WO2022154382A1 - Electrolyte containing allylphenyl sulfone for lithium secondary battery and lithium secondary battery including same - Google Patents

Electrolyte containing allylphenyl sulfone for lithium secondary battery and lithium secondary battery including same Download PDF

Info

Publication number
WO2022154382A1
WO2022154382A1 PCT/KR2022/000281 KR2022000281W WO2022154382A1 WO 2022154382 A1 WO2022154382 A1 WO 2022154382A1 KR 2022000281 W KR2022000281 W KR 2022000281W WO 2022154382 A1 WO2022154382 A1 WO 2022154382A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
secondary battery
lithium secondary
allyl
carbonate
Prior art date
Application number
PCT/KR2022/000281
Other languages
French (fr)
Korean (ko)
Inventor
임태은
안중영
Original Assignee
인천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인천대학교 산학협력단 filed Critical 인천대학교 산학협력단
Publication of WO2022154382A1 publication Critical patent/WO2022154382A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte solution for a lithium secondary battery containing allylphenyl sulfone and a lithium secondary battery containing the same, and more specifically, to an allylphenyl sulfone (APS) additive, a solvent, and a lithium salt comprising the same
  • APS allylphenyl sulfone
  • the present invention relates to an electrolyte for a lithium secondary battery and a lithium secondary battery including the same.
  • lithium-ion batteries have been widely investigated as the main power source for EVs because of their stable electrochemical performance, such as long-term cycling retention and moderate rate capacity.
  • layered oxides have been recognized as advanced cathode materials for LIBs.
  • the most popular cathode material is nickel-rich layered nickel metal oxide (LiNi x Co y Mn z O 2 , x ⁇ 0.6, Ni-rich because of its large capacity during electrochemical charging/discharging). abbreviated as NCM).
  • Ni-rich NCM cathode materials the specific capacity is dominated by the electrochemical reaction of Ni and Co.
  • the specific capacity can be increased by increasing the Ni content in the layered structure of the NCM cathode material.
  • Ni-rich NCM cathode materials show relatively low cycle performance compared to other anode materials.
  • Ni-rich NCM cathode materials continuously undergo unwanted side reactions such as electrolyte decomposition and transition metal component decomposition during electrochemical charging/discharging.
  • This phenomenon is due to the relatively unstable nature of the Ni 4+ species (filled products).
  • the electrolyte (with many single pair electrons in the molecular structure of the solvent) can easily decompose in the cell in that Ni 4+ species are extremely unstable and therefore tend to decrease, increasing the cell's surface resistance at high states of charge.
  • Patent Document 1 Republic of Korea Patent No. 10-0867535
  • nickel-rich lithium metal oxide is attracting attention as an advanced cathode material for lithium-ion batteries, its poor cycling performance at high temperatures is a major problem in its application.
  • the present invention relates to an electrolyte solution for a lithium secondary battery containing allylphenyl sulfone and a lithium secondary battery containing the same, and more specifically, to an allylphenyl sulfone (APS) additive, a solvent, and a lithium salt comprising the same
  • APS allylphenyl sulfone
  • the present invention relates to an electrolyte for a lithium secondary battery and a lithium secondary battery including the same.
  • the present invention proposes the use of allyl phenyl sulfone (APS), which is a functional electrolyte additive functionalized by allyl and sulfone chemical moieties (Fig. 1).
  • APS allyl phenyl sulfone
  • Sulfone (-SO 2 -)) functional group is a chemical component that effectively increases the surface stability of the NCM cathode material because it can act as an ion conductor and an electronic insulator on the surface of the NCM cathode material.
  • the incorporation of sulfone and allyl functional groups into the molecular structure of the additive can improve the electrochemical performance of Ni-rich NCM cathode materials because unwanted surface reactions in the cell can be controlled.
  • the electrochemical suitability of the APS additive for the above additive design is determined, and the basic chemistry can be explained through systematic analysis.
  • the allyl functional group removes F - through a reaction with a nucleophilic F - species.
  • the additive is characterized in that it contains 0.1% by weight or more and less than 0.5% by weight based on the weight of the electrolyte.
  • the solvent is dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC) ethylene carbonate (EC), vinyl It is characterized in that it comprises at least one selected from the group consisting of ene carbonate (VC), vinyl ethylene carbonate (VEC), propylene carbonate (PC), and butylene carbonate (BC), but is not limited thereto.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • MPC methylpropyl carbonate
  • EPC ethylpropyl carbonate
  • MEC methylethyl carbonate
  • EC ethylene carbonate
  • vinyl comprises at least one selected from the group consisting of ene carbonate (VC), vinyl ethylene carbonate (VEC), propylene carbonate (PC), and butylene carbonate (
  • the solvent preferably contains ethylene carbonate (EC):ethyl methyl carbonate (EMC) in a ratio of 1:2.
  • the lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li(CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiAlO 4 , LiAlCl 4 , LiCl and LiI It may be at least one selected from the group consisting of, but is not limited thereto.
  • the lithium salt concentration is characterized in that it has a concentration of 0.01 to 2M.
  • a cathode-electrolyte interphase (CEI) layer is formed between the cathode and the electrolyte, and the cathode-electrolyte interphase (CEI) layer includes a sulfone functional group and an allyl functional group. characterized in that
  • the anode-electrolyte intermediate phase (CEI) layer includes a sulfone functional group that functions as an ion conductor and an electronic insulator on the anode surface.
  • Ni-rich layer can improve the interface stability of lithium metal oxide.
  • the sulfone functional group introduced into the positive-electrolyte intermediate phase (CEI) can effectively inhibit the electrolyte degradation during cycling, and the allyl functional group makes the CEI more robust because its desirable chemical reactivity promotes additional cross-linking reactions between the CEIs. can make it
  • the allyl functional group selectively removes fluorine (F ⁇ ) species in the cell, thereby reducing the F ⁇ concentration and improving the overall electrochemical performance of the cell.
  • the cells cycled with the APS additive showed significantly improved cycling retention at high temperatures (78.9%), while the cells cycled with standard electrolytes struggled due to persistent preservation fading (64.3%). suffered
  • FIG. 1 is a schematic diagram of an NCM811 cathode material using APS.
  • FIG. 3 shows (a) APS mechanism for HF scavenging reaction, (b) ionic conductivity of standard electrolyte (black) and APS control electrolyte: 0.1 APS (red), 0.25 APS (blue), 0.5 APS (green) (c) ) is a diagram showing the LSV results for the standard electrolyte (black) and the APS control electrolyte (orange).
  • FIG. 4 shows (a) potential profile of the cell in the second cycle, (b) specific capacity at 45° C., (c) average coulombic efficiency, (d) APS (black: NCM811, red: 0.1 APS, blue: A diagram showing the Rate Capability of a cell cycled at 0.25 APS and green: 0.5 APS).
  • Figure 5 shows (a) cycle NCM811 anode using standard electrolyte, (b) cycling NCM811 anode, SEM analysis of cycle NCM811 anode using 0.25 APS control electrolyte, (c) cell formation and (d) NCM811 electrode after 50 cycles.
  • Figures showing EIS analysis black: NCM811 and blue: 0.25 APS).
  • FIG. 6 is a diagram showing a) the XPS spectra of a cycled NCM811 electrode (top) and 0.25 APS (bottom): C1, F1s, P2p and S2p and (b) quantitative analysis of transition metals formed at the cathode.
  • Figure 8 is a diagram showing (a) the voltage profile of the cell in the initial cycle, (b) retention at 45°C (black: NCM811, blue: 0.25APS).
  • the chemical reactivity between the APS additive and F ⁇ was investigated as follows: 0.01 mol APS (Aldrich) and 0.01 mol tetrabutylammonium fluoride (TBAF, Aldrich) were placed in a plastic bottle and stirred for 24 hours. The resulting solution was collected and analyzed by nuclear magnetic resonance spectroscopy (Agilent 400-MR, Agilent) using CDCl 3 (Aldrich) as an NMR solvent.
  • CM-41X, TOA-DKK conductivity meter
  • LSV linear sweep voltage measurement
  • a three-electrode cell assembled from free carbon (working electrode), platinum wire (counter electrode), and Ag/Ag + (reference electrode) was prepared, and its potential was 3.75 V (vs. Li/Li + ) to 5.0V (vs. Li/Li + ) were scanned at a rate of 1 mVs ⁇ 1 .
  • NCM811 LiNi 0.8 Co 0.1 Mn 0.1 O 2 anodes were prepared as follows: 1.8 g NCM811 (ecopro), 0.1 g poly(vinylidene fluoride), 0.1 g carbon conductive agent (Super) P) was dispersed in 1.7 mL N-methylpyrrolidone (Aldrich) and mixed for 1 hour. The NCM811 slurry was coated on an aluminum current collector and then dried at 120° C. for 3 hours and dried in a vacuum oven at 120° C. for 12 hours. The load density of the NCM811 anode is 8.62 ⁇ 0.3 mg cm -2 .
  • a 2032 coin cell was prepared using an NCM811 positive electrode, a lithium metal negative electrode, and a poly(propylene)/poly(ethylene)/poly(propylene) separator, each using the prepared electrolyte.
  • the cells were run from 3.0 V (vs Li/Li + ) to 4.3 V (vs, Li/Li + ) at room temperature or 45° C. at a current of 0.1 C for 2 cycles (formation phase), 0.5 for 100 cycles. It was cycled with a current of C.
  • the cells were charged/discharged to the same potential range, but the charge/discharge current densities were varied at 0.1C, 0.2C, 0.3C, 0.5C, 1.0C and 2.0C.
  • the cells were disassembled in an Ar-filled glove box, and the recovered NCM811 positive electrode was washed with dimethyl carbonate for 5 seconds.
  • the recovered material was analyzed by field emission scanning electron microscopy (JSM-7800F, JEOL) to determine the surface morphology of the cycled NCM811 anode.
  • Electrochemical impedance spectroscopy (EIS) analysis was performed on an electrochemical workstation (Wonatech, ZiveMP1) at 10 mV amplitudes from 1 M to 10 mHz.
  • the chemical composition of the cycled NCM811 anode was quantified by X-ray photoelectron spectroscopy (XPS, Thermo-Scientific), and the transition metal component formed on the cathode surface was quantified by inductively coupled plasma mass spectroscopy (ICP-MS, FluoTime300/MicroTime100, Thermo).
  • XPS X-ray photoelectron spectroscopy
  • ICP-MS inductively coupled plasma mass spectroscopy
  • the F - scavenging performance of the APS additive was determined by ex-situ NMR analysis (Fig. 2).
  • the F - equivalent, TBAF served as the F - source in the chemical reaction between TBAF and the APS additive and reacted to determine whether the APS additive effectively traps the F - species.
  • the solution consisting of APS additive and TBAF was colorless when placed in a plastic bottle, but eventually turned yellow and black. This color change indicates that the APS additive chemically reacted with TBAF.
  • Ex-situ NMR analysis of the black solution indicates that the chemical state of the solution is clearly altered.
  • the ionic conductivity of the APS control electrolyte decreased with increasing APS (8.94, 8.77, and 8.61 mS cm ⁇ 1 for 0.1, 0.25 and 0.5 APS control electrolyte, respectively).
  • the room temperature cycling performance of the cell was measured as in FIG. 7 .
  • the overall shape of the potential profile of the cell was approximately the same, but the initial specific discharge capacity of the cell circulating with the APS control electrolyte decreased slightly (209.7 and 208.3 for standard electrolytes and 0.1, 0.25, and 0.5 APS control electrolytes, respectively). , 208.3, 207.8 mAhg ⁇ 1 ).
  • This finding may be due to differences in the ionic conductivity of the electrolytes: given that this initial electrochemical action is primarily affected by the ionic conductivity of the electrolyte, cells cycled with APS-controlled electrolytes have higher discharge costs than cells cycled with standard electrolytes. quantity is slightly lower.
  • cells cycled with the APS control electrolyte had improved cyclic storage.
  • Cells cycled with 0.1 and 0.25 APS control electrolyte showed retention values of 77.6% and 78.9%, respectively.
  • the 0.5 APS control electrolyte showed a relatively low retention rate of 69.5%.
  • the efficiencies of cells cycled with the standard electrolyte and 0.5 APS control electrolyte were 98.5% and 98.4%, respectively, lower than those of the 0.1 and 0.25 APS control electrolytes (99.4% and 99.3%, respectively).
  • the recovered NCM811 positive electrode was analyzed by SEM ( FIGS. 5A-5B ).
  • the SEM image showed that the surface morphology of the recovered NCM811 positive electrode cycled with the standard electrolyte was significantly changed compared to the initial state. Decomposition products from electrolytic decomposition significantly covered the surface of the NCM811 anode, which means that an unwanted reaction has occurred seriously. In contrast, the NCM811 anode cycled with 0.25 APS control electrolyte was relatively clean, and the boundaries between primary particles could be well observed.
  • the strength of decomposed additives such as Li x PO y F z (688.3 eV in F1s, 134.1 eV in P2p), Li x PF y (687.7 eV in F1s, 136.5 V in P2p) and LiF (685.1 eV in F1s) is 0.25 significantly higher in cells cycled with standard electrolyte than in cells cycled with APS control electrolyte. These results indicate that electrolyte degradation was clearly suppressed when the APS additive was used as a functional additive.
  • APS a functional electrolyte additive modified by allyl and sulfone functional groups.
  • Ex-situ NMR analysis showed that the allyl functional group in the molecular structure of the APS additive participates in a chemical reaction with the F ⁇ species, resulting in a decrease in the F ⁇ concentration in the cell.
  • the LSV results showed that the electrochemical oxidation of APS can produce a CEI layer on the surface of the NCM811 anode at about 4.17 V (versus Li/Li + ).
  • the use of the APS additive did not significantly affect the room temperature cycling performance of the cell, but apparently did change the high temperature cycling performance.
  • the APS additive effectively improved the interface stability of the NCM811 anode by significantly inhibiting unwanted reactions such as electrolyte decomposition and decomposition of transition metal components through the formation of reliable CEI on the surface of the NCM811 anode. conclusion can be drawn.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

