段之第一负输出信号Von1进行反相放大,并在第二正输出端Nop2和第二负输出端Non2之间贡献第二信号电压为:
(所述保持阶段之第一正输出信号Vop1-所述保持阶段之第一负输出信号Von1)*(-1*所述第二增益)=(所述保持阶段之正输入信号Vip1-所述保持阶段之负输入信号Vin1)*所述第一增益*所述第二增益。
也就是说,第一级放大器102在所述保持阶段输出的第一正输出信号Vop1和第一负输出信号Von1,会立即在所述保持阶段反应在第二级放大器104的输出,更具体地说,第一正输出信号Vop1和第一负输出信号Von1在所述保持阶段时的电压差,会立即在第二正输出端Nop2和第二负输出端Non2之间贡献所述第二信号电压。因此在 所述保持阶段,第二级放大器104输出的关于信号的电压(即仪表放大器100输出的信号)会是所述第一信号电压叠加所述第二信号电压。即:
(第二正输出信号Vop2-第二负输出信号Von2)=所述第一信号电压+所述第二信号电压=(所述采样阶段之正输入信号Vip1-所述采样阶段之负输入信号Vin1)*所述第一增益*所述第二增益+(所述保持阶段之正输入信号Vip1-所述保持阶段之负输入信号Vin1)*所述第一增益*所述第二增益。
可以得知对于信号电压来说,本申请的仪表放大器100可以将所述采样阶段和所述保持阶段的输入信号造成的输出信号相加,等于是得到的两倍的信号量,换句话说,相较于一般的作法,本申请的仪表放大器100得到的信号量是倍增的。
第二级放大器的 噪声部分
第二级放大器104也会将第一级放大器102输出的噪声放大。具体来说,在所述采样阶段,所述第一输入电容1044对第一级放大器102产生的所述采样阶段之第一正输出噪声Vop1_N进行采样并储存对应的电荷QNp,第二输入电容1046对第一级放大器102产生的所述采样阶段之第一负输出噪声Von1_N进行采样并储存对应的电荷QNn。
类似地,进入所述保持阶段后,第一输入电容1044的关于噪声的电荷QNp会转移到第一反馈电容1048,以及第二输入电容1046的关于噪声的电荷QNn会转移到第二反馈电容1050,并在第二正输出端Nop2和第二负输出端Non2之间贡献第一噪声电压为:
(所述采样阶段之第一正输出噪声Vop1_N-所述采样阶段之第一负输出噪声Von1_N)*所述第二增益=所述采样阶段之输入噪声Vin_N*所述第一增益*所述第二增益。
也就是说,第一级放大器102在所述采样阶段收到的输入噪声Vin_N,会在所述保持阶段反应在第二级放大器104的输出,更具体 地说,第一正输出噪声Vop1_N和第一负输出噪声Von1_N在所述采样阶段时的电压差,会等到所述保持阶段,才在第二正输出端Nop2和第二负输出端Non2之间贡献所述第一噪声电压。
此外,在所述保持阶段,所述保持阶段之第一正输出噪声Vop1_N从第一级放大器102的第一正输出端Nop1输出,以及所述保持阶段之第一负输出噪声Von1_N从第一级放大器102的第一负输出端Non1输出,并在第二级放大器104的第二正输出端Nop2和第二负输出端Non2之间贡献第二噪声电压为:
(所述保持阶段之第一正输出噪声Vop1_N-所述保持阶段之第一负输出噪声Von1_N)*(-1*所述第二增益)=-1*所述保持阶段之输入噪声Vin_N*所述第一增益*所述第二增益。
也就是说,第一级放大器102在所述保持阶段收到的输入噪声Vin_N,会立即在所述保持阶段反应在第二级放大器104的输出,更具体地说,第一正输出噪声Vop1_N和第一负输出噪声Von1_N在所述保持阶段时的电压差,会立即在第二正输出端Nop2和第二负输出端Non2之间贡献所述第二噪声电压。因此在所述保持阶段,第二级放大器104输出的关于噪声的电压(即仪表放大器100输出的噪声)会是所述第一噪声电压叠加所述第二噪声电压。即:
所述第一噪声电压+所述第二噪声电压=所述采样阶段之输入噪声Vin_N*所述第一增益*所述第二增益-1*所述保持阶段之输入噪声Vin_N*所述第一增益*所述第二增益。
可以得知对于噪声电压来说,本申请的仪表放大器100可以将所述采样阶段和所述保持阶段的输入噪声Vin_N造成的输出噪声相减,因为所述采样阶段之输入噪声Vin_N和所述保持阶段之输入噪声Vin_N之间有时间差,故对越低频的信号,能够相减的越完全,也就是抑制效果越好。以热噪声(即白噪声,具有全频带噪声一致的特性)为例,仪表放大器100输出的噪声量只会是一般作法的1.4倍,换句话说,相较于一般的作法,本申请的仪表放大器100得到的噪声量并不是倍增的,但相较于一般的作法,本申请的仪表放大器100得到的 信号量倍增,因此最终的信噪比相较于一般的作法可提升1.4倍。
由于仪表放大器100可以得到加倍的信号量,因此在某些实施例中,在仪表放大器100的第二级放大器104和现有的仪表放大器的第二级放大器具有相同增益的情况下,可将第一级放大器102的所述第一增益设计为一般现有的仪表放大器的第一级放大器的增益的一半,即可达到一样的整体增益,在不增加功耗的情况下,信噪比可提升为现有的仪表放大器的1.4倍。
在某些实施例中,可以如图1所示,仪表放大器100可额外加入第一电阻106耦接于第一级放大器102的第一正输出端Nop1以及第二级放大器104的第二正输入端Nip2之间;以及加入第二电阻108耦接于第一级放大器102的第一负输出端Non1以及第二级放大器104的第二负输入端Nin2之间。第一电阻106以及第二电阻108可用于提供滤波的效果,以进一步降低特定频带的噪声。
在某些实施例中,仪表放大器100可设置于模拟数字转换器之前,如图4所示,仪表放大器100可设置于模拟数字转换器402之前,模拟数字转换器402受控制信号adc_s控制来对第二正输出信号Vop2和第二负输出信号Von2进行采样。图5为仪表放大器100的控制信号CLKH、控制信号CLKS和模拟数字转换器402的控制信号adc_s的时序图,其中在时间点t1至t2,控制信号CLKS由低电平转变为高电平以使开关110、开关112、开关1052及开关1054导通,控制信号CLKH保持低电平以使开关114及开关116不导通,以使仪表放大器100进入采样阶段,此阶段控制信号adc_s保持低电平,使模拟数字转换器402不进行转换。在时间点t2至t3,控制信号CLKS由高电平转变为低电平以使开关110、开关112、开关1052及开关1054不导通,控制信号CLKH由低电平转变为高电平以使开关114及开关116导通,以使仪表放大器100进入保持阶段,此阶段控制信号adc_s由低电平转变为高电平,使模拟数字转换器402进行转换。图5的操作可持续重复地进行。
本申请还提供了一种芯片,其包括仪表放大器100,在某些实施 例中,所述芯片还包括模拟数字转换器402。本申请还提供了一种电子装置,包括仪表放大器100或所述芯片。
上文的叙述简要地提出了本申请某些实施例之特征,而使得本申请所属技术领域具有通常知识者能够更全面地理解本揭示内容的多种态样。本申请所属技术领域具有通常知识者当可明了,其可轻易地利用本揭示内容作为基础,来设计或更动其他工艺与结构,以实现与此处所述之实施方式相同的目的和/或达到相同的优点。本申请所属技术领域具有通常知识者应当明白,这些均等的实施方式仍属于本揭示内容之精神与范围,且其可进行各种变更、替代与更动,而不会悖离本揭示内容之精神与范围。

