WO2022153979A1 - ミラーの設計方法、および該設計方法における設計式が成り立つ反射面を備えた非点収差制御ミラー - Google Patents

ミラーの設計方法、および該設計方法における設計式が成り立つ反射面を備えた非点収差制御ミラー Download PDF

Info

Publication number
WO2022153979A1
WO2022153979A1 PCT/JP2022/000570 JP2022000570W WO2022153979A1 WO 2022153979 A1 WO2022153979 A1 WO 2022153979A1 JP 2022000570 W JP2022000570 W JP 2022000570W WO 2022153979 A1 WO2022153979 A1 WO 2022153979A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
point
intersection
condensing
reflecting surface
Prior art date
Application number
PCT/JP2022/000570
Other languages
English (en)
French (fr)
Inventor
陽子 竹尾
秀和 三村
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to US18/271,838 priority Critical patent/US20240112826A1/en
Priority to EP22739386.5A priority patent/EP4266107A1/en
Priority to CN202280009767.3A priority patent/CN116724254A/zh
Publication of WO2022153979A1 publication Critical patent/WO2022153979A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/067Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators using surface reflection, e.g. grazing incidence mirrors, gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/08Anamorphotic objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/064Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements having a curved surface

Definitions

  • the present invention relates to a method for designing a mirror having a first reflecting surface and a second reflecting surface on which light is sequentially reflected, and an astigmatism control mirror having a reflecting surface for which the design formula in the design method holds.
  • the synchrotron radiation soft X-ray beam is characterized by different characteristics in the vertical direction and the horizontal direction.
  • the beam size tends to be smaller in the vertical direction than in the horizontal direction.
  • the coherent width is larger in the vertical direction than in the horizontal direction.
  • the divergence angle of the beam in the vertical direction increases.
  • the spectroscope including the diffraction grating used collects soft X-rays only in the spectral direction, "astigmatism" occurs in which the light source position differs depending on the spectral direction and the direction in which the light source is not focused.
  • Non-Patent Document 1 There is a toroidal mirror that has the potential to remove astigmatism (Non-Patent Document 1).
  • the toroidal mirror is a mirror that is similar to the existing rotating elliptical mirror and is easy to manufacture by setting a uniform radius of curvature in each of the longitudinal direction and the lateral direction of the reflecting surface, and eliminates astigmatism. Even if it can be done, there is a drawback that the light collection size increases in principle.
  • Astigmatic off-axis mirror has also been proposed as a mirror that can set the focusing size smaller than the toroidal mirror and can set the vertical and horizontal independent light sources and focusing points (Non-Patent Document 2). ..
  • This mirror uses an elliptical curve to focus a beam diverging from one point to another point, a parabola to parallelize a beam diverging from one point, and another beam focusing toward one point. Based on the principle that hyperbolas are applied as the ridges of the reflecting surfaces in order to convert them into beams that focus toward points, different conic sections are set in the longitudinal direction and the lateral direction, and they are connected smoothly. It is a shape that requires a curved surface.
  • this AO mirror is a mirror defined by rotating a conic section profile in the longitudinal direction around a straight line (major axis) connecting the focal points of the conic section in the lateral direction in order to obtain a curved surface, and is a reflecting surface. Since is approximated to an axially symmetric shape, there is a limit to the suppression of the condensing size due to the approximation. There is no problem if the beam is in the terahertz region with a long wavelength, but it cannot correspond to the beam in the X-ray region. In addition, the design formula is very complicated, including coordinate transformation several times, and the parameters are also complicated, difficult to understand and use.
  • the present invention attempts to solve in view of the above situation is that the light source position and the light collection position can be set independently in the vertical direction and the horizontal direction, whereby the non-point aberration can be freely converted.
  • the light source size can be suppressed to a smaller size to support beams in the X-ray region, the design formula is simple, the range of applications is wide, and beams with different characteristics in the vertical and horizontal directions are handled.
  • the point is to provide a mirror design method capable of producing a mirror that can be suitably used as an optical system.
  • the present inventor has conducted a "light source line" for each of the focusing in the sagittal direction and the focusing in the meridional direction as a method for geometrically and optically expressing the properties of a beam having non-point aberration.
  • the present invention includes the following inventions.
  • (1) A method for designing a mirror having a first reflecting surface and a second reflecting surface on which light is sequentially reflected.
  • the optical axis of the incident beam on the first reflecting surface is the z1 axis, and a cross section orthogonal to the z1 axis.
  • the x 1 y 1 plane, the optical axis of the emitted beam of the first reflection surface, which is the incident beam to the second reflection surface, is the z 2 axis, and the cross section orthogonal to this is the x 2 y 2 plane, and the second
  • the optical axis of the emitted beam of the reflecting surface is the z3 axis , the cross section perpendicular to this is the x3 y3 plane, and the x1 axis, x2 and x3 axes are the sagittal directions of the first reflecting surface and the second reflecting surface.
  • the incident beam on the first contralateral surface is L 1s along the z 1 axis direction from the intersection M 0 A on the first reflection surface of the z 1 axis and the z 2 axis on the z 1 axis.
  • a light source for light collection in the sagittal direction is provided at the position displaced by A, and light collection in the meridional direction is performed at a position displaced L 1 mA A along the z 1 axis direction from the intersection M 0 A on the z 1 axis.
  • the emission beam of the second reflecting surface has a light source of about , and the light is focused in the sagittal direction .
  • All emitted light rays emitted from the second reflecting surface pass through the position of the light source in the focusing and pass through the meridional light source line extending in the direction orthogonal to both the y1 axis and the z1 axis, and are condensed in the sagittal direction.
  • the sagittal condensing line extending in the direction orthogonal to both the x3 axis and the z3 axis passing through the condensing position in the above , and the y3 axis and the z3 axis passing through the condensing position in the meridional direction condensing.
  • the z2 axis for condensing in the sagittal direction. Condensing at a position displaced by L 2s A along the z 2 axis direction from the above intersection M 0 A , and condensing in the meridional direction from the intersection M 0 A on the z 2 axis in the z 2 axis direction.
  • the sagittal virtual condensing line for condensing in the sagittal direction is used as a sagittal virtual light source line
  • the meridional virtual condensing line for condensing in the meridional direction for the first reflecting surface is used as a meridional virtual light source line.
  • Each coordinate is represented by using the L 1s A and L 1 mA , and the intersection of the emitted ray from the MA point and the sagittal virtual focused line, and the emitted ray from the MA point and the meridional virtual focused line.
  • Each coordinate of the intersection of is represented by using the above L 2s A and L 2mA , and an arbitrary point on the second reflecting surface is designated as MB, and the intersection of the sagittal virtual light source line and the incident light ray to the MB point,
  • each coordinate of the intersection of the meridional virtual light source line and the incident ray to the MB point is expressed by using the distance L between the above L 2s A , L 2mA , and M 0 A M 0 B , and is expressed as MB .
  • the coordinates of the intersection of the light emitted from the point and the sagittal focused line and the intersection of the light emitted from the point MB and the meridional focused line are expressed using the above L 2s B and L 2 mb , and these coordinates, the first Condensing in the sagittal direction and condensing in the meridional direction on the 1 reflecting surface
  • the optical path length from the light source position to the virtual condensing position is constant at any point on the reflecting surface, and the sagittal on the 2nd reflecting surface.
  • the sagittal light source line and the meridional light source line are defined as a straight line S s extending in the y - axis direction and a straight line S m extending in the x - axis direction, respectively.
  • y A straight line F s A extending in the biaxial direction, x a straight line F m A extending in the biaxial direction, and the sagittal virtual light source line and the meridional virtual light source line are straight lines S s B , respectively, which correspond to the straight line F s A.
  • the straight line Sm B corresponding to the straight line Fm A is defined, and the sagittal condensing line and the meridional condensing line are defined as a straight line F s extending in the y3 axis direction and a straight line Fm extending in the x3 axis direction, respectively.
  • the method for designing a mirror according to (1) wherein the optical path lengths are calculated for each of the light sources in the meridional direction and the light sources in the sagittal direction on the first reflecting surface or the second reflecting surface. ..
  • the rotated arc plane be the equiphase plane A 1s , and obtain it as the distance from the intersection of the incident light beam and the equiphase plane A 1s on the side closer to the meridional light source line S m to the MA point.
  • the emission length from the MA point to the virtual condensing position for condensing in the sagittal direction on the first reflecting surface is centered on the intersection Q m0 A between the meridional virtual condensing line FmA and the z2 axis.
  • phase plane A 2s A it is obtained as the distance from the intersection of the two intersections of the emitted light beam and the equiphase plane A 2s A , which is closer to the meridional virtual condensing line FmA, to the MA point. 1
  • the optical path length is calculated for the light collection in the sagittal direction on the reflecting surface.
  • the rotated arc plane be the equiphase plane A 1 m , and obtain it as the distance from the intersection of the incident light beam and the equiphase plane A 1 m on the side closer to the sagittal light source line S s to the MA point.
  • the emission length from the MA point to the virtual condensing position for condensing in the meridional direction on the first reflecting surface is centered on the intersection Q s0 A of the sagittal virtual condensing line F s A and the z2 axis.
  • phase plane A 2mA it is obtained as the distance from the intersection of the emitted light beam and the equiphase plane A 2mA on the side closer to the sagittal virtual condensing line F s A to the MA point.
  • the optical path length is calculated for the light collection in the meridional direction on the first reflecting surface.