In order to improve the interfacial stability of lithium metal oxide in a Ni-rich layer, the present invention is characterized by an electrolyte for a secondary battery and a secondary battery including same, wherein the electrolyte contains allyl phenyl sulfone (APS), which is a functional electrolyte additive modified with allyl and sulfone functional groups. The sulfone functional group introduced into the cathode-electrolyte interphase (CEI) can effectively suppress electrolyte decomposition during cycling and the allyl functional group allows for desired chemical reactivity promotive of an additional crosslinking reaction between CEIs, whereby the CEI can be established more robustly. In addition, the allyl functional group selectively scavenges fluorine species (F-) within the cell to reduce the concentration of F-, thereby enhancing the overall electrochemical performance of the cell.

Description

알릴페닐 술폰을 포함하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지Electrolyte for lithium secondary battery containing allylphenyl sulfone and lithium secondary battery containing same
본 발명은 알릴페닐 술폰을 포함하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지에 관한 것으로, 구체적으로는 알릴페닐 술폰(Allyl phenyl sulfone, APS) 첨가제, 용매 및 리튬염을 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지에 관한 발명이다.The present invention relates to an electrolyte solution for a lithium secondary battery containing allylphenyl sulfone and a lithium secondary battery containing the same, and more specifically, to an allylphenyl sulfone (APS) additive, a solvent, and a lithium salt comprising the same The present invention relates to an electrolyte for a lithium secondary battery and a lithium secondary battery including the same.
전기 자동차(EV)가 가까운 미래에 대안적인 친환경 운송 수단 중 하나가 되면서 에너지 저장/전환 장치에 대한 수요는 기하급수적으로 증가하고 있다. The demand for energy storage/conversion devices is growing exponentially as electric vehicles (EVs) become one of the alternative environmentally friendly means of transportation in the near future.
많은 종류의 에너지 저장/전환 장치 중에서, 리튬이온 배터리(LIB)는 장기 사이클링 보존 및 적정한 속도 용량과 같은 안정적인 전기화학 성능 때문에 EV의 주요 전원 역할을 하는 것으로 널리 조사되어 왔다. Among many types of energy storage/conversion devices, lithium-ion batteries (LIBs) have been widely investigated as the main power source for EVs because of their stable electrochemical performance, such as long-term cycling retention and moderate rate capacity.
EV 산업에서 직면하는 기술적 문제 중 하나는 1회 충전 후 주행 마일리지를 증가시킬 필요성을 수반한다. One of the technical challenges facing the EV industry entails the need to increase the driving mileage after a single charge.
더욱이, LIB의 에너지 밀도의 증가는 현재 EV에 필요한 사양을 충족시키기 위한 배터리 산업에서 가장 중요한 과제가 되었다. Moreover, the increase in the energy density of LIBs has become the most important task in the battery industry to meet the specifications required for current EVs.
이와 관련하여 지난 몇 년 동안 많은 종류의 진보된 전극 재료가 집중적으로 개발되었다.In this regard, many kinds of advanced electrode materials have been intensively developed in the past few years.
많은 전극 재료 중에서 층상 산화물은 LIB의 고급 양극재로 인식되었다. 수많은 종류의 층상 리튬 금속 산화물이 존재하지만, 가장 주목받는 양극재는 전기화학 충전/방전 중 용량이 크기 때문에 니켈이 풍부한 층상 니켈 메탈 산화물 (LiNixCoyMnzO2, x ≥ 0.6, Ni-rich NCM으로 약칭함)이다. Among many electrode materials, layered oxides have been recognized as advanced cathode materials for LIBs. Although many kinds of layered lithium metal oxide exist, the most popular cathode material is nickel-rich layered nickel metal oxide (LiNi x Co y Mn z O 2 , x ≥ 0.6, Ni-rich because of its large capacity during electrochemical charging/discharging). abbreviated as NCM).
Ni이 풍부한 NCM 양극재에서 비용량(specific capacity)은 Ni와 Co의 전기화학 반응에 의해 지배된다. In Ni-rich NCM cathode materials, the specific capacity is dominated by the electrochemical reaction of Ni and Co.
일반적인 차단 충전 프로토콜에서 Co 종보다 Ni 종의 전기화학적 산화환원성이 낮다는 점을 고려할 때 NCM 양극재의 층상 구조에서 Ni 함량을 증가시켜 비용량을 증가시킬 수 있다. Considering that the electrochemical redox property of Ni species is lower than that of Co species in the general blocking charging protocol, the specific capacity can be increased by increasing the Ni content in the layered structure of the NCM cathode material.
이와 관련하여 NCM 양극재의 Ni 함량을 증가시키는 것은 셀의 에너지 밀도를 개선하기 위한 유망한 전략이 될 수 있으므로, 70% Ni, 80% Ni, 90% Ni로 구성된 다양한 Ni-rich NCM 양극 재료가 배터리 산업에서 집중적으로 개발되어 왔다.In this regard, increasing the Ni content of NCM anode materials can be a promising strategy for improving the energy density of cells, so various Ni-rich NCM cathode materials composed of 70% Ni, 80% Ni, and 90% Ni have been developed in the battery industry. has been developed intensively in
그럼에도 불구하고 Ni-rich NCM 양극재 사용에는 중요한 병목 현상이 있다. Ni-rich NCM 양극재는 기존의 다른 양극 재료와 비교하여 상대적으로 낮은 사이클 성능을 보인다. Nevertheless, there is an important bottleneck in the use of Ni-rich NCM cathode materials. Ni-rich NCM cathode materials show relatively low cycle performance compared to other anode materials.
표면 안정성 측면에서 Ni-rich NCM 양극재는 전기화학적 충전/방전 중 전해질 분해 및 전이금속 성분 분해와 같은 원치 않는 측면 반응을 지속적으로 겪는다. In terms of surface stability, Ni-rich NCM cathode materials continuously undergo unwanted side reactions such as electrolyte decomposition and transition metal component decomposition during electrochemical charging/discharging.
이러한 현상은 Ni4+ 종(충전 제품)의 상대적으로 불안정한 성질에 기인한다. This phenomenon is due to the relatively unstable nature of the Ni 4+ species (filled products).
Ni4+ 종이 극도로 불안정하기 때문에 감소되는 경향이 있다는 점에서 전해질(용매의 분자 구조에 많은 단일 쌍 전자를 가진)은 셀에서 쉽게 분해되어 높은 충전 상태에서 셀의 표면 저항이 증가할 수 있다. The electrolyte (with many single pair electrons in the molecular structure of the solvent) can easily decompose in the cell in that Ni 4+ species are extremely unstable and therefore tend to decrease, increasing the cell's surface resistance at high states of charge.
또한, 전해질이 전기화학 반응을 통해 분해되면, 불소(F-) 종이 셀에서 생성되며, 이러한 F- 종은 화학적 침식을 통해 NCM 양극재의 전이 금속 성분을 분해하게 된다. 또한 Ni-rich NCM 양극재는 기계적 성질이 불량하여 전기화학 사이클에 따른 마이크로 크랙 형성이 지속적으로 발생하며, Ni-rich NCM 양극재는 원치 않는 표면 반응이 쉽게 발생하는 새로운 표면을 형성하여 Ni-rich NCM 양극재의 사이클 성능의 급격한 감소를 초래한다. In addition, when the electrolyte is decomposed through an electrochemical reaction, fluorine (F ) species are generated in the cell, and these F species decompose the transition metal component of the NCM cathode material through chemical erosion. In addition, the Ni-rich NCM cathode material has poor mechanical properties, so micro-cracks are continuously formed according to the electrochemical cycle. It results in a sharp decrease in the cycle performance of the ashes.
따라서 Ni-rich NCM 양극재의 불안정한 인터페이스 특성을 완화해야 한다.Therefore, it is necessary to alleviate the unstable interface characteristics of Ni-rich NCM cathode materials.
[선행기술문헌][Prior art literature]
(특허문헌 1) 대한민국 등록특허 제10-0867535호(Patent Document 1) Republic of Korea Patent No. 10-0867535
니켈이 풍부한 리튬 금속 산화물은 리튬이온 배터리의 첨단 양극재로 주목을 받고 있지만 고온에서 사이클링 성능이 떨어지는 것이 적용의 중대한 문제점이다.Although nickel-rich lithium metal oxide is attracting attention as an advanced cathode material for lithium-ion batteries, its poor cycling performance at high temperatures is a major problem in its application.
본 발명은 알릴페닐 술폰을 포함하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지에 관한 것으로, 구체적으로는 알릴페닐 술폰(Allyl phenyl sulfone, APS) 첨가제, 용매 및 리튬염을 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지에 관한 발명이다.The present invention relates to an electrolyte solution for a lithium secondary battery containing allylphenyl sulfone and a lithium secondary battery containing the same, and more specifically, to an allylphenyl sulfone (APS) additive, a solvent, and a lithium salt comprising the same The present invention relates to an electrolyte for a lithium secondary battery and a lithium secondary battery including the same.
상기 기술적 과제를 해결하고자, 본 발명에서는 알릴(allyl) 및 술폰(sulfone) 화학적 모이어티에 의해 기능화된 기능성 전해질 첨가물인 알릴페닐 술폰(allyl phenyl sulfone, APS)의 사용을 제안한다(도 1). In order to solve the above technical problem, the present invention proposes the use of allyl phenyl sulfone (APS), which is a functional electrolyte additive functionalized by allyl and sulfone chemical moieties (Fig. 1).