Claims (11)

  1. 一种仪表放大器,其特征在于,所述仪表放大器用来操作在采样阶段以及保持阶段,以依据正输入信号及负输入信号来产生第二正输出信号及第二负输出信号,所述仪表放大器包括:
    第一级放大器,具有第一正输入端、第一负输入端、第一正输出端以及第一负输出端,所述第一级放大器提供第一增益,且所述第一级放大器:
    在所述采样阶段,从所述第一正输入端接收所述正输入信号,以及从所述第一负输入端接收所述负输入信号,并产生所述采样阶段之第一正输出信号,并将所述第一正输出信号从所述第一正输出端输出,以及产生采样阶段之第一负输出信号,并将所述第一负输出信号从所述第一负输出端输出,其中,(所述采样阶段之所述第一正输出信号-所述采样阶段之所述第一负输出信号)=(所述采样阶段之所述正输入信号-所述采样阶段之所述负输入信号)*所述第一增益;以及
    在所述保持阶段,从所述第一正输入端接收所述负输入信号,以及从所述第一负输入端接收所述正输入信号,并产生所述保持阶段之第一正输出信号,所述保持阶段之所述第一正输出信号从所述第一正输出端输出,以及产生所述保持阶段之第一负输出信号,所述保持阶段之所述第一负输出信号从所述第一负输出端输出,其中,(所述保持阶段之所述第一正输出信号-所述保持阶段之所述第一负输出信号)=(所述保持阶段之所述负输入信号-所述保持阶段之所述正输入信号)*所述第一增益;以及
    第二级放大器,具有第二正输出端、第二负输出端、耦接至所述第一级放大器的所述第一正输出端的第二正输入端、以及耦接至所述第一级放大器的所述第一负输出端的第二负输入端,所述第二级放大器包括:
    差分放大器,具有正输入端、负输入端、正输出端以及负输出端,所述差分放大器的所述正输出端作为所述第二 级放大器的所述第二正输出端,用来输出所述第二正输出信号,所述差分放大器的所述负输出端作为所述第二级放大器的所述第二负输出端,用来输出所述第二负输出信号;
    第一输入电容,所述第一输入电容耦接于所述第二正输入端以及所述差分放大器的正输入端之间;
    第二输入电容,所述第二输入电容耦接于所述第二负输入端以及所述差分放大器的负输入端之间;
    第一反馈电容,所述第一反馈电容耦接于所述差分放大器的所述正输入端以及所述差分放大器的负输出端之间;
    第二反馈电容,所述第二反馈电容耦接于所述差分放大器的所述负输入端以及所述差分放大器的正输出端之间;
    第一开关,耦接于所述第一反馈电容的两端,所述第一开关在所述采样阶段导通,以及在所述保持阶段不导通;以及
    第二开关,耦接于所述第二反馈电容的两端,所述第二开关在所述采样阶段导通,以及在所述保持阶段不导通。
  2. 如权利要求1所述的仪表放大器,其特征在于,所述第一级放大器包括:
    第一反相放大器,其中所述第一反相放大器的正输入端作为所述第一级放大器的所述第一正输入端,所述第一反相放大器的输出端作为所述第一级放大器的所述第一正输出端;以及
    第二反相放大器,其中所述第二反相放大器的正输入端作为所述第一级放大器的所述第一负输入端,所述第二反相放大器的输出端作为所述第一级放大器的所述第一负输出端。
  3. 如权利要求2所述的仪表放大器,其特征在于,所述第一反相放大器包括:
    第一放大器,其中所述第一放大器的正输入端作为所述第一反相放大器的所述正输入端,所述第一放大器的输出端作为 所述第一反相放大器的所述输出端;
    第一反馈电阻,具有第一电阻值,所述第一反馈电阻耦接于所述第一放大器的负输入端以及所述第一放大器的所述输出端之间;
    第一输入电阻,具有第二电阻值;以及
    第三反馈电容,和所述第一反馈电阻并联设置;以及
    所述第二反相放大器包括:
    第二放大器,其中所述第二放大器的正输入端作为所述第二反相放大器的所述正输入端,所述第二放大器的输出端作为所述第二反相放大器的所述输出端;
    第二反馈电阻,具有所述第一电阻值,所述第二反馈电阻耦接于所述第二放大器的负输入端以及所述第二放大器的所述输出端之间;
    第二输入电阻,具有所述第二电阻值,所述第一输入电阻及所述第二输入电阻串接于所述第一放大器的所述负输入端以及所述第二放大器的所述负输入端之间;以及
    第四反馈电容,和所述第二反馈电阻并联设置。