  • the rotating arc plane rotated around the virtual light source line S s B is set as the equiphase plane A 1s B , and the meridional virtual light source line S m B out of the two intersections of the incident light ray and the equiphase plane A 1s B. Obtained as the distance from the intersection on the near side to the MB point, the emission length from the MB point to the light source position for the light source in the sagittal direction on the second reflecting surface is the meridional light source lines F m and z 3 .
  • the rotating arc plane is defined as the equiphase plane A 2s , and is obtained as the distance from the intersection of the two intersections of the emitted light beam and the equiphase plane A 2s on the side closer to the meridional condensing line F m to the MB point.
  • the optical path length is calculated for the light source in the sagittal direction on the second reflecting surface.
  • the rotating arc plane rotated around the virtual light source line S m B is set as the equiphase plane A 1 m B , and the sagittal virtual light source line S s B out of the two intersections of the incident light ray and the equiphase plane A 1 m B.
  • the emission length from the MB point to the condensing position for the condensing in the meridional direction on the second reflecting surface is the sagittal condensing lines F s and z 3
  • An arc extending around the intersection Q s0 with the axis and passing through the intersection Qm0 between the meridional condensing line F m and the z3 axis in the direction orthogonal to the y3 axis was rotated around the meridional condensing line F m .
  • the distance from the intersection of the two intersections of the emitted light beam and the equiphase plane A 2m on the side closer to the sagittal condensing line F s to the MB point is obtained.
  • the optical path length is calculated for the light source in the meridional direction on the second reflecting surface.
  • the distance from the intersection on the side close to the virtual condensing line FmA to the MA point the distance from the intersection Qs A of the emitted light beam and the sagittal virtual condensing line F s A to the MA point is obtained. It is obtained by adding or subtracting the distance from the intersection Q s A to the arc defining the equiphase plane A 2 s A to the distance.
  • the sagittal light source line out of the two intersections of the incident light ray and the equiphase plane A 1m on the first reflecting surface For the distance from the intersection on the side closer to S s to the MA point, the distance from the intersection P m of the incident light ray and the meridional light source line S m to the MA point is obtained, and the intersection P is added to the distance. Obtained by adding or subtracting the distance from m to the arc that defines the equiphase plane A 1 m , and out of the two intersections of the emitted light beam on the first reflecting surface and the equiphase plane A 2mA.
  • the distance from the intersection QmA of the emitted light beam and the meridional virtual condensing line F mA to the MA point is obtained.
  • the distance from the intersection QmA to the arc defining the equiphase plane A 2mA is added or subtracted from the distance.
  • the meridional virtual of the two intersections of the incident light ray and the equiphase plane A 1s B on the second reflecting surface For the distance from the intersection near the light source line Sm B to the MB point, the distance from the intersection P s B of the incident light ray and the sagittal virtual light source line S s B to the MB point is obtained, and the distance is determined. The distance from the intersection P s B to the arc defining the equiphase surface A 1s B is added or subtracted to obtain the distance, and the emitted light beam on the second reflecting surface and the equiphase surface A 2s are obtained.
  • the distance from the intersection on the side closer to the meridional condensing line F m to the MB point is the distance from the intersection Q s of the emitted light beam and the sagittal condensing line F s to the MB point.
  • the distance from the intersection Q s to the arc defining the equiphase plane A 2s is added or subtracted from the distance.
  • the sagittal virtual of the two intersections of the incident light ray on the second reflecting surface and the equiphase plane A 1 mb B For the distance from the intersection near the light source line S s B to the MB point, the distance from the intersection P mb of the incident light ray and the meridional virtual light source line S mb to the MB point is obtained, and the distance is determined. The distance is obtained by adding or subtracting the distance from the intersection point Pm B to the arc defining the equiphase surface A 1m B , and the emitted light beam on the second reflecting surface and the equiphase surface A 2m .
  • the distance from the intersection on the side closer to the sagittal condensing line F s to the MB point is the distance from the intersection Q m between the emitted light beam and the meridional condensing line F m to the MB point.
  • a Cartesian coordinate system u A v A w A with respect to the first reflection plane is defined with A as the origin and the oblique incident angle formed by the u A v A plane and the optical axis z 1 as ⁇ 0 A.
  • the surface in contact with the reflecting surface is the u B v B plane, and the normal line passing through the M 0 B of the u B v B plane.
  • the direction is the w B axis
  • the v B axis is the direction orthogonal to both the z 2 axis and the z 3 axis
  • the u B axis is the direction orthogonal to both the v B axis and the w B axis
  • the intersection point M 0 B is the origin.
  • U B v B The orthogonal coordinate system u B v B w B with respect to the second reflection plane is defined, where the oblique incident angle formed by the plane of u B v B and the optical axis z 2 is ⁇ 0 B , and the above u A v A is defined.
  • the w A coordinate system and the u B v B w B coordinate system are the x 1 y 1 z 1 coordinate system and the incident beam on the second reflection surface, respectively, with reference to the optical axis of the incident beam on the first reflection surface. Converted to the x 2 y 2 z 2 coordinate system based on the optical axis of the emitted beam on the first reflecting surface and the x 3 y 3 z 3 coordinate system based on the optical axis of the emitted beam on the second reflecting surface.
  • a non-point aberration control mirror that has the same value of 2 mb and can obtain an emitted beam that is focused on one point from an incident beam that has astigmatism.
  • a mirror having a reflective surface according to any one of (1) to (6), wherein the values of L 1s A and L 1 mA match, and the L 2s A and L The values of 2mA are different, and the values of L 2s B and L 2MB are the same , and astigmatism is given to the incident beam diverging from one point on the first reflecting surface and the second reflecting surface.
  • a non-point aberration control mirror that eliminates the astigmatism and gives different reduction magnifications in the vertical direction and the horizontal direction.
  • L 2mA and L 2s A according to the equation (4) using the defined magnification M s in the sagittal direction and the magnification M m in the meridional direction, the beam spreading from one point both vertically and horizontally is generated twice.
  • An astigmatism control mirror designed so that the beam is circular at the condensing point or the divergence position further downstream by condensing the light into one point after the reflection of.
  • the three points of the condensing line F s A and z 2 -axis intersection Q s0 A and the condensing line F s and z 3 -axis intersection Q s 0 exist on the same straight line.
  • a non-point aberration control mirror that expands the allowable installation angle range by setting 2s A and L 2mA .
  • the light source position and the condensing position can be set independently in the vertical direction and the horizontal direction, whereby a mirror capable of freely converting astigmatism can be manufactured.
  • the focused size can be suppressed to a smaller size to support a beam in the X-ray region.
  • the design formula is simple, the range of applications is wide, and it can be suitably used as an optical system for handling beams having different characteristics in the vertical direction and the horizontal direction.
  • the design method of the present invention it is possible to obtain the condensing performance once by reflecting each of the vertical and horizontal condensing on the first reflecting surface and the second reflecting surface two or more times. Compared to the case where the light collection performance is obtained by the reflection of, it is possible to suppress off-axis aberration and further improve the imaging performance, and as described above, it is possible to freely convert astigmatism and at the same time, the installation angle error. It becomes possible to provide a mirror which is resistant to light.
  • the beam can be focused from one point to one point. It is also possible to provide mirrors that give different reduction magnifications vertically and horizontally. Furthermore, it is also possible to provide a mirror for circularizing the focused size for beams whose light source sizes are significantly different between vertical and horizontal. Further, by circularizing the shape of the beam incident on the second reflecting surface on the downstream side, it is possible to provide a mirror that forms a beam having a circular intensity profile at the divergence position.
  • FIG. 1 The conceptual diagram of the mirror designed by the design method which concerns on this invention.
  • (A) to (c) are conceptual diagrams showing the x 1 y 1 z 1 coordinate system, the x 2 y 2 z 2 coordinate system, and the x 3 y 3 z 3 coordinate system, respectively.
  • (A) is an explanatory diagram showing each point where the incident beam and the exit beam intersect the light source line and the virtual light source line on the first reflection surface, and (b) is the collection of the incident beam and the exit beam on the second reflection surface.
  • Explanatory drawing which shows the installation angle error to input. It is a graph which shows the response to a pitch angle error. ) Is the response of the focusing position shift in the sagittal direction. It is a graph which shows the response to a yaw angle error, (a) is the response of the concentrating size in the meridional direction, (b) is the response of the condensing size in the sagittal direction, (c) is the response of the focusing position deviation in the meridional direction, (d). ) Is the response of the focusing position shift in the sagittal direction. It is a graph which shows the response to a roll angle error. ) Is the response of the focusing position shift in the sagittal direction.
  • FIG. It is a figure which shows the mirror shape (height distribution) of Example 3, (a) shows the two-dimensional distribution of height, and (b) shows the sectional profile in the longitudinal direction.
  • FIG. It is a figure which shows the mirror shape (height distribution) of Example 4, (a) shows the two-dimensional distribution of height, and (b) shows the sectional profile in the longitudinal direction.
  • (A) is a diagram showing the result of outputting the distribution of light rays at the condensing point by the ray tracing calculation for the mirror of Example 4, and (b) is the result of outputting the distribution of light rays at a position 10 m downstream from the condensing point. The figure which shows.
  • the method for designing a mirror of the present invention relates to a method for designing a mirror having a first reflecting surface and a second reflecting surface on which light is sequentially reflected.
  • the mirror design method according to the present invention will be described with reference to typical embodiments.
  • the present invention aims at free conversion of non-point aberration, and designs a mirror with higher accuracy based on Fermat's principle that "light passes through the path with the shortest optical distance".
