WO2022154087A1 - Information display medium member, information display medium, booklet, laminate, method related thereto, method for forming latent image corresponding to printed image on laminate, device therefor, and laminate manufactured by same - Google Patents

Information display medium member, information display medium, booklet, laminate, method related thereto, method for forming latent image corresponding to printed image on laminate, device therefor, and laminate manufactured by same Download PDF

Info

Publication number
WO2022154087A1
WO2022154087A1 PCT/JP2022/001151 JP2022001151W WO2022154087A1 WO 2022154087 A1 WO2022154087 A1 WO 2022154087A1 JP 2022001151 W JP2022001151 W JP 2022001151W WO 2022154087 A1 WO2022154087 A1 WO 2022154087A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
infrared
base material
information display
laser
Prior art date
Application number
PCT/JP2022/001151
Other languages
French (fr)
Japanese (ja)
Inventor
欣 閔
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2022547748A priority Critical patent/JP7168919B1/en
Publication of WO2022154087A1 publication Critical patent/WO2022154087A1/en
Priority to JP2022173604A priority patent/JP7382016B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/24Passports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/382Special inks absorbing or reflecting infrared light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/41Marking using electromagnetic radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention provides an information display medium member capable of printing or drawing (marking) characters, images, etc. that can be recognized by a near-infrared camera, an information display medium provided with the information display medium member, and such an information display medium.
  • the present invention relates to a booklet included as a sheet and related methods (Aspect 1).
  • the present invention relates to a laminate capable of printing or drawing (marking) characters, images, etc. that can be recognized by a near-infrared camera or the like, a booklet containing such a laminate as a sheet, and a related method (aspects). 2).
  • the present invention relates to a method of forming a latent image of an image such as a character, a pattern, or a photograph, which cannot be confirmed with the naked eye, but can be recognized by a near-infrared camera or the like, on a laminated body provided with a near-infrared absorbing layer (Aspect 3). ).
  • ID (identification) certificates such as identification cards, credit cards, cards such as cash cards, banknotes, etc.
  • various methods are used to prevent counterfeiting. Proposals have been made.
  • Patent Document 1 proposes a marking method for forming an infrared-absorbing pattern by applying energy such as laser light to a substrate containing ytterbium oxide.
  • energy such as laser light
  • the infrared absorption of ytterbium oxide is not sufficiently high, and there is a problem in terms of ease of handling.
  • variable variable information is printed by a printing method, and there are the following disadvantages: -When printing or transferring to the surface of a card, it is easily tampered with and the security is low. Resistance such as wear resistance also deteriorates. -When printing or transferring to the middle layer of a card, it is considered difficult to issue it locally because it is necessary to print (or issue) personal information and then perform press processing or card size finishing processing. Furthermore, if something goes wrong in the processing process, the personal information will be different, so you will have to start over from the first print.
  • Patent Document 1 proposes a marking method for forming an infrared-absorbing pattern by applying energy such as laser light to a substrate containing ytterbium oxide. In this way, by changing the absorption of infrared rays by irradiating laser light, image information such as characters and patterns that are difficult to recognize with a general camera or the naked eye can be latently imaged on a laminated body such as a card. The possibility of forming has been shown.
  • Patent Document 8 also proposes a technique such as anti-counterfeiting using an infrared absorbing material of a composite tungsten oxide. Here, laser light in the near infrared region is usually used for marking.
  • the infrared absorption of ytterbium oxide is not sufficiently high, and there is a problem in terms of ease of handling, and it has not been possible to realize the formation of a practical latent image.
  • the composite tungsten oxide there is no technique for changing the absorption of infrared rays by irradiating with laser light. Therefore, there has been a demand for a method in which a material having appropriate near-infrared absorption is used and it can be changed by irradiation with laser light.
  • the laminate capable of marking with a near-infrared laser beam has a base material layer in which a near-infrared absorbing layer formed by using a near-infrared absorbing ink composition that reacts with near-infrared rays is laminated.
  • a near-infrared absorbing layer formed by using a near-infrared absorbing ink composition that reacts with near-infrared rays is laminated.
  • Patent No. 4323578 Special Table 2005-505444 Japanese Unexamined Patent Publication No. 2005-246821 Japanese Unexamined Patent Publication No. 2008-162233 Patent No. 6443597 Patent No. 6507096 Patent No. 6541400 Patent No. 6160830 Patent No. 5854329 International Publication No. 2018/151238 Patent No. 6167803 Special Table 2006-518898
  • the present invention has high security, is easy to determine authenticity, and / or simplifies the manufacturing process as an information display medium that can be used as a security information medium such as an ID certificate and a data page. It is an object of the present invention to provide an information display medium capable of being used, a member for an information display medium that can be used for such an information display medium, a booklet containing such an information display medium as a sheet, and a related method.
  • the present invention provides security by adding the display of information that can be recognized mainly under infrared rays such as near infrared rays, while maintaining the display of some information such as personal information by color development such as black coloring.
  • the present invention provides a method for forming a latent image of image information such as characters and patterns that are difficult to see into a laminated body having a near-infrared absorbing layer by laser light without developing a color in the visible light region. The challenge is to provide.
  • the present invention is a member for an information display medium containing a transparent material having visible light transmission and near-infrared transmission and a near-infrared absorbing material, and is a near-infrared absorbing material.
  • a transparent material having visible light transmission and near-infrared transmission and a near-infrared absorbing material
  • is a near-infrared absorbing material Is characterized by containing tungsten cesium oxide or lanthanum hexaboride, and by irradiating the target portion of the information display medium member with laser light, the near-infrared absorption of the target portion in at least a predetermined wavelength range is reduced.
  • the present invention also provides an information display medium, which comprises a base material portion and the above-mentioned information display medium member arranged so as to penetrate the base material portion.
  • the information display medium further includes a laser coloring layer formed on at least one of the first surface side and the second surface side of the base material portion, which contains a laser coloring agent and develops color by irradiating with laser light.
  • the information display medium member may be arranged so as to penetrate the base material portion and the laser coloring layer.
  • the information display medium further includes a printing layer containing a near-infrared ray-transparent colored ink composition or a fluorescent ink composition formed on at least one of the first surface side and the second surface side of the base material portion. You may be prepared.
  • the information display medium may further include a near-infrared ray-transparent hologram layer formed on at least one of the first surface side and the second surface side of the base material portion.
  • the information display medium is the side of the first surface of the base material portion, and is formed as the outermost layer on the side of the first surface of the information display medium, and has visible light transmission and near infrared transmission. It has visible light transmission and near-infrared transmission, which is formed as a one-side transmission layer and the outermost layer on the second surface side of the base material portion on the second surface side of the information display medium. At least one of the second surface side transparent layer may be further provided.
  • a convex optical element portion may be formed.
  • the information display medium may further include a base material intermediate layer, the base material intermediate layer may include a first portion and a second portion, and the base material portion includes a first base material portion and a second base material.
  • the first portion of the base material intermediate layer may be located between the first base material portion and the second base material portion, and the second portion of the base material intermediate layer may include a portion. It may be located at the end of the intermediate layer and may not be located between the first base material and the second base material.
  • the present invention is a booklet in which a plurality of sheets are bound together, at least one of the plurality of sheets is the information display medium, and the information display medium is the other in the second part of the base material intermediate layer. Provides a booklet that is bound to the sheet of.
  • the information display medium member may include a first partial information display unit that partially displays the target information due to a change in the near-infrared absorption characteristic in the information display medium member, and the booklet may include.
  • the sheet of the page adjacent to the information display medium is the target due to the change in the near-infrared absorption characteristic and the visible light absorption characteristic formed on the surface of the adjacent page on the information display medium side.
  • a second partial information display unit that partially displays information may be included, and by synthesizing the information displayed in the first partial information display unit and the information displayed in the second partial information display unit. , The target information may be obtained.
  • a visible region on the first surface side or the second surface side of the base material portion on which the information display medium member is not arranged displays information by changing the visible light absorption characteristic.
  • the information displayed by the visible information display unit in the above booklet including the information display unit, the information displayed by the first partial information display unit, and the information displayed by the second partial information display unit are combined.
  • the present invention is a member for an information display medium including a transmission layer having visible light transmission and near-infrared transmission, and a near-infrared absorbing layer including a near-infrared absorbing ink composition containing a near-infrared absorbing material.
  • the near-infrared absorbing material contains tungsten cesium oxide or lanthanum hexaboride, and by irradiating the target portion of the information display medium member with laser light, the near-infrared ray in at least a predetermined wavelength range of the target portion is obtained.
  • a member for an information display medium which is characterized by a decrease in absorbency.
  • the present invention is for an information display medium containing a base material portion, a transparent material having visible light transmission and near infrared ray transmission, and a near infrared ray absorbing material, and arranged through the base material portion.
  • the near-infrared absorbing material is a member, which is a target portion of the information display medium member in an information display medium including the information display medium member containing tungsten cesium oxide or hexaborated lanthanum.
  • a method comprising irradiating a portion with a laser beam so as to reduce near-infrared absorption at least in a predetermined wavelength range.
  • the present invention is for an information display medium containing a base material portion, a transparent material having visible light transmission and near infrared ray transmission, and a near infrared ray absorbing material, and arranged through the base material portion.
  • the member, the near-infrared absorbing material includes a member for an information display medium containing tungsten cesium oxide or lanthanum hexaboride, and the member for the information display medium has near-infrared absorption characteristics in the member for the information display medium.
  • a region on the side of the first surface or the second surface of the base material portion on which the information display medium member is not arranged is visible, including the near-infrared information display unit that displays information by changing the light.
  • the information displayed in the near-infrared information display unit and the information displayed in the visible information display unit include the visible information display unit that displays information by changing the light absorption characteristics, and the information is related to the same object. Provide an information display medium characterized by being present.
  • the present invention is for an information display medium containing a base material portion, a transparent material having visible light transmission and near infrared ray transmission, and a near infrared ray absorbing material, and arranged through the base material portion.
  • the member, the near-infrared absorbing material includes a member for an information display medium containing tungsten cesium oxide or lanthanum hexaboride, and the member for the information display medium has near-infrared absorption characteristics in the member for the information display medium.
  • a region on the side of the first surface or the second surface of the base material portion on which the information display medium member is not arranged is visible, including the near-infrared information display unit that displays information by changing the light.
  • the information display medium By comparing the display content of the near-infrared information display unit and the display content of the visible information display unit of the information display medium including the visible information display unit that displays information by changing the light absorption characteristics, the information display medium can be used. Provided is a method characterized by authenticity determination.
  • the present invention presents the first surface side laser coloring layer formed on the base material layer and the first surface side of the base material layer, which contains a laser coloring agent and develops color by irradiating with laser light.
  • a near-infrared absorbing layer containing a near-infrared absorbing ink composition containing a near-infrared absorbing material formed on the first surface side of the base material layer, and at least one laser coloring layer on the first surface side is provided.
  • a near-infrared absorbing material has one opening region in which at least a portion of the near-infrared absorbing layer is located, or the opening region and the near-infrared absorbing layer overlap at least partially.
  • the near-infrared absorbing layer that contains tungsten cesium oxide or hexaborohydride and is located within the opening region or overlaps the opening region, at least a predetermined wavelength of the target portion.
  • a laminate characterized by reduced near-infrared absorption in the range.
  • the laminate may further include a first side printing layer containing a near-infrared transmissive colored ink composition or a fluorescent ink composition formed on the first side side of the base material layer.
  • the laminate may further include a near-infrared ray transmissive first surface side hologram layer formed on the first surface side of the base material layer.
  • At least a part of the first side printing layer formed on the first side of the base material layer may overlap with the near infrared absorption layer.
  • At least a part of the first surface side hologram layer formed on the first surface side of the base material layer may overlap with the near infrared absorption layer.
  • the laminate may further include a second surface side laser coloring layer formed on the second surface side of the base material layer, which contains a laser coloring agent and develops color by irradiating with laser light.
  • the laminate is a first surface having visible light transmission and near-infrared transmission, which is the side of the first surface of the base material layer and is formed as the outermost layer on the side of the first surface in the laminate.
  • a side transparent layer may be further provided.
  • the laminate is a second surface having visible light transmission and near-infrared transmission, which is the side of the second surface of the base material layer and is formed as the outermost layer on the side of the second surface in the laminate.
  • a side transparent layer may be further provided.
  • a plurality of convex optical element portions may be formed on the surface of the first surface side transmitting layer opposite to the near infrared absorbing layer, in an area that at least partially overlaps the near infrared absorbing layer.
  • the laminate may further include a base material intermediate layer.
  • the base material intermediate layer may include a first portion and a second portion, and the base material layer may include a first base material layer and a second base material layer, and the first portion of the base material intermediate layer may be included. May be located between the first substrate layer and the second substrate layer, and the second portion of the substrate intermediate layer is located at the end of the substrate intermediate layer and is located between the first substrate layer and the first substrate layer. It does not have to be located between the two substrate layers.
  • the present invention is a booklet in which a plurality of sheets are bound together, and at least one of the plurality of sheets is the above-mentioned laminate, and the laminate is another sheet in the second portion of the base material intermediate layer.
  • the present invention comprises a base material layer, a first surface side laser coloring layer formed on the first surface side of the base material layer, which contains a laser coloring agent and develops color by irradiating a laser beam, and a base material layer.
  • the first surface side laser coloring layer has at least one opening region, and at least a part of the near infrared absorbing layer is located in the opening region, or the opening region and At least a predetermined wavelength of the target portion with respect to the target portion located in the opening region of the near-infrared absorbing layer or overlapping the opening region in the laminated body in which the near-infrared absorbing layer partially overlaps.
  • a method characterized by irradiating a laser beam so as to reduce near-infrared absorption in the range.
  • the present invention is a first surface side laser coloring layer formed on the base material layer and the first surface side of the base material layer, which contains a laser coloring agent and develops color by irradiating with laser light.
  • the surface-side laser coloring layer has at least one opening region, and includes a visible information display unit that displays information by a change in visible light absorption characteristics in a region other than the opening region in the first surface-side laser coloring layer.
  • the sex material comprises tungsten cesium oxide or lanthanum hexaboride, and at least a part of the near-infrared absorbing layer is located in the opening region, or the opening region and the near-infrared absorbing layer are at least partially overlapped and opened.
  • Visible information of a laminate with a near-infrared absorbing layer including a near-infrared information display that displays information by changes in near-infrared absorption characteristics in a region that is located within the region or overlaps the opening region.
  • a method characterized by determining the authenticity of a laminated body by comparing the display content of the display unit with the display content of the near-infrared information display unit.
  • the present invention has been made in view of the above problems, and has the following features. That is, in the method of forming a latent image corresponding to a printed image on the laminate according to the present invention, the laminate contains a base material layer and near infrared rays containing tungsten cesium oxide or hexabored lantern as a near infrared ray absorbing material.
  • the method includes a near-infrared absorbing layer formed by using an absorbent ink composition, and the method is a laser controlled based on the information of the printed image so that the latent image of the printed image is formed.
  • the resolution of forming the latent image of the printed image includes a laser scanning step of scanning the target area of the laminate while irradiating light, without causing the base material layer to develop color in the visible light region. It is characterized in that the latent image can be formed by lowering the near-infrared absorbing property in at least a predetermined wavelength range in the near-infrared absorbing layer.
  • the laser scanning step can irradiate the laser beam so that the irradiation spot can be formed in the target region by the number per unit length corresponding to the resolution.
  • the printed image is represented by pixels of the resolution, and the laser scanning step is controlled at a position on the target area corresponding to each of the pixels based on the brightness information of the pixels. The target area can be scanned while irradiating the laser beam.
  • the printed image may be a monochrome representation of the information of the image to be printed, but the light and darkness may be reversed.
  • the resolution can be in the range of 85 dpi to 1000 dpi.
  • the resolution can be in the range of 140 dpi to 900 dpi.
  • the wavelength of the laser light can be in the near infrared region.
  • the printed image may include letters, numbers, symbols, symbols, photographs, or any combination thereof.
  • the base material layer and the near-infrared absorbing layer can be formed as an integral layer.
  • the present invention is also established as an apparatus for forming a latent image corresponding to a printed image on a laminate, wherein the laminate is a base material layer and cesium tungsten oxide or 6 as a near-infrared absorbing material.
  • the device includes a near-infrared absorbing layer formed by using a near-infrared absorbing ink composition containing a lanthanum booxide, and the apparatus includes a supporting means for supporting the laminated body and the latent image of the printed image.
  • the latent image of the printed image including a laser scanning means for scanning the target area of the laminated body while irradiating a laser beam controlled based on the information of the printed image so as to be formed.
  • the resolution is such that the latent image can be formed by reducing the near-infrared absorption in the near-infrared absorbing layer at least in a predetermined wavelength range without causing the base material layer to develop color in the visible light region. can do.
  • the present invention also holds as a laminated body in which a latent image corresponding to a printed image is formed, and the laminated body contains a base material layer and tungsten cesium oxide or hexaborated lanthanum as a near-infrared absorbing material.
  • a near-infrared absorbing layer formed by using a near-infrared absorbing ink composition is provided, and the latent image of the printed image is an object of the laminated body while irradiating a laser beam controlled based on the information of the printed image.
  • the resolution at the time of forming the latent image of the printed image is at least in a predetermined wavelength range in the near infrared absorbing layer without causing the base material layer to develop color in the visible light region. It is possible to form the latent image by reducing the near-infrared absorption.
  • a clear window containing a colorless infrared absorber is fitted into an information medium (ID certificate or data page), and the infrared absorption performance is changed by laser light to make the information medium visible.
  • Variable invisible information that can be collated with information can be printed.
  • the information display medium member containing the transmissive material and the near-infrared absorbing material is used, printing using the near-infrared absorbing ink composition becomes unnecessary, and the printing process can be reduced by one step. can.
  • the resolution when scanning the target area of the laminated body while irradiating the laser beam controlled based on the information of the printed image so that the latent image of the printed image is formed is set to the visible light region of the base material layer.
  • the figure which shows the observation image (visible light image) of the front surface under visible light of the laminated body (an example of an information display medium) in 1st Embodiment of aspect 1 of this invention A diagram showing an observation image (near-infrared image) of the front surface of the laminate according to the first embodiment of the first embodiment of the present invention by a near-infrared camera (note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see. The same applies to other figures.)
  • the back surface of the laminate according to the first embodiment of the first embodiment of the present invention under visible light in FIG. 1, the surface that can be seen by turning the laminate around the AX axis and turning it over. The same applies to other embodiments.
  • FIG. 1 The figure which shows the observation image (visible light image).
  • an example of a layered structure (viewed from below in the paper surface of FIG. 1) when the AA'cross section of the laminate shown in FIG. 1 is cut along the AA' line in FIG. 1 is viewed. (Each layer is drawn separately to show the layer structure.
  • the fluorescent ink layer and the hologram layer) 13 are not accurately cut by the AA'line, but are drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure).
  • a diagram showing an observation image (near-infrared image) of the front surface of the laminate according to the second embodiment of the first aspect of the present invention by a near-infrared camera note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see.
  • the back surface of the laminate according to the second embodiment of the first aspect of the present invention under visible light in FIG. 6, the surface that can be seen by turning the laminate around the AX axis and turning it over. The same applies to other embodiments. .
  • an example of a layered structure (viewed from the right side in the paper surface of FIG. 6) when the cross section of the laminated body shown in FIG. 6 is cut along the line BB'in FIG. 6 is viewed.
  • Each layer is drawn separately to show the layer structure.
  • the fluorescent ink layer (hologram layer) 13 is not cut exactly by the BB'line, but is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure).
  • the figure which shows an example of the manufacturing process of the laminated body shown in FIGS. 6 to 10 first step: temporary fixing process).
  • the figure which shows an example of the manufacturing process of the laminated body shown in FIGS. 6 to 10 (second step: window punching process).
  • the figure which shows an example of the manufacturing process of the laminated body shown in FIGS. 6 to 10 (fourth process: press process).
  • a diagram showing an image (near-infrared image) observed by a near-infrared camera of the booklet according to the third embodiment of the first aspect of the present invention note that the outer shape of the laminated body is drawn for the purpose of making the figure easier to see. The same applies to the figure).
  • a diagram showing an image (near-infrared image) observed by a near-infrared camera of the booklet according to the fourth embodiment of the first aspect of the present invention note that the outer shape of the laminated body is drawn for the purpose of making the figure easier to see. The same applies to the figure).
  • the figure which shows the observation image (visible light image) of the front surface by visible light of the laminated body in 5th Embodiment of Embodiment 1 of this invention the lenticular lens is transparent, but is drawn for the purpose of making the figure easy to see). ..
  • FIG. 20 The figure which shows the visible light image of the front surface when the laminated body shown in FIG. 20 is seen in the direction of the arrow C and the arrow D in FIG. 25 which will be described later.
  • an example of a layered structure (viewed from below in the paper surface of FIG.
  • FIG. 20 is cut along the line BB'in FIG. 20 is viewed.
  • Each layer is drawn separately to show the layer structure.
  • the colored ink layer (or fluorescent ink layer, hologram layer) 12 on the back surface side the colored ink layer (or fluorescent ink layer) on the back surface side.
  • the hologram layer) 13 is not exactly cut by the BB'line, but is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure).
  • the figure which conceptually explains the principle of lenticular The figure which shows the observation image (visible light image) of the front surface under visible light of the laminated body in 6th Embodiment of aspect 1 of this invention.
  • a diagram showing an observation image (near-infrared image) of the front surface of the laminate according to the sixth embodiment of the first aspect of the present invention by a near-infrared camera note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see. The same applies to other figures.
  • an example of a layered structure (viewed from below in the paper surface of FIG. 27) when the AA'cross section of the laminate shown in FIG. 27 is cut along the AA' line in FIG. 27 is viewed.
  • Each layer is drawn separately to show the layer structure.
  • the colored ink layer (or fluorescent ink layer, hologram layer) 12 on the front surface side is, to be exact, AA'.
  • the layer structure of the modified example of the laminated body in the first embodiment of the first embodiment of the present invention (similar to the first embodiment, it is an AA'cross section cut along the AA' line, and each layer is drawn separately. Further, the colored ink layer (or fluorescent ink layer, hologram layer) 12 on the front surface side and the colored ink layer (or fluorescent ink layer, hologram layer) 13 on the back surface side are, to be exact, AA'. Although it is not cut by a line, it is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure).
  • a layer structure of a further modification of the laminate according to the first embodiment of the first embodiment of the present invention (similar to the first embodiment, it is an AA'cross section cut along the AA' line, and each layer is separated.
  • the colored ink layer (or fluorescent ink layer, hologram layer) 12 on the front surface side and the colored ink layer (or fluorescent ink layer, hologram layer) 13 on the back surface side are accurately A-. It is not cut by the A'line, but is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure).
  • the reflectance in the visible light region to near infrared region (before laser printing) of the printed surface before laser printing and the printed surface of the printed matter On the other hand, a graph showing the result of measuring the reflectance (after laser printing) in the visible light region to the near infrared region in the laser-printed region (showing the result of measuring the reflectance on the printing surface side (ink side)).
  • a diagram showing an observation image (near-infrared image) of the front surface of the laminate according to the first embodiment of the second embodiment of the present invention by a near-infrared camera note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see.
  • the frame (broken line) of the opening region does not appear as a near-infrared image, it is shown for convenience. The same applies to other figures).
  • the back surface of the laminate according to the first embodiment of the second embodiment of the present invention under visible light in FIG. 40, the surface that can be seen by turning the laminate around the AX axis and turning it over. The same applies to other embodiments. .
  • the figure which shows the observation image visible light image).
  • an example of a layered structure (viewed from below in the paper surface of FIG. 40) when the cross section of AA'cross-section of the laminate shown in FIG. 1 is cut along the AA' line in FIG. 1 is viewed. (Each layer is drawn separately to show the layer structure).
  • an example of a layered structure (viewed from below in the paper surface of FIG.
  • FIG. 41 is a diagram (near-infrared image) showing micro characters that can be seen when a part of a micro-display printed image by a near-infrared absorbing ink is enlarged.
  • FIG. 6 is a diagram (near infrared image) showing micro characters generated by laser marking (laser printing) on the front surface of the laminate according to the second embodiment of the second embodiment of the present invention.
  • the figure which shows the observation image (visible light image) of the front surface by visible light of the laminated body in 4th Embodiment of aspect 2 of this invention A diagram showing an observation image (near-infrared image) of the front surface of the laminate according to the fourth embodiment of the second aspect of the present invention by a near-infrared camera (note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see. Although the frame (broken line) of the opening region does not appear as a near-infrared image, it is shown for convenience. The same applies to other figures).
  • the back surface of the laminate according to the fourth embodiment of the second aspect of the present invention under visible light in FIG.
  • FIG. 55 the surface that can be seen by turning the laminate around the AX axis and turning it over.
  • a near-infrared camera note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see.
  • an example of a layered structure (viewed from the right side in the paper surface of FIG. 55) when the cross section of the laminated body shown in FIG. 55 is cut along the line BB'in FIG. 55 is viewed.
  • each layer is drawn separately to show the layer structure.
  • the colored ink layer (or fluorescent ink layer, hologram layer) 12A on the back surface side is cut by the BB'line to be exact. Although not shown, it is drawn for the purpose of making the layer structure easier to understand. The same applies to other figures showing the layer structure.
  • Each layer is drawn separately to show the layer structure.
  • the colored ink layer (or fluorescent ink layer, hologram layer) 12 on the back side is exactly the BB'line. Although it is not cut by, it is drawn for the purpose of making the layer structure easy to understand.
  • the figure which shows the booklet body produced by using the laminated body in 4th Embodiment of aspect 2 of this invention.
  • the figure which shows the booklet body produced by using the laminated body in 4th Embodiment of aspect 2 of this invention (near-infrared image).
  • a diagram showing an observation image (near-infrared image) of the front surface of the laminate according to the fifth embodiment of the second aspect of the present invention by a near-infrared camera note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see.
  • the frame (broken line) of the opening region does not appear as a near-infrared image, it is shown for convenience. The same applies to other figures).
  • a diagram showing an image (near-infrared image) of the front surface of the laminate according to the seventh embodiment of the second aspect of the present invention (near-infrared image) (note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see.
  • FIG. 67 A diagram showing an observation image (near-infrared image) of the front surface of the laminate according to the eighth embodiment of the second aspect of the present invention by a near-infrared camera (note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see. Although the frame (broken line) of the opening region does not appear as a near-infrared image, it is shown for convenience. The same applies to other figures).
  • an example of a layered structure (viewed from the right side in the paper surface of FIG. 67) when the cross section of the laminated body shown in FIG. 67 is cut along the line BB'in FIG. 67 is viewed. (Each layer is drawn separately to show the layer structure.
  • the colored ink layer (or fluorescent ink layer, hologram layer) 12A on the back surface side is cut by the BB'line to be exact. Although not shown, it is drawn for the purpose of making the layer structure easier to understand. The same applies to other figures showing the layer structure.)
  • FIG. 6 is a diagram showing a near-infrared image of the front surface when the laminate shown in FIG. 69 is viewed in the direction of arrow C in FIG. 73, which will be described later.
  • FIG. 6 is a diagram showing a near-infrared image of the front surface when the laminate shown in FIG. 69 is viewed in the direction of arrow D in FIG. 73, which will be described later.
  • a layered structure viewed from below in the paper surface of FIG. 69
  • each layer is drawn separately to show the layer structure.
  • Fluorescent ink layer, hologram layer) 12A is not cut exactly by the AA'line, but is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure).
  • an example of a layered structure (viewed from the right side in the paper surface of FIG. 69) when the cross section of the laminated body shown in FIG. 69 is cut along the line BB'in FIG. 69 is viewed.
  • Each layer is drawn separately to show the layer structure.
  • the colored ink layer (or fluorescent ink layer, hologram layer) 12A on the back surface side is cut by the BB'line to be exact. Although not shown, it is drawn for the purpose of making the layer structure easier to understand.
  • FIG. 79 is an enlarged view of a part of a micro-display print image showing micro characters by a near-infrared absorbing ink (near-infrared image). It is a figure which shows an example of the layer structure of the laminated body 100B shown in FIG. 76, and is the cross-sectional view taken along the line AA'in FIG. The figure which shows another example of the layer structure of the laminated body 100B shown in FIG. 76.
  • the schematic external view of the laser marker device 200B The schematic block diagram of the laser marker apparatus 200B.
  • the conceptual diagram which shows the relationship of a spot distance SD, a line width LW, and a resolution R.
  • the schematic operation flow chart of the laser marker apparatus 200B A conceptual diagram illustrating the operation of scanning (high resolution) of near-infrared laser light.
  • a laminate in which a visually recognizable colored ink layer is printed on a transparent sheet will be described, but instead of the colored ink layer or in addition to the colored ink layer, excitation light is used.
  • excitation light is used.
  • a fluorescent ink layer or a hologram layer by printing or the like using a fluorescent ink composition that emits light when irradiated with (colored ink layer or at least one of fluorescent ink layers).
  • the hologram layer may be formed on the above, or only the hologram layer may be formed), or one or more of these layers may be formed on the base material layer or the laser coloring layer. ..
  • the information display medium taught by the first aspect of the present invention may be "display" as visible information that can be recognized by visual inspection or photography by a visible light camera, or may be a near-infrared camera. It may be a medium that is "displayed” as near-infrared information that can be recognized by shooting with a camera, or it may be “displayed” as information that can be recognized in other modes.) The information is still displayed. It may be a medium for displaying information that does not exist.
  • the information display medium does not have to be a laminated body, and may be a medium consisting of only one layer. As described in the embodiments described later, it is not essential to form the near-infrared absorbing layer in the first aspect of the present invention, but even if it is formed, the near-infrared absorbing layer (near-infrared absorbing ink layer). Is not essential to be formed by offset printing, but can also be formed by silk screen printing, gravure printing, flexo printing, inkjet printing, or the like (it does not have to be microscopic display printing). It is preferable that the colored ink layer, the fluorescent ink layer, the hologram layer, etc.
  • near-infrared laser light from a near-infrared laser (eg, Nd: YAG laser, YVO 4 laser, fiber laser, etc.) as the laser light, but an ultraviolet laser (eg, THG laser, etc.) or visible light. It is also possible to use laser light from a laser (eg, SHG laser, etc.), a far-infrared laser (eg, CO 2 laser), or the like.
  • a near-infrared laser eg, Nd: YAG laser, YVO 4 laser, fiber laser, etc.
  • an ultraviolet laser eg, THG laser, etc.
  • laser light eg, SHG laser, etc.
  • a far-infrared laser eg, CO 2 laser
  • the "near infrared ray” is an electromagnetic wave having a wavelength of 780 nm to 2000 nm (from “JIS Z 8117: 2002 far infrared ray term”).
  • the “near-infrared laser light (near-infrared laser light)” is defined as a laser light having a wavelength within the wavelength range of the near-infrared ray.
  • “visible light” is an electromagnetic wave having a wavelength of 400 nm to 780 nm.
  • near-infrared absorbing property means a property of absorbing at least a part of the irradiated near-infrared ray
  • near-infrared ray transmitting means at least the irradiated near-infrared ray. It means the property of transmitting a part.
  • visible light absorption means the property of absorbing at least a part of the irradiated visible light
  • visible light transmission means the irradiated visible light. It means the property of transmitting at least a part.
  • laser marking on an information display medium member (or near-infrared absorbing layer) such as a window member by a laser beam such as a near-infrared laser light means a member (or) for an information display medium.
  • a laser beam such as a near-infrared laser light
  • a member or for an information display medium.
  • the near-infrared absorbing layer By irradiating the near-infrared absorbing layer with laser light to change the absorption characteristics of the information display medium member (or near-infrared absorbing layer) for near-infrared rays, some display contents such as patterns, characters, and other information are displayed.
  • laser marking on the laser coloring layer by laser light means irradiating the laser coloring layer with laser light and irradiating the laser light to visible light and laser for near infrared rays.
  • changing the absorption characteristics of the color-developing layer it means drawing (or writing) some display content such as a pattern, characters, or other information on the laser color-developing layer.
  • elements with similar reference numerals indicate similar elements between different drawings.
  • FIG. 1 is a front surface (in FIG. 5, the outermost surface on the side of the oversheet layer 14 in FIG. 5) of the laminated body according to the first embodiment of the first embodiment of the present invention. It is a figure which shows the observation image (visible light image) of the same.
  • the laminated body 1 is a printed matter that identifies an individual such as an identification card, but the present invention is not limited to this, and a credit card, a cash card, or the like is used.
  • the information display medium such as the laminated body 1 can be produced as an arbitrary laminated body such as cards, banknotes, etc., or other media.
  • Laser coloring layers 10 and 11 are fused on the base material layer 9 (see FIG. 5 and the like described later) of the laminated body 1 by hot pressing, and near-infrared laser light is applied to the laser coloring layer 10.
  • the person image 2 and the person identification information 3 are drawn by the laser marking that irradiates the laser coloring layer 11 (these are on the back surface side of the laminate 1 by the laser marking that irradiates the laser coloring layer 11 with the near-infrared laser light. You may draw).
  • the person image 2 is drawn by irradiating a near-infrared laser beam on the laser color-developing layer 10 so as to draw a person by laser marking.
  • the person identification information 3 is drawn by irradiating a near-infrared laser beam so as to write the person identification information (name, personal identification number, etc.) on the laser coloring layer 10 by laser marking.
  • the laser coloring layers 10 and 11 may be formed as needed, and only one of the laser coloring layers 10 and 11 may be formed, or the laminated body 1 may be produced without forming either of the laser coloring layers. May be good. Further, as shown in FIG. 5 described later, UV SOYBI SG yellow (manufactured by DIC graphics), UV SOYBI SG red (manufactured by DIC graphics), and UV SOYBI SG indigo (manufactured by DIC graphics) are placed on the oversheet layer 14.
  • UV 161 yellow S (manufactured by T & K TOKA), UV 161 red S (manufactured by T & K TOKA), UV 161 indigo S (manufactured by T & K TOKA), etc.
  • the mark 4 is printed by using (colored ink layer 12 in FIG. 5).
  • a window member 5 is arranged so as to penetrate the base material layer 9 and the laser coloring layers 10 and 11 (see the layer structure of FIG. 5).
  • the window member 5 is a solid member containing a transparent material having visible light transmission and near-infrared transparency and a near-infrared absorbing material, and the transparent materials are PVC (polyvinyl chloride) and PET-G. It contains transparent materials such as (non-crystalline polyester), PC (polycarbonate), PET (polyethylene terephthalate), PP (polypropylene), and transparent resin, and the near-infrared absorbing material includes tungsten cesium oxide or lanthanum hexaboride.
  • transparent such as PVC (polyvinyl chloride), PET-G (non-crystalline polyester), PC (polyester), PET (polyethylene terephthalate), PP (polypropylene), and transparent resin in a liquid state that has been melted by heating.
  • the window member 5 can be produced by adding one or both of polypropylene cesium oxide and hexaboroxide lanthanum to the material, mixing them, and molding them into the shape of the window member 5.
  • the window member 5 preferably has a visible light transmittance of 50% or more and a near infrared transmittance of 50% or more, and preferably has a thickness (stacking direction) of about 300 ⁇ m to 700 ⁇ m.
  • the window member 5 may be manufactured in an unsatisfied manner.
  • Such a window member 5 has both visible light transmission and near-infrared ray transmission, and also has a certain degree of near-infrared ray absorption due to the inclusion of the near-infrared ray absorbing material. If the window member 5 is photographed with a camera or the like, a darker image can be obtained as a near-infrared image as compared with a member made of only a transparent material. Further, as will be explained later using the experimental results, since tungsten cesium oxide and lanthanum hexaboride have the property of reducing the absorption of near infrared rays by irradiating them with (near infrared) laser light.
  • a near-infrared laser beam is applied to the window member 5 containing at least one of tungsten cesium oxide and lanthanum hexaboride so as to draw (write) an image, characters, etc. by laser marking.
  • the near-infrared absorption characteristics change, which makes it possible for the window member 5 to display information such as images and characters that are at least difficult to recognize with the naked eye or a visible light camera but can be recognized by a near-infrared camera or the like. can.
  • FIG. 2 is a diagram showing an observation image (near-infrared image) of the front surface of the laminated body according to the first embodiment of the first embodiment of the present invention by a near-infrared camera (note that the laminated body is for the purpose of making the figure easier to see.
  • the outer shape is drawn. The same applies to other figures.
  • Such an observation image can be obtained by observing with a near-infrared camera or the like. Since the person image 2 and the person identification information 3 drawn by laser marking on the laser coloring layer 10 have absorbency to visible light and near infrared rays, they can be recognized not only by visible light but also by a near infrared camera. On the other hand, since the mark 4 is formed by printing using a colored ink that transmits near infrared rays, it is unrecognizable (or at least difficult to recognize) by the near infrared camera.
  • a near-infrared absorbing image (inside the window member, depending on the near-infrared absorbing material) 6 and a person image (laser marking) 7 are shown in the window member 5.
  • the near-infrared absorbing image 6 is due to the fact that the window member 5 contains a near-infrared absorbing material and is displayed darker than the surroundings as a near-infrared image.
  • the entire window member 5 shows a near-infrared image (near-infrared absorption image 6) that is darker than the surroundings.
  • the near-infrared absorption of the irradiated portion is lowered, and the near-infrared image is a person image.
  • the part 7 is displayed brighter than the surroundings (inside the window member 5), and the near-infrared ray incident on the person image 7 part after being irradiated to the window member 5 by a near-infrared camera or the like due to a decrease in near-infrared ray absorption.
  • the window member 5 is viewed from above the oversheet layer 14), the near-infrared absorption image 6 and the like.
  • a person image 7 drawn by laser marking on the window member 5 can be recognized (FIG. 2).
  • the same person identification information as the person identification information 3 may be drawn (written) by the laser marking.
  • some micro characters such as person identification information similar to the person identification information 3 may be drawn (written) by laser marking, or some micro display body such as minute characters, symbols, figures, etc. may be drawn. (Written) is also good.
  • the person image 7 may be formed of a micro-display body such as micro characters such as person identification information similar to the person identification information 3.
  • microprinting here is not limited to characters in ⁇ m units (characters having a diameter, width, or height of less than 1 mm), and characters having a diameter, width, or height of 1 mm or more are defined. Sometimes called “microprinting”. The same applies to the size of other microscopic objects. Similarly, in other embodiments, some micro-display such as micro characters may be drawn (written) in the laser marking.
  • FIG. 3 is a back surface of the laminate according to the first embodiment of the first embodiment of the present invention under visible light (in FIG. 1, a surface that can be seen by turning the laminate 1 around the AX axis and turning it over. It is a figure which shows the observation image (visible light image) of the middle, which is the outermost surface on the side of the oversheet layer 15. The same applies in other embodiments.
  • a mark 8 is printed on the oversheet layer 15 using a colored ink that transmits near infrared rays (colored ink that absorbs visible light) (colored ink layer 13 in FIG. 5).
  • FIG. 4 is a diagram showing an image (near-infrared image) of the back surface of the laminated body according to the first embodiment of the first embodiment of the present invention observed by a near-infrared camera (note that the outer shape of the laminated body is drawn for the purpose of making the figure easier to see. It is included. The same applies to other figures.)
  • the near-infrared absorption image 6 and the person image 7 are inverted as compared with those when viewed from the front surface (FIG. 2).
  • tungsten cesium oxide or lanthanum hexaboride can be used as the near-infrared absorbing material to be contained in the window member 5.
  • tungsten cesium oxide tungsten cesium oxide represented by the chemical formula (general formula) Cs x W y O z can be used (x, y, z are positive real numbers, respectively).
  • the fine particles represented by Cs 0.33 WO 3 having a hexagonal structure described in Patent Document 8 (Patent No. 6160830) can be used.
  • the lanthanum hexaboride fine particles represented by the chemical formula LaB 6 can be used.
  • the content of tungsten cesium oxide in the window member 5 is arbitrary, but as shown in Examples described later, the tungsten cesium oxide-containing ink is 0.5% by weight (weight percent) to 6% by weight of cesium in one example. Since it has good properties in the tungsten oxide content, the cesium tungsten oxide content in the window member 5 may also be 0.5% by weight (weight%) to 6% by weight.
  • the content of the lanthanum hexaboride in the window member 5 is also arbitrary, and in one example, it may be 0.05% by weight (weight%) to 6% by weight, but as shown in Examples described later, the lanthanum hexaboride is formed.
  • the lanthanum hexaboride content in the window member 5 may also be 0.3% by weight. Even when the window member 5 containing both tungsten cesium oxide and lanthanum hexaboride is used, the respective contents of tungsten cesium oxide and lanthanum hexaboride are similarly arbitrary.
  • the "content of tungsten cesium oxide (% by weight)" in the window member 5 is the ratio of the weight of tungsten cesium oxide contained in the window member 5 to the total weight of the window member 5.
  • the "content rate (% by weight) of the 6-boride lantern" in the window member 5 is the ratio of the weight of the 6-boride lantern contained in the window member 5 to the total weight of the window member 5.
  • Content of lanthanum hexaboride in window member 5 (% by weight) ⁇ (weight of lanthanum hexaboride) / (weight of entire window member 5) ⁇ x 100 Represented by.
  • FIG. 5 shows an example of a layered structure when the cross section of AA ′ obtained by cutting the laminate shown in FIG. 1 along the AA ′ line in FIG. 1 is viewed (viewed from below in the paper surface of FIG. 1).
  • a diagram conceptually showing (.) (Each layer is drawn separately to show the layer structure. Also, the colored ink layer (or fluorescent ink layer, hologram layer) 12 on the front surface side and the colored ink layer on the back surface side.
  • the ink layer (or fluorescent ink layer, hologram layer) 13 is not cut exactly by the AA'line, but is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure. ).
  • the colored ink layer 12 may be formed between the base material layer 9 and the laser coloring layer 10, and the colored ink layer 13 may be formed between the base material layer 9 and the laser coloring layer 11. Often, for each of the other layers, the stacking order is arbitrary (same for other embodiments).
  • the base material layer 9 is made of materials such as PVC (polyvinyl chloride), PET-G (copolyester), PC (polyester), PET (polyethylene terephthalate), PP (polypropylene), and is visible light and near. It is formed of a sheet-like base material (white sheet) having low infrared transmission.
  • the base material layer 9 may be a paper base material (high quality paper, cord paper, etc.) (even when the oversheet layers 14 and 15 are used, the base material layer is a base material layer. It is possible to use the above paper base material as 9.).
  • the laser coloring layers 10 and 11 are transparent sheet-like layers containing a laser coloring agent (may be a transparent resin or the like similar to the oversheet layers 14 and 15 described later), and are pressed against the base material layer 9. Is fused by.
  • the laser coloring layer 10 has a property of developing color when exposed to laser light. Since the portion of the laser color-developing layer 10 exposed to the laser beam changes its absorbency to visible light and near-infrared rays (in one example, the visible light absorption and the near-infrared ray absorption increase, so that the infrared rays can be visually observed. Even when observed with a camera, it looks darker than the other parts.) The part can be recognized visually and by using a near-infrared camera.
  • colorants such as dyes and pigments, clays and the like can be used, and specifically, yellow iron oxide and inorganic lead.
  • mica, antimonated mica, tin + antimonated mica, tin + antimon + titanium oxide coated mica, etc. can be used (Patent No. 6167803, paragraph [0043]. ).
  • the bismuth compound is not particularly limited, but for example, bismuth oxide, bismuth nitrate, bismuth oxynitrate, and the like.
  • Bismuth nitrate, bismuth halide such as bismuth chloride, bismuth oxychloride, bismuth sulfate, bismuth acetate, bismuth citrate, bismuth hydroxide, bismuth titanate, etc.
  • bismuth nitrate and bismuth hydroxide can be preferably used, and the bismuth-based compound may contain one or more compounds, and at least a bismuth-based compound as an example is included.
  • a material other than the bismuth compound may be used in combination as long as it is a color-developing material that develops color by laser light (paragraph [0044] in the specification of Patent No. 6167803).
  • a color-developing material containing at least a bismuth-based compound as an example when used, a color-developing material that develops color by laser light and / or an inorganic compound can be used to increase the color-developing efficiency.
  • the use of composite oxides or metal salts or one or more compounds thereof allows the inorganic compounds to function as color-developing materials in some cases, even when irradiated with low-power laser light, and / or the inorganic compounds. It is preferable to add an inorganic compound because it functions to increase the heat generation efficiency to assist the color development of the coloring material or to increase the whiteness of the white ink containing the coloring material and the white pigment (Patent No. 6167803). In the specification, paragraph [0045]).
  • An oversheet layer (transparent sheet) 14 having visible light transmission and near-infrared ray transmission is formed on the uppermost layer on the front side of the laminated body 1, and visible light transmitting and visible light transmissive on the lowermost layer on the back side of the laminated body 1.
  • An oversheet layer (transparent sheet) 15 having near-infrared ray transmission is formed.
  • two transparent PCs (polycarbonates) having a thickness of about 0.05 mm to 0.2 mm are prepared, and the oversheet layers 14 and 15 are combined with the bottom layer of the laminate 1 before forming the oversheet layers 14 and 15.
  • the laminated body 1 can be formed by laminating one sheet each on the uppermost layer and fusing them by applying heat and pressure.
  • the oversheet layer is prepared by using a material such as PVC (polyvinyl chloride), PET-G (copolyester), PC (polycarbonate), PET (polyethylene terephthalate), PP (polypropylene), as in the case of the base material layer. good.
  • PVC polyvinyl chloride
  • PET-G copolyester
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PP polypropylene
  • the print layers are formed on the oversheet layers 14 and 15, it is preferable to stack the print layers so that they are arranged on the base material layer 9 side in order to prevent tampering. Further, when there is an oversheet layer, the printed information is printed inside the laminate, and there is also a feature that it is more difficult to falsify.
  • the laminated body 1 before forming the oversheet layers 14 and 15 is laminated from above and below with two arbitrary transparent films (each film, the base material layer 9, and laser coloring, if necessary).
  • the layers 10 and 11 may be printed with colored ink or the like in advance), and the laminate 1 may be formed by adhering the layers with an adhesive. The same applies to the fusion of the laser coloring layers 10 and 11 to the base material layer 9.
  • the oversheet layers 14 and 15 it is not essential to form the oversheet layers 14 and 15, and only one of the oversheet layers 14 and 15 may be formed, or the laminated body may be formed without forming either of the oversheet layers. 1 may be produced.
  • the laser marking on the laser coloring layer 10 is performed from the uppermost layer side (the side of the oversheet layer 14) of the laminated body 1. Further, the laser marking on the laser coloring layer 11 is performed from the lowermost layer side (the side of the oversheet layer 15) of the laminated body 1.
  • a colored ink layer 12 is formed on the oversheet layer 14 (may be on the laser coloring layer 10 or on the base material layer 9. The same applies to the fluorescent ink layer 12 and the hologram layer 12).
  • the colored ink layer 12 is formed by printing the mark 4 on the oversheet layer 14 (or on the laser coloring layer 10) using a colored ink that transmits near infrared rays.
  • the method for forming the colored ink layer 12 is arbitrary, and for example, a printing method such as letterpress printing, offset printing, silk screen printing, gravure printing, flexographic printing, inkjet printing, or any other forming method can be used.
  • UV fluorescent medium B manufactured by T & K TOKA
  • UV fluorescent medium Y manufactured by T & K TOKA
  • UV fluorescent medium R manufactured by T & K TOKA
  • the fluorescent ink layer 12 may be formed by using a fluorescent ink that transmits near ultraviolet rays.
  • the fluorescent ink layer 12 can be formed by printing or the like on the oversheet layer 14 in the same manner as the colored ink layer 12 by using the fluorescent ink composition, and marks and the like can be formed as in the case of colored ink printing. Can be printed.
  • a near-infrared ray-transparent hologram layer 12 such as a transparent hologram may be formed in place of the colored ink layer 12 or the fluorescent ink layer 12, or in addition to at least one of these layers.
  • the colored ink layer 12, the fluorescent ink layer 12, and the hologram layer 12 are formed on the front surface of the oversheet layer 14 (the surface opposite to the laser coloring layer 10), the back surface of the oversheet layer 14 (laser). Whether it is formed on the front surface of the laser coloring layer 10 (the surface opposite to the base layer 9) or on the front surface of the laser coloring layer 10 (the surface opposite to the base layer 9), the back surface of the laser coloring layer 10 (base layer).
  • the colored ink layer 12, the fluorescent ink layer 12, and the hologram layer 12 do not need to have near-infrared transparency. In the examples here, in order to simplify the figure showing the observation image, the layers have been unified as a layer having near-infrared transmissivity.
  • the oversheet layer 15 may be on the laser coloring layer 11 or the base material layer 9, the same applies to the fluorescent ink layer 13 and the hologram layer 13
  • the colored ink layer 13 (or the fluorescent ink layer, the hologram) is placed.
  • Layers and the like. The material and the forming method may be the same as those of the colored ink layer 12, the fluorescent ink layer 12, and the hologram layer 12. Two or more of these layers may be formed. The same applies to other descriptions. ) Is formed. Even if the colored ink layer 13, the fluorescent ink layer 13, and the hologram layer 13 are formed on the front surface of the oversheet layer 15 (the surface opposite to the base material layer 9), the back surface of the oversheet layer 15 (the surface opposite to the base material layer 9), respectively.
  • the back surface of the laser coloring layer 11 (base material). It may be formed on the surface on the layer 9 side, on the back surface of the base material layer 9 (the surface on the laser coloring layer 11 side), or on two or more of these surfaces (as appropriate). Illustration is omitted.)
  • the colored ink layer 12 (mark 4) is formed by printing with colored ink on the oversheet layer 14, and the colored ink layer 13 (mark 8) is formed by printing with colored ink on the oversheet layer 15. ..
  • (3) The above-mentioned window member 5 is fitted into the space created by cutting out as described above.
  • the above layers are laminated in the order shown in FIG. 5 and fused by press treatment.
  • Laser marking is performed on the laser coloring layer 10 from the surface of the obtained laminate on the oversheet layer 14 side, and a person image 2 and a person identification information 3 are drawn.
  • Laser marking is performed on the window member 5 from the surface of the laminated body on the oversheet layer 14 side or the surface on the oversheet layer 15 side, and a person image 7 is drawn.
  • the laminated body 1 can be produced by the above method.
  • the authenticity of the laminated body 1 can be determined.
  • a person image 2 and a person identification information 3 (these can also be recognized as a near-infrared image) that can be recognized as a visible light image (including an image obtained by viewing with the naked eye. The same applies to other embodiments).
  • the person specified by and the person specified by the person image 7 that can be recognized as a near-infrared image match, it can be determined that the laminated body 1 is genuine as an identification card or the like.
  • the laminated body 1 is the identification. It can be determined that the card is not genuine (it is a fake). The judgment may be made by a person using a (near) infrared camera or the like, or a visible light image and a near infrared image are acquired by an arbitrary optical analysis device and both images are transferred to a computer using an arbitrary data transfer device or the like.
  • It may be performed by comparing and judging both images by executing a program for image recognition / comparison or the like by taking in the above and executing a program or the like for image recognition / comparison by a computer processor (the same applies to other embodiments and the like).
  • FIG. 6 is a diagram showing an observation image (visible light image) of the front surface of the laminated body according to the second embodiment of the first embodiment of the present invention by visible light
  • FIG. 7 is a diagram showing an observation image (visible light image) of the front surface of the laminated body of the first embodiment of the present invention.
  • the figure which shows the observation image (near-infrared image) of the front surface of the laminated body in 2nd Embodiment by a near-infrared camera note that the outer shape of the laminated body is drawn for the purpose of making the figure easy to see. The same applies to the above
  • FIG. 8 shows the back surface of the laminate according to the second embodiment of the first embodiment of the present invention under visible light (in FIG.
  • FIG. 10 shows an example of a layered structure when the cross section of the laminated body shown in FIG. 6 is cut along the line BB'in FIG. A diagram conceptually showing (.) (Each layer is drawn separately to show the layer structure.
  • the ink layer (or fluorescent ink layer, hologram layer) 13 is not cut exactly by the BB'line, but is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure. ).
  • the base material layers are the first base material layer 18 and the second base material. It is composed of a layer 19 (the material and the like may be the same as that of the base material layer 9, and the base material layer 9 shown in FIG. 5 and the like may also be composed of a plurality of layers of sheets).
  • a base material intermediate layer is provided as a layer (at least partially) sandwiched between the first base material layer 18 and the second base material layer 19. The first portion 17 of the base material intermediate layer is located between the first base material layer 18 and the second base material layer 19, and the second portion 16 of the base material intermediate layer is the first base material layer 18.
  • the laser coloring layer on the back surface side corresponding to the laser coloring layer 11 in FIG. 5 is not used, but as already described, the laser coloring layer is the front surface of the base material layer. It may be formed on either the side or the back side, may be formed on both sides, or may not be formed on either side.
  • Such a base material intermediate layer is formed by sandwiching (at least a part of) the base material intermediate layer between the first base material layer 18 and the second base material layer 19 and then heat-pressing the first base material layer. It can be provided by fusing the 18 and the second base material layer 19. It may be provided by adhering the first base material layer 18 and the second base material layer 19 with an adhesive.
  • a sheet made of any material such as paper, resin, cloth, and non-woven fabric can be used, and as an example, it has a network structure as described in International Publication No. 2018/151238. Textiles can be mentioned.
  • the colored ink layer 12 (mark 4) is formed by printing with colored ink on the oversheet layer 14, and the colored ink layer 13 (mark 8) is formed by printing with colored ink on the oversheet layer 15. ..
  • a through hole 20 is formed by cutting out a portion where the window member 5 should be formed in the temporarily fixed state (FIG. 12).
  • the above-mentioned window member 5 is fitted into the through hole 20 formed by cutting out as described above (FIG. 13).
  • the above layers are laminated in the order shown in FIG. 10 (FIG. 14) and fused by a press process.
  • Laser marking is performed on the laser coloring layer 10 from the surface of the obtained laminate on the oversheet layer 14 side, and a person image 2 and a person identification information 3 are drawn.
  • Laser marking is performed on the window member 5 from the surface of the laminated body on the oversheet layer 14 side or the surface on the oversheet layer 15 side, and a person image 7 is drawn.
  • the laminated body 1 can be produced by the above method.
  • the authenticity of the laminated body 1 can be determined. Specifically, it is specified by a person identified by a person image 2 that can be recognized as a visible light image 2 and a person identification information 3 (these can also be recognized as a near-infrared image) and a person image 7 that can be recognized as a near-infrared image.
  • a person image 2 that can be recognized as a visible light image 2 and a person identification information 3 (these can also be recognized as a near-infrared image)
  • a person image 7 that can be recognized as a near-infrared image.
  • FIG. 15 is a diagram showing an observation image (visible light image) of the booklet in the third embodiment of the first embodiment of the present invention under visible light
  • FIG. 16 is a diagram showing a third embodiment of the first embodiment of the present invention. It is a figure which shows the observation image (near-infrared image) of the booklet body in 1
  • the layer structure when the cross section of the laminated body 1 included in the booklet shown in FIG. 15 is cut along the line BB'in FIG. 15 and viewed is the same as the layer structure shown in FIG. May be.
  • the laminated body 1 of FIG. 15 also includes a base material intermediate layer, and as shown in FIG. 17, the first base material layer 18 and the base material intermediate layer (16, 17). ), A part of the laminated structure composed of the second base material layer 19 and the laser coloring layer 10 is cut out, and the window member 5 is provided in the space created by the cutout.
  • a person image 2 drawn by laser marking the laser color-developing layer 10, a person identification information 3, and colored ink printing, Recognizing the mark 4 (colored ink layer, fluorescent ink layer, or hologram layer 12) formed by fluorescent ink printing or a hologram (a combination of two or more of these may be used; the same applies to other embodiments). Can be done.
  • near-infrared transmissive colored ink printing, fluorescent ink printing, or hologram (a combination of two or more of these may be used) on the surface of another sheet 23, 24 of the booklet 100 on the side of the laminated body 1.
  • the person images 22 and 21 are formed (the person image 21 shown in FIG. 15 is printed on the surface of the sheet 24 on the laminated body 1 side, and is a window. It can be visually recognized through the member 5.). Further, it is not necessary that both of the person images 22 and 21 are formed, and only one of them may be formed or neither of them may be formed. Further, instead of the person images 22 and 21, or in addition to the person images 22 and 21, the same person identification information as the person identification information 3 is provided on the surface of at least one of the sheets 23 and 24 on the side of the laminated body 1.
  • a person image 22 or a person image 21 is formed on the surface of one of the sheets 23 and 24 on the side of the laminate 1, and the surface of the sheets 23 and 24 on the side of the other laminate 1 is formed.
  • the same person identification information as the person identification information 3 may be formed, or the person identification information such as a name is formed on the surface of the sheet 23 on the side of the stack 1 to form the side of the sheet 24 on the side of the stack 1.
  • another person identification information such as an ID number may be formed).
  • the mark 8 is formed as a colored ink layer, a fluorescent ink layer, or a hologram layer 13 on the back surface (the surface opposite to the mark 4) of the laminate 1 (similar to FIGS. 3 and 8). (Not shown in the third embodiment).
  • the laminate 1 is the other sheets 23, 24. , 25, which constitutes the booklet 100.
  • the sheets 23 and 24 have the person images 22 and 21 drawn by colored ink printing, fluorescent ink printing, or hologram. It is preferable to use a printer capable of variable printing such as toner and ribbon transfer.
  • the person identification information 26 is written by laser marking as recognized as the near-infrared image of FIG. 16 (instead of or on the person identification information 26).
  • a person image 2 or a person image similar to the person images 21 and 22 may be formed by laser marking the window member 5).
  • a person image 2 that can be recognized as a visible light image, a person identification information 3 (these can also be recognized as a near-infrared image), a person image 21 and 22, and a person identification information 26 that can be recognized as a near-infrared image (display) are compared. Thereby, the authenticity of the laminated body 1 and the booklet body 100 can be determined.
  • laser marking was performed on the front surface to form the person image 2 and the person identification information 3 on the front surface, but the laser coloring layer is on the back side of the base material portion. It may be provided (see the laser coloring layer 11 in FIG.
  • the person image 2 and the person identification information 3 may be formed on the back surface side of the laminated body 1. (Even in this case, the authenticity determination can be performed in the same manner. Laser marking is mainly performed. It is the same in other embodiments that it may be performed on either the front side or the back side, or on both sides).
  • the colored ink layer 12 (mark 4) is formed by printing with colored ink on the oversheet layer 14, and the colored ink layer 13 (mark 8) is formed by printing with colored ink on the oversheet layer 15. ..
  • a through hole 20 (see FIG. 12, not shown in the third embodiment) is formed by cutting out a portion where the window member 5 should be formed.
  • the above-mentioned window member 5 is fitted into the through hole 20 formed by cutting out as described above. (4)
  • the above layers are laminated in the order shown in FIG.
  • the laminated body 1 can be produced by the above method. By binding this laminated body with another sheet using the second portion 16 of the base material intermediate layer as a binding margin (a person image 22 is formed on the back surface of the sheet 23 by colored ink printing or the like as described above). , The booklet body 100 can be produced.
  • the authenticity of the laminated body 1 By comparing the visible light image of the laminated body 1 with the near-infrared image, the authenticity of the laminated body 1 (the authenticity of the booklet 100) can be determined. Specifically, a person image 2 that can be recognized as a visible light image, a person identification information 3 (these can also be recognized as a near-infrared image), a person specified by the person images 21 and 22, and a person that can be recognized as a near-infrared image. When the person specified by the identification information 26 matches, the laminated body 1 (or the booklet body 100) is considered to be genuine as an identification card or the like (an example of the booklet body 100 is a passport).
  • the person identification information (person image) can be formed by printing, laser marking, or the like, and even in that case, as a visible light image.
  • the same authenticity determination can be performed (other implementations). The same applies to the form).
  • FIG. 17 is a diagram showing an observation image (visible light image) of the booklet in the fourth embodiment of the first aspect of the present invention under visible light
  • FIG. 18 is a diagram showing a fourth embodiment of the first aspect of the present invention. It is a figure which shows the observation image (near-infrared image) of the booklet body in 1 19 is a diagram showing an observation image (near-infrared image) by a near-infrared camera when the window member shown in FIG. 17 is viewed alone.
  • the layer structure when the cross section of the laminated body 1 included in the booklet shown in FIG. 17 is cut along the line BB'in FIG. 17 and viewed is the same as the layer structure shown in FIG. May be.
  • ink carbon black having absorption of visible light and near infrared rays
  • Partial portrait images 29 and 28 are drawn by printing with the contained black ink (hereinafter referred to as ink) (the partial portrait image 28 shown in FIG. 17 is , It is printed on the surface of the sheet 24 on the one side of the laminated body, and can be visually recognized through the window member 5 and recognized by the infrared camera.)
  • the black ink in the present embodiment may be any ink containing carbon black, or may be black in an ink cartridge of a commercially available printer.
  • both of the partial portrait images 29 and 28 are formed, and only one of them may be formed or neither of them may be formed. Since it is a human image, it is preferable to use a printer capable of variable printing such as inkjet, toner, ribbon transfer, etc., rather than ordinary offset printing or silk printing. Further, the substrate may be carbonized by laser marking to form partial portrait images 29, 28. Further, the window member 5 containing the near-infrared absorbing material is laser-marked so as to draw a partial person image 30 as recognized as the near-infrared image of FIG.
  • the window member 5 contains a near-infrared absorbing material, an image darker than the surroundings can be obtained as a near-infrared image before laser marking, but the portion irradiated with laser light by laser marking has near-infrared absorbing property. Therefore, in the near-infrared image, the portion irradiated with the laser beam becomes brighter than before the irradiation.
  • a partial person image 30 as shown in FIG. 18 can be obtained as a near-infrared image. Can be done (see FIG. 19).
  • a person image 2 drawn by laser marking the laser color-developing layer 10, a person identification information 3, and colored ink printing
  • the mark 4 colored ink layer, fluorescent ink layer, or hologram layer 12
  • Partial portrait images 29 and 28 are formed on the side surface of the laminated body 1 of the other sheets 23 and 24 of the booklet 100 by black ink printing.
  • the mark 8 is formed as a colored ink layer, a fluorescent ink layer, or a hologram layer 13 on the back surface (the surface opposite to the mark 4) of the laminate 1 (similar to FIGS. 3 and 8). (Not shown in the fourth embodiment).
  • the laminate 1 is the other sheets 23, 24. , 25, which constitutes the booklet 100.
  • the partial portrait images 29 and 28 formed on the sheets 23 and 24 with black ink or the like are not only visible light absorbing but also near infrared absorbing. Since it also has, it can be recognized as a near-infrared image, and a partial person image 30 can also be recognized as a near-infrared image due to the near-infrared absorption of the near-infrared absorbing material contained in the window member 5.
  • Partial person images 28 and 29 made of black ink and the like and partial person images 30 caused by the near-infrared absorption of the near-infrared absorbing material contained in the window member 5 are combined (part as a near-infrared image).
  • a person image can be recognized as a composite image by displaying both the typical person images 28 and 30 at the same time and / or displaying both the partial person images 29 and 30 at the same time.
  • a person image 2 and a person identification information 3 that can be recognized as a visible light image (these can also be recognized as a near-infrared image) and a composite image that can be partially recognized as a visible light image but completely recognized as a near-infrared image.
  • a composite image may be created as information obtained by synthesizing both partial human images by a computer or the like, or a person may create a composite image from the partial human image 29 and the partial human image 30.
  • information on the person image may be obtained by recognizing the complete person image from the partial person image 28 and the partial person image 30.
  • Both of the partial person images 28 and 29 may be formed as shown in FIG.
  • the laser coloring layer is on the back side of the base material portion. It may be provided (see the laser coloring layer 11 in FIG. 5) or may be provided on both sides (see the laser coloring layers 10 and 11 in FIG. 5), or a laser may be provided on the laser coloring layer 11 on the back surface side of the base material portion.
  • the person image 2 and the person identification information 3 may be formed on the back surface side of the laminated body 1. (Even in this case, the authenticity determination can be performed in the same manner.
  • Laser marking is mainly performed. It is the same in other embodiments that it may be performed on either the front side or the back side, or on both sides).
  • the composite image does not have to be a person image, and may be information (name, ID number, etc.) that matches the person identification information 3, and the composite image may have micro characters (diameter, width, as described in the first embodiment). Alternatively, it may be a character having a height of 1 mm or more, or may be another microscopic display body).
  • the colored ink layer 12 (mark 4) is formed by printing with colored ink on the oversheet layer 14, and the colored ink layer 13 (mark 8) is formed by printing with colored ink on the oversheet layer 15. ..
  • a through hole 20 (see FIG. 12, not shown in the fourth embodiment) is formed by cutting out a portion where the window member 5 is to be formed.
  • the above-mentioned window member 5 is fitted into the through hole 20 formed by cutting out as described above.
  • the above layers are laminated in the order shown in FIG. 10 and fused by press treatment.
  • Laser marking is performed on the laser coloring layer 10 from the surface of the obtained laminate on the oversheet layer 14 side, and a person image 2 and a person identification information 3 are drawn.
  • Laser marking is performed on the window member 5 from the surface (referred to as the back surface) on the oversheet layer 15 side of the laminated body, and the window member 5 is independently removed from the front surface (the surface on the oversheet 14 side).
  • a laser beam is applied to a portion of the background 31 (a portion other than the partial portrait image 30) so that the partial portrait image 30 of FIG. 19 can be recognized when viewed as a near-infrared image.
  • the laminated body 1 can be produced by the above method. By binding this laminated body with another sheet using the second portion 16 of the base material intermediate layer as a binding allowance (a partial human image 29 is formed on the back surface of the sheet 23 by black ink printing or the like as described above.
  • the booklet body 100 can be produced.
  • the authenticity of the laminated body 1 (the authenticity of the booklet 100) can be determined.
  • a human image as a composite image that can be completely recognized as a near-infrared image (a human image that can be recognized by displaying partial human images 28 and 30 at the same time and / and a partial human image 29 and 30 are displayed at the same time.
  • the laminated body 1 When the person specified by the visible light information and the person specified by the near-infrared information match by comparing the person image that can be recognized by the above (that is, with the near-infrared information), the laminated body 1 (that is, the near-infrared information) Alternatively, it can be determined that the booklet 100) is genuine as an identification card or the like (a passport is an example of the booklet 100), and a person specified by visible light information and a person specified by near-infrared information. If they do not match, it can be determined that the laminated body 1 (or booklet body 100) is not genuine (a fake) as an identification card or the like (passport or the like as a booklet body).
  • FIG. 20 is a diagram showing an observation image (visible light image) of the front surface of the laminated body according to the fifth embodiment of the first aspect of the present invention by visible light (the lenticular lens is transparent, but the figure is drawn for the purpose of making the figure easier to see.
  • 21 is a diagram showing a visible light image of the front surface when the laminate shown in FIG. 20 is viewed in the directions of arrows C and D in FIG. 25, which will be described later.
  • 22 is a diagram showing an observation image (near-infrared image) of the front surface of the laminate shown in FIG. 20 when viewed in the direction of arrow C in FIG. 25, which will be described later, by a near-infrared camera.
  • FIG. 20 is a diagram showing an observation image (visible light image) of the front surface of the laminated body according to the fifth embodiment of the first aspect of the present invention by visible light (the lenticular lens is transparent, but the figure is drawn for the purpose of making the figure easier to see.
  • 21 is a
  • FIG. 23 is a diagram showing an observation image (near-infrared image) of the front surface of the laminate shown in FIG. 20 when viewed in the direction of arrow D in FIG. 25, which will be described later, by a near-infrared camera.
  • FIG. 24 shows an example of a layered structure when the cross section of AA ′ obtained by cutting the laminate shown in FIG. 20 along the AA ′ line in FIG. 20 is viewed (from below in the paper surface of FIG. 20).
  • the figure conceptually showing (see) (each layer is drawn separately to show the layer structure.
  • the colored ink layer (or fluorescent ink layer, hologram layer) 12 on the front surface side and the back surface side.
  • the colored ink layer (or fluorescent ink layer, hologram layer) 13 is not cut exactly by the AA'line, but is drawn for the purpose of making the layer structure easy to understand.
  • the lenticular lens 33 is formed on the surface of the oversheet layer 14 opposite to the laser coloring layer 10 and at least partially overlapping the window member 5.
  • the layer structure of FIG. 24 may be the same as the layer structure of FIG. 5 except that the lenticular lens 33 is formed.
  • FIG. 25 shows an example of a layered structure when the cross section of the laminated body shown in FIG. 20 is cut along the line BB'in FIG. 20 and viewed from the right side (in the paper surface of FIG. 20, viewed from the right).
  • the figure (.) Is conceptually shown (each layer is drawn separately to show the layer structure.
  • the fluorescent ink layer and the hologram layer) 13 are not accurately cut by the BB'line, but are drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure). ..
  • the plurality of convex lens portions when viewed from the direction shown in FIG. 25, the plurality of convex lens portions are (in the paper surface of FIG. 20 in the vertical direction (BB'line)). It has a shape that appears to be lined up (along).
  • the convex lens portions of 7 are drawn side by side in each of the lenticular lenses 33, but this is a display for convenience for simplifying and explaining the structure of the lenticular lens, and in one example, it is a display.
  • the lenticular lens 33 can be formed so as to include more, for example, about 100 convex lens portions.
  • the number of convex lens portions may be reduced, and the lenticular lens 33 can generally be formed so as to include any plurality of convex lens portions.
  • the already produced lenticular lens 33 may be adhered to the oversheet layer 14 with an adhesive or the like, or the lenticular lens 33 may be formed on the oversheet layer 14.
  • the oversheet layer 14 may be formed by heat and pressure so as to have a shape that functions as a lenticular lens 33, or a lenticular lens 33 base material is formed on the oversheet layer 14 by a printing method and fixed by a method such as UV curing. You may.
  • the near-infrared image shown in FIG. 22 can be recognized when viewed in the direction of arrow C in FIG. 25, and the near-infrared image shown in FIG. 23 when viewed in the direction of arrow D in FIG. 25. Can recognize infrared images.
  • the person image 34 shown in FIG. 22 the person image 34 shown in FIG.
  • the 22 can be recognized as a near-infrared image by laser marking that irradiates the near-infrared laser light in the direction (angle) of the arrow C in FIG.
  • the laser beam is applied to the portion of the background 31 so that it can be recognized as (display).
  • the person image 34 can be recognized by looking at the window member 5 from the direction of arrow C in FIG. 25 using an infrared camera or the like, and the window can be recognized from the direction of arrow D in FIG. 25.
  • the person identification information 35 can be recognized by viewing the member 5 with an infrared camera or the like. That is, the latent pattern can be visually recognized by changing the observation angle, and MLI (Multiple Laser Image) of near-infrared absorption is realized.
  • MLI Multiple Laser Image
  • FIG. 26 is a diagram conceptually explaining the principle of lenticular (it does not have to be consistent with the specific configuration described with reference to FIGS. 20 to 25).
  • the window member 5 When the window member 5 is viewed with a near-infrared camera or the like from the first position P1 through the lenticular lens 33, each pattern or the like drawn on the plurality of printing units IM1 is synthesized, and the first one like the person image 34.
  • the display (picture) can be recognized.
  • each pattern or the like drawn on the plurality of printing units IM2 is combined to form a second such as the person identification information 35. Can recognize the display (characters) of.
  • the colored ink layer 12 (mark 4) is formed by printing with colored ink on the oversheet layer 14, and the colored ink layer 13 (mark 8) is formed by printing with colored ink on the oversheet layer 15. ..
  • (3) The above-mentioned window member 5 is fitted into the space created by cutting out as described above.
  • the above layers are laminated in the order shown in FIGS.
  • the lenticular lens 33 is formed).
  • Laser marking is performed on the laser coloring layer 10 from the surface of the obtained laminate on the oversheet layer 14 side, and a person image 2 and a person identification information 3 are drawn.
  • the window member 5 is irradiated with laser light from the surface of the obtained laminate on the oversheet layer 14 side, and the person image 34 and the person identification information 35 are near infrared rays according to the observation direction as described above.
  • the background 31 of the person image 34 see FIG.
  • the laminated body 1 can be produced by the above method.
  • the authenticity of the laminated body 1 can be determined. Specifically, a person identified by a person image 2 that can be recognized as a visible light image 2, a person identification information 3 (these can also be recognized as a near-infrared image), a person image 34 that can be recognized as a near-infrared image, and person identification information.
  • a person identified by a person image 2 that can be recognized as a visible light image 2 a person identification information 3 (these can also be recognized as a near-infrared image)
  • a person image 34 that can be recognized as a near-infrared image
  • person identification information When the person specified by 35 matches, it can be determined that the laminated body 1 is genuine as an identification card or the like, and the person image 2 and the person identification information 3 which can be recognized as a visible light image (these are).
  • the laminated body 1 is an identification card. It can be determined that the image is not genuine (it is a fake).
  • FIG. 27 is a diagram showing an observation image (visible light image) of the front surface of the laminated body according to the sixth embodiment of the first aspect of the present invention under visible light
  • FIG. 28 is a view showing an observation image (visible light image) of the front surface under visible light
  • FIG. 28 is a view showing the first aspect of the present invention.
  • the figure which shows the observation image (near-infrared image) of the front surface of the laminated body in 6th Embodiment by a near-infrared camera note that the outer shape of the laminated body is drawn for the purpose of making the figure easy to see. The same applies to FIGS.
  • a diagram conceptually showing (viewed from below) on the paper surface each layer is drawn separately to show the layer structure. Also, a colored ink layer (or a fluorescent ink layer) on the front surface side.
  • the hologram layer) 12 is not exactly cut by the AA'line, but is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure).
  • the visible light image on the back surface of the laminated body of FIG. 27 is the same as that obtained by removing the mark 8 from the visible light image of FIG. 3, and the near-infrared image of the back surface of the laminated body of FIG. Similar to an infrared image. As shown in FIG.
  • the laminate of the sixth embodiment does not have the laser coloring layer, but the person image 37 and the person identification information 38 as visible light information are used as the colored ink layer, the fluorescent ink layer, or the hologram layer 39. By forming it, it can be used for authenticity determination which is substantially the same as that of the laminated body of the first embodiment.
  • the person image 37 and the person identification information 38 it is preferable to use a printer capable of variable printing such as inkjet, toner, ribbon transfer, etc., rather than ordinary offset printing or silk printing.
  • the laminate may be formed and then printed on the front surface. In that case, it is preferable to apply OP varnish to protect the print information.
  • a colored ink layer 39 (person image 37, person identification information 38) and a colored ink layer 12 (mark 4) are formed by printing using colored ink on the oversheet layer 14.
  • a portion where the window member 5 should be formed is cut out, and the above-mentioned window member 5 is fitted into the space created by the cutout.
  • the above-mentioned layers and the oversheet layer 15 are laminated in the order shown in FIG. 29 and fused by a press treatment.
  • Laser marking is performed on the window member 5 from the surface (hail noodles) on the oversheet layer 14 side or the surface on the oversheet layer 15 side of the obtained laminate, and a person image 7 is drawn.
  • the laminated body 1 can be produced by the above method.
  • the authenticity of the laminated body 1 can be determined. Specifically, when the person specified by the person image 37 and the person identification information 38 that can be recognized as a visible light image and the person specified by the person image 7 that can be recognized as a near-infrared image match, the stacking is performed. It can be determined that the body 1 is genuine as an identification card or the like, and it is identified by a person image 37 that can be recognized as a visible light image, a person specified by person identification information 38, and a person image 7 that can be recognized as a near-infrared image. If the person does not match, it can be determined that the laminated body 1 is not genuine (a fake) as an identification card or the like.
  • the window member 5 contains a near-infrared absorbing material containing tungsten cesium oxide or hexaborated lanthanum, but the window member 5 containing a near-infrared absorbing material can be used. It is not essential, for example, a near-infrared absorbing ink layer is provided in the clear window by using a clear window made of a solid transparent resin or the like instead of such a window member 5 and having a near-infrared ray transmitting property.
  • a visible light-transmitting near-infrared-absorbing ink containing tungsten cesium oxide or lanthanum hexaboride is used for the first transparent resin sheet that is visible-light-transmitting and near-infrared-transmitting.
  • another transparent resin sheet that transmits visible light and near infrared rays is laminated, fused to each other by press processing, and cut out in a window shape to absorb near infrared rays in the middle layer.
  • a clear window provided with an ink layer can be produced.
  • the thickness of the first transparent resin sheet and the second transparent resin sheet in the stacking direction may be the same (in this case, near infrared rays).
  • the absorptive ink layer is located in the middle of the clear window), may be different), a near-infrared absorptive ink layer on a clear window that is visible and near-infrared transmissive (in one example, described above).
  • a near-infrared absorptive ink layer on a clear window that is visible and near-infrared transmissive (in one example, described above).
  • a near-infrared absorbing ink layer is formed on the side close to the base material layer 9 of the oversheet layer 14 or 15, aligned with the clear window, and arranged so as to overlap at least a part of the oversheet layer 14 or 15 to prepare a laminate. You may.
  • the window member 5 instead of the window member 5, in one example, PVC (polyvinyl chloride), PET-G (non-crystalline polyester), PC (polypropylene). ), PET (polyethylene terephthalate), PP (polypropylene), and other transparent materials, and the near-infrared absorbing ink layer 41 is printed inside the clear window 40 or on the clear window 40.
  • the layered structure of the laminated body as a modified example obtained by forming (similar to the first embodiment, it is an AA'cross section cut along the AA'line, and each layer is drawn separately.
  • the colored ink layer (or fluorescent ink layer, hologram layer) 12 on the front surface side and the colored ink layer (or fluorescent ink layer, hologram layer) 13 on the back surface side are not accurately cut by the AA'line.
  • the layer structure is drawn for the purpose of making it easy to understand. The same applies to other figures showing the layer structure) are conceptually shown in FIGS. 30 and 31.
  • the person image 7 is drawn by performing laser marking on the window member 5, but in the modified examples of FIGS. 30 and 31, laser marking is applied to the near infrared ray absorbing ink layer 41. By doing so and drawing the person image 7, it is possible to produce a laminated body as a modified example that can be used for authenticity determination similar to the laminated body of the first embodiment.
  • an ink composition containing cesium tungsten oxide or an ink composition containing hexaborate lanthanum can be used.
  • an ink containing cesium tungsten oxide represented by the chemical formula (general formula) Cs x W y O z can be used (x, y, z are positive real numbers, respectively). ..
  • an ink containing fine particles represented by Cs 0.33 WO 3 having a hexagonal structure described in Patent Document 8 Patent No. 6160830
  • Patent Document 8 Patent No. 6160830
  • an ink containing fine particles represented by the chemical formula LaB 6 can be used as the lanthanum hexaboride-containing ink composition.
  • Near-infrared absorbing inks include dispersants, monomers, synthetic resins, auxiliaries and the like, in addition to tungsten cesium oxide or lanthanum hexaboride.
  • the content of tungsten cesium oxide in the cesium tungsten oxide-containing ink is arbitrary, but in one example, it has good characteristics at a content of 0.5% by weight (weight%) to 6% by weight in the examples described later. Shown.
  • the content of lanthanum hexaboride in the lanthanum hexaboride-containing ink is also arbitrary, and in one example, it may be 0.05% by weight (% by weight) to 6% by weight, but at a content of 0.3% by weight. It will be shown in the examples below that it has good properties. Even when a near-infrared absorbing ink containing both tungsten cesium oxide and lanthanum hexaboride is used, the respective contents of tungsten cesium oxide and lanthanum hexaboride are similarly arbitrary. In any case, the preferable content rate can be changed depending on the print density (filling amount) and the like.
  • the “content of tungsten cesium oxide (% by weight)" in the near-infrared absorbing ink is the ratio of the weight of tungsten cesium oxide contained in the ink to the total weight of the ink.
  • Content of tungsten cesium oxide in the ink (% by weight) ⁇ (weight of tungsten cesium oxide) / (weight of the entire ink) ⁇ x 100 Represented by.
  • the "content rate (% by weight) of lanthanum hexaboride” in the near-infrared absorbing ink is the ratio of the weight of lanthanum hexaboride contained in the ink to the total weight of the ink.
  • Content of lanthanum hexaboride in ink (% by weight) ⁇ (weight of lanthanum hexaboride) / (weight of total ink) ⁇ x 100 Represented by.
  • the colored ink layer 12 (mark 4) is formed by printing with colored ink on the oversheet layer 14, and the colored ink layer 13 (mark 8) is formed by printing with colored ink on the oversheet layer 15. .. (2-1)
  • printing is performed on the first transparent resin sheet using a near-infrared absorbing ink
  • another second transparent resin sheet is laminated, and the windows are fused to each other by a press process.
  • window members (40A, 40B, 41) including a near-infrared absorbing ink layer in the middle layer can be produced (in the case of FIG.
  • the near-infrared absorbing ink layer 41 is formed by printing using the near-infrared absorbing ink on the transparent material, and is cut out in the shape of the clear window 40 (in the case of FIG. 31).
  • the window member (40A, 40B, 41) or the clear window 40 is placed in a temporarily fixed state. Cut out the part to be formed.
  • the window member (40A, 40B, 41) or the clear window 40 on which the near-infrared absorbing ink is printed is fitted into the space created by cutting out as described above.
  • Each of the above layers is laminated in the order shown in FIG. 30 or FIG.
  • Laser marking is performed on the laser coloring layer 10 from the surface of the obtained laminate on the oversheet layer 14 side, and a person image 2 and a person identification information 3 are drawn.
  • Laser marking is performed on the near-infrared absorbing ink layer 41 from the surface (hail) on the oversheet layer 14 side or the surface on the oversheet layer 15 side of the laminated body, and a person image 7 is drawn.
  • the laminated body 1 can be produced by the above method.
  • the authenticity of the laminated body 1 can be determined.
  • a person image 2 and a person identification information 3 (these can also be recognized as a near-infrared image) that can be recognized as a visible light image (including an image obtained by viewing with the naked eye. The same applies to other embodiments).
  • the person specified by and the person specified by the person image 7 that can be recognized as a near-infrared image match, it can be determined that the laminated body 1 is genuine as an identification card or the like.
  • the clear window 40 is used instead of the window member 5, and the near-infrared absorbing ink layer 41 is placed on the clear window 40 (FIG. 31) or in the middle layer thereof (FIG. 30). It is possible to carry out as a modification example after making a modification of providing.
  • FIG. 32 is a diagram schematically showing the configuration of a laser marker device for performing laser marking (drawing, printing, etc.) described so far.
  • the laser marker device 42 includes a control unit 43, a storage unit 44, a drive (scanning) unit 45, a laser light irradiation unit 46, and the like. While the head of the laser light irradiating unit 46 is driven by the driving unit 45, the near infrared laser light is irradiated from the head to the window member 5, the near infrared absorbing layer, and the laser coloring layer 10 (may be the laser coloring layer 11).
  • the above-mentioned laser marking is performed on the window member 5, the near-infrared absorbing layer (near-infrared absorbing ink layer 41), or the laser coloring layer 10 (which may be the laser coloring layer 11).
  • a control unit 43 provided with various control circuits such as a CPU or an embedded control circuit (a separate computer outside the laser marker device 42 serves as the control unit 43).
  • the drive unit 45 which is a drive device including a motor and the like, is controlled by a function, and is directed toward the window member 5, the near-infrared absorbing ink layer 41, or the laser coloring layers 10 and 11 as described above.
  • the laser light irradiating unit 46 While driving the head of the laser light irradiating unit 46 (moving (scanning) the head), the laser light irradiating unit 46 (in one example, an Nd: YAG laser which is a device for generating laser light having a laser wavelength: 1064 nm) is used.
  • a laser light irradiator equipped with various devices such as a head for irradiating a laser beam as a target.
  • Near-infrared laser light near red
  • the storage unit 44 including a storage device such as a semiconductor memory or a magnetic disk is for the control unit 43 to appropriately read and use characters, images, etc.
  • the laser marker device 42 draws characters, images, and the like stored in the storage unit 44 on the window member, the near-infrared absorbing layer, or the laser coloring layer. Since there are many known laser marker devices, they will not be described in more detail here.
  • the obtained printed matter was used as a laminate of Comparative Example 1, and was photographed by an infrared visualization device VSC8000 (manufactured by Forester and Freeman) with a filter for cutting light having a wavelength of 925 nm or less attached to the camera lens of the device. ..
  • Example 1 A dispersion containing tungsten cesium oxide Cs 0.33 WO 3 and an ink medium similar to Comparative Example 1 containing a monomer, a synthetic resin, and other non-infrared absorbing materials, and the weight of tungsten cesium oxide and all other components. By mixing so that the ratio was 2:98, an ink having a content of tungsten cesium oxide of 2% by weight was prepared. Using the cesium tungsten oxide-containing ink thus produced, printing is performed on a part of the wood-free paper as the base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). gone.
  • offset printing aptitude tester IGT C1 manufactured by IGT Testing Systems
  • the obtained printed matter was used as the laminate of Example 1, and was photographed by an infrared visualization device VSC8000 (manufactured by Forester and Freeman) with a filter for cutting light having a wavelength of 925 nm or less attached to the camera lens of the device. ..
  • the "thickness” is the thickness of the itterbium oxide-containing ink layer or the cesium tungsten oxide-containing ink layer formed by offset printing, but these are not measured values and are used in offset printing. It is a reference value assuming a typical film thickness to be formed.
  • the film thickness formed by offset printing in each of the examples described later is also estimated to be about 1 ⁇ m to about 3 ⁇ m. It should be noted that the experiments were conducted under the same conditions such as the print density for all the examples of the first aspect in the present specification, and it is considered that the film thickness is theoretically the same.
  • offset printing was performed on various base sheets using a near-infrared absorbing ink having a cesium tungsten oxide (Cs 0.33 WO 3 ) content (content rate) of 2% by weight, and each printed matter produced was printed.
  • laser printing was performed by a laser marker device, and the reflectance of electromagnetic waves in the visible light to near-infrared wavelength range in the printed portion and the non-printed portion was measured.
  • the "reflectivity" in the following examples is the ratio of the intensity of the reflected light when the irradiated light is reflected on the surface of the printed matter, as in the case of the first embodiment, and is a reference base material surface (?
  • Reflectance (%) of the target portion (target surface) ⁇ (intensity of reflected light from the target portion (target surface)) / (intensity of reflected light from the reference portion (reference surface)) ⁇ ⁇ 100
  • Example 2 By mixing the dispersion liquid containing tungsten cesium oxide Cs 0.33 WO 3 with monomers, synthetic resins, auxiliaries, etc. so that the weight ratio of tungsten cesium oxide and all other components is 2:98. , An ink having a cesium tungsten oxide content of 2% by weight was prepared. Using the cesium tungsten oxide-containing ink thus produced, printing was performed on a PC (polycarbonate) sheet as a base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). ..
  • PC polycarbonate
  • the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm on the printed surface before laser printing was measured by the JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (Japan). It was measured using (manufactured by Spectroscopy Co., Ltd.). Furthermore, as a laser marker device, Was used to perform laser printing on the printed surface with laser light from an Nd: YAG laser having a wavelength of 1064 nm.
  • the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm of the laser-printed portion was measured using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation).
  • Example 3 By mixing the dispersion liquid containing tungsten cesium oxide Cs 0.33 WO 3 with monomers, synthetic resins, auxiliaries, etc. so that the weight ratio of tungsten cesium oxide and all other components is 2:98. , An ink having a cesium tungsten oxide content of 2% by weight was prepared. Using the cesium tungsten oxide-containing ink thus produced, printing is performed on a PET-G (copolyester) sheet as a base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). Was done.
  • PET-G copolyester
  • the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm on the printed surface before laser printing was measured by the JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (Japan). It was measured using (manufactured by Spectroscopy Co., Ltd.). Furthermore, as a laser marker device, Was used to perform laser printing on the printed surface with laser light from an Nd: YAG laser having a wavelength of 1064 nm.
  • the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm of the laser-printed portion was measured using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation).
  • Example 4 By mixing the dispersion liquid containing tungsten cesium oxide Cs 0.33 WO 3 with monomers, synthetic resins, auxiliaries, etc. so that the weight ratio of tungsten cesium oxide and all other components is 2:98. , An ink having a cesium tungsten oxide content of 2% by weight was prepared. Using the cesium tungsten oxide-containing ink thus produced, printing is performed on a PVC (polyvinyl chloride) sheet as a base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). gone.
  • PVC polyvinyl chloride
  • the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm on the printed surface before laser printing was measured by the JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (Japan). It was measured using (manufactured by Spectroscopy Co., Ltd.). Furthermore, as a laser marker device, Was used to perform laser printing on the printed surface with laser light from an Nd: YAG laser having a wavelength of 1064 nm.
  • the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm of the laser-printed portion was measured using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation).
  • FIG. 34 shows the measurement results of the reflectance performed in Examples 2 to 4 above. Further, the result of the reflectance measurement performed in Example 2 is shown in FIG. 35, the result of the reflectance measurement performed in Example 3 is shown in FIG. 36, and the result of the reflectance measurement performed in Example 4 is shown in FIG. 37 is shown by extracting from the graph of FIG. 34, respectively.
  • the value on the horizontal axis is the wavelength (nm) of the electromagnetic wave
  • the value on the vertical axis is the reflectance of the electromagnetic wave having the wavelength indicated by the value on the horizontal axis on the printed surface or the laser-printed portion. (%).
  • the reflectance increases (absorption rate decreases) in the near-infrared region by laser printing regardless of which base material is used.
  • the amount of increase varies depending on the wavelength on the horizontal axis, but in the near-infrared region of 780 nm to 2000 nm, the reflectance is increased by at least 5% or more, approximately 10% to 15%, or more by laser printing. Can be read.
  • the change in reflectance before and after laser printing in the visible light wavelength range is smaller than the change in reflectance before and after laser printing in the near infrared region. It is considered that it is possible to draw characters, images, etc. that are relatively difficult to see depending on a typical laser.
  • Example 5 Tungsten cesium oxide Cs 0.33
  • the weight ratio of the dispersion containing WO 3 to the monomer, synthetic resins, auxiliaries, etc., to tungsten cesium oxide and all other components is: (Example 5) 0.5: 99.5 (Example 6) 1:99 (Example 7) 1.3: 98.7 (Example 8) 2:98 (Example 9) 3:97 (Example 10) 6:94
  • 6 kinds of inks having a cesium tungsten oxide content of 0.5% by weight to 6% by weight were prepared.
  • an offset printing machine offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)
  • IGT C1 offset printing aptitude tester
  • JASCO V-670 ultraviolet-visible near-infrared spectrophotometer JASCO Corporation
  • FIG. 38 shows the measurement results of the reflectance performed in Examples 5 to 10.
  • the value on the horizontal axis is the wavelength (nm) of the electromagnetic wave
  • the value on the vertical axis is the reflectance (%) of the electromagnetic wave having the wavelength indicated by the value on the horizontal axis on the printed surface. It can be seen that, at least in the near-infrared wavelength region, the greater the content of tungsten cesium oxide, the lower the reflectance at the same wavelength. The same tendency can be read in the wavelength range of visible light.
  • the image or the like offset printed using the ink becomes easier to be recognized by using a near-infrared camera or the like, but in this case, visible light reflection Since the rate is low, the possibility of being visually recognizable by the naked eye, a general camera, or the like is increased, and it is considered preferable to select an appropriate cesium tungsten oxide content in consideration of security.
  • offset printing was performed on a PC (polycarbonate) as a base sheet using a near-infrared absorbing ink having a 6-borohydride (LaB 6 ) content (content rate) of 0.3% by weight to produce the product.
  • Laser printing was performed on the printed matter with a laser marker device, and the reflectance of electromagnetic waves in the visible light to near-infrared wavelength range in the printed portion and the non-printed portion was measured. Also in this embodiment, the reflectance is the ratio of the intensity of the reflected light when the irradiated light is reflected on the surface of the printed matter, and is the intensity of the reflected light from the reference base material surface (reference portion).
  • Example 11 The weight ratio of the dispersion liquid containing lanthanum hexaboride (LaB 6 ) to the monomer, synthetic resins, auxiliaries, etc., to the lanthanum hexaboride and all other components was 0.3: 99.7.
  • an ink having a content of lanthanum hexaboride of 0.3% by weight was prepared.
  • printing is performed on a PC (polycarbonate) sheet as a base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). rice field.
  • the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm on the printed surface before laser printing was measured by the JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (Japan). It was measured using (manufactured by Spectroscopy Co., Ltd.). Furthermore, as a laser marker device, Was used to perform laser printing on the printed surface with laser light from an Nd: YAG laser having a wavelength of 1064 nm.
  • the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm of the laser-printed portion was measured using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation).
  • the measurement result of the reflectance performed in the above-mentioned Example 11 is shown in FIG. 39.
  • the value on the horizontal axis is the wavelength (nm) of the electromagnetic wave
  • the value on the vertical axis is the reflectance (%) on the printed surface or the laser-printed portion of the electromagnetic wave having the wavelength indicated by the value on the horizontal axis. Is.
  • the reflectance increases (absorption rate decreases) in the near infrared region by laser printing.
  • the amount of increase varies depending on the wavelength on the horizontal axis, it can be read that the reflectance is increased by laser printing by about 5% to 14% in the near infrared region of 780 nm to 1400 nm.
  • the change in reflectance before and after laser printing in the visible light wavelength range is smaller than the change in reflectance before and after laser printing in the near infrared region of about 800 nm to 1200 nm, so that laser printing Therefore, it is considered that characters, images, etc. that are relatively difficult to see with the naked eye or a general camera can be drawn.
  • the laminate in each of the above embodiments and examples can be used as a printed matter such as an identification card, which has high security in one example.
  • a person image 2 drawn by laser marking a person identification information 3 (visible to the naked eye), and a person image 7 drawn by laser marking on a window member containing a near-infrared absorbing material (infrared camera, etc.).
  • a near-infrared absorbing material infrared camera, etc.
  • the pattern drawn by the laser may be not only a monotonous pattern such as a barcode, a number, or a two-dimensional code, but also a person image or the like as described above.
  • the security of infrared-absorbing printed matter can be further improved by combining with the security technology of micro-display printing such as micro characters.
  • a laminate in which a visually recognizable colored ink layer is printed on a transparent sheet will be described, but instead of the colored ink layer or in addition to the colored ink layer, excitation light is used.
  • excitation light is used.
  • a fluorescent ink layer or a hologram layer by printing or the like using a fluorescent ink composition that emits light when irradiated with (colored ink layer or at least one of fluorescent ink layers).
  • the hologram layer may be formed on the above, or only the hologram layer may be formed), or one or more of these layers may be formed on the base material layer or the laser coloring layer. ..
  • a colored ink layer or the like may not be formed on the base material, the laser coloring layer, or the transparent sheet.
  • the laminated body taught by the second aspect of the present invention may already display information by writing by laser marking or the like (“display” as visible information that can be recognized visually or by taking a picture with a visible light camera, or a near-infrared camera or the like. It may be "display” as near-infrared information that can be recognized by shooting with a camera, or it may be “display” as information that can be recognized in other modes.) It may be a laminated body, or the information is still displayed. It may be a laminate for displaying information or for another purpose.
  • the near-infrared absorbing layer (near-infrared absorbing ink layer) by offset printing, but it is also possible to form it by silk screen printing, gravure printing, flexographic printing, inkjet printing, etc. (microdisplay printing). It doesn't have to be). It is preferable that the colored ink layer, the fluorescent ink layer, the hologram layer, etc. have near-infrared ray transmission that transmits at least a part of the irradiated near-infrared rays. Not required.
  • a laminate in which an oversheet layer (transparent sheet) is formed in the uppermost layer and the lowermost layer of the laminate will be described, but it is not essential to provide these oversheet layers.
  • an oversheet layer transparent sheet
  • Each layer and each element (colored ink layer, fluorescent ink layer, or hologram layer 11A in FIGS. 44 to 50, 59, and 60) and near-infrared absorbing ink are drawn so as to overlap each other in each drawing showing a laminated structure.
  • the layer or the hologram layer 11A and the near-infrared absorbing ink layers 13AA, 13BA, the opening area 10AA, the wrenchular lens 31A in FIGS. 72 and 73, the near-infrared absorbing ink layer 13A, the opening area 10AA, etc.) It may not completely overlap and may partially overlap, or it may not overlap at all. Further, the lenticular lens 31A shown in FIGS.
  • the laser light 72 and 73 may be formed on the back surface side, on both sides of the front and back surfaces, and of course, the lenticular lens may not be formed at all.
  • the laser light is the near-infrared laser light.
  • the laser light that can be used in the second aspect of the present invention is not limited to this.
  • near-infrared laser light from a near-infrared laser (eg, Nd: YAG laser, YVO 4 laser, fiber laser, etc.) as the laser light, but an ultraviolet laser (eg, THG laser, etc.) or visible light. It is also possible to use laser light from a laser (eg, SHG laser, etc.), a far-infrared laser (eg, CO 2 laser), or the like.
  • a near-infrared laser eg, Nd: YAG laser, YVO 4 laser, fiber laser, etc.
  • an ultraviolet laser eg, THG laser, etc.
  • laser light eg, SHG laser, etc.
  • a far-infrared laser eg, CO 2 laser
  • the "near infrared ray” is an electromagnetic wave having a wavelength of 780 nm to 2000 nm (from “JIS Z 8117: 2002 far infrared ray term”).
  • the “near-infrared laser light (near-infrared laser light)” is defined as a laser light having a wavelength within the wavelength range of the near-infrared ray.
  • “visible light” is an electromagnetic wave having a wavelength of 400 nm to 780 nm.
  • near-infrared absorbing property means a property of absorbing at least a part of the irradiated near-infrared ray
  • near-infrared ray transmitting means at least the irradiated near-infrared ray. It means the property of transmitting a part.
  • visible light absorption means the property of absorbing at least a part of the irradiated visible light
  • visible light transmission means the irradiated visible light. It means the property of transmitting at least a part.
  • laser marking on the near-infrared absorbing layer by laser light means that the near-infrared absorbing layer is irradiated with laser light and the near-infrared absorbing layer is exposed to near-infrared light. By changing the absorption characteristics of, it means to draw (or write) some display contents such as patterns, characters, and other information on the near-infrared absorption layer.
  • laser marking" on the laser coloring layer by laser light such as near-infrared laser light means irradiating the laser coloring layer with laser light and irradiating the laser light to visible light and laser for near infrared rays.
  • By changing the absorption characteristics of the color-developing layer it means drawing (or writing) some display content such as a pattern, characters, or other information on the laser color-developing layer. Unless otherwise specified, elements with similar reference numerals indicate similar elements between different drawings.
  • FIG. 40 shows the front surface of the laminated body according to the first embodiment of the second embodiment of the present invention by visible light (in FIG. 44, the outermost surface on the side of the oversheet layer 14A. Also in other drawings. It is a figure which shows the observation image (visible light image) of the same.
  • the laminated body 1A is a printed matter that identifies an individual such as an identification card, but the present invention is not limited to this, and credit cards, cash cards and other cards, banknotes, etc.
  • the laminate 1A can be produced.
  • a laser coloring layer 10A is fused on the base material layer 9A (see FIG.
  • a person image 2A and a person identification information 3A are drawn by laser marking that irradiates the laser coloring layer 10A with near-infrared laser light (these are the laser coloring layer 16A on the back surface side as shown in FIG. 50 described later). May be drawn on the back surface side of the laminated body 1A by laser marking that irradiates the laser coloring layer 16A with near-infrared laser light).
  • the person image 2A is drawn by irradiating a near-infrared laser beam on the laser color-developing layer 10A so as to draw a person by laser marking.
  • the person identification information 3A is drawn by irradiating a near-infrared laser beam so as to write the person identification information (name, personal identification number, etc.) on the laser coloring layer 10A by laser marking. Further, as shown in FIG. 44 described later, UV SOYBI SG yellow (manufactured by DIC graphics), UV SOYBI SG red (manufactured by DIC graphics), and UV SOYBI SG indigo (manufactured by DIC graphics) are placed on the oversheet layer 14A.
  • UV 161 yellow S (manufactured by T & K TOKA), UV 161 red S (manufactured by T & K TOKA), UV 161 indigo S (manufactured by T & K TOKA), etc.
  • the mark 4A is printed by using (colored ink layer 11A in FIG. 44).
  • FIG. 41 is a diagram showing an observation image (near-infrared image) of the front surface of the laminated body according to the first embodiment of the second embodiment of the present invention by a near-infrared camera (note that the laminated body is for the purpose of making the figure easier to see.
  • the outer shape is drawn.
  • the frame (broken line) of the opening region does not appear as a near-infrared image, but is shown for convenience. The same applies to other figures).
  • Such an observation image can be obtained by observing with a near-infrared camera or the like.
  • the person image 2A and the person identification information 3A drawn by laser marking on the laser coloring layer 10A have absorption to visible light and near infrared rays, they can be recognized not only by visible light but also by a near infrared camera.
  • the mark 4A is formed by printing using a colored ink that transmits near-infrared rays, it is unrecognizable (or at least difficult to recognize) by a near-infrared camera.
  • the printed image 5A is on the substrate layer 9A or on the base material layer 9A using a near-infrared absorbing ink containing at least one of tungsten cesium oxide and hexaborosilicate lanthanum, which are near-infrared absorbing materials. It is formed by printing on an oversheet layer 14A (see FIG. 44) (near-infrared absorbing ink layer 13A).
  • an oversheet layer 14A see FIG. 44
  • near-infrared absorbing ink layer 13A near-infrared absorbing ink layer 13A.
  • the near-infrared absorbing layer 13A located in the opening region 10AA (see FIG. 44. In this case, at least a part of the near-infrared absorbing ink layer 13A enters the opening region 10AA).
  • the opening region 10AA and the near-infrared absorbing layer 13A overlap at least partially (see FIG. 46, etc. described later.
  • at least a part of the colored ink layer 11A enters the opening region 10AA, and the near-infrared ray is there.
  • the absorbent ink layers 13A overlap at least partially).
  • the near-infrared absorbing ink composition containing tungsten cesium oxide or lanthanum hexaboride has an absorption rate for near-infrared rays in at least a predetermined wavelength range by irradiating it with near-infrared laser light.
  • Has the property of decreasing (increasing reflectance), and characters and images (pictures) are applied to the near-infrared absorbing ink layer formed by printing using such a near-infrared absorbing ink composition.
  • the near-infrared absorption characteristics of the drawn part change, so an infrared camera or the like is used for the near-infrared absorbing ink layer. Characters, images, etc. that can be recognized will be formed.
  • the person image 6A is drawn by irradiating a near-infrared laser beam on the printed image 5A so as to draw a person by laser marking.
  • the person identification information 7A is drawn by irradiating the printed image 5A with near-infrared laser light so as to write the person identification information (name, personal identification number, etc.) by laser marking.
  • an ink containing cesium tungsten oxide represented by the chemical formula (general formula) Cs x W y O z can be used (x, y, z are positive real numbers, respectively). ..
  • an ink containing fine particles represented by Cs 0.33 WO 3 having a hexagonal structure described in Patent Document 8 (Patent No. 6160830) can be used.
  • an ink containing fine particles represented by the chemical formula LaB 6 can be used as the lanthanum hexaboride-containing ink composition.
  • Near-infrared absorbing inks include dispersants, monomers, synthetic resins, auxiliaries and the like, in addition to tungsten cesium oxide or lanthanum hexaboride.
  • the content of tungsten cesium oxide in the cesium tungsten oxide-containing ink is arbitrary, but in one example, it has good characteristics at a content of 0.5% by weight (weight%) to 6% by weight in the examples described later. Shown.
  • the content of lanthanum hexaboride in the lanthanum hexaboride-containing ink is also arbitrary, and in one example, it may be 0.05% by weight (% by weight) to 6% by weight, but at a content of 0.3% by weight.
  • the preferable content rate can be changed depending on the print density (filling amount).
  • the "content of tungsten cesium oxide (% by weight)" referred to here is the ratio of the weight of tungsten cesium oxide contained in the ink to the total weight of the ink.
  • content rate of lanthanum hexaboride (% by weight) is the ratio of the weight of lanthanum hexaboride contained in the ink to the total weight of the ink.
  • Content of lanthanum hexaboride in ink (% by weight) ⁇ (weight of lanthanum hexaboride) / (weight of total ink) ⁇ x 100 Represented by.
  • FIG. 42 is a back surface of the laminate according to the first embodiment of the second embodiment of the present invention under visible light (in FIG. 40, a surface that can be seen by turning the laminate 1A around the AX axis and turning it over. It is a figure which shows the observation image (visible light image) of the middle, which is the outermost surface on the side of the oversheet layer 15A, and also in other embodiments.
  • Mark 8A is printed on the back surface of the base material layer 9A using a colored ink that transmits near infrared rays (colored ink that absorbs visible light) (colored ink layer 12A in FIG. 44).
  • FIG. 43 is a diagram showing an image (near-infrared image) of the back surface of the laminated body according to the first embodiment of the second embodiment of the present invention observed by a near-infrared camera (note that the outer shape of the laminated body is drawn for the purpose of making the figure easier to see. It is included. The same applies to other figures.) Since the mark 8A is formed by printing using a colored ink that transmits near-infrared rays, it cannot be recognized (or at least is difficult to recognize) by a near-infrared camera.
  • FIG. 44 shows an example of a layered structure when the cross section of the AA'cross section of the laminate shown in FIG. 40 is cut along the AA' line in FIG. 40 (viewed from below in the paper surface of FIG. 40). It is a diagram conceptually showing (.) (Each layer is drawn separately to show the layer structure).
  • the colored ink layer 11A (or the fluorescent ink layer or the hologram layer. A layer in which any two or more of these three are combined may be used. The same applies to other examples), the near-infrared absorbing ink layer 13A, and the opening.
  • the stacking order of the regions 10AA is arbitrary (see FIGS. 45 to 49), and as shown in FIG.
  • the laser coloring layer 16A may be provided on the back surface side of the base material layer 9A (also in this case, each layer and the opening region).
  • the stacking order of each layer and each opening region is arbitrary even when there are a plurality of opening regions and near-infrared absorbing ink layers as shown in FIGS. 66 and 68 described later. Other embodiments The same applies to).
  • the base material layer 9A is made of materials such as PVC (polyvinyl chloride), PET-G (copolyester), PC (polyester), PET (polyethylene terephthalate), PP (polypropylene), and is visible light and near. It is formed of a sheet-like base material (white sheet) having low infrared transmission.
  • the base material layer 9A may be a paper base material (high quality paper, cord paper, etc.) (even when the oversheet layers 14A and 15A are used, the base material layer is a base material layer. It is possible to use the above paper base material as 9A).
  • the laser coloring layer 10A is a transparent sheet-like layer containing a laser coloring agent (may be a transparent resin or the like similar to the oversheet layers 14A and 15A), and is fused to the base material layer 9A by pressing. Laser.
  • the laser coloring layer 10A has a property of developing color when exposed to laser light. Since the portion of the laser color-developing layer 10A exposed to the laser light changes its absorbency to visible light and near-infrared rays (in one example, the visible light absorption and the near-infrared ray absorption increase, so that the infrared rays can be visually observed. Even when observed with a camera, it looks darker than the other parts.) The part can be recognized visually and by using a near-infrared camera.
  • colorants such as dyes and pigments, clays and the like can be used, and specifically, yellow iron oxide and inorganic lead.
  • mica, antimonated mica, tin + antimonated mica, tin + antimon + titanium oxide coated mica, etc. can be used (Patent No. 6167803, paragraph [0043]. ).
  • the bismuth compound is not particularly limited, but for example, bismuth oxide, bismuth nitrate, bismuth oxynitrate, and the like.
  • Bismuth nitrate, bismuth halide such as bismuth chloride, bismuth oxychloride, bismuth sulfate, bismuth acetate, bismuth citrate, bismuth hydroxide, bismuth titanate, etc.
  • bismuth nitrate and bismuth hydroxide can be preferably used, and the bismuth-based compound may contain one or more compounds, and at least a bismuth-based compound as an example is included.
  • a material other than the bismuth compound may be used in combination as long as it is a color-developing material that develops color by laser light (paragraph [0044] in the specification of Patent No. 6167803).
  • a color-developing material containing at least a bismuth-based compound as an example when used, a color-developing material that develops color by laser light and / or an inorganic compound can be used to increase the color-developing efficiency.
  • the use of composite oxides or metal salts or one or more compounds thereof allows the inorganic compounds to function as color-developing materials in some cases, even when irradiated with low-power laser light, and / or the inorganic compounds. It is preferable to add an inorganic compound because it functions to increase the heat generation efficiency to assist the color development of the coloring material or to increase the whiteness of the white ink containing the coloring material and the white pigment (Patent No. 6167803). In the specification, paragraph [0045]).
  • the laser coloring layer 10A is provided with an opening region 10AA by cutting out a part thereof (FIG. 44).
  • a broken line (the frame of the broken line is not recognized as a near-infrared image, but is shown as an auxiliary to show the in-plane shape of the opening region 10AA. The same applies to other figures).
  • An oversheet layer (transparent sheet) 14A having visible light transmission and near-infrared ray transmission is formed on the uppermost layer on the front side of the laminated body 1A, and visible light is transmitted on the lowermost layer on the back side of the laminated body 1A.
  • An oversheet layer (transparent sheet) 15A having properties and near-infrared ray transmission is formed.
  • two transparent PCs (polycarbonates) having a thickness of about 0.05 mm to 0.2 mm are prepared, and the oversheet layers 14A and 15A are combined with the bottom layer of the laminated body 1A before forming the oversheet layers 14A and 15A.
  • the laminated body 1A can be formed by laminating one sheet each on the uppermost layer and fusing them by applying heat and pressure.
  • the oversheet layer is prepared by using a material such as PVC (polyvinyl chloride), PET-G (copolyester), PC (polycarbonate), PET (polyethylene terephthalate), PP (polypropylene), as in the case of the base material layer. good.
  • PVC polyvinyl chloride
  • PET-G copolyester
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PP polypropylene
  • the colored ink layer 12A is formed on the base material layer 9A
  • the colored ink layer 12A is formed by printing on the base material layer 9A in advance with colored ink before laminating the oversheet layer 15A.
  • the print layer is formed on the oversheet layer 14A (and the oversheet layer 15A)
  • the printed information is printed inside the laminated body, and there is also a feature that it is more difficult to falsify.
  • the laminated body 1A before forming the oversheet layers 14A and 15A is laminated from above and below with two arbitrary transparent films (each film, the base material layer 9A, and laser coloring, if necessary).
  • Printing with colored ink or the like is performed on any of the layers 10A in advance), and the laminate 1A may be formed by adhering the layers with an adhesive.
  • the laser coloring layer 16A is provided as shown in FIG. 50, it may be formed in the same manner as the laser coloring layer 10A including fusion and the like, and printing or the like may be performed on the laser coloring layer 16A.
  • the oversheet layers 14A and 15A it is not essential to form the oversheet layers 14A and 15A, and only one of the oversheet layers 14A and 15A may be formed, or the laminated body may be formed without forming either of the oversheet layers. 1A may be produced.
  • the laser marking on the laser coloring layer 10A is performed from the uppermost layer side (the side of the oversheet layer 14A) of the laminated body 1A.
  • the laser coloring layer 16A is provided as shown in FIG. 50 and the laser coloring layer 16A is laser-marked, such laser marking is performed from the lowermost layer side (oversheet layer 15A side) of the laminated body 1A. ..
  • oversheet layer 14A may be on the laser coloring layer 10A, or on the base material layer 9A, or on the near-infrared absorbing ink layer 13A. The same applies to the fluorescent ink layer 11A and the hologram layer 11A).
  • a colored ink layer 11A is formed on the surface. As described above, the colored ink layer 11A is formed by printing the mark 4A on the oversheet layer 14A (or on the laser coloring layer 10A or the like) using a colored ink that transmits near infrared rays.
  • the method for forming the colored ink layer 11A is arbitrary, and for example, a printing method such as letterpress printing, offset printing, silk screen printing, gravure printing, flexographic printing, inkjet printing, or any other forming method can be used.
  • a printing method such as letterpress printing, offset printing, silk screen printing, gravure printing, flexographic printing, inkjet printing, or any other forming method can be used.
  • UV fluorescent medium B manufactured by T & K TOKA
  • UV fluorescent medium Y manufactured by T & K TOKA
  • UV fluorescent medium R manufactured by T & K TOKA
  • the fluorescent ink layer 11A may be formed by using a fluorescent ink that transmits near ultraviolet rays.
  • the fluorescent ink layer 11A can be formed by printing on the oversheet layer 14A or the like using the fluorescent ink composition in the same manner as the colored ink layer 11A, and marks and the like can be formed as in the case of colored ink printing. Can be printed.
  • a near-infrared ray transparent hologram layer 11A such as a transparent hologram may be formed. Even if the colored ink layer 11A, the fluorescent ink layer 11A, and the hologram layer 11A are formed on the front surface of the oversheet layer 14A (the surface opposite to the base material layer 9A), the back surface (base) of the oversheet layer 14A is formed.
  • the back surface of the laser coloring layer 10A base material layer.
  • the near-infrared absorbing ink layer formed on the base material layer 9A regardless of whether it is formed on the surface on the 9A side or on the front surface of the base material layer 9A (the surface on the laser coloring layer 10A side). It may be formed on 13A or may be formed on two or more of these surfaces (not shown appropriately. The same applies to the colored ink layer 12A, the fluorescent ink layer 12A, and the hologram layer 12A).
  • the colored ink layer 11A, the fluorescent ink layer 11A, and the hologram layer 11A do not need to have near-infrared transparency.
  • the layers have been unified as a layer having near-infrared transmissivity.
  • the base material layer 9A may be on the oversheet layer 15A.
  • the colored ink layer 12A (or the fluorescent ink layer, the hologram layer, etc.) is used.
  • the method may be the same as the colored ink layer 11A, the fluorescent ink layer 11A, and the hologram layer 11A. Two or more of these layers may be formed. The same applies to other descriptions).
  • the colored ink layer 12A, the fluorescent ink layer 12A, and the hologram layer 12A are formed on the front surface of the oversheet layer 15A (the surface opposite to the base material layer 9A), the back surface of the oversheet layer 15A (the surface opposite to the base material layer 9A), respectively. It may be formed on the surface of the base material layer 9A side) or may be formed on two or more of these surfaces (not shown as appropriate).
  • FIG. 45 to 49 show, as a modification of the layer structure of FIG. 44, the layer structure when the cross section of the layer structure shown in FIG. 40 is cut along the AA' line in FIG. 40 and viewed. It is a figure conceptually showing an example (viewed from the bottom in the paper of FIG. 40) (each layer is drawn separately to show the layer structure) (examples 1 to 5 of changing the stacking order).
  • FIG. 50 shows an example of the layer structure when the cross section of the layer structure shown in FIG. 40 is cut along the AA' line in FIG. 40 as a modification of the layer structure of FIG. 44 (FIG. 50).
  • each layer is drawn separately to show a layer structure
  • a laser color-developing layer is added on the back surface side.
  • the stacking order of each layer and element is arbitrary, and other layers and elements such as the laser coloring layer 16A may be further provided with respect to the layer structure of FIG. 44 (in the layer structure of FIG. 44). It is not essential to have all the layers and elements shown).
  • a colored ink layer 11A (mark 4A) was formed by printing with a colored ink on the oversheet layer 14A, and a near-infrared absorbing ink layer 13A (printed image 5A) was formed by printing with a near-infrared absorbing ink.
  • a colored ink layer 12A (mark 8A) is formed by printing with a colored ink on the base material layer 9A.
  • the opening region 10AA is cut out and formed in the laser coloring layer 10A.
  • an oversheet layer 15A is also prepared, and the layers are laminated in the order shown in FIG.
  • the printed image 5A overlaps at least a part of the opening region 10AA of the laser coloring layer 10A.
  • at least a part of the near-infrared absorbing ink layer 13A enters the opening region 10AA
  • Laser marking is performed on the laser coloring layer 10A from the surface of the obtained laminate on the oversheet layer 14A side, and a person image 2A and a person identification information 3A are drawn.
  • Laser marking is performed on the printed image 5A (near-infrared absorbing ink layer 13A) from the surface of the laminated body on the oversheet layer 14A side, and a person image 6A and a person identification information 7A are drawn.
  • the laminated body 1A can be produced by the above method.
  • the laminated body 1A is produced with the layer structure as a modification of FIGS. 45 to 50, basically the same procedure is used except that the stacking order is changed and the additional laser coloring layer 16A is also laminated. Can be made.
  • the authenticity of the laminated body 1A can be determined. Specifically, a person image 2A and a person identification information 3A that can be recognized as a visible light image (including an image obtained by viewing with the naked eye; the same applies to other embodiments) and a person identification information 3A (these can also be recognized as a near-infrared image). If the person specified by) matches the person image 6A that can be recognized as a near-infrared image and the person specified by the person identification information 7A, the laminated body 1A is a genuine identification card or the like.
  • the laminated body 1A is not genuine (a fake) as an identification card or the like.
  • the judgment may be made by a person using a (near) infrared camera or the like, or a visible light image and a near infrared image are acquired by an arbitrary optical analysis device and both images are transferred to a computer using an arbitrary data transfer device or the like.
  • It may be performed by comparing and judging both images by executing a program for image recognition / comparison or the like by taking in the above and executing a program or the like for image recognition / comparison by a computer processor (the same applies to other embodiments and the like).
  • FIG. 51 is a diagram showing micro characters that can be seen when a part of a micro-display printing (offset printing, etc.) image using near-infrared absorbing ink shown in FIG. 41 is enlarged (near-infrared image).
  • the printed image 5A includes the micro character 18A (the micro character 18A is omitted in FIG. 2). Etc., minute display is omitted.)
  • the printed image 5 may be printed including a security design such as a colored pattern, a micro symbol, and a relief pattern, or may be printed in combination thereof.
  • Micro characters and other micro-displays that are difficult to reproduce with a copier or the like displays of a size that cannot be seen with the naked eye.
  • micro characters for example, micro characters, symbols, and figures may be used.
  • the term "micro character” is not limited to characters in ⁇ m units (characters having a diameter, width, or height of less than 1 mm), and characters having a diameter, width, or height of 1 mm or more are "micro characters". The same applies to the size of other micro-displays.)
  • micro-display printing By printing (micro-display printing), the anti-counterfeiting effect of the laminated body 1A can be enhanced. In particular, if the line width, character size micro characters, and the like that are difficult to reproduce by laser marking (laser printing) described later are included, the anti-counterfeiting effect of the laminated body 1A becomes extremely high.
  • FIG. 52 is a diagram showing micro characters that can be seen when a part of a printed image by a near-infrared absorbing ink and a part of a person image generated by laser marking (laser drawing) shown in FIG. 41 are enlarged.
  • the micro characters 19A are micro characters formed during printing (micro-display printing) of the printed image 5A using the near-infrared absorbing ink, and a part of the micro characters 19A remains even after the person image 6A is laser-marked.
  • the micro characters 20A are micro characters formed during printing of the printed image 5A using the near-infrared absorbing ink.
  • the printed image 5A has at least one of micro characters, colored patterns, fine symbols, relief patterns, etc.
  • the maximum diameter, maximum width, or maximum height can be 1000 ⁇ m (micrometers)) to form the whole, and therefore the person image 6A, person identification information 7A, etc. drawn by laser marking, etc. If you magnify the pattern with a near-infrared camera or the like, it will be a security design. By adopting such a configuration, the effect of preventing falsification and counterfeiting of the laminated body 1A can be further improved.
  • FIG. 53 is a diagram (near infrared image) showing micro characters generated by laser marking (laser printing) on the front surface of the laminate according to the second embodiment of the second embodiment of the present invention.
  • the layer structure of the laminated body 1A of FIG. 53 may be the same as that of the first embodiment (see FIGS. 44 to 50), and micro characters 21A are written into the near-infrared absorbing ink layer 13A by laser marking. Only the point where the person identification information 7A is not laser-marked as shown in FIG. 41 (however, the content indicated by the micro character 21A may be the same as the content indicated by the person identification information 7A in FIG. 41). Is different from the first embodiment.
  • FIG. 54 is a diagram showing a near-infrared image of the front surface of the laminated body according to the third embodiment of the second embodiment of the present invention.
  • the mark 22A is printed by printing on the base material layer 9A using a near-infrared absorbing ink so as to overlap the mark 4A (see FIG. 40) by printing with colored ink.
  • Near-infrared absorbing ink layer 13A the mark 22A may be formed by using a near-infrared absorbing ink mixed with a colored ink. As such, the near-infrared absorbing ink may have other components such as a colored ink.
  • the layer formed by using the ink to which is added is also referred to as a "near-infrared absorbing ink layer" here. The same applies to other embodiments).
  • a person image 23A is drawn by laser marking on the mark 22A.
  • the laminate in the third embodiment is the same as the laminate in the first embodiment, and the layer structure may be the same in both embodiments.
  • FIG. 55 is a diagram showing an observation image (visible light image) of the front surface of the laminated body according to the fourth embodiment of the second embodiment of the present invention by visible light
  • FIG. 56 is a diagram showing an observation image (visible light image) of the front surface of the laminated body of the second embodiment of the present invention.
  • a diagram showing an image (near-infrared image) of the front surface of the laminate according to the fourth embodiment by a near-infrared camera note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see.
  • the frame (broken line) of the region does not appear as a near-infrared image, but is shown for convenience. The same applies to other figures), and FIG.
  • FIG. 57 shows the laminated body according to the fourth embodiment of the second aspect of the present invention.
  • a diagram showing an observation image (visible light image) of the back surface under visible light in FIG. 55, a surface that can be seen by turning over the laminated body by rotating it around the AX axis. The same applies to other embodiments).
  • FIG. 58 is a diagram showing an image (near-infrared image) of the back surface of the laminated body according to the fourth embodiment of the second embodiment of the present invention observed by a near-infrared camera (note that the outer shape of the laminated body is for the purpose of making the figure easier to see). Is drawn in. The same applies to other figures.)
  • FIG. 59 shows an example of a layered structure when the cross section of the laminated body shown in FIG. 55 is cut along the line BB'in FIG. 55 and viewed from the right side (in the paper surface of FIG. 55, viewed from the right).
  • the figure (.) Is conceptually shown (each layer is drawn separately to show the layer structure. Further, the colored ink layer (or fluorescent ink layer, hologram layer) 12A on the back surface side is accurately BB. 'Although it is not cut by a line, it is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure.)
  • FIG. 60 the laminate shown in FIG. 55 is shown in FIG. 55.
  • Each layer is drawn separately.
  • the colored ink layer (or fluorescent ink layer, hologram layer) 12A on the back surface side is not accurately cut by the BB'line, but the purpose is to make the layer structure easy to understand. It is drawn with. The same applies to other figures showing the layer structure.)
  • the base material layers are the first base material layer 26A and the first base material layer 26A. It is composed of two base material layers 27A (the material and the like may be the same as the base material layer 9A. Further, the base material layer 9A shown in FIG. 44 and the like may also be composed of a plurality of layers of sheets. ), A base material intermediate layer is provided as a layer (at least a part) sandwiched between the first base material layer 26A and the second base material layer 27A.
  • the first portion 25A of the base material intermediate layer is located between the first base material layer 26A and the second base material layer 27A, and the second portion 24A of the base material intermediate layer is the first base material layer 26A. It protrudes from between the second base material layer 27A and the second base material layer 27A.
  • the second portion 24A of the base material intermediate layer is located at the end of the laminated body 1A, and this can be used as a binding margin to produce a booklet by sewing.
  • Such a base material intermediate layer is formed by sandwiching (at least a part of) the base material intermediate layer between the first base material layer 26A and the second base material layer 27A and then heat-pressing the first base material layer. It can be provided by fusing to 26A and the second base material layer 27A. It may be provided by adhering the first base material layer 26A and the second base material layer 27A with an adhesive.
  • a sheet made of any material such as paper, resin, cloth, and non-woven fabric can be used, and as an example, it has a network structure as described in International Publication No. 2018/151238. Textiles can be mentioned.
  • a colored ink layer 11A (mark 4A) was formed by printing with a colored ink on the oversheet layer 14A, and a near-infrared absorbing ink layer 13A (printed image 5A) was formed by printing with a near-infrared absorbing ink.
  • a colored ink layer 12A (mark 8A) is formed by printing with a colored ink on the first base material layer 26A.
  • the opening region 10AA is cut out and formed in the laser coloring layer 10A.
  • a second base material layer 27A, a base material intermediate layer (24A, 25A), and an oversheet layer 15A are also prepared, and each layer is laminated in the order shown in FIG. 59 and printed.
  • the image 5A is arranged so as to overlap at least a part of the opening region 10AA of the laser coloring layer 10A (in this case, at least a part of the near-infrared absorbing ink layer 13A enters the opening region 10AA) and is melted by a press process.
  • (4) Laser marking is performed on the laser coloring layer 10A from the surface of the obtained laminate on the oversheet layer 14A side, and a person image 2A and a person identification information 3A are drawn.
  • the laminated body 1A can be produced by the above method.
  • the laminated body 1A is produced with a layered structure as a modified example of FIG. 60 or a modified example in which the laser coloring layer 16A is provided in the same manner as in FIG. It can be manufactured by basically the same procedure except for laminating.
  • FIG. 61 is a diagram (visible light image) showing a booklet produced by using the laminate according to the fourth embodiment of the second embodiment of the present invention
  • FIG. 62 is a fourth embodiment of the second embodiment of the present invention. It is a figure (near-infrared image) which shows the booklet body produced by using the laminated body in.
  • a booklet 100A can be produced by using the laminate 1A as a sheet and binding the second portion 24A of the base material intermediate layer with other sheets 28A, 29A, 30A or the like by sewing machine binding or the like.
  • the authenticity of the laminated body 1A (the authenticity of the booklet 100A) can be determined. Specifically, a person image 2A and a person identification information 3A that can be recognized as a visible light image (including an image obtained by viewing with the naked eye; the same applies to other embodiments) and a person identification information 3A (these can also be recognized as a near-infrared image). If the person specified by (.) Matches the person image 6A that can be recognized as a near-infrared image and the person specified by the person identification information 7A, the laminated body 1A (or booklet 100A) is the identification card.
  • the booklet 100A there is a passport as an example of the booklet 100A), and it can be determined that it is genuine, and it can be recognized as a near-infrared image with a person image 2A that can be recognized as a visible light image and a person identified by person identification information 3A. If the person specified by the person image 6A and the person identification information 7A does not match, the laminated body 1A (or booklet 100A) is not genuine as an identification card or the like (passport or the like as a booklet). It can be determined that it is a fake.
  • FIG. 63 is a diagram showing an observation image (near-infrared image) of the front surface of the laminated body according to the fifth embodiment of the second embodiment of the present invention by a near-infrared camera (note that the laminated body is for the purpose of making the figure easier to see.
  • the outer shape is drawn.
  • the frame (broken line) of the opening region does not appear as a near-infrared image, but is shown for convenience. The same applies to other figures).
  • the broken line indicating the opening region 10AA completely covers the printed image 5A, and the opening region 10AA is larger than the printed image 5A in the plane of FIG. 63.
  • the laminated body 1A of the fifth embodiment may be the same as the laminated body 1A of the first embodiment.
  • FIG. 64 is a diagram showing an observation image (near-infrared image) of the front surface of the laminated body according to the sixth embodiment of the second embodiment of the present invention by a near-infrared camera (note that the laminated body is for the purpose of making the figure easier to see.
  • the outer shape is drawn.
  • the frame (broken line) of the opening region does not appear as a near-infrared image, but is shown for convenience. The same applies to other figures).
  • the broken line indicating the opening region 10AA is completely covered by the printed image 5A, and the opening region 10AA is smaller than the printed image 5A in the plane of FIG. 64.
  • the laminated body 1A of the sixth embodiment may be the same as the laminated body 1A of the first embodiment.
  • FIG. 65 is a diagram showing an observation image (near-infrared image) of the front surface of the laminated body according to the seventh embodiment of the second embodiment of the present invention by a near-infrared camera (note that the laminated body is for the purpose of making the figure easier to see.
  • the outer shape is drawn.
  • the frame (broken line) of the opening region does not appear as a near-infrared image, but is shown for convenience.
  • FIG. 66 is shown in FIG. 65.
  • FIG. 6 is a diagram conceptually showing an example of a layered structure (viewed from the right side in the paper surface of FIG. 65) when the BB'cross section of the laminate cut along the BB' line in FIG.
  • the laser coloring layer 10A is provided with two opening regions (opening regions 10AA and 10BA).
  • the number of opening regions provided by cutting out a part of the laser coloring layer 10A or the like is arbitrary, and two or more opening regions may be provided.
  • the laminated body 1A of the seventh embodiment may be the same as the laminated body 1A of the first embodiment.
  • FIG. 67 is a diagram showing an observation image (near-infrared image) of the front surface of the laminated body according to the eighth embodiment of the second embodiment of the present invention by a near-infrared camera (note that the laminated body is for the purpose of making the figure easier to see.
  • the outer shape is drawn.
  • the frame (broken line) of the opening region does not appear as a near-infrared image, but is shown for convenience.
  • FIG. 68 is shown in FIG. 67.
  • FIG. 6 is a diagram conceptually showing an example of a layered structure (viewed from the right side in the paper surface of FIG.
  • the components of the near-infrared absorbing ink layers 13AA, 13BA may be the same as those of the near-infrared absorbing ink layer 13A).
  • the number of printed images printed by the near-infrared absorbing ink is arbitrary, and two or more printed images may be provided.
  • the laminated body 1A of the eighth embodiment may be the same as the laminated body 1A of the first embodiment (providing two or more opening regions and displaying a printed image with a near-infrared absorbing ink). Two or more may be provided).
  • FIG. 69 is a diagram showing an observation image (visible light image) of the front surface of the laminate according to the ninth embodiment of the second embodiment of the present invention (the lenticular lens is transparent, but the figure is easy to see). It is.).
  • FIG. 70 is a diagram showing a near-infrared image of the front surface when the laminate shown in FIG. 69 is viewed in the direction of arrow C in FIG. 73, which will be described later
  • FIG. 71 is a diagram showing a laminate shown in FIG. 69. It is a figure which shows the near-infrared image of the front surface when the body is seen in the direction of the arrow D in FIG. 73 which will be described later.
  • FIG. 70 is a diagram showing a near-infrared image of the front surface when the body is seen in the direction of the arrow D in FIG. 73 which will be described later.
  • FIG. 70 is a diagram showing a near-infrared image of the front surface when the body is seen in the direction
  • FIG. 72 is an example of a layered structure when the cross section of AA ′ obtained by cutting the laminate shown in FIG. 69 along the AA ′ line in FIG. 69 is viewed (viewed from below in the paper surface of FIG. 69). ) Is conceptually shown (each layer is drawn separately to show the layer structure. Also, the colored ink layer (or fluorescent ink layer, hologram layer) 11A on the front surface side and the colored ink layer on the back surface side are drawn. The ink layer (or fluorescent ink layer, hologram layer) 12A is not cut exactly by the AA'line, but is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure. ). Unlike the first embodiment shown in FIG.
  • the area of the oversheet layer 14A opposite to the near-infrared absorbing ink layer 13A and at least partially overlapping the near-infrared absorbing ink layer 13A in FIG. 72.
  • a lenticular lens 31A is formed on the lens (which is completely overlapped but may be partially overlapped).
  • the layer structure of FIG. 72 may be the same as the layer structure of FIG. 44 or the like except that the lenticular lens 31A is formed.
  • FIG. 73 is an example of a layered structure when the cross section of the laminated body shown in FIG. 69 is cut along the line BB'in FIG. 69 and viewed from the right side (in the paper surface of FIG. 69, viewed from the right).
  • the figure (.) Is conceptually shown (each layer is drawn separately to show the layer structure. Further, the colored ink layer (or fluorescent ink layer, hologram layer) 12A on the back surface side is accurately BB. 'It is not cut by a line, but it is drawn for the purpose of making the layer structure easy to understand.
  • the lenticular lens 31A as an example of the plurality of convex optical element portions has the plurality of convex lens portions (in the paper surface of FIG. 69, in the vertical direction (BB'line)) when viewed from the direction shown in FIG. 73. It has a shape that appears to be lined up (along). In FIG. 73, the convex lens portions of 7 are drawn side by side, but this is a convenient display for simplifying and explaining the structure of the lenticular lens, and in one example, more, for example, 100 lenses.
  • the lenticular lens 31A can be formed to include a degree of convex lens portion.
  • the number of convex lens portions may be reduced, and the lenticular lens 31A can generally be formed so as to include any plurality of convex lens portions.
  • the already produced lenticular lens may be adhered to the oversheet layer 14A with an adhesive or the like, or the lenticular lens 31A functions as a lenticular lens 31A.
  • the oversheet layer 14A may be formed by heat and pressure so as to have a shape to be formed, or a lenticular lens base material may be formed on the oversheet layer 14A by a printing method and fixed by a method such as UV curing. ..
  • FIG. 73 the near-infrared image shown in FIG. 70 can be seen when viewed in the direction of arrow C, and the near-infrared image shown in FIG. 71 can be seen when viewed in the direction of arrow D in FIG. 73.
  • FIG. 73 the near-infrared image shown in FIG. 70 can be seen when viewed in the direction of arrow C, and the near-infrared image shown in FIG. 71 can be seen when viewed in the direction of arrow D in FIG. 73.
  • a printed image 5A is printed on the base material layer 9A using the near-infrared absorbing ink (near-infrared absorbing ink layer 13A) so as to overlap the lenticular lens 31A.
  • the person image 6A shown in FIG. 70 is drawn on the near-infrared absorbing ink layer 13A, and the direction (angle) of arrow D in FIG. 73.
  • the person identification information 7A shown in FIG. 71 is drawn on the near-infrared absorbing ink layer 13A by the laser marking that irradiates the near-infrared laser light with).
  • a person image 6A can be recognized by viewing the layer 13A using a near-infrared camera or the like, and the near-infrared absorbing ink layer 13A is viewed from the direction of arrow D in FIG. 73 using a near-infrared camera or the like.
  • the person identification information 7A can be recognized by looking at it. That is, the latent pattern can be visually recognized by changing the observation angle, and MLI (Multiple Laser Image) of near-infrared absorption is realized.
  • FIG. 74 is a diagram conceptually explaining the principle of lenticular (it does not have to be consistent with the specific configuration described with reference to FIGS. 69 to 73).
  • the near-infrared absorbing ink layer 13A is viewed from the first position P1 through the lenticular lens 31A with an infrared camera or the like, each pattern or the like drawn on the plurality of printing units IM1 is combined to form a person image 6A.
  • the first display (picture) can be recognized.
  • Second display can be recognized.
  • a colored ink layer 11A (mark 4A) was formed by printing with a colored ink on the oversheet layer 14A, and a near-infrared absorbing ink layer 13A (printed image 5A) was formed by printing with a near-infrared absorbing ink.
  • a colored ink layer 12A (mark 8A) is formed by printing with a colored ink on the base material layer 9A.
  • the opening region 10AA is cut out and formed in the laser coloring layer 10A.
  • an oversheet layer 15A is also prepared, and the layers are laminated in the order shown in FIGS.
  • the printed image 5A is at least a part of the opening region 10AA of the laser coloring layer 10A.
  • the near-infrared absorbing ink layer 13A enters the opening region 10AA
  • an uneven press plate capable of forming a lenticular lens.
  • the person image 6A absorbs near-infrared rays.
  • Person identification information 7A is drawn on the near-infrared absorbing ink layer 13A by laser marking that draws on the ink layer 13A and irradiates the near-infrared laser light in the direction (angle) of the arrow D in FIG. 73.
  • the laminated body 1A can be produced by the above method.
  • the laminated body 1A is produced with the layer structure as a modification as shown in FIGS. 45 to 50, it is basically the same except that the stacking order is changed and the additional laser coloring layer 16A is also laminated. It can be produced by the procedure.
  • the authenticity of the laminated body 1A can be determined. Specifically, a person image 2A and a person identification information 3A that can be recognized as a visible light image (including an image obtained by viewing with the naked eye; the same applies to other embodiments) and a person identification information 3A (these can also be recognized as a near-infrared image). If the person specified by) matches the person image 6A that can be recognized as a near-infrared image and the person specified by the person identification information 7A, the laminated body 1A is a genuine identification card or the like.
  • the laminated body 1A is not genuine (a fake) as an identification card or the like.
  • FIG. 75 is a diagram schematically showing the configuration of a laser marker device for performing laser marking (drawing, printing, etc.) described so far.
  • the laser marker device 32A includes a control unit 33A, a storage unit 34A, a drive (scanning) unit 35A, a laser light irradiation unit 36A, and the like. While the head of the laser light irradiation unit 36A is driven by the drive unit 35A, the near-infrared ray absorbing layer (near-infrared ray) is irradiated from the head to the near-infrared absorbing layer or the laser coloring layer.
  • the near-infrared ray absorbing layer near-infrared ray
  • the above-mentioned laser marking is performed on the absorbent ink layers 13A, 13AA, 13BA) or on the laser coloring layer 10A (which may be the laser coloring layer 16A).
  • a control unit 33A provided with various control circuits such as a CPU or an embedded control circuit (a separate computer outside the laser marker device 32A serves as the control unit 33A).
  • the drive unit 35A which is a drive device provided with a motor or the like and is controlled by (can also function), is directed toward the near-infrared absorbing ink layers 13A, 13AA, 13BA, or the laser coloring layers 10A, 16A as described above.
  • the laser light irradiation unit 36A While driving the head of the laser light irradiation unit 36A (moving (scanning) the head), the laser light irradiation unit 36A (in one example, the Nd: YAG laser, which is a device for generating laser light having a laser wavelength of 1064 nm) is used.
  • a laser light irradiator equipped with various devices such as a head for irradiating a laser beam as a target.
  • Near-infrared laser light near-infrared laser beam
  • the storage unit 34A including a storage device such as a semiconductor memory or a magnetic disk is for the control unit 33A to appropriately read and use characters, images, etc.
  • the laser marker device 32A draws characters, images, etc. stored in the storage unit 34A on the near-infrared absorbing layer or the laser coloring layer. Since there are many known laser marker devices, they will not be described in more detail here.
  • the obtained printed matter was used as a laminate of Comparative Example 1, and was photographed by an infrared visualization device VSC8000 (manufactured by Forester and Freeman) with a filter for cutting light having a wavelength of 925 nm or less attached to the camera lens of the device. ..
  • Example 1 A dispersion containing tungsten cesium oxide Cs 0.33 WO 3 and an ink medium similar to Comparative Example 1 containing a monomer, a synthetic resin, and other non-infrared absorbing materials, and the weight of tungsten cesium oxide and all other components. By mixing so that the ratio was 2:98, an ink having a content of tungsten cesium oxide of 2% by weight was prepared. Using the cesium tungsten oxide-containing ink thus produced, printing is performed on a part of the wood-free paper as the base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). gone.
  • offset printing aptitude tester IGT C1 manufactured by IGT Testing Systems
  • the obtained printed matter was used as the laminate of Example 1, and was photographed by an infrared visualization device VSC8000 (manufactured by Forester and Freeman) with a filter for cutting light having a wavelength of 925 nm or less attached to the camera lens of the device. ..
  • the "thickness” is the thickness of the itterbium oxide-containing ink layer or the cesium tungsten oxide-containing ink layer formed by offset printing, but these are not measured values and are used in offset printing. It is a reference value assuming a typical film thickness to be formed.
  • the film thickness formed by offset printing in each of the examples described later is also estimated to be about 1 ⁇ m to about 3 ⁇ m. It should be noted that the experiments were conducted under the same conditions such as the print density for all the examples of the second aspect in the present specification, and it is considered that the film thickness is theoretically the same.
  • offset printing was performed on various base sheets using a near-infrared absorbing ink having a cesium tungsten oxide (Cs 0.33 WO 3 ) content (content rate) of 2% by weight, and each printed matter produced was printed.
  • laser printing was performed by a laser marker device, and the reflectance of electromagnetic waves in the visible light to near-infrared wavelength range in the printed portion and the non-printed portion was measured.
  • the "reflectivity" in the following examples is the ratio of the intensity of the reflected light when the irradiated light is reflected on the surface of the printed matter, as in the case of the first embodiment, and is a reference base material surface (?
  • Reflectance (%) of the target portion (target surface) ⁇ (intensity of reflected light from the target portion (target surface)) / (intensity of reflected light from the reference portion (reference surface)) ⁇ ⁇ 100
  • Example 2 By mixing the dispersion liquid containing tungsten cesium oxide Cs 0.33 WO 3 with monomers, synthetic resins, auxiliaries, etc. so that the weight ratio of tungsten cesium oxide and all other components is 2:98. , An ink having a cesium tungsten oxide content of 2% by weight was prepared. Using the cesium tungsten oxide-containing ink thus produced, printing was performed on a PC (polycarbonate) sheet as a base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). ..
  • PC polycarbonate
  • the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm on the printed surface before laser printing was measured by the JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (Japan). It was measured using (manufactured by Spectroscopy Co., Ltd.). Furthermore, as a laser marker device, Was used to perform laser printing on the printed surface with laser light from an Nd: YAG laser having a wavelength of 1064 nm.
  • the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm of the laser-printed portion was measured using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation).
  • Example 3 By mixing the dispersion liquid containing tungsten cesium oxide Cs 0.33 WO 3 with monomers, synthetic resins, auxiliaries, etc. so that the weight ratio of tungsten cesium oxide and all other components is 2:98. , An ink having a cesium tungsten oxide content of 2% by weight was prepared. Using the cesium tungsten oxide-containing ink thus produced, printing is performed on a PET-G (copolyester) sheet as a base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). Was done.
  • PET-G copolyester
  • the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm on the printed surface before laser printing was measured by the JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (Japan). It was measured using (manufactured by Spectroscopy Co., Ltd.). Furthermore, as a laser marker device, Was used to perform laser printing on the printed surface with laser light from an Nd: YAG laser having a wavelength of 1064 nm.
  • the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm of the laser-printed portion was measured using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation).
  • Example 4 By mixing the dispersion liquid containing tungsten cesium oxide Cs 0.33 WO 3 with monomers, synthetic resins, auxiliaries, etc. so that the weight ratio of tungsten cesium oxide and all other components is 2:98. , An ink having a cesium tungsten oxide content of 2% by weight was prepared. Using the cesium tungsten oxide-containing ink thus produced, printing is performed on a PVC (polyvinyl chloride) sheet as a base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). gone.
  • PVC polyvinyl chloride
  • the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm on the printed surface before laser printing was measured by the JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (Japan). Measured using Spectroscopy Co., Ltd.). Furthermore, as a laser marker device, Was used to perform laser printing on the printed surface with laser light from an Nd: YAG laser having a wavelength of 1064 nm.
  • the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm of the laser-printed portion was measured using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation).
  • FIG. 34 shows the measurement results of the reflectance performed in Examples 2 to 4 above. Further, the result of the reflectance measurement performed in Example 2 is shown in FIG. 35, the result of the reflectance measurement performed in Example 3 is shown in FIG. 36, and the result of the reflectance measurement performed in Example 4 is shown in FIG. 37 is shown by extracting from the graph of FIG. 34, respectively.
  • the value on the horizontal axis is the wavelength (nm) of the electromagnetic wave
  • the value on the vertical axis is the reflectance of the electromagnetic wave having the wavelength indicated by the value on the horizontal axis on the printed surface or the laser-printed portion. (%).
  • the reflectance increases (absorption rate decreases) in the near-infrared region by laser printing regardless of which base material is used.
  • the amount of increase varies depending on the wavelength on the horizontal axis, but in the near-infrared region of 780 nm to 2000 nm, the reflectance is increased by at least 5% or more, approximately 10% to 15%, or more by laser printing. Can be read.
  • the change in reflectance before and after laser printing in the visible light wavelength range is smaller than the change in reflectance before and after laser printing in the near infrared region. It is considered that it is possible to draw characters, images, etc. that are relatively difficult to see depending on a typical laser.
  • Example 5 Tungsten cesium oxide Cs 0.33
  • the weight ratio of the dispersion containing WO 3 to the monomer, synthetic resins, auxiliaries, etc., to tungsten cesium oxide and all other components is: (Example 5) 0.5: 99.5 (Example 6) 1:99 (Example 7) 1.3: 98.7 (Example 8) 2:98 (Example 9) 3:97 (Example 10) 6:94
  • 6 kinds of inks having a cesium tungsten oxide content of 0.5% by weight to 6% by weight were prepared.
  • an offset printing machine offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)
  • IGT C1 offset printing aptitude tester
  • JASCO V-670 ultraviolet-visible near-infrared spectrophotometer JASCO Corporation
  • FIG. 38 shows the measurement results of the reflectance performed in Examples 5 to 10.
  • the value on the horizontal axis is the wavelength (nm) of the electromagnetic wave
  • the value on the vertical axis is the reflectance (%) of the electromagnetic wave having the wavelength indicated by the value on the horizontal axis on the printed surface. It can be seen that, at least in the near-infrared wavelength region, the greater the content of tungsten cesium oxide, the lower the reflectance at the same wavelength. The same tendency can be read in the wavelength range of visible light.
  • the image or the like offset printed using the ink becomes easier to be recognized by using a near-infrared camera or the like, but in this case, visible light reflection Since the rate is low, the possibility of being visually recognizable by the naked eye, a general camera, or the like is increased, and it is considered preferable to select an appropriate cesium tungsten oxide content in consideration of security.
  • offset printing was performed on a PC (polycarbonate) as a base sheet using a near-infrared absorbing ink having a 6-borohydride (LaB 6 ) content (content rate) of 0.3% by weight to produce the product.
  • Laser printing was performed on the printed matter with a laser marker device, and the reflectance of electromagnetic waves in the visible light to near-infrared wavelength range in the printed portion and the non-printed portion was measured. Also in this embodiment, the reflectance is the ratio of the intensity of the reflected light when the irradiated light is reflected on the surface of the printed matter, and is the intensity of the reflected light from the reference base material surface (reference portion).
  • Example 11 The weight ratio of the dispersion liquid containing lanthanum hexaboride (LaB 6 ) to the monomer, synthetic resins, auxiliaries, etc., to the lanthanum hexaboride and all other components was 0.3: 99.7.
  • an ink having a content of lanthanum hexaboride of 0.3% by weight was prepared.
  • printing is performed on a PC (polycarbonate) sheet as a base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). rice field.
  • the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm on the printed surface before laser printing was measured by the JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (Japan). It was measured using (manufactured by Spectroscopy Co., Ltd.). Furthermore, as a laser marker device, Was used to perform laser printing on the printed surface with laser light from an Nd: YAG laser having a wavelength of 1064 nm.
  • the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm of the laser-printed portion was measured using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation).
  • the measurement result of the reflectance performed in the above-mentioned Example 11 is shown in FIG. 39.
  • the value on the horizontal axis is the wavelength (nm) of the electromagnetic wave
  • the value on the vertical axis is the reflectance (%) on the printed surface or the laser-printed portion of the electromagnetic wave having the wavelength indicated by the value on the horizontal axis. Is.
  • the reflectance increases (absorption rate decreases) in the near infrared region by laser printing.
  • the amount of increase varies depending on the wavelength on the horizontal axis, it can be read that the reflectance is increased by laser printing by about 5% to 14% in the near infrared region of 780 nm to 1400 nm.
  • the change in reflectance before and after laser printing in the visible light wavelength range is smaller than the change in reflectance before and after laser printing in the near infrared region of about 800 nm to 1200 nm, so that laser printing Therefore, it is considered that characters, images, etc. that are relatively difficult to see with the naked eye or a general camera can be drawn.
  • the laminate in each of the above embodiments and examples can be used as a printed matter such as an identification card, which has high security in one example.
  • a person image 2A and a person identification information 3A drawn by laser marking visible to the naked eye
  • a person image 6A drawn by laser marking on a near-infrared absorbing layer and a person identification information 7A (by an infrared camera or the like).
  • comparing it is determined whether the person (visible information) indicated by the person image 2A and the person identification information 3A matches the person (infrared information) indicated by the person image 6A and the person identification information 7A. If so, the authenticity of the identification card, etc.
  • the pattern drawn by the laser may be not only a monotonous pattern such as a barcode, a number, or a two-dimensional code, but also a person image or the like as described above.
  • the security of infrared-absorbing printed matter can be further improved by combining with the security technology of micro-display printing such as micro characters.
  • the “near infrared ray” is an electromagnetic wave having a wavelength of 780 nm to 2000 nm (from “JIS Z 8117: 2002 far infrared ray term”).
  • the “near-infrared laser light” is a laser light having a wavelength within the wavelength range of the near-infrared ray.
  • “visible light” is an electromagnetic wave having a wavelength of 400 nm to 780 nm.
  • the "near-infrared absorbing property” is a property of absorbing at least a part of the irradiated near-infrared ray
  • the “near-infrared ray transmitting property” is a property of transmitting at least a part of the irradiated near-infrared ray.
  • “Visible light absorption” is a property of absorbing at least a part of the irradiated visible light
  • “visible light transmittance” is a property of transmitting at least a part of the irradiated visible light.
  • Laser marking on the near-infrared absorbing layer by near-infrared laser light is a character that changes the absorption characteristics of the near-infrared absorbing layer by irradiating the near-infrared absorbing layer with near-infrared laser light. , Numbers, symbols, symbols, photographs, or any combination thereof, to form information on the printed image for printing in the near-infrared absorbing layer.
  • a "latent image” is an image formed so as not to be seen by the naked eye, that is, invisible in the visible light region.
  • a detectable image is formed by using the near infrared ray due to the change in the absorption characteristic of the near infrared ray absorbing layer, but this is not visible in the visible light region, so that it is a latent image. It is a kind of.
  • Aspect 3 of the present invention is a latent image forming method 300B for forming a latent image corresponding to a printed image on a laminated body 100B using a laser marker device 200B.
  • the structure of the laminated body 100B, the laser marker device 200B, and the latent image forming method 300B will be described.
  • the laminated body 100B is typically a structure such as a sheet or a board in which a plurality of layers are laminated, on which information for identifying an individual such as an identification card is printed. Its use can be, for example, various security printed matter such as cards such as credit cards and cash cards, data pages such as driver's licenses and passports, and banknotes.
  • FIG. 76 shows a front view of the laminated body 100B on which a latent image is to be formed by the latent image forming method 300B according to the third embodiment of the present invention.
  • the layers formed in the printing process are shown by broken lines, and the layers are shown in an overlapping manner.
  • FIG. 81 shows a view of the surface of the laminated body 100B whose front surface is shown in FIG. 76 cut by AA'in the direction of an arrow. Has been done.
  • each layer is shown separately in order to show the laminated structure of the layers, but in reality, each layer is crimped and brought into close contact with each other.
  • the laminated body 100B in the laminated body 100B, the upper oversheet layer 101B, the near-infrared absorbing layer 102B, the colored ink layer 103B, the base material layer 104B, and the lower oversheet layer 105B are laminated in this order from the upper part, that is, from the surface. Is formed.
  • Each layer of the laminated body 100B will be described focusing on the base material layer 104B used as a substrate in actual production.
  • the direction toward the front surface of the laminated body 100B is the upward direction, and the direction toward the back surface is the downward direction.
  • the base material layer 104B has a card-like or sheet-like structure that maintains the form of the laminate 100B, and is composed of PVC (polyvinyl chloride), PET-G (polyester), PC (polyester), PET (polyethylene terephthalate), and the like. It is a layer of a sheet-shaped resin base material made of a resin such as PP (polypropylene).
  • the base material layer 104B is a white sheet that is typically the color of the resin, but may be formed as a transparent sheet. In this case, for example, PVC (polyvinyl chloride) or PET-G (co). It can be produced using materials such as polyester), PC (polyester), PET (polyethylene terephthalate), and PP (polypropylene).
  • the base material layer 104B is preferably white or colorless, but can also be light in color.
  • a colored ink layer 103B is laminated on the base material layer 104B.
  • the colored ink layer 103B is a layer formed by colored ink for forming an image that can be identified in the visible light region.
  • the colored ink layer 103B is a layer used to show visible image information, but is not always essential in view of the object of aspect 3 of the present invention of forming a latent image.
  • the colored ink layer 103B preferably has near-infrared ray transmission that transmits at least a part of the irradiated near-infrared rays.
  • Colored inks include, for example, UV SOYBI SG yellow (made by DIC graphics), UV SOYBI SG red (made by DIC graphics), UV SOYBI SG indigo (made by DIC graphics), UV 161 yellow S (made by T & K TOKA), and so on.
  • Near-infrared transmissive colored inks visible light absorbing colored inks
  • UV 161 Beni S manufactured by T & K TOKA
  • UV 161 Indigo S manufactured by T & K TOKA
  • the colored ink may be a fluorescent ink that is colorless in the visible light region but emits light when irradiated with excitation light, or a colored ink containing the fluorescent ink.
  • UV fluorescent medium B manufactured by T & K TOKA
  • UV fluorescent medium Y manufactured by T & K TOKA
  • UV fluorescent medium R manufactured by T & K TOKA
  • a fluorescent ink layer 103AB may be formed using a fluorescent ink that is transparent to near ultraviolet rays.
  • the fluorescent ink layer 103AB can be formed by printing or the like on the base material layer 104B in the same manner as the colored ink layer 103B by using the fluorescent ink composition. Person identification information and the like can be printed.
  • a near-infrared transparent hologram layer 103BB (not shown) such as a transparent hologram is formed. May be good.
  • the colored ink layer 103B is formed by applying colored ink so as to represent an image pattern by a technique such as offset printing, silk screen printing, gravure printing, flexographic printing, and inkjet printing.
  • the colored ink layer 103B may apply the colored ink only at a position where a color different from that of the base material layer 104B is developed. For example, when the base material layer 104B is white, it is possible to prevent the colored ink from being applied to the white position.
  • the colored ink layer 103B exists only at the position where the pattern of the image to be visually recognized exists.
  • the colored ink layer 103B preferably has near-infrared ray transmission that transmits at least a part of the irradiated near-infrared rays.
  • the colored ink layer 103B can be a layer having an arbitrary configuration capable of forming an image that can be identified in the visible light region.
  • the colored ink layer 103B may be replaced with a fluorescent ink layer 103AB or a hologram layer 103BB. It is also possible to further laminate the fluorescent ink layer 103AB and the hologram layer 103BB on the colored ink layer 103B.
  • the colored ink layer 103B can form a visible light image on the laminate 100B.
  • the laminated body 100B is in the form of an ID card on which a photograph is printed on the surface.
  • FIG. 77 shows the front surface of the laminated body 100B by an observation image (visible light image) under visible light.
  • the uppermost oversheet layer 101B on the outermost surface of the laminated body 100B is transparent, and the near-infrared absorbing layer 102B is also transparent in the visible light region, so that the white base material layer 104B
  • the image formed on the colored ink layer 103B formed on the upper side of the light can be visually recognized.
  • a person image 111B, a person identification information 112B, and a mark image 113B are formed on the colored ink layer 103B from the left side.
  • the person image 111B is an image of a photograph of the owner of the ID card.
  • the person identification information 112B is an image of characters representing the identification information of the ID card owner, and is typically an image of characters such as the name and ID number of the ID card owner.
  • the mark image 113B is typically an image of a design or mark indicating the type, issuer, etc. of the ID card, and in this example, is an image of a sun design.
  • a near-infrared absorbing layer 102B is preferably formed on the base material layer 104B so as to overlap at least a part of the colored ink layer 103B.
  • the near-infrared absorbing layer 102B is a layer formed by a near-infrared absorbing ink having near-infrared absorbing property, and provides a layer that is invisible to the naked eye but can be visually recognized by using a near-infrared visualization device such as a near-infrared camera. At the same time, it is a configuration for forming a latent image in the layer.
  • the near-infrared absorbing ink contains at least one of the near-infrared absorbing material, tungsten cesium oxide or lanthanum hexaboride.
  • the cesium tungsten oxide-containing ink composition an ink containing cesium tungsten oxide represented by the chemical formula (general formula) Cs x W y O z can be used (x, y, z are positive real numbers, respectively). ..
  • an ink containing fine particles represented by Cs 0.33 WO 3 having a hexagonal structure described in Patent Document 8 (Patent No. 6160830) can be used.
  • an ink containing fine particles represented by the chemical formula LaB 6 can be used as the lanthanum hexaboride-containing ink composition.
  • Near-infrared absorbing inks include dispersants, monomers, synthetic resins, auxiliaries and the like, in addition to tungsten cesium oxide or lanthanum hexaboride.
  • the content of tungsten cesium oxide in the tungsten cesium oxide-containing ink is arbitrary, but in one example, it has been confirmed that the ink has good properties at a content of 0.5% by weight (weight%) to 6% by weight.
  • the content of lanthanum hexaboride in the lanthanum hexaboride-containing ink is also arbitrary, and in one example, it may be 0.05% by weight (% by weight) to 6% by weight, but at a content of 0.3% by weight. It has been confirmed that it has good properties. Even when a near-infrared absorbing ink containing both tungsten cesium oxide and lanthanum hexaboride is used, the respective contents of tungsten cesium oxide and lanthanum hexaboride are similarly arbitrary. In any case, the preferable content rate can be changed depending on the print density (filling amount).
  • the “content rate of lanthanum hexaboride (% by weight)” is the ratio of the weight of lanthanum hexaboride contained in the ink to the total weight of the ink, and is the ratio of the lanthanum hexaboride in the ink.
  • Content rate (% by weight) ⁇ (weight of lanthanum hexaboride) / (weight of the entire ink) ⁇ ⁇ 100.
  • the near-infrared absorbing layer 102B is formed on the base material layer 104B and the colored ink layer 103B by a method such as printing in the shape of the infrared absorbing printed image 114B which is a predetermined two-dimensional shape when the near-infrared absorbing ink is viewed from the surface. It is formed by applying.
  • a method such as printing in the shape of the infrared absorbing printed image 114B which is a predetermined two-dimensional shape when the near-infrared absorbing ink is viewed from the surface. It is formed by applying.
  • various known printing methods including offset printing, silk screen printing and the like can be used. It should be noted that any layer forming method other than printing can also be used.
  • a plurality of layers can be configured as one layer by kneading and integrating these constituent substances.
  • the base material layer 104B and the near-infrared absorbing layer 102B can be formed as an integral layer.
  • the oversheet layer and the near-infrared absorbing layer 102B may be formed as an integral layer by kneading the near-infrared absorbing material with the resin base material of the oversheet layer described later.
  • the weight ratio of the dispersion liquid containing tungsten cesium oxide Cs 0.33 WO 3 and the ink medium containing monomer, synthetic resin, and other non-infrared absorbing materials is 2:98 between tungsten cesium oxide and all other components.
  • the cesium oxide-containing ink thus produced printing is performed on the base material layer 104B with an offset printing machine (for example, offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)) to perform near infrared rays.
  • the absorption layer 102B can be formed.
  • the film thickness is about 1 ⁇ m to 3 ⁇ m.
  • the infrared absorption rate is about 30% to 40%.
  • the weight ratio of the dispersion liquid containing tungsten cesium oxide and the solvent-type silk screen ink medium containing synthetic resin, thickener, etc., to tungsten cesium oxide and all other components is 0.6: 99.4.
  • an ink having a content of tungsten cesium oxide of 0.6% by weight was prepared.
  • the film thickness of the near-infrared absorbing layer 102B formed by silk screen printing is 3 to 4 times that in the case of offset printing, it contains tungsten cesium oxide so that the infrared absorption rate is the same as in the case of offset printing.
  • the rate is set to one-third to one-fourth of that in the case of offset printing.
  • the near-infrared absorbing layer 102B can be formed by printing on the base material layer 104B with a silk screen printing machine using the cesium tungsten oxide-containing ink thus produced.
  • the film thickness is about 3 ⁇ m to 12 ⁇ m, and the infrared absorption rate is about 30% to 40% as in the case of offset printing.
  • FIG. 78 shows the front surface of the laminated body 100B by an image observed by a near-infrared camera (near-infrared image).
  • a near-infrared camera near-infrared image
  • the uppermost oversheet layer 101B on the outermost surface of the laminated body 100B is transparent to near infrared rays, so that it is formed on the upper side of the base material layer 104B that does not absorb near infrared rays.
  • the shape of the near-infrared absorbing layer 102B, that is, the infrared absorbing printed image 114B can be confirmed as a dark region.
  • the infrared-absorbing printed image 114B can be confirmed when observed with near-infrared rays.
  • the near-infrared absorbing layer 102B has a vertically long two-dimensional shape of a ten-pointed star.
  • a near-infrared absorbing ink composition containing tungsten cesium oxide or lanthanum hexaboride has the property that when it is exposed to near-infrared laser light, the near-infrared absorption at least in a predetermined wavelength range is lowered and the reflectance is increased. have. Therefore, the near-infrared absorbing layer 102B scans the near-infrared laser light using the laser marker device 200B while controlling its irradiation so as to draw a printed image, and changes the absorption characteristics of the near-infrared absorbing layer with respect to the near-infrared.
  • a latent image of the printed image that can be recognized by using a near-infrared camera or the like can be formed, and laser marking can be performed. It is considered that the increase in the reflectance of near-infrared rays due to the decrease in near-infrared absorption is caused by the increase in the amount of near-infrared rays that pass through and are reflected by the lower layer due to the decrease in near-infrared absorption.
  • Laser marking typically increases the reflectance of near-infrared rays by reducing the near-infrared absorbency of the near-infrared-absorbing ink, which can be observed as a bright area when observed with near-infrared rays. Become.
  • the printed image may include letters, numbers, symbols, patterns, photographs, or any combination thereof.
  • scanning while irradiating a near-infrared laser beam so as to draw a printed image the near-infrared absorption characteristics of the drawn portion are changed.
  • a latent image of a printed image that can be recognized by using a near-infrared camera or the like is formed on the near-infrared absorbing layer 102B.
  • FIG. 79 shows the front surface of the laser-marked laminate 100B as observed by a near-infrared camera (near-infrared image).
  • a latent image due to the difference in near-infrared absorption characteristics is formed on the near-infrared absorption layer 102B.
  • the micro characters 115B and the person image 116B are formed by laser marking.
  • FIG. 80 shows the micro character 115B in an enlarged manner.
  • the micro character 115B functions as a fine security design.
  • the micro characters can be arbitrary character information, but in this example, they are personal identification information such as a name and an ID number representing the identification information of the ID card holder.
  • a colored pattern, a fine symbol, a relief pattern, or the like can be used.
  • the size of individual characters such as micro characters and fine symbols is arbitrary, but the maximum diameter, maximum width, or maximum height can be about 1000 ⁇ m (micrometer).
  • the micro character 115B is not based on laser marking, and when printing the near-infrared absorbing layer 102B using the near-infrared absorbing ink (micro-display printing), the near-infrared absorbing ink is typically placed at the position of the shape. It can also be formed as part of the shape of the infrared absorbent printed image 114B by not applying it to.
  • an oversheet layer is formed on the outermost layer of the laminated body 100B.
  • the uppermost layer of the laminated body 100B is formed by laminating an upper oversheet layer 101B having visible light transmission and near infrared ray transmission
  • the lowermost layer of the laminated body 100B is formed by laminating visible light transparent and near infrared rays.
  • the lower oversheet layer 105B having transparency is formed by laminating.
  • the upper oversheet layer 101B and the lower oversheet layer 105B are layers for protecting the surface of the laminated body 100B, and are composed of a transparent resin sheet.
  • the upper oversheet layer 101B and the lower oversheet layer 105B are made of a laminated body 100B before laminating transparent resin sheets such as transparent PC (polycarbonate) having a thickness of, for example, about 0.05 mm to 0.2 mm.
  • transparent resin sheets such as transparent PC (polycarbonate) having a thickness of, for example, about 0.05 mm to 0.2 mm.
  • One sheet is placed on each of the bottom layer and the top layer, and they are laminated by applying heat and pressure to fuse them, or by adhering them with an adhesive or an adhesive to form a part of the laminated body 100B.
  • the upper oversheet layer 101B and the lower oversheet layer 105B are not always essential when protection is not required, and only one of them may or may not be formed.
  • the presence of the oversheet layer not only improves resistance such as wear resistance, but also has the feature that by arranging the laser marking information in the laminate, it is less likely to be tampered with and security can be improved. be.
  • the laminate 100B can also include an additional layer.
  • FIG. 82 shows an example in which the laser coloring layer 106B is laminated between the base material layer 104B and the lower oversheet layer 105B.
  • the laser coloring layer 106B is a transparent layer containing a laser coloring agent, but is a layer capable of forming a visible image by developing a color of the laser coloring agent by irradiation with a YAG laser or the like.
  • a visible image or the like can be formed by laser marking using the laser marker device 200B for forming a latent image.
  • the laminated body 100B can be laminated with layers having any function other than the laser coloring layer 106B.
  • FIG. 83 shows an outline of the appearance of the laser marker device 200B.
  • the laser marker device 200B has an insertion port 210B, and when the laminate 100B to be laser-marked is inserted into the insertion port 210B, the support means 211B moves the laminate 100B to an appropriate position for laser marking.
  • the support means 211B can be a mechanical holding mechanism for holding the card or the like.
  • FIG. 84 shows a schematic block diagram of the laser marker device 200B.
  • the laser marker device 200B includes a control unit 201B, a storage unit 202B, a drive unit 203B, a laser light irradiation unit 204B, and the like.
  • the control unit 201B is a processing circuit for executing various functions for controlling the operation of the laser marker device 200B, and serves as a processor (not shown) for executing a computer program, a work area when the processor operates, and the like. It is composed of RAM (not shown) used.
  • the storage unit 202B is typically a non-volatile memory such as a flash ROM, and stores computer programs and control data.
  • the storage unit 202B stores the control program 202aB as a computer program.
  • the OS operating system
  • the OS is usually used when the control program 202aB is executed, but the description is omitted here because the functions by the OS are included in the functions of the processor. ..
  • the various functions of the latent image forming method 300B according to the third aspect of the present invention are executed by the control program 202aB being read from the storage unit 202B by the control unit 201B, so that an execution module corresponding to such functions can be executed. It is realized by being formed.
  • the storage unit 202B stores the scanning parameter 202bB and the image data 202cB as control data.
  • the scanning parameter 202bB is a parameter that defines scanning conditions for driving the laser light irradiation unit 204B so as to scan while irradiating the near-infrared laser light, and can be set by the user. As will be described in detail later, as the scanning parameter 202bB, power P, frequency F, speed V, line width LW, and the like are used.
  • the image data 202cB is data representing a printed image which is an image formed as a latent image by laser marking in the near-infrared absorbing layer 102B, and is typically information on a set of pixels having brightness information of a predetermined resolution R. Is.
  • the resolution R can also be understood as a parameter that defines the scanning conditions, but it can be set as the resolution of the printed image, and in this case, it is not necessary to store the scanning parameter 202bB individually.
  • the image data 202cB may include position information as to which position in the two-dimensional plane of the laminated body 100B the printed image is formed.
  • the processor included in the control unit 201B reads out the scan parameter 202bB and the image data 202cB by reading the control program 202aB stored in the storage unit 202B and executing the control program 202aB using the work area of the RAM, and refers to the scanning parameter 202bB.
  • An operation for appropriately realizing various functions of the latent image forming method 300B according to the third aspect of the present invention is executed.
  • the drive unit 203B defines the irradiation position of the near-infrared laser light emitted from the laser light irradiation unit 204B so that the near-infrared laser light is irradiated to the position of the printed image in the near-infrared absorption layer 102B in the laminated body 100B. It is a scanning mechanism that physically drives and scans the structure.
  • the drive unit 203B does not necessarily have to be a scanning mechanism as long as it can be positioned so that the near-infrared laser light is irradiated to the position of the printed image in the near-infrared absorbing layer 102B in the laminated body 100B.
  • the scanning mechanism there are a method of operating a mirror to deflect the near-infrared laser light and a method of moving the projection head of the near-infrared laser light.
  • the drive unit 203B uses a scanning mirror that scans two-dimensionally while reflecting the near-infrared laser light emitted from the laser light irradiation unit 204B, a motor that drives the scanning mirror, and a scanning mirror. It can be a condenser lens or the like that projects infrared laser light onto the laminated body 100B.
  • the drive unit 203B uses the X-axis and Y of the projection head (the portion that emits the near-infrared laser light from the laser light irradiation unit 204B toward the laminate 100B) facing the laminate 100B. It may be a drive mechanism or the like that moves in the axial direction.
  • the laser light irradiation unit 204B is a light source of a near infrared laser.
  • the light source of the near-infrared laser an Nd: YAG laser or the like that generates a near-infrared laser light having a laser wavelength of 1064 nm can be used.
  • the Nd: YAG laser is repeatedly pulse-oscillated to generate near-infrared laser light.
  • the drive unit 203B By controlling the drive unit 203B to scan and irradiate the near-infrared laser light emitted from the laser light irradiation unit 204B to a position in the near-infrared absorption layer 102B of the laminate 100 that forms a printed image.
  • Laser marking is performed on the infrared absorbing layer 102B.
  • the near-infrared laser light is typically applied to the near-infrared absorbing layer 102B from above the laminate 100B through the upper oversheet layer 101B.
  • the base material layer 104B, the lower oversheet layer 105B, etc. have near-infrared ray transmission, it is possible to irradiate the lower oversheet layer 105B with near-infrared laser light from below the laminate 100B through the lower oversheet layer 105B. be.
  • the laser marker device 200B is a device that forms a latent image of a printed image, which is a two-dimensional image, on the laminated body 100B. Near-infrared laser light is applied to a scanning position to be marked while linearly moving a dotted scanning position. A scanning line is formed by irradiating the image (main scanning), and then the formation of the scanning line is repeated (secondary scanning) while moving the scanning line little by little in the direction perpendicular to the scanning line.
  • ⁇ Power P (unit: W) ⁇ Frequency F (unit: Hz) ⁇ Speed V (unit: mm / s) ⁇ Spot distance SD (unit: mm) ⁇ Line width LW (unit: mm) ⁇ Pulse width PW (unit: ⁇ s) -Resolution R (unit dpi)
  • the power P, the frequency F, the speed V, and the line width LW can be set by the user and are stored in the storage unit 202B as scanning parameters 202bB. However, some of them can be fixed values.
  • the resolution R can also be set by the user, but is usually set as information on the resolution of the printed image of the image data 202cB.
  • the power P is the output power of the light source in the laser light irradiation unit 204B of the laser marker device 200B.
  • the frequency F is a number per unit time in which the laser marker device 200B can generate a pulse of near-infrared laser light during scanning if the resolution R is not taken into consideration.
  • the time of the reciprocal of the frequency F is called a pulse period, and when the resolution R is not taken into consideration, the laser marker device 200B can generate a pulse of near-infrared laser light for every pulse period.
  • the speed V is the speed at which the near-infrared laser light scans the target area on the laminated body 100B (on the near-infrared absorbing layer 102B) where the printed image is arranged.
  • the area where the near-infrared laser light is irradiated when the target area is scanned while irradiating the pulse of the near-infrared laser light at all the pulse cycles at the frequency F is referred to as an irradiable spot.
  • the area where the pulse of the near-infrared laser light is actually irradiated on the target area based on the brightness information of the pixels of the printed image corresponding to the scanning position at the time of scanning is referred to as an irradiation spot.
  • Each irradiation spot is a dot-shaped region on a target region irradiated with one pulse of near-infrared laser light.
  • the spot distance SD is the distance between the centers of adjacent irradiation spots. Since the spot distance SD corresponds to the speed V / frequency F and is determined when the frequency F and the speed V are set by the user, it is not always necessary to store the spot distance SD as the scanning parameter 202bB.
  • the line width LW is typically the length in the scanning direction of the irradiation spot, which is a dot-shaped region irradiated by one pulse of near-infrared laser light. Since the duration of one pulse of the near-infrared laser light is sufficiently short with respect to the speed V, the dot-shaped region, that is, the irradiation spot has a substantially circular shape. Therefore, the line width LW is almost synonymous with the diameter of the irradiation spot. In this embodiment, the line width LW, the frequency F, and the speed V are not changed. Therefore, in such a case, the line width LW and the like do not necessarily have to be treated as the scanning parameter 202bB that can be set by the user. ..
  • the pulse width PW is the duration of one pulse of the near-infrared laser light emitted by the pulse oscillation of the Nd: YAG laser of the laser light irradiation unit 204B, and is a condition defined by the characteristics of the oscillation circuit of the Nd: YAG laser. Is.
  • the pulse width PW is a fixed value, and it is not always necessary to set it by the user and store it as the scanning parameter 202bB.
  • the resolution R is a numerical value indicating how many irradiation spots can be formed per unit length (1 inch), and is a parameter that determines how finely divided the unit length is to express a printed image. .. That is, the resolution R is a density at which an irradiation spot can be formed. The distance between the centers of adjacent irradiation spots is a unit length (1 inch) / resolution R. However, in reality, the irradiation spot is formed on the scanning line at any of the irradiable spots existing at each spot distance SD capable of irradiating the pulse of the near-infrared laser light, and therefore has a unit length.
  • the distance from the position of the first irradiation spot is an integral multiple of the spot distance SD
  • the unit length / A second irradiation spot can be formed at a position separated by a distance closest to the resolution as a position corresponding to the unit length / resolution R.
  • Other positions corresponding to the unit length / resolution R include a distance that is an integral multiple of the spot distance SD from the position of the first irradiation spot, is equal to or greater than the unit length / resolution R, and is closest to it. It is also possible to correspond to the separated positions.
  • the irradiation spot is a basic unit for forming a latent image of a printed image on the near-infrared absorbing layer 102B.
  • the image data of the printed image is typically expressed in resolution R.
  • one irradiation spot can be associated with one pixel to be marked in the printed image, and the scanning position to be marked as the irradiation spot at the time of scanning can be specified by a simple calculation and marking can be performed. Can be done.
  • the spot distance SD is set to a value smaller than the line width LW. By doing so, the position of the irradiation spot can be precisely arranged in the spot distance SD unit.
  • FIG. 85 illustrates the relationship between the spot distance SD, the line width LW, and the resolution R.
  • the ones indicated by the symbols ⁇ in FIG. 85 are the spots that can be irradiated (only eight consecutive spots are shown), and they are lined up with a spot distance SD.
  • the shaded area in the ⁇ symbol is the irradiation spot at the position corresponding to the resolution R, and represents the irradiation spot where the near-infrared laser light is actually irradiated when marking should be performed.
  • the diagonal lines of the adjacent irradiation spots are rotated by 90 degrees.
  • FIG. 85 (1) shows a case where the distance between the centers (unit length / resolution R) of adjacent irradiation spots is larger than the line width LW. In this case, adjacent irradiation spots do not overlap.
  • the distance between the centers (unit length / resolution R) of adjacent irradiation spots is smaller than the line width LW.
  • the adjacent irradiation spots partially overlap.
  • the pulse of the near-infrared laser light is present. Will be irradiated to form an irradiation spot.
  • the vertical spacing of each scanning line is the same as the distance between the centers of adjacent irradiation spots in the case of resolution R, the vertical sub-scanning is also executed at the same resolution R as in the horizontal direction. ..
  • the laser marker device 200B radiates near-infrared laser light in a pulsed manner while scanning the laminated body 100B which is a marking object.
  • the dot-shaped region irradiated with the near-infrared laser light on the laminated body 100B becomes the irradiation spot.
  • the length of the irradiation spot in the scanning direction is the line width LW.
  • the scanning speed is V, and the laser marker device 200B can irradiate pulses of near-infrared laser light at all pulse periods at frequency F, in which case adjacent, if resolution R is not taken into account.
  • the distance between the centers of the irradiable spots is called the spot distance SD.
  • the laser marker device 200B applies near-infrared laser light to a scanning position (a scanning position corresponding to resolution R and a pixel to be marked in the corresponding printed image exists) with a power P pulse width.
  • a latent image of a printed image is formed by irradiating a dot-shaped region on the laminated body 100B as a PW pulse to form an irradiation spot.
  • the latent image forming method 300B was carried out by operating the laser marker device 200B under the conditions of the following numerical values (range).
  • ⁇ Power P 2-9.15W
  • Frequency F 35000Hz
  • Line width LW 0.04 mm -Pulse width
  • PW 1 ⁇ s (fixed value)
  • -Resolution R 50 to 1100 dpi
  • FIG. 86 illustrates the operation flow.
  • the control unit 201B reads the scanning parameter 202bB and the image data 202cB from the storage unit 202B (step S301B).
  • the image data 202cB is data representing an image of a predetermined size corresponding to the size of the printed image.
  • the image data 202cB can be in the form of, for example, a BMP file having a predetermined number of pixels in each of the vertical and horizontal directions, and each pixel is within the target area on the laminate 100B based on the information of the resolution R thereof. Which position of the throat corresponds to is specified.
  • the image data 202cB may include information on the arrangement position of the printed image, whereby the printed image of an appropriate size can be arranged at an appropriate position on the laminated body 100B.
  • the area corresponding to the printed image on the laminated body 100B is the target area for scanning.
  • the printed image is typically composed of binary monochrome light / dark information pixels. In normal laser marking that develops a color with visible light, the irradiated portion develops a color such as black and becomes dark, but in the latent image forming method 300B, the irradiated portion becomes bright because the infrared reflectance increases.
  • the image data 202cB is the data of an image in which the information of the image to be printed is represented in monochrome but the light and darkness is reversed. Further, in the latent image forming method 300B, since a color image cannot be formed, it is preferable to set the printed image as a monochrome image.
  • the control unit 201B receives the near-infrared laser light emitted from the laser light irradiation unit 204B from the drive unit 203B at the scanning start position in the region of the near-infrared absorption layer 102B in the laminated body 100B. The scanning position of the near-infrared laser light is moved by (step S302B).
  • the coordinates of the scanning start position are input by the user as a part of the image data 202cB, and the control unit 201B moves the scanning position of the near-infrared laser light by the laser light irradiation unit 204B to the coordinates. Controls the drive unit 203B. Next, the control unit 201B scans the target area while irradiating the laser beam controlled based on the information of the printed image included in the image data 202cB so that the latent image of the printed image is formed (step S303B). ..
  • the laser light irradiation unit 204B while moving the scanning position of the near-infrared laser light by the laser light irradiation unit 204B based on the scanning parameter 202bB, it is turned on so as to mark only the pixels to be marked based on the brightness information of the pixels of the printed image of the image data 202cB.
  • the target area is scanned while forming an irradiation spot by irradiating an irradiable spot corresponding to the resolution R of the scanning position corresponding to the pixel with a pulse of laser light whose off is controlled.
  • the scanning position (irradiable spot) to which the pulse of the laser light can be irradiated corresponds to each pixel to be marked in the printed image. If an irradiation spot is formed at the position), a latent image having a resolution R is formed.
  • the line width LW is larger than the center-to-center distance (unit length / resolution R) of the adjacent irradiation spots (in the case shown in FIG. 85 (2))
  • some of the adjacent irradiation spots overlap and the resolution is resolved. The feeling may be low, but even in such a case, the irradiation spots are arranged at substantially equal intervals at a density corresponding to the resolution R.
  • the irradiation spot is located at a position corresponding to the pixel to be marked (the position where the pixel to be marked is projected onto the target area). It can be formed at the position of the closest irradiable spot. In this way, an irradiation spot corresponding to the printed image is formed in the target region at a density corresponding to the resolution R, and a latent image thereof is formed.
  • the position of the pixel in the printed image corresponding to the scanning position is, for example, as a print object in the printed image shown in white as the person image 116B in FIG. 79. This is when it is within the area to be represented.
  • the pulse of the near-infrared laser beam irradiates the dot-shaped region on the near-infrared absorbing layer 102B to form an irradiation spot. Since the output power of the near-infrared laser light is power P and the pulse width PW is 1 ⁇ s, energy of power P ⁇ pulse width PW is given to the irradiation spot by one pulse. It is understood that this causes some change in the near-infrared absorbing ink, the near-infrared absorption rate decreases, and the overall near-infrared reflectance increases, so that marking by a latent image is performed.
  • the scanning operation is continued until all the scans (main scan and sub scan) of the target area are completed (step S304B).
  • the latent image forming method 300 was executed by appropriately setting the resolution R in the range of 50 dpi to 1100 dpi, and the latent image formation result was evaluated.
  • 87 and 88 show conceptual diagrams illustrating the operation of scanning near-infrared laser light.
  • 87 is the case of high resolution
  • FIG. 88 is the case of medium resolution.
  • the symbol of the lens represents the laser light irradiation unit 204B
  • the downward arrow extending from the laser light irradiation unit 204B is a near-infrared laser emitted from the laser light irradiation unit 204B to the scanning position in the target area of the near-infrared absorption layer 102B. Represents light.
  • (white circle) in the figure indicates the irradiable spots at the scanning position corresponding to the number per unit length corresponding to the resolution R
  • black circle in the figure indicates the irradiable spots of those irradiable spots. Since there are pixels to be marked in the printed image, this is a portion where the irradiation spot is formed by being irradiated with the near-infrared laser light.
  • FIGS. 87 and 88 form a latent image of the print object 117B in the same printed image which is a square near the center, but the irradiable spots and the densities of the irradiation spots are different due to the difference in resolution R. ..
  • the power P was adjusted to a size that gives the best latent image formation result in the range of 2W to 9.15W at each resolution R.
  • the latent image is formed by reducing the near-infrared absorption in at least a predetermined wavelength range in the near-infrared absorbing layer 102B without developing the color of the base material layer 104B in the visible light region.
  • the viewpoint of evaluation of the formation result is, first, invisibility under visible light, which is a viewpoint of evaluation necessary for not being visible in visible light.
  • Next is the visibility with a near-infrared camera, which is a viewpoint of evaluation necessary for confirming that an observable latent image is formed by using the near-infrared camera.
  • the table below shows the evaluations of those evaluations based on the evaluation values of ⁇ : good, ⁇ : normal, and ⁇ : bad.
  • the base layer 104B developed a color, so that the portion to be a latent image could be visually recognized.
  • the invisibility under visible light was normal, some color was observed in the base material layer 104B, and it was possible to visually distinguish the portion to be a latent image if care was taken. From the results shown in this table, in the range of resolution R from 85 dpi to 1000 dpi, by adjusting the power P appropriately, a latent image that cannot be seen under visible light and can be confirmed by using a near-infrared camera is formed. It is understood that it can be done.
  • a particularly good latent image can be formed in the range of the resolution R of 140 dpi to 900 dpi.
  • the resolution R was 50 dpi or less, a latent image that could be confirmed using a near-infrared camera could not be formed even if the power P was maximized. It is understood that this is because if the resolution R becomes coarser than this degree, an irradiation spot having a sufficient density cannot be formed. Further, when the resolution R is 1100 dpi or more, no matter how the power P is adjusted, it is not possible to achieve both invisibility under visible light and visibility with a near-infrared camera.
  • the latent image forming method 300B by setting the resolution R to a predetermined range, a latent image that cannot be visually recognized by visible light but can be confirmed by a near-infrared camera can be surely formed on the laminated body 100B. It was confirmed that Further, such a latent image forming method 300B is carried out by a laser marker device 200B, whereby a laminated body 100B on which such a latent image is formed is created.
  • the present invention can be used for ID cards such as identification cards, cards such as credit cards and cash cards, banknotes, etc., but is not limited to these and can be used in any laminated body.
  • ID cards such as identification cards, cards such as credit cards and cash cards, banknotes, etc.
  • the present invention can be used to improve the security of ID cards such as identification cards, cards such as credit cards and cash cards, and banknotes. Further, the present invention is not limited to these, and can be used in any laminated body or medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Credit Cards Or The Like (AREA)
  • Printing Methods (AREA)