  4. 如权利要求1所述的仪表放大器,其特征在于,所述仪表放大器还包括:
    正输入端,用于接收所述正输入信号;
    负输入端,用于接收所述负输入信号;
    第三开关,耦接于所述第一级放大器的所述第一正输入端及所述仪表放大器的所述正输入端之间,所述第三开关在所述采样阶段导通,以及在所述保持阶段不导通;
    第四开关,耦接于所述第一级放大器的所述第一负输入端及所述仪表放大器的所述负输入端之间,所述第四开关在所述采样阶段导通,以及在所述保持阶段不导通;
    第五开关,耦接于所述第一级放大器的所述第一负输入端及所述仪表放大器的所述正输入端之间,所述第五开关在所述采样阶段不导通,以及在所述保持阶段导通;以及
    第六开关,耦接于所述第一级放大器的所述第一正输入端及所述仪表放大器的所述负输入端之间,所述第六开关在所述采样阶段不导通,以及在所述保持阶段导通。
  5. 如权利要求1所述的仪表放大器,其特征在于,还包括:
    第一电阻,耦接于所述第一级放大器的所述第一正输出端以及所述第二级放大器的所述第二正输入端之间;以及
    第二电阻,耦接于所述第一级放大器的所述第一负输出端以及所述第二级放大器的所述第二负输入端之间。
  6. 如权利要求1-5中任一项所述的仪表放大器,其特征在于,所述第一输入电容与所述第二输入电容的电容值相同,所述第一反馈电容与所述第二反馈电容的电容值相同。
  7. 如权利要求1所述的仪表放大器,其特征在于,在所述采样阶段,所述第一输入电容对所述第一级放大器产生的所述采样阶段之所述第一正输出信号进行采样,所述第二输入电容对所述第一级放大器产生的所述采样阶段之所述第一负输出信号进行采样,且所述第一输入电容对所述第一级放大器产生的所述采样阶段之第一正输出噪声进行采样,所述第二输入电容对所述第一级放大器产生的所述采样阶段之第一负输出噪声进行采样。
  8. 如权利要求7所述的仪表放大器,其特征在于,在所述保持阶段:
    所述第一输入电容将在所述采样阶段对所述第一级放大器产生的所述采样阶段之所述第一正输出信号进行采样得到的电荷转移到所述第一反馈电容,以及所述第二输入电容将在所述采样阶段对所述第一级放大器产生的所述采样阶段之所述第一负输出信号进行采样得到的电荷转移到所述第二反馈电容,并在所述第二正输出端和所述第二负输出端之间贡献第一信号电压为:
    (所述采样阶段之所述第一正输出信号-所述采样阶段之 所述第一负输出信号)*第二增益=(所述采样阶段之所述正输入信号-所述采样阶段之所述负输入信号)*所述第一增益*所述第二增益;以及
    所述第一输入电容将在所述采样阶段对所述第一正输出噪声进行采样所得到的电荷转移到所述第一反馈电容,以及所述第二输入电容将所述采样阶段对所述第一负输出噪声进行采样所得到的电荷转移到所述第二反馈电容,并在所述第二正输出端和所述第二负输出端之间贡献第一噪声电压,所述第一噪声电压为:
    (所述采样阶段之所述第一正输出噪声-所述采样阶段之所述第一负输出噪声)*所述第二增益=所述采样阶段之所述输入噪声*所述第一增益*所述第二增益。
  9. 一种芯片,其特征在于,包括:
    如权利要求1至8中任一项所述的仪表放大器。
  10. 如权利要求9所述的芯片,其特征在于,还包括:
    模拟数字转换器,具有正输入端及负输入端相对应地耦接于所述仪表放大器的所述第二级放大器的所述第二正输出端及所述第二负输出端。
  11. 一种电子装置,其特征在于,包括:
    如权利要求9至10中任一项所述的芯片。
PCT/CN2021/072804 2021-01-20 2021-01-20 仪表放大器及相关芯片及电子装置 WO2022155802A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072804 WO2022155802A1 (zh) 2021-01-20 2021-01-20 仪表放大器及相关芯片及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072804 WO2022155802A1 (zh) 2021-01-20 2021-01-20 仪表放大器及相关芯片及电子装置