  • Fermat's principle states that, when limited to a condensing (or diffusing) mirror, "the sum of the distance from the light source point and the distance to the condensing point is constant for any point on the mirror surface (reflecting surface)". It can be converted into an expression. If the incident beam or the emitted beam has astigmatism, the law of constant optical path length cannot be applied immediately. This is because, as the name implies, a beam with non-point aberration does not have a single light source point or focus point.
  • the present invention is a design method realized by newly defining "light source line” and "condensing line” and making it possible to geometrically and optically express the properties of a beam having non-point aberration. be.
  • FIG. 1 is a conceptual diagram of a mirror designed by the design method according to the present invention.
  • Reference numeral A indicates a first reflecting surface (also referred to as mirror A)
  • reference numeral B indicates a second reflecting surface (also referred to as mirror B).
  • the optical axis of the incident beam on the first reflection surface is the z1 axis
  • the cross section orthogonal to this is the x1 y1 plane, and the second reflection.
  • the optical axis of the emitted beam of the first reflecting surface, which is the incident beam to the surface, is the z2 axis
  • the cross section orthogonal to this is the x2 y2 plane
  • the optical axis of the emitted beam of the second reflecting surface is z. It is assumed that the three axes and the cross section orthogonal to the three axes are x3 y3 planes, and the x1 axis, x2 and x3 axes are parallel to the sagittal direction of the first reflection surface and the second reflection surface.
  • the incident beam is from the intersection M 0 A to z on the first reflecting surface between the z 1 axis and the z 2 axis on the z 1 axis.
  • the intersection M 0 A to z 2 axes on the z 2 axis is assumed. It is assumed that the light is focused on a position displaced by L 2s A along the direction.
  • the light source is located at a position displaced L 1 mA along the z 1 axis from the intersection M 0 A on the z 1 axis, and the emitted beam is not reflected by the second reflecting surface.
  • the light is focused at a position displaced by L 2 mA along the z 2 axis direction from the intersection M 0 A on the z 2 axis.
  • the sagittal light source line (S s ) extending in the y 1 -axis direction, and the direction (x 1 ) orthogonal to both the optical axis z 1 axis and the meridional direction (y 1 axis) through the position of the light source in condensing in the meridional direction. It is considered to pass through the meridional light source line ( Sm ) extending in the axial direction). In this way, the sagittal light source line (S s ) and the meridional light source line (S m ) are defined.
  • all the emitted light rays emitted from the first reflecting surface pass through the focused position in the focusing in the sagittal direction and are orthogonal to the optical axis z2 of the emitted light and the sagittal direction ( x2 axis) ( y).
  • the sagittal virtual condensing line (F s A ) extending in the biaxial direction) and the direction orthogonal to the optical axes z2 and y2 of the emitted light passing through the condensing position in the condensing in the meridional direction ( x2 axis direction).
  • the sagittal virtual condensing line (F s A ) and the meridional virtual condensing line (F m A ) are defined.
  • the sagittal virtual condensing line (F s A ) for the first reflecting surface is the sagittal virtual light source line (S s ) on the extension line thereof.
  • the emitted beam is along the z3 axis direction from the intersection M0B on the second reflecting surface between the z2 axis and the z3 axis on the z3 axis.
  • L 2s B Suppose that the light is focused on the displaced position. Further, regarding the focusing in the meridional direction of the second reflecting surface, it is assumed that the emitted beam is focused at a position displaced by L 2 mb from the intersection M 0 B on the z 3 axis along the z 3 axis direction.
  • All the emitted light rays emitted from the second reflecting surface pass through the focused position in the focusing in the sagittal direction and are orthogonal to the optical axis z3 of the emitted light and the sagittal direction ( x3 axis) ( y3 axis).
  • the sagittal condensing line (F s ) extending in the direction) and the meridional extending in the direction orthogonal to the optical axes z3 and y3 of the emitted light passing through the condensing position in the condensing in the meridional direction ( x3 axis direction). It is considered to pass through the condensing line ( Fm ). In this way, the sagittal condensing line (F s ) and the meridional condensing line (F m ) are defined.
  • the meridional virtual light source line (Sm B ), the sagittal condensing line (F s ), and the meridional condensing line (F m ) are straight lines, but may be curved lines.
  • FIG. 3 shows the case where L 1s A > L 1m A > 0 and L 2s A > L 2m A > 0, but these constants can take negative values.
  • L 1s A or L 1mA takes a negative value
  • the incident beam to the first reflecting surface is reflected by the reflecting surface while being focused downstream.
  • L 2s A or L 2mA takes a negative value
  • the emitted beam of the first reflecting surface has a wavefront as if it diverged from a position upstream of the reflecting surface.
  • FIG. 4 shows the case where L 1s B ⁇ L 1m B ⁇ 0 and L 2s B > L 2m B > 0.
  • L 1s B or L 1 mb has a negative value
  • the incident beam to the second reflecting surface is reflected by the reflecting surface in the middle of condensing toward the downstream.
  • L 2s B or L 2 mb B has a negative value
  • the emitted beam of the second reflecting surface has a wavefront as if it diverged from a position upstream of the reflecting surface.
  • the intersection ( P s B ) of the sagittal virtual light source line (S s B ) and the incident light ray to the MB point is defined as MB at an arbitrary point on the second reflecting surface.
  • each coordinate of the intersection ( PM B ) of the meridional virtual light source line (S mb ) and the incident ray to the MB point is between L 2s A , L 2 mA , and M 0 A M 0 B.
  • intersection (Q s ) of the light emitted from the point MB and the sagittal focused line ( F s ), and the light emitted from the point MB and the meridional focused line ( F m ) are expressed using the distance L.
  • the coordinates of P s , P m , Q s A , Q m A , P s B , P m B , Q s , and Q m , the light collection in the sagittal direction and the light collection in the meridional direction on the first reflection surface are constant for any point on the reflection surface, and the light collection in the sagittal direction and the light collection in the meridional direction on the second reflection surface are on the reflection surface, respectively.
  • the design formulas for the first reflecting surface and the second reflecting surface can be derived.
  • Arbitrary points MA and MB on each reflecting surface of the first reflecting surface and the second reflecting surface are u A v A w A Cartesian coordinate system and u B v B w B Cartesian coordinate system with respect to the reflecting surface.
  • the orthogonal coordinate system u A v A w A includes the intersection M 0 A on the first reflection surface of the z 1 axis and the z 2 axis, and the surface in contact with the reflection surface is u A.
  • the v A plane is defined as the direction of the normal line passing through the M 0 A of the u A v A plane
  • the v A axis is the direction orthogonal to both the z 1 axis and the z 2 axis
  • the u A axis is v.
  • the direction is orthogonal to both the A axis and the w A axis, the intersection point M 0 A is the origin, and the oblique incident angle formed by the u A v A plane and the optical axis z 1 is ⁇ 0 A.
  • the Cartesian coordinate system u B v B w B includes the intersection M 0 B on the second reflection surface of the z 2 axis and the z 3 axis, and the surface in contact with the reflection surface is the u B v B plane, and u B v B.
  • the direction of the normal line passing through the M 0 B on the plane is the w B axis
  • the v B axis is the direction orthogonal to both the z 2 axis and the z 3 axis
  • the u B axis is both the v B axis and the w B axis.
  • the directions were orthogonal to each other, the intersection point M 0 B was set as the origin, and the oblique incident angle formed by the u B v B plane and the optical axis z 2 was set as ⁇ 0 B.
  • the sagittal light source line (S s ) and the meridional light source line (S m ) for condensing the first reflecting surface are orthogonal to the incident beam optical axis z 1 instead of the u A axis.
  • the sagittal virtual focused line ( Fs A ) and the meridional virtual focused line ( Fm A ) are orthogonal to the emitted beam optical axis z2.
  • the optical path length is calculated after converting to a coordinate system based on each of the incident beam optical axis and the emitted beam optical axis, and is substituted into the design formula of the astigmatism control mirror. The same applies to the light collection on the second reflecting surface.
  • the u A v A w A coordinate system and the u B v B w B coordinate system are x 1 y 1 z 1 coordinate system and the second reflection based on the optical axis of the incident beam on the first reflection surface, respectively.
  • the x 2 y 2 z 2 coordinate system based on the optical axis of the emitted beam on the first reflecting surface, which is the incident beam on the surface, and x 3 y 3 based on the optical axis of the emitted beam on the second reflecting surface. Converted to the z3 coordinate system, and the design formula is represented by the uA vA w A coordinate system and the u B v B w B coordinate system .
  • the conversion to the coordinate system based on the optical axis of the incident beam is as follows.
  • the coordinates of the points MA (x 1 , y 1 , z 1 ) on the mirror are given by Eq. (5).
  • the coordinates of the intersection P s of the incident ray passing through the point MA and the sagittal light source line S s and the coordinates of the intersection P m of the incident ray and the meridional light source line S m are in the x 1 y 1 z 1 coordinate system, respectively.
  • the above - mentioned displacements L 1s A and L 1mA can be represented by the following (6) and (7).
  • the conversion to the coordinate system based on the optical axis of the emitted beam on the first reflecting surface is as follows.
  • the coordinates of the points MA (x 2 A , y 2 A , z 2 A ) on the mirror are given by Eq. (8).
  • the coordinates of the intersection P s B of the incident ray passing through the point MB and the sagittal virtual light source line S s B and the coordinates of the intersection P mb of the incident light ray and the meridional virtual light source line S mb are x 2 y, respectively.
  • it can be expressed by the following equations (12) and (13) using the displacements L 1s B and L 1 mb described above.
  • the coordinates of the intersection Q s of the emitted ray passing through the point MB and the sagittal focused line F s on the second reflecting surface and the coordinates of the intersection Q m of the emitted ray and the meridional focused line F m are x 3 y 3 respectively.