Abstract

The present invention addresses the problem of: providing an information display medium, a laminate, or the like having an advantage such as high security; and reliably forming a latent image on a laminate such that, although the latent image is not recognizable to a general camera or the naked eye, said image is visible when an infrared visualization device, such as an infrared camera, is employed. The present invention provides: an information display medium member or the like containing a cesium tungsten oxide or lanthanum hexaboride; a laminate or the like including a first-surface-side laser color-developing layer having an opening region, and a near-infrared absorption layer that is formed on a first surface side, that is positioned, at least in a portion thereof, in the opening region or that at least partially overlaps with the opening region, and that contains the cesium tungsten oxide or the lanthanum hexaboride; and a method or the like in which a target section is scanned while laser light is radiated and the resolution is set so that a latent image can be formed by reducing, in a near-infrared absorption layer, near-infrared absorption at least in a prescribed wavelength range without causing a base material layer to develop color in the visible light range.

Description

情報表示媒体用部材、情報表示媒体、冊子体、積層体、関連する方法、積層体に印字画像に対応する潜像を形成する方法、その装置、及びそれによる積層体Information display medium member, information display medium, booklet, laminate, related method, method of forming a latent image corresponding to a printed image on the laminate, its device, and the laminate thereof.
 本発明は、近赤外線カメラ等で認識できる文字、画像等を印字又は描画(マーキング)することができる情報表示媒体用部材、情報表示媒体用部材を備える情報表示媒体、そのような情報表示媒体をシートとして含む冊子体、及び、関連する方法に関する(態様1)。
 さらに本発明は、近赤外線カメラ等で認識できる文字、画像等を印字又は描画(マーキング)することができる積層体、そのような積層体をシートとして含む冊子体、及び、関連する方法に関する(態様2)。
 さらに本発明は、近赤外線吸収層を備える積層体に対して、文字、図柄、写真などの画像の、肉眼では確認できないが、近赤外線カメラ等で認識できる潜像を形成する方法に関する(態様3)。
The present invention provides an information display medium member capable of printing or drawing (marking) characters, images, etc. that can be recognized by a near-infrared camera, an information display medium provided with the information display medium member, and such an information display medium. The present invention relates to a booklet included as a sheet and related methods (Aspect 1).
Furthermore, the present invention relates to a laminate capable of printing or drawing (marking) characters, images, etc. that can be recognized by a near-infrared camera or the like, a booklet containing such a laminate as a sheet, and a related method (aspects). 2).
Further, the present invention relates to a method of forming a latent image of an image such as a character, a pattern, or a photograph, which cannot be confirmed with the naked eye, but can be recognized by a near-infrared camera or the like, on a laminated body provided with a near-infrared absorbing layer (Aspect 3). ).
(態様1,2に関する背景技術)
 近年、データページ、身分証明書等のID(identification)証、クレジットカード、キャッシュカード等のカード類、紙幣等に関し、セキュリティ性を向上させることが課題となっており、偽造防止のためにさまざまな提案がされている。
(Background Techniques Related to Aspects 1 and 2)
In recent years, it has become an issue to improve the security of data pages, ID (identification) certificates such as identification cards, credit cards, cards such as cash cards, banknotes, etc., and various methods are used to prevent counterfeiting. Proposals have been made.
 特許文献1においては、酸化イッテルビウムを含む基材にレーザー光等のエネルギーを与えることにより赤外線吸収性のパターンを形成するマーキング方法が提案されている。しかしながら、酸化イッテルビウムの赤外線吸収性は十分に高くなく、取り扱いのし易さの面からも問題がある。 Patent Document 1 proposes a marking method for forming an infrared-absorbing pattern by applying energy such as laser light to a substrate containing ytterbium oxide. However, the infrared absorption of ytterbium oxide is not sufficiently high, and there is a problem in terms of ease of handling.
 その他、特許文献2~7のように赤外線吸収材料を用いた偽造防止等の技術が提案されているが、いずれの技術においても課題が残っている。例えば特許文献2においては印刷方式でバリアブル可変情報を印字等しており、以下のデメリットが存在する:
・カード表面に印字又は転写する場合、改竄されやすく、セキュリティ性が低くなる。耐摩耗性など耐性も悪くなる。
・カード中層に印字又は転写する場合、個人情報を印字した(或いは発行した)後、プレス加工やカードサイズ仕上げ加工などをすることとなるため、現地での発行は困難であると考えられる。さらに、加工工程で何か問題が生じた場合、個人情報はそれぞれ異なるため、最初の印刷からやり直すこととなる。
In addition, techniques such as anti-counterfeiting using an infrared absorbing material have been proposed as in Patent Documents 2 to 7, but problems remain in any of the techniques. For example, in Patent Document 2, variable variable information is printed by a printing method, and there are the following disadvantages:
-When printing or transferring to the surface of a card, it is easily tampered with and the security is low. Resistance such as wear resistance also deteriorates.
-When printing or transferring to the middle layer of a card, it is considered difficult to issue it locally because it is necessary to print (or issue) personal information and then perform press processing or card size finishing processing. Furthermore, if something goes wrong in the processing process, the personal information will be different, so you will have to start over from the first print.
(態様3に関する背景技術)
 近年、データページ、身分証明書等のID(identification)証、クレジットカード、キャッシュカード等のカード類、紙幣等の真正性が求められるシート状物品に関するセキュリティ性を向上させることが課題となっており、偽造防止のためにさまざまな提案がされている。そのために、肉眼では見ることができないが、可視光の範囲外で確認可能な方法でマーキングを行なうことなども提案されている。
(Background Technique for Aspect 3)
In recent years, it has become an issue to improve the security of data pages, ID (identification) certificates such as identification cards, cards such as credit cards and cash cards, and sheet-shaped articles that require authenticity such as banknotes. , Various proposals have been made to prevent counterfeiting. Therefore, it has been proposed to mark by a method that cannot be seen with the naked eye but can be confirmed outside the range of visible light.
 特許文献1においては、酸化イッテルビウムを含む基材にレーザー光等のエネルギーを与えることにより赤外線吸収性のパターンを形成するマーキング方法が提案されている。このように、レーザー光の照射により赤外線の吸収性を変化させることによって、一般的なカメラや肉眼では認識が困難な文字、図柄等の画像の情報を、カードのような積層体に潜像で形成することの可能性が示されている。特許文献8でも、複合タングステン酸化物の赤外線吸収材料を用いた偽造防止等の技術が提案されている。ここで、マーキングのためには、通常は、近赤外線領域のレーザー光が使用される。しかしながら、酸化イッテルビウムの赤外線吸収性は十分に高くなく、取り扱いの容易さの面からも問題があり、実用的な潜像の形成を実現できるものではなかった。また、複合タングステン酸化物については、レーザー光の照射により赤外線の吸収性を変化させる技術が存在しなかった。従って、適切な近赤外線吸収性を有する材料を用い、それをレーザー光の照射により変化させることができる方法が求められていた。 Patent Document 1 proposes a marking method for forming an infrared-absorbing pattern by applying energy such as laser light to a substrate containing ytterbium oxide. In this way, by changing the absorption of infrared rays by irradiating laser light, image information such as characters and patterns that are difficult to recognize with a general camera or the naked eye can be latently imaged on a laminated body such as a card. The possibility of forming has been shown. Patent Document 8 also proposes a technique such as anti-counterfeiting using an infrared absorbing material of a composite tungsten oxide. Here, laser light in the near infrared region is usually used for marking. However, the infrared absorption of ytterbium oxide is not sufficiently high, and there is a problem in terms of ease of handling, and it has not been possible to realize the formation of a practical latent image. Further, for the composite tungsten oxide, there is no technique for changing the absorption of infrared rays by irradiating with laser light. Therefore, there has been a demand for a method in which a material having appropriate near-infrared absorption is used and it can be changed by irradiation with laser light.
 一方、近赤外線のレーザー光でマーキングすることが可能な積層体は、近赤外線に反応する近赤外線吸収性インキ組成物を用いて形成される近赤外線吸収層を積層した基材層を有しているものである。ここで、レーザー光でのマーキングにより潜像を形成する際に積層体に視認可能な発色があると、潜像とすべき画像情報が視認可能となってしまい、セキュリティ性を保つことができない。しかし、レーザー光でのマーキングを高密度で行なうと、エネルギーが集中することで積層体の基材層が変質することにより、マーキング箇所が視認可能になる恐れもある。従って、レーザー光でのマーキングにより潜像を形成する際には、積層体を可視光領域で発色させることなく、近赤外線吸収層には確実に潜像を形成しなくてはならない。しかし、そのための具体的な条件を特定した技術は存在していなかった。 On the other hand, the laminate capable of marking with a near-infrared laser beam has a base material layer in which a near-infrared absorbing layer formed by using a near-infrared absorbing ink composition that reacts with near-infrared rays is laminated. Is what you have. Here, if the laminated body has a visible color when forming a latent image by marking with a laser beam, the image information to be a latent image becomes visible, and security cannot be maintained. However, when marking with laser light is performed at a high density, the marking portion may become visible due to the deterioration of the base material layer of the laminated body due to the concentration of energy. Therefore, when forming a latent image by marking with laser light, it is necessary to surely form a latent image on the near-infrared absorbing layer without causing the laminated body to develop color in the visible light region. However, there was no technique that specified specific conditions for that purpose.
特許第4323578号Patent No. 4323578 特表2005-505444号公報Special Table 2005-505444 特開2005-246821号公報Japanese Unexamined Patent Publication No. 2005-246821 特開2008-162233号公報Japanese Unexamined Patent Publication No. 2008-162233 特許第6443597号Patent No. 6443597 特許第6507096号Patent No. 6507096 特許第6541400号Patent No. 6541400 特許第6160830号Patent No. 6160830 特許第5854329号Patent No. 5854329 国際公開第2018/151238号International Publication No. 2018/151238 特許第6167803号Patent No. 6167803 特表2006-518898号Special Table 2006-518898
(態様1の課題)
 以上に鑑み、本発明は、ID証、データページ等のセキュリティ用情報媒体等に用いることができる情報表示媒体として、セキュリティ性が高く、真贋判定し易く、及び/又は製造工程を簡略化することが可能な情報表示媒体、そのような情報表示媒体に用いることができる情報表示媒体用部材、そのような情報表示媒体をシートとして含む冊子体、及び関連する方法を提供することを課題とする。
(態様2の課題)
 以上に鑑み、本発明は、個人情報等、何らかの情報の、黒発色等、発色による表示を保ちつつ、主には近赤外線等の赤外線下で認識可能な情報の表示を追加することによりセキュリティ性を向上させることができ、特に赤外線下で認識可能な情報を可視情報と同面に表示することでセキュリティ性を更に向上させることが可能な積層体、そのような積層体をシートとして含む冊子体、及び関連する方法を提供することを課題とする。
(態様3の課題)
 以上に鑑み、本発明は、可視光領域で発色させることなく、視認が困難であるの文字、図柄等の画像情報の潜像をレーザー光により近赤外線吸収層を有する積層体に形成する方法を提供することを課題とする。
(Problem of aspect 1)
In view of the above, the present invention has high security, is easy to determine authenticity, and / or simplifies the manufacturing process as an information display medium that can be used as a security information medium such as an ID certificate and a data page. It is an object of the present invention to provide an information display medium capable of being used, a member for an information display medium that can be used for such an information display medium, a booklet containing such an information display medium as a sheet, and a related method.
(Problem of aspect 2)
In view of the above, the present invention provides security by adding the display of information that can be recognized mainly under infrared rays such as near infrared rays, while maintaining the display of some information such as personal information by color development such as black coloring. In particular, a laminate that can further improve security by displaying information that can be recognized under infrared rays on the same surface as visible information, and a booklet that includes such a laminate as a sheet. , And related methods.
(Problem of aspect 3)
In view of the above, the present invention provides a method for forming a latent image of image information such as characters and patterns that are difficult to see into a laminated body having a near-infrared absorbing layer by laser light without developing a color in the visible light region. The challenge is to provide.
(態様1)
 上記課題を解決するべく、本発明は、可視光透過性及び近赤外線透過性を有する透過性材料と、近赤外線吸収性材料とを含有する情報表示媒体用部材であって、近赤外線吸収性材料は、セシウム酸化タングステン又は6ホウ化ランタンを含み、情報表示媒体用部材の対象部分にレーザー光を当てることにより、対象部分の、少なくとも所定の波長範囲における近赤外線吸収性が低下することを特徴とする、情報表示媒体用部材を提供する。
(Aspect 1)
In order to solve the above problems, the present invention is a member for an information display medium containing a transparent material having visible light transmission and near-infrared transmission and a near-infrared absorbing material, and is a near-infrared absorbing material. Is characterized by containing tungsten cesium oxide or lanthanum hexaboride, and by irradiating the target portion of the information display medium member with laser light, the near-infrared absorption of the target portion in at least a predetermined wavelength range is reduced. To provide a member for an information display medium.
 また本発明は、基材部と、基材部を貫通して配置された、上記情報表示媒体用部材とを備えたことを特徴とする、情報表示媒体を提供する。 The present invention also provides an information display medium, which comprises a base material portion and the above-mentioned information display medium member arranged so as to penetrate the base material portion.
 上記情報表示媒体は、基材部の第1面の側と第2面の側との少なくとも一方に形成された、レーザー発色剤を含みレーザー光を当てることにより発色するレーザー発色層を更に備えてよく、情報表示媒体用部材は基材部とレーザー発色層とを貫通して配置されていてよい。 The information display medium further includes a laser coloring layer formed on at least one of the first surface side and the second surface side of the base material portion, which contains a laser coloring agent and develops color by irradiating with laser light. Often, the information display medium member may be arranged so as to penetrate the base material portion and the laser coloring layer.
 上記情報表示媒体は、基材部の第1面の側と第2面の側との少なくとも一方に形成された、近赤外線透過性の有色インキ組成物又は蛍光インキ組成物を含む印刷層を更に備えてよい。 The information display medium further includes a printing layer containing a near-infrared ray-transparent colored ink composition or a fluorescent ink composition formed on at least one of the first surface side and the second surface side of the base material portion. You may be prepared.
 上記情報表示媒体は、基材部の第1面の側と第2面の側との少なくとも一方に形成された、近赤外線透過性のホログラム層を更に備えてよい。 The information display medium may further include a near-infrared ray-transparent hologram layer formed on at least one of the first surface side and the second surface side of the base material portion.
 上記情報表示媒体は、基材部の第1面の側であって、情報表示媒体における第1面の側の最も外側の層として形成される、可視光透過性及び近赤外線透過性を有する第1面側透過層と、基材部の第2面の側であって、情報表示媒体における第2面の側の最も外側の層として形成される、可視光透過性及び近赤外線透過性を有する第2面側透過層との少なくとも一方を更に備えてよい。 The information display medium is the side of the first surface of the base material portion, and is formed as the outermost layer on the side of the first surface of the information display medium, and has visible light transmission and near infrared transmission. It has visible light transmission and near-infrared transmission, which is formed as a one-side transmission layer and the outermost layer on the second surface side of the base material portion on the second surface side of the information display medium. At least one of the second surface side transparent layer may be further provided.
 上記情報表示媒体において、第1面側透過層と第2面側透過層との少なくとも一方における基材部とは逆側の面の、情報表示媒体用部材と少なくとも一部重なる区域には複数の凸状光学要素部分が形成されていてよい。 In the above information display medium, a plurality of areas on the surface opposite to the base material portion on at least one of the first surface side transmission layer and the second surface side transmission layer, in an area that at least partially overlaps with the information display medium member. A convex optical element portion may be formed.
 上記情報表示媒体は、基材中間層を更に備えてよく、基材中間層は第1の部分と第2の部分とを含んでよく、基材部は第1基材部と第2基材部とを含んでよく、基材中間層の第1の部分は第1基材部と第2基材部との間に位置してよく、基材中間層の第2の部分は、基材中間層の端部に位置してよく、第1基材部と第2基材部との間に位置しなくてよい。 The information display medium may further include a base material intermediate layer, the base material intermediate layer may include a first portion and a second portion, and the base material portion includes a first base material portion and a second base material. The first portion of the base material intermediate layer may be located between the first base material portion and the second base material portion, and the second portion of the base material intermediate layer may include a portion. It may be located at the end of the intermediate layer and may not be located between the first base material and the second base material.
 または本発明は、複数のシートをとじ合わせた冊子体であって、複数のシートのうち少なくとも1つのシートが上記情報表示媒体であり、情報表示媒体は基材中間層の第2の部分において他のシートととじ合わせられている、冊子体を提供する。 Alternatively, the present invention is a booklet in which a plurality of sheets are bound together, at least one of the plurality of sheets is the information display medium, and the information display medium is the other in the second part of the base material intermediate layer. Provides a booklet that is bound to the sheet of.
 上記冊子体において、情報表示媒体用部材が、情報表示媒体用部材内における近赤外線吸収特性の変化によって対象の情報を部分的に表示する第1の部分情報表示部を含んでよく、冊子体に含まれる他のシートのうち、情報表示媒体と隣り合うページのシートが、隣り合うページのシートにおける情報表示媒体側の面に形成された、近赤外線吸収特性及び可視光吸収特性の変化によって対象の情報を部分的に表示する第2の部分情報表示部を含んでよく、第1の部分情報表示部において表示される情報と第2の部分情報表示部において表示される情報とを合成することにより、対象の情報が得られてよい。 In the above-mentioned booklet, the information display medium member may include a first partial information display unit that partially displays the target information due to a change in the near-infrared absorption characteristic in the information display medium member, and the booklet may include. Among the other sheets included, the sheet of the page adjacent to the information display medium is the target due to the change in the near-infrared absorption characteristic and the visible light absorption characteristic formed on the surface of the adjacent page on the information display medium side. A second partial information display unit that partially displays information may be included, and by synthesizing the information displayed in the first partial information display unit and the information displayed in the second partial information display unit. , The target information may be obtained.
 また本発明は、基材部の第1面の側、又は第2面の側にあって、情報表示媒体用部材が配置されていない領域が、可視光吸収特性の変化によって情報を表示する可視情報表示部を含む、上記冊子体における、可視情報表示部が表示する情報と、第1の部分情報表示部において表示される情報と第2の部分情報表示部において表示される情報とを合成することにより得られる対象の情報とを比較することにより、情報表示媒体の真贋判定をすることを特徴とする方法を提供する。 Further, in the present invention, a visible region on the first surface side or the second surface side of the base material portion on which the information display medium member is not arranged displays information by changing the visible light absorption characteristic. The information displayed by the visible information display unit in the above booklet including the information display unit, the information displayed by the first partial information display unit, and the information displayed by the second partial information display unit are combined. Provided is a method characterized by determining the authenticity of an information display medium by comparing it with the target information obtained thereby.
 また本発明は、可視光透過性及び近赤外線透過性を有する透過層と、近赤外線吸収性材料を含む近赤外線吸収性インキ組成物を含む、近赤外線吸収層とを備えた情報表示媒体用部材であって、近赤外線吸収性材料は、セシウム酸化タングステン又は6ホウ化ランタンを含み、情報表示媒体用部材の対象部分にレーザー光を当てることにより、対象部分の、少なくとも所定の波長範囲における近赤外線吸収性が低下することを特徴とする、情報表示媒体用部材を提供する。 Further, the present invention is a member for an information display medium including a transmission layer having visible light transmission and near-infrared transmission, and a near-infrared absorbing layer including a near-infrared absorbing ink composition containing a near-infrared absorbing material. The near-infrared absorbing material contains tungsten cesium oxide or lanthanum hexaboride, and by irradiating the target portion of the information display medium member with laser light, the near-infrared ray in at least a predetermined wavelength range of the target portion is obtained. Provided is a member for an information display medium, which is characterized by a decrease in absorbency.
 また本発明は、基材部と、可視光透過性及び近赤外線透過性を有する透過性材料と、近赤外線吸収性材料とを含有し、基材部を貫通して配置された情報表示媒体用部材であって、近赤外線吸収性材料は、セシウム酸化タングステン又は6ホウ化ランタンを含む、情報表示媒体用部材とを備えた情報表示媒体における、情報表示媒体用部材の対象部分に対して、対象部分の、少なくとも所定の波長範囲における近赤外線吸収性を低下させるようにレーザー光を当てることを特徴とする、方法を提供する。 Further, the present invention is for an information display medium containing a base material portion, a transparent material having visible light transmission and near infrared ray transmission, and a near infrared ray absorbing material, and arranged through the base material portion. The near-infrared absorbing material is a member, which is a target portion of the information display medium member in an information display medium including the information display medium member containing tungsten cesium oxide or hexaborated lanthanum. Provided is a method comprising irradiating a portion with a laser beam so as to reduce near-infrared absorption at least in a predetermined wavelength range.
 また本発明は、基材部と、可視光透過性及び近赤外線透過性を有する透過性材料と、近赤外線吸収性材料とを含有し、基材部を貫通して配置された情報表示媒体用部材であって、近赤外線吸収性材料は、セシウム酸化タングステン又は6ホウ化ランタンを含む、情報表示媒体用部材とを備え、情報表示媒体用部材が、情報表示媒体用部材内における近赤外線吸収特性の変化によって情報を表示する近赤外情報表示部を含み、基材部の第1面の側、又は第2面の側にあって、情報表示媒体用部材が配置されていない領域が、可視光吸収特性の変化によって情報を表示する可視情報表示部を含み、近赤外情報表示部において表示される情報と、可視情報表示部において表示される情報とが、同一の対象に関連する情報であることを特徴とする、情報表示媒体を提供する。 Further, the present invention is for an information display medium containing a base material portion, a transparent material having visible light transmission and near infrared ray transmission, and a near infrared ray absorbing material, and arranged through the base material portion. The member, the near-infrared absorbing material includes a member for an information display medium containing tungsten cesium oxide or lanthanum hexaboride, and the member for the information display medium has near-infrared absorption characteristics in the member for the information display medium. A region on the side of the first surface or the second surface of the base material portion on which the information display medium member is not arranged is visible, including the near-infrared information display unit that displays information by changing the light. The information displayed in the near-infrared information display unit and the information displayed in the visible information display unit include the visible information display unit that displays information by changing the light absorption characteristics, and the information is related to the same object. Provide an information display medium characterized by being present.
 また本発明は、基材部と、可視光透過性及び近赤外線透過性を有する透過性材料と、近赤外線吸収性材料とを含有し、基材部を貫通して配置された情報表示媒体用部材であって、近赤外線吸収性材料は、セシウム酸化タングステン又は6ホウ化ランタンを含む、情報表示媒体用部材とを備え、情報表示媒体用部材が、情報表示媒体用部材内における近赤外線吸収特性の変化によって情報を表示する近赤外情報表示部を含み、基材部の第1面の側、又は第2面の側にあって、情報表示媒体用部材が配置されていない領域が、可視光吸収特性の変化によって情報を表示する可視情報表示部を含む、情報表示媒体の、近赤外情報表示部の表示内容と可視情報表示部の表示内容とを比較することにより、情報表示媒体の真贋判定をすることを特徴とする方法を提供する。 Further, the present invention is for an information display medium containing a base material portion, a transparent material having visible light transmission and near infrared ray transmission, and a near infrared ray absorbing material, and arranged through the base material portion. The member, the near-infrared absorbing material includes a member for an information display medium containing tungsten cesium oxide or lanthanum hexaboride, and the member for the information display medium has near-infrared absorption characteristics in the member for the information display medium. A region on the side of the first surface or the second surface of the base material portion on which the information display medium member is not arranged is visible, including the near-infrared information display unit that displays information by changing the light. By comparing the display content of the near-infrared information display unit and the display content of the visible information display unit of the information display medium including the visible information display unit that displays information by changing the light absorption characteristics, the information display medium can be used. Provided is a method characterized by authenticity determination.
(態様2)
 上記課題を解決するべく、本発明は、基材層と、基材層の第1面の側に形成された、レーザー発色剤を含みレーザー光を当てることにより発色する第1面側レーザー発色層と、基材層の第1面の側に形成された、近赤外線吸収性材料を含む近赤外線吸収性インキ組成物を含む近赤外線吸収層とを備え、第1面側レーザー発色層は少なくとも1つの開口部領域を有し、開口部領域内に近赤外線吸収層の少なくとも一部が位置するか、又は開口部領域と近赤外線吸収層とが少なくとも部分的に重なり、近赤外線吸収性材料は、セシウム酸化タングステン又は6ホウ化ランタンを含み、近赤外線吸収層の、開口部領域内に位置するか、又は開口部領域と重なる対象部分にレーザー光を当てることにより、対象部分の、少なくとも所定の波長範囲における近赤外線吸収性が低下することを特徴とする、積層体を提供する。
(Aspect 2)
In order to solve the above problems, the present invention presents the first surface side laser coloring layer formed on the base material layer and the first surface side of the base material layer, which contains a laser coloring agent and develops color by irradiating with laser light. And a near-infrared absorbing layer containing a near-infrared absorbing ink composition containing a near-infrared absorbing material formed on the first surface side of the base material layer, and at least one laser coloring layer on the first surface side is provided. A near-infrared absorbing material has one opening region in which at least a portion of the near-infrared absorbing layer is located, or the opening region and the near-infrared absorbing layer overlap at least partially. By shining a laser beam on a target portion of the near-infrared absorbing layer that contains tungsten cesium oxide or hexaborohydride and is located within the opening region or overlaps the opening region, at least a predetermined wavelength of the target portion. Provided is a laminate characterized by reduced near-infrared absorption in the range.
 上記積層体は、基材層の第1面の側に形成された、近赤外線透過性の有色インキ組成物又は蛍光インキ組成物を含む第1面側印刷層を更に備えてよい。 The laminate may further include a first side printing layer containing a near-infrared transmissive colored ink composition or a fluorescent ink composition formed on the first side side of the base material layer.
 上記積層体は、基材層の第1面の側に形成された、近赤外線透過性の第1面側ホログラム層を更に備えてよい。 The laminate may further include a near-infrared ray transmissive first surface side hologram layer formed on the first surface side of the base material layer.
 基材層の第1面の側に形成された、第1面側印刷層は、少なくとも一部が近赤外線吸収層と重なっていてよい。 At least a part of the first side printing layer formed on the first side of the base material layer may overlap with the near infrared absorption layer.
 基材層の第1面の側に形成された、第1面側ホログラム層は、少なくとも一部が近赤外線吸収層と重なっていてよい。 At least a part of the first surface side hologram layer formed on the first surface side of the base material layer may overlap with the near infrared absorption layer.
 上記積層体は、基材層の第2面の側に形成された、レーザー発色剤を含みレーザー光を当てることにより発色する第2面側レーザー発色層を更に備えてよい。 The laminate may further include a second surface side laser coloring layer formed on the second surface side of the base material layer, which contains a laser coloring agent and develops color by irradiating with laser light.
 上記積層体は、基材層の第1面の側であって、積層体における第1面の側の最も外側の層として形成された、可視光透過性及び近赤外線透過性を有する第1面側透過層を更に備えてよい。 The laminate is a first surface having visible light transmission and near-infrared transmission, which is the side of the first surface of the base material layer and is formed as the outermost layer on the side of the first surface in the laminate. A side transparent layer may be further provided.
 上記積層体は、基材層の第2面の側であって、積層体における第2面の側の最も外側の層として形成された、可視光透過性及び近赤外線透過性を有する第2面側透過層を更に備えてよい。 The laminate is a second surface having visible light transmission and near-infrared transmission, which is the side of the second surface of the base material layer and is formed as the outermost layer on the side of the second surface in the laminate. A side transparent layer may be further provided.
 上記第1面側透過層における近赤外線吸収層とは逆側の面の、近赤外線吸収層と少なくとも一部重なる区域には複数の凸状光学要素部分が形成されていてよい。 A plurality of convex optical element portions may be formed on the surface of the first surface side transmitting layer opposite to the near infrared absorbing layer, in an area that at least partially overlaps the near infrared absorbing layer.
 上記積層体は、基材中間層を更に備えてよい。基材中間層は第1の部分と第2の部分とを含んでよく、基材層は第1基材層と第2基材層とを含んでよく、基材中間層の第1の部分は第1基材層と第2基材層との間に位置してよく、基材中間層の第2の部分は、基材中間層の端部に位置して第1基材層と第2基材層との間に位置しなくてよい。 The laminate may further include a base material intermediate layer. The base material intermediate layer may include a first portion and a second portion, and the base material layer may include a first base material layer and a second base material layer, and the first portion of the base material intermediate layer may be included. May be located between the first substrate layer and the second substrate layer, and the second portion of the substrate intermediate layer is located at the end of the substrate intermediate layer and is located between the first substrate layer and the first substrate layer. It does not have to be located between the two substrate layers.
 また本発明は、複数のシートをとじ合わせた冊子体であって、複数のシートのうち少なくとも1つのシートが上記積層体であり、積層体は基材中間層の第2の部分において他のシートととじ合わせられている、冊子体を提供する。 Further, the present invention is a booklet in which a plurality of sheets are bound together, and at least one of the plurality of sheets is the above-mentioned laminate, and the laminate is another sheet in the second portion of the base material intermediate layer. Provide a booklet that is bound with.
 また本発明は、基材層と、基材層の第1面の側に形成された、レーザー発色剤を含みレーザー光を当てることにより発色する第1面側レーザー発色層と、基材層の第1面の側に形成された、近赤外線吸収性材料を含む近赤外線吸収性インキ組成物を含む近赤外線吸収層であって、近赤外線吸収性材料はセシウム酸化タングステン又は6ホウ化ランタンを含む、近赤外線吸収層とを備え、第1面側レーザー発色層は少なくとも1つの開口部領域を有し、開口部領域内に近赤外線吸収層の少なくとも一部が位置するか、又は開口部領域と近赤外線吸収層とが少なくとも部分的に重なる積層体における、近赤外線吸収層の、開口部領域内に位置するか、又は開口部領域と重なる対象部分に対して、対象部分の、少なくとも所定の波長範囲における近赤外線吸収性を低下させるようにレーザー光を当てることを特徴とする、方法を提供する。 Further, the present invention comprises a base material layer, a first surface side laser coloring layer formed on the first surface side of the base material layer, which contains a laser coloring agent and develops color by irradiating a laser beam, and a base material layer. A near-infrared absorbing layer containing a near-infrared absorbing ink composition containing a near-infrared absorbing material formed on the side of the first surface, wherein the near-infrared absorbing material contains tungsten cesium oxide or lanthanum hexaboride. , The first surface side laser coloring layer has at least one opening region, and at least a part of the near infrared absorbing layer is located in the opening region, or the opening region and At least a predetermined wavelength of the target portion with respect to the target portion located in the opening region of the near-infrared absorbing layer or overlapping the opening region in the laminated body in which the near-infrared absorbing layer partially overlaps. Provided is a method characterized by irradiating a laser beam so as to reduce near-infrared absorption in the range.
 また本発明は、基材層と、基材層の第1面の側に形成された、レーザー発色剤を含みレーザー光を当てることにより発色する第1面側レーザー発色層であって、第1面側レーザー発色層は少なくとも1つの開口部領域を有し、第1面側レーザー発色層内の開口部領域以外の領域における可視光吸収特性の変化によって情報を表示する可視情報表示部を含む、第1面側レーザー発色層と、基材層の第1面の側に形成された、近赤外線吸収性材料を含む近赤外線吸収性インキ組成物を含む近赤外線吸収層であって、近赤外線吸収性材料はセシウム酸化タングステン又は6ホウ化ランタンを含み、近赤外線吸収層の少なくとも一部が開口部領域内に位置するか、又は開口部領域と近赤外線吸収層とが少なくとも部分的に重なり、開口部領域内に位置するか、又は開口部領域と重なる領域における、近赤外線吸収特性の変化によって情報を表示する近赤外情報表示部を含む、近赤外線吸収層とを備える積層体の、可視情報表示部の表示内容と近赤外情報表示部の表示内容とを比較することにより、積層体の真贋判定をすることを特徴とする方法を提供する。 Further, the present invention is a first surface side laser coloring layer formed on the base material layer and the first surface side of the base material layer, which contains a laser coloring agent and develops color by irradiating with laser light. The surface-side laser coloring layer has at least one opening region, and includes a visible information display unit that displays information by a change in visible light absorption characteristics in a region other than the opening region in the first surface-side laser coloring layer. A near-infrared absorbing layer containing a near-infrared absorbing ink composition containing a near-infrared absorbing material and formed on the first surface side of a laser coloring layer on the first surface side and absorbing near infrared rays. The sex material comprises tungsten cesium oxide or lanthanum hexaboride, and at least a part of the near-infrared absorbing layer is located in the opening region, or the opening region and the near-infrared absorbing layer are at least partially overlapped and opened. Visible information of a laminate with a near-infrared absorbing layer, including a near-infrared information display that displays information by changes in near-infrared absorption characteristics in a region that is located within the region or overlaps the opening region. Provided is a method characterized by determining the authenticity of a laminated body by comparing the display content of the display unit with the display content of the near-infrared information display unit.
(態様3)
 本発明は上記の課題に鑑みてなされたものであり、以下のような特徴を有している。すなわち、本発明にかかる積層体に印字画像に対応する潜像を形成する方法は、前記積層体は、基材層、及び近赤外線吸収性材料としてセシウム酸化タングステン又は6ホウ化ランタンを含む近赤外線吸収性インキ組成物を用いて形成される近赤外線吸収層を備えるものであり、前記方法は、前記印字画像の前記潜像が形成されるように、前記印字画像の情報に基づいて制御したレーザー光を照射しながら前記積層体の対象領域を走査するレーザー走査ステップ、を含み、前記印字画像の前記潜像を形成する際の解像度は、前記基材層を可視光領域で発色させずに、前記近赤外線吸収層において少なくとも所定の波長範囲における近赤外線吸収性を低下させることによって前記潜像を形成することができるものである、ことを特徴とする。
(Aspect 3)
The present invention has been made in view of the above problems, and has the following features. That is, in the method of forming a latent image corresponding to a printed image on the laminate according to the present invention, the laminate contains a base material layer and near infrared rays containing tungsten cesium oxide or hexabored lantern as a near infrared ray absorbing material. The method includes a near-infrared absorbing layer formed by using an absorbent ink composition, and the method is a laser controlled based on the information of the printed image so that the latent image of the printed image is formed. The resolution of forming the latent image of the printed image includes a laser scanning step of scanning the target area of the laminate while irradiating light, without causing the base material layer to develop color in the visible light region. It is characterized in that the latent image can be formed by lowering the near-infrared absorbing property in at least a predetermined wavelength range in the near-infrared absorbing layer.
 本発明においては、前記レーザー走査ステップは、前記解像度に対応する単位長さあたりの数で前記対象領域に照射スポットを形成することができるように前記レーザー光を照射するものとすることができる。本発明においては、前記印字画像は、前記解像度のピクセルで表現されており、前記レーザー走査ステップは、前記ピクセルのそれぞれに対応する前記対象領域上の位置に前記ピクセルの明暗情報に基づいて制御した前記レーザー光を照射しながら前記対象領域を走査するものとすることができる。本発明においては、前記印字画像は、印字しようとする画像の情報をモノクロで表わしたものの明暗を反転させたものとすることができる。本発明においては、前記解像度は、85dpiから1000dpiの範囲とすることができる。また、本発明においては、前記解像度は、140dpiから900dpiの範囲とすることができる。また、本発明においては、前記レーザー光の波長は、近赤外線領域とすることができる。また、本発明においては、前記印字画像は、文字、数字、記号、図柄、写真、またはそれらの任意の組み合わせを含むものとすることができる。また本発明においては、前記基材層及び前記近赤外線吸収層を一体の層として形成することができる。 In the present invention, the laser scanning step can irradiate the laser beam so that the irradiation spot can be formed in the target region by the number per unit length corresponding to the resolution. In the present invention, the printed image is represented by pixels of the resolution, and the laser scanning step is controlled at a position on the target area corresponding to each of the pixels based on the brightness information of the pixels. The target area can be scanned while irradiating the laser beam. In the present invention, the printed image may be a monochrome representation of the information of the image to be printed, but the light and darkness may be reversed. In the present invention, the resolution can be in the range of 85 dpi to 1000 dpi. Further, in the present invention, the resolution can be in the range of 140 dpi to 900 dpi. Further, in the present invention, the wavelength of the laser light can be in the near infrared region. Further, in the present invention, the printed image may include letters, numbers, symbols, symbols, photographs, or any combination thereof. Further, in the present invention, the base material layer and the near-infrared absorbing layer can be formed as an integral layer.
 また、本発明は、積層体に印字画像に対応する潜像を形成する装置としても成立し、当該装置は、前記積層体は、基材層、及び近赤外線吸収性材料としてセシウム酸化タングステン又は6ホウ化ランタンを含む近赤外線吸収性インキ組成物を用いて形成される近赤外線吸収層を備えるものであり、前記装置は、前記積層体を支持する支持手段と、前記印字画像の前記潜像が形成されるように、前記印字画像の情報に基づいて制御したレーザー光を照射しながら前記積層体の対象領域を走査するレーザー走査手段と、を含み、前記印字画像の前記潜像を形成する際の解像度は、前記基材層を可視光領域で発色させずに、前記近赤外線吸収層において少なくとも所定の波長範囲における近赤外線吸収性を低下させることによって前記潜像を形成することができるものとすることができる。 The present invention is also established as an apparatus for forming a latent image corresponding to a printed image on a laminate, wherein the laminate is a base material layer and cesium tungsten oxide or 6 as a near-infrared absorbing material. The device includes a near-infrared absorbing layer formed by using a near-infrared absorbing ink composition containing a lanthanum booxide, and the apparatus includes a supporting means for supporting the laminated body and the latent image of the printed image. When forming the latent image of the printed image, including a laser scanning means for scanning the target area of the laminated body while irradiating a laser beam controlled based on the information of the printed image so as to be formed. The resolution is such that the latent image can be formed by reducing the near-infrared absorption in the near-infrared absorbing layer at least in a predetermined wavelength range without causing the base material layer to develop color in the visible light region. can do.
 また、本発明は、印字画像に対応する潜像が形成された積層体としても成立し、前記積層体は、基材層、及び近赤外線吸収性材料としてセシウム酸化タングステン又は6ホウ化ランタンを含む近赤外線吸収性インキ組成物を用いて形成される近赤外線吸収層を備え、前記印字画像の前記潜像は、前記印字画像の情報に基づいて制御したレーザー光を照射しながら前記積層体の対象領域を走査することによって形成され、前記印字画像の前記潜像を形成する際の解像度は、前記基材層を可視光領域で発色させずに、前記近赤外線吸収層において少なくとも所定の波長範囲における近赤外線吸収性を低下させることによって前記潜像を形成することができるものとすることができる。 The present invention also holds as a laminated body in which a latent image corresponding to a printed image is formed, and the laminated body contains a base material layer and tungsten cesium oxide or hexaborated lanthanum as a near-infrared absorbing material. A near-infrared absorbing layer formed by using a near-infrared absorbing ink composition is provided, and the latent image of the printed image is an object of the laminated body while irradiating a laser beam controlled based on the information of the printed image. It is formed by scanning a region, and the resolution at the time of forming the latent image of the printed image is at least in a predetermined wavelength range in the near infrared absorbing layer without causing the base material layer to develop color in the visible light region. It is possible to form the latent image by reducing the near-infrared absorption.
(態様1の効果)
 本発明によれば、セキュリティ性が高く、真贋判定し易い情報表示媒体を作製、利用することが可能となる。本発明の一態様によれば、無色赤外吸収材を含有するクリアウインドウを情報媒体(ID証やデータページ)に嵌め込んで、レーザー光で赤外吸収性能を変えることで、情報媒体の可視情報と照合できるバリアブルな不可視情報を印字できる。また、透過性材料と近赤外線吸収性材料とを含有する情報表示媒体用部材を用いる態様においては、近赤外線吸収性インキ組成物を用いた印刷が不要となり、印刷工程を1工程削減することができる。そのような態様においては、インキで印刷する場合と比べ、樹脂層間の接着性の懸念がなく、さらには、インキが印刷された印刷シートを提供する場合と比べ、ブロッキングなどの懸念問題がない。また、本発明の一態様として、パスポート等、冊子体としての身分証明書を用いれば、隣り合うページどうしを合わせて視認することでよりセキュリティ性が高くなる。
(Effect of aspect 1)
According to the present invention, it is possible to produce and use an information display medium having high security and easy to determine authenticity. According to one aspect of the present invention, a clear window containing a colorless infrared absorber is fitted into an information medium (ID certificate or data page), and the infrared absorption performance is changed by laser light to make the information medium visible. Variable invisible information that can be collated with information can be printed. Further, in the embodiment in which the information display medium member containing the transmissive material and the near-infrared absorbing material is used, printing using the near-infrared absorbing ink composition becomes unnecessary, and the printing process can be reduced by one step. can. In such an embodiment, there is no concern about adhesiveness between the resin layers as compared with the case of printing with ink, and further, there is no concern about blocking or the like as compared with the case of providing a printing sheet on which ink is printed. Further, as one aspect of the present invention, if an identification card as a booklet such as a passport is used, the security can be further improved by visually recognizing adjacent pages together.
(態様2の効果)
 本発明によれば、レーザー発色層に開口部を設けて同面に近赤外線吸収層を設けることで、レーザー発色層が近赤外線吸収層の反射率に影響を及ぼすことを回避できるとともに、近赤外情報を可視情報と同面に表示することでセキュリティ性を更に向上させることができる。
(Effect of aspect 2)
According to the present invention, by providing an opening in the laser coloring layer and providing a near-infrared absorbing layer on the same surface, it is possible to prevent the laser coloring layer from affecting the reflectance of the near-infrared absorbing layer, and it is possible to prevent the laser coloring layer from affecting the reflectance of the near-infrared absorbing layer. Security can be further improved by displaying external information on the same surface as visible information.
(態様3の効果)
 本発明は、印字画像の潜像が形成されるように印字画像の情報に基づいて制御したレーザー光を照射しながら積層体の対象領域を走査する際の解像度を、基材層を可視光領域で発色させずに、近赤外線吸収層において少なくとも所定の波長範囲における近赤外線吸収性を低下させることによって潜像を形成することができるものであるようにするという構成を採用したことにより、一般的なカメラや肉眼では認識できないが、近赤外線カメラのような近赤外可視化装置を用いると視認できる潜像を積層体に確実に形成することができるという効果を有する。
(Effect of aspect 3)
In the present invention, the resolution when scanning the target area of the laminated body while irradiating the laser beam controlled based on the information of the printed image so that the latent image of the printed image is formed is set to the visible light region of the base material layer. By adopting a configuration in which a latent image can be formed by lowering the near-infrared absorbing property in at least a predetermined wavelength range in the near-infrared absorbing layer without causing color development in the camera, it is general. Although it cannot be recognized by a simple camera or the naked eye, it has an effect that a visible latent image can be surely formed on the laminated body by using a near-infrared visualization device such as a near-infrared camera.
本発明の態様1の第1実施形態における積層体(情報表示媒体の一例)の、可視光下によるおもて面の観察画像(可視光画像)を示す図。The figure which shows the observation image (visible light image) of the front surface under visible light of the laminated body (an example of an information display medium) in 1st Embodiment of aspect 1 of this invention. 本発明の態様1の第1実施形態における積層体の、近赤外線カメラによるおもて面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。他の図においても同様。)。A diagram showing an observation image (near-infrared image) of the front surface of the laminate according to the first embodiment of the first embodiment of the present invention by a near-infrared camera (note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see. The same applies to other figures.) 本発明の態様1の第1実施形態における積層体の、可視光下による裏面(図1中、AX軸を中心に積層体を回転させることで裏返すことにより見える面。他の実施形態においても同様。)の観察画像(可視光画像)を示す図。The back surface of the laminate according to the first embodiment of the first embodiment of the present invention under visible light (in FIG. 1, the surface that can be seen by turning the laminate around the AX axis and turning it over. The same applies to other embodiments. .) The figure which shows the observation image (visible light image). 本発明の態様1の第1実施形態における積層体の、近赤外線カメラによる裏面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。他の図においても同様。)。A diagram showing an image (near-infrared image) of the back surface of the laminate according to the first embodiment of the first embodiment of the present invention taken by a near-infrared camera (note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see. The same applies to other figures.) 図1に示す積層体を、図1中のA-A’線で切断したA-A’断面を見たときの層構造の一例(図1の紙面内で、下方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、おもて面側の有色インキ層(又は蛍光インキ層、ホログラム層)12、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)13は、正確にはA-A’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)。Conceptually, an example of a layered structure (viewed from below in the paper surface of FIG. 1) when the AA'cross section of the laminate shown in FIG. 1 is cut along the AA' line in FIG. 1 is viewed. (Each layer is drawn separately to show the layer structure. Also, the colored ink layer (or fluorescent ink layer, hologram layer) 12 on the front surface side, and the colored ink layer (or colored ink layer) on the back surface side. The fluorescent ink layer and the hologram layer) 13 are not accurately cut by the AA'line, but are drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure). 本発明の態様1の第2実施形態における積層体の、可視光によるおもて面の観察画像(可視光画像)を示す図。The figure which shows the observation image (visible light image) of the front surface by visible light of the laminated body in 2nd Embodiment of aspect 1 of this invention. 本発明の態様1の第2実施形態における積層体の、近赤外線カメラによるおもて面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。他の図においても同様。)。A diagram showing an observation image (near-infrared image) of the front surface of the laminate according to the second embodiment of the first aspect of the present invention by a near-infrared camera (note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see. The same applies to other figures.) 本発明の態様1の第2実施形態における積層体の、可視光下による裏面(図6中、AX軸を中心に積層体を回転させることで裏返すことにより見える面。他の実施形態においても同様。)の観察画像(可視光画像)を示す図。The back surface of the laminate according to the second embodiment of the first aspect of the present invention under visible light (in FIG. 6, the surface that can be seen by turning the laminate around the AX axis and turning it over. The same applies to other embodiments. .) The figure which shows the observation image (visible light image). 本発明の態様1の第2実施形態における積層体の、近赤外線カメラによる裏面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。他の図においても同様。)。A diagram showing an image (near-infrared image) of the back surface of the laminate according to the second embodiment of the first aspect of the present invention (near-infrared image) by a near-infrared camera (note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see. The same applies to other figures.) 図6に示す積層体を、図6中のB-B’線で切断したB-B’断面を見たときの層構造の一例(図6の紙面内で、右方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、おもて面側の有色インキ層(又は蛍光インキ層、ホログラム層)12、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)13は、正確にはB-B’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)。Conceptually, an example of a layered structure (viewed from the right side in the paper surface of FIG. 6) when the cross section of the laminated body shown in FIG. 6 is cut along the line BB'in FIG. 6 is viewed. (Each layer is drawn separately to show the layer structure. Also, the colored ink layer (or fluorescent ink layer, hologram layer) 12 on the front surface side, and the colored ink layer (or colored ink layer) on the back surface side. The fluorescent ink layer (hologram layer) 13 is not cut exactly by the BB'line, but is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure). 図6~図10に示す積層体の製造工程の一例を示す図(第1工程:仮固定処理)。The figure which shows an example of the manufacturing process of the laminated body shown in FIGS. 6 to 10 (first step: temporary fixing process). 図6~図10に示す積層体の製造工程の一例を示す図(第2工程:窓抜き処理)。The figure which shows an example of the manufacturing process of the laminated body shown in FIGS. 6 to 10 (second step: window punching process). 図6~図10に示す積層体の製造工程の一例を示す図(第3工程:ウインドウ部材の嵌め込み処理)。The figure which shows an example of the manufacturing process of the laminated body shown in FIGS. 6 to 10 (third step: fitting process of a window member). 図6~図10に示す積層体の製造工程の一例を示す図(第4工程:プレス処理)。The figure which shows an example of the manufacturing process of the laminated body shown in FIGS. 6 to 10 (fourth process: press process). 本発明の態様1の第3実施形態における冊子体の、可視光下による観察画像(可視光画像)を示す図。The figure which shows the observation image (visible light image) under visible light of the booklet body in 3rd Embodiment of Embodiment 1 of this invention. 本発明の態様1の第3実施形態における冊子体の、近赤外線カメラによる観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。他の図においても同様。)。A diagram showing an image (near-infrared image) observed by a near-infrared camera of the booklet according to the third embodiment of the first aspect of the present invention (note that the outer shape of the laminated body is drawn for the purpose of making the figure easier to see. The same applies to the figure). 本発明の態様1の第4実施形態における冊子体の、可視光下による観察画像(可視光画像)を示す図。The figure which shows the observation image (visible light image) under visible light of the booklet body in 4th Embodiment of aspect 1 of this invention. 本発明の態様1の第4実施形態における冊子体の、近赤外線カメラによる観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。他の図においても同様。)。A diagram showing an image (near-infrared image) observed by a near-infrared camera of the booklet according to the fourth embodiment of the first aspect of the present invention (note that the outer shape of the laminated body is drawn for the purpose of making the figure easier to see. The same applies to the figure). 図17に示すウインドウ部材を単独で見た時の、近赤外線カメラによる観察画像(近赤外線画像)を示す図。The figure which shows the observation image (near-infrared image) by the near-infrared camera when the window member shown in FIG. 17 is seen alone. 本発明の態様1の第5実施形態における積層体の、可視光によるおもて面の観察画像(可視光画像)を示す図(レンチキュラーレンズは透明だが図を見やすくする目的で描いている。)。The figure which shows the observation image (visible light image) of the front surface by visible light of the laminated body in 5th Embodiment of Embodiment 1 of this invention (the lenticular lens is transparent, but is drawn for the purpose of making the figure easy to see). .. 図20に示す積層体を、後述の図25中の矢印C及び矢印Dの方向で見たときのおもて面の可視光画像を示す図。The figure which shows the visible light image of the front surface when the laminated body shown in FIG. 20 is seen in the direction of the arrow C and the arrow D in FIG. 25 which will be described later. 図20に示す積層体を、後述の図25中の矢印Cの方向で見たときのおもて面の近赤外線カメラによる観察画像(近赤外線画像)を示す図。The figure which shows the observation image (near-infrared image) by the near-infrared camera of the front surface when the laminated body shown in FIG. 20 is seen in the direction of arrow C in FIG. 25 which will be described later. 図20に示す積層体を、後述の図25中の矢印Dの方向で見たときのおもて面の近赤外線カメラによる観察画像(近赤外線画像)を示す図。The figure which shows the observation image (near-infrared image) by the near-infrared camera of the front surface when the laminated body shown in FIG. 20 is seen in the direction of arrow D in FIG. 図20に示す積層体を、図20中のA-A’線で切断したA-A’断面を見たときの層構造の一例(図20の紙面内で、下方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、おもて面側の有色インキ層(又は蛍光インキ層、ホログラム層)12、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)13は、正確にはA-A’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)。Conceptually, an example of a layered structure (viewed from below in the paper surface of FIG. 20) when the cross section of AA'cross-section of the laminate shown in FIG. 20 is cut along the AA' line in FIG. 20 is viewed. (Each layer is drawn separately to show the layer structure. Also, the colored ink layer (or fluorescent ink layer, hologram layer) 12 on the front surface side, and the colored ink layer (or colored ink layer) on the back surface side. The fluorescent ink layer and the hologram layer) 13 are not accurately cut by the AA'line, but are drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure). 図20に示す積層体を、図20中のB-B’線で切断したB-B’断面を見たときの層構造の一例(図20の紙面内で、右方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)12、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)13は、正確にはB-B’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)。Conceptually, an example of a layered structure (viewed from the right side in the paper surface of FIG. 20) when the cross section of the laminated body shown in FIG. 20 is cut along the line BB'in FIG. 20 is viewed. (Each layer is drawn separately to show the layer structure. Also, the colored ink layer (or fluorescent ink layer, hologram layer) 12 on the back surface side, the colored ink layer (or fluorescent ink layer) on the back surface side. , The hologram layer) 13 is not exactly cut by the BB'line, but is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure). レンチキュラーの原理を概念的に説明する図。The figure which conceptually explains the principle of lenticular. 本発明の態様1の第6実施形態における積層体の、可視光下によるおもて面の観察画像(可視光画像)を示す図。The figure which shows the observation image (visible light image) of the front surface under visible light of the laminated body in 6th Embodiment of aspect 1 of this invention. 本発明の態様1の第6実施形態における積層体の、近赤外線カメラによるおもて面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。他の図においても同様。)。A diagram showing an observation image (near-infrared image) of the front surface of the laminate according to the sixth embodiment of the first aspect of the present invention by a near-infrared camera (note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see. The same applies to other figures.) 図27に示す積層体を、図27中のA-A’線で切断したA-A’断面を見たときの層構造の一例(図27の紙面内で、下方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、おもて面側の有色インキ層(又は蛍光インキ層、ホログラム層)12は、正確にはA-A’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)。Conceptually, an example of a layered structure (viewed from below in the paper surface of FIG. 27) when the AA'cross section of the laminate shown in FIG. 27 is cut along the AA' line in FIG. 27 is viewed. (Each layer is drawn separately to show the layer structure. The colored ink layer (or fluorescent ink layer, hologram layer) 12 on the front surface side is, to be exact, AA'. It is not cut by a line, but it is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure.) 本発明の態様1の第1実施形態における積層体の変形例の層構造(第1実施形態と同様に、A-A’線で切断したA-A’断面であり、各層を分離して描いている。また、おもて面側の有色インキ層(又は蛍光インキ層、ホログラム層)12、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)13は、正確にはA-A’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)を概念的に示す図。The layer structure of the modified example of the laminated body in the first embodiment of the first embodiment of the present invention (similar to the first embodiment, it is an AA'cross section cut along the AA' line, and each layer is drawn separately. Further, the colored ink layer (or fluorescent ink layer, hologram layer) 12 on the front surface side and the colored ink layer (or fluorescent ink layer, hologram layer) 13 on the back surface side are, to be exact, AA'. Although it is not cut by a line, it is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure). 本発明の態様1の第1実施形態における積層体の更なる変形例の層構造(第1実施形態と同様に、A-A’線で切断したA-A’断面であり、各層を分離して描いている。また、おもて面側の有色インキ層(又は蛍光インキ層、ホログラム層)12、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)13は、正確にはA-A’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)を概念的に示す図。A layer structure of a further modification of the laminate according to the first embodiment of the first embodiment of the present invention (similar to the first embodiment, it is an AA'cross section cut along the AA' line, and each layer is separated. The colored ink layer (or fluorescent ink layer, hologram layer) 12 on the front surface side and the colored ink layer (or fluorescent ink layer, hologram layer) 13 on the back surface side are accurately A-. It is not cut by the A'line, but is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure). レーザーマーカー装置の構成を概略的に示す図。The figure which shows the structure of the laser marker apparatus schematicly. セシウム酸化タングステン含有インキと酸化イッテルビウム含有インキとを赤外線カメラで観測した時の近赤外線画像、及び、それらを基材にオフセット印刷した印刷物を赤外線カメラで観測した時の近赤外線画像を示す図。The figure which shows the near-infrared image when cesium tungsten oxide-containing ink and ittelbium oxide-containing ink were observed by an infrared camera, and the near-infrared image when the printed matter which offset-printed them on a base material was observed by an infrared camera. さまざまな基材にセシウム酸化タングステン含有インキを用いてオフセット印刷した印刷物における、レーザー印字をする前の印刷面の可視光領域~近赤外線領域の反射率(レーザー印字前)と、印刷物の印刷面に対してレーザー印字をした領域における可視光領域~近赤外線領域の反射率(レーザー印字後)とを測定した結果を示すグラフ(印刷面の側(インキ側)の反射率を測定した結果を示している。他のグラフにおいても同じ。)。In printed matter that is offset printed using ink containing cesium oxide on various substrates, the reflectance in the visible light region to near infrared region (before laser printing) of the printed surface before laser printing and the printed surface of the printed matter On the other hand, a graph showing the result of measuring the reflectance (after laser printing) in the visible light region to the near infrared region in the laser-printed region (showing the result of measuring the reflectance on the printing surface side (ink side)). Yes. The same applies to other graphs.) 図34のグラフ中、基材としてPC(ポリカーボネート)を用いたときの測定結果を抜き出したグラフ。From the graph of FIG. 34, the graph obtained by extracting the measurement results when PC (polycarbonate) is used as the base material. 図34のグラフ中、基材としてPET-G(非結晶性ポリエステル)を用いたときの測定結果を抜き出したグラフ。The graph which extracted the measurement result when PET-G (amorphous polyester) was used as a base material in the graph of FIG. 34. 図34のグラフ中、基材としてPVC(ポリ塩化ビニル)を用いたときの測定結果を抜き出したグラフ。The graph which extracted the measurement result when PVC (polyvinyl chloride) was used as a base material in the graph of FIG. 34. セシウム酸化タングステンの含有量(含有率で表す。単位は重量パーセント;重量%)がさまざまに異なるインキ組成物を用いて基材としての上質紙にオフセット印刷した時の、印刷面の可視光領域~近赤外線領域の反射率を測定した結果を示すグラフ。Visible light region of the printed surface when offset printing is performed on high-quality paper as a base material using ink compositions having different content of tungsten cesium oxide (expressed as content. Unit is weight percent; weight%). The graph which shows the result of having measured the reflectance in the near-infrared region. 基材としてのPC(ポリカーボネート)に6ホウ化ランタン含有インキを用いてオフセット印刷した印刷物における、レーザー印字をする前の印刷面の可視光領域~近赤外線領域の反射率(レーザー印字前)と、印刷物の印刷面に対してレーザー印字をした領域における可視光領域~近赤外線領域の反射率(レーザー印字後)とを測定した結果を示すグラフ。The reflectance (before laser printing) of the visible light region to the near infrared region of the printed surface before laser printing in a printed matter offset printed using a hexaborated lanthanum-containing ink on PC (polycarbonate) as a base material. The graph which shows the result of having measured the reflectance (after laser printing) of the visible light region to the near infrared region in the region where laser printing was performed on the printing surface of a printed matter. 本発明の態様2の第1実施形態における積層体の、可視光下によるおもて面の観察画像(可視光画像)を示す図。The figure which shows the observation image (visible light image) of the front surface under visible light of the laminated body in 1st Embodiment of aspect 2 of this invention. 本発明の態様2の第1実施形態における積層体の、近赤外線カメラによるおもて面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。また開口部領域の枠(破線)は近赤外線画像としては現れないが、便宜上示している。他の図においても同様。)。A diagram showing an observation image (near-infrared image) of the front surface of the laminate according to the first embodiment of the second embodiment of the present invention by a near-infrared camera (note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see. Although the frame (broken line) of the opening region does not appear as a near-infrared image, it is shown for convenience. The same applies to other figures). 本発明の態様2の第1実施形態における積層体の、可視光下による裏面(図40中、AX軸を中心に積層体を回転させることで裏返すことにより見える面。他の実施形態においても同様。)の観察画像(可視光画像)を示す図。The back surface of the laminate according to the first embodiment of the second embodiment of the present invention under visible light (in FIG. 40, the surface that can be seen by turning the laminate around the AX axis and turning it over. The same applies to other embodiments. .) The figure which shows the observation image (visible light image). 本発明の態様2の第1実施形態における積層体の、近赤外線カメラによる裏面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。他の図においても同様。)。A diagram showing an image (near-infrared image) of the back surface of the laminate according to the first embodiment of the second aspect of the present invention (near-infrared image) by a near-infrared camera (note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see. The same applies to other figures.) 図1に示す積層体を、図1中のA-A’線で切断したA-A’断面を見たときの層構造の一例(図40の紙面内で、下方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている)。Conceptually, an example of a layered structure (viewed from below in the paper surface of FIG. 40) when the cross section of AA'cross-section of the laminate shown in FIG. 1 is cut along the AA' line in FIG. 1 is viewed. (Each layer is drawn separately to show the layer structure). 図40に示す積層体を、図40中のA-A’線で切断したA-A’断面を見たときの層構造の一例(図40の紙面内で、下方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている)(積層順序の変更例1)。Conceptually, an example of a layered structure (viewed from below in the paper surface of FIG. 40) when the cross section of AA'cross-section of the laminate shown in FIG. 40 is cut along the AA' line in FIG. 40 is viewed. (Each layer is drawn separately to show the layer structure) (Example 1 of changing the stacking order). 図40に示す積層体を、図40中のA-A’線で切断したA-A’断面を見たときの層構造の一例(図40の紙面内で、下方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている)(積層順序の変更例2)。Conceptually, an example of a layered structure (viewed from below in the paper surface of FIG. 40) when the cross section of AA'cross-section of the laminate shown in FIG. 40 is cut along the AA' line in FIG. 40 is viewed. (The layers are drawn separately to show the layer structure) (Example 2 of changing the stacking order). 図40に示す積層体を、図40中のA-A’線で切断したA-A’断面を見たときの層構造の一例(図40の紙面内で、下方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている)(積層順序の変更例3)。Conceptually, an example of a layered structure (viewed from below in the paper surface of FIG. 40) when the cross section of AA'cross-section of the laminate shown in FIG. 40 is cut along the AA' line in FIG. 40 is viewed. (Each layer is drawn separately to show the layer structure) (Example 3 of changing the stacking order). 図40に示す積層体を、図40中のA-A’線で切断したA-A’断面を見たときの層構造の一例(図40の紙面内で、下方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている)(積層順序の変更例4)。Conceptually, an example of a layered structure (viewed from below in the paper surface of FIG. 40) when the cross section of AA'cross-section of the laminate shown in FIG. 40 is cut along the AA' line in FIG. 40 is viewed. (Each layer is drawn separately to show the layer structure) (Example 4 of changing the stacking order). 図40に示す積層体を、図40中のA-A’線で切断したA-A’断面を見たときの層構造の一例(図40の紙面内で、下方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている)(積層順序の変更例5)。Conceptually, an example of a layered structure (viewed from below in the paper surface of FIG. 40) when the AA'cross section of the laminate shown in FIG. 40 is cut along the AA' line in FIG. 40 is viewed. (Each layer is drawn separately to show the layer structure) (Example 5 of changing the stacking order). 図40に示す積層体を、図40中のA-A’線で切断したA-A’断面を見たときの層構造の一例(図40の紙面内で、下方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている)(裏面側にレーザー発色層を追加)。Conceptually, an example of a layered structure (viewed from below in the paper surface of FIG. 40) when the AA'cross section of the laminate shown in FIG. 40 is cut along the AA' line in FIG. 40 is viewed. (Each layer is drawn separately to show the layer structure) (a laser coloring layer is added on the back side). 図41中に示す、近赤外線吸収性インキによる微小表示印刷画像の一部を拡大した時に見えるマイクロ文字を示す図(近赤外線画像)。FIG. 41 is a diagram (near-infrared image) showing micro characters that can be seen when a part of a micro-display printed image by a near-infrared absorbing ink is enlarged. 図41中に示す、近赤外線吸収性インキによる印刷画像の一部と、レーザーマーキング(レーザー描画)により生成された人物画像の一部とを拡大した時にそれぞれ見えるマイクロ文字を示す図(近赤外線画像)。A diagram (near-infrared image) showing micro characters that can be seen when a part of a printed image using near-infrared absorbing ink and a part of a person image generated by laser marking (laser drawing) are enlarged, as shown in FIG. 41. ). 本発明の態様2の第2実施形態における積層体のおもて面の、レーザーマーキング(レーザー印字)により生成されたマイクロ文字を示す図(近赤外線画像)。FIG. 6 is a diagram (near infrared image) showing micro characters generated by laser marking (laser printing) on the front surface of the laminate according to the second embodiment of the second embodiment of the present invention. 本発明の態様2の第3実施形態における積層体のおもて面の、近赤外線画像を示す図。The figure which shows the near-infrared image of the front surface of the laminated body in 3rd Embodiment of aspect 2 of this invention. 本発明の態様2の第4実施形態における積層体の、可視光によるおもて面の観察画像(可視光画像)を示す図。The figure which shows the observation image (visible light image) of the front surface by visible light of the laminated body in 4th Embodiment of aspect 2 of this invention. 本発明の態様2の第4実施形態における積層体の、近赤外線カメラによるおもて面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。また開口部領域の枠(破線)は近赤外線画像としては現れないが、便宜上示している。他の図においても同様。)。A diagram showing an observation image (near-infrared image) of the front surface of the laminate according to the fourth embodiment of the second aspect of the present invention by a near-infrared camera (note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see. Although the frame (broken line) of the opening region does not appear as a near-infrared image, it is shown for convenience. The same applies to other figures). 本発明の態様2の第4実施形態における積層体の、可視光下による裏面(図55中、AX軸を中心に積層体を回転させることで裏返すことにより見える面。他の実施形態においても同様。)の観察画像(可視光画像)を示す図。The back surface of the laminate according to the fourth embodiment of the second aspect of the present invention under visible light (in FIG. 55, the surface that can be seen by turning the laminate around the AX axis and turning it over. The same applies to other embodiments. .) The figure which shows the observation image (visible light image). 本発明の態様2の第4実施形態における積層体の、近赤外線カメラによる裏面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。他の図においても同様。)。A diagram showing an image (near-infrared image) of the back surface of the laminate according to the fourth embodiment of the second aspect of the present invention (near-infrared image) by a near-infrared camera (note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see. The same applies to other figures.) 図55に示す積層体を、図55中のB-B’線で切断したB-B’断面を見たときの層構造の一例(図55の紙面内で、右方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)12Aは、正確にはB-B’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)。Conceptually, an example of a layered structure (viewed from the right side in the paper surface of FIG. 55) when the cross section of the laminated body shown in FIG. 55 is cut along the line BB'in FIG. 55 is viewed. (Each layer is drawn separately to show the layer structure. The colored ink layer (or fluorescent ink layer, hologram layer) 12A on the back surface side is cut by the BB'line to be exact. Although not shown, it is drawn for the purpose of making the layer structure easier to understand. The same applies to other figures showing the layer structure.) 図55に示す積層体を、図55中のB-B’線で切断したB-B’断面を見たときの層構造の別の例(図55の紙面内で、右方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)12は、正確にはB-B’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)。Another example of the layer structure when the BB'cross section of the laminate shown in FIG. 55 is cut along the BB' line in FIG. 55 (viewed from the right in the paper of FIG. 55). (Each layer is drawn separately to show the layer structure. The colored ink layer (or fluorescent ink layer, hologram layer) 12 on the back side is exactly the BB'line. Although it is not cut by, it is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure.) 本発明の態様2の第4実施形態における積層体を用いて作製される冊子体を示す図(可視光画像)。The figure (visible light image) which shows the booklet body produced by using the laminated body in 4th Embodiment of aspect 2 of this invention. 本発明の態様2の第4実施形態における積層体を用いて作製される冊子体を示す図(近赤外線画像)。The figure which shows the booklet body produced by using the laminated body in 4th Embodiment of aspect 2 of this invention (near-infrared image). 本発明の態様2の第5実施形態における積層体の、近赤外線カメラによるおもて面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。また開口部領域の枠(破線)は近赤外線画像としては現れないが、便宜上示している。他の図においても同様。)。A diagram showing an observation image (near-infrared image) of the front surface of the laminate according to the fifth embodiment of the second aspect of the present invention by a near-infrared camera (note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see. Although the frame (broken line) of the opening region does not appear as a near-infrared image, it is shown for convenience. The same applies to other figures). 本発明の態様2の第6実施形態における積層体の、近赤外線カメラによるおもて面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。また開口部領域の枠(破線)は近赤外線画像としては現れないが、便宜上示している。他の図においても同様。)。A diagram showing an image (near-infrared image) of the front surface of the laminate according to the sixth embodiment of the second aspect of the present invention (near-infrared image) by a near-infrared camera (note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see. Although the frame (broken line) of the opening region does not appear as a near-infrared image, it is shown for convenience. The same applies to other figures). 本発明の態様2の第7実施形態における積層体の、近赤外線カメラによるおもて面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。また開口部領域の枠(破線)は近赤外線画像としては現れないが、便宜上示している。他の図においても同様。)。A diagram showing an image (near-infrared image) of the front surface of the laminate according to the seventh embodiment of the second aspect of the present invention (near-infrared image) (note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see. Although the frame (broken line) of the opening region does not appear as a near-infrared image, it is shown for convenience. The same applies to other figures). 図65に示す積層体を、図65中のB-B’線で切断したB-B’断面を見たときの層構造の一例(図65の紙面内で、右方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)12Aは、正確にはB-B’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)。Conceptually, an example of a layered structure (viewed from the right side in the paper surface of FIG. 65) when the cross section of the laminated body shown in FIG. 65 is cut along the line BB'in FIG. 65 is viewed. (Each layer is drawn separately to show the layer structure. The colored ink layer (or fluorescent ink layer, hologram layer) 12A on the back surface side is cut by the BB'line to be exact. Although not shown, it is drawn for the purpose of making the layer structure easier to understand. The same applies to other figures showing the layer structure.) 本発明の態様2の第8実施形態における積層体の、近赤外線カメラによるおもて面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。また開口部領域の枠(破線)は近赤外線画像としては現れないが、便宜上示している。他の図においても同様。)。A diagram showing an observation image (near-infrared image) of the front surface of the laminate according to the eighth embodiment of the second aspect of the present invention by a near-infrared camera (note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see. Although the frame (broken line) of the opening region does not appear as a near-infrared image, it is shown for convenience. The same applies to other figures). 図67に示す積層体を、図67中のB-B’線で切断したB-B’断面を見たときの層構造の一例(図67の紙面内で、右方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)12Aは、正確にはB-B’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)。Conceptually, an example of a layered structure (viewed from the right side in the paper surface of FIG. 67) when the cross section of the laminated body shown in FIG. 67 is cut along the line BB'in FIG. 67 is viewed. (Each layer is drawn separately to show the layer structure. The colored ink layer (or fluorescent ink layer, hologram layer) 12A on the back surface side is cut by the BB'line to be exact. Although not shown, it is drawn for the purpose of making the layer structure easier to understand. The same applies to other figures showing the layer structure.) 本発明の態様2の第9実施形態における積層体の、可視光によるおもて面の観察画像(可視光画像)を示す図(レンチキュラーレンズは透明だが図を見やすくする目的で描いている。)。A diagram showing an observation image (visible light image) of the front surface of the laminate according to the ninth embodiment of the second embodiment of the present invention (the lenticular lens is transparent but is drawn for the purpose of making the figure easier to see). .. 図69に示す積層体を、後述の図73中の矢印Cの方向で見たときのおもて面の近赤外線画像を示す図。FIG. 6 is a diagram showing a near-infrared image of the front surface when the laminate shown in FIG. 69 is viewed in the direction of arrow C in FIG. 73, which will be described later. 図69に示す積層体を、後述の図73中の矢印Dの方向で見たときのおもて面の近赤外線画像を示す図。FIG. 6 is a diagram showing a near-infrared image of the front surface when the laminate shown in FIG. 69 is viewed in the direction of arrow D in FIG. 73, which will be described later. 図69に示す積層体を、図69中のA-A’線で切断したA-A’断面を見たときの層構造の一例(図69の紙面内で、下方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、おもて面側の有色インキ層(又は蛍光インキ層、ホログラム層)11A、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)12Aは、正確にはA-A’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)。Conceptually, an example of a layered structure (viewed from below in the paper surface of FIG. 69) when the AA'cross section of the laminate shown in FIG. 69 is cut along the AA' line in FIG. 69 is viewed. (Each layer is drawn separately to show the layer structure. Also, the colored ink layer (or fluorescent ink layer, hologram layer) 11A on the front surface side, and the colored ink layer (or colored ink layer) on the back surface side. Fluorescent ink layer, hologram layer) 12A is not cut exactly by the AA'line, but is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure). 図69に示す積層体を、図69中のB-B’線で切断したB-B’断面を見たときの層構造の一例(図69の紙面内で、右方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)12Aは、正確にはB-B’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)。Conceptually, an example of a layered structure (viewed from the right side in the paper surface of FIG. 69) when the cross section of the laminated body shown in FIG. 69 is cut along the line BB'in FIG. 69 is viewed. (Each layer is drawn separately to show the layer structure. The colored ink layer (or fluorescent ink layer, hologram layer) 12A on the back surface side is cut by the BB'line to be exact. Although not shown, it is drawn for the purpose of making the layer structure easier to understand. The same applies to other figures showing the layer structure.) レンチキュラーの原理を概念的に説明する図。The figure which conceptually explains the principle of lenticular. レーザーマーカー装置の構成を概略的に示す図。The figure which shows the structure of the laser marker apparatus schematicly. 本発明の態様3の実施形態で使用される積層体100Bの正面図。The front view of the laminated body 100B used in Embodiment 3 of this invention. 本発明の態様3の実施形態で使用される積層体100Bの、可視光下による観察画像(可視光画像)によって示した正面図。The front view which showed by the observation image (visible light image) under visible light of the laminated body 100B used in Embodiment 3 of this invention. 本発明の態様3の実施形態で使用される積層体100Bの、近赤外線カメラによる観察画像(近赤外線画像)によって示した正面図。The front view which showed by the observation image (near-infrared image) by the near-infrared camera of the laminated body 100B used in embodiment 3 of this invention. 本発明の態様3の実施形態で使用される積層体100Bの、レーザーマーキング後の近赤外線カメラによる観察画像(近赤外線画像)によって示した正面図。The front view which showed by the observation image (near-infrared image) by the near-infrared camera after laser marking of the laminated body 100B used in Embodiment 3 of this invention. 図79に示す、近赤外線吸収性インキによるマイクロ文字を示す微小表示印刷画像の一部を拡大した図(近赤外線画像)。FIG. 79 is an enlarged view of a part of a micro-display print image showing micro characters by a near-infrared absorbing ink (near-infrared image). 図76に示す積層体100Bの層構造の一例を示す図であり、図1のA-A’矢視断面図。It is a figure which shows an example of the layer structure of the laminated body 100B shown in FIG. 76, and is the cross-sectional view taken along the line AA'in FIG. 図76に示す積層体100Bの層構造の他の一例を示す図。The figure which shows another example of the layer structure of the laminated body 100B shown in FIG. 76. レーザーマーカー装置200Bの概略の外観図。The schematic external view of the laser marker device 200B. レーザーマーカー装置200Bの概略のブロック図。The schematic block diagram of the laser marker apparatus 200B. スポット距離SD、ライン幅LW、解像度Rの関係を示す概念図。The conceptual diagram which shows the relationship of a spot distance SD, a line width LW, and a resolution R. レーザーマーカー装置200Bの概略の動作フロー図。The schematic operation flow chart of the laser marker apparatus 200B. 近赤外線レーザー光の走査(高解像度)の動作を説明する概念図。A conceptual diagram illustrating the operation of scanning (high resolution) of near-infrared laser light. 近赤外線レーザー光の走査(中解像度)の動作を説明する概念図。A conceptual diagram illustrating the operation of scanning (medium resolution) of near-infrared laser light.
(態様1)
 以下、本発明の態様1の例示的実施形態である情報表示媒体用部材、情報表示媒体、冊子体、及び関連する方法を、図面を参照しつつ説明する。ただし本発明の態様1による情報表示媒体用部材、情報表示媒体、冊子体、及び関連する方法が以下に説明する具体的態様に限定されるわけではなく、本発明の態様1の範囲内で適宜変更可能であることに留意する。後述の実施形態に含まれる個々の機能、要素等は本発明の態様1の範囲内で適宜削除・変更可能であるし、実施形態に含まれない任意の機能、要素等を本発明の態様1の範囲内で追加することも可能であるし、各実施形態を適宜組み合わせて実施することも可能である。例えば、以下の実施形態においては透明シートの上に目視で視認可能な有色インキ層が印刷されている積層体を説明するが、有色インキ層の代わりに、或いは有色インキ層に加えて、励起光の照射により発光する蛍光インキ組成物を用いた印刷等により蛍光インキ層を形成したり、ホログラム層を形成したりすることも可能であるし(有色インキ層、蛍光インキ層の少なくとも一方を形成したうえでホログラム層を形成してもよいし、ホログラム層のみを形成してもよい。)、基材層の上、あるいはレーザー発色層の上にこれらの層のうち1以上を形成してもよい。基材上、レーザー発色層上、又は透明シート上には有色インキ層等を形成しないこととしてもよい。国際公開第2018/151238号に記載されているようなICモジュールを加えてもよい。また本発明の態様1の教示する情報表示媒体とは、レーザーマーキングによる書き込み等により情報が既に表示(目視や可視光カメラによる撮影で認識できる可視情報としての「表示」でもよいし、近赤外線カメラ等による撮影で認識できる近赤外情報としての「表示」でもよいし、これら以外の態様で認識できる情報としての「表示」でもよい。)されている媒体でもよいし、情報が未だ表示されていない情報表示用の媒体であってもよい。また情報表示媒体は積層体である必要はなく、一層のみからなる媒体であってもよい。後述の実施形態で記載するとおり、本発明の態様1において近赤外線吸収層を形成することは必須ではないが、仮に形成する場合であっても、近赤外線吸収層(近赤外線吸収性インキ層)をオフセット印刷により形成することは必須ではなく、シルクスクリーン印刷や、グラビア印刷、フレキソ印刷、インクジェット印刷などにより形成することも可能である(微小表示印刷である必要もない)。有色インキ層、蛍光インキ層、ホログラム層等は、照射された近赤外線のうち少なくとも一部の近赤外線を透過する近赤外線透過性を有することが好ましいが、近赤外線透過性をそれらが有することは必須ではない。また、以下の実施形態においては積層体の最上層、最下層にオーバーシート層(透明シート)が形成されている積層体を説明するが、これらオーバーシート層を設けることも必須ではない。近赤外線吸収性インキ層を形成する場合、これを印刷により形成することも必須ではないし、近赤外線吸収性インキ層と有色インキ層等とが、同じ方法により形成されていても異なった方法により形成されていてもよい。積層構造を示す各図において互いに重なって描かれている各層、各要素(図24中のウインドウ部材5とレンチキュラーレンズ33、図31中のクリアウインドウ40と近赤外線吸収性インキ層41等)は、完全には重ならず部分的に重なっていてもよいし、或いは全く重なっていなくてもよい。また図24,図25に示されるレンチキュラーレンズ33は、形成しなくてもよい。なお、後述の実施例においては、レーザー光として、特に近赤外(線)レーザー光を用いることが効果的であることが示され、また各実施形態においてもレーザー光は近赤外レーザー光であるとして説明するが、本発明の態様1において用いることのできるレーザー光がこれに限られるわけではない。すなわち、レーザー光として近赤外線レーザー(例:Nd:YAGレーザー、YVO4レーザー、ファイバーレーザーなど)による近赤外レーザー光を用いることは必須ではなく、紫外線レーザー(例:THGレーザーなど)や可視光レーザー(例:SHGレーザーなど)、遠赤外線レーザー(例:CO2レーザー)などによるレーザー光を用いることも可能である。
(Aspect 1)
Hereinafter, an information display medium member, an information display medium, a booklet, and related methods, which are exemplary embodiments of the first aspect of the present invention, will be described with reference to the drawings. However, the information display medium member, the information display medium, the booklet, and the related method according to the first aspect of the present invention are not limited to the specific aspects described below, and are appropriately within the scope of the first aspect of the present invention. Note that it can be changed. Individual functions, elements, etc. included in the embodiments described later can be appropriately deleted or changed within the scope of the first aspect of the present invention, and any functions, elements, etc. not included in the embodiments can be appropriately deleted or changed within the scope of the first aspect of the present invention. It is possible to add within the range of, and it is also possible to carry out by appropriately combining each embodiment. For example, in the following embodiment, a laminate in which a visually recognizable colored ink layer is printed on a transparent sheet will be described, but instead of the colored ink layer or in addition to the colored ink layer, excitation light is used. It is also possible to form a fluorescent ink layer or a hologram layer by printing or the like using a fluorescent ink composition that emits light when irradiated with (colored ink layer or at least one of fluorescent ink layers). The hologram layer may be formed on the above, or only the hologram layer may be formed), or one or more of these layers may be formed on the base material layer or the laser coloring layer. .. A colored ink layer or the like may not be formed on the base material, the laser coloring layer, or the transparent sheet. IC modules such as those described in WO 2018/151238 may be added. Further, the information display medium taught by the first aspect of the present invention may be "display" as visible information that can be recognized by visual inspection or photography by a visible light camera, or may be a near-infrared camera. It may be a medium that is "displayed" as near-infrared information that can be recognized by shooting with a camera, or it may be "displayed" as information that can be recognized in other modes.) The information is still displayed. It may be a medium for displaying information that does not exist. Further, the information display medium does not have to be a laminated body, and may be a medium consisting of only one layer. As described in the embodiments described later, it is not essential to form the near-infrared absorbing layer in the first aspect of the present invention, but even if it is formed, the near-infrared absorbing layer (near-infrared absorbing ink layer). Is not essential to be formed by offset printing, but can also be formed by silk screen printing, gravure printing, flexo printing, inkjet printing, or the like (it does not have to be microscopic display printing). It is preferable that the colored ink layer, the fluorescent ink layer, the hologram layer, etc. have near-infrared ray transmission that transmits at least a part of the irradiated near-infrared rays. Not required. Further, in the following embodiments, a laminate in which an oversheet layer (transparent sheet) is formed in the uppermost layer and the lowermost layer of the laminate will be described, but it is not essential to provide these oversheet layers. When forming a near-infrared absorbing ink layer, it is not essential to form it by printing, and even if the near-infrared absorbing ink layer and the colored ink layer are formed by the same method, they are formed by different methods. It may have been done. Each layer and each element (window member 5 and lenticular lens 33 in FIG. 24, clear window 40 and near-infrared absorbing ink layer 41 in FIG. 31, etc.) are drawn so as to overlap each other in each drawing showing a laminated structure. It may not completely overlap and may partially overlap, or it may not overlap at all. Further, the lenticular lens 33 shown in FIGS. 24 and 25 does not have to be formed. In the examples described later, it is shown that it is particularly effective to use the near-infrared (line) laser light as the laser light, and in each embodiment, the laser light is the near-infrared laser light. Although described as being present, the laser light that can be used in the first aspect of the present invention is not limited to this. That is, it is not essential to use near-infrared laser light from a near-infrared laser (eg, Nd: YAG laser, YVO 4 laser, fiber laser, etc.) as the laser light, but an ultraviolet laser (eg, THG laser, etc.) or visible light. It is also possible to use laser light from a laser (eg, SHG laser, etc.), a far-infrared laser (eg, CO 2 laser), or the like.