술폰(Sulfone (-SO2-)) 기능기 그룹은 NCM 양극재 표면에서 이온 도체 및 전자 절연체 역할을 할 수 있기 때문에 NCM 양극재의 표면 안정성을 효과적으로 증가시키는 화학 성분이다. Sulfone (-SO 2 -)) functional group is a chemical component that effectively increases the surface stability of the NCM cathode material because it can act as an ion conductor and an electronic insulator on the surface of the NCM cathode material.
따라서, 일단 -SO2- 기능기 그룹이 NCM 양극재 표면에 내장되면 전기화학 충전/방전 중 전해질 분해를 효과적으로 억제할 것으로 예상된다. Therefore, once the -SO 2 - functional group is embedded on the surface of the NCM cathode material, it is expected to effectively inhibit the electrolyte decomposition during electrochemical charging/discharging.
한편, 알릴(Allyl (-C-C=C-)) 기능기 그룹은 양극-전해질 중간상 (Cathode-Electrolyte Interphase, CEI) 층 형성 중에 모든 라디칼(전기 화학 반응에 의해 형성됨)이 추가적인 교차 연결 반응에 참여할 수 있다는 점을 고려할 때 CEI 층을 더 견고하게 만들기 때문에 양극-전해질 중간상(CEI) 층의 효과적인 개질자로 인식된다. On the other hand, the Allyl (-C-C=C-) functional group group allows all radicals (formed by electrochemical reactions) to participate in additional cross-linking reactions during cathode-electrolyte interphase (CEI) layer formation. It is recognized as an effective modifier of the anode-electrolyte mesophase (CEI) layer because it makes the CEI layer more rigid when taken into account.
따라서, 술폰과 알릴 기능기 그룹을 첨가제의 분자 구조에 통합하면 셀에서 원하지 않는 표면 반응이 제어될 수 있기 때문에 Ni-rich NCM 양극재의 전기화학 성능을 향상시킬 수 있다. 본 발명에서는 위의 첨가제 설계에 대한 APS 첨가제의 전기화학적 적합성을 결정하고, 그 기초 화학은 체계적인 분석을 통해 설명될 수 있다.Therefore, the incorporation of sulfone and allyl functional groups into the molecular structure of the additive can improve the electrochemical performance of Ni-rich NCM cathode materials because unwanted surface reactions in the cell can be controlled. In the present invention, the electrochemical suitability of the APS additive for the above additive design is determined, and the basic chemistry can be explained through systematic analysis.
상기 첨가제 중 알릴(Allyl) 기능기 그룹은 친핵성 F- 종과 반응을 통하여 F-을 제거하는 것을 특징으로 한다.Among the additives, the allyl functional group removes F - through a reaction with a nucleophilic F - species.
상기 첨가제는 전해액 중량대비 0.1 중량% 이상 0.5 중량% 미만을 함유하는 것을 특징으로 한다.The additive is characterized in that it contains 0.1% by weight or more and less than 0.5% by weight based on the weight of the electrolyte.
상기 용매는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC) 에틸렌 카보네이트(EC), 비닐렌 카보네이트(VC), 비닐 에틸렌 카보네이트(VEC), 프로필렌 카보네이트(PC) 및 부틸렌 카보네이트(BC)로 이루어진 군에서 선택된 하나 이상을 포함하는 것을 특징으로 하며, 이에 제한되는 것은 아니다. The solvent is dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC) ethylene carbonate (EC), vinyl It is characterized in that it comprises at least one selected from the group consisting of ene carbonate (VC), vinyl ethylene carbonate (VEC), propylene carbonate (PC), and butylene carbonate (BC), but is not limited thereto.
상기 용매는 EC(ethylene carbonate):EMC(ethyl methyl carbonate)가 1:2로 포함되는 것이 바람직하다. The solvent preferably contains ethylene carbonate (EC):ethyl methyl carbonate (EMC) in a ratio of 1:2.
상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiAlO4, LiAlCl4, LiCl 및 LiI로 이루어진 군에서 선택되는 적어도 하나일 수 있으나, 이에 제한되지 않는다. The lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li(CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiAlO 4 , LiAlCl 4 , LiCl and LiI It may be at least one selected from the group consisting of, but is not limited thereto.
상기 리튬염 농도는 0.01 ∼ 2M 농도를 갖는 것을 특징으로 한다. The lithium salt concentration is characterized in that it has a concentration of 0.01 to 2M.
본 발명의 또 다른 실시예에 따르면, 양극; 음극; 및 상기 양극과 음극 사이에 배치되는 전해질 층을 포함하며, 상기 전해질 층은 상기 기술된 전해액을 포함하는 리튬 이차전지를 특징으로 한다.According to another embodiment of the present invention, the positive electrode; cathode; and an electrolyte layer disposed between the positive electrode and the negative electrode, wherein the electrolyte layer is characterized in that the lithium secondary battery includes the above-described electrolyte.
상기 양극과 전해질 사이에는 양극-전해질 중간상(Cathode-Electrolyte Interphase, CEI) 층이 형성되며, 상기 양극-전해질 중간상(CEI) 층은 술폰(Sulfone) 기능기 그룹과 알릴(Allyl) 기능기 그룹을 포함하는 것을 특징으로 한다.A cathode-electrolyte interphase (CEI) layer is formed between the cathode and the electrolyte, and the cathode-electrolyte interphase (CEI) layer includes a sulfone functional group and an allyl functional group. characterized in that
상기 양극-전해질 중간상(CEI) 층이 포함하는 술폰(Sulfone) 기능기 그룹은 상기 양극 표면에서 이온 도체 및 전자 절연체 역할을 수행하는 것을 특징으로 한다.The anode-electrolyte intermediate phase (CEI) layer includes a sulfone functional group that functions as an ion conductor and an electronic insulator on the anode surface.
본 발명은 알릴(Allyl) 및 술폰(Sulfone) 기능기 그룹에 의해 개질된 기능성 전해질 첨가제인 알릴 페닐 술폰(Allyl Phenyl Sulfone, APS)을 포함하는 리튬 이차전지용 전해액을 특징으로 하기 때문에, Ni-rich 층의 리튬 금속 산화물의 인터페이스 안정성을 개선할 수 있다.Since the present invention features an electrolyte for a lithium secondary battery containing Allyl Phenyl Sulfone (APS), a functional electrolyte additive modified by allyl and sulfone functional groups, Ni-rich layer can improve the interface stability of lithium metal oxide.
양극-전해질 중간상(CEI)에 도입된 술폰 기능기 그룹은 사이클링 중 전해질 분해를 효과적으로 억제할 수 있으며, 알릴 기능기 그룹은 바람직한 화학적 반응성이 CEI들 사이의 추가적인 교차 결합 반응을 촉진하므로 CEI를 더욱 견고하게 만들 수 있다. The sulfone functional group introduced into the positive-electrolyte intermediate phase (CEI) can effectively inhibit the electrolyte degradation during cycling, and the allyl functional group makes the CEI more robust because its desirable chemical reactivity promotes additional cross-linking reactions between the CEIs. can make it
또한, 알릴 기능기 그룹은 셀 내의 불소(F-) 종을 선별적으로 제거하므로 F- 농도를 감소시켜 셀의 전반적인 전기화학 성능을 향상시킬 수 있다. In addition, the allyl functional group selectively removes fluorine (F ) species in the cell, thereby reducing the F concentration and improving the overall electrochemical performance of the cell.
ex-situ 핵자기 공명 분광법의 결과는 APS 첨가물이 화학적 소거 반응을 통해 F-종을 효과적으로 감소시킨다는 것을 확인했다. The results of ex-situ nuclear magnetic resonance spectroscopy confirmed that the addition of APS effectively reduced F-species through a chemical scavenging reaction.
하프셀의 사이클링 성능과 관련하여, APS 첨가제를 사용한 사이클링된 셀은 고온(78.9%)에서 상당히 향상된 사이클링 보존을 보여주었고, 표준 전해질을 사용한 사이클링의 셀은 지속적인 보존 페이딩(64.3%)으로 인해 어려움을 겪었다.Regarding the cycling performance of the half-cell, the cells cycled with the APS additive showed significantly improved cycling retention at high temperatures (78.9%), while the cells cycled with standard electrolytes struggled due to persistent preservation fading (64.3%). suffered
도 1은 APS를 이용한 NCM811 양극재의 개략도이다. 1 is a schematic diagram of an NCM811 cathode material using APS.
도 2는 (a) TBAF와 반응한 24시간 후 색깔 변화, (b) APS의 1H NMR 스펙트럼, (c) TBAF의 1H NMR 스펙트럼, 그리고 (d) TBAF와 반응한 APS의 1H NMR 스펙트럼을 나타내는 도면이다. 2 is (a) color change after 24 hours reaction with TBAF, (b) 1 H NMR spectrum of APS, (c) 1 H NMR spectrum of TBAF, and (d) 1 H NMR spectrum of APS reacted with TBAF It is a drawing showing
도 3은 (a) HF 소거 반응을 위한 APS 메커니즘, (b) 표준 전해질(검은색) 및 APS 제어 전해질의 이온 전도도: 0.1 APS(빨간색), 0.25 APS(파란색), 0.5 APS(녹색) (c) 표준 전해액(검은색) 및 APS 제어 전해액(주황색)에 대한 LSV 결과를 나타내는 도면이다.3 shows (a) APS mechanism for HF scavenging reaction, (b) ionic conductivity of standard electrolyte (black) and APS control electrolyte: 0.1 APS (red), 0.25 APS (blue), 0.5 APS (green) (c) ) is a diagram showing the LSV results for the standard electrolyte (black) and the APS control electrolyte (orange).
도 4는 (a) 2차 주기에서의 셀의 전위 프로파일, (b) 45℃에서의 비용량, (c) 평균 쿨롱 효율, (d) APS(검은색: NCM811, 빨간색: 0.1 APS, 파란색: 0.25 APS 및 녹색: 0.5 APS)로 사이클링한 셀의 속도 능력(Rate Capability)을 나타내는 도면이다.4 shows (a) potential profile of the cell in the second cycle, (b) specific capacity at 45° C., (c) average coulombic efficiency, (d) APS (black: NCM811, red: 0.1 APS, blue: A diagram showing the Rate Capability of a cell cycled at 0.25 APS and green: 0.5 APS).
도 5는 (a) 표준 전해질을 사용한 사이클 NCM811 양극, (b) 사이클링 NCM811 양극, 0.25 APS 제어 전해액을 사용한 사이클 NCM811 양극의 SEM 분석, (c) 셀 형성 후 및 (d) 50 사이클 후의 NCM811 전극의 EIS 분석(검은색: NCM811 및 파란색: 0.25 APS)을 나타내는 도면이다.Figure 5 shows (a) cycle NCM811 anode using standard electrolyte, (b) cycling NCM811 anode, SEM analysis of cycle NCM811 anode using 0.25 APS control electrolyte, (c) cell formation and (d) NCM811 electrode after 50 cycles. Figures showing EIS analysis (black: NCM811 and blue: 0.25 APS).