  • the z3 coordinate system it can be represented by the following (15) and (16) using the above-mentioned displacements L 2s B and L 2 mb .
  • the above-mentioned light source line and each intersection on the condensing line P s , P m , Q s A , Q m A , P s B , P m B , Q s , Q m and the first reflecting surface / first 2 The distance from arbitrary points MA and MB on the reflecting surface is not used as the incident length or emission length as it is, but is more accurate while using the coordinates of the intersections of the light source line and the condensing line defined by a straight line.
  • the following optical path length compensation is performed so that a suitable design formula can be obtained.
  • the x1 axis is centered on the intersection Pm0 between the meridional light source line Sm and the z1 axis and passes through the intersection Ps0 between the sagittal light source line Ss and the z1 axis.
  • the rotating arc plane formed by rotating the arc B 1s extending in the direction orthogonal to the sagittal light source line S s around the axis be the equiphase plane A 1s .
  • the incident length from the light source position to the MA point for focusing in the sagittal direction is from the intersection of the incident light beam and the equiphase plane A 1s on the side closer to the meridional light source line S m to the MA point. It is more accurate to find it as the distance of.
  • the distance from the intersection of the incident light ray and the equiphase plane A 1s to the MA point on the reflection surface of the mirror is first from the intersection point P s of the incident light ray and the sagittal light source line S s to the MA point.
  • the distance from the intersection P s to the arc B 1 s that defines the equiphase plane A 1 s, that is, the foot of the perpendicular line drawn from P s to the arc B 1 s is defined as H 1 s.
  • the distance between P s H 1 s is added or subtracted (subtracted in the example of this figure) to obtain the distance. That is, the incident length f 1s A is expressed by the equation (17).
  • the beam having a phase distribution corresponding to the above that is, the beam before being incident on the mirror (reflection surface) has a wavefront diverging from the sagittal light source line Ss in the x1 axis direction.
  • the y1 axis is centered on the intersection P s0 between the sagittal light source line S s and the z1 axis and passes through the intersection Pm0 between the meridional light source line Sm and the z1 axis.
  • the rotating arc plane formed by rotating the arc B 1 m extending in the direction orthogonal to the meridional light source line S m around the axis is defined as the equiphase plane A 1 m .
  • the incident length from the light source position to the MA point for the meridional direction focusing is on the reflection surface of the mirror from the intersection of the incident light beam and the equiphase plane A 1 m on the side closer to the sagittal light source line S s . It is calculated as the distance to the MA point of.
  • the distance from the intersection of the incident light beam and the equiphase plane A 1 m to the MA point first, the distance from the intersection point P m to the MA point of the incident light beam and the meridional light source line S m is obtained, and the distance is set to the distance.
  • the distance from the intersection point P m to the arc B 1 m that defines the equiphase plane A 1 m that is, the distance between P m H 1 m is added or calculated with the foot of the perpendicular line drawn from P m to the arc B 1 m as H 1 m. It is calculated by subtracting (adding in this example). That is, the incident length f 1 mA is expressed by the equation (19).
  • the exit side also corresponds to the equiphase plane in the vicinity corresponding to the intersection Q s A on the sagittal virtual condensing line F s A , and the intersection Q m A on the meridional virtual condensing line F mA .
  • the wavefront diverging from the meridional virtual condensing line F m A should be virtually observed.
  • the virtual emission length in the sagittal direction is f 2s A. It is possible to obtain a more accurate emission length for each of the virtual emission lengths f 2mA in the meridional direction.
  • f 2s A can be transformed as shown in the following equation (23) by introducing t'2x A and t'2y A.
  • f 2mA can be transformed as shown in the following equation (24) by introducing t'2x A and t'2y A.
  • phase on S s B It is not possible to strictly define the phase on S s B based on such an assumption, but here the intersection of S m B and the incident optical axis z 2 is set as P m 0 B , and on S s B It is considered that there is a phase distribution according to the distance from P m0 B.
  • a wavefront that converges toward the sagittal virtual light source line S s B should be virtually observed.
  • the distance from the intersection P s B to the arc B 1 s B that defines the equiphase plane, that is, the foot of the perpendicular line drawn from P s B to the arc B 1 s B is shown.
  • f 1s B can be transformed as shown in the following equation (27) by introducing t'1x B and t'1y B.
  • the distance from the intersection Q s to the arc B 2 s B that defines the equiphase plane, that is, the foot of the perpendicular line drawn from Q s to the arc B 2 s B is H 2 s.
  • the distance between H 2s B Q s as B and the distance from the intersection Q m to the arc B 2m B that defines the equiphase plane, that is, the foot of the perpendicular line drawn from Q m to the arc B 2m B is called H 2m B.
  • f 2m B can be transformed as shown in the following equation (32) by introducing t'2x B and t'2y B.
  • the first reflecting surface is at a point (u A , v A , w A ) that simultaneously satisfies the sagittal focusing condition of equation (33) and the meridional focusing condition of equation (34).
  • the second reflecting surface is also the reflection obtained by the set of points (u B , v B , w B ) that simultaneously satisfy the light collecting condition in the sagittal direction of equation 35 and the light collecting condition in the meridional direction of equation (36).
  • the equation f A (u A , v A , w A ) 0 weighted as in (Equation (37)).
  • ⁇ A is a weighting coefficient for light collection in the meridional direction
  • Equation (37) is a design equation for the first reflective surface. Rewriting t'1x, t'1y , t'2x , and t'2y in the equation based on the u A v A w A coordinate system gives the following equations (38) to (41).
  • the design formula for the second reflecting surface is the first formula (formula for the condensing condition in the sagittal direction) derived from the fact that the optical path length from the virtual light source point to the condensing point is constant for condensing in the sagittal direction. )
  • F s B (u B , v B , w B ) 0 (Equation (35))
  • the optical path length from the virtual light source point to the light source point is constant for light collection in the meridional direction.
  • each reflecting surface of the mirror of the present invention is represented by a common coordinate system (u, v, w) as shown in FIG.
  • intersection of the incident beam optical axis z 1 and the emitted beam optical axis z 3 be the origin O (0, 0, 0) of the Cartesian coordinate system uvw.
  • the center of rotation of the mirror installation mechanism shall also match this point.
  • the intersection of the incident beam optical axis and the first reflection surface is M 0 A
  • the intersection of the emission beam optical axis and the second reflection surface is M 0 B
  • the longitudinal u-axis is parallel to the straight line M 0 A M 0 B.
  • the v-axis in the lateral direction is set so as to be orthogonal to both the optical axis of the incident beam and the optical axis of the emitted beam.
  • the w-axis is orthogonal to both the u-axis and the v-axis.
  • the viewing angle at the point M 0 A of the first reflecting surface is set as ⁇ 0 A
  • the viewing angle at the point M 0 B of the second reflecting surface is set as ⁇ 0 B
  • the length of the line segment M 0 A M 0 B is set as L.
  • the coordinates of points M 0 A and M 0 B are expressed by the following equations (47) and (48).
  • the longitudinal unit vector e u B , the lateral unit vector e v B , and the normal direction unit vector e w B of the second reflecting surface are also expressed by the following equations (50), respectively.
  • the condensing lines F m and F s for the entire mirror are synonymous with the condensing lines for the second reflecting surface.
  • the emission lengths L 2m B and L 2s A of the second reflecting surface are expressed by the following equations (53) and (54) using L 2m and L 2s .
  • the sagittal virtual focusing line F s A of the first reflecting surface is the sagittal virtual light source line S s B of the second reflecting surface and the meridional virtual focusing line F of the first reflecting surface. It is necessary that mA coincides with the meridional virtual light source line Sm B of the second reflecting surface, respectively. Therefore, the meridional incident length L 1 m B and the sagittal incident length L 1 s B of the second reflecting surface are the following equations (55) and (55) from the meridional emission length L 2 mA and the sagittal emission length L 2 s A of the first reflecting surface. It is derived as in 56).
  • L 1m A , L 2m A , and L 2m B are set to positive or negative infinity, and L 1s A , L 2s A , and L 2s B are predetermined values (however, L 1s A + L 2s A ).
  • L 1s B + L 2s B By setting ⁇ 0, L 1s B + L 2s B ⁇ 0), it is possible to design an astigmatism control mirror having focusing performance only in the sagittal direction.
  • the first reflecting surface A of the mirror is a rotating elliptical surface (rotating parabolic surface, rotating bi-curved surface) having a light source point S and a virtual condensing point FA as two focal points.
  • the second reflecting surface B becomes a rotating bi-curved surface (rotating parabolic surface, rotating elliptical surface) having a virtual light source point FA and a light source point F at two focal points.
  • L 2mA and L 2s A a mirror that controls the vertical / horizontal ratio of the beam size at the focusing point and a mirror that controls the ratio of the vertical / horizontal divergence angle of the focused beam can be used. It can also be designed.
  • the emission lengths L 2mA and L 2s A of the first reflecting surface determine the magnification of the meridional direction focusing and the sagittal direction focusing , respectively.
  • the magnification in the condensing optical system is defined as the ratio of the condensing size to the light source size.
  • the magnification of condensing in the meridional direction is expressed as M m
  • the magnification of condensing in the sagittal direction is expressed as M s .
  • Equation (3) shows that the total magnification of the double-reflection mirror can be estimated by the product of the magnification given to the beam by the first reflecting surface and the magnification given to the beam by the second reflecting surface.
  • M m and M s can take negative values.