 なお、以下の実施形態において、「近赤外線」とは、780nm~2000nmの波長を有する電磁波であるとする(「JIS Z 8117:2002遠赤外線用語」より)。「近赤外レーザー光(近赤外線レーザー光)」とは、上記近赤外線の波長範囲内の波長を有するレーザー光であるとする。また「可視光」とは、400nm~780nmの波長を有する電磁波であるとする。また、以下の実施形態において、「近赤外線吸収性」とは、照射された近赤外線の少なくとも一部を吸収する性質を意味し、「近赤外線透過性」とは、照射された近赤外線の少なくとも一部を透過する性質を意味する。同様に、以下の実施形態において、「可視光吸収性」とは、照射された可視光の少なくとも一部を吸収する性質を意味し、「可視光透過性」とは、照射された可視光の少なくとも一部を透過する性質を意味する。また以下の実施形態において、近赤外レーザー光等のレーザー光による、ウインドウ部材等の情報表示媒体用部材(又は近赤外線吸収層)への「レーザーマーキング」とは、情報表示媒体用部材(又は近赤外線吸収層)に対してレーザー光を照射して近赤外線に対する情報表示媒体用部材(又は近赤外線吸収層)の吸収特性を変化させることにより、絵柄、文字、その他の情報等、何らかの表示内容を情報表示媒体用部材(又は近赤外線吸収層)に描く(又は書く)ことを意味する。さらに、以下の実施形態において、近赤外レーザー光等のレーザー光によるレーザー発色層への「レーザーマーキング」とは、レーザー発色層に対してレーザー光を照射して可視光、及び近赤外線に対するレーザー発色層の吸収特性を変化させることにより、絵柄、文字、その他の情報等、何らかの表示内容をレーザー発色層に描く(又は書く)ことを意味する。なお、特に断りのない限り、同様の参照符号が付された要素は、異なる図面間で同様の要素を示す。 In the following embodiment, the "near infrared ray" is an electromagnetic wave having a wavelength of 780 nm to 2000 nm (from "JIS Z 8117: 2002 far infrared ray term"). The "near-infrared laser light (near-infrared laser light)" is defined as a laser light having a wavelength within the wavelength range of the near-infrared ray. Further, "visible light" is an electromagnetic wave having a wavelength of 400 nm to 780 nm. Further, in the following embodiments, "near-infrared absorbing property" means a property of absorbing at least a part of the irradiated near-infrared ray, and "near-infrared ray transmitting" means at least the irradiated near-infrared ray. It means the property of transmitting a part. Similarly, in the following embodiments, "visible light absorption" means the property of absorbing at least a part of the irradiated visible light, and "visible light transmission" means the irradiated visible light. It means the property of transmitting at least a part. Further, in the following embodiments, "laser marking" on an information display medium member (or near-infrared absorbing layer) such as a window member by a laser beam such as a near-infrared laser light means a member (or) for an information display medium. By irradiating the near-infrared absorbing layer with laser light to change the absorption characteristics of the information display medium member (or near-infrared absorbing layer) for near-infrared rays, some display contents such as patterns, characters, and other information are displayed. Means to draw (or write) on the information display medium member (or near-infrared absorbing layer). Further, in the following embodiment, "laser marking" on the laser coloring layer by laser light such as near-infrared laser light means irradiating the laser coloring layer with laser light and irradiating the laser light to visible light and laser for near infrared rays. By changing the absorption characteristics of the color-developing layer, it means drawing (or writing) some display content such as a pattern, characters, or other information on the laser color-developing layer. Unless otherwise specified, elements with similar reference numerals indicate similar elements between different drawings.
(第1実施形態)
 図1は、本発明の態様1の第1実施形態における積層体の、可視光によるおもて面(図5中、オーバーシート層14の側の最も外側の面とする。他の図においても同様。)の観察画像(可視光画像)を示す図である。本実施形態、及び以降の各実施形態において、積層体1(情報表示媒体の一例)は身分証明書等の個人を特定する印刷物であるとするが、これに限らず、クレジットカード、キャッシュカード等のカード類、紙幣等、任意の積層体、或いはその他の媒体として、積層体1等の情報表示媒体を作製することができる。積層体1の基材層9(後述の図5等を参照)上には、レーザー発色層10,11が熱プレス処理により融着しており、レーザー発色層10に対して近赤外レーザー光を照射するレーザーマーキングにより、人物画像2、人物識別情報3が描かれている(これらは、レーザー発色層11に対して近赤外レーザー光を照射するレーザーマーキングにより、積層体1の裏面側に描いてもよい)。人物画像2は、レーザー発色層10上でレーザーマーキングにより人物を描くように近赤外レーザー光を照射することにより描かれる。人物識別情報3は、レーザー発色層10上でレーザーマーキングにより人物の識別情報(氏名、個人識別番号等)を書き入れるよう近赤外レーザー光を照射することにより描かれる。レーザー発色層10,11は必要に応じて形成し、レーザー発色層10,11のいずれか一方のみを形成してもよいし、どちらのレーザー発色層も形成せずに積層体1を作製してもよい。また、後述の図5に示されるとおり、オーバーシート層14上には、UV SOYBI SG 黄(DICグラフィックス製)、UV SOYBI SG 紅(DICグラフィックス製)、UV SOYBI SG 藍(DICグラフィックス製)、UV 161 黄 S(T&K TOKA製)、UV 161 紅 S(T&K TOKA製)、UV 161 藍 S(T&K TOKA製)等、近赤外線透過性の有色インキ(可視光吸収性の有色インキ)を用いて、マーク4が印刷されている(図5中、有色インキ層12)。
(First Embodiment)
FIG. 1 is a front surface (in FIG. 5, the outermost surface on the side of the oversheet layer 14 in FIG. 5) of the laminated body according to the first embodiment of the first embodiment of the present invention. It is a figure which shows the observation image (visible light image) of the same. In this embodiment and each subsequent embodiment, the laminated body 1 (an example of an information display medium) is a printed matter that identifies an individual such as an identification card, but the present invention is not limited to this, and a credit card, a cash card, or the like is used. The information display medium such as the laminated body 1 can be produced as an arbitrary laminated body such as cards, banknotes, etc., or other media. Laser coloring layers 10 and 11 are fused on the base material layer 9 (see FIG. 5 and the like described later) of the laminated body 1 by hot pressing, and near-infrared laser light is applied to the laser coloring layer 10. The person image 2 and the person identification information 3 are drawn by the laser marking that irradiates the laser coloring layer 11 (these are on the back surface side of the laminate 1 by the laser marking that irradiates the laser coloring layer 11 with the near-infrared laser light. You may draw). The person image 2 is drawn by irradiating a near-infrared laser beam on the laser color-developing layer 10 so as to draw a person by laser marking. The person identification information 3 is drawn by irradiating a near-infrared laser beam so as to write the person identification information (name, personal identification number, etc.) on the laser coloring layer 10 by laser marking. The laser coloring layers 10 and 11 may be formed as needed, and only one of the laser coloring layers 10 and 11 may be formed, or the laminated body 1 may be produced without forming either of the laser coloring layers. May be good. Further, as shown in FIG. 5 described later, UV SOYBI SG yellow (manufactured by DIC graphics), UV SOYBI SG red (manufactured by DIC graphics), and UV SOYBI SG indigo (manufactured by DIC graphics) are placed on the oversheet layer 14. ), UV 161 yellow S (manufactured by T & K TOKA), UV 161 red S (manufactured by T & K TOKA), UV 161 indigo S (manufactured by T & K TOKA), etc. The mark 4 is printed by using (colored ink layer 12 in FIG. 5).
 また積層体1には、基材層9とレーザー発色層10,11とを貫通するようにウインドウ部材5が配置されている(図5の層構造を参照)。ウインドウ部材5は、可視光透過性及び近赤外線透過性を有する透過性材料と、近赤外線吸収性材料とを含有する固体部材であり、透過性材料は、PVC(ポリ塩化ビニル)、PET-G(非結晶性ポリエステル)、PC(ポリカーボネート)、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)、透明樹脂等の透明材料を含み、近赤外線吸収性材料はセシウム酸化タングステン又は6ホウ化ランタンを含む。一例においては、加熱して溶かした液体状態のPVC(ポリ塩化ビニル)、PET-G(非結晶性ポリエステル)、PC(ポリカーボネート)、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)、透明樹脂等の透明材料に、セシウム酸化タングステン及び6ホウ化ランタンの一方、又は両方を加えた上で混合し、ウインドウ部材5の形に成形して、ウインドウ部材5を作製することができる。ウインドウ部材5は、可視光透過率50%以上、近赤外線透過率50%以上の透過性を有することが好ましく、約300μm~700μmの厚み(積層方向)を有することが好ましいが、これらの条件を満たさない態様でウインドウ部材5を作製してもよい。 Further, in the laminated body 1, a window member 5 is arranged so as to penetrate the base material layer 9 and the laser coloring layers 10 and 11 (see the layer structure of FIG. 5). The window member 5 is a solid member containing a transparent material having visible light transmission and near-infrared transparency and a near-infrared absorbing material, and the transparent materials are PVC (polyvinyl chloride) and PET-G. It contains transparent materials such as (non-crystalline polyester), PC (polycarbonate), PET (polyethylene terephthalate), PP (polypropylene), and transparent resin, and the near-infrared absorbing material includes tungsten cesium oxide or lanthanum hexaboride. In one example, transparent such as PVC (polyvinyl chloride), PET-G (non-crystalline polyester), PC (polyester), PET (polyethylene terephthalate), PP (polypropylene), and transparent resin in a liquid state that has been melted by heating. The window member 5 can be produced by adding one or both of polypropylene cesium oxide and hexaboroxide lanthanum to the material, mixing them, and molding them into the shape of the window member 5. The window member 5 preferably has a visible light transmittance of 50% or more and a near infrared transmittance of 50% or more, and preferably has a thickness (stacking direction) of about 300 μm to 700 μm. The window member 5 may be manufactured in an unsatisfied manner.
 このようなウインドウ部材5は、可視光透過性と近赤外線透過性を有しつつも、近赤外線吸収性材料を含有することにより或る程度の近赤外線吸収性も有することとなるため、近赤外線カメラ等によりウインドウ部材5を撮影すれば、透明材料のみからなる部材に比べて近赤外線画像として暗い画像が得られることとなる。また後に実験結果を用いて説明するとおり、セシウム酸化タングステンと6ホウ化ランタンとは、(近赤外)レーザー光を照射することにより近赤外線に対する吸収性が低下する性質を有しているため、セシウム酸化タングステンと6ホウ化ランタンとの少なくとも一方を含有するウインドウ部材5に対してレーザーマーキングで画像、文字等を描く(書く)ように近赤外レーザー光を当てることにより、描かれた部分の近赤外線吸収特性が変化し、これにより、肉眼や可視光カメラでは認識することが少なくとも困難であるが近赤外線カメラ等により認識可能な、画像、文字等の情報をウインドウ部材5に表示させることができる。 Such a window member 5 has both visible light transmission and near-infrared ray transmission, and also has a certain degree of near-infrared ray absorption due to the inclusion of the near-infrared ray absorbing material. If the window member 5 is photographed with a camera or the like, a darker image can be obtained as a near-infrared image as compared with a member made of only a transparent material. Further, as will be explained later using the experimental results, since tungsten cesium oxide and lanthanum hexaboride have the property of reducing the absorption of near infrared rays by irradiating them with (near infrared) laser light. A near-infrared laser beam is applied to the window member 5 containing at least one of tungsten cesium oxide and lanthanum hexaboride so as to draw (write) an image, characters, etc. by laser marking. The near-infrared absorption characteristics change, which makes it possible for the window member 5 to display information such as images and characters that are at least difficult to recognize with the naked eye or a visible light camera but can be recognized by a near-infrared camera or the like. can.
 図2は、本発明の態様1の第1実施形態における積層体の、近赤外線カメラによるおもて面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。他の図においても同様。)である。近赤外線カメラを用いて観察すること等により、このような観察画像を得ることができる。レーザー発色層10に対するレーザーマーキングで描かれた人物画像2、人物識別情報3は、可視光及び近赤外線に対する吸収性を有するため、可視光だけでなく近赤外線カメラによっても認識できる。他方、マーク4は近赤外線透過性の有色インキを用いた印刷により形成されているため、近赤外線カメラによっては認識不能(或いは、少なくとも認識困難)である。 FIG. 2 is a diagram showing an observation image (near-infrared image) of the front surface of the laminated body according to the first embodiment of the first embodiment of the present invention by a near-infrared camera (note that the laminated body is for the purpose of making the figure easier to see. The outer shape is drawn. The same applies to other figures.) Such an observation image can be obtained by observing with a near-infrared camera or the like. Since the person image 2 and the person identification information 3 drawn by laser marking on the laser coloring layer 10 have absorbency to visible light and near infrared rays, they can be recognized not only by visible light but also by a near infrared camera. On the other hand, since the mark 4 is formed by printing using a colored ink that transmits near infrared rays, it is unrecognizable (or at least difficult to recognize) by the near infrared camera.
 また図2中では、ウインドウ部材5内に近赤外線吸収像(ウインドウ部材内、近赤外線吸収性材料による)6、人物画像(レーザーマーキング)7が示されている。近赤外線吸収像6は、ウインドウ部材5が近赤外線吸収性材料を含むことにより近赤外線像としては周囲よりも暗く表示されることによるものであり、ウインドウ部材5に対するレーザーマーキングを行う前においては、ウインドウ部材5の全体が周囲よりも暗い近赤外線像(近赤外線吸収像6)を示す。このようなウインドウ部材5に対して人物画像7を描くように(近赤外)レーザー光を照射することにより、照射された部分の近赤外線吸収性が低下して、近赤外線像としては人物画像7の部分が(ウインドウ部材5内の)周囲よりも明るく表示されることとなり(近赤外線吸収性の低下により、近赤外線カメラ等からウインドウ部材5に照射されて人物画像7部分に入射した近赤外線が、例えば積層体1の裏面側にある何らかの物体により反射されて近赤外線カメラ等に入射することにより、近赤外線像としては明るく表示される)、図2に示すような表示が得られる。このように、ウインドウ部材5を上から近赤外線カメラ等を用いて見ると(図5の層構造でいう、オーバーシート層15からオーバーシート層14に向かう方向を「上方向」と定義し、その逆方向を「下方向」と定義する(その他の実施形態においても同様。)。図1も参照。ここではオーバーシート層14の更に上からウインドウ部材5を見る。)、近赤外線吸収像6や、ウインドウ部材5にレーザーマーキングにより描かれた人物画像7を認識することができる(図2)。なお、ウインドウ部材5へのレーザーマーキングにおいては、人物画像7に加えて、或いは人物画像7の代わりに、人物識別情報3と同様の人物識別情報等をレーザーマーキングで描いても(書いても)よいし、人物識別情報3と同様の人物識別情報等、何らかのマイクロ文字をレーザーマーキングで描いても(書いても)よいし、例えば微小な文字、記号、図形等、何らかの微小表示体を描いても(書いても)もよい。さらに、人物画像7は人物識別情報3と同様の人物識別情報等のマイクロ文字のような微小表示体より形成されてもよい。なお、ここでいう「マイクロ文字」とは、μm単位の文字(径、幅、又は高さが1mm未満の文字)に限られるわけではなく、径、幅、又は高さが1mm以上の文字を「マイクロ文字」と呼ぶこともある。その他の微小表示体のサイズについても同様である。他の実施形態においても同様に、レーザーマーキングにおいてマイクロ文字等、何らかの微小表示体を描いて(書いて)よい。 Further, in FIG. 2, a near-infrared absorbing image (inside the window member, depending on the near-infrared absorbing material) 6 and a person image (laser marking) 7 are shown in the window member 5. The near-infrared absorbing image 6 is due to the fact that the window member 5 contains a near-infrared absorbing material and is displayed darker than the surroundings as a near-infrared image. The entire window member 5 shows a near-infrared image (near-infrared absorption image 6) that is darker than the surroundings. By irradiating such a window member 5 with (near-infrared) laser light so as to draw a person image 7, the near-infrared absorption of the irradiated portion is lowered, and the near-infrared image is a person image. The part 7 is displayed brighter than the surroundings (inside the window member 5), and the near-infrared ray incident on the person image 7 part after being irradiated to the window member 5 by a near-infrared camera or the like due to a decrease in near-infrared ray absorption. However, for example, when it is reflected by some object on the back surface side of the laminated body 1 and is incident on a near-infrared camera or the like, it is displayed brightly as a near-infrared image), and the display as shown in FIG. 2 can be obtained. In this way, when the window member 5 is viewed from above using a near-infrared camera or the like (the direction from the oversheet layer 15 to the oversheet layer 14 in the layer structure of FIG. 5 is defined as "upward", and the direction thereof is defined as "upward". The reverse direction is defined as "downward" (the same applies to other embodiments). See also FIG. 1. Here, the window member 5 is viewed from above the oversheet layer 14), the near-infrared absorption image 6 and the like. , A person image 7 drawn by laser marking on the window member 5 can be recognized (FIG. 2). In the laser marking on the window member 5, in addition to the person image 7, or instead of the person image 7, the same person identification information as the person identification information 3 may be drawn (written) by the laser marking. Alternatively, some micro characters such as person identification information similar to the person identification information 3 may be drawn (written) by laser marking, or some micro display body such as minute characters, symbols, figures, etc. may be drawn. (Written) is also good. Further, the person image 7 may be formed of a micro-display body such as micro characters such as person identification information similar to the person identification information 3. The term "microprinting" here is not limited to characters in μm units (characters having a diameter, width, or height of less than 1 mm), and characters having a diameter, width, or height of 1 mm or more are defined. Sometimes called "microprinting". The same applies to the size of other microscopic objects. Similarly, in other embodiments, some micro-display such as micro characters may be drawn (written) in the laser marking.
 図3は、本発明の態様1の第1実施形態における積層体の、可視光下による裏面(図1中、AX軸を中心に積層体1を回転させることで裏返すことにより見える面。図5中、オーバーシート層15の側の最も外側の面とする。他の実施形態においても同様。)の観察画像(可視光画像)を示す図である。オーバーシート層15上には、近赤外線透過性の有色インキ(可視光吸収性の有色インキ)を用いて、マーク8が印刷されている(図5中、有色インキ層13)。 FIG. 3 is a back surface of the laminate according to the first embodiment of the first embodiment of the present invention under visible light (in FIG. 1, a surface that can be seen by turning the laminate 1 around the AX axis and turning it over. It is a figure which shows the observation image (visible light image) of the middle, which is the outermost surface on the side of the oversheet layer 15. The same applies in other embodiments. A mark 8 is printed on the oversheet layer 15 using a colored ink that transmits near infrared rays (colored ink that absorbs visible light) (colored ink layer 13 in FIG. 5).
 図4は、本発明の態様1の第1実施形態における積層体の、近赤外線カメラによる裏面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。他の図においても同様。)である。観察画像中、近赤外線吸収像6,人物画像7は、おもて面から見たとき(図2)と比較して反転している。 FIG. 4 is a diagram showing an image (near-infrared image) of the back surface of the laminated body according to the first embodiment of the first embodiment of the present invention observed by a near-infrared camera (note that the outer shape of the laminated body is drawn for the purpose of making the figure easier to see. It is included. The same applies to other figures.) In the observation image, the near-infrared absorption image 6 and the person image 7 are inverted as compared with those when viewed from the front surface (FIG. 2).
 ウインドウ部材5に含有させるべき近赤外線吸収性材料としては、セシウム酸化タングステン、又は6ホウ化ランタンを用いることができる。セシウム酸化タングステンとしては、化学式(一般式)Csxyzで表されるセシウム酸化タングステンを用いることができる(x,y,zは、それぞれ正の実数)。一例においては、特許文献8(特許第6160830号)に記載されている、六方晶構造を持つCs0.33WO3で表される微粒子を用いることができる。6ホウ化ランタンとしては、化学式LaB6で表される微粒子を用いることができる。ウインドウ部材5におけるセシウム酸化タングステンの含有率は任意であるが、後述の実施例で示されるとおり、セシウム酸化タングステン含有インキは、一例においては0.5重量%(重量パーセント)~6重量%のセシウム酸化タングステン含有率において良好な特性を有するので、ウインドウ部材5におけるセシウム酸化タングステン含有率も0.5重量%(重量パーセント)~6重量%であってよい。ウインドウ部材5における6ホウ化ランタンの含有率も任意であり、一例においては0.05重量%(重量パーセント)~6重量%であってよいが、後述の実施例で示されるとおり、6ホウ化ランタン含有インキは0.3重量%の6ホウ化ランタン含有率において良好な特性を有するので、ウインドウ部材5における6ホウ化ランタン含有率も0.3重量%であってよい。セシウム酸化タングステンと6ホウ化ランタンとの両方を含有するウインドウ部材5を用いる場合においても、セシウム酸化タングステンと6ホウ化ランタンのそれぞれの含有率は同様に任意である。なお、ここでいう、ウインドウ部材5中の「セシウム酸化タングステンの含有率(重量%)」とはウインドウ部材5の全体の重量に占める、当該ウインドウ部材5に含まれるセシウム酸化タングステンの重量の割合であり、
 ウインドウ部材5中のセシウム酸化タングステンの含有率(重量%)={(セシウム酸化タングステンの重量)/(ウインドウ部材5全体の重量)}×100
により表される。
 同様に、ウインドウ部材5中の「6ホウ化ランタンの含有率(重量%)」は、ウインドウ部材5の全体の重量に占める、当該ウインドウ部材5に含まれる6ホウ化ランタンの重量の割合であり、
 ウインドウ部材5中の6ホウ化ランタンの含有率(重量%)={(6ホウ化ランタンの重量)/(ウインドウ部材5全体の重量)}×100
により表される。
As the near-infrared absorbing material to be contained in the window member 5, tungsten cesium oxide or lanthanum hexaboride can be used. As the tungsten cesium oxide, tungsten cesium oxide represented by the chemical formula (general formula) Cs x W y O z can be used (x, y, z are positive real numbers, respectively). In one example, the fine particles represented by Cs 0.33 WO 3 having a hexagonal structure described in Patent Document 8 (Patent No. 6160830) can be used. As the lanthanum hexaboride, fine particles represented by the chemical formula LaB 6 can be used. The content of tungsten cesium oxide in the window member 5 is arbitrary, but as shown in Examples described later, the tungsten cesium oxide-containing ink is 0.5% by weight (weight percent) to 6% by weight of cesium in one example. Since it has good properties in the tungsten oxide content, the cesium tungsten oxide content in the window member 5 may also be 0.5% by weight (weight%) to 6% by weight. The content of the lanthanum hexaboride in the window member 5 is also arbitrary, and in one example, it may be 0.05% by weight (weight%) to 6% by weight, but as shown in Examples described later, the lanthanum hexaboride is formed. Since the lanthanum-containing ink has good characteristics at a lanthanum hexaboride content of 0.3% by weight, the lanthanum hexaboride content in the window member 5 may also be 0.3% by weight. Even when the window member 5 containing both tungsten cesium oxide and lanthanum hexaboride is used, the respective contents of tungsten cesium oxide and lanthanum hexaboride are similarly arbitrary. The "content of tungsten cesium oxide (% by weight)" in the window member 5 is the ratio of the weight of tungsten cesium oxide contained in the window member 5 to the total weight of the window member 5. can be,
Content of tungsten cesium oxide in the window member 5 (% by weight) = {(weight of tungsten cesium oxide) / (weight of the entire window member 5)} × 100
Represented by.
Similarly, the "content rate (% by weight) of the 6-boride lantern" in the window member 5 is the ratio of the weight of the 6-boride lantern contained in the window member 5 to the total weight of the window member 5. ,
Content of lanthanum hexaboride in window member 5 (% by weight) = {(weight of lanthanum hexaboride) / (weight of entire window member 5)} x 100
Represented by.
 図5は、図1に示す積層体を、図1中のA-A’線で切断したA-A’断面を見たときの層構造の一例(図1の紙面内で、下方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、おもて面側の有色インキ層(又は蛍光インキ層、ホログラム層)12、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)13は、正確にはA-A’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)である。なお、有色インキ層12は、基材層9とレーザー発色層10との間に形成してもよく、有色インキ層13は、基材層9とレーザー発色層11との間に形成してもよく、その他の各層についても、積層順序は任意である(他の実施形態においても同様)。 FIG. 5 shows an example of a layered structure when the cross section of AA ′ obtained by cutting the laminate shown in FIG. 1 along the AA ′ line in FIG. 1 is viewed (viewed from below in the paper surface of FIG. 1). A diagram conceptually showing (.) (Each layer is drawn separately to show the layer structure. Also, the colored ink layer (or fluorescent ink layer, hologram layer) 12 on the front surface side and the colored ink layer on the back surface side. The ink layer (or fluorescent ink layer, hologram layer) 13 is not cut exactly by the AA'line, but is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure. ). The colored ink layer 12 may be formed between the base material layer 9 and the laser coloring layer 10, and the colored ink layer 13 may be formed between the base material layer 9 and the laser coloring layer 11. Often, for each of the other layers, the stacking order is arbitrary (same for other embodiments).
 基材層9は、PVC(ポリ塩化ビニル)、PET-G(コポリエステル)、PC(ポリカーボネート)、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)等の材料を用いて作製される、可視光及び近赤外線の透過性が低いシート状の基材(白シート)により形成される。またオーバーシート層14,15を用いない場合、基材層9は紙基材(上質紙、コード紙など)であってもよい(オーバーシート層14,15を用いる場合であっても基材層9として上記紙基材を用いることは可能である)。 The base material layer 9 is made of materials such as PVC (polyvinyl chloride), PET-G (copolyester), PC (polyester), PET (polyethylene terephthalate), PP (polypropylene), and is visible light and near. It is formed of a sheet-like base material (white sheet) having low infrared transmission. When the oversheet layers 14 and 15 are not used, the base material layer 9 may be a paper base material (high quality paper, cord paper, etc.) (even when the oversheet layers 14 and 15 are used, the base material layer is a base material layer. It is possible to use the above paper base material as 9.).
 レーザー発色層10,11はレーザー発色剤を含む透明なシート状の層(後述のオーバーシート層14,15と同様な、透明樹脂等であってよい)であり、基材層9に対してプレスにより融着される。レーザー発色層10は、レーザー光を当てることにより発色する性質を有する。レーザー発色層10においてレーザー光を当てた部分は、可視光及び近赤外線に対する吸収性が変化するため(一例においては、可視光吸収性、及び近赤外線吸収性が上昇することにより、目視でも、赤外線カメラによる観察でも、それ以外の部分よりも暗く見える。)、当該部分を目視により、及び近赤外線カメラを用いることにより認識することができる。レーザー発色剤としては、特許第6167803号明細書に記載されているとおり、例えば、染料・顔料等の着色剤、粘土類等を使用することができ、具体的には、黄色酸化鉄、無機鉛化合物、マンガンバイオレット、コバルトバイオレット、水銀、コバルト、銅、ニッケル等の金属化合物、真珠光沢顔料、珪素化合物、雲母類、カオリン類、珪砂、硅藻土、タルク、酸化チタン被覆雲母類、二酸化錫被覆雲母類、アンチモン被覆雲母類、スズ+アンチモン被覆雲母類、スズ+アンチモン+酸化チタン被覆雲母類等の一種または二種以上を使用することができる(特許第6167803号明細書中、段落[0043])。低出力のレーザーにより発色する発色材料として、特に、ビスマス系化合物を少なくとも用いることができ、ビスマス化合物としては、具体的には、特に限定されないが、例えば、酸化ビスマス、硝酸ビスマス、オキシ硝酸ビスマスなどの硝酸ビスマス系、塩化ビスマスなどのハロゲン化ビスマス系、オキシ塩化ビスマス、硫酸ビスマス、酢酸ビスマス、クエン酸ビスマス、水酸化ビスマス、チタン酸ビスマス等が挙げられ、なかでも、入手が容易であり、安価であるという観点から、好ましくは、硝酸ビスマス、水酸化ビスマスを用いることができ、ビスマス系化合物としては、一種又は二種以上の化合物を含むことができるし、一例としてのビスマス系化合物を少なくとも含む発色材料に加えて、レーザー光により発色する発色材料であればビスマス化合物以外のものを併用することもできる(特許第6167803号明細書中、段落[0044])。また、一例としてのビスマス系化合物を少なくとも含む発色材料を用いるとき、さらにレーザー光により発色する発色材料及び又は発色効率を上げるため無機化合物を用いることができるものであり、無機化合物として金属酸化物、複合酸化物又は金属塩あるいはそれらの1種類又は2種類以上の化合物を用いることが、低出力のレーザー光の照射であっても無機化合物が、ある場合は発色材料として機能すること及び又は無機化合物が発熱効率を上げるように機能することで発色材料の発色を助け、あるいは発色材料と白色顔料を含む白色インキの白色度アップするように機能するため無機化合物を添加することが好ましい(特許第6167803号明細書中、段落[0045])。 The laser coloring layers 10 and 11 are transparent sheet-like layers containing a laser coloring agent (may be a transparent resin or the like similar to the oversheet layers 14 and 15 described later), and are pressed against the base material layer 9. Is fused by. The laser coloring layer 10 has a property of developing color when exposed to laser light. Since the portion of the laser color-developing layer 10 exposed to the laser beam changes its absorbency to visible light and near-infrared rays (in one example, the visible light absorption and the near-infrared ray absorption increase, so that the infrared rays can be visually observed. Even when observed with a camera, it looks darker than the other parts.) The part can be recognized visually and by using a near-infrared camera. As the laser color former, as described in Patent No. 6167803, for example, colorants such as dyes and pigments, clays and the like can be used, and specifically, yellow iron oxide and inorganic lead. Compounds, manganese violet, cobalt violet, mercury, cobalt, copper, nickel and other metal compounds, pearl luster pigments, silicon compounds, mica, kaolins, silica sand, cigar soil, talc, titanium oxide coated mica, tin dioxide coated One or more of mica, antimonated mica, tin + antimonated mica, tin + antimon + titanium oxide coated mica, etc. can be used (Patent No. 6167803, paragraph [0043]. ). As a color-developing material that develops color with a low-power laser, at least a bismuth-based compound can be used, and the bismuth compound is not particularly limited, but for example, bismuth oxide, bismuth nitrate, bismuth oxynitrate, and the like. Bismuth nitrate, bismuth halide such as bismuth chloride, bismuth oxychloride, bismuth sulfate, bismuth acetate, bismuth citrate, bismuth hydroxide, bismuth titanate, etc. From the viewpoint of bismuth nitrate and bismuth hydroxide, bismuth nitrate and bismuth hydroxide can be preferably used, and the bismuth-based compound may contain one or more compounds, and at least a bismuth-based compound as an example is included. In addition to the color-developing material, a material other than the bismuth compound may be used in combination as long as it is a color-developing material that develops color by laser light (paragraph [0044] in the specification of Patent No. 6167803). Further, when a color-developing material containing at least a bismuth-based compound as an example is used, a color-developing material that develops color by laser light and / or an inorganic compound can be used to increase the color-developing efficiency. The use of composite oxides or metal salts or one or more compounds thereof allows the inorganic compounds to function as color-developing materials in some cases, even when irradiated with low-power laser light, and / or the inorganic compounds. It is preferable to add an inorganic compound because it functions to increase the heat generation efficiency to assist the color development of the coloring material or to increase the whiteness of the white ink containing the coloring material and the white pigment (Patent No. 6167803). In the specification, paragraph [0045]).
 積層体1の表側最上層には、可視光透過性、及び近赤外線透過性を有するオーバーシート層(透明シート)14が形成され、積層体1の裏側最下層には、可視光透過性、及び近赤外線透過性を有するオーバーシート層(透明シート)15が形成される。オーバーシート層14,15は、例えば0.05mm~0.2mm程度の厚さの透明PC(ポリカーボネート)を2枚用意し、オーバーシート層14,15を形成する前の積層体1の最下層と最上層に、それぞれ1枚ずつを積層し、熱と圧力をかけて融着させること等によって積層体1を形成できる。オーバーシート層は、基材層と同様にPVC(ポリ塩化ビニル)、PET-G(コポリエステル)、PC(ポリカーボネート)、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)等の材料を用いて作製してよい。なお、オーバーシート層14上に有色インキ層12(又は蛍光インキ層、ホログラム層等。他の記載においても同様。)を形成する場合は、オーバーシート層14の上記積層の前にオーバーシート層14に予め有色インキによる印刷を行って有色インキ層12を形成しておく。また、オーバーシート層15上に有色インキ層13を形成する場合は、オーバーシート層15の上記積層の前にオーバーシート層15に予め有色インキによる印刷を行って有色インキ層13を形成しておく。オーバーシート層14,15上に印刷層を形成する場合、改ざん防止のため、印刷層が基材層9側に配置されるように積層させるのが好ましい。また、オーバーシート層がある場合、印字した情報が積層体の内部に印字されることになり、より改竄しにくいという特徴もある。その他の例としては、オーバーシート層14,15を形成する前の積層体1を任意の2枚の透明なフィルムで上下から積層し(必要に応じて、各フィルム、基材層9、レーザー発色層10,11のいずれかに、有色インキ等による印刷を予め行っておく。)、層間には接着剤を用いて接着することにより積層体1を形成してもよい。基材層9に対するレーザー発色層10,11の融着も同様である。既に述べたとおりオーバーシート層14,15を形成することは必須ではなく、オーバーシート層14,15のいずれか一方のみを形成してもよいし、どちらのオーバーシート層も形成せずに積層体1を作製してもよい。なお、レーザー発色層10に対するレーザーマーキングは、積層体1の最上層側(オーバーシート層14の側)から行う。また、レーザー発色層11に対するレーザーマーキングは、積層体1の最下層側(オーバーシート層15の側)から行う。 An oversheet layer (transparent sheet) 14 having visible light transmission and near-infrared ray transmission is formed on the uppermost layer on the front side of the laminated body 1, and visible light transmitting and visible light transmissive on the lowermost layer on the back side of the laminated body 1. An oversheet layer (transparent sheet) 15 having near-infrared ray transmission is formed. For the oversheet layers 14 and 15, for example, two transparent PCs (polycarbonates) having a thickness of about 0.05 mm to 0.2 mm are prepared, and the oversheet layers 14 and 15 are combined with the bottom layer of the laminate 1 before forming the oversheet layers 14 and 15. The laminated body 1 can be formed by laminating one sheet each on the uppermost layer and fusing them by applying heat and pressure. The oversheet layer is prepared by using a material such as PVC (polyvinyl chloride), PET-G (copolyester), PC (polycarbonate), PET (polyethylene terephthalate), PP (polypropylene), as in the case of the base material layer. good. When the colored ink layer 12 (or the fluorescent ink layer, the hologram layer, etc., the same applies to other descriptions) is formed on the oversheet layer 14, the oversheet layer 14 is formed before the oversheet layer 14 is laminated. The colored ink layer 12 is formed by printing with colored ink in advance. When the colored ink layer 13 is formed on the oversheet layer 15, the colored ink layer 13 is formed by printing the oversheet layer 15 with colored ink in advance before laminating the oversheet layer 15. .. When the print layers are formed on the oversheet layers 14 and 15, it is preferable to stack the print layers so that they are arranged on the base material layer 9 side in order to prevent tampering. Further, when there is an oversheet layer, the printed information is printed inside the laminate, and there is also a feature that it is more difficult to falsify. As another example, the laminated body 1 before forming the oversheet layers 14 and 15 is laminated from above and below with two arbitrary transparent films (each film, the base material layer 9, and laser coloring, if necessary). The layers 10 and 11 may be printed with colored ink or the like in advance), and the laminate 1 may be formed by adhering the layers with an adhesive. The same applies to the fusion of the laser coloring layers 10 and 11 to the base material layer 9. As described above, it is not essential to form the oversheet layers 14 and 15, and only one of the oversheet layers 14 and 15 may be formed, or the laminated body may be formed without forming either of the oversheet layers. 1 may be produced. The laser marking on the laser coloring layer 10 is performed from the uppermost layer side (the side of the oversheet layer 14) of the laminated body 1. Further, the laser marking on the laser coloring layer 11 is performed from the lowermost layer side (the side of the oversheet layer 15) of the laminated body 1.
 オーバーシート層14の上(レーザー発色層10の上、或いは基材層9の上でもよい。蛍光インキ層12、ホログラム層12においても同様。)には有色インキ層12が形成される。有色インキ層12は、既に述べたとおり、オーバーシート層14上に(またはレーザー発色層10上に)、近赤外線透過性の有色インキを用いてマーク4を印刷することにより形成される。有色インキ層12の形成手法は任意であり、例えば活版印刷、オフセット印刷、シルクスクリーン印刷、グラビア印刷、フレキソ印刷、インクジェット印刷等の印刷手法、或いはそれ以外の任意の形成手法を用いることができる。なお、有色インキ層12に代わって、或いは有色インキ層12に加えて、UV蛍光メジウムB(T&K TOKA製)、UV蛍光メジウムY(T&K TOKA製)、UV蛍光メジウムR(T&K TOKA製)等、近赤外線透過性の蛍光インキを用いて、蛍光インキ層12を形成してもよい。蛍光インキ層12は、蛍光インキ組成物を用いて、有色インキ層12と同様にオーバーシート層14上に印刷等を行うことにより形成することができ、有色インキ印刷の場合と同様にマーク等を印刷することができる。或いは、有色インキ層12や蛍光インキ層12に代わって、或いはこれらのうち少なくとも1つの層に加えて、透明型ホログラムのような近赤外線透過性のホログラム層12を形成してもよい。有色インキ層12、蛍光インキ層12、ホログラム層12は、オーバーシート層14のおもて面(レーザー発色層10とは逆側の面)に形成されても、オーバーシート層14の裏面(レーザー発色層10側の面)に形成されても、レーザー発色層10のおもて面(基材層9とは逆側の面)に形成されても、レーザー発色層10の裏面(基材層9側の面)に形成されても、基材層9のおもて面(レーザー発色層10側の面)に形成されても、これらの面のうち2以上の面に形成されてもよい(適宜図示を省略する。)。なお、有色インキ層12、蛍光インキ層12、ホログラム層12は近赤外線透過性を有する必要はない。ここでの実施例は、観察画像を示す図を簡略化するため、近赤外線透過性を有する層として統一した。 A colored ink layer 12 is formed on the oversheet layer 14 (may be on the laser coloring layer 10 or on the base material layer 9. The same applies to the fluorescent ink layer 12 and the hologram layer 12). As described above, the colored ink layer 12 is formed by printing the mark 4 on the oversheet layer 14 (or on the laser coloring layer 10) using a colored ink that transmits near infrared rays. The method for forming the colored ink layer 12 is arbitrary, and for example, a printing method such as letterpress printing, offset printing, silk screen printing, gravure printing, flexographic printing, inkjet printing, or any other forming method can be used. In place of the colored ink layer 12, or in addition to the colored ink layer 12, UV fluorescent medium B (manufactured by T & K TOKA), UV fluorescent medium Y (manufactured by T & K TOKA), UV fluorescent medium R (manufactured by T & K TOKA), etc. The fluorescent ink layer 12 may be formed by using a fluorescent ink that transmits near ultraviolet rays. The fluorescent ink layer 12 can be formed by printing or the like on the oversheet layer 14 in the same manner as the colored ink layer 12 by using the fluorescent ink composition, and marks and the like can be formed as in the case of colored ink printing. Can be printed. Alternatively, a near-infrared ray-transparent hologram layer 12 such as a transparent hologram may be formed in place of the colored ink layer 12 or the fluorescent ink layer 12, or in addition to at least one of these layers. Even if the colored ink layer 12, the fluorescent ink layer 12, and the hologram layer 12 are formed on the front surface of the oversheet layer 14 (the surface opposite to the laser coloring layer 10), the back surface of the oversheet layer 14 (laser). Whether it is formed on the front surface of the laser coloring layer 10 (the surface opposite to the base layer 9) or on the front surface of the laser coloring layer 10 (the surface opposite to the base layer 9), the back surface of the laser coloring layer 10 (base layer). It may be formed on the surface on the 9 side), on the front surface of the base material layer 9 (the surface on the laser coloring layer 10 side), or on two or more of these surfaces. (The illustration is omitted as appropriate). The colored ink layer 12, the fluorescent ink layer 12, and the hologram layer 12 do not need to have near-infrared transparency. In the examples here, in order to simplify the figure showing the observation image, the layers have been unified as a layer having near-infrared transmissivity.
 またオーバーシート層15の上(レーザー発色層11、或いは基材層9の上でもよい。蛍光インキ層13、ホログラム層13においても同様。)には、有色インキ層13(又は蛍光インキ層、ホログラム層等。材料や形成方法は有色インキ層12、或いは蛍光インキ層12、ホログラム層12と同様であってよい。これらの層のうち2以上を形成してもよい。他の記載においても同様。)が形成される。有色インキ層13、蛍光インキ層13、ホログラム層13はそれぞれ、オーバーシート層15のおもて面(基材層9とは逆側の面)に形成されても、オーバーシート層15の裏面(基材層9側の面)に形成されても、レーザー発色層11のおもて面(基材層9とは逆側の面)に形成されても、レーザー発色層11の裏面(基材層9側の面)に形成されても、基材層9の裏面(レーザー発色層11側の面)に形成されても、これらの面のうち2以上の面に形成されてもよい(適宜図示を省略する。)。 Further, on the oversheet layer 15 (may be on the laser coloring layer 11 or the base material layer 9, the same applies to the fluorescent ink layer 13 and the hologram layer 13), the colored ink layer 13 (or the fluorescent ink layer, the hologram) is placed. Layers and the like. The material and the forming method may be the same as those of the colored ink layer 12, the fluorescent ink layer 12, and the hologram layer 12. Two or more of these layers may be formed. The same applies to other descriptions. ) Is formed. Even if the colored ink layer 13, the fluorescent ink layer 13, and the hologram layer 13 are formed on the front surface of the oversheet layer 15 (the surface opposite to the base material layer 9), the back surface of the oversheet layer 15 (the surface opposite to the base material layer 9), respectively. Whether it is formed on the front surface of the laser coloring layer 11 (the surface opposite to the base layer 9) or on the front surface of the laser coloring layer 11 (the surface opposite to the base layer 9), the back surface of the laser coloring layer 11 (base material). It may be formed on the surface on the layer 9 side, on the back surface of the base material layer 9 (the surface on the laser coloring layer 11 side), or on two or more of these surfaces (as appropriate). Illustration is omitted.)
 図1~図5に示す積層体1の製造方法の一例としては、
(1)オーバーシート層14に有色インキを用いた印刷で有色インキ層12(マーク4)を形成し、オーバーシート層15に有色インキを用いた印刷で有色インキ層13(マーク8)を形成する。
(2)基材層9とレーザー発色層10,11との間で数箇所のポイントを熱により融着させ、仮固定した状態でウインドウ部材5を形成すべき部分を切り抜く。
(3)上記のとおり切り抜いて生じた空間に上述のウインドウ部材5を嵌め込む。
(4)上記各層を図5に示すとおりの順序で積層し、プレス処理により融着する。
(5)得られた積層体のオーバーシート層14側の表面からレーザー発色層10に対してレーザーマーキングを行い、人物画像2と人物識別情報3を描く。
(6)上記積層体のオーバーシート層14側の表面(ひょうめん)、又はオーバーシート層15側の表面からウインドウ部材5に対してレーザーマーキングを行い、人物画像7を描く。
という方法で積層体1を作製することができる。
As an example of the manufacturing method of the laminated body 1 shown in FIGS. 1 to 5,
(1) The colored ink layer 12 (mark 4) is formed by printing with colored ink on the oversheet layer 14, and the colored ink layer 13 (mark 8) is formed by printing with colored ink on the oversheet layer 15. ..
(2) Several points are fused by heat between the base material layer 9 and the laser coloring layers 10 and 11, and a portion where the window member 5 should be formed is cut out in a temporarily fixed state.
(3) The above-mentioned window member 5 is fitted into the space created by cutting out as described above.
(4) The above layers are laminated in the order shown in FIG. 5 and fused by press treatment.
(5) Laser marking is performed on the laser coloring layer 10 from the surface of the obtained laminate on the oversheet layer 14 side, and a person image 2 and a person identification information 3 are drawn.
(6) Laser marking is performed on the window member 5 from the surface of the laminated body on the oversheet layer 14 side or the surface on the oversheet layer 15 side, and a person image 7 is drawn.
The laminated body 1 can be produced by the above method.
(真贋判定方法)
 積層体1の可視光画像と近赤外線画像とを比較することにより、積層体1の真贋判定を行うことができる。具体的には、可視光画像(肉眼で見ることにより得られる像も含む。他の実施形態においても同様。)として認識できる人物画像2,人物識別情報3(これらは近赤外線画像としても認識できる。)により特定される人物と、近赤外線画像として認識できる人物画像7により特定される人物とが一致する場合には、当該積層体1が身分証明カード等として真正なものであると判定でき、可視光画像として認識できる人物画像2,人物識別情報3により特定される人物と、近赤外線画像として認識できる人物画像7により特定される人物とが一致しない場合には、当該積層体1が身分証明カード等として真正なものではない(偽物である)と判定できる。判定は人が(近)赤外線カメラ等を用いて行ってもよいし、任意の光学分析機器により可視光画像と近赤外線画像とを取得し、任意のデータ転送デバイス等を用いてコンピュータに両画像を取り込んでコンピュータのプロセッサにより画像認識・比較用のプログラム等を実行すること等で両画像を比較、判定することにより行ってもよい(他の実施形態等においても同様)。
(Authentication judgment method)
By comparing the visible light image of the laminated body 1 with the near-infrared image, the authenticity of the laminated body 1 can be determined. Specifically, a person image 2 and a person identification information 3 (these can also be recognized as a near-infrared image) that can be recognized as a visible light image (including an image obtained by viewing with the naked eye. The same applies to other embodiments). When the person specified by) and the person specified by the person image 7 that can be recognized as a near-infrared image match, it can be determined that the laminated body 1 is genuine as an identification card or the like. If the person specified by the person image 2 and the person identification information 3 that can be recognized as a visible light image and the person specified by the person image 7 that can be recognized as a near-infrared image do not match, the laminated body 1 is the identification. It can be determined that the card is not genuine (it is a fake). The judgment may be made by a person using a (near) infrared camera or the like, or a visible light image and a near infrared image are acquired by an arbitrary optical analysis device and both images are transferred to a computer using an arbitrary data transfer device or the like. It may be performed by comparing and judging both images by executing a program for image recognition / comparison or the like by taking in the above and executing a program or the like for image recognition / comparison by a computer processor (the same applies to other embodiments and the like).
(第2実施形態)
 図6は、本発明の態様1の第2実施形態における積層体の、可視光によるおもて面の観察画像(可視光画像)を示す図であり、図7は、本発明の態様1の第2実施形態における積層体の、近赤外線カメラによるおもて面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。他の図においても同様。)であり、図8は、本発明の態様1の第2実施形態における積層体の、可視光下による裏面(図6中、AX軸を中心に積層体を回転させることで裏返すことにより見える面。他の実施形態においても同様。)の観察画像(可視光画像)を示す図であり、図9は、本発明の態様1の第2実施形態における積層体の、近赤外線カメラによる裏面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。他の図においても同様。)である。図10は、図6に示す積層体を、図6中のB-B’線で切断したB-B’断面を見たときの層構造の一例(図6の紙面内で、右方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、おもて面側の有色インキ層(又は蛍光インキ層、ホログラム層)12、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)13は、正確にはB-B’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)である。
(Second Embodiment)
FIG. 6 is a diagram showing an observation image (visible light image) of the front surface of the laminated body according to the second embodiment of the first embodiment of the present invention by visible light, and FIG. 7 is a diagram showing an observation image (visible light image) of the front surface of the laminated body of the first embodiment of the present invention. The figure which shows the observation image (near-infrared image) of the front surface of the laminated body in 2nd Embodiment by a near-infrared camera (note that the outer shape of the laminated body is drawn for the purpose of making the figure easy to see. The same applies to the above), and FIG. 8 shows the back surface of the laminate according to the second embodiment of the first embodiment of the present invention under visible light (in FIG. 6, the laminate is turned inside out by rotating the laminate about the AX axis). It is a figure which shows the observation image (visible light image) of the surface which can be seen | It is a figure which shows the observation image (near-infrared image) of the back surface by the above (note that the outer shape of the laminated body is drawn for the purpose of making the figure easy to see. The same applies to other figures). FIG. 10 shows an example of a layered structure when the cross section of the laminated body shown in FIG. 6 is cut along the line BB'in FIG. A diagram conceptually showing (.) (Each layer is drawn separately to show the layer structure. Also, the colored ink layer (or fluorescent ink layer, hologram layer) 12 on the front surface side and the colored ink layer on the back surface side. The ink layer (or fluorescent ink layer, hologram layer) 13 is not cut exactly by the BB'line, but is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure. ).
 図1~図5を用いて説明した第1実施形態と異なる点として、図10に示すとおり、第2実施形態の積層体1においては基材層が第1基材層18と第2基材層19とから構成されており(材質等は基材層9と同様であって良い。また図5等に示す基材層9も、複数層のシートで構成されていてもよい。)、第1基材層18と第2基材層19との間に(少なくとも一部が)挟まれる層として、基材中間層が設けられている。基材中間層の第1の部分17は、第1基材層18と第2基材層19との間に位置し、基材中間層の第2の部分16は、第1基材層18と第2基材層19との間からはみだしている。基材中間層の第2の部分16は積層体1の端部に位置し、ここを綴じ代(とじしろ)として用い、ミシン綴じによって冊子体を作製することができる。なお、第2実施形態の層構成においては図5中のレーザー発色層11に相当する裏面側のレーザー発色層を用いていないが、既に述べたとおりレーザー発色層は基材層のおもて面側と裏面側とのどちらに形成してもよいし、両方に形成してもよいし、どちらにも形成しなくてもよい。 The difference from the first embodiment described with reference to FIGS. 1 to 5 is that, as shown in FIG. 10, in the laminated body 1 of the second embodiment, the base material layers are the first base material layer 18 and the second base material. It is composed of a layer 19 (the material and the like may be the same as that of the base material layer 9, and the base material layer 9 shown in FIG. 5 and the like may also be composed of a plurality of layers of sheets). A base material intermediate layer is provided as a layer (at least partially) sandwiched between the first base material layer 18 and the second base material layer 19. The first portion 17 of the base material intermediate layer is located between the first base material layer 18 and the second base material layer 19, and the second portion 16 of the base material intermediate layer is the first base material layer 18. It protrudes from between the second base material layer 19 and the second base material layer 19. The second portion 16 of the base material intermediate layer is located at the end of the laminated body 1, and this can be used as a binding margin to produce a booklet by sewing. In the layer structure of the second embodiment, the laser coloring layer on the back surface side corresponding to the laser coloring layer 11 in FIG. 5 is not used, but as already described, the laser coloring layer is the front surface of the base material layer. It may be formed on either the side or the back side, may be formed on both sides, or may not be formed on either side.
 このような基材中間層は、第1基材層18と第2基材層19との間に基材中間層を(少なくとも一部)挟んだうえで熱プレス処理により、第1基材層18と第2基材層19とに対して融着させることで設けることができる。接着剤を用いて第1基材層18と第2基材層19とに対して粘着させることで設けることでも良い。基材中間層としては、紙、樹脂、布、不織布等、任意の材料からなるシートを用いることができ、一例としては、国際公開第2018/151238号に記載されているような網状構造を有する織物が挙げられる。 Such a base material intermediate layer is formed by sandwiching (at least a part of) the base material intermediate layer between the first base material layer 18 and the second base material layer 19 and then heat-pressing the first base material layer. It can be provided by fusing the 18 and the second base material layer 19. It may be provided by adhering the first base material layer 18 and the second base material layer 19 with an adhesive. As the base material intermediate layer, a sheet made of any material such as paper, resin, cloth, and non-woven fabric can be used, and as an example, it has a network structure as described in International Publication No. 2018/151238. Textiles can be mentioned.
 図6~図10に示す積層体1の製造方法の一例としては、
(1)オーバーシート層14に有色インキを用いた印刷で有色インキ層12(マーク4)を形成し、オーバーシート層15に有色インキを用いた印刷で有色インキ層13(マーク8)を形成する。
(2)第1基材層18、基材中間層(16,17)、第2基材層19とレーザー発色層10との間で数箇所のポイントを熱により融着させ(図11)、仮固定した状態でウインドウ部材5を形成すべき部分を切り抜いて貫通孔20を形成する(図12)。
(3)上記のとおり切り抜いて生じた貫通孔20に上述のウインドウ部材5を嵌め込む(図13)。
(4)上記各層を図10に示すとおりの順序で積層し(図14)、プレス処理により融着する。
(5)得られた積層体のオーバーシート層14側の表面からレーザー発色層10に対してレーザーマーキングを行い、人物画像2と人物識別情報3を描く。
(6)上記積層体のオーバーシート層14側の表面(ひょうめん)、又はオーバーシート層15側の表面からウインドウ部材5に対してレーザーマーキングを行い、人物画像7を描く。
という方法で積層体1を作製することができる。
As an example of the manufacturing method of the laminated body 1 shown in FIGS. 6 to 10,
(1) The colored ink layer 12 (mark 4) is formed by printing with colored ink on the oversheet layer 14, and the colored ink layer 13 (mark 8) is formed by printing with colored ink on the oversheet layer 15. ..
(2) Several points are fused by heat between the first base material layer 18, the base material intermediate layer (16, 17), the second base material layer 19 and the laser coloring layer 10 (FIG. 11). A through hole 20 is formed by cutting out a portion where the window member 5 should be formed in the temporarily fixed state (FIG. 12).
(3) The above-mentioned window member 5 is fitted into the through hole 20 formed by cutting out as described above (FIG. 13).
(4) The above layers are laminated in the order shown in FIG. 10 (FIG. 14) and fused by a press process.
(5) Laser marking is performed on the laser coloring layer 10 from the surface of the obtained laminate on the oversheet layer 14 side, and a person image 2 and a person identification information 3 are drawn.
(6) Laser marking is performed on the window member 5 from the surface of the laminated body on the oversheet layer 14 side or the surface on the oversheet layer 15 side, and a person image 7 is drawn.
The laminated body 1 can be produced by the above method.
(真贋判定方法)
 積層体1の可視光画像と近赤外線画像とを比較することにより、積層体1の真贋判定を行うことができる。具体的には、可視光画像として認識できる人物画像2,人物識別情報3(これらは近赤外線画像としても認識できる)により特定される人物と、近赤外線画像として認識できる人物画像7により特定される人物とが一致する場合には、当該積層体1が身分証明カード等として真正なものであると判定でき、可視光画像として認識できる人物画像2,人物識別情報3(これらは近赤外線画像としても認識できる)により特定される人物と、近赤外線画像として認識できる人物画像7により特定される人物とが一致しない場合には、当該積層体1が身分証明カード等として真正なものではない(偽物である)と判定できる。
(Authentication judgment method)
By comparing the visible light image of the laminated body 1 with the near-infrared image, the authenticity of the laminated body 1 can be determined. Specifically, it is specified by a person identified by a person image 2 that can be recognized as a visible light image 2 and a person identification information 3 (these can also be recognized as a near-infrared image) and a person image 7 that can be recognized as a near-infrared image. When the person matches, it can be determined that the laminated body 1 is genuine as an identification card or the like, and the person image 2 and the person identification information 3 which can be recognized as a visible light image (these are also near infrared images). If the person specified by (recognizable) and the person specified by the person image 7 that can be recognized as a near-infrared image do not match, the laminated body 1 is not genuine as an identification card or the like (a fake). Yes) can be determined.
(第3実施形態)
 図15は、本発明の態様1の第3実施形態における冊子体の、可視光下による観察画像(可視光画像)を示す図であり、図16は、本発明の態様1の第3実施形態における冊子体の、近赤外線カメラによる観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。他の図においても同様。)である。なお、図15に示す冊子体に含まれる積層体1を、図15中のB-B’線で切断したB-B’断面を見たときの層構造は、図10に示す層構造と同様であってよい。
(Third Embodiment)
FIG. 15 is a diagram showing an observation image (visible light image) of the booklet in the third embodiment of the first embodiment of the present invention under visible light, and FIG. 16 is a diagram showing a third embodiment of the first embodiment of the present invention. It is a figure which shows the observation image (near-infrared image) of the booklet body in 1 The layer structure when the cross section of the laminated body 1 included in the booklet shown in FIG. 15 is cut along the line BB'in FIG. 15 and viewed is the same as the layer structure shown in FIG. May be.
 図6等を用いて説明した積層体1と同様に、図15の積層体1も基材中間層を備え、図17に示すとおり、第1基材層18、基材中間層(16,17)、第2基材層19、レーザー発色層10からなる積層構造の一部の区域が切り抜かれ、それにより生じた空間にウインドウ部材5が設けられている。 Similar to the laminated body 1 described with reference to FIG. 6 and the like, the laminated body 1 of FIG. 15 also includes a base material intermediate layer, and as shown in FIG. 17, the first base material layer 18 and the base material intermediate layer (16, 17). ), A part of the laminated structure composed of the second base material layer 19 and the laser coloring layer 10 is cut out, and the window member 5 is provided in the space created by the cutout.
 積層体1を可視光下で観察すると、図15に示すとおり、レーザー発色層10にレーザーマーキングをすることで描かれた(書かれた)人物画像2、人物識別情報3と、有色インキ印刷、蛍光インキ印刷、又はホログラム(これらの2以上の組み合わせでもよい。他の実施形態においても同様)により形成されたマーク4(有色インキ層、蛍光インキ層、又はホログラム層12)と、を認識することができる。後述のとおり、冊子体100の別のシート23,24の積層体1の側の面には近赤外線透過性の有色インキ印刷、蛍光インキ印刷、又はホログラム(これらの2以上の組み合わせでもよい。他の場合においても同様。)により人物画像22,21が形成されている(図15中で示されている人物画像21は、シート24の積層体1側の面に印刷されたものであり、ウインドウ部材5を通して視認することができる。)。また人物画像22,21は両方形成される必要はなく、いずれか一方のみが形成されてもよいし、どちらも形成されなくてもよい。また、人物画像22,21の代わりに、或いは人物画像22,21に加えて、シート23,24のうち少なくとも一方の積層体1の側の面には人物識別情報3と同様の人物識別情報を形成してもよい(シート23,24のうち一方の積層体1の側の面には人物画像22又は人物画像21を形成し、シート23,24のうち他方の積層体1側の面には人物識別情報3と同様の人物識別情報を形成してもよいし、シート23の積層体1の側の面には、氏名等の人物識別情報を形成して、シート24の積層体1の側の面には、IDナンバー等の別の人物識別情報を形成してもよい)。また積層体1の裏面(マーク4と逆側の面)には、有色インキ層、蛍光インキ層、又はホログラム層13としてマーク8が形成されているとする(図3,図8と同様であってよい。第3実施形態においては不図示)。 When the laminate 1 is observed under visible light, as shown in FIG. 15, a person image 2 (written) drawn by laser marking the laser color-developing layer 10, a person identification information 3, and colored ink printing, Recognizing the mark 4 (colored ink layer, fluorescent ink layer, or hologram layer 12) formed by fluorescent ink printing or a hologram (a combination of two or more of these may be used; the same applies to other embodiments). Can be done. As will be described later, near-infrared transmissive colored ink printing, fluorescent ink printing, or hologram (a combination of two or more of these may be used) on the surface of another sheet 23, 24 of the booklet 100 on the side of the laminated body 1. (The same applies to the case of), the person images 22 and 21 are formed (the person image 21 shown in FIG. 15 is printed on the surface of the sheet 24 on the laminated body 1 side, and is a window. It can be visually recognized through the member 5.). Further, it is not necessary that both of the person images 22 and 21 are formed, and only one of them may be formed or neither of them may be formed. Further, instead of the person images 22 and 21, or in addition to the person images 22 and 21, the same person identification information as the person identification information 3 is provided on the surface of at least one of the sheets 23 and 24 on the side of the laminated body 1. It may be formed (a person image 22 or a person image 21 is formed on the surface of one of the sheets 23 and 24 on the side of the laminate 1, and the surface of the sheets 23 and 24 on the side of the other laminate 1 is formed. The same person identification information as the person identification information 3 may be formed, or the person identification information such as a name is formed on the surface of the sheet 23 on the side of the stack 1 to form the side of the sheet 24 on the side of the stack 1. On the surface of, another person identification information such as an ID number may be formed). Further, it is assumed that the mark 8 is formed as a colored ink layer, a fluorescent ink layer, or a hologram layer 13 on the back surface (the surface opposite to the mark 4) of the laminate 1 (similar to FIGS. 3 and 8). (Not shown in the third embodiment).
 基材中間層の第2の部分16(第1基材層18と第2基材層19の間からはみ出している)を綴じ代として、積層体1(シート)は、他のシート23,24,25と綴じられており、それにより冊子体100が構成される。既に述べたとおりシート23,24には有色インキ印刷、蛍光インキ印刷、又はホログラムにより人物画像22,21が描かれており、人物画像であるため、通常のオフセット印刷やシルク印刷より、インクジェットや、トナー、リボン転写等可変印刷可能となるプリンターを用いることが好ましい。また近赤外線吸収性材料を含有するウインドウ部材5には、図16の近赤外線像として認識されるとおりレーザーマーキングにより人物識別情報26が書かれている(人物識別情報26の代わりに、或いはこれに加えて、ウインドウ部材5に対するレーザーマーキングにより人物画像2、或いは人物画像21,22と同様の人物画像を形成してもよい。)。可視光画像として認識できる人物画像2、人物識別情報3(これらは近赤外線画像としても認識できる)、人物画像21,22と、近赤外線画像(表示)として認識できる人物識別情報26とを比較することにより、積層体1の、そして冊子体100の真贋判定を行うことができる。また、図15~図16においてはレーザーマーキングをおもて面に行って人物画像2と人物識別情報3とをおもて面に形成していただが、レーザー発色層は基材部の裏側に設けても(図5中のレーザー発色層11を参照)、両側に設けてもよく(図5中のレーザー発色層10,11を参照)、基材部の裏面側のレーザー発色層11にレーザーマーキングを行うことにより人物画像2と人物識別情報3とを積層体1の裏面側に形成してもよい(この場合であっても、真贋判定は同様に行うことが可能。レーザーマーキングをおもて側と裏側のどちらに行っても、或いは両方に行ってもよいことは、他の実施形態においても同様)。 With the second portion 16 of the base material intermediate layer (protruding from between the first base material layer 18 and the second base material layer 19) as a binding allowance, the laminate 1 (sheet) is the other sheets 23, 24. , 25, which constitutes the booklet 100. As described above, the sheets 23 and 24 have the person images 22 and 21 drawn by colored ink printing, fluorescent ink printing, or hologram. It is preferable to use a printer capable of variable printing such as toner and ribbon transfer. Further, on the window member 5 containing the near-infrared absorbing material, the person identification information 26 is written by laser marking as recognized as the near-infrared image of FIG. 16 (instead of or on the person identification information 26). In addition, a person image 2 or a person image similar to the person images 21 and 22 may be formed by laser marking the window member 5). A person image 2 that can be recognized as a visible light image, a person identification information 3 (these can also be recognized as a near-infrared image), a person image 21 and 22, and a person identification information 26 that can be recognized as a near-infrared image (display) are compared. Thereby, the authenticity of the laminated body 1 and the booklet body 100 can be determined. Further, in FIGS. 15 to 16, laser marking was performed on the front surface to form the person image 2 and the person identification information 3 on the front surface, but the laser coloring layer is on the back side of the base material portion. It may be provided (see the laser coloring layer 11 in FIG. 5) or may be provided on both sides (see the laser coloring layers 10 and 11 in FIG. 5), or a laser may be provided on the laser coloring layer 11 on the back surface side of the base material portion. By performing marking, the person image 2 and the person identification information 3 may be formed on the back surface side of the laminated body 1. (Even in this case, the authenticity determination can be performed in the same manner. Laser marking is mainly performed. It is the same in other embodiments that it may be performed on either the front side or the back side, or on both sides).
 図15~図16に示す積層体1の製造方法の一例としては、
(1)オーバーシート層14に有色インキを用いた印刷で有色インキ層12(マーク4)を形成し、オーバーシート層15に有色インキを用いた印刷で有色インキ層13(マーク8)を形成する。
(2)第1基材層18、基材中間層(16,17)、第2基材層19とレーザー発色層10との間で数箇所のポイントを熱により融着させ、仮固定した状態でウインドウ部材5を形成すべき部分を切り抜いて貫通孔20(図12参照。第3実施形態においては不図示)を形成する。
(3)上記のとおり切り抜いて生じた貫通孔20に上述のウインドウ部材5を嵌め込む。
(4)上記各層を図10に示すとおりの順序で積層し、プレス処理により融着する。
(5)得られた積層体のオーバーシート層14側の表面からレーザー発色層10に対してレーザーマーキングを行い、人物画像2と人物識別情報3を描く。
(6)上記積層体のオーバーシート層14側の表面(ひょうめん)、又はオーバーシート層15側の表面からウインドウ部材5に対してレーザーマーキングを行い、人物識別情報26を描く。
という方法で積層体1を作製することができる。この積層体を、基材中間層の第2の部分16を綴じ代として他のシートと綴じることにより(シート23の裏面には上述のとおり人物画像22を有色インキ印刷等で形成しておく)、冊子体100を作製することができる。
As an example of the manufacturing method of the laminated body 1 shown in FIGS. 15 to 16,
(1) The colored ink layer 12 (mark 4) is formed by printing with colored ink on the oversheet layer 14, and the colored ink layer 13 (mark 8) is formed by printing with colored ink on the oversheet layer 15. ..
(2) A state in which several points are fused by heat between the first base material layer 18, the base material intermediate layer (16, 17), the second base material layer 19, and the laser coloring layer 10 and temporarily fixed. A through hole 20 (see FIG. 12, not shown in the third embodiment) is formed by cutting out a portion where the window member 5 should be formed.
(3) The above-mentioned window member 5 is fitted into the through hole 20 formed by cutting out as described above.
(4) The above layers are laminated in the order shown in FIG. 10 and fused by press treatment.
(5) Laser marking is performed on the laser coloring layer 10 from the surface of the obtained laminate on the oversheet layer 14 side, and a person image 2 and a person identification information 3 are drawn.
(6) Laser marking is performed on the window member 5 from the surface of the laminated body on the oversheet layer 14 side or the surface on the oversheet layer 15 side, and the person identification information 26 is drawn.
The laminated body 1 can be produced by the above method. By binding this laminated body with another sheet using the second portion 16 of the base material intermediate layer as a binding margin (a person image 22 is formed on the back surface of the sheet 23 by colored ink printing or the like as described above). , The booklet body 100 can be produced.
(真贋判定方法)
 積層体1の可視光画像と近赤外線画像とを比較することにより、積層体1の真贋判定(冊子体100の真贋判定)を行うことができる。具体的には、可視光画像として認識できる人物画像2、人物識別情報3(これらは近赤外線画像としても認識できる)、人物画像21,22により特定される人物と、近赤外線画像として認識できる人物識別情報26により特定される人物とが一致する場合には、当該積層体1(或いは冊子体100)が身分証明カード等(冊子体100の一例としてはパスポートがある)として真正なものであると判定でき、可視光画像として認識できる人物画像2、人物識別情報3(これらは近赤外線画像としても認識できる)、人物画像21,22により特定される人物と、近赤外線画像として認識できる人物識別情報26により特定される人物とが一致しない場合には、当該積層体1(或いは冊子体100)が身分証明カード等(冊子体としてはパスポート等)として真正なものではない(偽物である)と判定できる。上述のとおり、人物画像(人物識別情報)の代わりに、或いはこれに加えて人物識別情報(人物画像)を印刷、レーザーマーキング等により形成することも可能であり、その場合も、可視光画像として認識できる人物画像(及び/又は人物識別情報)と、近赤外線画像として認識できる人物識別情報(及び/又は人物画像)とを比較することにより、同様の真贋判定を行うことができる(他の実施形態においても同様)。
(Authentication judgment method)
By comparing the visible light image of the laminated body 1 with the near-infrared image, the authenticity of the laminated body 1 (the authenticity of the booklet 100) can be determined. Specifically, a person image 2 that can be recognized as a visible light image, a person identification information 3 (these can also be recognized as a near-infrared image), a person specified by the person images 21 and 22, and a person that can be recognized as a near-infrared image. When the person specified by the identification information 26 matches, the laminated body 1 (or the booklet body 100) is considered to be genuine as an identification card or the like (an example of the booklet body 100 is a passport). A person image 2 that can be determined and recognized as a visible light image, a person identification information 3 (these can also be recognized as a near-infrared image), a person specified by the person images 21 and 22, and a person identification information that can be recognized as a near-infrared image. If the person specified by 26 does not match, it is determined that the laminated body 1 (or booklet body 100) is not genuine (a fake) as an identification card or the like (passport or the like as a booklet body). can. As described above, instead of or in addition to the person image (person identification information), the person identification information (person image) can be formed by printing, laser marking, or the like, and even in that case, as a visible light image. By comparing the recognizable person image (and / or person identification information) with the person identification information (and / or person image) that can be recognized as a near-infrared image, the same authenticity determination can be performed (other implementations). The same applies to the form).
(第4実施形態)
 図17は、本発明の態様1の第4実施形態における冊子体の、可視光下による観察画像(可視光画像)を示す図であり、図18は、本発明の態様1の第4実施形態における冊子体の、近赤外線カメラによる観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。他の図においても同様。)であり、図19は、図17に示すウインドウ部材を単独で見た時の、近赤外線カメラによる観察画像(近赤外線画像)を示す図である。なお、図17に示す冊子体に含まれる積層体1を、図17中のB-B’線で切断したB-B’断面を見たときの層構造は、図10に示す層構造と同様であってよい。
(Fourth Embodiment)
FIG. 17 is a diagram showing an observation image (visible light image) of the booklet in the fourth embodiment of the first aspect of the present invention under visible light, and FIG. 18 is a diagram showing a fourth embodiment of the first aspect of the present invention. It is a figure which shows the observation image (near-infrared image) of the booklet body in 1 19 is a diagram showing an observation image (near-infrared image) by a near-infrared camera when the window member shown in FIG. 17 is viewed alone. The layer structure when the cross section of the laminated body 1 included in the booklet shown in FIG. 17 is cut along the line BB'in FIG. 17 and viewed is the same as the layer structure shown in FIG. May be.
 第3実施形態とは異なり、第4実施形態の積層体1と隣り合うシート23,24の積層体1の側の面においては、可視光及び近赤外線の吸収性を有する墨(カーボンブラック)を含有する黒インキ(以降、墨インキと述べる)を用いた印刷をすることにより、部分的な人物画像29,28が描かれている(図17中で示されている部分的な人物画像28は、シート24の積層体1側の面に印刷されたものであり、ウインドウ部材5を通して視認、及び赤外線カメラで認識することができる。)。なお、本実施形態でいう墨インキは、カーボンブラックを含む任意のインキであってよいし、市販プリンターのインクカートリッジのブラックでもよい。部分的な人物画像29,28は両方形成される必要はなく、いずれか一方のみが形成されてもよいし、どちらも形成されなくてもよい。人物画像であるため、通常のオフセット印刷やシルク印刷より、インクジェットや、トナー、リボン転写等可変印刷可能となるプリンターを用いることが好ましい。さらに、レーザーマーキングにより基材を炭化させ、部分的な人物画像29,28を形成してもよい。また近赤外線吸収性材料を含有するウインドウ部材5には、図18の近赤外線像として認識されるとおり、部分的な人物画像30を描くようにレーザーマーキングがされている。ウインドウ部材5は近赤外線吸収性材料を含むため、レーザーマーキングをする前における近赤外線画像としては周囲よりも暗い画像が得られるが、レーザーマーキングによりレーザー光を照射した部分は近赤外線の吸収性が低下するため、近赤外線画像においてはレーザー光を照射した部分が照射前よりも明るくなる。このような性質を利用し、人物画像(又は人物識別情報)の背景31の部分にレーザー光を照射することにより、近赤外線画像としては図18に示すとおりの部分的な人物画像30を得ることができる(図19参照)。 Unlike the third embodiment, on the surface of the sheets 23 and 24 adjacent to the laminate 1 of the fourth embodiment on the side surface of the laminate 1, ink (carbon black) having absorption of visible light and near infrared rays is applied. Partial portrait images 29 and 28 are drawn by printing with the contained black ink (hereinafter referred to as ink) (the partial portrait image 28 shown in FIG. 17 is , It is printed on the surface of the sheet 24 on the one side of the laminated body, and can be visually recognized through the window member 5 and recognized by the infrared camera.) The black ink in the present embodiment may be any ink containing carbon black, or may be black in an ink cartridge of a commercially available printer. It is not necessary that both of the partial portrait images 29 and 28 are formed, and only one of them may be formed or neither of them may be formed. Since it is a human image, it is preferable to use a printer capable of variable printing such as inkjet, toner, ribbon transfer, etc., rather than ordinary offset printing or silk printing. Further, the substrate may be carbonized by laser marking to form partial portrait images 29, 28. Further, the window member 5 containing the near-infrared absorbing material is laser-marked so as to draw a partial person image 30 as recognized as the near-infrared image of FIG. Since the window member 5 contains a near-infrared absorbing material, an image darker than the surroundings can be obtained as a near-infrared image before laser marking, but the portion irradiated with laser light by laser marking has near-infrared absorbing property. Therefore, in the near-infrared image, the portion irradiated with the laser beam becomes brighter than before the irradiation. By utilizing such a property and irradiating the background 31 portion of the person image (or person identification information) with a laser beam, a partial person image 30 as shown in FIG. 18 can be obtained as a near-infrared image. Can be done (see FIG. 19).
 積層体1を可視光下で観察すると、図17に示すとおり、レーザー発色層10にレーザーマーキングをすることで描かれた(書かれた)人物画像2、人物識別情報3と、有色インキ印刷、蛍光インキ印刷、又はホログラム(これらの2以上の組み合わせでもよい。他の実施形態においても同様)により形成されたマーク4(有色インキ層、蛍光インキ層、又はホログラム層12)と、上述のとおり、冊子体100の別のシート23,24の積層体1の側の面には墨インキ印刷により部分的な人物画像29,28が形成されている。また積層体1の裏面(マーク4と逆側の面)には、有色インキ層、蛍光インキ層、又はホログラム層13としてマーク8が形成されているとする(図3,図8と同様であってよい。第4実施形態においては不図示)。 When the laminate 1 is observed under visible light, as shown in FIG. 17, a person image 2 (written) drawn by laser marking the laser color-developing layer 10, a person identification information 3, and colored ink printing, As described above, the mark 4 (colored ink layer, fluorescent ink layer, or hologram layer 12) formed by fluorescent ink printing or hologram (a combination of two or more of these may be used; the same applies to other embodiments). Partial portrait images 29 and 28 are formed on the side surface of the laminated body 1 of the other sheets 23 and 24 of the booklet 100 by black ink printing. Further, it is assumed that the mark 8 is formed as a colored ink layer, a fluorescent ink layer, or a hologram layer 13 on the back surface (the surface opposite to the mark 4) of the laminate 1 (similar to FIGS. 3 and 8). (Not shown in the fourth embodiment).
 基材中間層の第2の部分16(第1基材層18と第2基材層19の間からはみ出している)を綴じ代として、積層体1(シート)は、他のシート23,24,25と綴じられており、それにより冊子体100が構成される。 With the second portion 16 of the base material intermediate layer (protruding from between the first base material layer 18 and the second base material layer 19) as a binding margin, the laminate 1 (sheet) is the other sheets 23, 24. , 25, which constitutes the booklet 100.
 積層体1を近赤外線カメラ等で観察すると、図18に示すとおり、シート23,24に墨インキ等で形成された部分的な人物画像29,28は可視光吸収性だけでなく近赤外線吸収性も有するため近赤外線画像としても認識可能であり、また、ウインドウ部材5が含有する近赤外線吸収性材料の近赤外線吸収性に起因して、部分的な人物画像30も近赤外線画像として認識できる。墨インキ等による部分的な人物画像28,29と、ウインドウ部材5が含有する近赤外線吸収性材料の近赤外線吸収性に起因する部分的な人物画像30とが合成される(近赤外線画像として部分的な人物画像28,30の両方が同時に表示される又は/及び部分的な人物画像29,30の両方が同時に表示される)ことにより、合成画像として人物画像を認識することができる。可視光画像として認識できる人物画像2、人物識別情報3(これらは近赤外線画像としても認識できる)と、可視光画像としては部分的にしか認識できないが近赤外線画像としては完全に認識できる合成画像としての人物画像(部分的な人物画像28,30を同時に表示することで認識できる人物画像、又は/及び部分的な人物画像29,30を同時に表示することで認識できる人物画像)とを比較することにより、積層体1の、そして冊子体100の真贋判定を行うことができる。真贋判定は、コンピュータ等により両方の部分的な人物画像を合成して得られる情報として合成画像を作成してもよいし、人が部分的な人物画像29と部分的な人物画像30とから、又は/及び部分的な人物画像28と部分的な人物画像30とから完全な人物画像を認識することにより人物画像の情報を得てもよい。部分的な人物画像28,29は、図17等に示すとおり両方形成してもよいし、部分的な人物画像28のみを形成しても、部分的な人物画像29のみを形成してもよい。また、図17~図19においてはレーザーマーキングをおもて面に行って人物画像2と人物識別情報3とをおもて面に形成していただが、レーザー発色層は基材部の裏側に設けても(図5中のレーザー発色層11を参照)、両側に設けてもよく(図5中のレーザー発色層10,11を参照)、基材部の裏面側のレーザー発色層11にレーザーマーキングを行うことにより人物画像2と人物識別情報3とを積層体1の裏面側に形成してもよい(この場合であっても、真贋判定は同様に行うことが可能。レーザーマーキングをおもて側と裏側のどちらに行っても、或いは両方に行ってもよいことは、他の実施形態においても同様)。合成画像は人物画像である必要がなく、人物識別情報3と一致した情報(氏名、IDナンバー等)でも良く、また合成画像は、マイクロ文字(第1実施形態において述べたとおり、径、幅、又は高さが1mm以上の文字であってもよいし、その他の微小表示体であってもよい)から構成されてもよい。 When the laminate 1 is observed with a near-infrared camera or the like, as shown in FIG. 18, the partial portrait images 29 and 28 formed on the sheets 23 and 24 with black ink or the like are not only visible light absorbing but also near infrared absorbing. Since it also has, it can be recognized as a near-infrared image, and a partial person image 30 can also be recognized as a near-infrared image due to the near-infrared absorption of the near-infrared absorbing material contained in the window member 5. Partial person images 28 and 29 made of black ink and the like and partial person images 30 caused by the near-infrared absorption of the near-infrared absorbing material contained in the window member 5 are combined (part as a near-infrared image). A person image can be recognized as a composite image by displaying both the typical person images 28 and 30 at the same time and / or displaying both the partial person images 29 and 30 at the same time. A person image 2 and a person identification information 3 that can be recognized as a visible light image (these can also be recognized as a near-infrared image) and a composite image that can be partially recognized as a visible light image but completely recognized as a near-infrared image. (A person image that can be recognized by displaying partial person images 28 and 30 at the same time, or / and a person image that can be recognized by displaying partial person images 29 and 30 at the same time). Thereby, the authenticity of the laminated body 1 and the booklet body 100 can be determined. In the authenticity determination, a composite image may be created as information obtained by synthesizing both partial human images by a computer or the like, or a person may create a composite image from the partial human image 29 and the partial human image 30. Alternatively, information on the person image may be obtained by recognizing the complete person image from the partial person image 28 and the partial person image 30. Both of the partial person images 28 and 29 may be formed as shown in FIG. 17 and the like, only the partial person image 28 may be formed, or only the partial person image 29 may be formed. .. Further, in FIGS. 17 to 19, laser marking was performed on the front surface to form the person image 2 and the person identification information 3 on the front surface, but the laser coloring layer is on the back side of the base material portion. It may be provided (see the laser coloring layer 11 in FIG. 5) or may be provided on both sides (see the laser coloring layers 10 and 11 in FIG. 5), or a laser may be provided on the laser coloring layer 11 on the back surface side of the base material portion. By performing marking, the person image 2 and the person identification information 3 may be formed on the back surface side of the laminated body 1. (Even in this case, the authenticity determination can be performed in the same manner. Laser marking is mainly performed. It is the same in other embodiments that it may be performed on either the front side or the back side, or on both sides). The composite image does not have to be a person image, and may be information (name, ID number, etc.) that matches the person identification information 3, and the composite image may have micro characters (diameter, width, as described in the first embodiment). Alternatively, it may be a character having a height of 1 mm or more, or may be another microscopic display body).
 図17~図19に示す積層体1の製造方法の一例としては、
(1)オーバーシート層14に有色インキを用いた印刷で有色インキ層12(マーク4)を形成し、オーバーシート層15に有色インキを用いた印刷で有色インキ層13(マーク8)を形成する。
(2)第1基材層18、基材中間層(16,17)、第2基材層19とレーザー発色層10との間で数箇所のポイントを熱により融着させ、仮固定した状態でウインドウ部材5を形成すべき部分を切り抜いて貫通孔20(図12参照。第4実施形態においては不図示)を形成する。
(3)上記のとおり切り抜いて生じた貫通孔20に上述のウインドウ部材5を嵌め込む。
(4)上記各層を図10に示すとおりの順序で積層し、プレス処理により融着する。
(5)得られた積層体のオーバーシート層14側の表面からレーザー発色層10に対してレーザーマーキングを行い、人物画像2と人物識別情報3を描く。
(6)上記積層体のオーバーシート層15側の面(裏面と呼ぶ)からウインドウ部材5に対してレーザーマーキングを行い、おもて面(オーバーシート14側の面)からウインドウ部材5を単独で近赤外線画像として見たときに図19の部分的な人物画像30が認識できるよう、背景31の部分(部分的な人物画像30以外の部分)にレーザー光を照射する。
という方法で積層体1を作製することができる。
 この積層体を、基材中間層の第2の部分16を綴じ代として他のシートと綴じることにより(シート23の裏面には上述のとおり部分的な人物画像29を墨インキ印刷等で形成しておく)、冊子体100を作製することができる。
As an example of the manufacturing method of the laminated body 1 shown in FIGS. 17 to 19,
(1) The colored ink layer 12 (mark 4) is formed by printing with colored ink on the oversheet layer 14, and the colored ink layer 13 (mark 8) is formed by printing with colored ink on the oversheet layer 15. ..
(2) A state in which several points are fused by heat between the first base material layer 18, the base material intermediate layer (16, 17), the second base material layer 19, and the laser coloring layer 10 and temporarily fixed. A through hole 20 (see FIG. 12, not shown in the fourth embodiment) is formed by cutting out a portion where the window member 5 is to be formed.
(3) The above-mentioned window member 5 is fitted into the through hole 20 formed by cutting out as described above.
(4) The above layers are laminated in the order shown in FIG. 10 and fused by press treatment.
(5) Laser marking is performed on the laser coloring layer 10 from the surface of the obtained laminate on the oversheet layer 14 side, and a person image 2 and a person identification information 3 are drawn.
(6) Laser marking is performed on the window member 5 from the surface (referred to as the back surface) on the oversheet layer 15 side of the laminated body, and the window member 5 is independently removed from the front surface (the surface on the oversheet 14 side). A laser beam is applied to a portion of the background 31 (a portion other than the partial portrait image 30) so that the partial portrait image 30 of FIG. 19 can be recognized when viewed as a near-infrared image.
The laminated body 1 can be produced by the above method.
By binding this laminated body with another sheet using the second portion 16 of the base material intermediate layer as a binding allowance (a partial human image 29 is formed on the back surface of the sheet 23 by black ink printing or the like as described above. The booklet body 100 can be produced.
(真贋判定方法)
 積層体1の可視光画像と近赤外線画像とを比較することにより、積層体1の真贋判定(冊子体100の真贋判定)を行うことができる。具体的には、可視光画像として認識できる人物画像2、人物識別情報3(これらは近赤外線画像としても認識できる)と(すなわち可視光情報と)、可視光画像としては部分的にしか認識できないが近赤外線画像としては完全に認識できる合成画像としての人物画像(部分的な人物画像28,30を同時に表示することで認識できる人物画像又は/及び部分的な人物画像29,30を同時に表示することで認識できる人物画像)と(すなわち近赤外線情報と)を比較して、可視光情報により特定される人物と近赤外線情報により特定される人物とが一致する場合には、当該積層体1(或いは冊子体100)が身分証明カード等(冊子体100の一例としてはパスポートがある)として真正なものであると判定でき、可視光情報により特定される人物と近赤外線情報により特定される人物とが一致しない場合には、当該積層体1(或いは冊子体100)が身分証明カード等(冊子体としてはパスポート等)として真正なものではない(偽物である)と判定できる。
(Authentication judgment method)
By comparing the visible light image of the laminated body 1 with the near-infrared image, the authenticity of the laminated body 1 (the authenticity of the booklet 100) can be determined. Specifically, the person image 2 that can be recognized as a visible light image, the person identification information 3 (these can also be recognized as a near-infrared image) (that is, the visible light information), and the visible light image can only be partially recognized. Is a human image as a composite image that can be completely recognized as a near-infrared image (a human image that can be recognized by displaying partial human images 28 and 30 at the same time and / and a partial human image 29 and 30 are displayed at the same time. When the person specified by the visible light information and the person specified by the near-infrared information match by comparing the person image that can be recognized by the above (that is, with the near-infrared information), the laminated body 1 (that is, the near-infrared information) Alternatively, it can be determined that the booklet 100) is genuine as an identification card or the like (a passport is an example of the booklet 100), and a person specified by visible light information and a person specified by near-infrared information. If they do not match, it can be determined that the laminated body 1 (or booklet body 100) is not genuine (a fake) as an identification card or the like (passport or the like as a booklet body).
(第5実施形態)
 図20は、本発明の態様1の第5実施形態における積層体の、可視光によるおもて面の観察画像(可視光画像)を示す図(レンチキュラーレンズは透明だが図を見やすくする目的で描いている。)であり、図21は、図20に示す積層体を、後述の図25中の矢印C及び矢印Dの方向で見たときのおもて面の可視光画像を示す図であり、図22は、図20に示す積層体を、後述の図25中の矢印Cの方向で見たときのおもて面の近赤外線カメラによる観察画像(近赤外線画像)を示す図であり、図23は、図20に示す積層体を、後述の図25中の矢印Dの方向で見たときのおもて面の近赤外線カメラによる観察画像(近赤外線画像)を示す図である。また図24は、図20に示す積層体を、図20中のA-A’線で切断したA-A’断面を見たときの層構造の一例(図20の紙面内で、下方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、おもて面側の有色インキ層(又は蛍光インキ層、ホログラム層)12、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)13は、正確にはA-A’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)である。
(Fifth Embodiment)
FIG. 20 is a diagram showing an observation image (visible light image) of the front surface of the laminated body according to the fifth embodiment of the first aspect of the present invention by visible light (the lenticular lens is transparent, but the figure is drawn for the purpose of making the figure easier to see. 21 is a diagram showing a visible light image of the front surface when the laminate shown in FIG. 20 is viewed in the directions of arrows C and D in FIG. 25, which will be described later. 22 is a diagram showing an observation image (near-infrared image) of the front surface of the laminate shown in FIG. 20 when viewed in the direction of arrow C in FIG. 25, which will be described later, by a near-infrared camera. FIG. 23 is a diagram showing an observation image (near-infrared image) of the front surface of the laminate shown in FIG. 20 when viewed in the direction of arrow D in FIG. 25, which will be described later, by a near-infrared camera. Further, FIG. 24 shows an example of a layered structure when the cross section of AA ′ obtained by cutting the laminate shown in FIG. 20 along the AA ′ line in FIG. 20 is viewed (from below in the paper surface of FIG. 20). The figure conceptually showing (see) (each layer is drawn separately to show the layer structure. Also, the colored ink layer (or fluorescent ink layer, hologram layer) 12 on the front surface side and the back surface side. The colored ink layer (or fluorescent ink layer, hologram layer) 13 is not cut exactly by the AA'line, but is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure. .).
 図1等に示す第1実施形態とは異なり、オーバーシート層14におけるレーザー発色層10とは逆側の面の、ウインドウ部材5と少なくとも一部重なる区域にはレンチキュラーレンズ33が形成されている。図24の層構造は、レンチキュラーレンズ33が形成されている以外は図5の層構造と同様であってよい。 Unlike the first embodiment shown in FIG. 1 and the like, the lenticular lens 33 is formed on the surface of the oversheet layer 14 opposite to the laser coloring layer 10 and at least partially overlapping the window member 5. The layer structure of FIG. 24 may be the same as the layer structure of FIG. 5 except that the lenticular lens 33 is formed.