도 6은 a) 사이클링된 NCM811 전극(위) 및 0.25 APS(아래)의 XPS 스펙트럼: C1, F1s, P2p 및 S2p 및 (b) 음극에서 형성된 전이 금속에 대한 정량 분석을 나타내는 도면이다. 6 is a diagram showing a) the XPS spectra of a cycled NCM811 electrode (top) and 0.25 APS (bottom): C1, F1s, P2p and S2p and (b) quantitative analysis of transition metals formed at the cathode.
도 7은 (a) 형성 주기에서 셀의 전위 프로파일, (b) 25℃에서의 특정 용량, (c) C-rate 변화에 관한 전위 프로파일, 그리고 (d) APS를 사용하여 순환되는 셀의 전위 능력(검은색: NCM811, 0.1 APS, 파란색: 0.25 APS 및 녹색: 0.5 APS)을 나타내는 도면이다.7 shows (a) the potential profile of the cell in the formation cycle, (b) the specific capacity at 25°C, (c) the potential profile with respect to the C-rate change, and (d) the potential capacity of the cell cycled using APS. (black: NCM811, 0.1 APS, blue: 0.25 APS and green: 0.5 APS).
도 8은 (a) 초기 사이클에서 셀의 전압 프로필, (b) 45℃에서의 보존(검은색: NCM811, 파란색: 0.25APS)를 나타내는 도면이다.Figure 8 is a diagram showing (a) the voltage profile of the cell in the initial cycle, (b) retention at 45°C (black: NCM811, blue: 0.25APS).
이하, 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 이들 예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are only for helping the understanding of the present invention, and the scope of the present invention is not limited to these examples in any sense.
실험Experiment
APS 첨가제와 F- 사이의 화학 반응성은 다음과 같이 조사되었다: 0.01몰 APS (Aldrich)와 0.01몰 테트라부틸암모늄 불소화물 (TBAF, Aldrich)을 플라스틱 병에 넣고 24시간 동안 저었다. 결과 용액은 CDCl3(Aldrich)를 NMR 용매로 하여 핵자기 공명 분광법 (Agilent 400-MR, Agilent)에 의해 수집 및 분석되었다.The chemical reactivity between the APS additive and F was investigated as follows: 0.01 mol APS (Aldrich) and 0.01 mol tetrabutylammonium fluoride (TBAF, Aldrich) were placed in a plastic bottle and stirred for 24 hours. The resulting solution was collected and analyzed by nuclear magnetic resonance spectroscopy (Agilent 400-MR, Agilent) using CDCl 3 (Aldrich) as an NMR solvent.
이온 전도도를 측정하기 위해 각 전해질은 다음과 같이 준비하였다: 아르곤이 채워진 글로브 박스에 APS 첨가제(0.1, 0.25, 0.5 wt%)을 표준 전해질(에틸렌 탄산염:에틸 메틸 탄산염=1:2 + 1 M LiPF6, 동화 전해액)과 혼합하였다(각 전해질은 0.1, 0.25, 및 0.5 APS-제어 전해질로 약칭함). To measure the ionic conductivity, each electrolyte was prepared as follows: APS additive (0.1, 0.25, 0.5 wt%) was added to a glove box filled with argon as standard electrolyte (ethylene carbonate:ethyl methyl carbonate=1:2 + 1 M LiPF). 6 , anabolic electrolytes) (each electrolyte is abbreviated as 0.1, 0.25, and 0.5 APS-controlled electrolytes).
각 전해질(15 mL)은 실온에서 이온 전도도 측정을 위해 전도도계(CM-41X, TOA-DKK)에 배치하였다. Each electrolyte (15 mL) was placed in a conductivity meter (CM-41X, TOA-DKK) for ionic conductivity measurements at room temperature.
선형 스위프 전압 측정(LSV)의 경우 유리 탄소(작동 전극), 백금 와이어(카운터 전극), Ag/Ag+(기준 전극)로 조립된 3개의 전극 셀이 준비되었으며, 그 전위는 3.75V(vs. Li/Li+)에서 5.0V(vs. Li/Li+)까지 1mVs-1 속도로 스캔되었다.For linear sweep voltage measurement (LSV), a three-electrode cell assembled from free carbon (working electrode), platinum wire (counter electrode), and Ag/Ag + (reference electrode) was prepared, and its potential was 3.75 V (vs. Li/Li + ) to 5.0V (vs. Li/Li + ) were scanned at a rate of 1 mVs −1 .
셀의 주기 성능을 평가하기 위해 NCM811(LiNi0.8Co0.1Mn0.1O2) 양극을 다음과 같이 준비하였다: 1.8 g NCM811(에코프로), 0.1 g 폴리(불화비닐리덴), 0.1 g 탄소 전도제 (Super P)를 1.7 mL N-메틸피롤리돈(Aldrich)에 분산시켜 1시간 동안 혼합하였다. NCM811 슬러리는 알루미늄 전류 수집기에 코팅된 다음 120℃에서 3시간 동안 건조되고 120℃에서 12시간 동안 진공 오븐에 건조되었다. NCM811 양극의 부하 밀도는 8.62 ± 0.3mg cm-2이다. To evaluate the cycle performance of the cell, NCM811 (LiNi 0.8 Co 0.1 Mn 0.1 O 2 ) anodes were prepared as follows: 1.8 g NCM811 (ecopro), 0.1 g poly(vinylidene fluoride), 0.1 g carbon conductive agent (Super) P) was dispersed in 1.7 mL N-methylpyrrolidone (Aldrich) and mixed for 1 hour. The NCM811 slurry was coated on an aluminum current collector and then dried at 120° C. for 3 hours and dried in a vacuum oven at 120° C. for 12 hours. The load density of the NCM811 anode is 8.62 ± 0.3 mg cm -2 .
2032 코인 셀은 NCM811 양극, 리튬 금속 음극, 폴리(프로필렌)/폴리(에틸렌)/폴리(프로필렌) 분리막을 사용하여 준비되었으며, 각각의 준비된 전해질을 사용한다. 사이클 성능 평가의 경우 셀을 3.0V(vs Li/Li+)에서 4.3V(vs, Li/Li+)로 실온 또는 45℃에서 2 사이클(형성 단계) 동안 0.1C의 전류로, 100 사이클 동안 0.5C의 전류로 사이클링 했다. A 2032 coin cell was prepared using an NCM811 positive electrode, a lithium metal negative electrode, and a poly(propylene)/poly(ethylene)/poly(propylene) separator, each using the prepared electrolyte. For cycle performance evaluation, the cells were run from 3.0 V (vs Li/Li + ) to 4.3 V (vs, Li/Li + ) at room temperature or 45° C. at a current of 0.1 C for 2 cycles (formation phase), 0.5 for 100 cycles. It was cycled with a current of C.
속도 용량(Rate Capability) 평가의 경우, 셀은 동일한 전위 범위로 충전/방전되었지만, 충전/방전 전류 밀도는 0.1C, 0.2C, 0.3C, 0.5C, 1.0C 및 2.0C로 변화시켰다.For Rate Capability evaluation, the cells were charged/discharged to the same potential range, but the charge/discharge current densities were varied at 0.1C, 0.2C, 0.3C, 0.5C, 1.0C and 2.0C.
사이클링이 완료된 후, 셀들은 Ar-filled 글로브 박스에서 분해되었고, 회수된 NCM811 양극은 5초 동안 디메틸 탄산염으로 세척되었다. 사이클링된 NCM811 양극의 표면 형태 측정을 위해 회수된 물질은 전계 방출 스캔 전자 현미경 (JSM-7800F, JEOL)으로 분석하였다. 전기화학 임피던스 분광법(EIS) 분석은 1M ~ 10mHz의 10mV 진폭에서 전기화학 워크스테이션(Wonatech, ZiveMP1)에서 수행되었다. 사이클링된 NCM811 양극의 화학적 구성은 X선 광전자 분광법(XPS, Thermo-Scientific)으로, 음극 표면에 형성되는 전이 금속 성분은 유도결합 플라스마 질량 분광법(ICP-MS, FluoTime300/MicroTime100, Thermo)으로 정량화되었다.After cycling was complete, the cells were disassembled in an Ar-filled glove box, and the recovered NCM811 positive electrode was washed with dimethyl carbonate for 5 seconds. The recovered material was analyzed by field emission scanning electron microscopy (JSM-7800F, JEOL) to determine the surface morphology of the cycled NCM811 anode. Electrochemical impedance spectroscopy (EIS) analysis was performed on an electrochemical workstation (Wonatech, ZiveMP1) at 10 mV amplitudes from 1 M to 10 mHz. The chemical composition of the cycled NCM811 anode was quantified by X-ray photoelectron spectroscopy (XPS, Thermo-Scientific), and the transition metal component formed on the cathode surface was quantified by inductively coupled plasma mass spectroscopy (ICP-MS, FluoTime300/MicroTime100, Thermo).
결과 및 토의Results and discussion
APS 첨가제의 F- 소거 성능은 ex-situ NMR 분석에 의해 결정되었다 (도 2). F- 등가물인 TBAF는 TBAF와 APS 첨가제 사이의 화학 반응에서 F- 공급원 역할을 했으며, APS 첨가제가 F- 종을 효과적으로 포획하는지 여부를 결정하기 위해 반응하였다. APS 첨가제와 TBAF로 구성된 용액은 플라스틱 병에 담았을 때 무색이었으나 결국 노란색으로 변하여 검은색으로 변했다. 이 색상 변화는 APS 첨가제가 TBAF와 화학적으로 반응했음을 나타낸다. 블랙 용액에 대한 ex-situ NMR 분석은 용액의 화학적 상태가 분명히 변경되었음을 나타낸다. The F - scavenging performance of the APS additive was determined by ex-situ NMR analysis (Fig. 2). The F - equivalent, TBAF, served as the F - source in the chemical reaction between TBAF and the APS additive and reacted to determine whether the APS additive effectively traps the F - species. The solution consisting of APS additive and TBAF was colorless when placed in a plastic bottle, but eventually turned yellow and black. This color change indicates that the APS additive chemically reacted with TBAF. Ex-situ NMR analysis of the black solution indicates that the chemical state of the solution is clearly altered.
APS 첨가제에서 모든 1H 피크는 1H NMR 스펙트럼(5.79ppm(다중치), 5.35ppm(더블릿), 5.17ppm(더블릿), 3.82ppm(더블릿))에서 명확히 관찰됐으나 화학반응이 완료된 후 사라졌다. 이 현상은 APS 첨가제의 알릴성(Allylic) 위치가 용액 내 F- 종과의 화학 반응에 참여했음을 보여주었으며, 이는 F- 종이 APS 첨가제와 화학적 상호작용을 통해 제거될 수 있음을 나타낸다. 알릴 기능기 그룹은 SN2 반응을 통해 친핵체(nucleophile)와 쉽게 반응할 수 있다. 친핵성(nucleophilic) F- 종은 친핵성 첨가 및 제거 반응 중에 모든 탄소 위치의 C1 또는 C3 부위를 공격할 수 있다. 이 현상을 통해 셀 내 F- 농도는 감소할 것으로 예상된다. All 1 H peaks in the APS additive were clearly observed in the 1 H NMR spectrum (5.79 ppm (multiple value), 5.35 ppm (doublet), 5.17 ppm (doublet), 3.82 ppm (doublet)), but after the chemical reaction was completed, has disappeared. This phenomenon showed that the Allylic position of the APS additive participated in a chemical reaction with the F species in solution, indicating that the F species could be removed through chemical interaction with the APS additive. The allyl functional group can readily react with a nucleophile via an S N2 reaction. Nucleophilic F - species can attack the C 1 or C 3 site of any carbon position during nucleophilic addition and removal reactions. Through this phenomenon, the F concentration in the cell is expected to decrease.