  • a mirror that spreads a beam from one point both vertically and horizontally is focused again at one point after being reflected twice, and the beam is circularized at the focusing point (a mirror that makes the beam circular at the focusing position).
  • the mutual relationship between the x 1 y 1 z 1 coordinate system, the x 2 y 2 z 2 coordinate system, and the x 3 y 3 z 3 coordinate system will be shown.
  • the relationship is derived via the uvw coordinate system, but the relationship can be derived without any limitation.
  • the x 1 y 1 z 1 coordinate system can be expressed by equation (61) using uvw, from which equation (62) is derived.
  • the x 3 y 3 z 3 coordinate system can be expressed by the equation (65) using uvw, and the equation (66) can be obtained by substituting the above equation (62) into the equation (65).
  • the intersections of the light source line, the virtual condensing line, and the condensing line and the optical axes z1, z2 , and z3 are set to exist in the same linear shape for each of the focusing in the sagittal direction and the focusing in the meridional direction.
  • the mirror (referred to as “installation angle allowable range expansion mirror") can suppress the influence of angle error (viewing angle error, in-plane rotation error, axial rotation), and is effective as a mirror that expands the installation angle allowable range. Indicates that.
  • the design viewing angle is ⁇ 0
  • the incident length is L 1 s , L 1 m
  • the emission length is L 2 s, L 2 m .
  • the radii of curvature ⁇ s and ⁇ m are given by Eqs. (67) and (68)
  • the response of the emission length to the increment value ⁇ of the viewing angle is obtained by partially differentiating Eqs. (67) and (68). It is represented by the obtained equations (69) and (70). Comparing Eqs. (69) and (70), it can be seen that the emission lengths of the meridional condensing and the sagittal condensing show different positive and negative changes with respect to the change in the viewing angle.
  • FIG. 14 is a schematic view showing the reaction when the viewing angle error is input to the double reflection mirror (integrated type).
  • the design viewing angle of the first reflecting surface on the upstream side is ⁇ 0 A
  • the viewing angle of the reflecting surface on the downstream side is ⁇ 0 B.
  • the emission length of the first reflecting surface shows a reaction in which the positive and negative directions are reversed in the meridional direction and the sagittal direction as described above.
  • the second reflecting surface not only the viewing angle becomes shallower by ⁇ , but also the incident lengths in the meridional direction and the sagittal direction change due to the deviation of the focusing position of the first reflecting surface.
  • the emission lengths L 2m and L 2s of the entire mirror show responses such as the following equations (71) and (72) to the viewing angle error ⁇ .
  • the emission length L 2 A of the first reflecting surface derived from each of the conditions that the light source line, the virtual condensing line, and the intersections of the condensing line and the optical axes z1, z2, and z3 are located in the same linear shape for each of the condensing lines.
  • the optimum values of were compared.
  • the calculation conditions are shown in Table 1.
  • the results are shown in FIG. This is a graph obtained by calculating and plotting the optimum value of L 2 A while changing the emission length L 2 of the entire reflecting surface. The results derived from both conditions were roughly equal.
  • a mirror was designed under the condition of a predetermined emission length L2 , and the response to the viewing angle error was confirmed.
  • the emission length L 2 250 mm
  • the value of L 2 A calculated under the condition that the partial differential coefficient is 0 is 590.333 mm
  • that of the Wolter type I mirror is 507.590 mm.
  • Mirrors were designed using this condition and ray tracing was used in the calculations.
  • the light rays were uniformly emitted from the light source line over the entire effective region of the first reflecting surface, and the dispersion of the light rays on the design condensing surface was obtained by calculating the RMS blur radius.
  • the results are shown in FIG. In the range of ⁇ 1 mrad, it is clear that the mirror that adopts the value of L 2A calculated by the Wolter type I mirror suppresses the increase in the focusing size due to the viewing angle error and is a better design. became.
  • the results of calculating and comparing the response of the focused size and position to the installation angle error of the single-reflection non-point aberration control mirror (Comparative Example 1) based on light ray tracing will be described.
  • the astigmatism control mirrors of Example 1 and Comparative Example 1 have an incident length of 20 m in the vertical (meridional) direction and 5 m in the horizontal (sagittal) direction.
  • the incident length of Example 2 (Wolter type I mirror) was set to 10 m both vertically and horizontally.
  • the condensing points of the mirrors of Examples 1, 2 and Comparative Example 1 were fixed at a position 250 mm from the mirror reference position, and the angle between the incident beam optical axis and the emitted beam optical axis was fixed at 40 mrad. ..
  • Example 1 The installation angle response of Example 1 is almost the same as the response of Example 2 (Wolter type I mirror), and in particular, the suppression of the increase in the focusing size with respect to the pitch angle error and the yaw angle error is much higher than that of Comparative Example 1. It turns out to be excellent. It can be seen that in the Sub- ⁇ m condensing according to the first embodiment, there is an allowable range of 100 ⁇ rad or more for various installation angle errors.
  • Example 3 (Verification of a mirror that makes the beam intensity circular 1)
  • Table 5 shows the conditions of the light source (conditions of illumination). It is assumed that the light source size has a ratio of 5 times in the vertical direction and the horizontal direction. In order to make the focused beam circular, the magnification of the reflection mirror must be given the inverse ratio of vertical and horizontal.
  • Table 6 shows the design conditions of Example 3.
  • the mirror of the third embodiment is designed to reflect the light from the light source located at the position 5 m from the mirror origin in the horizontal direction and collect the light at the condensing point located at the position 0.5 m.
  • the longitudinal direction is responsible for horizontal condensing, and the short direction is responsible for vertical condensing.
  • the astigmatism additionally given to the beam by the first reflecting surface (mirror A) is eliminated by the second reflecting surface (mirror B).
  • the mirror shape (height distribution) of Example 3 is shown in FIG.
  • the first reflective surface (mirror A) on the upstream side has a profile that is convex in the longitudinal direction and concave in the lateral direction.
  • the second reflective surface (mirror B) on the downstream side has a profile that is concave in the longitudinal direction and convex in the lateral direction.
  • the result of outputting the distribution of light rays at the condensing point by the light ray tracing calculation is shown in FIG.
  • the focusing size in the vertical direction is 0.506 ⁇ m ( ⁇ ) and that in the horizontal direction is 0.490 ⁇ m ( ⁇ ), confirming that the beam is generally circular.
  • Example 4 (Verification of a mirror that makes the beam intensity circular 2)
  • a mirror that circularizes the beam at the divergence position that is, a mirror that spreads the beam from one point both vertically and horizontally, focuses it again at one point after two reflections, and further rounds the beam at the downstream divergence position (implementation).
  • Example 4 will be described.
  • Table 7 shows the conditions of the light source (illumination conditions). It is assumed that the divergence angle has twice the ratio in the vertical direction and the horizontal direction. In order to make the divergence angle of the focused beam circular, the magnification of the reflection mirror must be given the same ratio vertically and horizontally.
  • the design conditions of Example 4 are shown in Table 8.
  • the mirror of the fourth embodiment is designed to reflect the light from the light source located at the position 5 m from the mirror origin in the horizontal direction and collect the light at the condensing point located at the position 0.5 m.
  • the longitudinal direction is responsible for horizontal condensing, and the short direction is responsible for vertical condensing.
  • the astigmatism additionally given to the beam by the first reflecting surface (mirror A) is eliminated by the second reflecting surface (mirror B).
  • FIG. 25 shows the mirror shape (height distribution) of Example 4.
  • the first reflective surface (mirror A) on the upstream side has a profile that is convex in the longitudinal direction and concave in the lateral direction.
  • the second reflective surface (mirror B) on the downstream side has a concave profile in the longitudinal direction and a concave profile in the lateral direction.
  • the result of outputting the distribution of light rays at the focusing point by the ray tracing calculation is shown in FIG. 26 (a), and the result of outputting the distribution of light rays at a position 10 m downstream from the focusing point.
  • the light collection size is 1 nm or less both vertically and horizontally, and it can be confirmed that the light from a light source having no size is focused on one point.