 図25は、図20に示す積層体を、図20中のB-B’線で切断したB-B’断面を見たときの層構造の一例(図20の紙面内で、右方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)12、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)13は、正確にはB-B’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)である。複数の凸状光学要素部分の一例としてのレンチキュラーレンズ33は、図25に示すとおりの方向から見たとき、複数の凸レンズ部分が(図20の紙面内で、上下方向(B-B’線)に沿って)並んでいるように見える形状を有している。図25中では、レンチキュラーレンズ33のいずれにおいても7の凸状レンズ部分が並んで描かれているが、これはレンチキュラーレンズの構造を単純化して説明するための便宜上の表示であり、一例においては、より多くの、例えば100個程度の凸状レンズ部分を含むよう、レンチキュラーレンズ33を形成することができる。或いは、凸状レンズ部分の数をより少なくしてもよく、一般には任意の複数個の凸状レンズ部分を含むようレンチキュラーレンズ33を形成することができる。なお、レンチキュラーレンズ33をオーバーシート層14上に形成する方法としては、既に作製されているレンチキュラーレンズ33をオーバーシート層14上に接着剤等でそれぞれ接着させてもよいし、或いは、レンチキュラーレンズ33として機能する形状を有するよう、オーバーシート層14を熱と圧力により形成してもよいし、オーバーシート層14上にレンチキュラーレンズ33基材を印刷方式により形成し、UV硬化等の方法により固定させてもよい。 FIG. 25 shows an example of a layered structure when the cross section of the laminated body shown in FIG. 20 is cut along the line BB'in FIG. 20 and viewed from the right side (in the paper surface of FIG. 20, viewed from the right). The figure (.) Is conceptually shown (each layer is drawn separately to show the layer structure. In addition, the colored ink layer (or fluorescent ink layer, hologram layer) 12 on the back surface side and the colored ink layer (colored ink layer) on the back surface side (. Alternatively, the fluorescent ink layer and the hologram layer) 13 are not accurately cut by the BB'line, but are drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure). .. In the lenticular lens 33 as an example of the plurality of convex optical element portions, when viewed from the direction shown in FIG. 25, the plurality of convex lens portions are (in the paper surface of FIG. 20 in the vertical direction (BB'line)). It has a shape that appears to be lined up (along). In FIG. 25, the convex lens portions of 7 are drawn side by side in each of the lenticular lenses 33, but this is a display for convenience for simplifying and explaining the structure of the lenticular lens, and in one example, it is a display. The lenticular lens 33 can be formed so as to include more, for example, about 100 convex lens portions. Alternatively, the number of convex lens portions may be reduced, and the lenticular lens 33 can generally be formed so as to include any plurality of convex lens portions. As a method of forming the lenticular lens 33 on the oversheet layer 14, the already produced lenticular lens 33 may be adhered to the oversheet layer 14 with an adhesive or the like, or the lenticular lens 33 may be formed on the oversheet layer 14. The oversheet layer 14 may be formed by heat and pressure so as to have a shape that functions as a lenticular lens 33, or a lenticular lens 33 base material is formed on the oversheet layer 14 by a printing method and fixed by a method such as UV curing. You may.
 ウインドウ部材5内でレンチキュラーレンズ33と少なくとも一部重なる区域にレーザーマーキングにより描かれた絵柄、文字等の表示を、近赤外線カメラ等を用いて近赤外線画像として見る(認識する)場合、どの方向から見るかに応じて異なった表示(近赤外線画像)を見ることができる。まずおもて面について、図25中、矢印Cの方向で見たときには図22に示す近赤外線画像を認識することができ、図25中、矢印Dの方向で見たときには図23に示す近赤外線画像を認識することができる。図22,図23の例においては、図25中の矢印Cの方向(角度)で近赤外レーザー光を照射するレーザーマーキングにより、図22に示す人物画像34を近赤外線画像として認識できるよう、背景31の部分にレーザー光が照射されるとともに、図25中の矢印Dの方向(角度)で近赤外レーザー光を照射するレーザーマーキングにより、図23に示す人物識別情報35を近赤外線画像(表示)として認識できるよう、背景31の部分にレーザー光が照射される。このようにすれば、図25中、矢印Cの方向からウインドウ部材5を、赤外線カメラ等を用いて見ることで人物画像34を認識することができるとともに、図25中、矢印Dの方向からウインドウ部材5を、赤外線カメラ等を用いて見ることで人物識別情報35を認識することができる。すなわち、観測角度を変えることで潜在絵柄を視認できるのであり、近赤外線吸収のMLI(Multiple Laser Image)が実現される。 When viewing (recognizing) a display of a pattern, characters, etc. drawn by laser marking in an area of the window member 5 that partially overlaps the lenticular lens 33 as a near-infrared image using a near-infrared camera or the like, from which direction. You can see different displays (near-infrared images) depending on what you see. First, regarding the front surface, the near-infrared image shown in FIG. 22 can be recognized when viewed in the direction of arrow C in FIG. 25, and the near-infrared image shown in FIG. 23 when viewed in the direction of arrow D in FIG. 25. Can recognize infrared images. In the examples of FIGS. 22 and 23, the person image 34 shown in FIG. 22 can be recognized as a near-infrared image by laser marking that irradiates the near-infrared laser light in the direction (angle) of the arrow C in FIG. A near-infrared image (near-infrared image) of the person identification information 35 shown in FIG. The laser beam is applied to the portion of the background 31 so that it can be recognized as (display). In this way, the person image 34 can be recognized by looking at the window member 5 from the direction of arrow C in FIG. 25 using an infrared camera or the like, and the window can be recognized from the direction of arrow D in FIG. 25. The person identification information 35 can be recognized by viewing the member 5 with an infrared camera or the like. That is, the latent pattern can be visually recognized by changing the observation angle, and MLI (Multiple Laser Image) of near-infrared absorption is realized.
 図26は、レンチキュラーの原理を概念的に説明する図である(図20~図25を用いて説明した具体的構成と一致する必要はない)。第1の位置P1から、レンチキュラーレンズ33を通してウインドウ部材5を近赤外線カメラ等で見ると、複数の印字部IM1に描かれた各々の絵柄等が合成されて、人物画像34のような第1の表示(絵柄)を認識することができる。第2の位置P2から、近赤外線カメラ等によりレンチキュラーレンズ33を通してウインドウ部材5を見ると、複数の印字部IM2に描かれた各々の絵柄等が合成されて、人物識別情報35のような第2の表示(文字)を認識することができる。 FIG. 26 is a diagram conceptually explaining the principle of lenticular (it does not have to be consistent with the specific configuration described with reference to FIGS. 20 to 25). When the window member 5 is viewed with a near-infrared camera or the like from the first position P1 through the lenticular lens 33, each pattern or the like drawn on the plurality of printing units IM1 is synthesized, and the first one like the person image 34. The display (picture) can be recognized. When the window member 5 is viewed from the second position P2 through the lenticular lens 33 with a near-infrared camera or the like, each pattern or the like drawn on the plurality of printing units IM2 is combined to form a second such as the person identification information 35. Can recognize the display (characters) of.
 図20~図25に示す積層体1の製造方法の一例としては、
(1)オーバーシート層14に有色インキを用いた印刷で有色インキ層12(マーク4)を形成し、オーバーシート層15に有色インキを用いた印刷で有色インキ層13(マーク8)を形成する。
(2)基材層9とレーザー発色層10,11との間で数箇所のポイントを熱により融着させ、仮固定した状態でウインドウ部材5を形成すべき部分を切り抜く。
(3)上記のとおり切り抜いて生じた空間に上述のウインドウ部材5を嵌め込む。
(4)上記各層を図24,図25に示すとおりの順序で積層し、レンチキュラーレンズを形成できる凹凸のあるプレス板を用いて熱プレス処理により融着する(各層が融着するのと併せてレンチキュラーレンズ33が形成される)。
(5)得られた積層体のオーバーシート層14側の表面からレーザー発色層10に対してレーザーマーキングを行い、人物画像2と人物識別情報3を描く。
(6)得られた積層体のオーバーシート層14側の表面からウインドウ部材5に対してレーザー光を照射し、上述のとおり観測する方向に応じて人物画像34と人物識別情報35とが近赤外線画像として選択的に認識できるよう、図25中、矢印Cの方向から人物画像34の背景31(図22参照)にレーザー光を照射し、そして矢印Dの方向から人物識別情報35の背景31(図23参照)にレーザー光を照射することによりレーザーマーキングを行う。
という方法で積層体1を作製することができる。
As an example of the manufacturing method of the laminated body 1 shown in FIGS. 20 to 25,
(1) The colored ink layer 12 (mark 4) is formed by printing with colored ink on the oversheet layer 14, and the colored ink layer 13 (mark 8) is formed by printing with colored ink on the oversheet layer 15. ..
(2) Several points are fused by heat between the base material layer 9 and the laser coloring layers 10 and 11, and a portion where the window member 5 should be formed is cut out in a temporarily fixed state.
(3) The above-mentioned window member 5 is fitted into the space created by cutting out as described above.
(4) The above layers are laminated in the order shown in FIGS. 24 and 25, and fused by heat pressing using an uneven press plate capable of forming a lenticular lens (in addition to the fusion of the layers). The lenticular lens 33 is formed).
(5) Laser marking is performed on the laser coloring layer 10 from the surface of the obtained laminate on the oversheet layer 14 side, and a person image 2 and a person identification information 3 are drawn.
(6) The window member 5 is irradiated with laser light from the surface of the obtained laminate on the oversheet layer 14 side, and the person image 34 and the person identification information 35 are near infrared rays according to the observation direction as described above. In FIG. 25, the background 31 of the person image 34 (see FIG. 22) is irradiated with a laser beam from the direction of the arrow C, and the background 31 of the person identification information 35 (see FIG. 22) is irradiated from the direction of the arrow D so that the image can be selectively recognized. Laser marking is performed by irradiating (see FIG. 23) with laser light.
The laminated body 1 can be produced by the above method.
(真贋判定方法)
 積層体1の可視光画像と近赤外線画像とを比較することにより、積層体1の真贋判定を行うことができる。具体的には、可視光画像として認識できる人物画像2,人物識別情報3(これらは近赤外線画像としても認識できる)により特定される人物と、近赤外線画像として認識できる人物画像34,人物識別情報35により特定される人物とが一致する場合には、当該積層体1が身分証明カード等として真正なものであると判定でき、可視光画像として認識できる人物画像2,人物識別情報3(これらは近赤外線画像としても認識できる)により特定される人物と、近赤外線画像として認識できる人物画像34,人物識別情報35により特定される人物とが一致しない場合には、当該積層体1が身分証明カード等として真正なものではない(偽物である)と判定できる。
(Authentication judgment method)
By comparing the visible light image of the laminated body 1 with the near-infrared image, the authenticity of the laminated body 1 can be determined. Specifically, a person identified by a person image 2 that can be recognized as a visible light image 2, a person identification information 3 (these can also be recognized as a near-infrared image), a person image 34 that can be recognized as a near-infrared image, and person identification information. When the person specified by 35 matches, it can be determined that the laminated body 1 is genuine as an identification card or the like, and the person image 2 and the person identification information 3 which can be recognized as a visible light image (these are). If the person specified by (which can also be recognized as a near-infrared image) does not match the person specified by the person image 34 and person identification information 35 which can be recognized as a near-infrared image, the laminated body 1 is an identification card. It can be determined that the image is not genuine (it is a fake).
(第6実施形態)
 図27は、本発明の態様1の第6実施形態における積層体の、可視光下によるおもて面の観察画像(可視光画像)を示す図であり、図28は、本発明の態様1の第6実施形態における積層体の、近赤外線カメラによるおもて面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。他の図においても同様。)であり、図29は、図27に示す積層体を、図27中のA-A’線で切断したA-A’断面を見たときの層構造の一例(図27の紙面内で、下方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、おもて面側の有色インキ層(又は蛍光インキ層、ホログラム層)12は、正確にはA-A’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)である。なお、図27の積層体における裏面の可視光画像は、図3の可視光画像からマーク8を除いたものと同様であり、図27の積層体における裏面の近赤外線画像は、図4の近赤外線画像と同様である。図29に示すとおり、第6実施形態の積層体はレーザー発色層を備えないが、可視光情報としての人物画像37、人物識別情報38を、有色インキ層、蛍光インキ層、又はホログラム層39として形成することにより、第1実施形態の積層体と概ね同様の真贋判定に用いることができる。なお、人物画像37、人物識別情報38は通常のオフセット印刷やシルク印刷より、インクジェットや、トナー、リボン転写等可変印刷可能となるプリンターを用いることが好ましい。また、積層体を形成してからおもて面の上に印刷してもよい。その場合、印刷情報を保護するためにOPニスを塗布することが好ましい。
(Sixth Embodiment)
FIG. 27 is a diagram showing an observation image (visible light image) of the front surface of the laminated body according to the sixth embodiment of the first aspect of the present invention under visible light, and FIG. 28 is a view showing an observation image (visible light image) of the front surface under visible light, and FIG. 28 is a view showing the first aspect of the present invention. The figure which shows the observation image (near-infrared image) of the front surface of the laminated body in 6th Embodiment by a near-infrared camera (note that the outer shape of the laminated body is drawn for the purpose of making the figure easy to see. The same applies to FIGS. A diagram conceptually showing (viewed from below) on the paper surface (each layer is drawn separately to show the layer structure. Also, a colored ink layer (or a fluorescent ink layer) on the front surface side. The hologram layer) 12 is not exactly cut by the AA'line, but is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure). The visible light image on the back surface of the laminated body of FIG. 27 is the same as that obtained by removing the mark 8 from the visible light image of FIG. 3, and the near-infrared image of the back surface of the laminated body of FIG. Similar to an infrared image. As shown in FIG. 29, the laminate of the sixth embodiment does not have the laser coloring layer, but the person image 37 and the person identification information 38 as visible light information are used as the colored ink layer, the fluorescent ink layer, or the hologram layer 39. By forming it, it can be used for authenticity determination which is substantially the same as that of the laminated body of the first embodiment. For the person image 37 and the person identification information 38, it is preferable to use a printer capable of variable printing such as inkjet, toner, ribbon transfer, etc., rather than ordinary offset printing or silk printing. Alternatively, the laminate may be formed and then printed on the front surface. In that case, it is preferable to apply OP varnish to protect the print information.
 図27~図29に示す積層体1の製造方法の一例としては、
(1)オーバーシート層14に有色インキを用いた印刷で有色インキ層39(人物画像37,人物識別情報38)と有色インキ層12(マーク4)を形成する。
(2)基材層9において、ウインドウ部材5を形成すべき部分を切り抜き、切り抜いて生じた空間に上述のウインドウ部材5を嵌め込む。
(3)上述の各層とオーバーシート層15とを、図29に示すとおりの順序で積層し、プレス処理により融着する。
(4)得られた積層体のオーバーシート層14側の表面(ひょうめん)、又はオーバーシート層15側の表面からウインドウ部材5に対してレーザーマーキングを行い、人物画像7を描く。
という方法で積層体1を作製することができる。
As an example of the manufacturing method of the laminated body 1 shown in FIGS. 27 to 29,
(1) A colored ink layer 39 (person image 37, person identification information 38) and a colored ink layer 12 (mark 4) are formed by printing using colored ink on the oversheet layer 14.
(2) In the base material layer 9, a portion where the window member 5 should be formed is cut out, and the above-mentioned window member 5 is fitted into the space created by the cutout.
(3) The above-mentioned layers and the oversheet layer 15 are laminated in the order shown in FIG. 29 and fused by a press treatment.
(4) Laser marking is performed on the window member 5 from the surface (hail noodles) on the oversheet layer 14 side or the surface on the oversheet layer 15 side of the obtained laminate, and a person image 7 is drawn.
The laminated body 1 can be produced by the above method.
(真贋判定方法)
 積層体1の可視光画像と近赤外線画像とを比較することにより、積層体1の真贋判定を行うことができる。具体的には、可視光画像として認識できる人物画像37,人物識別情報38により特定される人物と、近赤外線画像として認識できる人物画像7により特定される人物とが一致する場合には、当該積層体1が身分証明カード等として真正なものであると判定でき、可視光画像として認識できる人物画像37,人物識別情報38により特定される人物と、近赤外線画像として認識できる人物画像7により特定される人物とが一致しない場合には、当該積層体1が身分証明カード等として真正なものではない(偽物である)と判定できる。
(Authentication judgment method)
By comparing the visible light image of the laminated body 1 with the near-infrared image, the authenticity of the laminated body 1 can be determined. Specifically, when the person specified by the person image 37 and the person identification information 38 that can be recognized as a visible light image and the person specified by the person image 7 that can be recognized as a near-infrared image match, the stacking is performed. It can be determined that the body 1 is genuine as an identification card or the like, and it is identified by a person image 37 that can be recognized as a visible light image, a person specified by person identification information 38, and a person image 7 that can be recognized as a near-infrared image. If the person does not match, it can be determined that the laminated body 1 is not genuine (a fake) as an identification card or the like.
(変形例)
 これまでの実施形態においてはウインドウ部材5がセシウム酸化タングステン又は6ホウ化ランタンを含有する近赤外線吸収性材料を含有するとして説明したが、近赤外線吸収性材料を含有するウインドウ部材5を用いることは必須ではなく、例えば、そのようなウインドウ部材5の代わりに固体透明樹脂等からなる可視光透過性、及び近赤外線透過性のクリアウインドウを用いて、クリアウインドウ内に近赤外線吸収性インキ層を設けたり(一例においては、可視光透過性、及び近赤外線透過性の第1の透明樹脂シートに上述のとおりセシウム酸化タングステン又は6ホウ化ランタンを含有する可視光透過性の近赤外線吸収性インキを用いた印刷をし、更に別の可視光透過性、及び近赤外線透過性の第2の透明樹脂シートを積層し、プレス処理により互いに融着させ、ウインドウ形に切り抜くことにより、中層に近赤外線吸収性インキ層を備えたクリアウインドウを作製することができる。ここにおいて、第1の透明樹脂シートと第2の透明樹脂シートとの積層方向の厚さは同じであってもよく(この場合、近赤外線吸収性インキ層はクリアウインドウの真ん中に位置する)、異なっていてもよい。)、可視光透過性、及び近赤外線透過性のクリアウインドウ上に近赤外線吸収性インキ層を(一例においては、上述のとおりセシウム酸化タングステン又は6ホウ化ランタンを含有する可視光透過性の近赤外線吸収性インキを用いた印刷により)形成したりすることにより、これまでに説明した積層体1と同様の真贋判定に用いることが可能な積層体を作製することができるし、そのような積層体を用いれば、これまでに説明した冊子体100と同様に利用できる冊子体を作製することができる。もちろん、近赤外線吸収性インキ層をオーバーシート層14もしくは15の基材層9の近い側に形成し、クリアウインドウとの位置を合わせて、少なくとも一部重なるように配置して積層体を作製してもよい。
(Modification example)
In the previous embodiments, it has been described that the window member 5 contains a near-infrared absorbing material containing tungsten cesium oxide or hexaborated lanthanum, but the window member 5 containing a near-infrared absorbing material can be used. It is not essential, for example, a near-infrared absorbing ink layer is provided in the clear window by using a clear window made of a solid transparent resin or the like instead of such a window member 5 and having a near-infrared ray transmitting property. (In one example, a visible light-transmitting near-infrared-absorbing ink containing tungsten cesium oxide or lanthanum hexaboride is used for the first transparent resin sheet that is visible-light-transmitting and near-infrared-transmitting. After printing, another transparent resin sheet that transmits visible light and near infrared rays is laminated, fused to each other by press processing, and cut out in a window shape to absorb near infrared rays in the middle layer. A clear window provided with an ink layer can be produced. Here, the thickness of the first transparent resin sheet and the second transparent resin sheet in the stacking direction may be the same (in this case, near infrared rays). The absorptive ink layer is located in the middle of the clear window), may be different), a near-infrared absorptive ink layer on a clear window that is visible and near-infrared transmissive (in one example, described above). By forming (by printing with a near-infrared absorbing ink that is transparent to visible light and contains cesium tungsten oxide or lanthanum hexaboride) as described above, it is possible to determine the authenticity similar to that of the laminate 1 described above. A laminate that can be used can be produced, and if such a laminate is used, a booklet that can be used in the same manner as the booklet 100 described above can be produced. Of course, a near-infrared absorbing ink layer is formed on the side close to the base material layer 9 of the oversheet layer 14 or 15, aligned with the clear window, and arranged so as to overlap at least a part of the oversheet layer 14 or 15 to prepare a laminate. You may.
 一例として、図1等を用いて説明した第1実施形態の積層体において、ウインドウ部材5の代わりに、一例においてはPVC(ポリ塩化ビニル)、PET-G(非結晶性ポリエステル)、PC(ポリカーボネート)、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)等の透明材料から作製されるクリアウインドウ40を用い、クリアウインドウ40の内部に、或いはクリアウインドウ40上に近赤外線吸収性インキ層41を印刷等により形成して得られる変形例としての積層体の層構造(第1実施形態と同様に、A-A’線で切断したA-A’断面であり、各層を分離して描いている。また、おもて面側の有色インキ層(又は蛍光インキ層、ホログラム層)12、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)13は、正確にはA-A’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)を、図30,図31に概念的に示す。図1等の積層体においてはウインドウ部材5に対してレーザーマーキングを行うことにより人物画像7を描いたが、図30,図31の変形例においては、近赤外線吸収性インキ層41にレーザーマーキングを行って人物画像7を描くことにより、第1実施形態の積層体と同様の真贋判定に用いることができる変形例としての積層体を作製することができる。 As an example, in the laminate of the first embodiment described with reference to FIG. 1 and the like, instead of the window member 5, in one example, PVC (polyvinyl chloride), PET-G (non-crystalline polyester), PC (polypropylene). ), PET (polyethylene terephthalate), PP (polypropylene), and other transparent materials, and the near-infrared absorbing ink layer 41 is printed inside the clear window 40 or on the clear window 40. The layered structure of the laminated body as a modified example obtained by forming (similar to the first embodiment, it is an AA'cross section cut along the AA'line, and each layer is drawn separately. The colored ink layer (or fluorescent ink layer, hologram layer) 12 on the front surface side and the colored ink layer (or fluorescent ink layer, hologram layer) 13 on the back surface side are not accurately cut by the AA'line. , The layer structure is drawn for the purpose of making it easy to understand. The same applies to other figures showing the layer structure) are conceptually shown in FIGS. 30 and 31. In the laminated body of FIG. 1 and the like, the person image 7 is drawn by performing laser marking on the window member 5, but in the modified examples of FIGS. 30 and 31, laser marking is applied to the near infrared ray absorbing ink layer 41. By doing so and drawing the person image 7, it is possible to produce a laminated body as a modified example that can be used for authenticity determination similar to the laminated body of the first embodiment.
 なお、近赤外線吸収性インキとしては、セシウム酸化タングステン含有インキ組成物、又は6ホウ化ランタン含有インキ組成物を用いることができる。セシウム酸化タングステン含有インキ組成物としては、化学式(一般式)Csxyzで表されるセシウム酸化タングステンを含有するインキを用いることができる(x,y,zは、それぞれ正の実数)。一例においては、特許文献8(特許第6160830号)に記載されている、六方晶構造を持つCs0.33WO3で表される微粒子を含有するインキを用いることができる。6ホウ化ランタン含有インキ組成物としては、化学式LaB6で表される微粒子を含有するインキを用いることができる。近赤外線吸収性インキは、セシウム酸化タングステン又は6ホウ化ランタンに加えて、分散剤、モノマー、合成樹脂類、助剤などを含む。セシウム酸化タングステン含有インキにおけるセシウム酸化タングステンの含有率は任意であるが、一例においては0.5重量%(重量パーセント)~6重量%の含有率において良好な特性を有することが後述の実施例で示される。6ホウ化ランタン含有インキにおける6ホウ化ランタンの含有率も任意であり、一例においては0.05重量%(重量パーセント)~6重量%であってよいが、0.3重量%の含有率において良好な特性を有することが後述の実施例で示される。セシウム酸化タングステンと6ホウ化ランタンとの両方を含有する近赤外線吸収性インキを用いる場合においても、セシウム酸化タングステンと6ホウ化ランタンのそれぞれの含有率は同様に任意である。いずれの場合においても、印刷濃度(盛量)等によって、好ましい含有率を変更することができる。なお、ここでいう、近赤外線吸収性インキ中の「セシウム酸化タングステンの含有率(重量%)」とはインキの全体の重量に占める、当該インキに含まれるセシウム酸化タングステンの重量の割合であり、
 インキ中のセシウム酸化タングステンの含有率(重量%)={(セシウム酸化タングステンの重量)/(インキ全体の重量)}×100
により表される。
 同様に、近赤外線吸収性インキ中の「6ホウ化ランタンの含有率(重量%)」は、インキの全体の重量に占める、当該インキに含まれる6ホウ化ランタンの重量の割合であり、
 インキ中の6ホウ化ランタンの含有率(重量%)={(6ホウ化ランタンの重量)/(インキ全体の重量)}×100
により表される。
As the near-infrared absorbing ink, an ink composition containing cesium tungsten oxide or an ink composition containing hexaborate lanthanum can be used. As the cesium tungsten oxide-containing ink composition, an ink containing cesium tungsten oxide represented by the chemical formula (general formula) Cs x W y O z can be used (x, y, z are positive real numbers, respectively). .. In one example, an ink containing fine particles represented by Cs 0.33 WO 3 having a hexagonal structure described in Patent Document 8 (Patent No. 6160830) can be used. As the lanthanum hexaboride-containing ink composition, an ink containing fine particles represented by the chemical formula LaB 6 can be used. Near-infrared absorbing inks include dispersants, monomers, synthetic resins, auxiliaries and the like, in addition to tungsten cesium oxide or lanthanum hexaboride. The content of tungsten cesium oxide in the cesium tungsten oxide-containing ink is arbitrary, but in one example, it has good characteristics at a content of 0.5% by weight (weight%) to 6% by weight in the examples described later. Shown. The content of lanthanum hexaboride in the lanthanum hexaboride-containing ink is also arbitrary, and in one example, it may be 0.05% by weight (% by weight) to 6% by weight, but at a content of 0.3% by weight. It will be shown in the examples below that it has good properties. Even when a near-infrared absorbing ink containing both tungsten cesium oxide and lanthanum hexaboride is used, the respective contents of tungsten cesium oxide and lanthanum hexaboride are similarly arbitrary. In any case, the preferable content rate can be changed depending on the print density (filling amount) and the like. The "content of tungsten cesium oxide (% by weight)" in the near-infrared absorbing ink is the ratio of the weight of tungsten cesium oxide contained in the ink to the total weight of the ink.
Content of tungsten cesium oxide in the ink (% by weight) = {(weight of tungsten cesium oxide) / (weight of the entire ink)} x 100
Represented by.
Similarly, the "content rate (% by weight) of lanthanum hexaboride" in the near-infrared absorbing ink is the ratio of the weight of lanthanum hexaboride contained in the ink to the total weight of the ink.
Content of lanthanum hexaboride in ink (% by weight) = {(weight of lanthanum hexaboride) / (weight of total ink)} x 100
Represented by.
 図30,図31に示す積層体1の製造方法の一例としては、
(1)オーバーシート層14に有色インキを用いた印刷で有色インキ層12(マーク4)を形成し、オーバーシート層15に有色インキを用いた印刷で有色インキ層13(マーク8)を形成する。
(2-1)上述のとおり、第1の透明樹脂シートに近赤外線吸収性インキを用いた印刷をし、更に別の第2の透明樹脂シートを積層し、プレス処理により互いに融着させてウインドウ形に切り抜くことにより、近赤外線吸収性インキ層を中層に含むウインドウ部材(40A,40B,41)を作製するか(図30の場合)、或いは、
(2-2)上述のとおり、透明材料に近赤外線吸収性インキを用いた印刷で近赤外線吸収性インキ層41を形成し、クリアウインドウ40の形に切り抜く(図31の場合)。
(3)基材層9とレーザー発色層10,11との間で数箇所のポイントを熱により融着させ、仮固定した状態で、ウインドウ部材(40A,40B,41)、或いはクリアウインドウ40を形成すべき部分を切り抜く。
(4)上記のとおり切り抜いて生じた空間に、ウインドウ部材(40A,40B,41)、或いは、近赤外線吸収性インキが印刷されたクリアウインドウ40を嵌め込む。
(5)上記各層を図30又は図31に示すとおりの順序で積層し、プレス処理により融着する。
(6)得られた積層体のオーバーシート層14側の表面からレーザー発色層10に対してレーザーマーキングを行い、人物画像2と人物識別情報3を描く。
(7)上記積層体のオーバーシート層14側の表面(ひょうめん)、又はオーバーシート層15側の表面から近赤外線吸収性インキ層41に対してレーザーマーキングを行い、人物画像7を描く。
という方法で積層体1を作製することができる。
As an example of the manufacturing method of the laminated body 1 shown in FIGS. 30 and 31,
(1) The colored ink layer 12 (mark 4) is formed by printing with colored ink on the oversheet layer 14, and the colored ink layer 13 (mark 8) is formed by printing with colored ink on the oversheet layer 15. ..
(2-1) As described above, printing is performed on the first transparent resin sheet using a near-infrared absorbing ink, another second transparent resin sheet is laminated, and the windows are fused to each other by a press process. By cutting out into a shape, window members (40A, 40B, 41) including a near-infrared absorbing ink layer in the middle layer can be produced (in the case of FIG. 30), or
(2-2) As described above, the near-infrared absorbing ink layer 41 is formed by printing using the near-infrared absorbing ink on the transparent material, and is cut out in the shape of the clear window 40 (in the case of FIG. 31).
(3) Several points are fused by heat between the base material layer 9 and the laser coloring layers 10 and 11, and the window member (40A, 40B, 41) or the clear window 40 is placed in a temporarily fixed state. Cut out the part to be formed.
(4) The window member (40A, 40B, 41) or the clear window 40 on which the near-infrared absorbing ink is printed is fitted into the space created by cutting out as described above.
(5) Each of the above layers is laminated in the order shown in FIG. 30 or FIG. 31 and fused by a press treatment.
(6) Laser marking is performed on the laser coloring layer 10 from the surface of the obtained laminate on the oversheet layer 14 side, and a person image 2 and a person identification information 3 are drawn.
(7) Laser marking is performed on the near-infrared absorbing ink layer 41 from the surface (hail) on the oversheet layer 14 side or the surface on the oversheet layer 15 side of the laminated body, and a person image 7 is drawn.
The laminated body 1 can be produced by the above method.
(真贋判定方法)
 積層体1の可視光画像と近赤外線画像とを比較することにより、積層体1の真贋判定を行うことができる。具体的には、可視光画像(肉眼で見ることにより得られる像も含む。他の実施形態においても同様。)として認識できる人物画像2,人物識別情報3(これらは近赤外線画像としても認識できる。)により特定される人物と、近赤外線画像として認識できる人物画像7により特定される人物とが一致する場合には、当該積層体1が身分証明カード等として真正なものであると判定でき、可視光画像として認識できる人物画像2,人物識別情報3(これらは近赤外線画像としても認識できる。)により特定される人物と、近赤外線画像として認識できる人物画像7により特定される人物とが一致しない場合には、当該積層体1が身分証明カード等として真正なものではない(偽物である)と判定できる。
(Authentication judgment method)
By comparing the visible light image of the laminated body 1 with the near-infrared image, the authenticity of the laminated body 1 can be determined. Specifically, a person image 2 and a person identification information 3 (these can also be recognized as a near-infrared image) that can be recognized as a visible light image (including an image obtained by viewing with the naked eye. The same applies to other embodiments). When the person specified by) and the person specified by the person image 7 that can be recognized as a near-infrared image match, it can be determined that the laminated body 1 is genuine as an identification card or the like. A person identified by a person image 2 that can be recognized as a visible light image 2 and a person identification information 3 (these can also be recognized as a near-infrared image) and a person specified by a person image 7 that can be recognized as a near-infrared image match. If not, it can be determined that the laminated body 1 is not genuine (fake) as an identification card or the like.
 第1実施形態以外の任意の実施形態においても、ウインドウ部材5の代わりにクリアウインドウ40を用いて、その上に(図31)、或いはその中層に(図30)近赤外線吸収性インキ層41を設けるという変形をした上で変形例として実施することが可能である。 In any embodiment other than the first embodiment, the clear window 40 is used instead of the window member 5, and the near-infrared absorbing ink layer 41 is placed on the clear window 40 (FIG. 31) or in the middle layer thereof (FIG. 30). It is possible to carry out as a modification example after making a modification of providing.
 図32は、これまでに説明したレーザーマーキング(描画、印字等)を行うためのレーザーマーカー装置の構成を概略的に示す図である。レーザーマーカー装置42は、制御部43,記憶部44,駆動(走査)部45,レーザー光照射部46等を備える。駆動部45によりレーザー光照射部46のヘッドが駆動されつつ、ヘッドからウインドウ部材5、近赤外線吸収層、レーザー発色層10(レーザー発色層11でもよい)へと近赤外レーザー光が照射されることにより、ウインドウ部材5に対する、近赤外線吸収層(近赤外線吸収性インキ層41)に対する、或いはレーザー発色層10(レーザー発色層11でもよい)に対する上述のレーザーマーキングが行われる。このようなレーザーマーカー装置42の動作においては、CPU、或いは組み込み式の制御回路等、各種の制御回路等を備えた制御部43(レーザーマーカー装置42の外部にある別個のコンピュータが制御部43として機能することもできる。)により制御された、モーター等を備える駆動装置である駆動部45が、既に説明したとおりウインドウ部材5、近赤外線吸収性インキ層41、或いはレーザー発色層10,11に向けてレーザー光照射部46のヘッドを駆動しつつ(ヘッドを動かす(走査する))、レーザー光照射部46(一例においては、レーザー波長:1064nmのレーザー光を発生させる装置であるNd:YAGレーザーを備え、ヘッド等、レーザー光を目標に照射するための各種機器を備えるレーザー光照射装置。)がヘッドからウインドウ部材、近赤外線吸収層、或いはレーザー発色層に向けて近赤外レーザー光(近赤外レーザービームであってよい)を照射する。なお、半導体メモリ、磁気ディスク等の記憶装置を備える記憶部44には、レーザーマーキングで描くべき文字、画像等、レーザーマーカー装置42の動作を制御するために制御部43が適宜読み出して用いるための各種データが記憶されており、レーザーマーカー装置42は、その記憶部44に記憶された文字、画像等をウインドウ部材、近赤外線吸収層又はレーザー発色層に描く。レーザーマーカー装置としては公知のものが多数存在するため、ここではこれ以上詳しく説明しない。 FIG. 32 is a diagram schematically showing the configuration of a laser marker device for performing laser marking (drawing, printing, etc.) described so far. The laser marker device 42 includes a control unit 43, a storage unit 44, a drive (scanning) unit 45, a laser light irradiation unit 46, and the like. While the head of the laser light irradiating unit 46 is driven by the driving unit 45, the near infrared laser light is irradiated from the head to the window member 5, the near infrared absorbing layer, and the laser coloring layer 10 (may be the laser coloring layer 11). As a result, the above-mentioned laser marking is performed on the window member 5, the near-infrared absorbing layer (near-infrared absorbing ink layer 41), or the laser coloring layer 10 (which may be the laser coloring layer 11). In the operation of such a laser marker device 42, a control unit 43 provided with various control circuits such as a CPU or an embedded control circuit (a separate computer outside the laser marker device 42 serves as the control unit 43). The drive unit 45, which is a drive device including a motor and the like, is controlled by a function, and is directed toward the window member 5, the near-infrared absorbing ink layer 41, or the laser coloring layers 10 and 11 as described above. While driving the head of the laser light irradiating unit 46 (moving (scanning) the head), the laser light irradiating unit 46 (in one example, an Nd: YAG laser which is a device for generating laser light having a laser wavelength: 1064 nm) is used. A laser light irradiator equipped with various devices such as a head for irradiating a laser beam as a target.) Near-infrared laser light (near red) from the head toward the window member, the near-infrared absorbing layer, or the laser coloring layer. It may be an external laser beam). The storage unit 44 including a storage device such as a semiconductor memory or a magnetic disk is for the control unit 43 to appropriately read and use characters, images, etc. to be drawn by laser marking in order to control the operation of the laser marker device 42. Various data are stored, and the laser marker device 42 draws characters, images, and the like stored in the storage unit 44 on the window member, the near-infrared absorbing layer, or the laser coloring layer. Since there are many known laser marker devices, they will not be described in more detail here.
(近赤外線吸収性インキの実施例)
 以下、本発明の態様1に用いることのできる近赤外線吸収性インキとしてセシウム酸化タングステン含有インキ、及び6ホウ化ランタン含有インキを用いて作製したさまざまな積層体(オフセット印刷物)における実験結果を、比較例として酸化イッテルビウム含有インキを用いて作製したオフセット印刷物における実験結果と比較しつつ説明する。
(Example of near-infrared absorbing ink)
Hereinafter, the experimental results of various laminates (offset printed matter) produced by using the cesium oxide-containing tungsten oxide ink and the 6-borinated lanthanum-containing ink as the near-infrared absorbing ink that can be used in the first aspect of the present invention are compared. As an example, it will be described by comparing with the experimental results in an offset printed matter produced by using an ink containing itterbium oxide.
(比較例1)
 酸化イッテルビウム(III),3N5粉末と、モノマーや合成樹脂、その他の非赤外線吸収材料を含むインキメジウムとを、酸化イッテルビウムとインキメジウムとの重量比が25:75となるよう混合することにより、酸化イッテルビウムの含有率が25重量%であるインキを作製した。このようにして作製した酸化イッテルビウム含有インキを用いて、基材である上質紙の一部の区域に、オフセット印刷機(オフセット用印刷適性試験機IGT C1(IGT Testing Systems製))により印刷を行った。得られた印刷物を比較例1の積層体とし、赤外線可視化装置であるVSC8000(Foster and Freeman製)により、当該装置のカメラレンズに925nm以下の波長の光をカットするフィルターを付けた状態で撮影した。
(Comparative Example 1)
Oxidation by mixing ytterbium oxide (III), 3N5 powder and ink medium containing monomer, synthetic resin, and other non-infrared absorbing materials so that the weight ratio of ytterbium oxide and ink medium is 25:75. An ink having an Itterbium content of 25% by weight was prepared. Using the itterbium oxide-containing ink thus produced, printing is performed on a part of the wood-free paper as the base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). rice field. The obtained printed matter was used as a laminate of Comparative Example 1, and was photographed by an infrared visualization device VSC8000 (manufactured by Forester and Freeman) with a filter for cutting light having a wavelength of 925 nm or less attached to the camera lens of the device. ..
(実施例1)
 セシウム酸化タングステンCs0.33WO3を含有する分散液と、モノマーや合成樹脂、その他の非赤外線吸収材料を含む比較例1と同様のインキメジウムとを、セシウム酸化タングステンとそれ以外の全成分との重量比が2:98となるよう混合することにより、セシウム酸化タングステンの含有率が2重量%であるインキを作製した。このようにして作製したセシウム酸化タングステン含有インキを用いて、基材である上質紙の一部の区域に、オフセット印刷機(オフセット用印刷適性試験機IGT C1(IGT Testing Systems製))により印刷を行った。得られた印刷物を実施例1の積層体とし、赤外線可視化装置であるVSC8000(Foster and Freeman製)により、当該装置のカメラレンズに925nm以下の波長の光をカットするフィルターを付けた状態で撮影した。
(Example 1)
A dispersion containing tungsten cesium oxide Cs 0.33 WO 3 and an ink medium similar to Comparative Example 1 containing a monomer, a synthetic resin, and other non-infrared absorbing materials, and the weight of tungsten cesium oxide and all other components. By mixing so that the ratio was 2:98, an ink having a content of tungsten cesium oxide of 2% by weight was prepared. Using the cesium tungsten oxide-containing ink thus produced, printing is performed on a part of the wood-free paper as the base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). gone. The obtained printed matter was used as the laminate of Example 1, and was photographed by an infrared visualization device VSC8000 (manufactured by Forester and Freeman) with a filter for cutting light having a wavelength of 925 nm or less attached to the camera lens of the device. ..
 比較例1と実施例1とにおいて作製した酸化イッテルビウム含有インキとセシウム酸化タングステン含有インキとを上記赤外線カメラによりそれぞれ撮影した赤外線写真と、それぞれのインキを用いて上述のとおりオフセット印刷したそれぞれの印刷物を上記赤外線カメラにより撮影した赤外線写真とを、図33に示す。それぞれインキの写真から、酸化イッテルビウム含有インキとセシウム酸化タングステン含有インキとが、ともに近赤外線吸収性を示すことが理解できるが、酸化イッテルビウム含有インキをオフセット印刷した印刷物において近赤外線吸収性を視認することはできなかった。一方、含有量が少ないセシウム酸化タングステン含有インキをオフセット印刷した印刷物においては、印刷しなかった区域と印刷した区域との間に明暗の差を視認することができ、印刷した区域が近赤外線吸収性を有することが認められた。 Infrared photographs of the itterbium oxide-containing ink and the cesium tungsten oxide-containing ink produced in Comparative Example 1 and Example 1 were taken by the infrared camera, and the printed matter was offset-printed as described above using the respective inks. An infrared photograph taken by the infrared camera is shown in FIG. 33. It can be understood from the photographs of the inks that both the itterbium oxide-containing ink and the cesium tungsten oxide-containing ink exhibit near-infrared absorption. I couldn't. On the other hand, in a printed matter in which an ink containing cesium oxide-containing ink having a low content is offset-printed, the difference in brightness between the unprinted area and the printed area can be visually recognized, and the printed area absorbs near infrared rays. Was found to have.
 以上の実験結果を以下の表にまとめる。
Figure JPOXMLDOC01-appb-T000001
The above experimental results are summarized in the table below.
Figure JPOXMLDOC01-appb-T000001
 なお、上記表中、「膜厚」とはオフセット印刷により形成された酸化イッテルビウム含有インキ層、又はセシウム酸化タングステン含有インキ層の膜厚であるが、これらは測定された値ではなく、オフセット印刷において形成される典型的な膜厚を仮定した参考値である。後述の各実施例におけるオフセット印刷において形成される膜厚も、約1μm~約3μmであると推定される。なお、本明細書中の態様1の全ての実施例に関して印刷濃度などの条件は同様とした状態で実験を行っており、理論上、膜厚は同様であると考えられる。また、実施例1における「赤外線吸収率」とはJASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した反射率(照射した光が印刷物の表面で反射されるときの反射光の強度の割合であり、基準となる基材表面(基準部分)からの反射光の強度に対する対象印刷物表面からの反射光の強度の比である。)を用いて得られた値である(吸収率(%)=100-反射率(%))。 In the above table, the "thickness" is the thickness of the itterbium oxide-containing ink layer or the cesium tungsten oxide-containing ink layer formed by offset printing, but these are not measured values and are used in offset printing. It is a reference value assuming a typical film thickness to be formed. The film thickness formed by offset printing in each of the examples described later is also estimated to be about 1 μm to about 3 μm. It should be noted that the experiments were conducted under the same conditions such as the print density for all the examples of the first aspect in the present specification, and it is considered that the film thickness is theoretically the same. The "infrared absorptivity" in Example 1 is the reflectance measured using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by Nippon Spectral Co., Ltd.) (irradiated light is reflected on the surface of the printed matter. It is the ratio of the intensity of the reflected light at that time, and is the ratio of the intensity of the reflected light from the surface of the target printed matter to the intensity of the reflected light from the reference base material surface (reference portion)). Value (absorption rate (%) = 100-reflectivity (%)).
 次に、さまざまな基材シート上にセシウム酸化タングステン(Cs0.33WO3)含有量(含有率)が2重量%の近赤外線吸収性インキを用いてオフセット印刷を行い、作製されたそれぞれの印刷物に対してレーザーマーカー装置によりレーザー印字を行い、印字された部分と印字されていない部分とにおける可視光~近赤外線の波長域における電磁波の反射率をそれぞれ測定した。なお、以下の実施例における「反射率」とは、実施例1と同様に、照射した光が印刷物の表面で反射されるときの反射光の強度の割合であり、基準となる基材表面(基準部分)からの反射光の強度に対する対象印刷物表面からの反射光の強度の比である(JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いた測定により得られた値である。)。
 上述の実施例1、及び以下の実施例2~11における「反射率」を、以下の式で一般的に定義することができる。
 対象部分(対象面)の反射率(%)={(対象部分(対象面)からの反射光の強度)/(基準部分(基準面)からの反射光の強度)}×100
Next, offset printing was performed on various base sheets using a near-infrared absorbing ink having a cesium tungsten oxide (Cs 0.33 WO 3 ) content (content rate) of 2% by weight, and each printed matter produced was printed. On the other hand, laser printing was performed by a laser marker device, and the reflectance of electromagnetic waves in the visible light to near-infrared wavelength range in the printed portion and the non-printed portion was measured. Note that the "reflectivity" in the following examples is the ratio of the intensity of the reflected light when the irradiated light is reflected on the surface of the printed matter, as in the case of the first embodiment, and is a reference base material surface (? It is the ratio of the intensity of the reflected light from the surface of the target printed matter to the intensity of the reflected light from the reference part). Value.).
The "reflectance" in Example 1 described above and Examples 2 to 11 below can be generally defined by the following equation.
Reflectance (%) of the target portion (target surface) = {(intensity of reflected light from the target portion (target surface)) / (intensity of reflected light from the reference portion (reference surface))} × 100
(実施例2)
 セシウム酸化タングステンCs0.33WO3を含有する分散液と、モノマー、合成樹脂類、助剤などとを、セシウム酸化タングステンとそれ以外の全成分との重量比が2:98となるよう混合することにより、セシウム酸化タングステンの含有率が2重量%であるインキを作製した。このようにして作製したセシウム酸化タングステン含有インキを用いて、基材であるPC(ポリカーボネート)シートに、オフセット印刷機(オフセット用印刷適性試験機IGT C1(IGT Testing Systems製))により印刷を行った。得られた印刷物を実施例2の積層体とし、レーザー印字前の印刷面の、波長400nm~2000nmにおける可視光~近赤外線の反射率を、JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した。さらに、レーザーマーカー装置として、
Figure JPOXMLDOC01-appb-I000002
を用い、波長1064nmのNd:YAGレーザーによるレーザー光によって上記印刷面にレーザー印字を行った。 レーザー印字された部分の、波長400nm~2000nmにおける可視光~近赤外線の反射率を、JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した。
(Example 2)
By mixing the dispersion liquid containing tungsten cesium oxide Cs 0.33 WO 3 with monomers, synthetic resins, auxiliaries, etc. so that the weight ratio of tungsten cesium oxide and all other components is 2:98. , An ink having a cesium tungsten oxide content of 2% by weight was prepared. Using the cesium tungsten oxide-containing ink thus produced, printing was performed on a PC (polycarbonate) sheet as a base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). .. Using the obtained printed matter as the laminate of Example 2, the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm on the printed surface before laser printing was measured by the JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (Japan). It was measured using (manufactured by Spectroscopy Co., Ltd.). Furthermore, as a laser marker device,
Figure JPOXMLDOC01-appb-I000002
Was used to perform laser printing on the printed surface with laser light from an Nd: YAG laser having a wavelength of 1064 nm. The reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm of the laser-printed portion was measured using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation).
(実施例3)
 セシウム酸化タングステンCs0.33WO3を含有する分散液と、モノマー、合成樹脂類、助剤などとを、セシウム酸化タングステンとそれ以外の全成分との重量比が2:98となるよう混合することにより、セシウム酸化タングステンの含有率が2重量%であるインキを作製した。このようにして作製したセシウム酸化タングステン含有インキを用いて、基材であるPET-G(コポリエステル)シートに、オフセット印刷機(オフセット用印刷適性試験機IGT C1(IGT Testing Systems製))により印刷を行った。得られた印刷物を実施例3の積層体とし、レーザー印字前の印刷面の、波長400nm~2000nmにおける可視光~近赤外線の反射率を、JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した。さらに、レーザーマーカー装置として、
Figure JPOXMLDOC01-appb-I000003
を用い、波長1064nmのNd:YAGレーザーによるレーザー光によって上記印刷面にレーザー印字を行った。 レーザー印字された部分の、波長400nm~2000nmにおける可視光~近赤外線の反射率を、JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した。
(Example 3)
By mixing the dispersion liquid containing tungsten cesium oxide Cs 0.33 WO 3 with monomers, synthetic resins, auxiliaries, etc. so that the weight ratio of tungsten cesium oxide and all other components is 2:98. , An ink having a cesium tungsten oxide content of 2% by weight was prepared. Using the cesium tungsten oxide-containing ink thus produced, printing is performed on a PET-G (copolyester) sheet as a base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). Was done. Using the obtained printed matter as the laminate of Example 3, the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm on the printed surface before laser printing was measured by the JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (Japan). It was measured using (manufactured by Spectroscopy Co., Ltd.). Furthermore, as a laser marker device,
Figure JPOXMLDOC01-appb-I000003
Was used to perform laser printing on the printed surface with laser light from an Nd: YAG laser having a wavelength of 1064 nm. The reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm of the laser-printed portion was measured using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation).
(実施例4)
 セシウム酸化タングステンCs0.33WO3を含有する分散液と、モノマー、合成樹脂類、助剤などとを、セシウム酸化タングステンとそれ以外の全成分との重量比が2:98となるよう混合することにより、セシウム酸化タングステンの含有率が2重量%であるインキを作製した。このようにして作製したセシウム酸化タングステン含有インキを用いて、基材であるPVC(ポリ塩化ビニル)シートに、オフセット印刷機(オフセット用印刷適性試験機IGT C1(IGT Testing Systems製))により印刷を行った。得られた印刷物を実施例4の積層体とし、レーザー印字前の印刷面の、波長400nm~2000nmにおける可視光~近赤外線の反射率を、JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した。さらに、レーザーマーカー装置として、
Figure JPOXMLDOC01-appb-I000004
を用い、波長1064nmのNd:YAGレーザーによるレーザー光によって上記印刷面にレーザー印字を行った。 レーザー印字された部分の、波長400nm~2000nmにおける可視光~近赤外線の反射率を、JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した。
(Example 4)
By mixing the dispersion liquid containing tungsten cesium oxide Cs 0.33 WO 3 with monomers, synthetic resins, auxiliaries, etc. so that the weight ratio of tungsten cesium oxide and all other components is 2:98. , An ink having a cesium tungsten oxide content of 2% by weight was prepared. Using the cesium tungsten oxide-containing ink thus produced, printing is performed on a PVC (polyvinyl chloride) sheet as a base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). gone. Using the obtained printed matter as the laminate of Example 4, the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm on the printed surface before laser printing was measured by the JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (Japan). It was measured using (manufactured by Spectroscopy Co., Ltd.). Furthermore, as a laser marker device,
Figure JPOXMLDOC01-appb-I000004
Was used to perform laser printing on the printed surface with laser light from an Nd: YAG laser having a wavelength of 1064 nm. The reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm of the laser-printed portion was measured using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation).
 上記実施例2~4において行われた反射率の測定結果を、図34に示す。また、実施例2において行われた反射率の測定結果を図35に、実施例3において行われた反射率の測定結果を図36に、実施例4において行われた反射率の測定結果を図37に、それぞれ図34のグラフから抜き出して示す。図34~図37のグラフにおいて、横軸の値は電磁波の波長(nm)であり、縦軸の値は、横軸の値が示す波長の電磁波の印刷面又はレーザー印字された部分における反射率(%)である。 FIG. 34 shows the measurement results of the reflectance performed in Examples 2 to 4 above. Further, the result of the reflectance measurement performed in Example 2 is shown in FIG. 35, the result of the reflectance measurement performed in Example 3 is shown in FIG. 36, and the result of the reflectance measurement performed in Example 4 is shown in FIG. 37 is shown by extracting from the graph of FIG. 34, respectively. In the graphs of FIGS. 34 to 37, the value on the horizontal axis is the wavelength (nm) of the electromagnetic wave, and the value on the vertical axis is the reflectance of the electromagnetic wave having the wavelength indicated by the value on the horizontal axis on the printed surface or the laser-printed portion. (%).
 図34~図37のグラフから明らかなとおり、いずれの基材を用いた場合においても、レーザー印字することにより近赤外領域において反射率が上昇(吸収率が低下)することがわかる。上昇幅は横軸の波長によって異なるが、780nm~2000nmの近赤外領域においては、少なくとも5%以上、概ね10%~15%、又はそれ以上、レーザー印字により反射率が上昇していることが読み取れる。また全体的な傾向として、可視光の波長域におけるレーザー印字前後の反射率の変化は、近赤外領域におけるレーザー印字前後の反射率の変化と比較して小さいため、レーザー印字により、肉眼や一般的なカメラによっては視認が比較的困難な文字、画像等を描くことができると考えられる。 As is clear from the graphs of FIGS. 34 to 37, it can be seen that the reflectance increases (absorption rate decreases) in the near-infrared region by laser printing regardless of which base material is used. The amount of increase varies depending on the wavelength on the horizontal axis, but in the near-infrared region of 780 nm to 2000 nm, the reflectance is increased by at least 5% or more, approximately 10% to 15%, or more by laser printing. Can be read. In addition, as an overall tendency, the change in reflectance before and after laser printing in the visible light wavelength range is smaller than the change in reflectance before and after laser printing in the near infrared region. It is considered that it is possible to draw characters, images, etc. that are relatively difficult to see depending on a typical laser.
 次に、基材シートとしての上質紙に、0.5重量%~6重量%までの、互いに異なるセシウム酸化タングステン(Cs0.33WO3)含有量(含有率)を有する、6種類の近赤外線吸収性インキを用いてそれぞれオフセット印刷を行い、作製されたそれぞれの印刷物における印刷面(近赤外線吸収性インキ層)の、可視光~近赤外線の波長域における電磁波の反射率をそれぞれ測定した。なお、反射率の定義や反射率測定に用いた機器は、上述の実施例1~4におけるものと同じである。 Next, six types of near-infrared ray absorption having different cesium oxide tungsten (Cs 0.33 WO 3 ) contents (contents) from 0.5% by weight to 6% by weight on high-quality paper as a base sheet. Offset printing was performed using each of the sex inks, and the reflectance of electromagnetic waves in the visible light to near infrared wavelength range on the printed surface (near infrared ray absorbing ink layer) of each produced printed matter was measured. The equipment used for the definition of the reflectance and the measurement of the reflectance is the same as that in the above-described Examples 1 to 4.
(実施例5~10)
 セシウム酸化タングステンCs0.33WO3を含有する分散液と、モノマー、合成樹脂類、助剤などとを、セシウム酸化タングステンとそれ以外の全成分との重量比が:
(実施例5)0.5:99.5
(実施例6)  1:99
(実施例7)1.3:98.7
(実施例8)  2:98
(実施例9)  3:97
(実施例10) 6:94
となるよう混合することにより、セシウム酸化タングステンの含有率が、0.5重量%~6重量%である6種類のインキを作製した。このようにして作製したセシウム酸化タングステン含有インキの1つ1つを用いて、基材である上記の上質紙シートに、オフセット印刷機(オフセット用印刷適性試験機IGT C1(IGT Testing Systems製))により印刷を行った。得られた6種類の印刷物を実施例5~10の積層体とし、波長400nm~2000nmにおける可視光~近赤外線の反射率を、JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した。
(Examples 5 to 10)
Tungsten cesium oxide Cs 0.33 The weight ratio of the dispersion containing WO 3 to the monomer, synthetic resins, auxiliaries, etc., to tungsten cesium oxide and all other components is:
(Example 5) 0.5: 99.5
(Example 6) 1:99
(Example 7) 1.3: 98.7
(Example 8) 2:98
(Example 9) 3:97
(Example 10) 6:94
By mixing so as to be, 6 kinds of inks having a cesium tungsten oxide content of 0.5% by weight to 6% by weight were prepared. Using each of the cesium oxide-containing inks produced in this manner, an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)) is applied to the above-mentioned high-quality paper sheet as a base material. Was printed by. The obtained 6 types of printed matter were used as a laminate of Examples 5 to 10, and the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm was measured by JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (JASCO Corporation). Was measured using.
 上記実施例5~10において行われた反射率の測定結果を、図38に示す。図38のグラフにおいて、横軸の値は電磁波の波長(nm)であり、縦軸の値は、横軸の値が示す波長の電磁波の印刷面における反射率(%)である。少なくとも近赤外の波長域においては、セシウム酸化タングステンの含有量が大きくなるほど、同じ波長における反射率が低くなっていることがわかる。可視光の波長域においても同様の傾向が読み取れる。すなわち、インキにおけるセシウム酸化タングステンの含有量を多くするほど、当該インキを用いてオフセット印刷された画像等は、近赤外線カメラ等を用いて認識しやすいものとなるものの、この場合には可視光反射率も低くなることから肉眼、一般的なカメラ等により視認できる可能性も高まるのであり、セキュリティ性を考えれば適切なセシウム酸化タングステン含有量を選択することが好ましいと考えられる。 FIG. 38 shows the measurement results of the reflectance performed in Examples 5 to 10. In the graph of FIG. 38, the value on the horizontal axis is the wavelength (nm) of the electromagnetic wave, and the value on the vertical axis is the reflectance (%) of the electromagnetic wave having the wavelength indicated by the value on the horizontal axis on the printed surface. It can be seen that, at least in the near-infrared wavelength region, the greater the content of tungsten cesium oxide, the lower the reflectance at the same wavelength. The same tendency can be read in the wavelength range of visible light. That is, as the content of cesium tungsten oxide in the ink is increased, the image or the like offset printed using the ink becomes easier to be recognized by using a near-infrared camera or the like, but in this case, visible light reflection Since the rate is low, the possibility of being visually recognizable by the naked eye, a general camera, or the like is increased, and it is considered preferable to select an appropriate cesium tungsten oxide content in consideration of security.
 次に、基材シートとしてのPC(ポリカーボネート)上に6ホウ化ランタン(LaB6)含有量(含有率)が0.3重量%の近赤外線吸収性インキを用いてオフセット印刷を行い、作製された印刷物に対してレーザーマーカー装置によりレーザー印字を行い、印字された部分と印字されていない部分とにおける可視光~近赤外線の波長域における電磁波の反射率をそれぞれ測定した。この実施例においても、反射率とは、照射した光が印刷物の表面で反射されるときの反射光の強度の割合であり、基準となる基材表面(基準部分)からの反射光の強度に対する対象印刷物表面からの反射光の強度の比である(JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いた測定により得られた値である。)。 Next, offset printing was performed on a PC (polycarbonate) as a base sheet using a near-infrared absorbing ink having a 6-borohydride (LaB 6 ) content (content rate) of 0.3% by weight to produce the product. Laser printing was performed on the printed matter with a laser marker device, and the reflectance of electromagnetic waves in the visible light to near-infrared wavelength range in the printed portion and the non-printed portion was measured. Also in this embodiment, the reflectance is the ratio of the intensity of the reflected light when the irradiated light is reflected on the surface of the printed matter, and is the intensity of the reflected light from the reference base material surface (reference portion). It is a ratio of the intensity of the reflected light from the surface of the target printed matter (a value obtained by measurement using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by Nippon Spectral Co., Ltd.)).
(実施例11)
 6ホウ化ランタン(LaB6)を含有する分散液と、モノマー、合成樹脂類、助剤などとを、6ホウ化ランタンとそれ以外の全成分との重量比が0.3:99.7となるよう混合することにより、6ホウ化ランタンの含有率が0.3重量%であるインキを作製した。このようにして作製した6ホウ化ランタン含有インキを用いて、基材であるPC(ポリカーボネート)シートに、オフセット印刷機(オフセット用印刷適性試験機IGT C1(IGT Testing Systems製))により印刷を行った。得られた印刷物を実施例11の積層体とし、レーザー印字前の印刷面の、波長400nm~2000nmにおける可視光~近赤外線の反射率を、JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した。さらに、レーザーマーカー装置として、
Figure JPOXMLDOC01-appb-I000005
を用い、波長1064nmのNd:YAGレーザーによるレーザー光によって上記印刷面にレーザー印字を行った。 レーザー印字された部分の、波長400nm~2000nmにおける可視光~近赤外線の反射率を、JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した。
(Example 11)
The weight ratio of the dispersion liquid containing lanthanum hexaboride (LaB 6 ) to the monomer, synthetic resins, auxiliaries, etc., to the lanthanum hexaboride and all other components was 0.3: 99.7. By mixing so as to be, an ink having a content of lanthanum hexaboride of 0.3% by weight was prepared. Using the 6-borohydride-containing ink thus produced, printing is performed on a PC (polycarbonate) sheet as a base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). rice field. Using the obtained printed matter as the laminate of Example 11, the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm on the printed surface before laser printing was measured by the JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (Japan). It was measured using (manufactured by Spectroscopy Co., Ltd.). Furthermore, as a laser marker device,
Figure JPOXMLDOC01-appb-I000005
Was used to perform laser printing on the printed surface with laser light from an Nd: YAG laser having a wavelength of 1064 nm. The reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm of the laser-printed portion was measured using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation).
 上記実施例11において行われた反射率の測定結果を、図39に示す。図39のグラフにおいて、横軸の値は電磁波の波長(nm)であり、縦軸の値は、横軸の値が示す波長の電磁波の印刷面又はレーザー印字された部分における反射率(%)である。 The measurement result of the reflectance performed in the above-mentioned Example 11 is shown in FIG. 39. In the graph of FIG. 39, the value on the horizontal axis is the wavelength (nm) of the electromagnetic wave, and the value on the vertical axis is the reflectance (%) on the printed surface or the laser-printed portion of the electromagnetic wave having the wavelength indicated by the value on the horizontal axis. Is.
 図39のグラフから明らかなとおり、レーザー印字することにより近赤外領域において反射率が上昇(吸収率が低下)することがわかる。上昇幅は横軸の波長によって異なるが、780nm~1400nmの近赤外領域においては、概ね5%~14%程度、レーザー印字により反射率が上昇していることが読み取れる。また全体的な傾向として、可視光の波長域におけるレーザー印字前後の反射率の変化は、800nm~1200nm程度の近赤外領域におけるレーザー印字前後の反射率の変化と比較して小さいため、レーザー印字により、肉眼や一般的なカメラによっては視認が比較的困難な文字、画像等を描くことができると考えられる。 As is clear from the graph of FIG. 39, it can be seen that the reflectance increases (absorption rate decreases) in the near infrared region by laser printing. Although the amount of increase varies depending on the wavelength on the horizontal axis, it can be read that the reflectance is increased by laser printing by about 5% to 14% in the near infrared region of 780 nm to 1400 nm. As an overall tendency, the change in reflectance before and after laser printing in the visible light wavelength range is smaller than the change in reflectance before and after laser printing in the near infrared region of about 800 nm to 1200 nm, so that laser printing Therefore, it is considered that characters, images, etc. that are relatively difficult to see with the naked eye or a general camera can be drawn.
(用途の一例)
 上記各実施形態、実施例における積層体は、一例においてはセキュリティ性の高い、身分証明書等の印刷物として用いることができる。図1中、レーザーマーキングにより描かれる人物画像2,人物識別情報3と(肉眼で視認できる)、近赤外線吸収性材料を含有するウインドウ部材へのレーザーマーキングにより描かれる人物画像7と(赤外線カメラ等により認識できる)を比較することにより、人物画像2,人物識別情報3により示される人物(可視情報)と、人物画像7により示される人物(赤外線情報)とが一致するかを判定すれば、身分証明書等の真贋判定を行い(一致すれば身分証明書等を真正なものであると決定することができ、一致しない場合には身分証明書等を真正なものではないと決定することができる。)、偽造されている場合にこれを見破ることができる。レーザーにより描かれる絵柄は、バーコードやナンバー、二次元コードなど単調なパターンだけではなく、上記のとおり人物画像等であってよい。また、マイクロ文字など微小表示印刷のセキュリティ技術と組み合わせることで、赤外線吸収印刷物のセキュリティ性を更に向上できる。
(Example of application)
The laminate in each of the above embodiments and examples can be used as a printed matter such as an identification card, which has high security in one example. In FIG. 1, a person image 2 drawn by laser marking, a person identification information 3 (visible to the naked eye), and a person image 7 drawn by laser marking on a window member containing a near-infrared absorbing material (infrared camera, etc.). By comparing (which can be recognized by), if it is determined whether the person (visible information) indicated by the person image 2 and the person identification information 3 and the person (infrared information) indicated by the person image 7 match, the identity is determined. It is possible to judge the authenticity of the certificate, etc. (if they match, it can be determined that the identification card, etc. is genuine, and if they do not match, it can be determined that the identification card, etc. is not genuine. .), This can be detected if it is forged. The pattern drawn by the laser may be not only a monotonous pattern such as a barcode, a number, or a two-dimensional code, but also a person image or the like as described above. In addition, the security of infrared-absorbing printed matter can be further improved by combining with the security technology of micro-display printing such as micro characters.
(態様2)
 以下、本発明の態様2の例示的実施形態である積層体、冊子体、及び関連する方法を、図面を参照しつつ説明する。ただし本発明の態様2による積層体、冊子体、及び関連する方法が以下に説明する具体的態様に限定されるわけではなく、本発明の態様2の範囲内で適宜変更可能であることに留意する。後述の実施形態に含まれる個々の機能、要素等は本発明の態様2の範囲内で適宜削除・変更可能であるし、実施形態に含まれない任意の機能、要素等を本発明の態様2の範囲内で追加することも可能であるし、各実施形態を適宜組み合わせて実施することも可能である。例えば、以下の実施形態においては透明シートの上に目視で視認可能な有色インキ層が印刷されている積層体を説明するが、有色インキ層の代わりに、或いは有色インキ層に加えて、励起光の照射により発光する蛍光インキ組成物を用いた印刷等により蛍光インキ層を形成したり、ホログラム層を形成したりすることも可能であるし(有色インキ層、蛍光インキ層の少なくとも一方を形成したうえでホログラム層を形成してもよいし、ホログラム層のみを形成してもよい。)、基材層の上、あるいはレーザー発色層の上にこれらの層のうち1以上を形成してもよい。基材上、レーザー発色層上、又は透明シート上には有色インキ層等を形成しないこととしてもよい。国際公開第2018/151238号に記載されているようなICモジュールを加えてもよい。また本発明の態様2の教示する積層体とは、レーザーマーキングによる書き込み等により情報が既に表示(目視や可視光カメラによる撮影で認識できる可視情報としての「表示」でもよいし、近赤外線カメラ等による撮影で認識できる近赤外情報としての「表示」でもよいし、これら以外の態様で認識できる情報としての「表示」でもよい。)されている積層体でもよいし、情報が未だ表示されていない情報表示用の、或いは別用途の積層体であってもよい。近赤外線吸収層(近赤外線吸収性インキ層)をオフセット印刷により形成することは必須ではなく、シルクスクリーン印刷や、グラビア印刷、フレキソ印刷、インクジェット印刷などにより形成することも可能である(微小表示印刷である必要もない)。有色インキ層、蛍光インキ層、ホログラム層等は、照射された近赤外線のうち少なくとも一部の近赤外線を透過する近赤外線透過性を有することが好ましいが、近赤外線透過性をそれらが有することは必須ではない。また、以下の実施形態においては積層体の最上層、最下層にオーバーシート層(透明シート)が形成されている積層体を説明するが、これらオーバーシート層を設けることも必須ではない。近赤外線吸収性インキ層を形成する場合、これを印刷により形成することも必須ではないし、近赤外線吸収性インキ層と有色インキ層等とが、同じ方法により形成されていても異なった方法により形成されていてもよい。積層構造を示す各図において互いに重なって描かれている各層、各要素(図44~図50,図59,図60中の有色インキ層、蛍光インキ層、又はホログラム層11Aと近赤外線吸収性インキ層13A、開口部領域10AAや、図66の有色インキ層、蛍光インキ層、又はホログラム層11Aと近赤外線吸収性インキ層13A、開口部領域10AA,10BAや、図68の有色インキ層、蛍光インキ層、又はホログラム層11Aと近赤外線吸収性インキ層13AA,13BA、開口部領域10AAや、図72,図73中のレンチキュラーレンズ31A、近赤外線吸収性インキ層13A、開口部領域10AA等)は、完全には重ならず部分的に重なっていてもよいし、或いは全く重なっていなくてもよい。また図72,図73に示されるレンチキュラーレンズ31Aは裏面側に形成しても、おもてと裏の両面側に形成してもよいし、当然ながらレンチキュラーレンズを全く形成しなくてもよい。なお、後述の実施例においては、レーザー光として、特に近赤外(線)レーザー光を用いることが効果的であることが示され、また各実施形態においてもレーザー光は近赤外レーザー光であるとして説明するが、本発明の態様2において用いることのできるレーザー光がこれに限られるわけではない。すなわち、レーザー光として近赤外線レーザー(例:Nd:YAGレーザー、YVO4レーザー、ファイバーレーザーなど)による近赤外レーザー光を用いることは必須ではなく、紫外線レーザー(例:THGレーザーなど)や可視光レーザー(例:SHGレーザーなど)、遠赤外線レーザー(例:CO2レーザー)などによるレーザー光を用いることも可能である。
(Aspect 2)
Hereinafter, a laminate, a booklet, and related methods, which are exemplary embodiments of the second aspect of the present invention, will be described with reference to the drawings. However, it should be noted that the laminate, booklet, and related methods according to the second aspect of the present invention are not limited to the specific aspects described below, and can be appropriately changed within the scope of the second aspect of the present invention. do. Individual functions, elements, etc. included in the embodiments described later can be appropriately deleted or changed within the scope of the second aspect of the present invention, and any functions, elements, etc. not included in the embodiments can be appropriately deleted or changed within the scope of the second aspect of the present invention. It is possible to add within the range of, and it is also possible to carry out by appropriately combining each embodiment. For example, in the following embodiment, a laminate in which a visually recognizable colored ink layer is printed on a transparent sheet will be described, but instead of the colored ink layer or in addition to the colored ink layer, excitation light is used. It is also possible to form a fluorescent ink layer or a hologram layer by printing or the like using a fluorescent ink composition that emits light when irradiated with (colored ink layer or at least one of fluorescent ink layers). The hologram layer may be formed on the above, or only the hologram layer may be formed), or one or more of these layers may be formed on the base material layer or the laser coloring layer. .. A colored ink layer or the like may not be formed on the base material, the laser coloring layer, or the transparent sheet. IC modules such as those described in WO 2018/151238 may be added. Further, the laminated body taught by the second aspect of the present invention may already display information by writing by laser marking or the like (“display” as visible information that can be recognized visually or by taking a picture with a visible light camera, or a near-infrared camera or the like. It may be "display" as near-infrared information that can be recognized by shooting with a camera, or it may be "display" as information that can be recognized in other modes.) It may be a laminated body, or the information is still displayed. It may be a laminate for displaying information or for another purpose. It is not essential to form the near-infrared absorbing layer (near-infrared absorbing ink layer) by offset printing, but it is also possible to form it by silk screen printing, gravure printing, flexographic printing, inkjet printing, etc. (microdisplay printing). It doesn't have to be). It is preferable that the colored ink layer, the fluorescent ink layer, the hologram layer, etc. have near-infrared ray transmission that transmits at least a part of the irradiated near-infrared rays. Not required. Further, in the following embodiments, a laminate in which an oversheet layer (transparent sheet) is formed in the uppermost layer and the lowermost layer of the laminate will be described, but it is not essential to provide these oversheet layers. When forming a near-infrared absorbing ink layer, it is not essential to form it by printing, and even if the near-infrared absorbing ink layer and the colored ink layer are formed by the same method, they are formed by different methods. It may have been done. Each layer and each element (colored ink layer, fluorescent ink layer, or hologram layer 11A in FIGS. 44 to 50, 59, and 60) and near-infrared absorbing ink are drawn so as to overlap each other in each drawing showing a laminated structure. Layer 13A, opening region 10AA, colored ink layer, fluorescent ink layer of FIG. 66, hologram layer 11A and near infrared absorbing ink layer 13A, opening regions 10AA, 10BA, colored ink layer of FIG. 68, fluorescent ink. The layer or the hologram layer 11A and the near-infrared absorbing ink layers 13AA, 13BA, the opening area 10AA, the wrenchular lens 31A in FIGS. 72 and 73, the near-infrared absorbing ink layer 13A, the opening area 10AA, etc.) It may not completely overlap and may partially overlap, or it may not overlap at all. Further, the lenticular lens 31A shown in FIGS. 72 and 73 may be formed on the back surface side, on both sides of the front and back surfaces, and of course, the lenticular lens may not be formed at all. In the examples described later, it is shown that it is particularly effective to use the near-infrared (line) laser light as the laser light, and in each embodiment, the laser light is the near-infrared laser light. Although described as being present, the laser light that can be used in the second aspect of the present invention is not limited to this. That is, it is not essential to use near-infrared laser light from a near-infrared laser (eg, Nd: YAG laser, YVO 4 laser, fiber laser, etc.) as the laser light, but an ultraviolet laser (eg, THG laser, etc.) or visible light. It is also possible to use laser light from a laser (eg, SHG laser, etc.), a far-infrared laser (eg, CO 2 laser), or the like.
 なお、以下の実施形態において、「近赤外線」とは、780nm~2000nmの波長を有する電磁波であるとする(「JIS Z 8117:2002遠赤外線用語」より)。「近赤外レーザー光(近赤外線レーザー光)」とは、上記近赤外線の波長範囲内の波長を有するレーザー光であるとする。また「可視光」とは、400nm~780nmの波長を有する電磁波であるとする。また、以下の実施形態において、「近赤外線吸収性」とは、照射された近赤外線の少なくとも一部を吸収する性質を意味し、「近赤外線透過性」とは、照射された近赤外線の少なくとも一部を透過する性質を意味する。同様に、以下の実施形態において、「可視光吸収性」とは、照射された可視光の少なくとも一部を吸収する性質を意味し、「可視光透過性」とは、照射された可視光の少なくとも一部を透過する性質を意味する。また以下の実施形態において、近赤外レーザー光等のレーザー光による近赤外線吸収層への「レーザーマーキング」とは、近赤外線吸収層に対してレーザー光を照射して近赤外線に対する近赤外線吸収層の吸収特性を変化させることにより、絵柄、文字、その他の情報等、何らかの表示内容を近赤外線吸収層に描く(又は書く)ことを意味する。さらに、以下の実施形態において、近赤外レーザー光等のレーザー光によるレーザー発色層への「レーザーマーキング」とは、レーザー発色層に対してレーザー光を照射して可視光、及び近赤外線に対するレーザー発色層の吸収特性を変化させることにより、絵柄、文字、その他の情報等、何らかの表示内容をレーザー発色層に描く(又は書く)ことを意味する。なお、特に断りのない限り、同様の参照符号が付された要素は、異なる図面間で同様の要素を示す。 In the following embodiment, the "near infrared ray" is an electromagnetic wave having a wavelength of 780 nm to 2000 nm (from "JIS Z 8117: 2002 far infrared ray term"). The "near-infrared laser light (near-infrared laser light)" is defined as a laser light having a wavelength within the wavelength range of the near-infrared ray. Further, "visible light" is an electromagnetic wave having a wavelength of 400 nm to 780 nm. Further, in the following embodiments, "near-infrared absorbing property" means a property of absorbing at least a part of the irradiated near-infrared ray, and "near-infrared ray transmitting" means at least the irradiated near-infrared ray. It means the property of transmitting a part. Similarly, in the following embodiments, "visible light absorption" means the property of absorbing at least a part of the irradiated visible light, and "visible light transmission" means the irradiated visible light. It means the property of transmitting at least a part. Further, in the following embodiment, "laser marking" on the near-infrared absorbing layer by laser light such as near-infrared laser light means that the near-infrared absorbing layer is irradiated with laser light and the near-infrared absorbing layer is exposed to near-infrared light. By changing the absorption characteristics of, it means to draw (or write) some display contents such as patterns, characters, and other information on the near-infrared absorption layer. Further, in the following embodiment, "laser marking" on the laser coloring layer by laser light such as near-infrared laser light means irradiating the laser coloring layer with laser light and irradiating the laser light to visible light and laser for near infrared rays. By changing the absorption characteristics of the color-developing layer, it means drawing (or writing) some display content such as a pattern, characters, or other information on the laser color-developing layer. Unless otherwise specified, elements with similar reference numerals indicate similar elements between different drawings.
(第1実施形態)
 図40は、本発明の態様2の第1実施形態における積層体の、可視光によるおもて面(図44中、オーバーシート層14Aの側の最も外側の面とする。他の図においても同様。)の観察画像(可視光画像)を示す図である。本実施形態、及び以降の各実施形態において、積層体1Aは身分証明書等の個人を特定する印刷物であるとするが、これに限らず、クレジットカード、キャッシュカード等のカード類、紙幣等、任意の積層体として、積層体1Aを作製することができる。積層体1Aの基材層9A(後述の図44等を参照)上には、レーザー発色層10Aが熱プレス処理により融着しており、レーザー発色層10Aには、その一部を切り抜くこと等により開口部領域10AAが設けられている。レーザー発色層10Aに対して近赤外レーザー光を照射するレーザーマーキングにより、人物画像2A、人物識別情報3Aが描かれている(これらは、後述の図50のように裏面側にレーザー発色層16Aを設けた上で、レーザー発色層16Aに対して近赤外レーザー光を照射するレーザーマーキングにより、積層体1Aの裏面側に描いてもよい)。人物画像2Aは、レーザー発色層10A上でレーザーマーキングにより人物を描くように近赤外レーザー光を照射することにより描かれる。人物識別情報3Aは、レーザー発色層10A上でレーザーマーキングにより人物の識別情報(氏名、個人識別番号等)を書き入れるよう近赤外レーザー光を照射することにより描かれる。また、後述の図44に示されるとおり、オーバーシート層14A上には、UV SOYBI SG 黄(DICグラフィックス製)、UV SOYBI SG 紅(DICグラフィックス製)、UV SOYBI SG 藍(DICグラフィックス製)、UV 161 黄 S(T&K TOKA製)、UV 161 紅 S(T&K TOKA製)、UV 161 藍 S(T&K TOKA製)等、近赤外線透過性の有色インキ(可視光吸収性の有色インキ)を用いて、マーク4Aが印刷されている(図44中、有色インキ層11A)。
(First Embodiment)
FIG. 40 shows the front surface of the laminated body according to the first embodiment of the second embodiment of the present invention by visible light (in FIG. 44, the outermost surface on the side of the oversheet layer 14A. Also in other drawings. It is a figure which shows the observation image (visible light image) of the same. In this embodiment and each subsequent embodiment, the laminated body 1A is a printed matter that identifies an individual such as an identification card, but the present invention is not limited to this, and credit cards, cash cards and other cards, banknotes, etc. As an arbitrary laminate, the laminate 1A can be produced. A laser coloring layer 10A is fused on the base material layer 9A (see FIG. 44 and the like described later) of the laminated body 1A by heat pressing, and a part thereof is cut out to the laser coloring layer 10A. The opening region 10AA is provided by the laser. A person image 2A and a person identification information 3A are drawn by laser marking that irradiates the laser coloring layer 10A with near-infrared laser light (these are the laser coloring layer 16A on the back surface side as shown in FIG. 50 described later). May be drawn on the back surface side of the laminated body 1A by laser marking that irradiates the laser coloring layer 16A with near-infrared laser light). The person image 2A is drawn by irradiating a near-infrared laser beam on the laser color-developing layer 10A so as to draw a person by laser marking. The person identification information 3A is drawn by irradiating a near-infrared laser beam so as to write the person identification information (name, personal identification number, etc.) on the laser coloring layer 10A by laser marking. Further, as shown in FIG. 44 described later, UV SOYBI SG yellow (manufactured by DIC graphics), UV SOYBI SG red (manufactured by DIC graphics), and UV SOYBI SG indigo (manufactured by DIC graphics) are placed on the oversheet layer 14A. ), UV 161 yellow S (manufactured by T & K TOKA), UV 161 red S (manufactured by T & K TOKA), UV 161 indigo S (manufactured by T & K TOKA), etc. The mark 4A is printed by using (colored ink layer 11A in FIG. 44).
 図41は、本発明の態様2の第1実施形態における積層体の、近赤外線カメラによるおもて面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。また開口部領域の枠(破線)は近赤外線画像としては現れないが、便宜上示している。他の図においても同様。)である。近赤外線カメラを用いて観察すること等により、このような観察画像を得ることができる。レーザー発色層10Aに対するレーザーマーキングで描かれた人物画像2A、人物識別情報3Aは、可視光及び近赤外線に対する吸収性を有するため、可視光だけでなく近赤外線カメラによっても認識できる。他方、マーク4Aは近赤外線透過性の有色インキを用いた印刷により形成されているため、近赤外線カメラによっては認識不能(或いは、少なくとも認識困難)である。 FIG. 41 is a diagram showing an observation image (near-infrared image) of the front surface of the laminated body according to the first embodiment of the second embodiment of the present invention by a near-infrared camera (note that the laminated body is for the purpose of making the figure easier to see. The outer shape is drawn. The frame (broken line) of the opening region does not appear as a near-infrared image, but is shown for convenience. The same applies to other figures). Such an observation image can be obtained by observing with a near-infrared camera or the like. Since the person image 2A and the person identification information 3A drawn by laser marking on the laser coloring layer 10A have absorption to visible light and near infrared rays, they can be recognized not only by visible light but also by a near infrared camera. On the other hand, since the mark 4A is formed by printing using a colored ink that transmits near-infrared rays, it is unrecognizable (or at least difficult to recognize) by a near-infrared camera.
 また図41の、観察画像中、印刷画像5Aは、近赤外線吸収性材料であるセシウム酸化タングステンと6ホウ化ランタンとの少なくとも一方を含む近赤外線吸収性インキを用いて基材層9A上、或いはオーバーシート層14A(図44を参照)上に印刷することにより形成される(近赤外線吸収性インキ層13A)。ここにおいて、開口部領域10AA内に近赤外線吸収層13Aの少なくとも一部が位置するか(図44参照。この場合、近赤外線吸収性インキ層13Aの少なくとも一部が開口部領域10AAに入り込む。)、又は開口部領域10AAと近赤外線吸収層13Aとが少なくとも部分的に重なる(後述の図46等参照。この場合、有色インキ層11Aの少なくとも一部が開口部領域10AAに入り込み、そこに近赤外線吸収性インキ層13Aが少なくとも部分的に重なる。)。 Further, in the observation image of FIG. 41, the printed image 5A is on the substrate layer 9A or on the base material layer 9A using a near-infrared absorbing ink containing at least one of tungsten cesium oxide and hexaborosilicate lanthanum, which are near-infrared absorbing materials. It is formed by printing on an oversheet layer 14A (see FIG. 44) (near-infrared absorbing ink layer 13A). Here, is at least a part of the near-infrared absorbing layer 13A located in the opening region 10AA (see FIG. 44. In this case, at least a part of the near-infrared absorbing ink layer 13A enters the opening region 10AA). Or, the opening region 10AA and the near-infrared absorbing layer 13A overlap at least partially (see FIG. 46, etc. described later. In this case, at least a part of the colored ink layer 11A enters the opening region 10AA, and the near-infrared ray is there. The absorbent ink layers 13A overlap at least partially).
 後に実験結果を示して説明するとおり、セシウム酸化タングステン、又は6ホウ化ランタンを含む近赤外線吸収性インキ組成物は、近赤外レーザー光を当てることにより少なくとも所定の波長範囲の近赤外線に対する吸収率が低下(反射率が上昇)するという性質を有しており、そのような近赤外線吸収性インキ組成物を用いた印刷により形成される近赤外線吸収性インキ層に対して、文字、画像(絵、図形等)等を描くように近赤外レーザー光を当てることにより(レーザーマーキング)、描かれた部分の近赤外線吸収特性が変化し、したがって近赤外線吸収性インキ層には赤外線カメラ等を用いて認識可能な、文字、画像等が形成されることとなる。人物画像6Aは、印刷画像5A上でレーザーマーキングにより人物を描くように近赤外レーザー光を照射することにより描かれる。人物識別情報7Aは、印刷画像5A上でレーザーマーキングにより人物の識別情報(氏名、個人識別番号等)を書き入れるよう近赤外レーザー光を照射することにより描かれる。 As will be explained later by showing the experimental results, the near-infrared absorbing ink composition containing tungsten cesium oxide or lanthanum hexaboride has an absorption rate for near-infrared rays in at least a predetermined wavelength range by irradiating it with near-infrared laser light. Has the property of decreasing (increasing reflectance), and characters and images (pictures) are applied to the near-infrared absorbing ink layer formed by printing using such a near-infrared absorbing ink composition. By irradiating near-infrared laser light to draw (figure, etc.) (laser marking), the near-infrared absorption characteristics of the drawn part change, so an infrared camera or the like is used for the near-infrared absorbing ink layer. Characters, images, etc. that can be recognized will be formed. The person image 6A is drawn by irradiating a near-infrared laser beam on the printed image 5A so as to draw a person by laser marking. The person identification information 7A is drawn by irradiating the printed image 5A with near-infrared laser light so as to write the person identification information (name, personal identification number, etc.) by laser marking.
 セシウム酸化タングステン含有インキ組成物としては、化学式(一般式)Csxyzで表されるセシウム酸化タングステンを含有するインキを用いることができる(x,y,zは、それぞれ正の実数)。一例においては、特許文献8(特許第6160830号)に記載されている、六方晶構造を持つCs0.33WO3で表される微粒子を含有するインキを用いることができる。6ホウ化ランタン含有インキ組成物としては、化学式LaB6で表される微粒子を含有するインキを用いることができる。近赤外線吸収性インキは、セシウム酸化タングステン又は6ホウ化ランタンに加えて、分散剤、モノマー、合成樹脂類、助剤などを含む。セシウム酸化タングステン含有インキにおけるセシウム酸化タングステンの含有率は任意であるが、一例においては0.5重量%(重量パーセント)~6重量%の含有率において良好な特性を有することが後述の実施例で示される。6ホウ化ランタン含有インキにおける6ホウ化ランタンの含有率も任意であり、一例においては0.05重量%(重量パーセント)~6重量%であってよいが、0.3重量%の含有率において良好な特性を有することが後述の実施例で示される。セシウム酸化タングステンと6ホウ化ランタンとの両方を含有する近赤外線吸収性インキを用いる場合においても、セシウム酸化タングステンと6ホウ化ランタンのそれぞれの含有率は同様に任意である。いずれの場合においても印刷濃度(盛量)によって好ましい含有率を変更することができる。なお、ここでいう「セシウム酸化タングステンの含有率(重量%)」とはインキの全体の重量に占める、当該インキに含まれるセシウム酸化タングステンの重量の割合であり、
 インキ中のセシウム酸化タングステンの含有率(重量%)={(セシウム酸化タングステンの重量)/(インキ全体の重量)}×100
により表される。
 同様に、「6ホウ化ランタンの含有率(重量%)」は、インキの全体の重量に占める、当該インキに含まれる6ホウ化ランタンの重量の割合であり、
 インキ中の6ホウ化ランタンの含有率(重量%)={(6ホウ化ランタンの重量)/(インキ全体の重量)}×100
により表される。
As the cesium tungsten oxide-containing ink composition, an ink containing cesium tungsten oxide represented by the chemical formula (general formula) Cs x W y O z can be used (x, y, z are positive real numbers, respectively). .. In one example, an ink containing fine particles represented by Cs 0.33 WO 3 having a hexagonal structure described in Patent Document 8 (Patent No. 6160830) can be used. As the lanthanum hexaboride-containing ink composition, an ink containing fine particles represented by the chemical formula LaB 6 can be used. Near-infrared absorbing inks include dispersants, monomers, synthetic resins, auxiliaries and the like, in addition to tungsten cesium oxide or lanthanum hexaboride. The content of tungsten cesium oxide in the cesium tungsten oxide-containing ink is arbitrary, but in one example, it has good characteristics at a content of 0.5% by weight (weight%) to 6% by weight in the examples described later. Shown. The content of lanthanum hexaboride in the lanthanum hexaboride-containing ink is also arbitrary, and in one example, it may be 0.05% by weight (% by weight) to 6% by weight, but at a content of 0.3% by weight. It will be shown in the examples below that it has good properties. Even when a near-infrared absorbing ink containing both tungsten cesium oxide and lanthanum hexaboride is used, the respective contents of tungsten cesium oxide and lanthanum hexaboride are similarly arbitrary. In any case, the preferable content rate can be changed depending on the print density (filling amount). The "content of tungsten cesium oxide (% by weight)" referred to here is the ratio of the weight of tungsten cesium oxide contained in the ink to the total weight of the ink.
Content of tungsten cesium oxide in the ink (% by weight) = {(weight of tungsten cesium oxide) / (weight of the entire ink)} x 100
Represented by.
Similarly, the "content rate of lanthanum hexaboride (% by weight)" is the ratio of the weight of lanthanum hexaboride contained in the ink to the total weight of the ink.
Content of lanthanum hexaboride in ink (% by weight) = {(weight of lanthanum hexaboride) / (weight of total ink)} x 100
Represented by.
 図42は、本発明の態様2の第1実施形態における積層体の、可視光下による裏面(図40中、AX軸を中心に積層体1Aを回転させることで裏返すことにより見える面。図44中、オーバーシート層15Aの側の最も外側の面とする。他の実施形態においても同様。)の観察画像(可視光画像)を示す図である。基材層9Aの裏面には、近赤外線透過性の有色インキ(可視光吸収性の有色インキ)を用いて、マーク8Aが印刷されている(図44中、有色インキ層12A)。 FIG. 42 is a back surface of the laminate according to the first embodiment of the second embodiment of the present invention under visible light (in FIG. 40, a surface that can be seen by turning the laminate 1A around the AX axis and turning it over. It is a figure which shows the observation image (visible light image) of the middle, which is the outermost surface on the side of the oversheet layer 15A, and also in other embodiments. Mark 8A is printed on the back surface of the base material layer 9A using a colored ink that transmits near infrared rays (colored ink that absorbs visible light) (colored ink layer 12A in FIG. 44).
 図43は、本発明の態様2の第1実施形態における積層体の、近赤外線カメラによる裏面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。他の図においても同様。)である。マーク8Aは近赤外線透過性の有色インキを用いた印刷により形成されているため、近赤外線カメラによっては認識不能(或いは、少なくとも認識困難)である。 FIG. 43 is a diagram showing an image (near-infrared image) of the back surface of the laminated body according to the first embodiment of the second embodiment of the present invention observed by a near-infrared camera (note that the outer shape of the laminated body is drawn for the purpose of making the figure easier to see. It is included. The same applies to other figures.) Since the mark 8A is formed by printing using a colored ink that transmits near-infrared rays, it cannot be recognized (or at least is difficult to recognize) by a near-infrared camera.
 図44は、図40に示す積層体を、図40中のA-A’線で切断したA-A’断面を見たときの層構造の一例(図40の紙面内で、下方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。)である。なお、有色インキ層11A(又は蛍光インキ層、又はホログラム層。これら3つのうち任意の2以上を組み合わせた層でもよい。他の例においても同様。)、近赤外線吸収性インキ層13A、開口部領域10AAの積層順序は任意であり(図45~図49参照)、また図50に示すとおり基材層9Aの裏面側にレーザー発色層16Aを設けてもよい(この場合も各層、開口部領域の積層順序は任意。また後述の図66,図68等に示すとおり開口部領域や近赤外線吸収性インキ層が複数ある場合も、各層、各開口部領域の積層順序は任意。他の実施形態においても同様)。 FIG. 44 shows an example of a layered structure when the cross section of the AA'cross section of the laminate shown in FIG. 40 is cut along the AA' line in FIG. 40 (viewed from below in the paper surface of FIG. 40). It is a diagram conceptually showing (.) (Each layer is drawn separately to show the layer structure). The colored ink layer 11A (or the fluorescent ink layer or the hologram layer. A layer in which any two or more of these three are combined may be used. The same applies to other examples), the near-infrared absorbing ink layer 13A, and the opening. The stacking order of the regions 10AA is arbitrary (see FIGS. 45 to 49), and as shown in FIG. 50, the laser coloring layer 16A may be provided on the back surface side of the base material layer 9A (also in this case, each layer and the opening region). The stacking order of each layer and each opening region is arbitrary even when there are a plurality of opening regions and near-infrared absorbing ink layers as shown in FIGS. 66 and 68 described later. Other embodiments The same applies to).
 基材層9Aは、PVC(ポリ塩化ビニル)、PET-G(コポリエステル)、PC(ポリカーボネート)、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)等の材料を用いて作製される、可視光及び近赤外線の透過性が低いシート状の基材(白シート)により形成される。またオーバーシート層14A,15Aを用いない場合、基材層9Aは紙基材(上質紙、コード紙など)であってもよい(オーバーシート層14A,15Aを用いる場合であっても基材層9Aとして上記紙基材を用いることは可能である)。 The base material layer 9A is made of materials such as PVC (polyvinyl chloride), PET-G (copolyester), PC (polyester), PET (polyethylene terephthalate), PP (polypropylene), and is visible light and near. It is formed of a sheet-like base material (white sheet) having low infrared transmission. When the oversheet layers 14A and 15A are not used, the base material layer 9A may be a paper base material (high quality paper, cord paper, etc.) (even when the oversheet layers 14A and 15A are used, the base material layer is a base material layer. It is possible to use the above paper base material as 9A).