APS 제어 전해액의 물리적 화학적 및 전기 화학적 거동을 조사했다 (도 3). 기존의 표준 전해액은 9.20 mS cm-1의 이온 전도도를 보였으며, 이는 다른 곳에서 보고된 바와 같이 신뢰할 수 있는 값이다. The physical, chemical and electrochemical behaviors of APS control electrolytes were investigated (Fig. 3). The existing standard electrolyte showed an ionic conductivity of 9.20 mS cm -1 , which is a reliable value as reported elsewhere.
APS 제어 전해액의 이온 전도도는 APS가 증가함에 따라 감소하였다(각각 0.1, 0.25 및 0.5 APS 제어 전해액의 경우 8.94, 8.77, 8.61 mS cm-1). The ionic conductivity of the APS control electrolyte decreased with increasing APS (8.94, 8.77, and 8.61 mS cm −1 for 0.1, 0.25 and 0.5 APS control electrolyte, respectively).
그럼에도 불구하고, 이러한 이온 전도성은 여전히 기존의 LIB에 적용될 수 있다. LSV 결과에서 보듯이, 표준 전해질은 전위가 4.3V(Li/Li+ 대비)를 초과할 때 지속적으로 분해되어 셀에서 산화적 분해가 발생했음을 의미한다. 대조적으로, 약간 증가된 산화 전류가 약 4.17 V(Li/Li+ 대비)에서 순간적으로 관측되었다는 점을 제외하고, 전해질 분해는 APS 제어 전해액에서 잘 억제되었다. 4.17V(Li/Li+)에서 관측된 이러한 고유 산화 전류는 셀 내 APS 첨가물의 전기화학적 산화 결과로 추측되었으며, 이는 APS가 전기화학적 산화 반응을 통해 전극 표면에 CEI 층을 생성할 수 있음을 의미한다.Nevertheless, this ionic conductivity can still be applied to conventional LIBs. As shown in the LSV results, the standard electrolyte continued to decompose when the potential exceeded 4.3 V (versus Li/Li + ), meaning that oxidative decomposition occurred in the cell. In contrast, electrolyte degradation was well suppressed in the APS control electrolyte, except that a slightly increased oxidation current was momentarily observed at about 4.17 V (versus Li/Li + ). This intrinsic oxidation current observed at 4.17 V (Li/Li + ) was speculated to be a result of the electrochemical oxidation of the APS additive in the cell, suggesting that APS can generate a CEI layer on the electrode surface through an electrochemical oxidation reaction. do.
셀의 실온 주기 성능은 도 7에서와 같이 측정되었다. 초기 주기 동안, 셀의 전위 프로파일의 전체 모양은 거의 동일했지만, APS 제어 전해질로 순환하는 셀의 초기 방전 비용량은 약간 감소하였다(표준 전해액과 0.1, 0.25, 0.5 APS 제어 전해액 각각의 경우 209.7, 208.3, 208.3, 207.8 mAhg-1). 이러한 발견은 전해질의 이온 전도성의 차이 때문일 수 있다: 이러한 초기 전기화학 작용이 주로 전해질의 이온 전도도에 영향을 받는다는 점을 고려할 때, APS 제어 전해질로 사이클링되는 셀은 표준 전해액으로 사이클링되는 셀보다 방전 비용량이 약간 더 낮다. 표준 전해질 주기적 보존과 관련하여, 모든 셀은 100 주기 후 유사한 비용량 보존을 보여주었는데, 표준 전해액과 0.1, 0.25, 0.5 APS 제어 전해질의 경우 각각 166.2, 168.1, 165.9, 164.9 mAhg-1과 같다.The room temperature cycling performance of the cell was measured as in FIG. 7 . During the initial cycle, the overall shape of the potential profile of the cell was approximately the same, but the initial specific discharge capacity of the cell circulating with the APS control electrolyte decreased slightly (209.7 and 208.3 for standard electrolytes and 0.1, 0.25, and 0.5 APS control electrolytes, respectively). , 208.3, 207.8 mAhg −1 ). This finding may be due to differences in the ionic conductivity of the electrolytes: given that this initial electrochemical action is primarily affected by the ionic conductivity of the electrolyte, cells cycled with APS-controlled electrolytes have higher discharge costs than cells cycled with standard electrolytes. quantity is slightly lower. With respect to standard electrolyte cyclic storage, all cells showed similar specific capacity retention after 100 cycles, equivalent to 166.2, 168.1, 165.9, and 164.9 mAhg -1 for standard electrolyte and 0.1, 0.25, and 0.5 APS control electrolyte, respectively.
고온 사이클링 동안 셀의 사이클링 성능은 상당히 달랐다 (도 4). 초기 전위 프로파일 측면에서, 모든 셀은 유사한 전위 곡선을 보였으며, 이는 전해질 간의 이온 전도성 차이가 평가 온도가 증가함에 따라 완화되었음을 나타낸다. 사이클링 보존과 관련하여 표준 전해질로 사이클링된 셀은 사이클링 보존의 지속적인 페이딩을 보여주었으며 100 사이클 후에 64.3%의 보존만이 관찰되었다. 전해질 분해는 고온에서 상당히 가속화된다는 점을 감안할 때 표준 전해질로 사이클링하는 셀은 주기적 보존 감소로 인해 어려움을 겪었다. The cycling performance of the cells during high temperature cycling was significantly different (Fig. 4). In terms of the initial potential profile, all cells showed similar potential curves, indicating that the difference in ionic conductivity between electrolytes moderated with increasing evaluation temperature. With respect to cycling preservation, cells cycled with standard electrolytes showed a continuous fading of cycling preservation, with only 64.3% preservation observed after 100 cycles. Given that electrolyte degradation is significantly accelerated at high temperatures, cells cycling with standard electrolytes suffered from reduced cyclic retention.
대조적으로, APS 제어 전해질로 사이클링된 셀은 주기적인 보존 상태가 개선되었다. 0.1 및 0.25 APS 제어 전해질로 사이클링된 셀은 각각 77.6%, 78.9%의 보존 값을 보였다. 그러나 0.5 APS 제어 전해질은 69.5%의 비교적 낮은 보존율을 보였다. In contrast, cells cycled with the APS control electrolyte had improved cyclic storage. Cells cycled with 0.1 and 0.25 APS control electrolyte showed retention values of 77.6% and 78.9%, respectively. However, the 0.5 APS control electrolyte showed a relatively low retention rate of 69.5%.
평균 쿨롱 효율 측면에서 표준 전해질과 0.5 APS 제어 전해질로 사이클링한 셀의 효율은 각각 98.5%와 98.4%로 0.1과 0.25 APS 제어 전해질(각각 99.4%, 99.3%)보다 낮았다. In terms of average coulombic efficiency, the efficiencies of cells cycled with the standard electrolyte and 0.5 APS control electrolyte were 98.5% and 98.4%, respectively, lower than those of the 0.1 and 0.25 APS control electrolytes (99.4% and 99.3%, respectively).
이러한 결과는 APS 첨가제를 사용하면 NCM811 양극재의 전기화학 성능이 효과적으로 개선되는 반면, 0.5wt% APS 첨가제를 사용하면 사이클링 중 물리적 화학적 특성 및 전기화학적 특성 밸런싱을 만족하기에는 너무 지나친 것으로 보인다는 것을 보여주었다. These results showed that the use of APS additive effectively improved the electrochemical performance of the NCM811 cathode material, whereas the use of 0.5wt% APS additive seemed too excessive to satisfy the balancing of physical and chemical properties and electrochemical properties during cycling.
속도 용량 측면에서, 모든 셀은 최대 0.5C의 전류 충전 조건에서 유사한 방전 비용량을 보여주었지만, 0.25 APS 제어 전해질로 사이클링한 셀은 표준 전해질로 사이클링한 것과 비교하여 고전류 충전(1.0C 이상)에서도 향상된 방전 비용량을 나타냈다. 이러한 특징에 대한 가능한 설명은 APS 첨가물이 셀에서 분해되면, APS 기반 CEI 레이어가 NCM811 양극의 표면에 형성될 수 있다는 것이다. 이 CEI 레이어는 이온 호핑(hopping) 메커니즘을 통해 NCM811 양극과 전해질 사이의 중간상에서 이온 전달을 가속할 수 있는 술폰 기능기 그룹을 포함한다. 전반적으로 0.25 APS 제어 전해질은 속도 용량과 함께 사이클링 보존이 개선되었다.In terms of rate capacity, all cells showed similar discharge specific capacity at current charging conditions up to 0.5C, but cells cycled with 0.25 APS control electrolyte also exhibited similar discharge specific capacity at high current charging (>1.0C) compared to cycling with standard electrolyte. An improved discharge specific capacity was exhibited. A possible explanation for this feature is that if the APS additive is decomposed in the cell, an APS-based CEI layer can be formed on the surface of the NCM811 anode. This CEI layer contains a group of sulfone functional groups that can accelerate ion transport in the intermediate phase between the NCM811 anode and the electrolyte through an ion hopping mechanism. Overall, the 0.25 APS control electrolyte improved cycling retention with rate capacity.
사이클링 성능을 평가한 후 회수된 NCM811 양극은 SEM (도 5a-5b)에 의해 분석되었다. SEM 이미지는 표준 전해질로 사이클링된 회수된 NCM811 양극의 표면 형태가 초기 상태에 비해 현저하게 변화했음을 보여주었다. 전해질 분해로 인한 분해 산물이 NCM811 양극의 표면을 상당히 덮었고, 이는 원치 않는 반응이 심각하게 발생했음을 의미한다. 대조적으로, 0.25 APS 제어 전해질로 사이클링되는 NCM811 양극은 비교적 깨끗했으며, 1차 입자 사이의 경계도 잘 관찰될 수 있었다. After evaluating the cycling performance, the recovered NCM811 positive electrode was analyzed by SEM ( FIGS. 5A-5B ). The SEM image showed that the surface morphology of the recovered NCM811 positive electrode cycled with the standard electrolyte was significantly changed compared to the initial state. Decomposition products from electrolytic decomposition significantly covered the surface of the NCM811 anode, which means that an unwanted reaction has occurred seriously. In contrast, the NCM811 anode cycled with 0.25 APS control electrolyte was relatively clean, and the boundaries between primary particles could be well observed.