Publications (1)

Publication Number Publication Date
WO2022155802A1 true WO2022155802A1 (zh) 2022-07-28

Family

ID=82548474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072804 WO2022155802A1 (zh) 2021-01-20 2021-01-20 仪表放大器及相关芯片及电子装置

Country Status (1)

Country Link
WO (1) WO2022155802A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414487A (zh) * 2007-11-20 2009-04-22 北京大学深圳研究生院 一种采样保持器及采样保持方法
US20160056707A1 (en) * 2014-08-25 2016-02-25 Linear Technology Corporation Notch filter for ripple reduction
CN105490649A (zh) * 2014-09-15 2016-04-13 万高(杭州)科技有限公司 仪表放大器
TW201731209A (zh) * 2011-04-28 2017-09-01 半導體能源研究所股份有限公司 半導體電路
CN107294501A (zh) * 2017-05-11 2017-10-24 华南理工大学 一种斩波放大电路及其实现方法
CN111555721A (zh) * 2019-02-08 2020-08-18 意法半导体股份有限公司 放大接口以及用于校正放大接口的对应测量系统和方法
CN211955788U (zh) * 2020-01-23 2020-11-17 杭州士兰微电子股份有限公司 低压传感器系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414487A (zh) * 2007-11-20 2009-04-22 北京大学深圳研究生院 一种采样保持器及采样保持方法
TW201731209A (zh) * 2011-04-28 2017-09-01 半導體能源研究所股份有限公司 半導體電路
US20160056707A1 (en) * 2014-08-25 2016-02-25 Linear Technology Corporation Notch filter for ripple reduction
CN105490649A (zh) * 2014-09-15 2016-04-13 万高(杭州)科技有限公司 仪表放大器
CN107294501A (zh) * 2017-05-11 2017-10-24 华南理工大学 一种斩波放大电路及其实现方法
CN111555721A (zh) * 2019-02-08 2020-08-18 意法半导体股份有限公司 放大接口以及用于校正放大接口的对应测量系统和方法
CN211955788U (zh) * 2020-01-23 2020-11-17 杭州士兰微电子股份有限公司 低压传感器系统

Similar Documents

Publication Publication Date Title
US7551114B2 (en) Reducing power consumption in the early stages of a pipeline sub-ADC used in a time-interleaved ADC
US7365668B2 (en) Continuous-time delta-sigma analog digital converter having operational amplifiers
US9537497B2 (en) Continuous time delta sigma modulator, analog to digital converter and associated compensation method
US20070139240A1 (en) Continuous-time delta-sigma analog digital converter
US10277175B2 (en) Switched-capacitor input circuit, switched-capacitor amplifier, and switched-capacitor voltage comparator
TW201820791A (zh) 類比至數位轉換器
JP2005303591A (ja) Ad変換器
EP2064812A2 (en) Signal conditioning circuit, a comparator including such a conditioning circuit and a successive approximation converter including such a circuit
JP2009290439A (ja) 相関二重サンプリング回路
US20070120595A1 (en) Increasing the common mode range of a circuit
TWI748128B (zh) Δς調變器
KR101960180B1 (ko) 연산 증폭기 이득 보상 기능을 가지는 이산-시간 적분기 회로
JP2024055972A (ja) 増幅器
Brewer et al. A 100dB SNR 2.5 MS/s output data rate/spl Delta//spl Sigma/ADC
WO2022155802A1 (zh) 仪表放大器及相关芯片及电子装置
US6172631B1 (en) Double-sampling pseudo-3-path bandpass sigma-delta modulator
JP2008219404A (ja) 増幅回路
CN110034766B (zh) 一种比较器电路和比较器电路控制方法
US8471753B1 (en) Pipelined analog-to-digital converter and method for converting analog signal to digital signal
US8199040B2 (en) Analog-to-digital converter
US10148238B2 (en) Amplifier circuit and multipath nested miller amplifier circuit
US20140240041A1 (en) Operational amplifier circuit
CN112564708B (zh) 模数转换电路
CN112398453B (zh) 仪表放大器及相关芯片及电子装置
US11070226B2 (en) A/D conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920206

Country of ref document: EP

Kind code of ref document: A1