 レーザー発色層10Aはレーザー発色剤を含む透明なシート状の層(オーバーシート層14A,15Aと同様な、透明樹脂等であってよい)であり、基材層9Aに対してプレスにより融着される。レーザー発色層10Aは、レーザー光を当てることにより発色する性質を有する。レーザー発色層10Aにおいてレーザー光を当てた部分は、可視光及び近赤外線に対する吸収性が変化するため(一例においては、可視光吸収性、及び近赤外線吸収性が上昇することにより、目視でも、赤外線カメラによる観察でも、それ以外の部分よりも暗く見える。)、当該部分を目視により、及び近赤外線カメラを用いることにより認識することができる。レーザー発色剤としては、特許第6167803号明細書に記載されているとおり、例えば、染料・顔料等の着色剤、粘土類等を使用することができ、具体的には、黄色酸化鉄、無機鉛化合物、マンガンバイオレット、コバルトバイオレット、水銀、コバルト、銅、ニッケル等の金属化合物、真珠光沢顔料、珪素化合物、雲母類、カオリン類、珪砂、硅藻土、タルク、酸化チタン被覆雲母類、二酸化錫被覆雲母類、アンチモン被覆雲母類、スズ+アンチモン被覆雲母類、スズ+アンチモン+酸化チタン被覆雲母類等の一種または二種以上を使用することができる(特許第6167803号明細書中、段落[0043])。低出力のレーザーにより発色する発色材料として、特に、ビスマス系化合物を少なくとも用いることができ、ビスマス化合物としては、具体的には、特に限定されないが、例えば、酸化ビスマス、硝酸ビスマス、オキシ硝酸ビスマスなどの硝酸ビスマス系、塩化ビスマスなどのハロゲン化ビスマス系、オキシ塩化ビスマス、硫酸ビスマス、酢酸ビスマス、クエン酸ビスマス、水酸化ビスマス、チタン酸ビスマス等が挙げられ、なかでも、入手が容易であり、安価であるという観点から、好ましくは、硝酸ビスマス、水酸化ビスマスを用いることができ、ビスマス系化合物としては、一種又は二種以上の化合物を含むことができるし、一例としてのビスマス系化合物を少なくとも含む発色材料に加えて、レーザー光により発色する発色材料であればビスマス化合物以外のものを併用することもできる(特許第6167803号明細書中、段落[0044])。また、一例としてのビスマス系化合物を少なくとも含む発色材料を用いるとき、さらにレーザー光により発色する発色材料及び又は発色効率を上げるため無機化合物を用いることができるものであり、無機化合物として金属酸化物、複合酸化物又は金属塩あるいはそれらの1種類又は2種類以上の化合物を用いることが、低出力のレーザー光の照射であっても無機化合物が、ある場合は発色材料として機能すること及び又は無機化合物が発熱効率を上げるように機能することで発色材料の発色を助け、あるいは発色材料と白色顔料を含む白色インキの白色度アップするように機能するため無機化合物を添加することが好ましい(特許第6167803号明細書中、段落[0045])。 The laser coloring layer 10A is a transparent sheet-like layer containing a laser coloring agent (may be a transparent resin or the like similar to the oversheet layers 14A and 15A), and is fused to the base material layer 9A by pressing. Laser. The laser coloring layer 10A has a property of developing color when exposed to laser light. Since the portion of the laser color-developing layer 10A exposed to the laser light changes its absorbency to visible light and near-infrared rays (in one example, the visible light absorption and the near-infrared ray absorption increase, so that the infrared rays can be visually observed. Even when observed with a camera, it looks darker than the other parts.) The part can be recognized visually and by using a near-infrared camera. As the laser color former, as described in Patent No. 6167803, for example, colorants such as dyes and pigments, clays and the like can be used, and specifically, yellow iron oxide and inorganic lead. Compounds, manganese violet, cobalt violet, mercury, cobalt, copper, nickel and other metal compounds, pearl luster pigments, silicon compounds, mica, kaolins, silica sand, cigar soil, talc, titanium oxide coated mica, tin dioxide coated One or more of mica, antimonated mica, tin + antimonated mica, tin + antimon + titanium oxide coated mica, etc. can be used (Patent No. 6167803, paragraph [0043]. ). As a color-developing material that develops color with a low-power laser, at least a bismuth-based compound can be used, and the bismuth compound is not particularly limited, but for example, bismuth oxide, bismuth nitrate, bismuth oxynitrate, and the like. Bismuth nitrate, bismuth halide such as bismuth chloride, bismuth oxychloride, bismuth sulfate, bismuth acetate, bismuth citrate, bismuth hydroxide, bismuth titanate, etc. From the viewpoint of bismuth nitrate and bismuth hydroxide, bismuth nitrate and bismuth hydroxide can be preferably used, and the bismuth-based compound may contain one or more compounds, and at least a bismuth-based compound as an example is included. In addition to the color-developing material, a material other than the bismuth compound may be used in combination as long as it is a color-developing material that develops color by laser light (paragraph [0044] in the specification of Patent No. 6167803). Further, when a color-developing material containing at least a bismuth-based compound as an example is used, a color-developing material that develops color by laser light and / or an inorganic compound can be used to increase the color-developing efficiency. The use of composite oxides or metal salts or one or more compounds thereof allows the inorganic compounds to function as color-developing materials in some cases, even when irradiated with low-power laser light, and / or the inorganic compounds. It is preferable to add an inorganic compound because it functions to increase the heat generation efficiency to assist the color development of the coloring material or to increase the whiteness of the white ink containing the coloring material and the white pigment (Patent No. 6167803). In the specification, paragraph [0045]).
 すでに述べたとおり、レーザー発色層10Aには、その一部を切り抜くこと等により開口部領域10AAが設けられている(図44)。図41に破線(破線の枠は近赤外線像として認識されるわけではなく、開口部領域10AAの面内の形状を示すために補助的に示されている。他の図においても同様。)で示すとおり、開口部領域10AA内に近赤外線吸収性インキによる印刷画像5A(近赤外線吸収性インキ層13A)の少なくとも一部が位置するか(図44等)、又は開口部領域10AAと印刷画像5Aとが少なくとも部分的に重なっている(図46等)。 As already described, the laser coloring layer 10A is provided with an opening region 10AA by cutting out a part thereof (FIG. 44). In FIG. 41, a broken line (the frame of the broken line is not recognized as a near-infrared image, but is shown as an auxiliary to show the in-plane shape of the opening region 10AA. The same applies to other figures). As shown, is at least a part of the printed image 5A (near-infrared absorbing ink layer 13A) using the near-infrared absorbing ink located in the opening region 10AA (FIG. 44, etc.), or the opening region 10AA and the printed image 5A are located. At least partially overlap (Fig. 46, etc.).
 積層体1Aのおもて側最上層には、可視光透過性、及び近赤外線透過性を有するオーバーシート層(透明シート)14Aが形成され、積層体1Aの裏側最下層には、可視光透過性、及び近赤外線透過性を有するオーバーシート層(透明シート)15Aが形成される。オーバーシート層14A,15Aは、例えば0.05mm~0.2mm程度の厚さの透明PC(ポリカーボネート)を2枚用意し、オーバーシート層14A,15Aを形成する前の積層体1Aの最下層と最上層に、それぞれ1枚ずつを積層し、熱と圧力をかけて融着させること等によって積層体1Aを形成できる。オーバーシート層は、基材層と同様にPVC(ポリ塩化ビニル)、PET-G(コポリエステル)、PC(ポリカーボネート)、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)等の材料を用いて作製してよい。なお、オーバーシート層14A上に有色インキ層11A(又は蛍光インキ層、ホログラム層等。他の記載においても同様。)を形成する場合は、オーバーシート層14Aの上記積層の前にオーバーシート層14Aに予め有色インキによる印刷を行って有色インキ層11Aを形成しておく。また、基材層9A上に有色インキ層12Aを形成する場合は、オーバーシート層15Aの上記積層の前に基材層9Aに予め有色インキによる印刷を行って有色インキ層12Aを形成しておく(オーバーシート層15A上に有色インキ層12Aを形成する場合も、同様に積層前に印刷しておく。)。オーバーシート層14A(及び、オーバーシート層15A)上に印刷層を形成する場合、改ざん防止のため、印刷層が基材層9A側に配置されるように積層させるのが好ましい。また、オーバーシート層がある場合、印字した情報が積層体の内部に印字されることになり、より改竄しにくいという特徴もある。その他の例としては、オーバーシート層14A,15Aを形成する前の積層体1Aを任意の2枚の透明なフィルムで上下から積層し(必要に応じて、各フィルム、基材層9A、レーザー発色層10Aのいずれかに、有色インキ等による印刷を予め行っておく。)、層間には接着剤を用いて接着することにより積層体1Aを形成してもよい。基材層9Aに対するレーザー発色層10Aの融着も同様である。図50のようにレーザー発色層16Aを設ける場合は、融着等も含めてレーザー発色層10Aと同様に形成、及びこれに対する印刷等を行ってよい。既に述べたとおりオーバーシート層14A,15Aを形成することは必須ではなく、オーバーシート層14A,15Aのいずれか一方のみを形成してもよいし、どちらのオーバーシート層も形成せずに積層体1Aを作製してもよい。なお、レーザー発色層10Aに対するレーザーマーキングは、積層体1Aの最上層側(オーバーシート層14Aの側)から行う。また、図50のようにレーザー発色層16Aを設けて、レーザー発色層16Aにレーザーマーキングを行う場合、そのようなレーザーマーキングは、積層体1Aの最下層側(オーバーシート層15Aの側)から行う。 An oversheet layer (transparent sheet) 14A having visible light transmission and near-infrared ray transmission is formed on the uppermost layer on the front side of the laminated body 1A, and visible light is transmitted on the lowermost layer on the back side of the laminated body 1A. An oversheet layer (transparent sheet) 15A having properties and near-infrared ray transmission is formed. For the oversheet layers 14A and 15A, for example, two transparent PCs (polycarbonates) having a thickness of about 0.05 mm to 0.2 mm are prepared, and the oversheet layers 14A and 15A are combined with the bottom layer of the laminated body 1A before forming the oversheet layers 14A and 15A. The laminated body 1A can be formed by laminating one sheet each on the uppermost layer and fusing them by applying heat and pressure. The oversheet layer is prepared by using a material such as PVC (polyvinyl chloride), PET-G (copolyester), PC (polycarbonate), PET (polyethylene terephthalate), PP (polypropylene), as in the case of the base material layer. good. When the colored ink layer 11A (or the fluorescent ink layer, the hologram layer, etc., the same applies to other descriptions) is formed on the oversheet layer 14A, the oversheet layer 14A is formed before the oversheet layer 14A is laminated. Is printed with colored ink in advance to form the colored ink layer 11A. When the colored ink layer 12A is formed on the base material layer 9A, the colored ink layer 12A is formed by printing on the base material layer 9A in advance with colored ink before laminating the oversheet layer 15A. (When the colored ink layer 12A is formed on the oversheet layer 15A, it is similarly printed before laminating.) When the print layer is formed on the oversheet layer 14A (and the oversheet layer 15A), it is preferable to stack the print layers so that they are arranged on the base material layer 9A side in order to prevent tampering. Further, when there is an oversheet layer, the printed information is printed inside the laminated body, and there is also a feature that it is more difficult to falsify. As another example, the laminated body 1A before forming the oversheet layers 14A and 15A is laminated from above and below with two arbitrary transparent films (each film, the base material layer 9A, and laser coloring, if necessary). Printing with colored ink or the like is performed on any of the layers 10A in advance), and the laminate 1A may be formed by adhering the layers with an adhesive. The same applies to the fusion of the laser coloring layer 10A to the base material layer 9A. When the laser coloring layer 16A is provided as shown in FIG. 50, it may be formed in the same manner as the laser coloring layer 10A including fusion and the like, and printing or the like may be performed on the laser coloring layer 16A. As described above, it is not essential to form the oversheet layers 14A and 15A, and only one of the oversheet layers 14A and 15A may be formed, or the laminated body may be formed without forming either of the oversheet layers. 1A may be produced. The laser marking on the laser coloring layer 10A is performed from the uppermost layer side (the side of the oversheet layer 14A) of the laminated body 1A. Further, when the laser coloring layer 16A is provided as shown in FIG. 50 and the laser coloring layer 16A is laser-marked, such laser marking is performed from the lowermost layer side (oversheet layer 15A side) of the laminated body 1A. ..
 オーバーシート層14Aの上(レーザー発色層10Aの上、或いは基材層9Aの上でもよいし、近赤外線吸収性インキ層13Aの上でもよい。蛍光インキ層11A、ホログラム層11Aにおいても同様。)には有色インキ層11Aが形成される。有色インキ層11Aは、既に述べたとおり、オーバーシート層14A上に(またはレーザー発色層10A上等に)、近赤外線透過性の有色インキを用いてマーク4Aを印刷することにより形成される。有色インキ層11Aの形成手法は任意であり、例えば活版印刷、オフセット印刷、シルクスクリーン印刷、グラビア印刷、フレキソ印刷、インクジェット印刷等の印刷手法、或いはそれ以外の任意の形成手法を用いることができる。なお、有色インキ層11Aに代わって、或いは有色インキ層11Aに加えて、UV蛍光メジウムB(T&K TOKA製)、UV蛍光メジウムY(T&K TOKA製)、UV蛍光メジウムR(T&K TOKA製)等、近赤外線透過性の蛍光インキを用いて、蛍光インキ層11Aを形成してもよい。蛍光インキ層11Aは、蛍光インキ組成物を用いて、有色インキ層11Aと同様にオーバーシート層14A上等に印刷等を行うことにより形成することができ、有色インキ印刷の場合と同様にマーク等を印刷することができる。或いは、有色インキ層11Aや蛍光インキ層11Aに代わって、或いはこれらのうち少なくとも1つの層に加えて、透明型ホログラムのような近赤外線透過性のホログラム層11Aを形成してもよい。有色インキ層11A、蛍光インキ層11A、ホログラム層11Aは、オーバーシート層14Aのおもて面(基材層9Aとは逆側の面)に形成されても、オーバーシート層14Aの裏面(基材層9A側の面)に形成されても、レーザー発色層10Aのおもて面(基材層9Aとは逆側の面)に形成されても、レーザー発色層10Aの裏面(基材層9A側の面)に形成されても、基材層9Aのおもて面(レーザー発色層10A側の面)に形成されても、基材層9A上に形成された近赤外線吸収性インキ層13A上に形成されても、これらの面のうち2以上の面に形成されてもよい(適宜図示を省略する。有色インキ層12A、蛍光インキ層12A、ホログラム層12Aについても同様。)。なお、有色インキ層11A、蛍光インキ層11A、ホログラム層11Aは近赤外線透過性を有する必要はない。ここでの実施例は、観察画像を示す図を簡略化するため、近赤外線透過性を有する層として統一した。 On the oversheet layer 14A (may be on the laser coloring layer 10A, or on the base material layer 9A, or on the near-infrared absorbing ink layer 13A. The same applies to the fluorescent ink layer 11A and the hologram layer 11A). A colored ink layer 11A is formed on the surface. As described above, the colored ink layer 11A is formed by printing the mark 4A on the oversheet layer 14A (or on the laser coloring layer 10A or the like) using a colored ink that transmits near infrared rays. The method for forming the colored ink layer 11A is arbitrary, and for example, a printing method such as letterpress printing, offset printing, silk screen printing, gravure printing, flexographic printing, inkjet printing, or any other forming method can be used. In place of the colored ink layer 11A, or in addition to the colored ink layer 11A, UV fluorescent medium B (manufactured by T & K TOKA), UV fluorescent medium Y (manufactured by T & K TOKA), UV fluorescent medium R (manufactured by T & K TOKA), etc. The fluorescent ink layer 11A may be formed by using a fluorescent ink that transmits near ultraviolet rays. The fluorescent ink layer 11A can be formed by printing on the oversheet layer 14A or the like using the fluorescent ink composition in the same manner as the colored ink layer 11A, and marks and the like can be formed as in the case of colored ink printing. Can be printed. Alternatively, instead of the colored ink layer 11A or the fluorescent ink layer 11A, or in addition to at least one of these layers, a near-infrared ray transparent hologram layer 11A such as a transparent hologram may be formed. Even if the colored ink layer 11A, the fluorescent ink layer 11A, and the hologram layer 11A are formed on the front surface of the oversheet layer 14A (the surface opposite to the base material layer 9A), the back surface (base) of the oversheet layer 14A is formed. Whether it is formed on the material layer 9A side surface) or on the front surface of the laser coloring layer 10A (the surface opposite to the base material layer 9A), the back surface of the laser coloring layer 10A (base material layer). The near-infrared absorbing ink layer formed on the base material layer 9A regardless of whether it is formed on the surface on the 9A side or on the front surface of the base material layer 9A (the surface on the laser coloring layer 10A side). It may be formed on 13A or may be formed on two or more of these surfaces (not shown appropriately. The same applies to the colored ink layer 12A, the fluorescent ink layer 12A, and the hologram layer 12A). The colored ink layer 11A, the fluorescent ink layer 11A, and the hologram layer 11A do not need to have near-infrared transparency. In the examples here, in order to simplify the figure showing the observation image, the layers have been unified as a layer having near-infrared transmissivity.
 また基材層9Aの上(オーバーシート層15Aの上でもよい。蛍光インキ層12A、ホログラム層12Aにおいても同様。)には、有色インキ層12A(又は蛍光インキ層、ホログラム層等。材料や形成方法は有色インキ層11A、或いは蛍光インキ層11A、ホログラム層11Aと同様であってよい。これらの層のうち2以上を形成してもよい。他の記載においても同様。)が形成される。有色インキ層12A、蛍光インキ層12A、ホログラム層12Aはそれぞれ、オーバーシート層15Aのおもて面(基材層9Aとは逆側の面)に形成されても、オーバーシート層15Aの裏面(基材層9A側の面)に形成されても、これらの面のうち2以上の面に形成されてもよい(適宜図示を省略する。)。 Further, on the base material layer 9A (may be on the oversheet layer 15A. The same applies to the fluorescent ink layer 12A and the hologram layer 12A), the colored ink layer 12A (or the fluorescent ink layer, the hologram layer, etc.) is used. The method may be the same as the colored ink layer 11A, the fluorescent ink layer 11A, and the hologram layer 11A. Two or more of these layers may be formed. The same applies to other descriptions). Even if the colored ink layer 12A, the fluorescent ink layer 12A, and the hologram layer 12A are formed on the front surface of the oversheet layer 15A (the surface opposite to the base material layer 9A), the back surface of the oversheet layer 15A (the surface opposite to the base material layer 9A), respectively. It may be formed on the surface of the base material layer 9A side) or may be formed on two or more of these surfaces (not shown as appropriate).
 図45~図49は、図44の層構造の変形例として、図40に示す積層体を、図40中のA-A’線で切断したA-A’断面を見たときの層構造の一例(図40の紙面内で、下方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている)(積層順序の変更例1~5)であり、図50は、図44の層構造の変形例として、図40に示す積層体を、図40中のA-A’線で切断したA-A’断面を見たときの層構造の一例(図40の紙面内で、下方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている)(裏面側にレーザー発色層を追加)である。既に述べたとおり、各層、要素の積層順序は任意であり、また図44の層構成に対して、レーザー発色層16A等、他の層、要素を更に設けてもよい(図44の層構成に示される層、要素を全て備えることも必須ではない)。 45 to 49 show, as a modification of the layer structure of FIG. 44, the layer structure when the cross section of the layer structure shown in FIG. 40 is cut along the AA' line in FIG. 40 and viewed. It is a figure conceptually showing an example (viewed from the bottom in the paper of FIG. 40) (each layer is drawn separately to show the layer structure) (examples 1 to 5 of changing the stacking order). FIG. 50 shows an example of the layer structure when the cross section of the layer structure shown in FIG. 40 is cut along the AA' line in FIG. 40 as a modification of the layer structure of FIG. 44 (FIG. 50). It is a figure conceptually showing (viewed from the bottom in 40 papers) (each layer is drawn separately to show a layer structure) (a laser color-developing layer is added on the back surface side). As described above, the stacking order of each layer and element is arbitrary, and other layers and elements such as the laser coloring layer 16A may be further provided with respect to the layer structure of FIG. 44 (in the layer structure of FIG. 44). It is not essential to have all the layers and elements shown).
 図40~図44に示す積層体1の製造方法の一例としては、
(1)オーバーシート層14Aに有色インキを用いた印刷で有色インキ層11A(マーク4A)と近赤外線吸収性インキを用いた印刷で近赤外線吸収性インキ層13A(印刷画像5A)を形成し、基材層9Aに有色インキを用いた印刷で有色インキ層12A(マーク8A)を形成する。
(2)レーザー発色層10Aに開口部領域10AAを切り抜いて形成する。
(3)上記各層に加え、オーバーシート層15Aも用意して、各層を図44に示すとおりの順序で積層し、印刷画像5Aがレーザー発色層10Aの開口部領域10AAと少なくとも一部が重なるように配置し(この場合、近赤外線吸収性インキ層13Aの少なくとも一部が開口部領域10AAに入り込む)、プレス処理により融着する。
(4)得られた積層体のオーバーシート層14A側の表面からレーザー発色層10Aに対してレーザーマーキングを行い、人物画像2Aと人物識別情報3Aを描く。
(5)上記積層体のオーバーシート層14A側の表面から印刷画像5A(近赤外線吸収性インキ層13A)に対してレーザーマーキングを行い、人物画像6Aと人物識別情報7Aを描く。
という方法で積層体1Aを作製することができる。図45~図50の変形例としての層構成で積層体1Aを作製する場合も、積層順序を変更したり、追加のレーザー発色層16Aも積層したりする以外は、基本的に同様の手順で作製することができる。
As an example of the manufacturing method of the laminated body 1 shown in FIGS. 40 to 44,
(1) A colored ink layer 11A (mark 4A) was formed by printing with a colored ink on the oversheet layer 14A, and a near-infrared absorbing ink layer 13A (printed image 5A) was formed by printing with a near-infrared absorbing ink. A colored ink layer 12A (mark 8A) is formed by printing with a colored ink on the base material layer 9A.
(2) The opening region 10AA is cut out and formed in the laser coloring layer 10A.
(3) In addition to the above layers, an oversheet layer 15A is also prepared, and the layers are laminated in the order shown in FIG. 44 so that the printed image 5A overlaps at least a part of the opening region 10AA of the laser coloring layer 10A. (In this case, at least a part of the near-infrared absorbing ink layer 13A enters the opening region 10AA) and is fused by a press treatment.
(4) Laser marking is performed on the laser coloring layer 10A from the surface of the obtained laminate on the oversheet layer 14A side, and a person image 2A and a person identification information 3A are drawn.
(5) Laser marking is performed on the printed image 5A (near-infrared absorbing ink layer 13A) from the surface of the laminated body on the oversheet layer 14A side, and a person image 6A and a person identification information 7A are drawn.
The laminated body 1A can be produced by the above method. When the laminated body 1A is produced with the layer structure as a modification of FIGS. 45 to 50, basically the same procedure is used except that the stacking order is changed and the additional laser coloring layer 16A is also laminated. Can be made.
(真贋判定方法)
 積層体1Aの可視光画像と近赤外線画像とを比較することにより、積層体1Aの真贋判定を行うことができる。具体的には、可視光画像(肉眼で見ることにより得られる像も含む。他の実施形態においても同様。)として認識できる人物画像2A,人物識別情報3A(これらは近赤外線画像としても認識できる。)により特定される人物と、近赤外線画像として認識できる人物画像6A,人物識別情報7Aにより特定される人物とが一致する場合には、当該積層体1Aが身分証明カード等として真正なものであると判定でき、可視光画像として認識できる人物画像2A,人物識別情報3Aにより特定される人物と、近赤外線画像として認識できる人物画像6A,人物識別情報7Aにより特定される人物とが一致しない場合には、当該積層体1Aが身分証明カード等として真正なものではない(偽物である)と判定できる。判定は人が(近)赤外線カメラ等を用いて行ってもよいし、任意の光学分析機器により可視光画像と近赤外線画像とを取得し、任意のデータ転送デバイス等を用いてコンピュータに両画像を取り込んでコンピュータのプロセッサにより画像認識・比較用のプログラム等を実行すること等で両画像を比較、判定することにより行ってもよい(他の実施形態等においても同様)。
(Authentication judgment method)
By comparing the visible light image of the laminated body 1A with the near-infrared image, the authenticity of the laminated body 1A can be determined. Specifically, a person image 2A and a person identification information 3A that can be recognized as a visible light image (including an image obtained by viewing with the naked eye; the same applies to other embodiments) and a person identification information 3A (these can also be recognized as a near-infrared image). If the person specified by) matches the person image 6A that can be recognized as a near-infrared image and the person specified by the person identification information 7A, the laminated body 1A is a genuine identification card or the like. When the person specified by the person image 2A and the person identification information 3A that can be determined to exist and can be recognized as a visible light image does not match the person specified by the person image 6A and the person identification information 7A that can be recognized as a near-infrared image. It can be determined that the laminated body 1A is not genuine (a fake) as an identification card or the like. The judgment may be made by a person using a (near) infrared camera or the like, or a visible light image and a near infrared image are acquired by an arbitrary optical analysis device and both images are transferred to a computer using an arbitrary data transfer device or the like. It may be performed by comparing and judging both images by executing a program for image recognition / comparison or the like by taking in the above and executing a program or the like for image recognition / comparison by a computer processor (the same applies to other embodiments and the like).
 図51は、図41中に示す、近赤外線吸収性インキによる微小表示印刷(オフセット印刷等)画像の一部を拡大した時に見えるマイクロ文字を示す図である(近赤外線画像)。図51に示される、印刷画像5Aの一部17Aの拡大表示からわかるとおり、印刷画像5Aはマイクロ文字18Aを含む(図2中ではマイクロ文字18Aを省略した。以降の図においても、適宜マイクロ文字等、微小な表示は省略する。)。マイクロ文字の代わりに、彩紋、微小記号、レリーフパターン等セキュリティデザインを含んで印刷画像5を印刷してもよく、またこれらを組み合わせて印刷してもよい。複写機等では再現困難なマイクロ文字等の微小表示体(肉眼では視認できない程度の大きさの表示体。マイクロ文字の他、例えば微小な文字、記号、図形であってもよい。なお、ここでいう「マイクロ文字」とは、μm単位の文字(径、幅、又は高さが1mm未満の文字)に限られるわけではなく、径、幅、又は高さが1mm以上の文字を「マイクロ文字」と呼ぶこともある。その他の微小表示体のサイズについても同様。)を含めて印刷(微小表示印刷)することにより、積層体1Aの偽造防止効果を高めることができる。特に、後述のレーザーマーキング(レーザー印字)では再現困難な線幅、文字サイズのマイクロ文字等を含めれば、積層体1Aの偽造防止効果は極めて高くなる。 FIG. 51 is a diagram showing micro characters that can be seen when a part of a micro-display printing (offset printing, etc.) image using near-infrared absorbing ink shown in FIG. 41 is enlarged (near-infrared image). As can be seen from the enlarged display of a part 17A of the printed image 5A shown in FIG. 51, the printed image 5A includes the micro character 18A (the micro character 18A is omitted in FIG. 2). Etc., minute display is omitted.) Instead of the micro characters, the printed image 5 may be printed including a security design such as a colored pattern, a micro symbol, and a relief pattern, or may be printed in combination thereof. Micro characters and other micro-displays that are difficult to reproduce with a copier or the like (displays of a size that cannot be seen with the naked eye. In addition to micro characters, for example, micro characters, symbols, and figures may be used. The term "micro character" is not limited to characters in μm units (characters having a diameter, width, or height of less than 1 mm), and characters having a diameter, width, or height of 1 mm or more are "micro characters". The same applies to the size of other micro-displays.) By printing (micro-display printing), the anti-counterfeiting effect of the laminated body 1A can be enhanced. In particular, if the line width, character size micro characters, and the like that are difficult to reproduce by laser marking (laser printing) described later are included, the anti-counterfeiting effect of the laminated body 1A becomes extremely high.
 図52は、図41中に示す、近赤外線吸収性インキによる印刷画像の一部と、レーザーマーキング(レーザー描画)により生成された人物画像の一部とを拡大した時にそれぞれ見えるマイクロ文字を示す図(近赤外線画像)である。マイクロ文字19Aは、印刷画像5Aの近赤外線吸収性インキを用いた印刷(微小表示印刷)時に形成されたマイクロ文字であり、人物画像6Aをレーザーマーキングした後にも一部残存している。マイクロ文字20Aは、印刷画像5Aの近赤外線吸収性インキを用いた印刷時に形成されたマイクロ文字である。一例において、印刷画像5Aは、マイクロ文字、彩紋、微細記号、レリーフパターン等のうち少なくとも1つ(セキュリティデザイン。なお、マイクロ文字、微細記号等の個々の文字等のサイズは任意であるが、一例においては、最大径、最大幅、又は最大高さを1000μm(マイクロメートル)とすることができる。)により全体が形成されており、したがってレーザーマーキングにより描いた人物画像6A、人物識別情報7A等の絵柄も、近赤外線カメラ等により拡大して見ればセキュリティデザインとなる。このような構成をとることにより、積層体1Aの改ざん及び偽造防止効果を更に向上させることができる。 FIG. 52 is a diagram showing micro characters that can be seen when a part of a printed image by a near-infrared absorbing ink and a part of a person image generated by laser marking (laser drawing) shown in FIG. 41 are enlarged. (Near infrared image). The micro characters 19A are micro characters formed during printing (micro-display printing) of the printed image 5A using the near-infrared absorbing ink, and a part of the micro characters 19A remains even after the person image 6A is laser-marked. The micro characters 20A are micro characters formed during printing of the printed image 5A using the near-infrared absorbing ink. In one example, the printed image 5A has at least one of micro characters, colored patterns, fine symbols, relief patterns, etc. (security design. The size of individual characters such as micro characters, fine symbols, etc. is arbitrary, but In one example, the maximum diameter, maximum width, or maximum height can be 1000 μm (micrometers)) to form the whole, and therefore the person image 6A, person identification information 7A, etc. drawn by laser marking, etc. If you magnify the pattern with a near-infrared camera or the like, it will be a security design. By adopting such a configuration, the effect of preventing falsification and counterfeiting of the laminated body 1A can be further improved.
(第2実施形態)
 図53は、本発明の態様2の第2実施形態における積層体のおもて面の、レーザーマーキング(レーザー印字)により生成されたマイクロ文字を示す図(近赤外線画像)である。図53の積層体1Aの層構造は、第1実施形態と同様(図44~図50参照)であってよく、近赤外線吸収性インキ層13Aに対してレーザーマーキングによりマイクロ文字21Aが書き入れられており、図41のようには人物識別情報7Aがレーザーマーキングされていない点(ただし、マイクロ文字21Aの示す内容は図41中の人物識別情報7Aが示す内容と同内容であってよい。)のみが第1実施形態と異なる。
(Second Embodiment)
FIG. 53 is a diagram (near infrared image) showing micro characters generated by laser marking (laser printing) on the front surface of the laminate according to the second embodiment of the second embodiment of the present invention. The layer structure of the laminated body 1A of FIG. 53 may be the same as that of the first embodiment (see FIGS. 44 to 50), and micro characters 21A are written into the near-infrared absorbing ink layer 13A by laser marking. Only the point where the person identification information 7A is not laser-marked as shown in FIG. 41 (however, the content indicated by the micro character 21A may be the same as the content indicated by the person identification information 7A in FIG. 41). Is different from the first embodiment.
(第3実施形態)
 図54は、本発明の態様2の第3実施形態における積層体のおもて面の、近赤外線画像を示す図である。第1実施形態の積層体1Aとは異なり、有色インキ印刷によるマーク4A(図40参照)と重なるよう、近赤外線吸収性インキを用いた基材層9A上への印刷によりマーク22Aが印刷されている(近赤外線吸収性インキ層13A。ただし、マーク22Aは有色インキと混合した近赤外線吸収性インキを用いて形成してもよい。そのように近赤外線吸収性インキに有色インキ等、他の成分が加えられたインキを用いて形成された層も、ここでは「近赤外線吸収性インキ層」と呼ぶ。他の実施形態においても同様。)。またマーク22A上へのレーザーマーキングにより、人物画像23Aが描かれている。これら以外の点において、第3実施形態における積層体は第1実施形態の積層体と同様であり、層構造も両実施形態において同様であってよい。
(Third Embodiment)
FIG. 54 is a diagram showing a near-infrared image of the front surface of the laminated body according to the third embodiment of the second embodiment of the present invention. Unlike the laminate 1A of the first embodiment, the mark 22A is printed by printing on the base material layer 9A using a near-infrared absorbing ink so as to overlap the mark 4A (see FIG. 40) by printing with colored ink. (Near-infrared absorbing ink layer 13A. However, the mark 22A may be formed by using a near-infrared absorbing ink mixed with a colored ink. As such, the near-infrared absorbing ink may have other components such as a colored ink. The layer formed by using the ink to which is added is also referred to as a "near-infrared absorbing ink layer" here. The same applies to other embodiments). In addition, a person image 23A is drawn by laser marking on the mark 22A. In other respects, the laminate in the third embodiment is the same as the laminate in the first embodiment, and the layer structure may be the same in both embodiments.
(第4実施形態)
 図55は、本発明の態様2の第4実施形態における積層体の、可視光によるおもて面の観察画像(可視光画像)を示す図であり、図56は、本発明の態様2の第4実施形態における積層体の、近赤外線カメラによるおもて面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。また開口部領域の枠(破線)は近赤外線画像としては現れないが、便宜上示している。他の図においても同様。)であり、図57は、本発明の態様2の第4実施形態における積層体の、可視光下による裏面(図55中、AX軸を中心に積層体を回転させることで裏返すことにより見える面。他の実施形態においても同様。)の観察画像(可視光画像)を示す図であり、図58は、本発明の態様2の第4実施形態における積層体の、近赤外線カメラによる裏面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。他の図においても同様。)である。図59は、図55に示す積層体を、図55中のB-B’線で切断したB-B’断面を見たときの層構造の一例(図55の紙面内で、右方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)12Aは、正確にはB-B’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)であり、図60は、図55に示す積層体を、図55中のB-B’線で切断したB-B’断面を見たときの層構造の別の例(図55の紙面内で、右方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)12Aは、正確にはB-B’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)である。
(Fourth Embodiment)
FIG. 55 is a diagram showing an observation image (visible light image) of the front surface of the laminated body according to the fourth embodiment of the second embodiment of the present invention by visible light, and FIG. 56 is a diagram showing an observation image (visible light image) of the front surface of the laminated body of the second embodiment of the present invention. A diagram showing an image (near-infrared image) of the front surface of the laminate according to the fourth embodiment by a near-infrared camera (note that the outer shape of the laminate is drawn for the purpose of making the figure easier to see). The frame (broken line) of the region does not appear as a near-infrared image, but is shown for convenience. The same applies to other figures), and FIG. 57 shows the laminated body according to the fourth embodiment of the second aspect of the present invention. , A diagram showing an observation image (visible light image) of the back surface under visible light (in FIG. 55, a surface that can be seen by turning over the laminated body by rotating it around the AX axis. The same applies to other embodiments). FIG. 58 is a diagram showing an image (near-infrared image) of the back surface of the laminated body according to the fourth embodiment of the second embodiment of the present invention observed by a near-infrared camera (note that the outer shape of the laminated body is for the purpose of making the figure easier to see). Is drawn in. The same applies to other figures.) FIG. 59 shows an example of a layered structure when the cross section of the laminated body shown in FIG. 55 is cut along the line BB'in FIG. 55 and viewed from the right side (in the paper surface of FIG. 55, viewed from the right). The figure (.) Is conceptually shown (each layer is drawn separately to show the layer structure. Further, the colored ink layer (or fluorescent ink layer, hologram layer) 12A on the back surface side is accurately BB. 'Although it is not cut by a line, it is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure.) In FIG. 60, the laminate shown in FIG. 55 is shown in FIG. 55. A diagram (to show the layer structure) conceptually showing another example of the layer structure (viewed from the right in the paper of FIG. 55) when the BB'cross section cut along the BB' line is viewed. Each layer is drawn separately. Further, the colored ink layer (or fluorescent ink layer, hologram layer) 12A on the back surface side is not accurately cut by the BB'line, but the purpose is to make the layer structure easy to understand. It is drawn with. The same applies to other figures showing the layer structure.)
 図40~図50を用いて説明した第1実施形態と異なる点として、図59,図60に示すとおり、第4実施形態の積層体1Aにおいては基材層が第1基材層26Aと第2基材層27Aとから構成されており(材質等は基材層9Aと同様であって良い。また図44等に示す基材層9Aも、複数層のシートで構成されていてもよい。)、第1基材層26Aと第2基材層27Aとの間に(少なくとも一部が)挟まれる層として、基材中間層が設けられている。基材中間層の第1の部分25Aは、第1基材層26Aと第2基材層27Aとの間に位置し、基材中間層の第2の部分24Aは、第1基材層26Aと第2基材層27Aとの間からはみだしている。基材中間層の第2の部分24Aは積層体1Aの端部に位置し、ここを綴じ代(とじしろ)として用い、ミシン綴じによって冊子体を作製することができる。 The difference from the first embodiment described with reference to FIGS. 40 to 50 is that, as shown in FIGS. 59 and 60, in the laminated body 1A of the fourth embodiment, the base material layers are the first base material layer 26A and the first base material layer 26A. It is composed of two base material layers 27A (the material and the like may be the same as the base material layer 9A. Further, the base material layer 9A shown in FIG. 44 and the like may also be composed of a plurality of layers of sheets. ), A base material intermediate layer is provided as a layer (at least a part) sandwiched between the first base material layer 26A and the second base material layer 27A. The first portion 25A of the base material intermediate layer is located between the first base material layer 26A and the second base material layer 27A, and the second portion 24A of the base material intermediate layer is the first base material layer 26A. It protrudes from between the second base material layer 27A and the second base material layer 27A. The second portion 24A of the base material intermediate layer is located at the end of the laminated body 1A, and this can be used as a binding margin to produce a booklet by sewing.
 このような基材中間層は、第1基材層26Aと第2基材層27Aとの間に基材中間層を(少なくとも一部)挟んだうえで熱プレス処理により、第1基材層26Aと第2基材層27Aとに対して融着させることで設けることができる。接着剤を用いて第1基材層26Aと第2基材層27Aとに対して粘着させることで設けることでも良い。基材中間層としては、紙、樹脂、布、不織布等、任意の材料からなるシートを用いることができ、一例としては、国際公開第2018/151238号に記載されているような網状構造を有する織物が挙げられる。 Such a base material intermediate layer is formed by sandwiching (at least a part of) the base material intermediate layer between the first base material layer 26A and the second base material layer 27A and then heat-pressing the first base material layer. It can be provided by fusing to 26A and the second base material layer 27A. It may be provided by adhering the first base material layer 26A and the second base material layer 27A with an adhesive. As the base material intermediate layer, a sheet made of any material such as paper, resin, cloth, and non-woven fabric can be used, and as an example, it has a network structure as described in International Publication No. 2018/151238. Textiles can be mentioned.
 図55~図59に示す積層体1の製造方法の一例としては、
(1)オーバーシート層14Aに有色インキを用いた印刷で有色インキ層11A(マーク4A)と近赤外線吸収性インキを用いた印刷で近赤外線吸収性インキ層13A(印刷画像5A)を形成し、第1基材層26Aに有色インキを用いた印刷で有色インキ層12A(マーク8A)を形成する。
(2)レーザー発色層10Aに開口部領域10AAを切り抜いて形成する。
(3)上記各層に加え、第2基材層27Aと、基材中間層(24A,25A)と、オーバーシート層15Aも用意して、各層を図59に示すとおりの順序で積層し、印刷画像5Aがレーザー発色層10Aの開口部領域10AAと少なくとも一部が重なるように配置し(この場合、近赤外線吸収性インキ層13Aの少なくとも一部が開口部領域10AAに入り込む)、プレス処理により融着する。
(4)得られた積層体のオーバーシート層14A側の表面からレーザー発色層10Aに対してレーザーマーキングを行い、人物画像2Aと人物識別情報3Aを描く。
(5)上記積層体のオーバーシート層14A側の表面から印刷画像5A(近赤外線吸収性インキ層13A)に対してレーザーマーキングを行い、人物画像6Aと人物識別情報7Aを描く。
という方法で積層体1Aを作製することができる。図60の変形例、或いはレーザー発色層16Aを図50と同様に設ける等した変形例としての層構成で積層体1Aを作製する場合も、積層順序を変更したり、追加のレーザー発色層16Aも積層したりする以外は、基本的に同様の手順で作製することができる。
As an example of the manufacturing method of the laminated body 1 shown in FIGS. 55 to 59,
(1) A colored ink layer 11A (mark 4A) was formed by printing with a colored ink on the oversheet layer 14A, and a near-infrared absorbing ink layer 13A (printed image 5A) was formed by printing with a near-infrared absorbing ink. A colored ink layer 12A (mark 8A) is formed by printing with a colored ink on the first base material layer 26A.
(2) The opening region 10AA is cut out and formed in the laser coloring layer 10A.
(3) In addition to the above layers, a second base material layer 27A, a base material intermediate layer (24A, 25A), and an oversheet layer 15A are also prepared, and each layer is laminated in the order shown in FIG. 59 and printed. The image 5A is arranged so as to overlap at least a part of the opening region 10AA of the laser coloring layer 10A (in this case, at least a part of the near-infrared absorbing ink layer 13A enters the opening region 10AA) and is melted by a press process. To wear.
(4) Laser marking is performed on the laser coloring layer 10A from the surface of the obtained laminate on the oversheet layer 14A side, and a person image 2A and a person identification information 3A are drawn.
(5) Laser marking is performed on the printed image 5A (near-infrared absorbing ink layer 13A) from the surface of the laminated body on the oversheet layer 14A side, and a person image 6A and a person identification information 7A are drawn.
The laminated body 1A can be produced by the above method. When the laminated body 1A is produced with a layered structure as a modified example of FIG. 60 or a modified example in which the laser coloring layer 16A is provided in the same manner as in FIG. It can be manufactured by basically the same procedure except for laminating.
 図61は、本発明の態様2の第4実施形態における積層体を用いて作製される冊子体を示す図(可視光画像)であり、図62は、本発明の態様2の第4実施形態における積層体を用いて作製される冊子体を示す図(近赤外線画像)である。積層体1Aをシートとして用い、基材中間層の第2の部分24Aを綴じ代として、他のシート28A,29A,30A等とミシン綴じ等によって綴じることにより冊子体100Aを作製することができる。 FIG. 61 is a diagram (visible light image) showing a booklet produced by using the laminate according to the fourth embodiment of the second embodiment of the present invention, and FIG. 62 is a fourth embodiment of the second embodiment of the present invention. It is a figure (near-infrared image) which shows the booklet body produced by using the laminated body in. A booklet 100A can be produced by using the laminate 1A as a sheet and binding the second portion 24A of the base material intermediate layer with other sheets 28A, 29A, 30A or the like by sewing machine binding or the like.
(真贋判定方法)
 積層体1Aの可視光画像と近赤外線画像とを比較することにより、積層体1Aの真贋判定(冊子体100Aの真贋判定)を行うことができる。具体的には、可視光画像(肉眼で見ることにより得られる像も含む。他の実施形態においても同様。)として認識できる人物画像2A,人物識別情報3A(これらは近赤外線画像としても認識できる。)により特定される人物と、近赤外線画像として認識できる人物画像6A,人物識別情報7Aにより特定される人物とが一致する場合には、当該積層体1A(或いは冊子体100A)が身分証明カード等(冊子体100Aの一例としてはパスポートがある)として真正なものであると判定でき、可視光画像として認識できる人物画像2A,人物識別情報3Aにより特定される人物と、近赤外線画像として認識できる人物画像6A,人物識別情報7Aにより特定される人物とが一致しない場合には、当該積層体1A(或いは冊子体100A)が身分証明カード等(冊子体としてはパスポート等)として真正なものではない(偽物である)と判定できる。
(Authentication judgment method)
By comparing the visible light image of the laminated body 1A with the near-infrared image, the authenticity of the laminated body 1A (the authenticity of the booklet 100A) can be determined. Specifically, a person image 2A and a person identification information 3A that can be recognized as a visible light image (including an image obtained by viewing with the naked eye; the same applies to other embodiments) and a person identification information 3A (these can also be recognized as a near-infrared image). If the person specified by (.) Matches the person image 6A that can be recognized as a near-infrared image and the person specified by the person identification information 7A, the laminated body 1A (or booklet 100A) is the identification card. (There is a passport as an example of the booklet 100A), and it can be determined that it is genuine, and it can be recognized as a near-infrared image with a person image 2A that can be recognized as a visible light image and a person identified by person identification information 3A. If the person specified by the person image 6A and the person identification information 7A does not match, the laminated body 1A (or booklet 100A) is not genuine as an identification card or the like (passport or the like as a booklet). It can be determined that it is a fake.
(第5実施形態)
 図63は、本発明の態様2の第5実施形態における積層体の、近赤外線カメラによるおもて面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。また開口部領域の枠(破線)は近赤外線画像としては現れないが、便宜上示している。他の図においても同様。)である。第1実施形態とは異なり、開口部領域10AAを示す破線が印刷画像5Aを完全に覆っており、図63の面内において開口部領域10AAは印刷画像5Aよりも大きい。それ以外の構成について、第5実施形態の積層体1Aは第1実施形態の積層体1Aと同様のものであってよい。
(Fifth Embodiment)
FIG. 63 is a diagram showing an observation image (near-infrared image) of the front surface of the laminated body according to the fifth embodiment of the second embodiment of the present invention by a near-infrared camera (note that the laminated body is for the purpose of making the figure easier to see. The outer shape is drawn. The frame (broken line) of the opening region does not appear as a near-infrared image, but is shown for convenience. The same applies to other figures). Unlike the first embodiment, the broken line indicating the opening region 10AA completely covers the printed image 5A, and the opening region 10AA is larger than the printed image 5A in the plane of FIG. 63. With respect to other configurations, the laminated body 1A of the fifth embodiment may be the same as the laminated body 1A of the first embodiment.
(第6実施形態)
 図64は、本発明の態様2の第6実施形態における積層体の、近赤外線カメラによるおもて面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。また開口部領域の枠(破線)は近赤外線画像としては現れないが、便宜上示している。他の図においても同様。)である。第1実施形態とは異なり、開口部領域10AAを示す破線は印刷画像5Aに完全に覆われており、図64の面内において開口部領域10AAは印刷画像5Aよりも小さい。それ以外の構成について、第6実施形態の積層体1Aは第1実施形態の積層体1Aと同様のものであってよい。
(Sixth Embodiment)
FIG. 64 is a diagram showing an observation image (near-infrared image) of the front surface of the laminated body according to the sixth embodiment of the second embodiment of the present invention by a near-infrared camera (note that the laminated body is for the purpose of making the figure easier to see. The outer shape is drawn. The frame (broken line) of the opening region does not appear as a near-infrared image, but is shown for convenience. The same applies to other figures). Unlike the first embodiment, the broken line indicating the opening region 10AA is completely covered by the printed image 5A, and the opening region 10AA is smaller than the printed image 5A in the plane of FIG. 64. With respect to other configurations, the laminated body 1A of the sixth embodiment may be the same as the laminated body 1A of the first embodiment.
(第7実施形態)
 図65は、本発明の態様2の第7実施形態における積層体の、近赤外線カメラによるおもて面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。また開口部領域の枠(破線)は近赤外線画像としては現れないが、便宜上示している。他の図においても同様。)であり、図66は、図65に示す積層体を、図65中のB-B’線で切断したB-B’断面を見たときの層構造の一例(図65の紙面内で、右方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)12Aは、正確にはB-B’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)である。図65,図66に示されるとおり、第7実施形態の積層体1Aにおいてはレーザー発色層10Aに2つの開口部領域(開口部領域10AA,10BA)が設けられている。レーザー発色層10Aの一部を切り抜くこと等により設けられる開口部領域の数は任意であり、2以上の開口部領域を設けてもよい。それ以外の構成について、第7実施形態の積層体1Aは第1実施形態の積層体1Aと同様のものであってよい。
(7th Embodiment)
FIG. 65 is a diagram showing an observation image (near-infrared image) of the front surface of the laminated body according to the seventh embodiment of the second embodiment of the present invention by a near-infrared camera (note that the laminated body is for the purpose of making the figure easier to see. The outer shape is drawn. Further, the frame (broken line) of the opening region does not appear as a near-infrared image, but is shown for convenience. The same applies to other figures), and FIG. 66 is shown in FIG. 65. FIG. 6 is a diagram conceptually showing an example of a layered structure (viewed from the right side in the paper surface of FIG. 65) when the BB'cross section of the laminate cut along the BB' line in FIG. 65 is viewed. (Each layer is drawn separately to show the layer structure. Further, the colored ink layer (or fluorescent ink layer, hologram layer) 12A on the back surface side is not exactly cut by the BB'line, but is a layer. It is drawn for the purpose of making the structure easy to understand. The same applies to other figures showing the layered structure.) As shown in FIGS. 65 and 66, in the laminated body 1A of the seventh embodiment, the laser coloring layer 10A is provided with two opening regions (opening regions 10AA and 10BA). The number of opening regions provided by cutting out a part of the laser coloring layer 10A or the like is arbitrary, and two or more opening regions may be provided. With respect to other configurations, the laminated body 1A of the seventh embodiment may be the same as the laminated body 1A of the first embodiment.
(第8実施形態)
 図67は、本発明の態様2の第8実施形態における積層体の、近赤外線カメラによるおもて面の観察画像(近赤外線画像)を示す図(なお、図を見やすくする目的で積層体の外形を描き入れている。また開口部領域の枠(破線)は近赤外線画像としては現れないが、便宜上示している。他の図においても同様。)であり、図68は、図67に示す積層体を、図67中のB-B’線で切断したB-B’断面を見たときの層構造の一例(図67の紙面内で、右方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)12Aは、正確にはB-B’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)である。図67,図68に示されるとおり、第8実施形態の積層体1Aにおいては近赤外線吸収性インキによる印刷画像として2つの印刷画像(印刷画像5AA,5BA)が設けられている(近赤外線吸収性インキ層13AA,13BA。近赤外線吸収性インキ層13AA,13BAの成分等については、近赤外線吸収性インキ層13Aと同様であってよい。)。近赤外線吸収性インキによる印刷画像の数は任意であり、2以上の印刷画像を設けてもよい。それ以外の構成について、第8実施形態の積層体1Aは第1実施形態の積層体1Aと同様のものであってよい(開口部領域を2以上設け、且つ近赤外線吸収性インキによる印刷画像を2以上設けてもよい)。
(8th Embodiment)
FIG. 67 is a diagram showing an observation image (near-infrared image) of the front surface of the laminated body according to the eighth embodiment of the second embodiment of the present invention by a near-infrared camera (note that the laminated body is for the purpose of making the figure easier to see. The outer shape is drawn. Further, the frame (broken line) of the opening region does not appear as a near-infrared image, but is shown for convenience. The same applies to other figures), and FIG. 68 is shown in FIG. 67. FIG. 6 is a diagram conceptually showing an example of a layered structure (viewed from the right side in the paper surface of FIG. 67) when the BB'cross section of the laminate cut along the BB' line in FIG. 67 is viewed. (Each layer is drawn separately to show the layer structure. Further, the colored ink layer (or fluorescent ink layer, hologram layer) 12A on the back surface side is not exactly cut by the BB'line, but is a layer. It is drawn for the purpose of making the structure easy to understand. The same applies to other figures showing the layered structure.) As shown in FIGS. 67 and 68, in the laminate 1A of the eighth embodiment, two printed images (printed images 5AA, 5BA) are provided as printed images using the near-infrared absorbing ink (near-infrared absorbing). Ink layers 13AA, 13BA. The components of the near-infrared absorbing ink layers 13AA, 13BA may be the same as those of the near-infrared absorbing ink layer 13A). The number of printed images printed by the near-infrared absorbing ink is arbitrary, and two or more printed images may be provided. With respect to other configurations, the laminated body 1A of the eighth embodiment may be the same as the laminated body 1A of the first embodiment (providing two or more opening regions and displaying a printed image with a near-infrared absorbing ink). Two or more may be provided).
(第9実施形態)
 図69は、本発明の態様2の第9実施形態における積層体の、可視光によるおもて面の観察画像(可視光画像)を示す図(レンチキュラーレンズは透明だが図を見やすくする目的で描いている。)である。図70は、図69に示す積層体を、後述の図73中の矢印Cの方向で見たときのおもて面の近赤外線画像を示す図であり、図71は、図69に示す積層体を、後述の図73中の矢印Dの方向で見たときのおもて面の近赤外線画像を示す図である。図72は、図69に示す積層体を、図69中のA-A’線で切断したA-A’断面を見たときの層構造の一例(図69の紙面内で、下方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、おもて面側の有色インキ層(又は蛍光インキ層、ホログラム層)11A、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)12Aは、正確にはA-A’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)である。図40等に示す第1実施形態とは異なり、オーバーシート層14Aにおける近赤外線吸収性インキ層13Aとは逆側の面の、近赤外線吸収性インキ層13Aと少なくとも一部重なる区域(図72では完全に重なっているが、一部のみ重なっていてもよい。)にはレンチキュラーレンズ31Aが形成されている。図72の層構造は、レンチキュラーレンズ31Aが形成されている以外は図44等の層構造と同様であってよい。
(9th Embodiment)
FIG. 69 is a diagram showing an observation image (visible light image) of the front surface of the laminate according to the ninth embodiment of the second embodiment of the present invention (the lenticular lens is transparent, but the figure is easy to see). It is.). FIG. 70 is a diagram showing a near-infrared image of the front surface when the laminate shown in FIG. 69 is viewed in the direction of arrow C in FIG. 73, which will be described later, and FIG. 71 is a diagram showing a laminate shown in FIG. 69. It is a figure which shows the near-infrared image of the front surface when the body is seen in the direction of the arrow D in FIG. 73 which will be described later. FIG. 72 is an example of a layered structure when the cross section of AA ′ obtained by cutting the laminate shown in FIG. 69 along the AA ′ line in FIG. 69 is viewed (viewed from below in the paper surface of FIG. 69). ) Is conceptually shown (each layer is drawn separately to show the layer structure. Also, the colored ink layer (or fluorescent ink layer, hologram layer) 11A on the front surface side and the colored ink layer on the back surface side are drawn. The ink layer (or fluorescent ink layer, hologram layer) 12A is not cut exactly by the AA'line, but is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure. ). Unlike the first embodiment shown in FIG. 40 and the like, the area of the oversheet layer 14A opposite to the near-infrared absorbing ink layer 13A and at least partially overlapping the near-infrared absorbing ink layer 13A (in FIG. 72). A lenticular lens 31A is formed on the lens (which is completely overlapped but may be partially overlapped). The layer structure of FIG. 72 may be the same as the layer structure of FIG. 44 or the like except that the lenticular lens 31A is formed.
 図73は、図69に示す積層体を、図69中のB-B’線で切断したB-B’断面を見たときの層構造の一例(図69の紙面内で、右方向から見る。)を概念的に示す図(層構造を示すために各層を分離して描いている。また、裏面側の有色インキ層(又は蛍光インキ層、ホログラム層)12Aは、正確にはB-B’線により切断されないが、層構造を分かり易くする目的で描いている。層構造を示す他の図においても同じ。)である。複数の凸状光学要素部分の一例としてのレンチキュラーレンズ31Aは、図73に示すとおりの方向から見たとき、複数の凸レンズ部分が(図69の紙面内で、上下方向(B-B’線)に沿って)並んでいるように見える形状を有している。図73中では7の凸状レンズ部分が並んで描かれているが、これはレンチキュラーレンズの構造を単純化して説明するための便宜上の表示であり、一例においては、より多くの、例えば100個程度の凸状レンズ部分を含むよう、レンチキュラーレンズ31Aを形成することができる。或いは、凸状レンズ部分の数をより少なくしてもよく、一般には任意の複数個の凸状レンズ部分を含むようレンチキュラーレンズ31Aを形成することができる。なお、レンチキュラーレンズ31Aをオーバーシート層14A上に形成する方法としては、既に作製されているレンチキュラーレンズをオーバーシート層14A上に接着剤等で接着させてもよいし、或いは、レンチキュラーレンズ31Aとして機能する形状を有するよう、オーバーシート層14Aを熱と圧力により形成してもよいし、オーバーシート層14A上にレンチキュラーレンズ基材を印刷方式により形成し、UV硬化等の方法により固定させてもよい。 FIG. 73 is an example of a layered structure when the cross section of the laminated body shown in FIG. 69 is cut along the line BB'in FIG. 69 and viewed from the right side (in the paper surface of FIG. 69, viewed from the right). The figure (.) Is conceptually shown (each layer is drawn separately to show the layer structure. Further, the colored ink layer (or fluorescent ink layer, hologram layer) 12A on the back surface side is accurately BB. 'It is not cut by a line, but it is drawn for the purpose of making the layer structure easy to understand. The same applies to other figures showing the layer structure.) The lenticular lens 31A as an example of the plurality of convex optical element portions has the plurality of convex lens portions (in the paper surface of FIG. 69, in the vertical direction (BB'line)) when viewed from the direction shown in FIG. 73. It has a shape that appears to be lined up (along). In FIG. 73, the convex lens portions of 7 are drawn side by side, but this is a convenient display for simplifying and explaining the structure of the lenticular lens, and in one example, more, for example, 100 lenses. The lenticular lens 31A can be formed to include a degree of convex lens portion. Alternatively, the number of convex lens portions may be reduced, and the lenticular lens 31A can generally be formed so as to include any plurality of convex lens portions. As a method of forming the lenticular lens 31A on the oversheet layer 14A, the already produced lenticular lens may be adhered to the oversheet layer 14A with an adhesive or the like, or the lenticular lens 31A functions as a lenticular lens 31A. The oversheet layer 14A may be formed by heat and pressure so as to have a shape to be formed, or a lenticular lens base material may be formed on the oversheet layer 14A by a printing method and fixed by a method such as UV curing. ..
 近赤外線吸収性インキ層13Aにレーザーマーキングにより描かれた絵柄、文字等の表示を、近赤外線カメラ等を用いて見る場合、どの方向から見るかに応じて異なった表示(近赤外線画像)を見ることができる。図73中、矢印Cの方向で見たときには図70に示す近赤外線画像を見ることができ、図73中、矢印Dの方向で見たときには図71に示す近赤外線画像を見ることができる。図73の例においては、レンチキュラーレンズ31Aと重なるよう、基材層9A上に近赤外線吸収性インキを用いて印刷画像5Aが印刷されており(近赤外線吸収性インキ層13A)、図73中の矢印Cの方向(角度)で近赤外レーザー光を照射するレーザーマーキングにより、図70に示す人物画像6Aが近赤外線吸収性インキ層13Aに描かれるとともに、図73中の矢印Dの方向(角度)で近赤外レーザー光を照射するレーザーマーキングにより、図71に示す人物識別情報7Aが近赤外線吸収性インキ層13Aに描かれており、図73中、矢印Cの方向から近赤外線吸収性インキ層13Aを、近赤外線カメラ等を用いて見ることで人物画像6Aを認識することができるとともに、図73中、矢印Dの方向から近赤外線吸収性インキ層13Aを、近赤外線カメラ等を用いて見ることで人物識別情報7Aを認識することができる。すなわち、観測角度を変えることで潜在絵柄を視認できるのであり、近赤外線吸収のMLI(Multiple Laser Image)が実現される。 When viewing the display of patterns, characters, etc. drawn by laser marking on the near-infrared absorbing ink layer 13A using a near-infrared camera or the like, a different display (near-infrared image) is viewed depending on the direction of viewing. be able to. In FIG. 73, the near-infrared image shown in FIG. 70 can be seen when viewed in the direction of arrow C, and the near-infrared image shown in FIG. 71 can be seen when viewed in the direction of arrow D in FIG. 73. In the example of FIG. 73, a printed image 5A is printed on the base material layer 9A using the near-infrared absorbing ink (near-infrared absorbing ink layer 13A) so as to overlap the lenticular lens 31A. By laser marking that irradiates near-infrared laser light in the direction (angle) of arrow C, the person image 6A shown in FIG. 70 is drawn on the near-infrared absorbing ink layer 13A, and the direction (angle) of arrow D in FIG. 73. The person identification information 7A shown in FIG. 71 is drawn on the near-infrared absorbing ink layer 13A by the laser marking that irradiates the near-infrared laser light with). A person image 6A can be recognized by viewing the layer 13A using a near-infrared camera or the like, and the near-infrared absorbing ink layer 13A is viewed from the direction of arrow D in FIG. 73 using a near-infrared camera or the like. The person identification information 7A can be recognized by looking at it. That is, the latent pattern can be visually recognized by changing the observation angle, and MLI (Multiple Laser Image) of near-infrared absorption is realized.
 図74は、レンチキュラーの原理を概念的に説明する図である(図69~図73を用いて説明した具体的構成と一致する必要はない)。第1の位置P1から、赤外線カメラ等によりレンチキュラーレンズ31Aを通して近赤外線吸収性インキ層13Aを見ると、複数の印字部IM1に描かれた各々の絵柄等が合成されて、人物画像6Aのような第1の表示(絵柄)を認識することができる。第2の位置P2から、赤外線カメラ等によりレンチキュラーレンズ31Aを通して近赤外線吸収性インキ層13Aを見ると、複数の印字部IM2に描かれた各々の絵柄等が合成されて、人物識別情報7Aのような第2の表示(文字)を認識することができる。 FIG. 74 is a diagram conceptually explaining the principle of lenticular (it does not have to be consistent with the specific configuration described with reference to FIGS. 69 to 73). When the near-infrared absorbing ink layer 13A is viewed from the first position P1 through the lenticular lens 31A with an infrared camera or the like, each pattern or the like drawn on the plurality of printing units IM1 is combined to form a person image 6A. The first display (picture) can be recognized. When the near-infrared absorbing ink layer 13A is viewed from the second position P2 through the lenticular lens 31A with an infrared camera or the like, each pattern or the like drawn on the plurality of printing units IM2 is synthesized, and looks like the person identification information 7A. Second display (character) can be recognized.
 図69~図73に示す積層体1の製造方法の一例としては、
(1)オーバーシート層14Aに有色インキを用いた印刷で有色インキ層11A(マーク4A)と近赤外線吸収性インキを用いた印刷で近赤外線吸収性インキ層13A(印刷画像5A)を形成し、基材層9Aに有色インキを用いた印刷で有色インキ層12A(マーク8A)を形成する。
(2)レーザー発色層10Aに開口部領域10AAを切り抜いて形成する。
(3)上記各層に加え、オーバーシート層15Aも用意して、各層を図72,図73に示すとおりの順序で積層し、印刷画像5Aがレーザー発色層10Aの開口部領域10AAと少なくとも一部が重なるように配置し(この場合、近赤外線吸収性インキ層13Aの少なくとも一部が開口部領域10AAに入り込む)、レンチキュラーレンズを形成できる凹凸のあるプレス板を用いて熱プレス処理により融着し、レンチキュラーレンズ31Aを形成しつつプレス処理により融着する。
(4)得られた積層体のオーバーシート層14A側の表面から、図73中の矢印Cの方向(角度)で近赤外レーザー光を照射するレーザーマーキングにより、人物画像6Aを近赤外線吸収性インキ層13Aに描き、図73中の矢印Dの方向(角度)で近赤外レーザー光を照射するレーザーマーキングにより、人物識別情報7Aを近赤外線吸収性インキ層13Aに描く。
という方法で積層体1Aを作製することができる。図45~図50のような変形例としての層構成で積層体1Aを作製する場合も、積層順序を変更したり、追加のレーザー発色層16Aも積層したりする以外は、基本的に同様の手順で作製することができる。
As an example of the manufacturing method of the laminated body 1 shown in FIGS. 69 to 73,
(1) A colored ink layer 11A (mark 4A) was formed by printing with a colored ink on the oversheet layer 14A, and a near-infrared absorbing ink layer 13A (printed image 5A) was formed by printing with a near-infrared absorbing ink. A colored ink layer 12A (mark 8A) is formed by printing with a colored ink on the base material layer 9A.
(2) The opening region 10AA is cut out and formed in the laser coloring layer 10A.
(3) In addition to the above layers, an oversheet layer 15A is also prepared, and the layers are laminated in the order shown in FIGS. 72 and 73, and the printed image 5A is at least a part of the opening region 10AA of the laser coloring layer 10A. (In this case, at least a part of the near-infrared absorbing ink layer 13A enters the opening region 10AA) and fused by hot pressing using an uneven press plate capable of forming a lenticular lens. , While forming the lenticular lens 31A, they are fused by a press process.
(4) By laser marking that irradiates near-infrared laser light in the direction (angle) of arrow C in FIG. 73 from the surface of the obtained laminate on the oversheet layer 14A side, the person image 6A absorbs near-infrared rays. Person identification information 7A is drawn on the near-infrared absorbing ink layer 13A by laser marking that draws on the ink layer 13A and irradiates the near-infrared laser light in the direction (angle) of the arrow D in FIG. 73.
The laminated body 1A can be produced by the above method. When the laminated body 1A is produced with the layer structure as a modification as shown in FIGS. 45 to 50, it is basically the same except that the stacking order is changed and the additional laser coloring layer 16A is also laminated. It can be produced by the procedure.
(真贋判定方法)
 積層体1Aの可視光画像と近赤外線画像とを比較することにより、積層体1Aの真贋判定を行うことができる。具体的には、可視光画像(肉眼で見ることにより得られる像も含む。他の実施形態においても同様。)として認識できる人物画像2A,人物識別情報3A(これらは近赤外線画像としても認識できる。)により特定される人物と、近赤外線画像として認識できる人物画像6A,人物識別情報7Aにより特定される人物とが一致する場合には、当該積層体1Aが身分証明カード等として真正なものであると判定でき、可視光画像として認識できる人物画像2A,人物識別情報3Aにより特定される人物と、近赤外線画像として認識できる人物画像6A,人物識別情報7Aにより特定される人物とが一致しない場合には、当該積層体1Aが身分証明カード等として真正なものではない(偽物である)と判定できる。
(Authentication judgment method)
By comparing the visible light image of the laminated body 1A with the near-infrared image, the authenticity of the laminated body 1A can be determined. Specifically, a person image 2A and a person identification information 3A that can be recognized as a visible light image (including an image obtained by viewing with the naked eye; the same applies to other embodiments) and a person identification information 3A (these can also be recognized as a near-infrared image). If the person specified by) matches the person image 6A that can be recognized as a near-infrared image and the person specified by the person identification information 7A, the laminated body 1A is a genuine identification card or the like. When the person specified by the person image 2A and the person identification information 3A that can be determined to exist and can be recognized as a visible light image does not match the person specified by the person image 6A and the person identification information 7A that can be recognized as a near-infrared image. It can be determined that the laminated body 1A is not genuine (a fake) as an identification card or the like.
 図75は、これまでに説明したレーザーマーキング(描画、印字等)を行うためのレーザーマーカー装置の構成を概略的に示す図である。レーザーマーカー装置32Aは、制御部33A,記憶部34A,駆動(走査)部35A,レーザー光照射部36A等を備える。駆動部35Aによりレーザー光照射部36Aのヘッドが駆動されつつ、ヘッドから近赤外線吸収層へと、或いはレーザー発色層へと近赤外レーザー光が照射されることにより、近赤外線吸収層(近赤外線吸収性インキ層13A,13AA,13BA)に対する、或いはレーザー発色層10A(レーザー発色層16Aでもよい)に対する上述のレーザーマーキングが行われる。このようなレーザーマーカー装置32Aの動作においては、CPU、或いは組み込み式の制御回路等、各種の制御回路等を備えた制御部33A(レーザーマーカー装置32Aの外部にある別個のコンピュータが制御部33Aとして機能することもできる。)により制御された、モーター等を備える駆動装置である駆動部35Aが、既に説明したとおり近赤外線吸収性インキ層13A,13AA,13BA、或いはレーザー発色層10A,16Aに向けてレーザー光照射部36Aのヘッドを駆動しつつ(ヘッドを動かす(走査する))、レーザー光照射部36A(一例においては、レーザー波長:1064nmのレーザー光を発生させる装置であるNd:YAGレーザーを備え、ヘッド等、レーザー光を目標に照射するための各種機器を備えるレーザー光照射装置。)がヘッドから近赤外線吸収層、或いはレーザー発色層に向けて近赤外レーザー光(近赤外レーザービームであってよい)を照射する。なお、半導体メモリ、磁気ディスク等の記憶装置を備える記憶部34Aには、レーザーマーキングで描くべき文字、画像等、レーザーマーカー装置32Aの動作を制御するために制御部33Aが適宜読み出して用いるための各種データが記憶されており、レーザーマーカー装置32Aは、その記憶部34Aに記憶された文字、画像等を近赤外線吸収層又はレーザー発色層に描く。レーザーマーカー装置としては公知のものが多数存在するため、ここではこれ以上詳しく説明しない。 FIG. 75 is a diagram schematically showing the configuration of a laser marker device for performing laser marking (drawing, printing, etc.) described so far. The laser marker device 32A includes a control unit 33A, a storage unit 34A, a drive (scanning) unit 35A, a laser light irradiation unit 36A, and the like. While the head of the laser light irradiation unit 36A is driven by the drive unit 35A, the near-infrared ray absorbing layer (near-infrared ray) is irradiated from the head to the near-infrared absorbing layer or the laser coloring layer. The above-mentioned laser marking is performed on the absorbent ink layers 13A, 13AA, 13BA) or on the laser coloring layer 10A (which may be the laser coloring layer 16A). In the operation of such a laser marker device 32A, a control unit 33A provided with various control circuits such as a CPU or an embedded control circuit (a separate computer outside the laser marker device 32A serves as the control unit 33A). The drive unit 35A, which is a drive device provided with a motor or the like and is controlled by (can also function), is directed toward the near-infrared absorbing ink layers 13A, 13AA, 13BA, or the laser coloring layers 10A, 16A as described above. While driving the head of the laser light irradiation unit 36A (moving (scanning) the head), the laser light irradiation unit 36A (in one example, the Nd: YAG laser, which is a device for generating laser light having a laser wavelength of 1064 nm) is used. A laser light irradiator equipped with various devices such as a head for irradiating a laser beam as a target.) Near-infrared laser light (near-infrared laser beam) from the head toward the near-infrared absorbing layer or the laser coloring layer. Can be). The storage unit 34A including a storage device such as a semiconductor memory or a magnetic disk is for the control unit 33A to appropriately read and use characters, images, etc. to be drawn by laser marking in order to control the operation of the laser marker device 32A. Various data are stored, and the laser marker device 32A draws characters, images, etc. stored in the storage unit 34A on the near-infrared absorbing layer or the laser coloring layer. Since there are many known laser marker devices, they will not be described in more detail here.
(近赤外線吸収性インキの実施例)
 以下、本発明の態様2に用いることのできる近赤外線吸収性インキとしてセシウム酸化タングステン含有インキ、及び6ホウ化ランタン含有インキを用いて作製したさまざまな積層体(オフセット印刷物)における実験結果を、比較例として酸化イッテルビウム含有インキを用いて作製したオフセット印刷物における実験結果と比較しつつ説明する。
(Example of near-infrared absorbing ink)
Hereinafter, the experimental results of various laminates (offset printed matter) prepared by using the cesium oxide-containing tungsten oxide ink and the 6-borinated lanthanum-containing ink as the near-infrared absorbing ink that can be used in the second aspect of the present invention are compared. As an example, it will be described by comparing with the experimental results in an offset printed matter produced by using an ink containing itterbium oxide.
(比較例1)
 酸化イッテルビウム(III),3N5粉末と、モノマーや合成樹脂、その他の非赤外線吸収材料を含むインキメジウムとを、酸化イッテルビウムとインキメジウムとの重量比が25:75となるよう混合することにより、酸化イッテルビウムの含有率が25重量%であるインキを作製した。このようにして作製した酸化イッテルビウム含有インキを用いて、基材である上質紙の一部の区域に、オフセット印刷機(オフセット用印刷適性試験機IGT C1(IGT Testing Systems製))により印刷を行った。得られた印刷物を比較例1の積層体とし、赤外線可視化装置であるVSC8000(Foster and Freeman製)により、当該装置のカメラレンズに925nm以下の波長の光をカットするフィルターを付けた状態で撮影した。
(Comparative Example 1)
Oxidation by mixing ytterbium oxide (III), 3N5 powder and ink medium containing monomer, synthetic resin, and other non-infrared absorbing materials so that the weight ratio of ytterbium oxide and ink medium is 25:75. An ink having an Itterbium content of 25% by weight was prepared. Using the itterbium oxide-containing ink thus produced, printing is performed on a part of the wood-free paper as the base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). rice field. The obtained printed matter was used as a laminate of Comparative Example 1, and was photographed by an infrared visualization device VSC8000 (manufactured by Forester and Freeman) with a filter for cutting light having a wavelength of 925 nm or less attached to the camera lens of the device. ..
(実施例1)
 セシウム酸化タングステンCs0.33WO3を含有する分散液と、モノマーや合成樹脂、その他の非赤外線吸収材料を含む比較例1と同様のインキメジウムとを、セシウム酸化タングステンとそれ以外の全成分との重量比が2:98となるよう混合することにより、セシウム酸化タングステンの含有率が2重量%であるインキを作製した。このようにして作製したセシウム酸化タングステン含有インキを用いて、基材である上質紙の一部の区域に、オフセット印刷機(オフセット用印刷適性試験機IGT C1(IGT Testing Systems製))により印刷を行った。得られた印刷物を実施例1の積層体とし、赤外線可視化装置であるVSC8000(Foster and Freeman製)により、当該装置のカメラレンズに925nm以下の波長の光をカットするフィルターを付けた状態で撮影した。
(Example 1)
A dispersion containing tungsten cesium oxide Cs 0.33 WO 3 and an ink medium similar to Comparative Example 1 containing a monomer, a synthetic resin, and other non-infrared absorbing materials, and the weight of tungsten cesium oxide and all other components. By mixing so that the ratio was 2:98, an ink having a content of tungsten cesium oxide of 2% by weight was prepared. Using the cesium tungsten oxide-containing ink thus produced, printing is performed on a part of the wood-free paper as the base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). gone. The obtained printed matter was used as the laminate of Example 1, and was photographed by an infrared visualization device VSC8000 (manufactured by Forester and Freeman) with a filter for cutting light having a wavelength of 925 nm or less attached to the camera lens of the device. ..
 比較例1と実施例1とにおいて作製した酸化イッテルビウム含有インキとセシウム酸化タングステン含有インキとを上記赤外線カメラによりそれぞれ撮影した赤外線写真と、それぞれのインキを用いて上述のとおりオフセット印刷したそれぞれの印刷物を上記赤外線カメラにより撮影した赤外線写真とを、図33に示す。それぞれインキの写真から、酸化イッテルビウム含有インキとセシウム酸化タングステン含有インキとが、ともに近赤外線吸収性を示すことが理解できるが、酸化イッテルビウム含有インキをオフセット印刷した印刷物において近赤外線吸収性を視認することはできなかった。一方、含有量が少ないセシウム酸化タングステン含有インキをオフセット印刷した印刷物においては、印刷しなかった区域と印刷した区域との間に明暗の差を視認することができ、印刷した区域が近赤外線吸収性を有することが認められた。 Infrared photographs of the itterbium oxide-containing ink and the cesium tungsten oxide-containing ink produced in Comparative Example 1 and Example 1 were taken by the infrared camera, and the printed matter was offset-printed as described above using the respective inks. An infrared photograph taken by the infrared camera is shown in FIG. 33. It can be understood from the photographs of the inks that both the itterbium oxide-containing ink and the cesium tungsten oxide-containing ink exhibit near-infrared absorption. I couldn't. On the other hand, in a printed matter in which an ink containing cesium oxide-containing ink having a low content is offset-printed, the difference in brightness between the unprinted area and the printed area can be visually recognized, and the printed area absorbs near infrared rays. Was found to have.
 以上の実験結果を以下の表にまとめる。
Figure JPOXMLDOC01-appb-T000006
The above experimental results are summarized in the table below.
Figure JPOXMLDOC01-appb-T000006
 なお、上記表中、「膜厚」とはオフセット印刷により形成された酸化イッテルビウム含有インキ層、又はセシウム酸化タングステン含有インキ層の膜厚であるが、これらは測定された値ではなく、オフセット印刷において形成される典型的な膜厚を仮定した参考値である。後述の各実施例におけるオフセット印刷において形成される膜厚も、約1μm~約3μmであると推定される。なお、本明細書中の態様2の全ての実施例に関して印刷濃度などの条件は同様とした状態で実験を行っており、理論上、膜厚は同様であると考えられる。また、実施例1における「赤外線吸収率」とはJASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した反射率(照射した光が印刷物の表面で反射されるときの反射光の強度の割合であり、基準となる基材表面(基準部分)からの反射光の強度に対する対象印刷物表面からの反射光の強度の比である。)を用いて得られた値である(吸収率(%)=100-反射率(%))。 In the above table, the "thickness" is the thickness of the itterbium oxide-containing ink layer or the cesium tungsten oxide-containing ink layer formed by offset printing, but these are not measured values and are used in offset printing. It is a reference value assuming a typical film thickness to be formed. The film thickness formed by offset printing in each of the examples described later is also estimated to be about 1 μm to about 3 μm. It should be noted that the experiments were conducted under the same conditions such as the print density for all the examples of the second aspect in the present specification, and it is considered that the film thickness is theoretically the same. The "infrared absorptivity" in Example 1 is the reflectance measured using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by Nippon Spectral Co., Ltd.) (irradiated light is reflected on the surface of the printed matter. It is the ratio of the intensity of the reflected light at that time, and is the ratio of the intensity of the reflected light from the surface of the target printed matter to the intensity of the reflected light from the reference base material surface (reference portion)). Value (absorption rate (%) = 100-reflectivity (%)).
 次に、さまざまな基材シート上にセシウム酸化タングステン(Cs0.33WO3)含有量(含有率)が2重量%の近赤外線吸収性インキを用いてオフセット印刷を行い、作製されたそれぞれの印刷物に対してレーザーマーカー装置によりレーザー印字を行い、印字された部分と印字されていない部分とにおける可視光~近赤外線の波長域における電磁波の反射率をそれぞれ測定した。なお、以下の実施例における「反射率」とは、実施例1と同様に、照射した光が印刷物の表面で反射されるときの反射光の強度の割合であり、基準となる基材表面(基準部分)からの反射光の強度に対する対象印刷物表面からの反射光の強度の比である(JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いた測定により得られた値である。)。
 上述の実施例1、及び以下の実施例2~11における「反射率」を、以下の式で一般的に定義することができる。
 対象部分(対象面)の反射率(%)={(対象部分(対象面)からの反射光の強度)/(基準部分(基準面)からの反射光の強度)}×100
Next, offset printing was performed on various base sheets using a near-infrared absorbing ink having a cesium tungsten oxide (Cs 0.33 WO 3 ) content (content rate) of 2% by weight, and each printed matter produced was printed. On the other hand, laser printing was performed by a laser marker device, and the reflectance of electromagnetic waves in the visible light to near-infrared wavelength range in the printed portion and the non-printed portion was measured. Note that the "reflectivity" in the following examples is the ratio of the intensity of the reflected light when the irradiated light is reflected on the surface of the printed matter, as in the case of the first embodiment, and is a reference base material surface (? It is the ratio of the intensity of the reflected light from the surface of the target printed matter to the intensity of the reflected light from the reference part). Value.).
The "reflectance" in Example 1 described above and Examples 2 to 11 below can be generally defined by the following equation.
Reflectance (%) of the target portion (target surface) = {(intensity of reflected light from the target portion (target surface)) / (intensity of reflected light from the reference portion (reference surface))} × 100
(実施例2)
 セシウム酸化タングステンCs0.33WO3を含有する分散液と、モノマー、合成樹脂類、助剤などとを、セシウム酸化タングステンとそれ以外の全成分との重量比が2:98となるよう混合することにより、セシウム酸化タングステンの含有率が2重量%であるインキを作製した。このようにして作製したセシウム酸化タングステン含有インキを用いて、基材であるPC(ポリカーボネート)シートに、オフセット印刷機(オフセット用印刷適性試験機IGT C1(IGT Testing Systems製))により印刷を行った。得られた印刷物を実施例2の積層体とし、レーザー印字前の印刷面の、波長400nm~2000nmにおける可視光~近赤外線の反射率を、JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した。さらに、レーザーマーカー装置として、
Figure JPOXMLDOC01-appb-I000007
を用い、波長1064nmのNd:YAGレーザーによるレーザー光によって上記印刷面にレーザー印字を行った。 レーザー印字された部分の、波長400nm~2000nmにおける可視光~近赤外線の反射率を、JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した。
(Example 2)
By mixing the dispersion liquid containing tungsten cesium oxide Cs 0.33 WO 3 with monomers, synthetic resins, auxiliaries, etc. so that the weight ratio of tungsten cesium oxide and all other components is 2:98. , An ink having a cesium tungsten oxide content of 2% by weight was prepared. Using the cesium tungsten oxide-containing ink thus produced, printing was performed on a PC (polycarbonate) sheet as a base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). .. Using the obtained printed matter as the laminate of Example 2, the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm on the printed surface before laser printing was measured by the JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (Japan). It was measured using (manufactured by Spectroscopy Co., Ltd.). Furthermore, as a laser marker device,
Figure JPOXMLDOC01-appb-I000007
Was used to perform laser printing on the printed surface with laser light from an Nd: YAG laser having a wavelength of 1064 nm. The reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm of the laser-printed portion was measured using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation).
(実施例3)
 セシウム酸化タングステンCs0.33WO3を含有する分散液と、モノマー、合成樹脂類、助剤などとを、セシウム酸化タングステンとそれ以外の全成分との重量比が2:98となるよう混合することにより、セシウム酸化タングステンの含有率が2重量%であるインキを作製した。このようにして作製したセシウム酸化タングステン含有インキを用いて、基材であるPET-G(コポリエステル)シートに、オフセット印刷機(オフセット用印刷適性試験機IGT C1(IGT Testing Systems製))により印刷を行った。得られた印刷物を実施例3の積層体とし、レーザー印字前の印刷面の、波長400nm~2000nmにおける可視光~近赤外線の反射率を、JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した。さらに、レーザーマーカー装置として、
Figure JPOXMLDOC01-appb-I000008
を用い、波長1064nmのNd:YAGレーザーによるレーザー光によって上記印刷面にレーザー印字を行った。 レーザー印字された部分の、波長400nm~2000nmにおける可視光~近赤外線の反射率を、JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した。
(Example 3)
By mixing the dispersion liquid containing tungsten cesium oxide Cs 0.33 WO 3 with monomers, synthetic resins, auxiliaries, etc. so that the weight ratio of tungsten cesium oxide and all other components is 2:98. , An ink having a cesium tungsten oxide content of 2% by weight was prepared. Using the cesium tungsten oxide-containing ink thus produced, printing is performed on a PET-G (copolyester) sheet as a base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). Was done. Using the obtained printed matter as the laminate of Example 3, the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm on the printed surface before laser printing was measured by the JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (Japan). It was measured using (manufactured by Spectroscopy Co., Ltd.). Furthermore, as a laser marker device,
Figure JPOXMLDOC01-appb-I000008
Was used to perform laser printing on the printed surface with laser light from an Nd: YAG laser having a wavelength of 1064 nm. The reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm of the laser-printed portion was measured using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation).
(実施例4)
 セシウム酸化タングステンCs0.33WO3を含有する分散液と、モノマー、合成樹脂類、助剤などとを、セシウム酸化タングステンとそれ以外の全成分との重量比が2:98となるよう混合することにより、セシウム酸化タングステンの含有率が2重量%であるインキを作製した。このようにして作製したセシウム酸化タングステン含有インキを用いて、基材であるPVC(ポリ塩化ビニル)シートに、オフセット印刷機(オフセット用印刷適性試験機IGT C1(IGT Testing Systems製))により印刷を行った。得られた印刷物を実施例4の積層体とし、レーザー印字前の印刷面の、波長400nm~2000nmにおける可視光~近赤外線の反射率を、JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した。さらに、レーザーマーカー装置として、
Figure JPOXMLDOC01-appb-I000009
を用い、波長1064nmのNd:YAGレーザーによるレーザー光によって上記印刷面にレーザー印字を行った。 レーザー印字された部分の、波長400nm~2000nmにおける可視光~近赤外線の反射率を、JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した。
(Example 4)
By mixing the dispersion liquid containing tungsten cesium oxide Cs 0.33 WO 3 with monomers, synthetic resins, auxiliaries, etc. so that the weight ratio of tungsten cesium oxide and all other components is 2:98. , An ink having a cesium tungsten oxide content of 2% by weight was prepared. Using the cesium tungsten oxide-containing ink thus produced, printing is performed on a PVC (polyvinyl chloride) sheet as a base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). gone. Using the obtained printed matter as the laminate of Example 4, the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm on the printed surface before laser printing was measured by the JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (Japan). Measured using Spectroscopy Co., Ltd.). Furthermore, as a laser marker device,
Figure JPOXMLDOC01-appb-I000009
Was used to perform laser printing on the printed surface with laser light from an Nd: YAG laser having a wavelength of 1064 nm. The reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm of the laser-printed portion was measured using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation).
 上記実施例2~4において行われた反射率の測定結果を、図34に示す。また、実施例2において行われた反射率の測定結果を図35に、実施例3において行われた反射率の測定結果を図36に、実施例4において行われた反射率の測定結果を図37に、それぞれ図34のグラフから抜き出して示す。図34~図37のグラフにおいて、横軸の値は電磁波の波長(nm)であり、縦軸の値は、横軸の値が示す波長の電磁波の印刷面又はレーザー印字された部分における反射率(%)である。 FIG. 34 shows the measurement results of the reflectance performed in Examples 2 to 4 above. Further, the result of the reflectance measurement performed in Example 2 is shown in FIG. 35, the result of the reflectance measurement performed in Example 3 is shown in FIG. 36, and the result of the reflectance measurement performed in Example 4 is shown in FIG. 37 is shown by extracting from the graph of FIG. 34, respectively. In the graphs of FIGS. 34 to 37, the value on the horizontal axis is the wavelength (nm) of the electromagnetic wave, and the value on the vertical axis is the reflectance of the electromagnetic wave having the wavelength indicated by the value on the horizontal axis on the printed surface or the laser-printed portion. (%).
 図34~図37のグラフから明らかなとおり、いずれの基材を用いた場合においても、レーザー印字することにより近赤外領域において反射率が上昇(吸収率が低下)することがわかる。上昇幅は横軸の波長によって異なるが、780nm~2000nmの近赤外領域においては、少なくとも5%以上、概ね10%~15%、又はそれ以上、レーザー印字により反射率が上昇していることが読み取れる。また全体的な傾向として、可視光の波長域におけるレーザー印字前後の反射率の変化は、近赤外領域におけるレーザー印字前後の反射率の変化と比較して小さいため、レーザー印字により、肉眼や一般的なカメラによっては視認が比較的困難な文字、画像等を描くことができると考えられる。 As is clear from the graphs of FIGS. 34 to 37, it can be seen that the reflectance increases (absorption rate decreases) in the near-infrared region by laser printing regardless of which base material is used. The amount of increase varies depending on the wavelength on the horizontal axis, but in the near-infrared region of 780 nm to 2000 nm, the reflectance is increased by at least 5% or more, approximately 10% to 15%, or more by laser printing. Can be read. In addition, as an overall tendency, the change in reflectance before and after laser printing in the visible light wavelength range is smaller than the change in reflectance before and after laser printing in the near infrared region. It is considered that it is possible to draw characters, images, etc. that are relatively difficult to see depending on a typical laser.
 次に、基材シートとしての上質紙に、0.5重量%~6重量%までの、互いに異なるセシウム酸化タングステン(Cs0.33WO3)含有量(含有率)を有する、6種類の近赤外線吸収性インキを用いてそれぞれオフセット印刷を行い、作製されたそれぞれの印刷物における印刷面(近赤外線吸収性インキ層)の、可視光~近赤外線の波長域における電磁波の反射率をそれぞれ測定した。なお、反射率の定義や反射率測定に用いた機器は、上述の実施例1~4におけるものと同じである。 Next, six types of near-infrared ray absorption having different cesium oxide tungsten (Cs 0.33 WO 3 ) contents (contents) from 0.5% by weight to 6% by weight on high-quality paper as a base sheet. Offset printing was performed using each of the sex inks, and the reflectance of electromagnetic waves in the visible to near-infrared wavelength range on the printed surface (near-infrared absorbing ink layer) of each produced printed matter was measured. The equipment used for the definition of the reflectance and the measurement of the reflectance is the same as that in the above-described Examples 1 to 4.
(実施例5~10)
 セシウム酸化タングステンCs0.33WO3を含有する分散液と、モノマー、合成樹脂類、助剤などとを、セシウム酸化タングステンとそれ以外の全成分との重量比が:
(実施例5)0.5:99.5
(実施例6)  1:99
(実施例7)1.3:98.7
(実施例8)  2:98
(実施例9)  3:97
(実施例10) 6:94
となるよう混合することにより、セシウム酸化タングステンの含有率が、0.5重量%~6重量%である6種類のインキを作製した。このようにして作製したセシウム酸化タングステン含有インキの1つ1つを用いて、基材である上記の上質紙シートに、オフセット印刷機(オフセット用印刷適性試験機IGT C1(IGT Testing Systems製))により印刷を行った。得られた6種類の印刷物を実施例5~10の積層体とし、波長400nm~2000nmにおける可視光~近赤外線の反射率を、JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した。
(Examples 5 to 10)
Tungsten cesium oxide Cs 0.33 The weight ratio of the dispersion containing WO 3 to the monomer, synthetic resins, auxiliaries, etc., to tungsten cesium oxide and all other components is:
(Example 5) 0.5: 99.5
(Example 6) 1:99
(Example 7) 1.3: 98.7
(Example 8) 2:98
(Example 9) 3:97
(Example 10) 6:94
By mixing so as to be, 6 kinds of inks having a cesium tungsten oxide content of 0.5% by weight to 6% by weight were prepared. Using each of the cesium oxide-containing inks produced in this manner, an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)) is applied to the above-mentioned high-quality paper sheet as a base material. Was printed by. The obtained 6 types of printed matter were used as a laminate of Examples 5 to 10, and the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm was measured by JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (JASCO Corporation). Was measured using.
 上記実施例5~10において行われた反射率の測定結果を、図38に示す。図38のグラフにおいて、横軸の値は電磁波の波長(nm)であり、縦軸の値は、横軸の値が示す波長の電磁波の印刷面における反射率(%)である。少なくとも近赤外の波長域においては、セシウム酸化タングステンの含有量が大きくなるほど、同じ波長における反射率が低くなっていることがわかる。可視光の波長域においても同様の傾向が読み取れる。すなわち、インキにおけるセシウム酸化タングステンの含有量を多くするほど、当該インキを用いてオフセット印刷された画像等は、近赤外線カメラ等を用いて認識しやすいものとなるものの、この場合には可視光反射率も低くなることから肉眼、一般的なカメラ等により視認できる可能性も高まるのであり、セキュリティ性を考えれば適切なセシウム酸化タングステン含有量を選択することが好ましいと考えられる。 FIG. 38 shows the measurement results of the reflectance performed in Examples 5 to 10. In the graph of FIG. 38, the value on the horizontal axis is the wavelength (nm) of the electromagnetic wave, and the value on the vertical axis is the reflectance (%) of the electromagnetic wave having the wavelength indicated by the value on the horizontal axis on the printed surface. It can be seen that, at least in the near-infrared wavelength region, the greater the content of tungsten cesium oxide, the lower the reflectance at the same wavelength. The same tendency can be read in the wavelength range of visible light. That is, as the content of cesium tungsten oxide in the ink is increased, the image or the like offset printed using the ink becomes easier to be recognized by using a near-infrared camera or the like, but in this case, visible light reflection Since the rate is low, the possibility of being visually recognizable by the naked eye, a general camera, or the like is increased, and it is considered preferable to select an appropriate cesium tungsten oxide content in consideration of security.