표면 형태학의 이러한 차이는 셀의 내부 저항에 영향을 미친다 (도 5c-5d). 초기 사이클 후, 셀의 RCEI와 RCT는 거의 비슷했으나, 0.25 APS 제어 전해질로 사이클링된 셀의 내부 저항은 새로운 CEI층이 양극 표면에 형성됨에 따라 표준 전해질로 사이클링된 셀의 내부 저항(RCEI: 10.4Ω 및 RCT: 30.9Ω)에 비하여 약간 증가하였다(RCEI: 12.6Ω 및 RCT: 32.5Ω). This difference in surface morphology affects the internal resistance of the cell (Figs. 5c-5d). After the initial cycle, the R CEI and R CT of the cell were almost similar, but the internal resistance of the cell cycled with 0.25 APS control electrolyte was similar to that of the cell cycled with standard electrolyte (R CEI ) as a new CEI layer was formed on the anode surface. : 10.4Ω and R CT : 30.9Ω) and slightly increased (R CEI : 12.6Ω and R CT : 32.5Ω).
그러나, 사이클 횟수가 증가함에 따라 0.25 APS 제어 전해질로 사이클링된 셀은 표준 전해질(RCEI:22.7Ω, RCT:67.2Ω)과 비교하여 내부 저항(RCEI:27.7Ω 및 RCT:80.3Ω)이 현저하게 증가했다. However, as the number of cycles increased, cells cycled with 0.25 APS control electrolyte had internal resistance (R CEI :27.7 Ω and R CT :80.3 Ω) compared to standard electrolytes (R CEI :22.7 Ω, R CT :67.2 Ω). This increased significantly.
이러한 결과는 XPS 분석에서 지원되었다 (도 6a). C 1s 스펙트럼에서 C-O(286.2 eV), RCOR(287.1 eV), C=O(289.3 eV) 및 C-F (290.7 eV)와 관련된 분해된 첨가물이 사이클된 NCM811 양극에서 발견되었다: 그러나, 전체 피크 강도는 표준 전해질로 사이클된 셀 내에서 보다 0.25 APS 제어 전해질로 사이클링된 셀 내에서 더 낮았다. 이러한 특징은 전해질 분해가 표준 전해질로 사이클되는 셀에서 심각하게 발생했음을 나타낸다. F 1s 및 P 2p 스펙트럼에서 유사한 분광학적 거동이 관찰되었다. LixPOyFz (F1s의 688.3 eV, P2p의 134.1 eV), LixPFy (F1s의 687.7 eV, P2p의 136.5V) 및 LiF (F1s의 685.1 eV)와 같은 분해된 첨가물의 강도는 0.25 APS 제어 전해질로 사이클된 셀에서 보다 표준 전해질로 사이클된 셀에서 상당히 더 높았다. 이 결과는 APS 첨가제를 기능적 첨가물로 사용할 때 전해질 분해가 명백히 억제되었음을 나타낸다. These results were supported in XPS analysis (Fig. 6a). In the C 1s spectrum, resolved additives related to CO (286.2 eV), RCOR (287.1 eV), C=O (289.3 eV) and CF (290.7 eV) were found in the cycled NCM811 anode: however, the overall peak intensities were standard It was lower in cells cycled with 0.25 APS control electrolyte than in cells cycled with electrolyte. These features indicate that electrolyte degradation occurred severely in cells cycled with standard electrolytes. Similar spectroscopic behaviors were observed in the F 1s and P 2p spectra. The strength of decomposed additives such as Li x PO y F z (688.3 eV in F1s, 134.1 eV in P2p), Li x PF y (687.7 eV in F1s, 136.5 V in P2p) and LiF (685.1 eV in F1s) is 0.25 significantly higher in cells cycled with standard electrolyte than in cells cycled with APS control electrolyte. These results indicate that electrolyte degradation was clearly suppressed when the APS additive was used as a functional additive.
또한, S 2p 스펙트럼의 S-C (164.1 eV), S-O (165.7 eV), S=O (168.5 eV)와 같은 고유 S 피크가 100 사이클 후에도 0.25 APS 제어 전해질로 사이클된 셀에서 관찰되었으며, 이는 NCM811 양극 표면에 APS 첨가제의 전기화학적 산화가 기능기 그룹 기반 CEI 층을 형성하고, 이 기능기 그룹 기반 CEI 층이 전기화학 공정 중 전해질 분해를 효과적으로 억제함으로써 사이클링 보존이 개선된다는 것을 나타낸다.In addition, intrinsic S peaks, such as S-C (164.1 eV), S-O (165.7 eV), and S=O (168.5 eV) of the S 2p spectrum, were observed in cells cycled with 0.25 APS control electrolyte even after 100 cycles, indicating that the NCM811 anode surface It is shown that the electrochemical oxidation of the APS additive forms a functional group-based CEI layer, and this functional group-based CEI layer effectively inhibits electrolyte degradation during the electrochemical process, thereby improving the cycling preservation.
전해질 분해 감소에 대한 연구 결과는 사이클링된 음극에 대한 ICP-MS 분석에서도 뒷받침되었다(도 6b). 전해질 분해가 발생하면, F- 종이 셀에서 형성되어야 하며, 이 종들은 양극 물질의 전이 금속 성분을 쉽게 부식시킨다. 전이 금속 성분이 전해질로 용해되면 음극 표면으로 이동하여 쉽게 감소한다. The study results on the reduction of electrolyte decomposition were also supported by ICP-MS analysis of the cycled negative electrode (Fig. 6b). When electrolytic decomposition occurs, F species should be formed in the cell, which species readily corrode the transition metal component of the anode material. When the transition metal component is dissolved into the electrolyte, it migrates to the surface of the anode and is easily reduced.
따라서 음극의 정량화는 셀에서 전해질 분해 정도를 추정하는 합리적인 접근법이 될 수 있다. 분석 결과, 표준 전해액(Ni, Co, Mn 각각 45,108, 5,694 및 6,267 ppb)을 이용한 셀보다 0.25 APS 제어 전해액(Ni, Co, Mn 각각 17,784, 1,951 및 2,745 ppb)을 사용한 양극 사이클에서 용해된 전이 금속 성분의 양이 더 낮았다. 따라서 전해액 분해가 전해액 첨가제로서 APS로 구성된 셀에서 잘 억제된다는 결론을 내릴 수 있다.Therefore, quantification of the cathode can be a reasonable approach to estimate the degree of electrolyte degradation in the cell. As a result of the analysis, standard electrolytes (Ni, Co, Mn, respectively) 0.25 APS control electrolyte (Ni, Co, Mn respectively) than cells with 45,108, 5,694 and 6,267 ppb). 17,784, 1,951 and 2,745 ppb) had a lower amount of dissolved transition metal components in the anode cycle. Therefore, it can be concluded that electrolyte degradation is well suppressed in cells composed of APS as electrolyte additive.
상기 결과를 바탕으로 APS 첨가제의 풀-셀 주기 성능을 평가했다(도 8).Based on the above results, the full-cell cycle performance of the APS additive was evaluated ( FIG. 8 ).
하프셀 결과에 따르면 표준 전해질로 사이클링한 셀은 사이클링 보존 상태가 불량한 것으로 나타났으며, 사이클링 종료 시 비용량의 74.5%만 남아 있었다. Half-cell results showed that cells cycled with standard electrolyte had poor cycling retention, with only 74.5% of specific capacity remaining at the end of cycling.
대조적으로, 0.25 APS 제어 전해질로 사이클링한 셀은 100 사이클 후 78.2%의 보존율을 나타냈으며, NCM811 양극의 개선된 표면 안정성이 주로 풀-셀의 사이클 성능을 지배한다는 것을 보여주었다. 이 결과는 APS 첨가제를 사용하는 것이 NCM811 양극의 전기적 화학적 성능을 증가시키는 효과적인 수단임을 나타낸다. 이는 양극의 인터페이스 성능을 효과적으로 안정시키기 때문이다.In contrast, cells cycled with 0.25 APS control electrolyte showed a retention rate of 78.2% after 100 cycles, demonstrating that the improved surface stability of the NCM811 positive electrode mainly dominates the cycling performance of the full-cell. These results indicate that the use of APS additives is an effective means to increase the electrochemical performance of the NCM811 anode. This is because it effectively stabilizes the interface performance of the anode.
결론conclusion
NCM811 양극의 인터페이스 안정성을 개선하기 위해, 알릴 및 술폰 기능기 그룹에 의해 개질된 기능성 전해액 첨가제인 APS의 사용을 제안한다. Ex-situ NMR 분석에 따르면 APS 첨가제의 분자 구조 내 알릴 기능기 그룹은 F- 종과의 화학 반응에 참여하며, 결과적으로 셀 내 F- 농도의 감소를 초래한다. LSV 결과는 APS의 전기화학적 산화가 약 4.17 V (Li/Li+ 대비)에서 NCM811 양극 표면에 CEI 층을 생성할 수 있음을 보여주었다. APS 첨가제의 사용은 셀의 실온 사이클링 성능에 큰 영향을 미치지 않았지만, 분명히 고온 사이클링 성능을 변화시켰다. 표준 전해질로 사이클링된 셀은 주기적 보존의 지속적인 페이딩(64.3%)을 보여주었지만, 0.25 APS 제어 전해질로 사이클링된 셀은 평균 쿨롱 효율과 속도 용량의 증가와 함께 상당히 개선된 주기적 보존을 보여주었다. 사이클링된 NCM811 양극에 대한 SEM 분석 결과는 0.25 APS 제어 전해질로 사이클링된 회수된 NCM811 양극의 표면 형태가 초기 상태에 비해 손상되지 않았으며, 이 결과는 EIS, XPS 및 ICP-MS 분석의 강력한 지지를 받고 있음을 나타냈다. 이러한 결과에 기초하여, APS 첨가제는 NCM811 양극 표면에 신뢰할 수 있는 CEI의 형성을 통해 전해질 분해 및 전이 금속 구성 요소의 분해와 같은 원치 않는 반응을 현저하게 억제함으로써 NCM811 양극의 인터페이스 안정성을 효과효과적으로 개선했다고 결론 내릴 수 있다.To improve the interface stability of the NCM811 anode, we propose the use of APS, a functional electrolyte additive modified by allyl and sulfone functional groups. Ex-situ NMR analysis showed that the allyl functional group in the molecular structure of the APS additive participates in a chemical reaction with the F species, resulting in a decrease in the F concentration in the cell. The LSV results showed that the electrochemical oxidation of APS can produce a CEI layer on the surface of the NCM811 anode at about 4.17 V (versus Li/Li + ). The use of the APS additive did not significantly affect the room temperature cycling performance of the cell, but apparently did change the high temperature cycling performance. Cells cycled with standard electrolyte showed a sustained fading (64.3%) of periodic conservation, whereas cells cycled with 0.25 APS control electrolyte showed significantly improved periodic conservation with an increase in average coulombic efficiency and rate capacity. The SEM analysis results for the cycled NCM811 positive electrode showed that the surface morphology of the recovered NCM811 positive electrode cycled with 0.25 APS control electrolyte was not damaged compared to the initial state, and this result is strongly supported by EIS, XPS and ICP-MS analysis. indicated that there is Based on these results, the APS additive effectively improved the interface stability of the NCM811 anode by significantly inhibiting unwanted reactions such as electrolyte decomposition and decomposition of transition metal components through the formation of reliable CEI on the surface of the NCM811 anode. conclusion can be drawn.