  • the variation of the light beam at the position 10 m downstream is 10.201 mm ( ⁇ ) in the vertical direction and 10.198 mm ( ⁇ ) in the horizontal direction, and it can be seen that the beam at the divergent position is generally circularized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Lenses (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

【課題】鉛直方向と水平方向とで独立して光源位置及び集光位置を設定でき、これにより非点収差の自由な変換が可能であり、また、集光サイズをより小さく抑えてX線領域のビームにも対応することができ、設計式も単純で、応用の幅も広く、鉛直方向と水平方向とで特性が異なるビームを取り扱う光学系として好適に用いることができるミラーを作製できる、ミラーの設計方法を提供せんとする。 【解決手段】 サジタル光源線とMA点への入射光線との交点、メリディオナル光源線とMA点への入射光線との交点をL1s A、L1m Aを用いて表わし、MA点からの出射光線とサジタル仮想集光線との交点、MA点からの出射光線とメリディオナル仮想集光線との交点をL2s A、L2m Aを用いて表わし、サジタル仮想光源線とMB点への入射光線との交点、メリディオナル仮想光源線とMB点への入射光線との交点をL2s A、L2m A、Lを用いて表わし、MB点からの出射光線とサジタル集光線との交点、MB点からの出射光線とメリディオナル集光線との交点をL2s B、L2m Bを用いて表わし、光源位置から仮想集光位置まで、仮想光源位置から集光位置までの各光路長が一定であることに基づき導かれる反射面の設計式を用いてミラーを設計する。

Description

ミラーの設計方法、および該設計方法における設計式が成り立つ反射面を備えた非点収差制御ミラー
 本発明は、順次光が反射される第1反射面および第2反射面を有するミラーの設計方法、および該設計方法における設計式が成り立つ反射面を備えた非点収差制御ミラーに関する。
 放射光軟X線ビームは、鉛直方向と水平方向とで特性が異なるという特徴がある。ビームサイズは、水平方向に比べて鉛直方向が小さくなる傾向にある。コヒーレント幅は、水平方向に比べて鉛直方向が大きくなる。さらに、軟X線ビームラインに広く普及している回折格子を用いた分光システムでは、ビームの鉛直方向の発散角が増大してしまう。また、使用される回折格子を含む分光器は、分光方向にのみ軟X線を集光させるため、光源位置が分光方向と集光させない方向とで異なる「非点収差」が生じる。
 非点収差を除去できる可能性のあるものとしては、トロイダルミラーがある(非特許文献1)。しかしながら、トロイダルミラーは、既存の回転楕円ミラーを近似し、反射面の長手方向、短手方向それぞれに一様な曲率半径を設定することで作製を容易にしたミラーであり、非点収差を除去できたとしても、原理的に集光サイズが増大してしまうという欠点がある。
 トロイダルミラーよりも集光サイズを小さくでき、かつ鉛直・水平で独立した光源・集光点を設定可能なミラーとして、Astigmatic off-axis mirror(AOミラー)も提案されている(非特許文献2)。このミラーは、一点から発散するビームを別の点に集光させるためには楕円曲線を、一点から発散するビームを平行化するためには放物線を、一点に向かって集光するビームを別の点に向かって集光するビームに変換するためには双曲線を、それぞれ反射面の稜線として適用するとの原則のもと、長手方向と短手方向で異なる円錐曲線を設定し,それらを滑らかにつなぐ曲面を求める形状としたものである。
 しかし、このAOミラーは、曲面を得るために長手方向の円錐曲線プロファイルを短手方向の円錐曲線の焦点を結ぶ直線(長軸)を中心に回転させることで定義されるミラーであり、反射面を軸対称形状に近似していることから、当該近似に起因して集光サイズの抑制に限界が生じる。波長の長いテラヘルツ領域のビームであれば問題ないが、X線領域のビームには対応できない。また、設計式が座標変換を数回含むなど、非常に複雑であり、パラメータも複雑で理解しにくく使いにくい。
William A.Rense,T.Violett,「Method of Increasing the Speed of a Grazing-Incidence Spectrograph」,JOURNAL OF THE OPTICAL SOCIETY OF AMERICA,Vol.49,No2,1959年2月,p139-p141 A. Wagner-Gentner , U.U. Graf, M. Philipp, D. Rabanus、「A simple method to design astigmatic off-axis mirrors」、Infrared Physics & Technology 50、 2007年、p42-p46
 そこで、本発明が前述の状況に鑑み、解決しようとするところは、鉛直方向と水平方向とで独立して光源位置及び集光位置を設定でき、これにより非点収差の自由な変換が可能であり、また、集光サイズをより小さく抑えてX線領域のビームにも対応することができ、設計式も単純で、応用の幅も広く、鉛直方向と水平方向とで特性が異なるビームを取り扱う光学系として好適に用いることができるミラーを作製できる、ミラーの設計方法を提供する点にある。
 本発明者は、かかる現況に鑑み、鋭意検討した結果、非点収差をもつビームの性質を幾何光学的に表現する方法として、サジタル方向の集光とメリディオナル方向の集光それぞれについて「光源線」および「集光線」を新たに定義し、ミラーの反射面を経由するすべての入射光線は鉛直方向および水平方向の各「光源線」を通り、ミラーの反射面から放たれるすべての出射光線が鉛直方向および水平方向の「集光線」を通るとし、これに光源位置から集光位置までの「光路長」が一定であるFermatの原理を適用することで、非点収差の自由な変換が可能となる反射面を設計できることを見出し、本発明を完成するに至った。
 すなわち本発明は、以下の発明を包含する。
 (1) 順次光が反射される第1反射面および第2反射面を有するミラーの設計方法であって、第1反射面への入射ビームの光軸をz軸、これに直交する断面をx平面とし、第2反射面への入射ビームとなる、前記第1反射面の出射ビームの光軸をz軸、これに直交する断面をx平面とし、前記第2反射面の出射ビームの光軸をz軸、これに直交する断面をx平面とし、x軸、xおよびx軸を、第1反射面および第2反射面のサジタル方向と平行であるとし、第1反面面への入射ビームが、z軸上のz軸とz軸との第1反射面上の交点M からz軸方向に沿ってL1s 変位した位置に、サジタル方向の集光についての光源をもち、かつ前記z軸上の前記交点M からz軸方向に沿ってL1m 変位した位置に、メリディオナル方向の集光についての光源をもち、第2反射面の出射ビームが、サジタル方向の集光についてz軸上のz軸とz軸との第2反射面上の交点M からz軸方向に沿ってL2s 変位した位置に集光し、かつメリディオナル方向の集光について前記z軸上の前記交点M からz軸方向に沿ってL2m 変位した位置に集光し、第1反射面を経由するすべての入射光線が、前記サジタル方向の集光における前記光源の位置を通りx軸とz軸の双方に直交する方向に延びるサジタル光源線、及びメリディオナル方向の集光における前記光源の位置を通りy軸とz軸の双方に直交する方向に延びるメリディオナル光源線を通過し、第2反射面から放たれるすべての出射光線が、サジタル方向の集光における前記集光する位置を通りx軸とz軸の双方に直交する方向に延びるサジタル集光線、及びメリディオナル方向の集光における前記集光する位置を通り該y軸とz軸の双方に直交する方向に延びるメリディオナル集光線を通過するとし、さらに、第1反射面の出射ビームが、第2反射面で反射せずに直進すると仮想したとき、サジタル方向の集光についてz軸上の前記交点M からz軸方向に沿ってL2s 変位した位置に集光し、かつメリディオナル方向の集光について前記z軸上の前記交点M からz軸方向に沿ってL2m 変位した位置に集光し、第1反射面の出射光線は、サジタル方向の集光における前記集光する位置を通りx軸とz軸の双方に直交する方向に延びるサジタル仮想集光線、及びメリディオナル方向の集光における前記集光する位置を通り該y軸とz軸の双方に直交する方向に延びるメリディオナル仮想集光線を通過するとし、第2反射面を経由するすべての入射光線は、その延長線上において、前記第1反射面にとってのサジタル方向の集光における前記サジタル仮想集光線をサジタル仮想光源線とし、且つ前記第1反射面にとってのメリディオナル方向の集光における前記メリディオナル仮想集光線をメリディオナル仮想光源線として、これら両光源線と交わるものとし、第1反射面上の任意の点をMとして、サジタル光源線とM点への入射光線との交点、及びメリディオナル光源線とM点への入射光線との交点の各座標を、前記L1s 、L1m を用いて表わし、且つ、該M点からの出射光線とサジタル仮想集光線との交点、及びM点からの出射光線とメリディオナル仮想集光線との交点の各座標を、前記L2s 、L2m を用いて表わし、第2反射面上の任意の点をMとして、サジタル仮想光源線とM点への入射光線との交点、及びメリディオナル仮想光源線とM点への入射光線との交点の各座標を、前記L2s 、L2m 、及びM 間の距離Lを用いて表わし、且つ、M点からの出射光線とサジタル集光線との交点、及びM点からの出射光線とメリディオナル集光線との交点の各座標を、前記L2s 、L2m を用いて表わし、これら座標、第1反射面におけるサジタル方向の集光及びメリディオナル方向の集光についてそれぞれ反射面上の任意の点に関して光源位置から仮想集光位置までの光路長が一定であること、及び、第2反射面におけるサジタル方向の集光及びメリディオナル方向の集光についてそれぞれ反射面上の任意の点に関して仮想光源位置から集光位置までの光路長が一定であることに基づき導かれる、反射面の設計式を用いてミラーを設計することを特徴とする、ミラーの設計方法。