 次に、基材シートとしてのPC(ポリカーボネート)上に6ホウ化ランタン(LaB6)含有量(含有率)が0.3重量%の近赤外線吸収性インキを用いてオフセット印刷を行い、作製された印刷物に対してレーザーマーカー装置によりレーザー印字を行い、印字された部分と印字されていない部分とにおける可視光~近赤外線の波長域における電磁波の反射率をそれぞれ測定した。この実施例においても、反射率とは、照射した光が印刷物の表面で反射されるときの反射光の強度の割合であり、基準となる基材表面(基準部分)からの反射光の強度に対する対象印刷物表面からの反射光の強度の比である(JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いた測定により得られた値である。)。 Next, offset printing was performed on a PC (polycarbonate) as a base sheet using a near-infrared absorbing ink having a 6-borohydride (LaB 6 ) content (content rate) of 0.3% by weight to produce the product. Laser printing was performed on the printed matter with a laser marker device, and the reflectance of electromagnetic waves in the visible light to near-infrared wavelength range in the printed portion and the non-printed portion was measured. Also in this embodiment, the reflectance is the ratio of the intensity of the reflected light when the irradiated light is reflected on the surface of the printed matter, and is the intensity of the reflected light from the reference base material surface (reference portion). It is a ratio of the intensity of the reflected light from the surface of the target printed matter (a value obtained by measurement using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by Nippon Spectral Co., Ltd.)).
(実施例11)
 6ホウ化ランタン(LaB6)を含有する分散液と、モノマー、合成樹脂類、助剤などとを、6ホウ化ランタンとそれ以外の全成分との重量比が0.3:99.7となるよう混合することにより、6ホウ化ランタンの含有率が0.3重量%であるインキを作製した。このようにして作製した6ホウ化ランタン含有インキを用いて、基材であるPC(ポリカーボネート)シートに、オフセット印刷機(オフセット用印刷適性試験機IGT C1(IGT Testing Systems製))により印刷を行った。得られた印刷物を実施例11の積層体とし、レーザー印字前の印刷面の、波長400nm~2000nmにおける可視光~近赤外線の反射率を、JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した。さらに、レーザーマーカー装置として、
Figure JPOXMLDOC01-appb-I000010
を用い、波長1064nmのNd:YAGレーザーによるレーザー光によって上記印刷面にレーザー印字を行った。 レーザー印字された部分の、波長400nm~2000nmにおける可視光~近赤外線の反射率を、JASCO V-670 紫外可視近赤外分光光度計(日本分光株式会社製)を用いて測定した。
(Example 11)
The weight ratio of the dispersion liquid containing lanthanum hexaboride (LaB 6 ) to the monomer, synthetic resins, auxiliaries, etc., to the lanthanum hexaboride and all other components was 0.3: 99.7. By mixing so as to be, an ink having a content of lanthanum hexaboride of 0.3% by weight was prepared. Using the 6-borohydride-containing ink thus produced, printing is performed on a PC (polycarbonate) sheet as a base material by an offset printing machine (offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)). rice field. Using the obtained printed matter as the laminate of Example 11, the reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm on the printed surface before laser printing was measured by the JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (Japan). It was measured using (manufactured by Spectroscopy Co., Ltd.). Furthermore, as a laser marker device,
Figure JPOXMLDOC01-appb-I000010
Was used to perform laser printing on the printed surface with laser light from an Nd: YAG laser having a wavelength of 1064 nm. The reflectance of visible light to near-infrared light at a wavelength of 400 nm to 2000 nm of the laser-printed portion was measured using a JASCO V-670 ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation).
 上記実施例11において行われた反射率の測定結果を、図39に示す。図39のグラフにおいて、横軸の値は電磁波の波長(nm)であり、縦軸の値は、横軸の値が示す波長の電磁波の印刷面又はレーザー印字された部分における反射率(%)である。 The measurement result of the reflectance performed in the above-mentioned Example 11 is shown in FIG. 39. In the graph of FIG. 39, the value on the horizontal axis is the wavelength (nm) of the electromagnetic wave, and the value on the vertical axis is the reflectance (%) on the printed surface or the laser-printed portion of the electromagnetic wave having the wavelength indicated by the value on the horizontal axis. Is.
 図39のグラフから明らかなとおり、レーザー印字することにより近赤外領域において反射率が上昇(吸収率が低下)することがわかる。上昇幅は横軸の波長によって異なるが、780nm~1400nmの近赤外領域においては、概ね5%~14%程度、レーザー印字により反射率が上昇していることが読み取れる。また全体的な傾向として、可視光の波長域におけるレーザー印字前後の反射率の変化は、800nm~1200nm程度の近赤外領域におけるレーザー印字前後の反射率の変化と比較して小さいため、レーザー印字により、肉眼や一般的なカメラによっては視認が比較的困難な文字、画像等を描くことができると考えられる。 As is clear from the graph of FIG. 39, it can be seen that the reflectance increases (absorption rate decreases) in the near infrared region by laser printing. Although the amount of increase varies depending on the wavelength on the horizontal axis, it can be read that the reflectance is increased by laser printing by about 5% to 14% in the near infrared region of 780 nm to 1400 nm. As an overall tendency, the change in reflectance before and after laser printing in the visible light wavelength range is smaller than the change in reflectance before and after laser printing in the near infrared region of about 800 nm to 1200 nm, so that laser printing Therefore, it is considered that characters, images, etc. that are relatively difficult to see with the naked eye or a general camera can be drawn.
(用途の一例)
 上記各実施形態、実施例における積層体は、一例においてはセキュリティ性の高い、身分証明書等の印刷物として用いることができる。図40中、レーザーマーキングにより描かれる人物画像2A,人物識別情報3Aと(肉眼で視認できる)、近赤外線吸収層へのレーザーマーキングにより描かれる人物画像6A,人物識別情報7Aと(赤外線カメラ等により認識できる)を比較することにより、人物画像2A,人物識別情報3Aにより示される人物(可視情報)と、人物画像6A,人物識別情報7Aにより示される人物(赤外線情報)とが一致するかを判定すれば、身分証明書等の真贋判定を行い(一致すれば身分証明書等を真正なものであると決定することができ、一致しない場合には身分証明書等を真正なものではないと決定することができる。)、偽造されている場合にこれを見破ることができる。レーザーにより描かれる絵柄は、バーコードやナンバー、二次元コードなど単調なパターンだけではなく、上記のとおり人物画像等であってよい。また、マイクロ文字など微小表示印刷のセキュリティ技術と組み合わせることで、赤外線吸収印刷物のセキュリティ性を更に向上できる。
(Example of application)
The laminate in each of the above embodiments and examples can be used as a printed matter such as an identification card, which has high security in one example. In FIG. 40, a person image 2A and a person identification information 3A drawn by laser marking (visible to the naked eye), a person image 6A drawn by laser marking on a near-infrared absorbing layer, and a person identification information 7A (by an infrared camera or the like). By comparing (recognizable), it is determined whether the person (visible information) indicated by the person image 2A and the person identification information 3A matches the person (infrared information) indicated by the person image 6A and the person identification information 7A. If so, the authenticity of the identification card, etc. is judged (if they match, it can be determined that the identification card, etc. is genuine, and if they do not match, the identification card, etc. is not genuine. You can detect this if it is counterfeit. The pattern drawn by the laser may be not only a monotonous pattern such as a barcode, a number, or a two-dimensional code, but also a person image or the like as described above. In addition, the security of infrared-absorbing printed matter can be further improved by combining with the security technology of micro-display printing such as micro characters.
(態様3)
 (用語の説明)
 まず、実施形態の説明で使用する用語の意義について説明する。「近赤外線」とは、780nm~2000nmの波長を有する電磁波である(「JIS Z 8117:2002遠赤外線用語」より)。「近赤外線レーザー光」とは、上記近赤外線の波長範囲内の波長を有するレーザー光である。また「可視光」とは、400nm~780nmの波長を有する電磁波である。「近赤外線吸収性」とは、照射された近赤外線の少なくとも一部を吸収する性質であり、「近赤外線透過性」とは、照射された近赤外線の少なくとも一部を透過する性質である。「可視光吸収性」とは、照射された可視光の少なくとも一部を吸収する性質であり、「可視光透過性」とは、照射された可視光の少なくとも一部を透過する性質である。近赤外線レーザー光による近赤外線吸収層への「レーザーマーキング」とは、近赤外線吸収層に対して近赤外線レーザー光を照射して近赤外線に対する近赤外線吸収層の吸収特性を変化させることにより、文字、数字、記号、図柄、写真、またはそれらの任意の組み合わせを含む、印字させるための印字画像の情報を、近赤外線吸収層に形成することである。「潜像」とは、肉眼で見えないように、すなわち可視光領域で視認できないように形成した画像である。本発明の態様3のレーザーマーキングにおいては、近赤外線吸収層の吸収特性の変化により近赤外線を使用することで検出可能な画像が形成されるが、これは可視光領域で視認できないため、潜像の一種である。
(Aspect 3)
(Explanation of terms)
First, the meanings of the terms used in the description of the embodiment will be described. The "near infrared ray" is an electromagnetic wave having a wavelength of 780 nm to 2000 nm (from "JIS Z 8117: 2002 far infrared ray term"). The "near-infrared laser light" is a laser light having a wavelength within the wavelength range of the near-infrared ray. Further, "visible light" is an electromagnetic wave having a wavelength of 400 nm to 780 nm. The "near-infrared absorbing property" is a property of absorbing at least a part of the irradiated near-infrared ray, and the "near-infrared ray transmitting property" is a property of transmitting at least a part of the irradiated near-infrared ray. "Visible light absorption" is a property of absorbing at least a part of the irradiated visible light, and "visible light transmittance" is a property of transmitting at least a part of the irradiated visible light. "Laser marking" on the near-infrared absorbing layer by near-infrared laser light is a character that changes the absorption characteristics of the near-infrared absorbing layer by irradiating the near-infrared absorbing layer with near-infrared laser light. , Numbers, symbols, symbols, photographs, or any combination thereof, to form information on the printed image for printing in the near-infrared absorbing layer. A "latent image" is an image formed so as not to be seen by the naked eye, that is, invisible in the visible light region. In the laser marking of the third aspect of the present invention, a detectable image is formed by using the near infrared ray due to the change in the absorption characteristic of the near infrared ray absorbing layer, but this is not visible in the visible light region, so that it is a latent image. It is a kind of.
 以下、本発明の態様3の実施形態を図面を参照しながら説明する。本発明の態様3は、レーザーマーカー装置200Bを使用して積層体100Bに印字画像に対応する潜像を形成する潜像形成方法300Bである。積層体100Bの構造、レーザーマーカー装置200B、潜像形成方法300Bについて説明する。積層体100Bは、典型的には身分証明書等の個人を特定するための情報が印刷された、複数の層構成が積層されたシートや板などの構成である。その用途は、例えば、クレジットカード、キャッシュカード等のカード類、免許証、パスポートなどのデータページ、紙幣、などの各種のセキュリティ印刷物とすることができる。 Hereinafter, embodiments of aspect 3 of the present invention will be described with reference to the drawings. Aspect 3 of the present invention is a latent image forming method 300B for forming a latent image corresponding to a printed image on a laminated body 100B using a laser marker device 200B. The structure of the laminated body 100B, the laser marker device 200B, and the latent image forming method 300B will be described. The laminated body 100B is typically a structure such as a sheet or a board in which a plurality of layers are laminated, on which information for identifying an individual such as an identification card is printed. Its use can be, for example, various security printed matter such as cards such as credit cards and cash cards, data pages such as driver's licenses and passports, and banknotes.
 (積層体100Bの構造)
 以下、積層体100Bの層構造について正面図と断面図を参照して説明する。図76には、本発明の態様3の実施形態にかかる潜像形成方法300Bによって潜像が形成されることになる積層体100Bを正面から見た図が示されている。図76においては、印刷工程で形成される層を破線で示しており、また、それらの層を重ね合わせて記載している。図81には、図76に示す積層体100Bの層構造の一例を示すため、図76で正面が示された積層体100BをA-A’で切断した面を矢印方向に見た図が示されている。図81には、層の積層構造を示すために各層を分離させて記載しているが、実際には、各層は圧着されて密着している。図81に示す例においては、積層体100Bは、上部オーバーシート層101B、近赤外線吸収層102B、有色インキ層103B、基材層104B、下部オーバーシート層105Bが上部、すなわち表面からこの順に積層されて形成される。積層体100Bの各層について、実際の製造の際に基板として使用される基材層104Bを中心に説明する。積層体100Bの表面に向かう方向を上の方向とし、裏面に向かう方向を下の方向とする。
(Structure of laminated body 100B)
Hereinafter, the layer structure of the laminated body 100B will be described with reference to a front view and a cross-sectional view. FIG. 76 shows a front view of the laminated body 100B on which a latent image is to be formed by the latent image forming method 300B according to the third embodiment of the present invention. In FIG. 76, the layers formed in the printing process are shown by broken lines, and the layers are shown in an overlapping manner. In order to show an example of the layer structure of the laminated body 100B shown in FIG. 76, FIG. 81 shows a view of the surface of the laminated body 100B whose front surface is shown in FIG. 76 cut by AA'in the direction of an arrow. Has been done. In FIG. 81, each layer is shown separately in order to show the laminated structure of the layers, but in reality, each layer is crimped and brought into close contact with each other. In the example shown in FIG. 81, in the laminated body 100B, the upper oversheet layer 101B, the near-infrared absorbing layer 102B, the colored ink layer 103B, the base material layer 104B, and the lower oversheet layer 105B are laminated in this order from the upper part, that is, from the surface. Is formed. Each layer of the laminated body 100B will be described focusing on the base material layer 104B used as a substrate in actual production. The direction toward the front surface of the laminated body 100B is the upward direction, and the direction toward the back surface is the downward direction.
 基材層104Bは、積層体100Bの形態を維持するカード状又はシート状の構成であり、PVC(ポリ塩化ビニル)、PET-G(コポリエステル)、PC(ポリカーボネート)、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)等の樹脂を材料として作製されるシート状の樹脂基材の層である。基材層104Bは、典型的には樹脂の色である白色のシートであるが、透明のシートとして形成してもよく、この場合には、例えばPVC(ポリ塩化ビニル)、PET-G(コポリエステル)、PC(ポリカーボネート)、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)等の材料を用いて作製することができる。基材層104Bは、好適には、白色または無色の構成であるが、淡色とすることもできる。 The base material layer 104B has a card-like or sheet-like structure that maintains the form of the laminate 100B, and is composed of PVC (polyvinyl chloride), PET-G (polyester), PC (polyester), PET (polyethylene terephthalate), and the like. It is a layer of a sheet-shaped resin base material made of a resin such as PP (polypropylene). The base material layer 104B is a white sheet that is typically the color of the resin, but may be formed as a transparent sheet. In this case, for example, PVC (polyvinyl chloride) or PET-G (co). It can be produced using materials such as polyester), PC (polyester), PET (polyethylene terephthalate), and PP (polypropylene). The base material layer 104B is preferably white or colorless, but can also be light in color.
 基材層104Bの上には有色インキ層103Bが積層されて形成される。有色インキ層103Bは、可視光領域で識別可能な画像を形成するための有色インキによって形成される層である。有色インキ層103Bは、視認可能な画像情報を示すために使用される層であるが、潜像を形成するという本発明の態様3の目的に照らせば、必ずしも必須ではない。有色インキ層103Bは、照射された近赤外線のうち少なくとも一部の近赤外線を透過する近赤外線透過性を有することが好ましい。有色インキとしては、例えば、UV SOYBI SG 黄(DICグラフィックス製)、UV SOYBI SG 紅(DICグラフィックス製)、UV SOYBI SG 藍(DICグラフィックス製)、UV 161 黄 S(T&K TOKA製)、UV 161 紅 S(T&K TOKA製)、UV 161 藍 S(T&K TOKA製)などの近赤外線透過性の有色インキ(可視光吸収性の有色インキ)を用いることができる。有色インキは、可視光領域で無色だが励起光の照射により発光する蛍光インキであったり、蛍光インキを含む有色インキであったりしてもよい。なお、有色インキ層103Bに代わって、或いは有色インキ層103Bに加えて、UV蛍光メジウムB(T&K TOKA製)、UV蛍光メジウムY(T&K TOKA製)、UV蛍光メジウムR(T&K TOKA製)等、近赤外線透過性の蛍光インキを用いて、蛍光インキ層103AB(図示せず)を形成してもよい。蛍光インキ層103ABは、蛍光インキ組成物を用いて、有色インキ層103Bと同様に基材層104B上に印刷等を行うことにより形成することができ、有色インキ印刷の場合と同様に人物画像、人物識別情報等を印刷することができる。或いは、有色インキ層103Bや蛍光インキ層103ABに代わって、或いはこれらのうち少なくとも1つの層に加えて、透明型ホログラムのような近赤外線透過性のホログラム層103BB(図示せず)を形成してもよい。有色インキ層103Bは、オフセット印刷、シルクスクリーン印刷、グラビア印刷、フレキソ印刷、インクジェット印刷などの手法により、画像のパターンを表わすように有色インキが塗布されることによって形成される。有色インキ層103Bは、基材層104Bと異なる色を発色させる位置にだけ有色インキを塗布するようにしてもよい。例えば、基材層104Bが白色の場合、白色の位置には有色インキを塗布しないようにすることができる。この場合、視認させるべき画像のパターンが存在する位置にのみ、有色インキ層103Bが存在することになる。有色インキ層103Bは、照射された近赤外線のうち少なくとも一部の近赤外線を透過する近赤外線透過性を有することが好ましい。有色インキ層103Bは、可視光領域で識別可能な画像を形成することができる任意の構成の層とすることができ、例えば、有色インキ層103Bを蛍光インキ層103ABやホログラム層103BBで置換したり、有色インキ層103Bに蛍光インキ層103ABやホログラム層103BBをさらに積層することも可能である。 A colored ink layer 103B is laminated on the base material layer 104B. The colored ink layer 103B is a layer formed by colored ink for forming an image that can be identified in the visible light region. The colored ink layer 103B is a layer used to show visible image information, but is not always essential in view of the object of aspect 3 of the present invention of forming a latent image. The colored ink layer 103B preferably has near-infrared ray transmission that transmits at least a part of the irradiated near-infrared rays. Colored inks include, for example, UV SOYBI SG yellow (made by DIC graphics), UV SOYBI SG red (made by DIC graphics), UV SOYBI SG indigo (made by DIC graphics), UV 161 yellow S (made by T & K TOKA), and so on. Near-infrared transmissive colored inks (visible light absorbing colored inks) such as UV 161 Beni S (manufactured by T & K TOKA) and UV 161 Indigo S (manufactured by T & K TOKA) can be used. The colored ink may be a fluorescent ink that is colorless in the visible light region but emits light when irradiated with excitation light, or a colored ink containing the fluorescent ink. In place of the colored ink layer 103B, or in addition to the colored ink layer 103B, UV fluorescent medium B (manufactured by T & K TOKA), UV fluorescent medium Y (manufactured by T & K TOKA), UV fluorescent medium R (manufactured by T & K TOKA), etc. A fluorescent ink layer 103AB (not shown) may be formed using a fluorescent ink that is transparent to near ultraviolet rays. The fluorescent ink layer 103AB can be formed by printing or the like on the base material layer 104B in the same manner as the colored ink layer 103B by using the fluorescent ink composition. Person identification information and the like can be printed. Alternatively, instead of the colored ink layer 103B or the fluorescent ink layer 103AB, or in addition to at least one of these layers, a near-infrared transparent hologram layer 103BB (not shown) such as a transparent hologram is formed. May be good. The colored ink layer 103B is formed by applying colored ink so as to represent an image pattern by a technique such as offset printing, silk screen printing, gravure printing, flexographic printing, and inkjet printing. The colored ink layer 103B may apply the colored ink only at a position where a color different from that of the base material layer 104B is developed. For example, when the base material layer 104B is white, it is possible to prevent the colored ink from being applied to the white position. In this case, the colored ink layer 103B exists only at the position where the pattern of the image to be visually recognized exists. The colored ink layer 103B preferably has near-infrared ray transmission that transmits at least a part of the irradiated near-infrared rays. The colored ink layer 103B can be a layer having an arbitrary configuration capable of forming an image that can be identified in the visible light region. For example, the colored ink layer 103B may be replaced with a fluorescent ink layer 103AB or a hologram layer 103BB. It is also possible to further laminate the fluorescent ink layer 103AB and the hologram layer 103BB on the colored ink layer 103B.
 有色インキ層103Bにより、積層体100Bに可視光画像を形成することができる。積層体100Bは、写真を表面に印字したIDカードの形態である。図77には、可視光下での観察画像(可視光画像)による積層体100Bの正面が示されている。積層体100Bを正面から可視光で観察すると、積層体100Bの最表面の上部オーバーシート層101Bは透明であり、近赤外線吸収層102Bも可視光領域では透明であるため、白色の基材層104Bの上側に形成された有色インキ層103Bに形成された画像を視認することができる。有色インキ層103Bには、左側から、人物画像111B、人物識別情報112B、マーク画像113Bが形成されている。人物画像111Bは、IDカードの所有者の写真の画像である。人物識別情報112Bは、IDカード所有者の識別情報を表わす文字の画像であり、典型的には、IDカード所有者の氏名やID番号などの文字の画像である。マーク画像113Bは、典型的には、IDカードの種類、発行者などを示すデザインやマークの画像であり、この例では、太陽の図案の画像である。 The colored ink layer 103B can form a visible light image on the laminate 100B. The laminated body 100B is in the form of an ID card on which a photograph is printed on the surface. FIG. 77 shows the front surface of the laminated body 100B by an observation image (visible light image) under visible light. When the laminated body 100B is observed from the front with visible light, the uppermost oversheet layer 101B on the outermost surface of the laminated body 100B is transparent, and the near-infrared absorbing layer 102B is also transparent in the visible light region, so that the white base material layer 104B The image formed on the colored ink layer 103B formed on the upper side of the light can be visually recognized. A person image 111B, a person identification information 112B, and a mark image 113B are formed on the colored ink layer 103B from the left side. The person image 111B is an image of a photograph of the owner of the ID card. The person identification information 112B is an image of characters representing the identification information of the ID card owner, and is typically an image of characters such as the name and ID number of the ID card owner. The mark image 113B is typically an image of a design or mark indicating the type, issuer, etc. of the ID card, and in this example, is an image of a sun design.
 基材層104Bの上には、好適には、有色インキ層103Bと少なくとも一部重なるように近赤外線吸収層102Bが積層されて形成される。近赤外線吸収層102Bは、近赤外線吸収性を有する近赤外線吸収性インキによって形成される層であり、肉眼では見えないが近赤外線カメラのような近赤外可視化装置を用いると視認できる層を提供すると共に、その層内に潜像を形成されるための構成である。近赤外線吸収性インキは、近赤外線吸収性材料であるセシウム酸化タングステン又は6ホウ化ランタンの少なくとも一方を含む。セシウム酸化タングステン含有インキ組成物としては、化学式(一般式)Csxyzで表されるセシウム酸化タングステンを含有するインキを用いることができる(x,y,zは、それぞれ正の実数)。一例においては、特許文献8(特許第6160830号)に記載されている、六方晶構造を持つCs0.33WO3で表される微粒子を含有するインキを用いることができる。6ホウ化ランタン含有インキ組成物としては、化学式LaB6で表される微粒子を含有するインキを用いることができる。近赤外線吸収性インキは、セシウム酸化タングステン又は6ホウ化ランタンに加えて、分散剤、モノマー、合成樹脂類、助剤などを含む。セシウム酸化タングステン含有インキにおけるセシウム酸化タングステンの含有率は任意であるが、一例においては0.5重量%(重量パーセント)~6重量%の含有率において良好な特性を有することが確認されている。6ホウ化ランタン含有インキにおける6ホウ化ランタンの含有率も任意であり、一例においては0.05重量%(重量パーセント)~6重量%であってよいが、0.3重量%の含有率において良好な特性を有することが確認されている。セシウム酸化タングステンと6ホウ化ランタンとの両方を含有する近赤外線吸収性インキを用いる場合においても、セシウム酸化タングステンと6ホウ化ランタンのそれぞれの含有率は同様に任意である。いずれの場合においても印刷濃度(盛量)によって好ましい含有率を変更することができる。なお、ここでいう「セシウム酸化タングステンの含有率(重量%)」とはインキの全体の重量に占める、当該インキに含まれるセシウム酸化タングステンの重量の割合であり、インキ中のセシウム酸化タングステンの含有率(重量%)={(セシウム酸化タングステンの重量)/(インキ全体の重量)}×100により表される。同様に、「6ホウ化ランタンの含有率(重量%)」は、インキの全体の重量に占める、当該インキに含まれる6ホウ化ランタンの重量の割合であり、インキ中の6ホウ化ランタンの含有率(重量%)={(6ホウ化ランタンの重量)/(インキ全体の重量)}×100により表される。 A near-infrared absorbing layer 102B is preferably formed on the base material layer 104B so as to overlap at least a part of the colored ink layer 103B. The near-infrared absorbing layer 102B is a layer formed by a near-infrared absorbing ink having near-infrared absorbing property, and provides a layer that is invisible to the naked eye but can be visually recognized by using a near-infrared visualization device such as a near-infrared camera. At the same time, it is a configuration for forming a latent image in the layer. The near-infrared absorbing ink contains at least one of the near-infrared absorbing material, tungsten cesium oxide or lanthanum hexaboride. As the cesium tungsten oxide-containing ink composition, an ink containing cesium tungsten oxide represented by the chemical formula (general formula) Cs x W y O z can be used (x, y, z are positive real numbers, respectively). .. In one example, an ink containing fine particles represented by Cs 0.33 WO 3 having a hexagonal structure described in Patent Document 8 (Patent No. 6160830) can be used. As the lanthanum hexaboride-containing ink composition, an ink containing fine particles represented by the chemical formula LaB 6 can be used. Near-infrared absorbing inks include dispersants, monomers, synthetic resins, auxiliaries and the like, in addition to tungsten cesium oxide or lanthanum hexaboride. The content of tungsten cesium oxide in the tungsten cesium oxide-containing ink is arbitrary, but in one example, it has been confirmed that the ink has good properties at a content of 0.5% by weight (weight%) to 6% by weight. The content of lanthanum hexaboride in the lanthanum hexaboride-containing ink is also arbitrary, and in one example, it may be 0.05% by weight (% by weight) to 6% by weight, but at a content of 0.3% by weight. It has been confirmed that it has good properties. Even when a near-infrared absorbing ink containing both tungsten cesium oxide and lanthanum hexaboride is used, the respective contents of tungsten cesium oxide and lanthanum hexaboride are similarly arbitrary. In any case, the preferable content rate can be changed depending on the print density (filling amount). The "content of tungsten cesium oxide (% by weight)" referred to here is the ratio of the weight of tungsten cesium oxide contained in the ink to the total weight of the ink, and the content of tungsten cesium oxide in the ink. It is represented by a rate (% by weight) = {(weight of cesium tungsten oxide) / (weight of the entire ink)} × 100. Similarly, the "content rate of lanthanum hexaboride (% by weight)" is the ratio of the weight of lanthanum hexaboride contained in the ink to the total weight of the ink, and is the ratio of the lanthanum hexaboride in the ink. Content rate (% by weight) = {(weight of lanthanum hexaboride) / (weight of the entire ink)} × 100.
 近赤外線吸収層102Bは、近赤外線吸収性インキを表面から見て所定の二次元形状である赤外線吸収性印刷画像114Bの形状で印刷などの手法により基材層104B及び有色インキ層103Bの上に塗布することにより形成される。近赤外線吸収層102Bを形成するための印刷は、オフセット印刷、シルクスクリーン印刷などを含む公知の種々の印刷方法を使用することができる。なお、印刷以外の任意の層の形成手法を使用することもできる。また、有色インキ層103Bと近赤外線吸収層102Bとが少なくとも一部重なる場合において、それらの積層順を入れ替えることもできる。なお、複数の層を、それらの構成物質を混練して一体化することによって1つの層として構成することもできる。例えば、近赤外線吸収性材料を基材層104Bの樹脂基材に混練することによって、基材層104B及び近赤外線吸収層102Bを一体の層として形成することもできる。さらに、後述のオーバーシート層の樹脂基材に近赤外線吸収性材料を混練することによって、オーバーシート層及び近赤外線吸収層102Bを一体の層として形成することでもよい。 The near-infrared absorbing layer 102B is formed on the base material layer 104B and the colored ink layer 103B by a method such as printing in the shape of the infrared absorbing printed image 114B which is a predetermined two-dimensional shape when the near-infrared absorbing ink is viewed from the surface. It is formed by applying. For printing to form the near-infrared absorbing layer 102B, various known printing methods including offset printing, silk screen printing and the like can be used. It should be noted that any layer forming method other than printing can also be used. Further, when the colored ink layer 103B and the near-infrared absorbing layer 102B overlap at least partially, the stacking order thereof can be changed. It should be noted that a plurality of layers can be configured as one layer by kneading and integrating these constituent substances. For example, by kneading the near-infrared absorbing material with the resin base material of the base material layer 104B, the base material layer 104B and the near-infrared absorbing layer 102B can be formed as an integral layer. Further, the oversheet layer and the near-infrared absorbing layer 102B may be formed as an integral layer by kneading the near-infrared absorbing material with the resin base material of the oversheet layer described later.
 積層体100Bにおいて、オフセット印刷により近赤外線吸収層102Bを形成するために作製した近赤外線吸収性インキの一例を示す。セシウム酸化タングステンCs0.33WO3を含有する分散液と、モノマーや合成樹脂、その他の非赤外線吸収材料を含むインキメジウムとを、セシウム酸化タングステンとそれ以外の全成分との重量比が2:98となるよう混合することにより、セシウム酸化タングステンの含有率が2.0重量%であるインキを作製する。このようにして作製したセシウム酸化タングステン含有インキを用いて、基材層104Bにオフセット印刷機(例えば、オフセット用印刷適性試験機IGT C1(IGT Testing Systems製))により印刷を行うことにより、近赤外線吸収層102Bを形成することができる。膜厚は約1μmから3μmである。なお、赤外線吸収率は、30%から40%程度である。 An example of the near-infrared absorbing ink produced for forming the near-infrared absorbing layer 102B by offset printing in the laminated body 100B is shown. The weight ratio of the dispersion liquid containing tungsten cesium oxide Cs 0.33 WO 3 and the ink medium containing monomer, synthetic resin, and other non-infrared absorbing materials is 2:98 between tungsten cesium oxide and all other components. By mixing so as to be, an ink having a content of tungsten cesium oxide of 2.0% by weight is prepared. Using the cesium oxide-containing ink thus produced, printing is performed on the base material layer 104B with an offset printing machine (for example, offset printing aptitude tester IGT C1 (manufactured by IGT Testing Systems)) to perform near infrared rays. The absorption layer 102B can be formed. The film thickness is about 1 μm to 3 μm. The infrared absorption rate is about 30% to 40%.
 積層体100Bにおいて、シルクスクリーン印刷により近赤外線吸収層102Bを形成するために作製した近赤外線吸収性インキの一例を示す。セシウム酸化タングステンを含有する分散液と、合成樹脂や増粘剤等を含む溶剤型シルクスクリーンインキメジウムとを、セシウム酸化タングステンとそれ以外の全成分との重量比が0.6:99.4となるよう混合することにより、セシウム酸化タングステンの含有率が0.6重量%であるインキを作製した。シルクスクリーン印刷で形成される近赤外線吸収層102Bの膜厚は、オフセット印刷の場合の3から4倍となるため、赤外線吸収率がオフセット印刷の場合と同様になるように、セシウム酸化タングステンの含有率をオフセット印刷の場合の3分の1から4分の1としている。このようにして作製したセシウム酸化タングステン含有インキを用いて、基材層104Bにシルクスクリーン印刷機により印刷を行うことにより、近赤外線吸収層102Bを形成することができる。膜厚は約3μmから12μmであり、赤外線吸収率はオフセット印刷の場合と同様に30%から40%程度である。 An example of a near-infrared absorbing ink produced for forming the near-infrared absorbing layer 102B by silk screen printing in the laminated body 100B is shown. The weight ratio of the dispersion liquid containing tungsten cesium oxide and the solvent-type silk screen ink medium containing synthetic resin, thickener, etc., to tungsten cesium oxide and all other components is 0.6: 99.4. By mixing so as to be, an ink having a content of tungsten cesium oxide of 0.6% by weight was prepared. Since the film thickness of the near-infrared absorbing layer 102B formed by silk screen printing is 3 to 4 times that in the case of offset printing, it contains tungsten cesium oxide so that the infrared absorption rate is the same as in the case of offset printing. The rate is set to one-third to one-fourth of that in the case of offset printing. The near-infrared absorbing layer 102B can be formed by printing on the base material layer 104B with a silk screen printing machine using the cesium tungsten oxide-containing ink thus produced. The film thickness is about 3 μm to 12 μm, and the infrared absorption rate is about 30% to 40% as in the case of offset printing.
 図78には、近赤外線カメラによる観察画像(近赤外線画像)による積層体100Bの正面が示されている。積層体100Bを正面から近赤外線で観察すると、積層体100Bの最表面の上部オーバーシート層101Bは近赤外線に対しても透明であるため、近赤外線を吸収しない基材層104Bの上側に形成された近赤外線吸収層102Bすなわち赤外線吸収性印刷画像114Bの形状を暗い領域として確認することができる。これにより、近赤外線で観察したときに、その赤外線吸収性印刷画像114Bが確認できることとなる。図76及び図78の例では、近赤外線吸収層102Bは、縦長の十芒星の二次元形状としている。有色インキ層103Bと近赤外線吸収層102Bとを重ねて形成することにより、可視光領域で識別可能な画像が見えていた場所に、近赤外線領域では異なる画像を表示させることができる。 FIG. 78 shows the front surface of the laminated body 100B by an image observed by a near-infrared camera (near-infrared image). When the laminated body 100B is observed from the front with near infrared rays, the uppermost oversheet layer 101B on the outermost surface of the laminated body 100B is transparent to near infrared rays, so that it is formed on the upper side of the base material layer 104B that does not absorb near infrared rays. The shape of the near-infrared absorbing layer 102B, that is, the infrared absorbing printed image 114B can be confirmed as a dark region. As a result, the infrared-absorbing printed image 114B can be confirmed when observed with near-infrared rays. In the examples of FIGS. 76 and 78, the near-infrared absorbing layer 102B has a vertically long two-dimensional shape of a ten-pointed star. By forming the colored ink layer 103B and the near-infrared absorbing layer 102B on top of each other, it is possible to display a different image in the near-infrared region in a place where an image identifiable in the visible light region was visible.
 セシウム酸化タングステン、又は6ホウ化ランタンを含む近赤外線吸収性インキ組成物は、近赤外線レーザー光を当てることにより、少なくとも所定の波長範囲の近赤外線吸収性が低下し、反射率が上昇するという性質を有している。そのため、近赤外線吸収層102Bは、レーザーマーカー装置200Bを使用して近赤外線レーザー光を印字画像を描くようにその照射を制御しながら走査し、近赤外線に対する近赤外線吸収層の吸収特性を変化させることにより、近赤外線カメラ等を用いて認識可能な、その印字画像の潜像を形成することができ、レーザーマーキングを行なうことができる。なお、近赤外線吸収性の低下による近赤外線の反射率の上昇は、近赤外線吸収性の低下により、通過して下の層で反射する近赤外線の量が増大するために生じるものと考えられる。レーザーマーキングにより、典型的には、近赤外線吸収性インキの近赤外線吸収性が低下することにより近赤外線の反射率が増加し、その部分は、近赤外線で観察したときに明るい領域として観察可能となる。印字画像としては、文字、数字、記号、図柄、写真、またはそれらの任意の組み合わせを含むものとすることができる。印字画像を描くように近赤外線レーザー光を照射しながら走査することにより、描かれた部分の近赤外線吸収特性が変化する。これにより、近赤外線吸収層102Bには近赤外線カメラ等を用いて認識可能な印字画像の潜像が形成されることとなる。図79には、レーザーマーキングを行った積層体100Bの近赤外線カメラによる観察画像(近赤外線画像)による正面が示されている。レーザーマーキングにより、近赤外線吸収層102Bに、近赤外線吸収特性の違いによる潜像が形成されている。この例では、レーザーマーキングにより、マイクロ文字115B、人物画像116Bが形成されている。図80に、マイクロ文字115Bを拡大して示す。マイクロ文字115Bは、微細なセキュリティデザインとして機能するものである。マイクロ文字は、任意の文字情報とすることができるが、この例では、IDカード所有者の識別情報を表わす氏名、ID番号などの人物識別情報としている。セキュリティデザインとしては、マイクロ文字115B以外に、彩紋、微細記号、レリーフパターン等を使用することができる。マイクロ文字、微細記号等の個々の文字等のサイズは任意であるが、最大径、最大幅、又は最大高さを1000μm(マイクロメートル)程度とすることができる。なお、マイクロ文字115Bは、レーザーマーキングによらずに、近赤外線吸収性インキを用いた近赤外線吸収層102Bの印刷(微小表示印刷)時に、典型的には近赤外線吸収性インキをその形状の位置に塗布しないことにより、赤外線吸収性印刷画像114Bの形状の一部として形成することもできる。 A near-infrared absorbing ink composition containing tungsten cesium oxide or lanthanum hexaboride has the property that when it is exposed to near-infrared laser light, the near-infrared absorption at least in a predetermined wavelength range is lowered and the reflectance is increased. have. Therefore, the near-infrared absorbing layer 102B scans the near-infrared laser light using the laser marker device 200B while controlling its irradiation so as to draw a printed image, and changes the absorption characteristics of the near-infrared absorbing layer with respect to the near-infrared. Thereby, a latent image of the printed image that can be recognized by using a near-infrared camera or the like can be formed, and laser marking can be performed. It is considered that the increase in the reflectance of near-infrared rays due to the decrease in near-infrared absorption is caused by the increase in the amount of near-infrared rays that pass through and are reflected by the lower layer due to the decrease in near-infrared absorption. Laser marking typically increases the reflectance of near-infrared rays by reducing the near-infrared absorbency of the near-infrared-absorbing ink, which can be observed as a bright area when observed with near-infrared rays. Become. The printed image may include letters, numbers, symbols, patterns, photographs, or any combination thereof. By scanning while irradiating a near-infrared laser beam so as to draw a printed image, the near-infrared absorption characteristics of the drawn portion are changed. As a result, a latent image of a printed image that can be recognized by using a near-infrared camera or the like is formed on the near-infrared absorbing layer 102B. FIG. 79 shows the front surface of the laser-marked laminate 100B as observed by a near-infrared camera (near-infrared image). By laser marking, a latent image due to the difference in near-infrared absorption characteristics is formed on the near-infrared absorption layer 102B. In this example, the micro characters 115B and the person image 116B are formed by laser marking. FIG. 80 shows the micro character 115B in an enlarged manner. The micro character 115B functions as a fine security design. The micro characters can be arbitrary character information, but in this example, they are personal identification information such as a name and an ID number representing the identification information of the ID card holder. As the security design, in addition to the micro character 115B, a colored pattern, a fine symbol, a relief pattern, or the like can be used. The size of individual characters such as micro characters and fine symbols is arbitrary, but the maximum diameter, maximum width, or maximum height can be about 1000 μm (micrometer). In addition, the micro character 115B is not based on laser marking, and when printing the near-infrared absorbing layer 102B using the near-infrared absorbing ink (micro-display printing), the near-infrared absorbing ink is typically placed at the position of the shape. It can also be formed as part of the shape of the infrared absorbent printed image 114B by not applying it to.
 好適には、積層体100Bの最外層には、オーバーシート層を形成する。積層体100Bの最上層には、可視光透過性、及び近赤外線透過性を有する上部オーバーシート層101Bが積層して形成され、積層体100Bの最下層には、可視光透過性、及び近赤外線透過性を有する下部オーバーシート層105Bが積層して形成される。上部オーバーシート層101B及び下部オーバーシート層105Bは、積層体100Bの表面を保護するための層であり、透明な樹脂のシートで構成される。上部オーバーシート層101B及び下部オーバーシート層105Bは、例えば0.05mm~0.2mm程度の厚さの透明PC(ポリカーボネート)のような透明な樹脂シートを、それらを積層する前の積層体100Bの最下層と最上層に、それぞれ1枚ずつを配置し、熱と圧力をかけて融着させたり、接着剤や粘着剤で接着したりすること等によって積層して、積層体100Bの一部として形成する。上部オーバーシート層101B及び下部オーバーシート層105Bは、保護が必要でない場合は必ずしも必須ではなく、それらのいずれか一方のみを形成してもよいし、いずれも形成しなくともよい。オーバーシート層があると、耐摩耗性等の耐性が良くなるだけではなく、レーザーマーキング情報を積層体の中に配置することにより、改竄されにくくなり、セキュリティ性を高くすることができるという特徴がある。 Preferably, an oversheet layer is formed on the outermost layer of the laminated body 100B. The uppermost layer of the laminated body 100B is formed by laminating an upper oversheet layer 101B having visible light transmission and near infrared ray transmission, and the lowermost layer of the laminated body 100B is formed by laminating visible light transparent and near infrared rays. The lower oversheet layer 105B having transparency is formed by laminating. The upper oversheet layer 101B and the lower oversheet layer 105B are layers for protecting the surface of the laminated body 100B, and are composed of a transparent resin sheet. The upper oversheet layer 101B and the lower oversheet layer 105B are made of a laminated body 100B before laminating transparent resin sheets such as transparent PC (polycarbonate) having a thickness of, for example, about 0.05 mm to 0.2 mm. One sheet is placed on each of the bottom layer and the top layer, and they are laminated by applying heat and pressure to fuse them, or by adhering them with an adhesive or an adhesive to form a part of the laminated body 100B. Form. The upper oversheet layer 101B and the lower oversheet layer 105B are not always essential when protection is not required, and only one of them may or may not be formed. The presence of the oversheet layer not only improves resistance such as wear resistance, but also has the feature that by arranging the laser marking information in the laminate, it is less likely to be tampered with and security can be improved. be.
 積層体100Bは、追加的な層を含むこともできる。図82には、基材層104Bと下部オーバーシート層105Bの間に、レーザー発色層106Bを積層した例を示している。レーザー発色層106Bは、レーザー発色剤を含む透明な層であるが、YAGレーザーなどの照射によりレーザー発色剤を発色させることにより、視認可能な画像を形成することができる層である。レーザー発色層106Bを追加することにより、潜像を形成するためのレーザーマーカー装置200Bを用いて、視認可能な画像等をレーザーマーキングにより形成することができる。積層体100Bは、レーザー発色層106B以外の任意の機能の層を積層することができる。 The laminate 100B can also include an additional layer. FIG. 82 shows an example in which the laser coloring layer 106B is laminated between the base material layer 104B and the lower oversheet layer 105B. The laser coloring layer 106B is a transparent layer containing a laser coloring agent, but is a layer capable of forming a visible image by developing a color of the laser coloring agent by irradiation with a YAG laser or the like. By adding the laser coloring layer 106B, a visible image or the like can be formed by laser marking using the laser marker device 200B for forming a latent image. The laminated body 100B can be laminated with layers having any function other than the laser coloring layer 106B.
 (レーザーマーカー装置200B)
 次に、レーザーマーキングを行うためのレーザーマーカー装置200Bの構造について説明する。図83にレーザーマーカー装置200Bの外観の概要を示す。レーザーマーカー装置200Bは、挿入口210Bを有しており、そこに、レーザーマーキングしようとする積層体100Bを挿入すると、支持手段211Bが積層体100Bをレーザーマーキングのための適切な位置に移動させて支持する。支持手段211Bは、カードを保持する機械的な保持機構などとすることができる。そして、レーザーマーカー装置200Bの内部にあるレーザー光照射部204Bからの近赤外線レーザー光で、近赤外線吸収層102B内の印字画像の位置に近赤外線レーザー光が照射されることになる。図84に、レーザーマーカー装置200Bの概略のブロック図を示す。レーザーマーカー装置200Bは、制御部201B、記憶部202B、駆動部203B、レーザー光照射部204Bなどから構成される。制御部201Bは、レーザーマーカー装置200Bの動作を制御する各種の機能を実行するための処理回路であり、コンピュータプログラムを実行するプロセッサ(図示せず)と、プロセッサが動作する際のワークエリアなどとして使用されるRAM(図示せず)などから構成される。記憶部202Bは、典型的にはフラッシュROMのような不揮発性メモリであり、コンピュータプログラム及び制御用データを記憶している。記憶部202Bは、コンピュータプログラムとして、制御プログラム202aBを記憶している。なお、制御プログラム202aBが実行される際には、OS(オペレーションシステム)が使用されることが通常であるが、OSによる機能はプロセッサの機能に含まれるものとして、ここでは説明を省略している。本発明の態様3にかかる潜像形成方法300Bの種々の機能は、制御プログラム202aBが制御部201Bによって記憶部202Bから読み出されて実行されることにより、そのような機能に応じた実行モジュールが形成されることにより実現される。記憶部202Bは、制御用データとして、走査パラメータ202bB及び画像データ202cBを記憶している。走査パラメータ202bBは、近赤外線レーザー光を照射しながら走査するようにレーザー光照射部204Bを駆動するための、走査の条件を規定するパラメータであって、ユーザによって設定可能なものである。後で詳述するが、走査パラメータ202bBとしては、パワーP、周波数F、速さV、ライン幅LWなどが使用される。画像データ202cBは、近赤外線吸収層102B内にレーザーマーキングにより潜像として形成する画像である印字画像を表わすデータであり、典型的には、所定の解像度Rの明暗情報を有するピクセルの集合の情報である。解像度Rも、走査の条件を規定するパラメータと理解できるが、印字画像の解像度として設定することが可能であり、この場合、走査パラメータ202bBとして個別に記憶させる必要はない。画像データ202cBは、印字画像を積層体100Bの二次元平面内のどの位置に形成するのかという位置情報を含んでいてもよい。制御部201Bに含まれるプロセッサは、記憶部202Bに記憶された制御プログラム202aBを読み出してRAMのワークエリアを利用して実行することにより、走査パラメータ202bB及び画像データ202cBを読みだして参照して、本発明の態様3にかかる潜像形成方法300Bの各種の機能を適切に実現する動作を実行する。
(Laser marker device 200B)
Next, the structure of the laser marker device 200B for performing laser marking will be described. FIG. 83 shows an outline of the appearance of the laser marker device 200B. The laser marker device 200B has an insertion port 210B, and when the laminate 100B to be laser-marked is inserted into the insertion port 210B, the support means 211B moves the laminate 100B to an appropriate position for laser marking. To support. The support means 211B can be a mechanical holding mechanism for holding the card or the like. Then, the near-infrared laser light from the laser light irradiation unit 204B inside the laser marker device 200B irradiates the position of the printed image in the near-infrared absorbing layer 102B with the near-infrared laser light. FIG. 84 shows a schematic block diagram of the laser marker device 200B. The laser marker device 200B includes a control unit 201B, a storage unit 202B, a drive unit 203B, a laser light irradiation unit 204B, and the like. The control unit 201B is a processing circuit for executing various functions for controlling the operation of the laser marker device 200B, and serves as a processor (not shown) for executing a computer program, a work area when the processor operates, and the like. It is composed of RAM (not shown) used. The storage unit 202B is typically a non-volatile memory such as a flash ROM, and stores computer programs and control data. The storage unit 202B stores the control program 202aB as a computer program. The OS (operating system) is usually used when the control program 202aB is executed, but the description is omitted here because the functions by the OS are included in the functions of the processor. .. The various functions of the latent image forming method 300B according to the third aspect of the present invention are executed by the control program 202aB being read from the storage unit 202B by the control unit 201B, so that an execution module corresponding to such functions can be executed. It is realized by being formed. The storage unit 202B stores the scanning parameter 202bB and the image data 202cB as control data. The scanning parameter 202bB is a parameter that defines scanning conditions for driving the laser light irradiation unit 204B so as to scan while irradiating the near-infrared laser light, and can be set by the user. As will be described in detail later, as the scanning parameter 202bB, power P, frequency F, speed V, line width LW, and the like are used. The image data 202cB is data representing a printed image which is an image formed as a latent image by laser marking in the near-infrared absorbing layer 102B, and is typically information on a set of pixels having brightness information of a predetermined resolution R. Is. The resolution R can also be understood as a parameter that defines the scanning conditions, but it can be set as the resolution of the printed image, and in this case, it is not necessary to store the scanning parameter 202bB individually. The image data 202cB may include position information as to which position in the two-dimensional plane of the laminated body 100B the printed image is formed. The processor included in the control unit 201B reads out the scan parameter 202bB and the image data 202cB by reading the control program 202aB stored in the storage unit 202B and executing the control program 202aB using the work area of the RAM, and refers to the scanning parameter 202bB. An operation for appropriately realizing various functions of the latent image forming method 300B according to the third aspect of the present invention is executed.
 駆動部203Bは、近赤外線レーザー光が積層体100Bにおける近赤外線吸収層102B内の印字画像の位置に照射されるように、レーザー光照射部204Bから放出される近赤外線レーザー光の照射位置を規定する構造を物理的に駆動して走査させる走査機構である。駆動部203Bは、近赤外線レーザー光が積層体100Bにおける近赤外線吸収層102B内の印字画像の位置に照射されるように位置決めできるものであれば、必ずしも走査機構でなくともよい。走査機構としては、ミラーを動作させて近赤外線レーザー光を偏向させる手法や、近赤外線レーザー光の投射ヘッドを移動させる手法などがある。ミラーを使用した手法としては、駆動部203Bは、レーザー光照射部204Bから放出される近赤外線レーザー光を反射しながら二次元的に走査する走査ミラーとそれを駆動するモーター、走査ミラーからの近赤外線レーザー光を積層体100Bに投射する集光レンズなどとすることができる。投射ヘッドを移動させる手法としては、駆動部203Bは、積層体100Bに対向した投射ヘッド(レーザー光照射部204Bからの近赤外線レーザー光を積層体100Bに向けて射出する部分)をX軸及びY軸方向に移動させる駆動機構などであってもよい。レーザー光照射部204Bは、近赤外線レーザーの光源である。近赤外線レーザーの光源としては、レーザー波長が1064nmの近赤外線レーザー光を発生させるNd:YAGレーザーなどを使用することができる。本実施例では、Nd:YAGレーザーを繰り返しパルス発振させて近赤外線レーザー光を生成する。駆動部203Bにより、レーザー光照射部204Bから射出された近赤外線レーザー光を積層体100の近赤外線吸収層102B内の印字画像を形成する位置に走査して照射するように制御することにより、近赤外線吸収層102Bに対するレーザーマーキングが行われる。近赤外線レーザー光は、典型的には、積層体100Bの上方から上部オーバーシート層101Bを通して近赤外線吸収層102Bに照射される。基材層104B、下部オーバーシート層105B等が近赤外線透過性を有する場合は、積層体100Bの下方から下部オーバーシート層105Bを通して下部オーバーシート層105Bに近赤外線レーザー光を照射することも可能である。 The drive unit 203B defines the irradiation position of the near-infrared laser light emitted from the laser light irradiation unit 204B so that the near-infrared laser light is irradiated to the position of the printed image in the near-infrared absorption layer 102B in the laminated body 100B. It is a scanning mechanism that physically drives and scans the structure. The drive unit 203B does not necessarily have to be a scanning mechanism as long as it can be positioned so that the near-infrared laser light is irradiated to the position of the printed image in the near-infrared absorbing layer 102B in the laminated body 100B. As the scanning mechanism, there are a method of operating a mirror to deflect the near-infrared laser light and a method of moving the projection head of the near-infrared laser light. As a method using a mirror, the drive unit 203B uses a scanning mirror that scans two-dimensionally while reflecting the near-infrared laser light emitted from the laser light irradiation unit 204B, a motor that drives the scanning mirror, and a scanning mirror. It can be a condenser lens or the like that projects infrared laser light onto the laminated body 100B. As a method of moving the projection head, the drive unit 203B uses the X-axis and Y of the projection head (the portion that emits the near-infrared laser light from the laser light irradiation unit 204B toward the laminate 100B) facing the laminate 100B. It may be a drive mechanism or the like that moves in the axial direction. The laser light irradiation unit 204B is a light source of a near infrared laser. As the light source of the near-infrared laser, an Nd: YAG laser or the like that generates a near-infrared laser light having a laser wavelength of 1064 nm can be used. In this embodiment, the Nd: YAG laser is repeatedly pulse-oscillated to generate near-infrared laser light. By controlling the drive unit 203B to scan and irradiate the near-infrared laser light emitted from the laser light irradiation unit 204B to a position in the near-infrared absorption layer 102B of the laminate 100 that forms a printed image. Laser marking is performed on the infrared absorbing layer 102B. The near-infrared laser light is typically applied to the near-infrared absorbing layer 102B from above the laminate 100B through the upper oversheet layer 101B. When the base material layer 104B, the lower oversheet layer 105B, etc. have near-infrared ray transmission, it is possible to irradiate the lower oversheet layer 105B with near-infrared laser light from below the laminate 100B through the lower oversheet layer 105B. be.
(潜像形成方法300B)
 次に、潜像形成方法300Bの実施形態の説明をする。レーザーマーカー装置200Bとしては公知のものを使用できるが、本実施形態においては、
Figure JPOXMLDOC01-appb-I000011
という装置を使用した。レーザーマーカー装置200Bは、二次元画像である印字画像の潜像を積層体100Bに形成する装置であり、点状の走査位置を直線的に移動させながら、マーキングすべき走査位置に近赤外線レーザー光を照射することにより走査ラインを形成(主走査)し、次に、その直角方向に少しずつ走査ラインを移動させながら走査ラインの形成を反復(副走査)することによって、二次元の印字画像の潜像を形成する装置である。レーザーマーカー装置200Bにおける近赤外線レーザー光の走査の動作を規定する条件を以下に示す。
・パワーP(単位 W)
・周波数F(単位 Hz)
・速さV(単位 mm/s)
・スポット距離SD(単位 mm)
・ライン幅LW(単位 mm)
・パルス幅PW(単位 μs)
・解像度R(単位 dpi)
 上記の条件の内、パワーP、周波数F、速さV、ライン幅LWは、ユーザが設定可能であり、走査パラメータ202bBとして記憶部202Bに記憶される。ただし、それらのうちのいくつかを固定値とすることも可能である。解像度Rもユーザが設定可能であるが、通常は、画像データ202cBの印字画像の解像度の情報として設定される。
(Latent image formation method 300B)
Next, an embodiment of the latent image forming method 300B will be described. A known laser marker device 200B can be used, but in the present embodiment, the laser marker device 200B can be used.
Figure JPOXMLDOC01-appb-I000011
I used the device. The laser marker device 200B is a device that forms a latent image of a printed image, which is a two-dimensional image, on the laminated body 100B. Near-infrared laser light is applied to a scanning position to be marked while linearly moving a dotted scanning position. A scanning line is formed by irradiating the image (main scanning), and then the formation of the scanning line is repeated (secondary scanning) while moving the scanning line little by little in the direction perpendicular to the scanning line. It is a device that forms a latent image. The conditions that define the scanning operation of the near-infrared laser light in the laser marker device 200B are shown below.
・ Power P (unit: W)
・ Frequency F (unit: Hz)
・ Speed V (unit: mm / s)
・ Spot distance SD (unit: mm)
・ Line width LW (unit: mm)
・ Pulse width PW (unit: μs)
-Resolution R (unit dpi)
Among the above conditions, the power P, the frequency F, the speed V, and the line width LW can be set by the user and are stored in the storage unit 202B as scanning parameters 202bB. However, some of them can be fixed values. The resolution R can also be set by the user, but is usually set as information on the resolution of the printed image of the image data 202cB.
 パワーPは、レーザーマーカー装置200Bのレーザー光照射部204B内の光源の出力パワーである。周波数Fは、解像度Rを考慮しない場合、レーザーマーカー装置200Bが走査中に近赤外線レーザー光のパルスを発生することが可能な単位時間あたりの数である。周波数Fの逆数の時間をパルス周期といい、解像度Rを考慮しない場合、レーザーマーカー装置200Bは、すべてのパルス周期毎に近赤外線レーザー光のパルスを発生することが可能である。速さVは、近赤外線レーザー光が、積層体100B上(近赤外線吸収層102B上)で印字画像が配置される部分である対象領域を走査する速度である。なお、周波数Fにおけるすべてのパルス周期で近赤外線レーザー光のパルスを照射しながら対象領域を走査した場合に近赤外線レーザー光が照射されることになる領域を、照射可能スポットと呼ぶことにする。また、走査時の走査位置に対応する印字画像のピクセルの明暗情報に基づき、近赤外線レーザー光のパルスが対象領域上において実際に照射される領域を照射スポットという。それぞれの照射スポットは、近赤外線レーザー光の1つのパルスが照射された対象領域上のドット状領域である。 The power P is the output power of the light source in the laser light irradiation unit 204B of the laser marker device 200B. The frequency F is a number per unit time in which the laser marker device 200B can generate a pulse of near-infrared laser light during scanning if the resolution R is not taken into consideration. The time of the reciprocal of the frequency F is called a pulse period, and when the resolution R is not taken into consideration, the laser marker device 200B can generate a pulse of near-infrared laser light for every pulse period. The speed V is the speed at which the near-infrared laser light scans the target area on the laminated body 100B (on the near-infrared absorbing layer 102B) where the printed image is arranged. The area where the near-infrared laser light is irradiated when the target area is scanned while irradiating the pulse of the near-infrared laser light at all the pulse cycles at the frequency F is referred to as an irradiable spot. Further, the area where the pulse of the near-infrared laser light is actually irradiated on the target area based on the brightness information of the pixels of the printed image corresponding to the scanning position at the time of scanning is referred to as an irradiation spot. Each irradiation spot is a dot-shaped region on a target region irradiated with one pulse of near-infrared laser light.
 スポット距離SDは、隣接する照射可能スポットの中心間距離である。スポット距離SDは、速さV/周波数Fに相当するものであり、周波数Fと速さVとをユーザが設定すると定まるものであるため、必ずしも走査パラメータ202bBとして記憶させる必要はない。 The spot distance SD is the distance between the centers of adjacent irradiation spots. Since the spot distance SD corresponds to the speed V / frequency F and is determined when the frequency F and the speed V are set by the user, it is not always necessary to store the spot distance SD as the scanning parameter 202bB.
 ライン幅LWは、典型的には、近赤外線レーザー光の1回のパルスによって照射されるドット状領域である照射スポットの走査方向の長さである。近赤外線レーザー光の1回のパルスの継続時間は速さVに対して十分に短いため、当該ドット状領域、すなわち照射スポットは、ほぼ円形の形状となる。このため、ライン幅LWは照射スポットの直径とほぼ同義となる。なお、本実施形態においては、ライン幅LW、周波数F、速さVを変化させなかったため、そのような場合には、ライン幅LWなどを必ずしもユーザが設定可能な走査パラメータ202bBとして扱う必要はない。 The line width LW is typically the length in the scanning direction of the irradiation spot, which is a dot-shaped region irradiated by one pulse of near-infrared laser light. Since the duration of one pulse of the near-infrared laser light is sufficiently short with respect to the speed V, the dot-shaped region, that is, the irradiation spot has a substantially circular shape. Therefore, the line width LW is almost synonymous with the diameter of the irradiation spot. In this embodiment, the line width LW, the frequency F, and the speed V are not changed. Therefore, in such a case, the line width LW and the like do not necessarily have to be treated as the scanning parameter 202bB that can be set by the user. ..
 パルス幅PWは、レーザー光照射部204BのNd:YAGレーザーのパルス発振で放出される近赤外線レーザー光の1回のパルスの継続時間であり、Nd:YAGレーザーの発振回路の特性で定められる条件である。本実施形態では、パルス幅PWは固定値とされており、必ずしもユーザに設定させて走査パラメータ202bBとして記憶する必要はない。 The pulse width PW is the duration of one pulse of the near-infrared laser light emitted by the pulse oscillation of the Nd: YAG laser of the laser light irradiation unit 204B, and is a condition defined by the characteristics of the oscillation circuit of the Nd: YAG laser. Is. In the present embodiment, the pulse width PW is a fixed value, and it is not always necessary to set it by the user and store it as the scanning parameter 202bB.
 解像度Rは、単位長さ(1インチ)あたりにどれだけ照射スポットを形成することができるかを表わす数値であり、単位長さをどれだけ細かく分けて印字画像を表現するかを定めるパラメータである。すなわち、解像度Rは、照射スポットを形成することができる密度である。隣接する照射スポットの中心間距離は、単位長さ(1インチ)/解像度Rとなる。ただし実際には、照射スポットは、走査ライン上において、近赤外線レーザー光のパルスを照射可能であるスポット距離SDごとに存在する照射可能スポットのいずれかに形成されるものであるため、単位長さ/解像度Rがスポット距離SDの整数倍でない場合に2つの連続した照射スポットを形成する場合は、1番目の照射スポットの位置から、スポット距離SDの整数倍の距離であって、単位長さ/解像度に最も近い距離を隔てた位置を単位長さ/解像度Rに対応する位置として、そこに2番目の照射スポットを形成することができる。単位長さ/解像度Rに対応する位置としては、他に、1番目の照射スポットの位置から、スポット距離SDの整数倍であって、単位長さ/解像度R以上、かつ、それに最も近い距離を隔てた位置などを対応させることもできる。照射スポットは、近赤外線吸収層102B上に印字画像の潜像を形成する基本単位である。印字画像の画像データは、典型的には、解像度Rで表現されたものである。このようにすると、印字画像のマーキングすべき1つのピクセルに1つの照射スポットを対応させることができ、走査時に照射スポットとしてマーキングを行なうべき走査位置を簡単な演算で特定して、マーキングを行なうことができる。好適には、スポット距離SDはライン幅LWより小さい値とされる。このようにすることにより、照射スポットの位置をスポット距離SD単位で精密に配置することができる。図85には、スポット距離SD、ライン幅LW、解像度Rの関係を図解で示している。図85で○のシンボルで示したものは照射可能スポット(連続する8個のみを示す)であり、スポット距離SDを空けて並んでいる。○のシンボル内に斜線を付したものが、解像度Rに対応する位置の照射可能スポットであり、マーキングすべき場合に実際に近赤外線レーザー光が照射される照射スポットを表わしている。なお、図において、隣接する照射スポットの斜線は、傾きを90度回転させている。図85(1)には、隣接する照射スポットの中心間距離(単位長さ/解像度R)がライン幅LWより大きい場合を示している。この場合、隣接する照射スポットは重ならない。図85(2)には、隣接する照射スポットの中心間距離(単位長さ/解像度R)がライン幅LWより小さい場合を示している。この場合、隣接する照射スポットは一部重なり合うことになる。このように、走査においては、解像度Rに対応する位置に存在する照射可能スポットの内、その位置に対応して印字画像のマーキングすべき印字画像のピクセルが存在すれば、近赤外線レーザー光のパルスを照射して照射スポットを形成することになる。なお、各走査ラインの垂直方向の間隔は、解像度Rの場合の隣接する照射スポットの中心間距離と同じとすると、垂直方向の副走査も、水平方向と同じ解像度Rで実行されることになる。 The resolution R is a numerical value indicating how many irradiation spots can be formed per unit length (1 inch), and is a parameter that determines how finely divided the unit length is to express a printed image. .. That is, the resolution R is a density at which an irradiation spot can be formed. The distance between the centers of adjacent irradiation spots is a unit length (1 inch) / resolution R. However, in reality, the irradiation spot is formed on the scanning line at any of the irradiable spots existing at each spot distance SD capable of irradiating the pulse of the near-infrared laser light, and therefore has a unit length. / When two consecutive irradiation spots are formed when the resolution R is not an integral multiple of the spot distance SD, the distance from the position of the first irradiation spot is an integral multiple of the spot distance SD, and the unit length / A second irradiation spot can be formed at a position separated by a distance closest to the resolution as a position corresponding to the unit length / resolution R. Other positions corresponding to the unit length / resolution R include a distance that is an integral multiple of the spot distance SD from the position of the first irradiation spot, is equal to or greater than the unit length / resolution R, and is closest to it. It is also possible to correspond to the separated positions. The irradiation spot is a basic unit for forming a latent image of a printed image on the near-infrared absorbing layer 102B. The image data of the printed image is typically expressed in resolution R. In this way, one irradiation spot can be associated with one pixel to be marked in the printed image, and the scanning position to be marked as the irradiation spot at the time of scanning can be specified by a simple calculation and marking can be performed. Can be done. Preferably, the spot distance SD is set to a value smaller than the line width LW. By doing so, the position of the irradiation spot can be precisely arranged in the spot distance SD unit. FIG. 85 illustrates the relationship between the spot distance SD, the line width LW, and the resolution R. The ones indicated by the symbols ◯ in FIG. 85 are the spots that can be irradiated (only eight consecutive spots are shown), and they are lined up with a spot distance SD. The shaded area in the ◯ symbol is the irradiation spot at the position corresponding to the resolution R, and represents the irradiation spot where the near-infrared laser light is actually irradiated when marking should be performed. In the figure, the diagonal lines of the adjacent irradiation spots are rotated by 90 degrees. FIG. 85 (1) shows a case where the distance between the centers (unit length / resolution R) of adjacent irradiation spots is larger than the line width LW. In this case, adjacent irradiation spots do not overlap. FIG. 85 (2) shows a case where the distance between the centers (unit length / resolution R) of adjacent irradiation spots is smaller than the line width LW. In this case, the adjacent irradiation spots partially overlap. As described above, in scanning, if there are pixels of the printed image to be marked in the printed image corresponding to the position among the irradiable spots existing at the position corresponding to the resolution R, the pulse of the near-infrared laser light is present. Will be irradiated to form an irradiation spot. Assuming that the vertical spacing of each scanning line is the same as the distance between the centers of adjacent irradiation spots in the case of resolution R, the vertical sub-scanning is also executed at the same resolution R as in the horizontal direction. ..
 以上より、レーザーマーカー装置200Bの動作の概要は以下の通りとなる。レーザーマーカー装置200Bは、マーキング対象物である積層体100Bを走査しながら近赤外線レーザー光をパルス的に照射する。近赤外線レーザー光が積層体100B上に照射されたドット状領域が照射スポットとなる。照射スポットの走査方向の長さはライン幅LWである。走査の速度は速さVであり、レーザーマーカー装置200Bは、解像度Rを考慮しない場合、周波数Fにおけるすべてのパルス周期で近赤外線レーザー光のパルスを照射することができ、その場合の、隣接する照射可能スポットの中心間距離をスポット距離SDという。レーザーマーカー装置200Bは、走査中に、マーキングが必要な走査位置(解像度Rに対応し、対応する印字画像のマーキングすべきピクセルが存在する走査位置)に、近赤外線レーザー光をパワーPのパルス幅PWのパルスとして積層体100B上のドット状領域に照射し、照射スポットを形成することにより、印字画像の潜像を形成する。 From the above, the outline of the operation of the laser marker device 200B is as follows. The laser marker device 200B radiates near-infrared laser light in a pulsed manner while scanning the laminated body 100B which is a marking object. The dot-shaped region irradiated with the near-infrared laser light on the laminated body 100B becomes the irradiation spot. The length of the irradiation spot in the scanning direction is the line width LW. The scanning speed is V, and the laser marker device 200B can irradiate pulses of near-infrared laser light at all pulse periods at frequency F, in which case adjacent, if resolution R is not taken into account. The distance between the centers of the irradiable spots is called the spot distance SD. During scanning, the laser marker device 200B applies near-infrared laser light to a scanning position (a scanning position corresponding to resolution R and a pixel to be marked in the corresponding printed image exists) with a power P pulse width. A latent image of a printed image is formed by irradiating a dot-shaped region on the laminated body 100B as a PW pulse to form an irradiation spot.
 本実施例では、以下の数値(範囲)の条件でレーザーマーカー装置200Bを動作させることによって、潜像形成方法300Bを実施した。
・パワーP:2~9.15W
・周波数F: 35000Hz
・速さV: 200mm/s
・スポット距離SD: 0.0057mm(速さV/周波数Fで設定)
・ライン幅LW: 0.04mm
・パルス幅PW:1μs(固定値)
・解像度R:50~1100dpi
In this embodiment, the latent image forming method 300B was carried out by operating the laser marker device 200B under the conditions of the following numerical values (range).
・ Power P: 2-9.15W
・ Frequency F: 35000Hz
・ Speed V: 200 mm / s
-Spot distance SD: 0.0057 mm (set by speed V / frequency F)
・ Line width LW: 0.04 mm
-Pulse width PW: 1 μs (fixed value)
-Resolution R: 50 to 1100 dpi
 次に、レーザーマーカー装置200Bが潜像形成方法300Bを実行する動作フローを説明する。図86には、動作フローを図示して示す。まず、制御部201Bが走査パラメータ202bB及び画像データ202cBを記憶部202Bから読み出す(ステップS301B)。画像データ202cBは、印字画像の大きさに対応する所定の大きさの画像を表わすデータである。画像データ202cBは、例えば、縦×横がそれぞれ所定のピクセル数のBMPファイルなどの形式とすることができ、それの解像度Rの情報に基づいて、それぞれのピクセルが積層体100B上の対象領域内のどの位置に対応するのかが特定される。また、画像データ202cBは、その印字画像の配置位置の情報を含んでいてもよく、それによって、積層体100B上の適切な位置に適切な大きさの印字画像を配置することができる。積層体100B上の印字画像に対応する領域が、走査の対象領域となる。印字画像は、典型的には、2値のモノクロの明暗情報のピクセルで構成される。可視光で発色させる通常のレーザーマーキングでは、照射された部分が黒色などで発色するため暗くなるが、潜像形成方法300Bにおいては、照射された部分は赤外線反射率が増加するため明るくなる。従って、画像データ202cBは、印字しようとする画像の情報をモノクロで表わしたものの明暗を反転させた画像のデータとしておくと好適である。また、潜像形成方法300Bにおいては、カラー画像は形成できないため、印字画像はモノクロ画像としておくとよい。次に、制御部201Bは、駆動部203Bをレーザー光照射部204Bから射出される近赤外線レーザー光が、積層体100B内の近赤外線吸収層102Bの領域内の走査開始位置にレーザー光照射部204Bによる近赤外線レーザー光の走査位置を移動させる(ステップS302B)。典型的には、走査開始位置の座標はユーザによって画像データ202cBの一部として入力されており、制御部201Bは、その座標にレーザー光照射部204Bによる近赤外線レーザー光の走査位置が移動するように駆動部203Bを制御する。次に、制御部201Bは、印字画像の潜像が形成されるように、画像データ202cBに含まれる印字画像の情報に基づいて制御したレーザー光を照射しながら対象領域を走査する(ステップS303B)。すなわち、走査パラメータ202bBに基づきレーザー光照射部204Bによる近赤外線レーザー光の走査位置を移動させながら、画像データ202cBの印字画像のピクセルの明暗情報に基づいてマーキングすべきピクセルのみをマーキングするようにオン・オフを制御したレーザー光のパルスを、当該ピクセルに対応する走査位置の解像度Rに応じた照射可能スポットに照射して照射スポットを形成しながら、対象領域を走査する。典型的には、印字画像は、潜像と同じ解像度Rで表現されているため、印字画像のそれぞれのマーキングすべきピクセルに対応する、レーザー光のパルスが照射可能な走査位置(照射可能スポットの位置)に照射スポットを形成すれば、解像度Rの潜像が形成されることになる。ライン幅LWが隣接する照射スポットの中心間距離(単位長さ/解像度R)より大きい場合は(図85(2)に示した状態の場合)、隣接する照射スポットの一部が重なり合い、解像感が低くなる場合も生じ得るが、このような場合でも、照射スポットは、解像度Rに対応する密度で、ほぼ等間隔に配置されている。なお、照射可能スポットはスポット距離SD毎に走査ライン上に並んでいるものであるため、照射スポットは、マーキングすべきピクセルに対応する位置(マーキングすべきピクセルを対象領域上に投影した位置)に最も近い照射可能スポットの位置などに形成することができる。このようにして、対象領域に、解像度Rに対応する密度で印字画像に対応する照射スポットが形成され、それの潜像が形成される。なお、印字画像のマーキングすべきピクセルが存在する場合とは、走査位置に対応する印字画像のピクセルの位置が、例えば、図79において、人物画像116Bとして白く示された印字画像内の印字オブジェクトとして表わすべき領域内にある場合のことである。近赤外線レーザー光線のパルスは近赤外線吸収層102B上のドット状領域に照射されて照射スポットを形成する。近赤外線レーザー光の出力パワーはパワーPでありパルス幅PWは1μsなので、1回のパルスによって、パワーP×パルス幅PWのエネルギーが照射スポットに与えられることになる。これにより、近赤外線吸収性インキに何らかの変化が生じ、近赤外線吸収率が低下し、全体的な近赤外線反射率が増大することにより、潜像によるマーキングが行われるものと理解される。対象領域のすべての走査(主走査及び副走査)が終了するまで、走査の動作を継続させる(ステップS304B)。 Next, the operation flow in which the laser marker device 200B executes the latent image forming method 300B will be described. FIG. 86 illustrates the operation flow. First, the control unit 201B reads the scanning parameter 202bB and the image data 202cB from the storage unit 202B (step S301B). The image data 202cB is data representing an image of a predetermined size corresponding to the size of the printed image. The image data 202cB can be in the form of, for example, a BMP file having a predetermined number of pixels in each of the vertical and horizontal directions, and each pixel is within the target area on the laminate 100B based on the information of the resolution R thereof. Which position of the throat corresponds to is specified. Further, the image data 202cB may include information on the arrangement position of the printed image, whereby the printed image of an appropriate size can be arranged at an appropriate position on the laminated body 100B. The area corresponding to the printed image on the laminated body 100B is the target area for scanning. The printed image is typically composed of binary monochrome light / dark information pixels. In normal laser marking that develops a color with visible light, the irradiated portion develops a color such as black and becomes dark, but in the latent image forming method 300B, the irradiated portion becomes bright because the infrared reflectance increases. Therefore, it is preferable that the image data 202cB is the data of an image in which the information of the image to be printed is represented in monochrome but the light and darkness is reversed. Further, in the latent image forming method 300B, since a color image cannot be formed, it is preferable to set the printed image as a monochrome image. Next, the control unit 201B receives the near-infrared laser light emitted from the laser light irradiation unit 204B from the drive unit 203B at the scanning start position in the region of the near-infrared absorption layer 102B in the laminated body 100B. The scanning position of the near-infrared laser light is moved by (step S302B). Typically, the coordinates of the scanning start position are input by the user as a part of the image data 202cB, and the control unit 201B moves the scanning position of the near-infrared laser light by the laser light irradiation unit 204B to the coordinates. Controls the drive unit 203B. Next, the control unit 201B scans the target area while irradiating the laser beam controlled based on the information of the printed image included in the image data 202cB so that the latent image of the printed image is formed (step S303B). .. That is, while moving the scanning position of the near-infrared laser light by the laser light irradiation unit 204B based on the scanning parameter 202bB, it is turned on so as to mark only the pixels to be marked based on the brightness information of the pixels of the printed image of the image data 202cB. -The target area is scanned while forming an irradiation spot by irradiating an irradiable spot corresponding to the resolution R of the scanning position corresponding to the pixel with a pulse of laser light whose off is controlled. Typically, since the printed image is represented by the same resolution R as the latent image, the scanning position (irradiable spot) to which the pulse of the laser light can be irradiated corresponds to each pixel to be marked in the printed image. If an irradiation spot is formed at the position), a latent image having a resolution R is formed. When the line width LW is larger than the center-to-center distance (unit length / resolution R) of the adjacent irradiation spots (in the case shown in FIG. 85 (2)), some of the adjacent irradiation spots overlap and the resolution is resolved. The feeling may be low, but even in such a case, the irradiation spots are arranged at substantially equal intervals at a density corresponding to the resolution R. Since the irradiation spots are arranged on the scanning line for each spot distance SD, the irradiation spot is located at a position corresponding to the pixel to be marked (the position where the pixel to be marked is projected onto the target area). It can be formed at the position of the closest irradiable spot. In this way, an irradiation spot corresponding to the printed image is formed in the target region at a density corresponding to the resolution R, and a latent image thereof is formed. When there are pixels to be marked in the printed image, the position of the pixel in the printed image corresponding to the scanning position is, for example, as a print object in the printed image shown in white as the person image 116B in FIG. 79. This is when it is within the area to be represented. The pulse of the near-infrared laser beam irradiates the dot-shaped region on the near-infrared absorbing layer 102B to form an irradiation spot. Since the output power of the near-infrared laser light is power P and the pulse width PW is 1 μs, energy of power P × pulse width PW is given to the irradiation spot by one pulse. It is understood that this causes some change in the near-infrared absorbing ink, the near-infrared absorption rate decreases, and the overall near-infrared reflectance increases, so that marking by a latent image is performed. The scanning operation is continued until all the scans (main scan and sub scan) of the target area are completed (step S304B).
 解像度Rを50dpiから1100dpiまでの範囲で適宜設定して潜像形成方法300を実行し、潜像の形成結果を評価した。図87、図88には、近赤外線レーザー光の走査の動作を説明する概念図を示す。図87が高解像度、図88が中解像度の場合である。それぞれの図において、レンズのシンボルはレーザー光照射部204Bを表わし、それから伸びる下向き矢印は、レーザー光照射部204Bから近赤外線吸収層102Bの対象領域内の走査位置に対して照射される近赤外線レーザー光を表わしている。図中の○(白丸)は、解像度Rに対応する単位長さあたりの数に対応する走査位置にある照射可能スポットを示しており、図中の●(黒丸)は、それらの照射可能スポットの内で、印字画像のマーキングすべきピクセルが存在するため、近赤外線レーザー光が照射されて照射スポットが形成された部分である。図87、図88とも、中央付近の正方形である同じ印字画像内の印字オブジェクト117Bの潜像を形成するものであるが、解像度Rの違いにより、照射可能スポット及び照射スポットの密度が異なっている。 The latent image forming method 300 was executed by appropriately setting the resolution R in the range of 50 dpi to 1100 dpi, and the latent image formation result was evaluated. 87 and 88 show conceptual diagrams illustrating the operation of scanning near-infrared laser light. 87 is the case of high resolution and FIG. 88 is the case of medium resolution. In each figure, the symbol of the lens represents the laser light irradiation unit 204B, and the downward arrow extending from the laser light irradiation unit 204B is a near-infrared laser emitted from the laser light irradiation unit 204B to the scanning position in the target area of the near-infrared absorption layer 102B. Represents light. ○ (white circle) in the figure indicates the irradiable spots at the scanning position corresponding to the number per unit length corresponding to the resolution R, and ● (black circle) in the figure indicates the irradiable spots of those irradiable spots. Since there are pixels to be marked in the printed image, this is a portion where the irradiation spot is formed by being irradiated with the near-infrared laser light. Both FIGS. 87 and 88 form a latent image of the print object 117B in the same printed image which is a square near the center, but the irradiable spots and the densities of the irradiation spots are different due to the difference in resolution R. ..
 パワーPは、それぞれの解像度Rにおいて、2Wから9.15Wまでの範囲で最もよい潜像の形成結果が得られる大きさに調節した。適切な潜像を形成するためには、基材層104Bを可視光領域で発色させずに、近赤外線吸収層102Bにおいて少なくとも所定の波長範囲における近赤外線吸収性を低下させることによって潜像を形成することができる必要がある。形成結果の評価の観点は、まず、可視光下での非視認性であり、これは、可視光で視認できてはならないために必要な評価の観点である。次に、近赤外線カメラでの視認性であり、これは、近赤外線カメラを使用することにより観察可能な潜像が形成されていることを確認するために必要な評価の観点である。それらの評価を、○:良好、△:普通、×:不良の評価値で評価したものを、下記の表に示す。
Figure JPOXMLDOC01-appb-T000012
The power P was adjusted to a size that gives the best latent image formation result in the range of 2W to 9.15W at each resolution R. In order to form an appropriate latent image, the latent image is formed by reducing the near-infrared absorption in at least a predetermined wavelength range in the near-infrared absorbing layer 102B without developing the color of the base material layer 104B in the visible light region. Must be able to. The viewpoint of evaluation of the formation result is, first, invisibility under visible light, which is a viewpoint of evaluation necessary for not being visible in visible light. Next is the visibility with a near-infrared camera, which is a viewpoint of evaluation necessary for confirming that an observable latent image is formed by using the near-infrared camera. The table below shows the evaluations of those evaluations based on the evaluation values of ◯: good, Δ: normal, and ×: bad.
Figure JPOXMLDOC01-appb-T000012
 可視光下での非視認性が不良の場合、基材層104Bが発色することにより、潜像とすべき箇所が視認可能であった。可視光下での非視認性が普通の場合、基材層104Bに若干の発色が見られ、注意すれば潜像とすべき箇所を肉眼で区別することが可能となっていた。この表に示した結果より、解像度Rが85dpiから1000dpiの範囲では、パワーPを適切に調節することによって、可視光下では視認できず、かつ、近赤外線カメラを使用すると確認できる潜像を形成できることが理解される。そして、解像度Rが140dpiから900dpiの範囲では、特に良好な潜像を形成できることが理解される。解像度Rが50dpi以下の場合では、パワーPを最大にしても近赤外線カメラを使用して確認できる潜像は形成できなかった。これは、解像度Rがこの程度以上に粗くなると、十分な密度の照射スポットが形成できないためと理解される。また、解像度Rが1100dpi以上の場合では、パワーPをどのように調節しても、可視光下での非視認性と近赤外線カメラでの視認性とを両立させることができなかった。これは、可視光下での非視認性が実現できる程度に小さいパワーP(表に示した、2W)では、照射スポットの近赤外線吸収性インキに十分な吸収性の変化を生じさせることができず、その一方で、近赤外線カメラでの視認性が実現できる程度に大きいパワーP(表に示した、3W)では、照射スポットの基材層104Bの材料が発色してしまうためと理解される。このように、潜像形成方法300Bにおいて、解像度Rを所定の範囲とすることにより、可視光で視認できないが、近赤外線カメラにより確認できるような潜像を、積層体100Bに確実に形成することができることが確認できた。また、そのような潜像形成方法300Bはレーザーマーカー装置200Bによって実施され、これによって、そのような潜像が形成された積層体100Bが作成される。 When the invisibility under visible light was poor, the base layer 104B developed a color, so that the portion to be a latent image could be visually recognized. When the invisibility under visible light was normal, some color was observed in the base material layer 104B, and it was possible to visually distinguish the portion to be a latent image if care was taken. From the results shown in this table, in the range of resolution R from 85 dpi to 1000 dpi, by adjusting the power P appropriately, a latent image that cannot be seen under visible light and can be confirmed by using a near-infrared camera is formed. It is understood that it can be done. Then, it is understood that a particularly good latent image can be formed in the range of the resolution R of 140 dpi to 900 dpi. When the resolution R was 50 dpi or less, a latent image that could be confirmed using a near-infrared camera could not be formed even if the power P was maximized. It is understood that this is because if the resolution R becomes coarser than this degree, an irradiation spot having a sufficient density cannot be formed. Further, when the resolution R is 1100 dpi or more, no matter how the power P is adjusted, it is not possible to achieve both invisibility under visible light and visibility with a near-infrared camera. This is because at a power P (2W shown in the table) small enough to realize invisibility under visible light, it is possible to cause a sufficient change in absorbency for the near-infrared absorbing ink at the irradiation spot. On the other hand, it is understood that the material of the base material layer 104B of the irradiation spot develops color at a power P (3W shown in the table) large enough to realize visibility with a near-infrared camera. .. As described above, in the latent image forming method 300B, by setting the resolution R to a predetermined range, a latent image that cannot be visually recognized by visible light but can be confirmed by a near-infrared camera can be surely formed on the laminated body 100B. It was confirmed that Further, such a latent image forming method 300B is carried out by a laser marker device 200B, whereby a laminated body 100B on which such a latent image is formed is created.
(態様1,2の産業上の利用可能性)
 本発明は、身分証明書等のID証、クレジットカード、キャッシュカード等のカード類、紙幣等に利用できるが、これらに限らず任意の積層体において利用可能である。
(態様3の産業上の利用可能性)
 本発明は、身分証明書等のID証、クレジットカード、キャッシュカード等のカード類、紙幣等のセキュリティを向上させるために利用できる。また、これらに限らず任意の積層体、媒体において利用可能である。
(Industrial applicability of aspects 1 and 2)
The present invention can be used for ID cards such as identification cards, cards such as credit cards and cash cards, banknotes, etc., but is not limited to these and can be used in any laminated body.
(Industrial applicability of aspect 3)
The present invention can be used to improve the security of ID cards such as identification cards, cards such as credit cards and cash cards, and banknotes. Further, the present invention is not limited to these, and can be used in any laminated body or medium.
1        積層体、情報表示媒体(印刷物)
2        人物画像(レーザーマーキング)
3        人物識別情報(レーザーマーキング)
4        マーク(有色インキ印刷、蛍光インキ印刷、又はホログラム)
5        ウインドウ部材(透明樹脂、近赤外線吸収性材料)
6        近赤外線吸収像(ウインドウ部材内、近赤外線吸収性材料による)
7        人物画像(レーザーマーキング)
8        マーク(有色インキ印刷、蛍光インキ印刷、又はホログラム)
9        基材層(白シート)
10,11    レーザー発色層
12,13    有色インキ層、蛍光インキ層、又はホログラム層
14,15    オーバーシート層(透明シート)
16       基材中間層(第2の部分)
17       基材中間層(第1の部分)
18       第1基材層(白シート)
19       第2基材層(白シート)
20       貫通孔
21,22    人物画像(有色インキ印刷、蛍光インキ印刷、又はホログラム)
23,24,25 シート
26       人物識別情報(レーザーマーキング)
28,29    部分的な人物画像(墨インキ印刷)
30       部分的な人物画像(ウインドウ部材内、近赤外線吸収性材料による)
31       人物画像又は人物識別情報の背景(レーザーマーキング)
33       レンチキュラーレンズ
34       人物画像(ウインドウ部材内、近赤外線吸収性材料による)
35       人物識別情報(ウインドウ部材内、近赤外線吸収性材料による)
37       人物画像(有色インキ印刷、蛍光インキ印刷、又はホログラム)
38       人物識別情報(有色インキ印刷、蛍光インキ印刷、又はホログラム)
39       有色インキ層、蛍光インキ層、又はホログラム層
40       クリアウインドウ(透明樹脂)
40A      第1のクリアウインドウ部材(透明樹脂)
40B      第2のクリアウインドウ部材(透明樹脂)
41       近赤外線吸収性インキ層
42       レーザーマーカー装置
43       制御部
44       記憶部
45       駆動(走査)部
46       レーザー照射部
100      冊子体
IM1      印字部(レーザーマーキング)
IM2      印字部(レーザーマーキング)
1A       積層体(印刷物)
2A       人物画像(レーザーマーキング)
3A       人物識別情報(レーザーマーキング)
4A       マーク(有色インキ印刷、蛍光インキ印刷、又はホログラム)
5A,5AA,5BA
         印刷画像(近赤外線吸収性インキ印刷)
6A       人物画像(レーザーマーキング)
7A       人物識別情報(レーザーマーキング)
8A       マーク(有色インキ印刷、蛍光インキ印刷、又はホログラム)
9A       基材層(白シート)
10A      レーザー発色層
10AA,10BA
         開口部領域
11A,12A  有色インキ層、蛍光インキ層、又はホログラム層
13A,13AA,13BA
         近赤外線吸収性インキ層
14A,15A  オーバーシート層(透明シート)
16A      レーザー発色層
17A      印刷画像の一部(近赤外線吸収性インキ印刷)
18A      印刷画像に含まれるマイクロ文字(近赤外線吸収性インキ印刷)
19A      マイクロ文字(近赤外線吸収性インキ印刷)
20A      マイクロ文字(近赤外線吸収性インキ印刷)
21A      マイクロ文字(レーザーマーキング)
22A      マーク(近赤外線吸収性インキ印刷)
23A      人物画像(レーザーマーキング)
24A      基材中間層(第2の部分)
25A      基材中間層(第1の部分)
26A      第1基材層(白シート)
27A      第2基材層(白シート)
28A,29A,30A
         シート
31A      レンチキュラーレンズ
32A      レーザーマーカー装置
33A      制御部
34A      記憶部
35A      駆動(走査)部
36A      レーザー光照射部
100A     冊子体
IM1      印字部(レーザーマーキング)
IM2      印字部(レーザーマーキング)
100B     積層体
101B     上部オーバーシート層
102B     近赤外線吸収層
103B     有色インキ層
103AB    蛍光インキ層
103BB    ホログラム層
104B     基材層
105B     下部オーバーシート層
106B     レーザー発色層
111B     人物画像
112B     人物識別情報
113B     マーク画像
114B     赤外線吸収性印刷画像
115B     マイクロ文字
116B     人物画像
117B     印字オブジェクト
200B     レーザーマーカー装置
201B     制御部
202B     記憶部
202aB    制御プログラム
202bB    走査パラメータ
202cB    画像データ
203B     駆動部
204B     レーザー光照射部
210B     挿入口
300B     潜像形成方法
F        周波数
LW       ライン幅
P        パワー
PW       パルス幅
R        解像度
SD       スポット距離
1 Laminate, information display medium (printed matter)
2 Person image (laser marking)
3 Person identification information (laser marking)
4 marks (colored ink printing, fluorescent ink printing, or hologram)
5 Window member (transparent resin, near-infrared absorbing material)
6 Near-infrared absorption image (inside the window member, due to the near-infrared absorbing material)
7 Person image (laser marking)
8 marks (colored ink printing, fluorescent ink printing, or hologram)
9 Base material layer (white sheet)
10,11 Laser coloring layer 12,13 Colored ink layer, fluorescent ink layer, or hologram layer 14,15 Oversheet layer (transparent sheet)
16 Base material intermediate layer (second part)
17 Base material intermediate layer (first part)
18 First base material layer (white sheet)
19 Second base material layer (white sheet)
20 Through holes 21 and 22 People images (colored ink printing, fluorescent ink printing, or holograms)
23, 24, 25 Sheet 26 Person identification information (laser marking)
28,29 Partial portrait image (ink ink printing)
30 Partial portrait image (inside the window member, due to near-infrared absorbing material)
31 Background of person image or person identification information (laser marking)
33 Lenticular lens 34 People image (inside the window member, due to near-infrared absorbing material)
35 Person identification information (inside the window member, by near-infrared absorbing material)
37 People image (colored ink printing, fluorescent ink printing, or hologram)
38 Person identification information (colored ink printing, fluorescent ink printing, or hologram)
39 Colored ink layer, fluorescent ink layer, or hologram layer 40 Clear window (transparent resin)
40A 1st clear window member (transparent resin)
40B Second clear window member (transparent resin)
41 Near-infrared absorbing ink layer 42 Laser marker device 43 Control unit 44 Storage unit 45 Drive (scanning) unit 46 Laser irradiation unit 100 Booklet IM1 Printing unit (laser marking)
IM2 printing part (laser marking)
1A laminate (printed matter)
2A person image (laser marking)
3A Person identification information (laser marking)
4A mark (colored ink printing, fluorescent ink printing, or hologram)
5A, 5AA, 5BA
Printed image (near infrared absorbing ink printing)
6A person image (laser marking)
7A Person identification information (laser marking)
8A mark (colored ink printing, fluorescent ink printing, or hologram)
9A base material layer (white sheet)
10A laser coloring layer 10AA, 10BA
Opening area 11A, 12A Colored ink layer, fluorescent ink layer, or hologram layer 13A, 13AA, 13BA
Near-infrared absorbing ink layer 14A, 15A Oversheet layer (transparent sheet)
16A Laser color layer 17A Part of printed image (near infrared absorbing ink printing)
Micro characters included in 18A printed image (near infrared absorption ink printing)
19A micro characters (near infrared absorbing ink printing)
20A micro characters (near infrared absorbing ink printing)
21A micro characters (laser marking)
22A mark (near infrared absorption ink printing)
23A person image (laser marking)
24A base material intermediate layer (second part)
25A base material intermediate layer (first part)
26A 1st base material layer (white sheet)
27A 2nd base material layer (white sheet)
28A, 29A, 30A
Sheet 31A Lenticular lens 32A Laser marker device 33A Control unit 34A Storage unit 35A Drive (scanning) unit 36A Laser light irradiation unit 100A Booklet IM1 Printing unit (laser marking)
IM2 printing part (laser marking)
100B Laminated body 101B Upper oversheet layer 102B Near infrared absorption layer 103B Colored ink layer 103AB Fluorescent ink layer 103BB Hologram layer 104B Base material layer 105B Lower oversheet layer 106B Laser coloring layer 111B Person image 112B Person identification information 113B Mark image 114B Infrared absorption Sex Print image 115B Micro character 116B Person image 117B Print object 200B Laser marker device 201B Control unit 202B Storage unit 202aB Control program 202bB Scanning parameter 202cB Image data 203B Drive unit 204B Laser light irradiation unit 210B Insertion port 300B Submarine formation method F Frequency LW Line width P Power PW Pulse width R Resolution SD Spot distance