Claims (12)

  1. 알릴페닐 술폰(Allyl phenyl sulfone, APS) 첨가제, 용매 및 리튬염을 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액.An electrolyte for a lithium secondary battery comprising an allyl phenyl sulfone (APS) additive, a solvent, and a lithium salt.
  2. 제1항에 있어서,According to claim 1,
    상기 알릴페닐 술폰(Allyl phenyl sulfone, APS) 첨가제는 술폰(Sulfone) 기능기 그룹과 알릴(Allyl) 기능기 그룹을 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액.The allyl phenyl sulfone (Allyl phenyl sulfone, APS) additive is an electrolyte for a lithium secondary battery, characterized in that it comprises a sulfone (Sulfone) functional group and an allyl (Allyl) functional group.
  3. 제1항에 있어서,According to claim 1,
    상기 첨가제 중 알릴(Allyl) 기능기 그룹은 친핵성 F- 종과 반응을 통하여 F-을 제거하는 것을 특징으로 하는 리튬 이차전지용 전해액.An electrolyte for a lithium secondary battery, characterized in that the allyl functional group among the additives removes F - through a reaction with the nucleophilic F - species.
  4. 제1항에 있어서,According to claim 1,
    상기 첨가제는 전해액 중량대비 0.1 중량% 이상 0.5 중량% 미만을 함유하는 것을 특징으로 하는 리튬 이차전지용 전해액.The additive is an electrolyte for a lithium secondary battery, characterized in that it contains 0.1% by weight or more and less than 0.5% by weight based on the weight of the electrolyte.
  5. 제 1 항에 있어서, The method of claim 1,
    상기 용매는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC) 에틸렌 카보네이트(EC), 비닐렌 카보네이트(VC), 비닐 에틸렌 카보네이트(VEC), 프로필렌 카보네이트(PC) 및 부틸렌 카보네이트(BC)로 이루어진 군에서 선택된 하나 이상을 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액.The solvent is dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC) ethylene carbonate (EC), vinyl An electrolyte for a lithium secondary battery, comprising at least one selected from the group consisting of ene carbonate (VC), vinyl ethylene carbonate (VEC), propylene carbonate (PC), and butylene carbonate (BC).
  6. 제5항에 있어서,6. The method of claim 5,
    상기 용매는 EC(ethylene carbonate):EMC(ethyl methyl carbonate)가 1:2(v/v%)로 포함된 것을 특징으로 하는 리튬 이차전지용 전해액.The solvent is an electrolyte for a lithium secondary battery, characterized in that EC (ethylene carbonate):EMC (ethyl methyl carbonate) is included in a ratio of 1:2 (v/v%).
  7. 제1항에 있어서,According to claim 1,
    상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiAlO4, LiAlCl4, LiCl 및 LiI로 이루어진 군에서 선택되는 적어도 하나인 것을 특징으로 하는 리튬 이차전지용 전해액.The lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li(CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiAlO 4 , LiAlCl 4 , LiCl and LiI Electrolyte for a lithium secondary battery, characterized in that at least one selected from the group consisting of.
  8. 제1항에 있어서, According to claim 1,
    상기 리튬염 농도는 0.01 ∼ 2M 농도를 갖는 것을 특징으로 하는 리튬이차 전지용 전해액.The lithium salt concentration is an electrolyte for a lithium secondary battery, characterized in that having a concentration of 0.01 to 2M.
  9. 양극; 음극; 및 상기 양극과 음극 사이에 배치되는 전해질층을 포함하며,anode; cathode; and an electrolyte layer disposed between the positive electrode and the negative electrode,
    상기 전해질층은 제1항 내지 제8항 중 어느 한 항에 따른 전해액을 포함하는 것을 특징으로 하는 리튬 이차전지.The electrolyte layer is a lithium secondary battery comprising the electrolyte according to any one of claims 1 to 8.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 양극과 전해질 사이에는 양극-전해질 중간상(Cathode-Electrolyte Interphase, CEI) 층이 형성되며, 상기 양극-전해질 중간상(CEI) 층은 술폰(Sulfone) 기능기 그룹과 알릴(Allyl) 기능기 그룹을 포함하는 것을 특징으로 하는 리튬 이차전지.A cathode-electrolyte interphase (CEI) layer is formed between the cathode and the electrolyte, and the cathode-electrolyte interphase (CEI) layer includes a sulfone functional group and an allyl functional group. Lithium secondary battery, characterized in that.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 양극-전해질 중간상(CEI) 층이 포함하는 술폰(Sulfone) 기능기 그룹은 상기 양극 표면에서 이온 도체 및 전자 절연체 역할을 수행하는 것을 특징으로 하는 리튬 이차전지.A lithium secondary battery, characterized in that the positive electrode-electrolyte intermediate phase (CEI) layer included in the sulfone functional group serves as an ion conductor and an electronic insulator on the surface of the positive electrode.
  12. 제10항에 있어서,11. The method of claim 10,
    상기 양극-전해질 중간상(CEI) 층이 포함하는 알릴(Allyl) 기능기 그룹은 친핵성 F- 종과 반응을 통하여 F-을 제거하는 것을 특징으로 하는 리튬 이차전지.The positive electrode-electrolyte intermediate phase (CEI) layer included in the allyl (Allyl) functional group is a lithium secondary battery, characterized in that the removal of F - through a reaction with a nucleophilic F - species.
PCT/KR2022/000281 2021-01-18 2022-01-07 Electrolyte containing allylphenyl sulfone for lithium secondary battery and lithium secondary battery including same WO2022154382A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0006941 2021-01-18
KR1020210006941A KR102563373B1 (en) 2021-01-18 2021-01-18 Electrolyte for lithium ion battery containing allyl phenyl sulfone and lithium ion battery including the same