 (2) 前記サジタル光源線、前記メリディオナル光源線を、それぞれy軸方向に延びる直線S、x軸方向に延びる直線Sとし、前記サジタル仮想集光線、前記メリディオナル仮想集光線を、それぞれy軸方向に延びる直線F 、x軸方向に延びる直線F とし、前記サジタル仮想光源線、前記メリディオナル仮想光源線を、それぞれ前記直線F に一致する直線S 、前記直線F に一致する直線S とし、前記サジタル集光線、前記メリディオナル集光線を、それぞれy軸方向に延びる直線F、x軸方向に延びる直線Fとし、下記(i)~(iv)により、前記第1反射面又は第2反射面における前記メリディオナル方向の集光又はサジタル方向の集光についてそれぞれ前記光路長を算出してなる、(1)記載のミラーの設計方法。
(i) 第1反射面におけるサジタル方向集光の光路長の算出: 前記第1反射面におけるサジタル方向の集光についての光源位置からM点までの入射長は、前記メリディオナル光源線Sとz軸との交点Pm0を中心とし且つサジタル光源線Sとz軸との交点Ps0を通ってx軸に直交する方向に延びる円弧を、サジタル光源線Sを軸に回転させた回転円弧面を等位相面A1sとして、前記入射光線と該等位相面A1sとの2つの交点のうちメリディオナル光源線Sに近い側の交点からM点までの距離として求め、前記第1反射面におけるサジタル方向の集光についてのM点から前記仮想集光位置までの出射長は、前記メリディオナル仮想集光線F とz軸との交点Qm0 を中心とし且つサジタル仮想集光線F とz軸との交点Qs0 を通ってx軸に直交する方向に延びる円弧を、サジタル仮想集光線F を軸に回転させた回転円弧面を等位相面A2s として、前記出射光線と該等位相面A2s との2つの交点のうちメリディオナル仮想集光線F に近い側の交点からM点までの距離として求め、これにより第1反射面における前記サジタル方向の集光について光路長を算出する。
(ii) 第1反射面におけるメリディオナル方向集光の光路長の算出: 前記第1反射面におけるメリディオナル方向の集光についての光源位置からM点までの入射長は、前記サジタル光源線Sとz軸との交点Ps0を中心とし且つメリディオナル光源線Sとz軸との交点Pm0を通ってy軸に直交する方向に延びる円弧を、メリディオナル光源線Sを軸に回転させた回転円弧面を等位相面A1mとして、前記入射光線と該等位相面A1mとの2つの交点のうちサジタル光源線Sに近い側の交点からM点までの距離として求め、前記第1反射面におけるメリディオナル方向の集光についてのM点から前記仮想集光位置までの出射長は、前記サジタル仮想集光線F とz軸との交点Qs0 を中心とし且つメリディオナル仮想集光線F とz軸との交点Qm0 を通ってy軸に直交する方向に延びる円弧を、メリディオナル仮想集光線F を軸に回転させた回転円弧面を等位相面A2m として、前記出射光線と該等位相面A2m との2つの交点のうちサジタル仮想集光線F に近い側の交点からM点までの距離として求め、
 これにより前記第1反射面における前記メリディオナル方向の集光について光路長を算出する。
(iii) 第2反射面におけるサジタル方向集光の光路長の算出: 前記第2反射面におけるサジタル方向の集光についての前記仮想光源位置からM点までの入射長は、前記メリディオナル仮想光源線S とz軸との交点Pm0 を中心とし且つサジタル仮想光源線S とz軸との交点Ps0 を通ってx軸に直交する方向に延びる円弧を、サジタル仮想光源線S を軸に回転させた回転円弧面を等位相面A1s として、前記入射光線と該等位相面A1s との2つの交点のうちメリディオナル仮想光源線S に近い側の交点からM点までの距離として求め、前記第2反射面におけるサジタル方向の集光についてのM点から前記集光位置までの出射長は、前記メリディオナル集光線Fとz軸との交点Qm0を中心とし且つサジタル集光線Fとz軸との交点Qs0を通ってx軸に直交する方向に延びる円弧を、サジタル集光線Fを軸に回転させた回転円弧面を等位相面A2sとして、前記出射光線と該等位相面A2sとの2つの交点のうちメリディオナル集光線Fに近い側の交点からM点までの距離として求め、これにより第2反射面における前記サジタル方向の集光について光路長を算出する。
(iv) 第2反射面におけるメリディオナル方向集光の光路長の算出: 前記第2反射面におけるメリディオナル方向の集光についての前記仮想光源位置からM点までの入射長は、前記サジタル仮想光源線S とz軸との交点Ps0 を中心とし且つメリディオナル仮想光源線S とz軸との交点Pm0 を通ってy軸に直交する方向に延びる円弧を、メリディオナル仮想光源線S を軸に回転させた回転円弧面を等位相面A1m として、前記入射光線と該等位相面A1m との2つの交点のうちサジタル仮想光源線S に近い側の交点からM点までの距離として求め、前記第2反射面におけるメリディオナル方向の集光についてのM点から前記集光位置までの出射長は、前記サジタル集光線Fとz軸との交点Qs0を中心とし且つメリディオナル集光線Fとz軸との交点Qm0を通ってy軸に直交する方向に延びる円弧を、メリディオナル集光線Fを軸に回転させた回転円弧面を等位相面A2mとして、前記出射光線と該等位相面A2mとの2つの交点のうちサジタル集光線Fに近い側の交点からM点までの距離として求め、これにより前記第2反射面における前記メリディオナル方向の集光について光路長を算出する。
 (3) 前記(i)(第1反射面のサジタル方向集光)の光路長の算出につき、前記第1反射面における前記入射光線と等位相面A1sとの2つの交点のうちメリディオナル光源線Sに近い側の交点からM点までの距離は、前記入射光線と前記サジタル光源線Sとの交点Pから前記M点までの距離を求めるとともに、該距離に、前記交点Pから前記等位相面A1sを定義している前記円弧までの距離を加算又は減算して求め、前記第1反射面における前記出射光線と等位相面A2s との2つの交点のうちメリディオナル仮想集光線F に近い側の交点からM点までの距離は、前記出射光線と前記サジタル仮想集光線F との交点Q から前記M点までの距離を求めるとともに、該距離に、前記交点Q から前記等位相面A2s を定義している前記円弧までの距離を加算又は減算して求める。
 また、前記(ii)(第1反射面のメリディオナル方向集光)の光路長の算出につき、前記第1反射面における前記入射光線と該等位相面A1mとの2つの交点のうちサジタル光源線Sに近い側の交点からM点までの距離は、前記入射光線と前記メリディオナル光源線Sとの交点Pから前記M点までの距離を求めるとともに、該距離に、前記交点Pから前記等位相面A1mを定義している前記円弧までの距離を加算又は減算して求め、前記第1反射面における前記出射光線と該等位相面A2m との2つの交点のうちサジタル仮想集光線F に近い側の交点からM点までの距離は、前記出射光線と前記メリディオナル仮想集光線F との交点Q から前記M点までの距離を求めるとともに、該距離に、前記交点Q から前記等位相面A2m を定義している前記円弧までの距離を加算又は減算して求める。
 また、前記(iii)(第2反射面のサジタル方向集光)の光路長の算出につき、前記第2反射面における前記入射光線と該等位相面A1s との2つの交点のうちメリディオナル仮想光源線S に近い側の交点からM点までの距離は、前記入射光線と前記サジタル仮想光源線S との交点P から前記M点までの距離を求めるとともに、該距離に、前記交点P から前記等位相面A1s を定義している前記円弧までの距離を加算又は減算して求め、前記第2反射面における前記出射光線と該等位相面A2sとの2つの交点のうちメリディオナル集光線Fに近い側の交点からM点までの距離は、前記出射光線と前記サジタル集光線Fとの交点Qから前記M点までの距離を求めるとともに、該距離に、前記交点Qから前記等位相面A2sを定義している前記円弧までの距離を加算又は減算して求める。
 また、前記(iv)(第2反射面のメリディオナル方向集光)の光路長の算出につき、前記第2反射面における前記入射光線と該等位相面A1m との2つの交点のうちサジタル仮想光源線S に近い側の交点からM点までの距離は、前記入射光線と前記メリディオナル仮想光源線S との交点P から前記M点までの距離を求めるとともに、該距離に、前記交点P から前記等位相面A1m を定義している前記円弧までの距離を加算又は減算して求め、前記第2反射面における前記出射光線と該等位相面A2mとの2つの交点のうちサジタル集光線Fに近い側の交点からM点までの距離は、前記出射光線と前記メリディオナル集光線Fとの交点Qから前記M点までの距離を求めるとともに、該距離に、前記交点Qから前記等位相面A2mを定義している前記円弧までの距離を加算又は減算して求める、(2)記載のミラーの設計方法。
 (4) z軸とz軸の交点を原点とし、z軸に平行な方向をu軸とし、x軸、x軸およびx軸に平行な方向をv軸とし、u軸およびv軸の双方に直交する方向をw軸とした直交座標系uvwを定義し、前記uvw系座標を、前記第1反射面への入射ビームの光軸を基準としたx座標系、第2反射面への入射ビームとなる、第1反射面の出射ビームの光軸を基準としたx座標系、および第2反射面の出射ビームの光軸を基準としたx座標系にそれぞれ変換し、前記設計式をuvw座標系で表してなる、(1)~(3)の何れかに記載のミラーの設計方法。
 (5) z軸とz軸の第1反射面上の交点M を含み、該反射面に接する面をu平面とし、u平面の前記M を通る法線の方向をw軸とし、v軸をz軸およびz軸の双方に直交する方向、u軸をv軸およびw軸の双方に直交する方向とし、交点M を原点、u平面と光軸zとの成す斜入射角をθ とした、第1反射面を基準とした直交座標系uを定義し、
 z軸とz軸の第2反射面上の交点M を含み、該反射面に接する面をu平面とし、u平面の前記M を通る法線の方向をw軸とし、v軸をz軸およびz軸の双方に直交する方向、u軸をv軸およびw軸の双方に直交する方向とし、交点M を原点、u平面と光軸zとの成す斜入射角をθ とした、第2反射面を基準とした直交座標系uを定義し、前記u座標系およびu座標系を、それぞれ前記第1反射面への入射ビームの光軸を基準としたx座標系、第2反射面への入射ビームとなる、第1反射面の出射ビームの光軸を基準としたx座標系、および第2反射面の出射ビームの光軸を基準としたx座標系に変換し、前記設計式を前記u座標系およびu座標系で表し、これを更にuvw座標系で表してなる、(4)記載のミラーの設計方法。