Claims (39)

  1.  可視光透過性及び近赤外線透過性を有する透過性材料と、
     近赤外線吸収性材料と
     を含有する情報表示媒体用部材であって、
     前記近赤外線吸収性材料は、セシウム酸化タングステン又は6ホウ化ランタンを含み、前記情報表示媒体用部材の対象部分にレーザー光を当てることにより、該対象部分の、少なくとも所定の波長範囲における近赤外線吸収性が低下することを特徴とする、
     情報表示媒体用部材。
    A transparent material that is transparent to visible light and near infrared rays,
    A member for an information display medium containing a near-infrared absorbing material.
    The near-infrared absorbing material contains tungsten cesium oxide or lanthanum hexabode, and absorbs near-infrared rays in at least a predetermined wavelength range of the target portion by irradiating the target portion of the information display medium member with a laser beam. Characterized by reduced sex,
    Information display medium member.
  2.  基材部と、
     前記基材部を貫通して配置された、請求項1に記載の前記情報表示媒体用部材と
     を備えたことを特徴とする、情報表示媒体。
    Base material and
    An information display medium comprising the member for the information display medium according to claim 1, which is arranged so as to penetrate the base material portion.
  3.  前記基材部の第1面の側と第2面の側との少なくとも一方に形成された、レーザー発色剤を含みレーザー光を当てることにより発色するレーザー発色層
     を更に備え、
     前記情報表示媒体用部材は前記基材部と前記レーザー発色層とを貫通して配置されている
     ことを特徴とする、
     請求項2に記載の情報表示媒体。
    Further provided with a laser coloring layer formed on at least one of the first surface side and the second surface side of the base material portion, which contains a laser coloring agent and develops color by irradiating a laser beam.
    The information display medium member is arranged so as to penetrate the base material portion and the laser coloring layer.
    The information display medium according to claim 2.
  4.  前記基材部の第1面の側と第2面の側との少なくとも一方に形成された、近赤外線透過性の有色インキ組成物又は蛍光インキ組成物を含む印刷層を更に備えることを特徴とする、請求項2又は3に記載の情報表示媒体。 A printing layer containing a near-infrared ray-transparent colored ink composition or a fluorescent ink composition formed on at least one of a first surface side and a second surface side of the base material portion is further provided. The information display medium according to claim 2 or 3.
  5.  前記基材部の第1面の側と第2面の側との少なくとも一方に形成された、近赤外線透過性のホログラム層を更に備えることを特徴とする、請求項2から4のいずれか一項に記載の情報表示媒体。 Any one of claims 2 to 4, further comprising a near-infrared ray-transparent hologram layer formed on at least one of the first surface side and the second surface side of the base material portion. The information display medium described in the section.
  6.  前記基材部の第1面の側であって、前記情報表示媒体における該第1面の側の最も外側の層として形成される、可視光透過性及び近赤外線透過性を有する第1面側透過層と、
     前記基材部の第2面の側であって、前記情報表示媒体における該第2面の側の最も外側の層として形成される、可視光透過性及び近赤外線透過性を有する第2面側透過層と
     の少なくとも一方を更に備えることを特徴とする、請求項2から5のいずれか一項に記載の情報表示媒体。
    The side of the first surface of the base material portion, which is formed as the outermost layer on the side of the first surface in the information display medium, and has visible light transmission and near infrared transmission. With a transparent layer,
    The side of the second surface of the base material portion, which is formed as the outermost layer on the side of the second surface in the information display medium, and has visible light transmission and near infrared transmission. The information display medium according to any one of claims 2 to 5, further comprising at least one of a transparent layer.
  7.  前記第1面側透過層と前記第2面側透過層との前記少なくとも一方における前記基材部とは逆側の面の、前記情報表示媒体用部材と少なくとも一部重なる区域には複数の凸状光学要素部分が形成されていることを特徴とする、請求項6に記載の情報表示媒体。 A plurality of protrusions on the surface of at least one of the first surface side transmission layer and the second surface side transmission layer opposite to the base material portion, in an area that at least partially overlaps with the information display medium member. The information display medium according to claim 6, wherein the shape optical element portion is formed.
  8.  基材中間層を更に備え、該基材中間層は第1の部分と第2の部分とを含み、
     前記基材部は第1基材部と第2基材部とを含み、前記基材中間層の前記第1の部分は該第1基材部と該第2基材部との間に位置し、
     前記基材中間層の前記第2の部分は、該基材中間層の端部に位置し、前記第1基材部と前記第2基材部との間に位置しない、
    請求項2から7のいずれか一項に記載の情報表示媒体。
    A base material intermediate layer is further provided, and the base material intermediate layer includes a first portion and a second portion.
    The base material portion includes a first base material portion and a second base material portion, and the first portion of the base material intermediate layer is located between the first base material portion and the second base material portion. death,
    The second portion of the base material intermediate layer is located at the end of the base material intermediate layer and is not located between the first base material portion and the second base material portion.
    The information display medium according to any one of claims 2 to 7.
  9.  複数のシートをとじ合わせた冊子体であって、該複数のシートのうち少なくとも1つのシートが請求項8に記載の情報表示媒体であり、該情報表示媒体は前記基材中間層の前記第2の部分において他のシートととじ合わせられている、冊子体。 A booklet in which a plurality of sheets are bound, and at least one of the plurality of sheets is the information display medium according to claim 8, and the information display medium is the second base material intermediate layer. A booklet that is combined with other sheets in the part of.
  10.  前記情報表示媒体用部材が、該情報表示媒体用部材内における近赤外線吸収特性の変化によって対象の情報を部分的に表示する第1の部分情報表示部を含み、
     前記冊子体に含まれる前記他のシートのうち、前記情報表示媒体と隣り合うページのシートが、該隣り合うページのシートにおける該情報表示媒体側の面に形成された、近赤外線吸収特性及び可視光吸収特性の変化によって前記対象の情報を部分的に表示する第2の部分情報表示部を含み、
     前記第1の部分情報表示部において表示される情報と前記第2の部分情報表示部において表示される情報とを合成することにより、前記対象の情報が得られる
     ことを特徴とする請求項9に記載の冊子体。
    The information display medium member includes a first partial information display unit that partially displays target information due to a change in near-infrared absorption characteristics in the information display medium member.
    Among the other sheets included in the booklet, the sheet of the page adjacent to the information display medium is formed on the surface of the sheet of the adjacent page on the side of the information display medium, and has near-infrared absorption characteristics and visibility. Includes a second partial information display that partially displays the target information due to changes in light absorption characteristics.
    The ninth aspect of the present invention is characterized in that the target information can be obtained by synthesizing the information displayed in the first partial information display unit and the information displayed in the second partial information display unit. The booklet of the description.
  11.  前記基材部の第1面の側、又は第2面の側にあって、前記情報表示媒体用部材が配置されていない領域が、可視光吸収特性の変化によって情報を表示する可視情報表示部を含む、請求項10に記載の冊子体
     における、前記可視情報表示部が表示する前記情報と、前記第1の部分情報表示部において表示される情報と前記第2の部分情報表示部において表示される情報とを合成することにより得られる前記対象の情報とを比較することにより、前記情報表示媒体の真贋判定をすることを特徴とする方法。
    A visible information display unit that displays information by changing the visible light absorption characteristics in a region on the first surface side or the second surface side of the base material portion on which the information display medium member is not arranged. In the booklet according to claim 10, the information displayed by the visible information display unit, the information displayed by the first partial information display unit, and the information displayed by the second partial information display unit are displayed. A method characterized in that the authenticity of the information display medium is determined by comparing the information with the target information obtained by synthesizing the information.
  12.  可視光透過性及び近赤外線透過性を有する透過層と、
     近赤外線吸収性材料を含む近赤外線吸収性インキ組成物を含む、近赤外線吸収層と
     を備えた情報表示媒体用部材であって、
     前記近赤外線吸収性材料は、セシウム酸化タングステン又は6ホウ化ランタンを含み、前記情報表示媒体用部材の対象部分にレーザー光を当てることにより、該対象部分の、少なくとも所定の波長範囲における近赤外線吸収性が低下することを特徴とする、
     情報表示媒体用部材。
    A transmissive layer that is transparent to visible light and near infrared rays,
    A member for an information display medium including a near-infrared absorbing ink composition containing a near-infrared absorbing material and having a near-infrared absorbing layer.
    The near-infrared absorbing material contains tungsten cesium oxide or lanthanum hexabode, and absorbs near-infrared rays in at least a predetermined wavelength range of the target portion by irradiating the target portion of the information display medium member with a laser beam. Characterized by reduced sex,
    Information display medium member.
  13.  基材部と、
     可視光透過性及び近赤外線透過性を有する透過性材料と、近赤外線吸収性材料とを含有し、前記基材部を貫通して配置された情報表示媒体用部材であって、該近赤外線吸収性材料は、セシウム酸化タングステン又は6ホウ化ランタンを含む、情報表示媒体用部材と
     を備えた情報表示媒体における、前記情報表示媒体用部材の対象部分に対して、該対象部分の、少なくとも所定の波長範囲における近赤外線吸収性を低下させるようにレーザー光を当てることを特徴とする、方法。
    Base material and
    A member for an information display medium containing a transparent material having visible light transmission and near-infrared transmission and a near-infrared absorbing material and arranged so as to penetrate the base material portion, and absorbing the near-infrared rays. The sex material is at least predetermined with respect to the target portion of the information display medium member in the information display medium including the information display medium member containing tungsten cesium oxide or hexaborohydride. A method characterized by irradiating a laser beam so as to reduce near-infrared absorption in the wavelength range.
  14.  基材部と、
     可視光透過性及び近赤外線透過性を有する透過性材料と、近赤外線吸収性材料とを含有し、前記基材部を貫通して配置された情報表示媒体用部材であって、該近赤外線吸収性材料は、セシウム酸化タングステン又は6ホウ化ランタンを含む、情報表示媒体用部材と
     を備え、
     前記情報表示媒体用部材が、該情報表示媒体用部材内における近赤外線吸収特性の変化によって情報を表示する近赤外情報表示部を含み、
     前記基材部の第1面の側、又は第2面の側にあって、前記情報表示媒体用部材が配置されていない領域が、可視光吸収特性の変化によって情報を表示する可視情報表示部を含み、
     前記近赤外情報表示部において表示される情報と、前記可視情報表示部において表示される情報とが、同一の対象に関連する情報である
     ことを特徴とする、情報表示媒体。
    Base material and
    A member for an information display medium containing a transmissive material having visible light transmissivity and near-infrared ray transmissivity and a near-infrared ray absorbing material and arranged so as to penetrate the base material portion, and the near-infrared ray absorbing material. The sex material comprises a member for an information display medium, including a tungsten cesium oxide or a lanthanum hexaborate.
    The information display medium member includes a near-infrared information display unit that displays information by changing the near-infrared absorption characteristic in the information display medium member.
    A visible information display unit that displays information by changing the visible light absorption characteristics in a region on the first surface side or the second surface side of the base material portion on which the information display medium member is not arranged. Including
    An information display medium, characterized in that the information displayed on the near-infrared information display unit and the information displayed on the visible information display unit are information related to the same object.
  15.  基材部と、
     可視光透過性及び近赤外線透過性を有する透過性材料と、近赤外線吸収性材料とを含有し、前記基材部を貫通して配置された情報表示媒体用部材であって、該近赤外線吸収性材料は、セシウム酸化タングステン又は6ホウ化ランタンを含む、情報表示媒体用部材と
     を備え、
     前記情報表示媒体用部材が、該情報表示媒体用部材内における近赤外線吸収特性の変化によって情報を表示する近赤外情報表示部を含み、
     前記基材部の第1面の側、又は第2面の側にあって、前記情報表示媒体用部材が配置されていない領域が、可視光吸収特性の変化によって情報を表示する可視情報表示部を含む、
     情報表示媒体の、前記近赤外情報表示部の表示内容と前記可視情報表示部の表示内容とを比較することにより、該情報表示媒体の真贋判定をすることを特徴とする方法。
    Base material and
    A member for an information display medium containing a transmissive material having visible light transmissivity and near-infrared ray transmissivity and a near-infrared ray absorbing material and arranged so as to penetrate the base material portion, and the near-infrared ray absorbing material. The sex material comprises a member for an information display medium, including a tungsten cesium oxide or a lanthanum hexaborate.
    The information display medium member includes a near-infrared information display unit that displays information by changing the near-infrared absorption characteristic in the information display medium member.
    A visible information display unit that displays information by changing the visible light absorption characteristics in a region on the first surface side or the second surface side of the base material portion on which the information display medium member is not arranged. including,
    A method characterized in that authenticity of the information display medium is determined by comparing the display content of the near-infrared information display unit with the display content of the visible information display unit of the information display medium.
  16.  基材層と、
     前記基材層の第1面の側に形成された、レーザー発色剤を含みレーザー光を当てることにより発色する第1面側レーザー発色層と、
     前記基材層の前記第1面の側に形成された、近赤外線吸収性材料を含む近赤外線吸収性インキ組成物を含む近赤外線吸収層と
     を備え、
     前記第1面側レーザー発色層は少なくとも1つの開口部領域を有し、該開口部領域内に前記近赤外線吸収層の少なくとも一部が位置するか、又は該開口部領域と該近赤外線吸収層とが少なくとも部分的に重なり、
     前記近赤外線吸収性材料は、セシウム酸化タングステン又は6ホウ化ランタンを含み、前記近赤外線吸収層の、前記開口部領域内に位置するか、又は該開口部領域と重なる対象部分にレーザー光を当てることにより、該対象部分の、少なくとも所定の波長範囲における近赤外線吸収性が低下することを特徴とする、
     積層体。
    Base layer and
    A laser coloring layer on the first surface side formed on the first surface side of the base material layer, which contains a laser coloring agent and develops color by irradiating a laser beam.
    A near-infrared absorbing layer containing a near-infrared absorbing ink composition containing a near-infrared absorbing material, which is formed on the side of the first surface of the base material layer, is provided.
    The first surface side laser coloring layer has at least one opening region, and at least a part of the near-infrared absorbing layer is located in the opening region, or the opening region and the near-infrared absorbing layer are located. And at least partially overlap
    The near-infrared absorbing material contains tungsten cesium oxide or lanthanum hexaboride, and irradiates a target portion of the near-infrared absorbing layer located within the opening region or overlapping the opening region with laser light. As a result, the near-infrared absorption of the target portion in at least a predetermined wavelength range is reduced.
    Laminated body.
  17.  前記基材層の前記第1面の側に形成された、近赤外線透過性の有色インキ組成物又は蛍光インキ組成物を含む第1面側印刷層を更に備えることを特徴とする、請求項16に記載の積層体。 16. The first side printing layer containing the near-infrared ray-transparent colored ink composition or the fluorescent ink composition formed on the first side of the base material layer is further provided. The laminate described in.
  18.  前記基材層の前記第1面の側に形成された、近赤外線透過性の第1面側ホログラム層を更に備える、請求項16又は17に記載の積層体。 The laminate according to claim 16 or 17, further comprising a near-infrared ray transmissive first surface side hologram layer formed on the first surface side of the base material layer.
  19.  前記基材層の前記第1面の側に形成された、前記第1面側印刷層は、少なくとも一部が前記近赤外線吸収層と重なることを特徴とする、請求項17に記載の積層体。 The laminate according to claim 17, wherein at least a part of the first side printing layer formed on the first side of the base material layer overlaps with the near infrared absorbing layer. ..
  20.  前記基材層の前記第1面の側に形成された、前記第1面側ホログラム層は、少なくとも一部が前記近赤外線吸収層と重なることを特徴とする、請求項18に記載の積層体。 The laminate according to claim 18, wherein at least a part of the first surface side hologram layer formed on the first surface side of the base material layer overlaps with the near infrared absorption layer. ..
  21.  前記基材層の第2面の側に形成された、レーザー発色剤を含みレーザー光を当てることにより発色する第2面側レーザー発色層を更に備えることを特徴とする、請求項16から20のいずれか一項に記載の積層体。 Claims 16 to 20, further comprising a second surface side laser coloring layer formed on the second surface side of the base material layer, which contains a laser coloring agent and develops color by irradiating a laser beam. The laminate according to any one item.
  22.  前記基材層の前記第1面の側であって、前記積層体における該第1面の側の最も外側の層として形成された、可視光透過性及び近赤外線透過性を有する第1面側透過層を更に備えることを特徴とする、請求項16から21のいずれか一項に記載の積層体。 The first surface side having visible light transmission and near infrared transmission transmission, which is the side of the first surface of the base material layer and is formed as the outermost layer on the side of the first surface in the laminate. The laminate according to any one of claims 16 to 21, further comprising a permeable layer.
  23.  前記基材層の第2面の側であって、前記積層体における該第2面の側の最も外側の層として形成された、可視光透過性及び近赤外線透過性を有する第2面側透過層を更に備えることを特徴とする、請求項16から22のいずれか一項に記載の積層体。 The second surface side transmission having visible light transmission and near infrared ray transmission, which is the side of the second surface of the base material layer and is formed as the outermost layer on the side of the second surface in the laminate. The laminate according to any one of claims 16 to 22, further comprising a layer.
  24.  前記第1面側透過層における前記近赤外線吸収層とは逆側の面の、該近赤外線吸収層と少なくとも一部重なる区域には複数の凸状光学要素部分が形成されていることを特徴とする、請求項22に記載の積層体。 It is characterized in that a plurality of convex optical element portions are formed in an area of the first surface-side transmitting layer opposite to the near-infrared absorbing layer and at least partially overlapping the near-infrared absorbing layer. 22. The laminate according to claim 22.
  25.  基材中間層を更に備え、該基材中間層は第1の部分と第2の部分とを含み、
     前記基材層は第1基材層と第2基材層とを含み、前記基材中間層の前記第1の部分は該第1基材層と該第2基材層との間に位置し、
     前記基材中間層の前記第2の部分は、該基材中間層の端部に位置し、前記第1基材層と前記第2基材層との間に位置しない、
    請求項16から24のいずれか一項に記載の積層体。
    A base material intermediate layer is further provided, and the base material intermediate layer includes a first portion and a second portion.
    The base material layer includes a first base material layer and a second base material layer, and the first portion of the base material intermediate layer is located between the first base material layer and the second base material layer. death,
    The second portion of the substrate intermediate layer is located at the end of the substrate intermediate layer and is not located between the first substrate layer and the second substrate layer.
    The laminate according to any one of claims 16 to 24.
  26.  複数のシートをとじ合わせた冊子体であって、該複数のシートのうち少なくとも1つのシートが請求項25に記載の積層体であり、該積層体は前記基材中間層の前記第2の部分において他のシートととじ合わせられている、冊子体。 A booklet in which a plurality of sheets are bound, and at least one of the plurality of sheets is the laminate according to claim 25, and the laminate is the second portion of the base material intermediate layer. A booklet that is combined with other sheets in.
  27.  基材層と、
     前記基材層の第1面の側に形成された、レーザー発色剤を含みレーザー光を当てることにより発色する第1面側レーザー発色層と、
     前記基材層の前記第1面の側に形成された、近赤外線吸収性材料を含む近赤外線吸収性インキ組成物を含む近赤外線吸収層であって、該近赤外線吸収性材料はセシウム酸化タングステン又は6ホウ化ランタンを含む、近赤外線吸収層と
     を備え、前記第1面側レーザー発色層は少なくとも1つの開口部領域を有し、該開口部領域内に前記近赤外線吸収層の少なくとも一部が位置するか、又は該開口部領域と該近赤外線吸収層とが少なくとも部分的に重なる
     積層体における、前記近赤外線吸収層の、前記開口部領域内に位置するか、又は該開口部領域と重なる対象部分に対して、該対象部分の、少なくとも所定の波長範囲における近赤外線吸収性を低下させるようにレーザー光を当てることを特徴とする、方法。
    Base layer and
    A laser coloring layer on the first surface side formed on the first surface side of the base material layer, which contains a laser coloring agent and develops color by irradiating a laser beam.
    A near-infrared absorbing layer containing a near-infrared absorbing ink composition containing a near-infrared absorbing material, which is formed on the side of the first surface of the base material layer, wherein the near-infrared absorbing material is tungsten cesium oxide. Alternatively, the near-infrared absorbing layer including a 6-borrowed lantern is provided, the first surface side laser coloring layer has at least one opening region, and at least a part of the near-infrared absorbing layer is contained in the opening region. Is located, or is located within the opening region of the near-infrared absorbing layer in a laminate in which the opening region and the near-infrared absorbing layer overlap at least partially, or with the opening region. A method comprising irradiating an overlapping target portion with a laser beam so as to reduce the near-infrared absorption of the target portion in at least a predetermined wavelength range.
  28.  基材層と、
     前記基材層の第1面の側に形成された、レーザー発色剤を含みレーザー光を当てることにより発色する第1面側レーザー発色層であって、該第1面側レーザー発色層は少なくとも1つの開口部領域を有し、該第1面側レーザー発色層内の該開口部領域以外の領域における可視光吸収特性の変化によって情報を表示する可視情報表示部を含む、該第1面側レーザー発色層と、
     前記基材層の前記第1面の側に形成された、近赤外線吸収性材料を含む近赤外線吸収性インキ組成物を含む近赤外線吸収層であって、
      前記近赤外線吸収性材料はセシウム酸化タングステン又は6ホウ化ランタンを含み、
      前記近赤外線吸収層の少なくとも一部が前記開口部領域内に位置するか、又は該開口部領域と該近赤外線吸収層とが少なくとも部分的に重なり、
      前記開口部領域内に位置するか、又は該開口部領域と重なる領域における、近赤外線吸収特性の変化によって情報を表示する近赤外情報表示部を含む、
     前記近赤外線吸収層と
     を備える積層体の、前記可視情報表示部の表示内容と前記近赤外情報表示部の表示内容とを比較することにより、該積層体の真贋判定をすることを特徴とする方法。
    Base layer and
    A first surface side laser coloring layer formed on the first surface side of the base material layer, which contains a laser coloring agent and develops color by irradiating a laser beam, and the first surface side laser coloring layer is at least one. The first surface side laser including a visible information display unit having one opening region and displaying information by a change in visible light absorption characteristics in a region other than the opening region in the first surface side laser coloring layer. Coloring layer and
    A near-infrared absorbing layer containing a near-infrared absorbing ink composition containing a near-infrared absorbing material, which is formed on the side of the first surface of the base material layer.
    The near-infrared absorbing material comprises tungsten cesium oxide or lanthanum hexaboride.
    At least a part of the near-infrared absorbing layer is located in the opening region, or the opening region and the near-infrared absorbing layer overlap at least partially.
    A near-infrared information display unit that displays information according to a change in near-infrared absorption characteristics in a region located in the opening region or overlaps with the opening region.
    The feature is that the authenticity of the laminated body is determined by comparing the display content of the visible information display unit with the display content of the near infrared information display unit of the laminated body including the near-infrared absorbing layer. how to.
  29.  積層体に印字画像に対応する潜像を形成する方法であって、
     前記積層体は、基材層、及び近赤外線吸収性材料としてセシウム酸化タングステン又は6ホウ化ランタンを含む近赤外線吸収性インキ組成物を用いて形成される近赤外線吸収層を備えるものであり、前記方法は、
     前記印字画像の前記潜像が形成されるように、前記印字画像の情報に基づいて制御したレーザー光を照射しながら前記積層体の対象領域を走査するレーザー走査ステップ、を含み、
     前記印字画像の前記潜像を形成する際の解像度は、前記基材層を可視光領域で発色させずに、前記近赤外線吸収層において少なくとも所定の波長範囲における近赤外線吸収性を低下させることによって前記潜像を形成することができるものである、ことを特徴とする、方法。
    It is a method of forming a latent image corresponding to a printed image on a laminated body.
    The laminate includes a base material layer and a near-infrared absorbing layer formed by using a near-infrared absorbing ink composition containing tungsten cesium oxide or hexaborated lanthanum as a near-infrared absorbing material. The method is
    A laser scanning step of scanning a target area of the laminate while irradiating a laser beam controlled based on the information of the printed image so that the latent image of the printed image is formed includes.
    The resolution at which the latent image of the printed image is formed is determined by reducing the near-infrared absorption in the near-infrared absorbing layer at least in a predetermined wavelength range without causing the base material layer to develop color in the visible light region. A method, characterized in that it is capable of forming the latent image.
  30.  前記レーザー走査ステップは、前記解像度に対応する単位長さあたりの数で前記対象領域に照射スポットを形成することができるように前記レーザー光を照射するものである、請求項29に記載の方法。 The method according to claim 29, wherein the laser scanning step irradiates the laser beam so that irradiation spots can be formed in the target region by a number per unit length corresponding to the resolution.
  31.  前記印字画像は、前記解像度のピクセルで表現されており、
     前記レーザー走査ステップは、前記ピクセルのそれぞれに対応する前記対象領域上の位置に前記ピクセルの明暗情報に基づいて制御した前記レーザー光を照射しながら前記対象領域を走査するものである、請求項30に記載の方法。
    The printed image is represented by pixels having the resolution.
    30. The laser scanning step scans the target area while irradiating a position on the target area corresponding to each of the pixels with the laser light controlled based on the brightness information of the pixel. The method described in.
  32.  前記印字画像は、印字しようとする画像の情報をモノクロで表わしたものの明暗を反転させたものである、請求項31に記載の方法。 The method according to claim 31, wherein the printed image represents information of an image to be printed in monochrome, but the light and darkness is reversed.
  33.  前記解像度は、85dpiから1000dpiの範囲であることを特徴とする、請求項29から32のいずれか1項に記載の方法。 The method according to any one of claims 29 to 32, wherein the resolution is in the range of 85 dpi to 1000 dpi.
  34.  前記解像度は、140dpiから900dpiの範囲であることを特徴とする、請求項29から33のいずれか1項に記載の方法。 The method according to any one of claims 29 to 33, wherein the resolution is in the range of 140 dpi to 900 dpi.
  35.  前記レーザー光の波長は、近赤外線領域である、請求項29から34のいずれか1項に記載の方法。 The method according to any one of claims 29 to 34, wherein the wavelength of the laser light is in the near infrared region.
  36.  前記印字画像は、文字、数字、記号、図柄、写真、またはそれらの任意の組み合わせを含むものである、請求項29から35のいずれか1項に記載の方法。 The method according to any one of claims 29 to 35, wherein the printed image includes letters, numbers, symbols, patterns, photographs, or any combination thereof.
  37.  前記基材層及び前記近赤外線吸収層は、一体の層として形成される、請求項29から36のいずれか1項に記載の方法。 The method according to any one of claims 29 to 36, wherein the base material layer and the near-infrared absorbing layer are formed as an integral layer.
  38.  積層体に印字画像に対応する潜像を形成する装置であって、
     前記積層体は、基材層、及び近赤外線吸収性材料としてセシウム酸化タングステン又は6ホウ化ランタンを含む近赤外線吸収性インキ組成物を用いて形成される近赤外線吸収層を備えるものであり、前記装置は、
     前記積層体を支持する支持手段と、
     前記印字画像の前記潜像が形成されるように、前記印字画像の情報に基づいて制御したレーザー光を照射しながら前記積層体の対象領域を走査するレーザー走査手段と、を含み、
     前記印字画像の前記潜像を形成する際の解像度は、前記基材層を可視光領域で発色させずに、前記近赤外線吸収層において少なくとも所定の波長範囲における近赤外線吸収性を低下させることによって前記潜像を形成することができるものである、ことを特徴とする、装置。
    A device that forms a latent image corresponding to a printed image on a laminated body.
    The laminate includes a base material layer and a near-infrared absorbing layer formed by using a near-infrared absorbing ink composition containing tungsten cesium oxide or hexaborated lanthanum as a near-infrared absorbing material. The device is
    Supporting means for supporting the laminated body and
    A laser scanning means for scanning a target area of the laminate while irradiating a laser beam controlled based on the information of the printed image so that the latent image of the printed image is formed is included.
    The resolution at which the latent image of the printed image is formed is determined by reducing the near-infrared absorption in the near-infrared absorbing layer at least in a predetermined wavelength range without causing the base material layer to develop color in the visible light region. An apparatus characterized in that it is capable of forming the latent image.
  39.  印字画像に対応する潜像が形成された積層体であって、
     前記積層体は、基材層、及び近赤外線吸収性材料としてセシウム酸化タングステン又は6ホウ化ランタンを含む近赤外線吸収性インキ組成物を用いて形成される近赤外線吸収層を備え、
     前記印字画像の前記潜像は、前記印字画像の情報に基づいて制御したレーザー光を照射しながら前記積層体の対象領域を走査することによって形成され、
     前記印字画像の前記潜像を形成する際の解像度は、前記基材層を可視光領域で発色させずに、前記近赤外線吸収層において少なくとも所定の波長範囲における近赤外線吸収性を低下させることによって前記潜像を形成することができるものである、ことを特徴とする、積層体。
    A laminated body in which a latent image corresponding to a printed image is formed.
    The laminate comprises a substrate layer and a near-infrared absorbing layer formed using a near-infrared absorbing ink composition containing tungsten cesium oxide or lanthanum hexaboride as a near-infrared absorbing material.
    The latent image of the printed image is formed by scanning the target area of the laminated body while irradiating a laser beam controlled based on the information of the printed image.
    The resolution at which the latent image of the printed image is formed is determined by reducing the near-infrared absorption in the near-infrared absorbing layer at least in a predetermined wavelength range without causing the base material layer to develop color in the visible light region. A laminate, characterized in that it is capable of forming the latent image.
PCT/JP2022/001151 2021-01-14 2022-01-14 Information display medium member, information display medium, booklet, laminate, method related thereto, method for forming latent image corresponding to printed image on laminate, device therefor, and laminate manufactured by same WO2022154087A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022547748A JP7168919B1 (en) 2021-01-14 2022-01-14 Information display medium, booklet, and related method
JP2022173604A JP7382016B2 (en) 2021-01-14 2022-10-28 A method characterized by determining the authenticity of a laminate