Publications (1)

Publication Number Publication Date
WO2022154382A1 true WO2022154382A1 (en) 2022-07-21

Family

ID=82448356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000281 WO2022154382A1 (en) 2021-01-18 2022-01-07 Electrolyte containing allylphenyl sulfone for lithium secondary battery and lithium secondary battery including same

Country Status (2)

Country Link
KR (1) KR102563373B1 (en)
WO (1) WO2022154382A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021538A (en) * 2006-07-13 2008-01-31 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2008041296A (en) * 2006-08-02 2008-02-21 Bridgestone Corp Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
KR20190055733A (en) * 2017-11-15 2019-05-23 삼성전자주식회사 Electrolyte additive for lithium battery, electrolyte solution comprising additive and Lithium battery comprising additive
CN110943253A (en) * 2019-10-24 2020-03-31 松山湖材料实验室 High-voltage lithium ion battery combined electrolyte additive, electrolyte and battery thereof
KR20200056873A (en) * 2018-11-15 2020-05-25 삼성전자주식회사 Electrolyte comprising phosphate-based compound and sulfone-based compound and Lithium secondary battery comprising the electrolyte
KR20200070827A (en) * 2018-12-10 2020-06-18 삼성전자주식회사 Electroylte comprising phosphite-based additive and sulfonate-based additive and Lithium secondary battery comprising the electrolyte

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867535B1 (en) 2006-09-20 2008-11-06 주식회사 엘지화학 Additive for non-aqueous electrolyte and secondary battery using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021538A (en) * 2006-07-13 2008-01-31 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2008041296A (en) * 2006-08-02 2008-02-21 Bridgestone Corp Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
KR20190055733A (en) * 2017-11-15 2019-05-23 삼성전자주식회사 Electrolyte additive for lithium battery, electrolyte solution comprising additive and Lithium battery comprising additive
KR20200056873A (en) * 2018-11-15 2020-05-25 삼성전자주식회사 Electrolyte comprising phosphate-based compound and sulfone-based compound and Lithium secondary battery comprising the electrolyte
KR20200070827A (en) * 2018-12-10 2020-06-18 삼성전자주식회사 Electroylte comprising phosphite-based additive and sulfonate-based additive and Lithium secondary battery comprising the electrolyte
CN110943253A (en) * 2019-10-24 2020-03-31 松山湖材料实验室 High-voltage lithium ion battery combined electrolyte additive, electrolyte and battery thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AHN JUNGYOUNG, YIM TAEEUN: "Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide functionalized by allyl phenyl sulfone as high-performance cathode material for lithium-ion batteries", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE., CH, vol. 867, 1 June 2021 (2021-06-01), CH , pages 159153, XP055950815, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2021.159153 *

Also Published As

Publication number Publication date
KR102563373B1 (en) 2023-08-02
KR20220104517A (en) 2022-07-26

Similar Documents

Publication Publication Date Title
KR102633527B1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
US7241536B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US9337512B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
US10763541B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR20180106971A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
WO2013073901A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
KR20180106973A (en) Electrolyte additive and electrolyte solution for lithium secondary battery comprising the same
CN109891656B (en) Electrolyte additive and electrolyte for lithium secondary battery comprising the same
EP0806804B1 (en) Fluorinated carbonate electrolytes for use in a lithium secondary battery
CN109004275B (en) Electrolyte solution and secondary battery
EP2733780B1 (en) Nonaqueous electrolyte and lithium secondary battery using same
WO2016104904A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN101587970A (en) Electrolyte for high multiplying power lithium ion battery and preparation method thereof
RU2307430C1 (en) Lithium-ion battery characterized in improved storage properties at high temperature
EP2908375A1 (en) Lithium secondary battery
CN109216783B (en) Film-forming additive composition for lithium ion battery, non-aqueous electrolyte and lithium ion battery
KR20170022913A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
Liao et al. Dimethyl trimethylsilyl phosphite as a novel electrolyte additive for high voltage layered lithium cobaltate-based lithium ion batteries
WO2022154382A1 (en) Electrolyte containing allylphenyl sulfone for lithium secondary battery and lithium secondary battery including same
JP4114259B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
US20220209299A1 (en) Non-Aqueous Electrolyte Solution for Lithium Secondary Battery and Lithium Secondary Battery Including the Same
KR20070103919A (en) Nonaqueous electrolyte for secondary battery and li secondary battery thereby
KR100766930B1 (en) An electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same
WO2024076153A1 (en) Electrolyte for lithium secondary battery comprising n-(4-fluorophenyl)maleimide, and lithium secondary battery comprising same
WO2014084642A1 (en) Rechargeable battery comprising non-aqueous electrolytic solution using alkyl methanesulfonate as solvent for dissolving electrolytic salt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739580

Country of ref document: EP

Kind code of ref document: A1