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021004402 2021-01-14
JP2021004403 2021-01-14
JP2021-004403 2021-01-14
JP2021-004402 2021-01-14
JP2021005629 2021-01-18
JP2021-005629 2021-01-18

Publications (1)

Publication Number Publication Date
WO2022154087A1 true WO2022154087A1 (en) 2022-07-21

Family

ID=82448511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001151 WO2022154087A1 (en) 2021-01-14 2022-01-14 Information display medium member, information display medium, booklet, laminate, method related thereto, method for forming latent image corresponding to printed image on laminate, device therefor, and laminate manufactured by same

Country Status (2)

Country Link
JP (2) JP7168919B1 (en)
WO (1) WO2022154087A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013240885A (en) * 2012-05-17 2013-12-05 Nippon Kararingu Kk Transparent laser marking sheet, laminate, and laser marking method
JP2019038255A (en) * 2017-08-25 2019-03-14 凸版印刷株式会社 Laminate, personal authentication medium and method for determining authenticity of personal authentication medium
JP3221579U (en) * 2019-03-20 2019-06-06 株式会社東芝 Identification card
JP2019155705A (en) * 2018-03-13 2019-09-19 トッパン・フォームズ株式会社 Information formation sheet and method of manufacturing information formation sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013240885A (en) * 2012-05-17 2013-12-05 Nippon Kararingu Kk Transparent laser marking sheet, laminate, and laser marking method
JP2019038255A (en) * 2017-08-25 2019-03-14 凸版印刷株式会社 Laminate, personal authentication medium and method for determining authenticity of personal authentication medium
JP2019155705A (en) * 2018-03-13 2019-09-19 トッパン・フォームズ株式会社 Information formation sheet and method of manufacturing information formation sheet
JP3221579U (en) * 2019-03-20 2019-06-06 株式会社東芝 Identification card

Also Published As

Publication number Publication date
JPWO2022154087A1 (en) 2022-07-21
JP7168919B1 (en) 2022-11-10
JP2023001220A (en) 2023-01-04
JP7382016B2 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP4861476B2 (en) Confidential document and method of forming laser marking in this type of document
KR102488710B1 (en) Laminates, identification documents, and methods for verifying identification documents
EP3697624B1 (en) Security devices, security articles, security documents and methods for their manufacture
US9944109B2 (en) Identification assembly for an identity document
PL196736B1 (en) Method for producing laser−writable data carriers and data carrier produced according to this method
EP1694515A1 (en) Security article with multicoloured image
JP2000218908A (en) Transfer material, image display medium, and image- forming method
WO2021124759A1 (en) Laminate, medium, and method
JP7131150B2 (en) LAMINATED BODY, PERSONAL AUTHENTICATION MEDIUM, AND AUTHENTICITY JUDGMENT METHOD OF PERSONAL AUTHENTICATION MEDIUM
CA2949629C (en) Method for producing a security element
JP6213227B2 (en) Image display device and method of manufacturing image display device
WO2022154087A1 (en) Information display medium member, information display medium, booklet, laminate, method related thereto, method for forming latent image corresponding to printed image on laminate, device therefor, and laminate manufactured by same
US11084315B2 (en) Color laser marking of security document and a method for producing such security document
WO2022102751A1 (en) Laminate, print product, and method using laminate
JP2015006748A (en) Sheet for anticounterfeit medium, and anticounterfeit medium
JP7319880B2 (en) Authenticity determination card and its manufacturing method
JP2022021626A (en) Anti-counterfeit medium
MXPA06006860A (en) Security article with multicoloured image

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022547748

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739492

Country of ref document: EP

Kind code of ref document: A1