 (6) 前記設計式が、前記第1反射面における前記サジタル方向の集光について光源点から仮想集光点までの光路長が一定であることから導かれる第1の式f (uA,vA,wA)=0と、前記第1反射面における前記メリディオナル方向の集光について光源点から仮想集光点までの光路長が一定であることから導かれる第2の式f (uA,vA,wA)=0とを重みづけした、下記式(1)と、前記第2反射面における前記サジタル方向の集光について仮想光源点から集光点までの光路長が一定であることから導かれる第3の式f (uB,vB,wB)=0と、前記第2反射面における前記メリディオナル方向の集光について仮想光源点から集光点までの光路長が一定であることから導かれる第4の式f (uB,vB,wB)=0とを重みづけした、下記式(2)とからなる、請求項5記載のミラーの設計方法。
Figure JPOXMLDOC01-appb-M000005
 
 (7) 下記式により、光源線Sから集光線Fまでのサジタル方向集光についての任意の倍率Mおよび光源線Sから集光線Fまでのメリディオナル方向集光についての任意の倍率Mを用いて、L2m 、L2s を設定する、(1)~(6)の何れかに記載のミラーの設計方法。
Figure JPOXMLDOC01-appb-M000006
 (8) (1)~(6)の何れかに記載の前記設計式が成り立つ反射面を有するミラーであって、前記L1s とL1m の値が異なり、且つ前記L2s とL2m の値が一致しており、非点収差をもつ入射ビームから一点に集光する出射ビームが得られる、非点収差制御ミラー。
 (9) (1)~(6)の何れかに記載の前記設計式が成り立つ反射面を有するミラーであって、前記L1s とL1m の値が一致し、且つ前記L2s とL2m の値が異なっており、一点から発散する入射ビームから非点収差をもつ出射ビームが得られる、非点収差制御ミラー。
 (10) (1)~(6)の何れかに記載の前記設計式が成り立つ反射面を有するミラーであって、前記L1s とL1m の値が一致し、前記L2s とL2m の値が異なっており、且つ、前記L2s とL2m の値が一致しており、一点から発散する入射ビームに第1反射面で非点収差を与えるとともに、第2反射面で該非点収差を解消し、鉛直方向と水平方向とで異なる縮小倍率を与える、非点収差制御ミラー。
 (11) (1)~(6)の何れかに記載の前記設計式が成り立つ反射面を有するミラーであって、光源線から集光線までのビームの倍率であって、下記式(3)で定義されるサジタル方向の倍率M、およびメリディオナル方向の倍率Mを用いた式(4)により、L2m 、L2s を設定することにより、鉛直・水平ともに一点から広がるビームを二回の反射を経て再度一点に集光し、集光点またはさらに下流の発散位置において、ビームが円形となるように設計された、非点収差制御ミラー。
Figure JPOXMLDOC01-appb-M000007
 
Figure JPOXMLDOC01-appb-M000008
 
 (12) (1)~(6)の何れかに記載の前記設計式が成り立つ反射面を有するミラーであって、前記L1m とL2m とL2m の値が正または負の無限大であり、且つ前記L1s とL2s とL2s が所定値(但し、L1s +L2s ≠0かつ(L-L2s )+L2s ≠0)をもち、サジタル方向のみ集光性能を有する、非点収差制御ミラー。
 (13) (1)~(6)の何れかに記載の前記設計式が成り立つ反射面を有するミラーであって、サジタル方向集光について、光源線Sとz軸の交点Ps0、仮想集光線F とz軸の交点Qs0 、集光線Fとz軸の交点Qs0の三点が同一直線上に存在すると同時に、メリディオナル方向集光について、光源線Sとz軸の交点Pm0,仮想集光線F とz軸の交点Qm0 ,集光線Fとz軸の交点Qm0の三点が同一直線上に存在するように,L2s 及びL2m を設定することにより、設置角度許容範囲を拡大する、非点収差制御ミラー。
 本発明に係るミラーの設計方法によれば、鉛直方向と水平方向とで独立して光源位置及び集光位置を設定でき、これにより非点収差の自由な変換が可能なミラーを作製できる。また、集光サイズをより小さく抑えてX線領域のビームにも対応することができる。さらに、設計式も単純で、応用の幅も広く、鉛直方向と水平方向とで特性が異なるビームを取り扱う光学系として好適に用いることができる。
 また、本発明の設計方法によれば、鉛直方向および水平方向の各集光について第1反射面と第2反射面とで2回以上反射させて集光性能を得ることができることから、1回の反射で集光性能を得る場合に比べ、軸外収差を抑え、結像性能をより高めることが可能であり、上記のとおり非点収差の自由な変換が可能であると同時に、設置角度誤差に対する耐性を有するミラーを提供することが可能となる。
 また、本発明において、たとえば上流側の第1反射面で非点収差を与えると同時に下流側の第2反射面でこれを解消するように設計すれば、ビームを一点から一点に集光させつつ、鉛直と水平で異なる縮小倍率を与えるミラーを提供することも可能となる。さらには、鉛直と水平で光源サイズが大きく異なるビームに対し、集光サイズを円形化するミラーを提供することも可能となる。また、下流側の第2反射面に入射するビームの形状を円形化することで、発散位置において円形状の強度プロファイルを持つビームを形成するミラーを提供することも可能となる。
本発明にかかる設計方法で設計されるミラーの概念図。 (a)~(c)はそれぞれx座標系、x座標系、x座標系を示す概念図。 第1反射面について「光源線」、「集光線」を説明する概念図。 第2反射面について「光源線」、「集光線」を説明する概念図。 (a)は第1反射面について入射ビームと出射ビームが光源線、仮想集光線と交わる各点を示す説明図、(b)は第2反射面について入射ビームと出射ビームが仮想光源線、集光線と交わる各点を示す説明図。 座標系、u座標系を示す概念図。 サジタル光源線S上の交点P近傍の等位相面A1sを示す概念図。 メリディオナル光源線S上の交点P近傍の等位相面A1mを示す概念図。 uvw座標系を示す概念図。 ミラーのuw平面における光源線、集光線の断面図。 設計できるミラーの例を示す概念図。 設計できるミラーの他の例を示す概念図。 回転楕円面ミラーの集光において視射角を増大させたときのメリディオナル方向集光点Fとサジタル方向集光点Fの位置ずれを示す説明図。 二回反射ミラー(一体型)に視射角誤差を入力した際の反応を示す模式図。 第1反射面の出射長L の最適化結果を示すグラフ。 最適化されたL と視射角誤差に対する応答を示すグラフ。 実施例1のミラーの光学系配置を示す説明図。 (a)は実施例1のミラーの高さの二次元分布の図、(b)は長手方向断面プロファイルを示す図。 入力する設置角度誤差を示す説明図。 ピッチ角誤差に対する応答を示すグラフであり、(a)はメリディオナル方向集光サイズの応答、(b)はサジタル方向集光サイズの応答、(c)はメリディオナル方向集光位置ずれの応答、(d)はサジタル方向集光位置ずれの応答。 ヨー角誤差に対する応答を示すグラフであり、(a)はメリディオナル方向集光サイズの応答、(b)はサジタル方向集光サイズの応答、(c)はメリディオナル方向集光位置ずれの応答、(d)はサジタル方向集光位置ずれの応答。 ロール角誤差に対する応答を示すグラフであり、(a)はメリディオナル方向集光サイズの応答、(b)はサジタル方向集光サイズの応答、(c)はメリディオナル方向集光位置ずれの応答、(d)はサジタル方向集光位置ずれの応答。 実施例3のミラー形状(高さ分布)を示す図であり、(a)は高さの二次元分布、(b)は長手方向断面プロファイルを示す。 実施例3のミラーについて、光線追跡計算により集光点における光線の分布を出力した結果を示す図。 実施例4のミラー形状(高さ分布)を示す図であり、(a)は高さの二次元分布、(b)は長手方向断面プロファイルを示す。 (a)は実施例4のミラーについて光線追跡計算により集光点における光線の分布を出力した結果を示す図、(b)は集光点よりも10m下流の位置における光線の分布を出力した結果を示す図。
 本発明のミラーの設計方法は、順次光が反射される第1反射面および第2反射面を有するミラーを設計する方法に関する。以下、本発明にかかるミラーの設計方法を、代表的な実施形態を挙げながら説明する。
 本発明は、非点収差の自由な変換を目的とし,『光は光学的距離が最短となる経路を通る』というFermatの原理に基づいて,より精度の高いミラーの設計を行う。Fermatの原理は、集光(あるいは拡散)ミラーに限定した場合、『ミラー表面(反射面)の任意の点に関して,光源点からの距離と集光点までの距離の和は一定である』という表現に変換することが可能である。入射ビーム又は出射ビームが非点収差を持つ場合、光路長一定の法則を直ちに適用することはできなくなる。なぜならば,非点収差を持つビームはその名の通り単一の光源点あるいは集光点を持たないためである。本発明では、「光源線」と「集光線」を新たに定義することを着想し、非点収差を持つビームの性質を幾何光学的に表現することを可能にすることで実現した設計手法である。
(「光源線」、「集光線」の定義)
 図1は、本発明にかかる設計方法で設計されるミラーの概念図である。符号Aは第1反射面(ミラーAとも呼ぶ)、符号Bは第2反射面(ミラーBとも呼ぶ)を示している。図2(a)、(b)、(c)に示すように、第1反射面への入射ビームの光軸をz軸、これに直交する断面をx平面とし、第2反射面への入射ビームとなる、前記第1反射面の出射ビームの光軸をz軸、これに直交する断面をx平面とし、前記第2反射面の出射ビームの光軸をz軸、これに直交する断面をx平面とし、x軸、xおよびx軸を、第1反射面および第2反射面のサジタル方向と平行であるとする。
 まず、第1反射面について「光源線」、「集光線」を説明する。図3に示すように、第1反射面のサジタル方向の集光については、入射ビームは、z軸上のz軸とz軸との第1反射面上の交点M からz軸方向に沿ってL1s 変位した位置に光源をもち、出射ビームは、第2反射面で反射せずに直進すると仮想したとき、z軸上の前記交点M からz軸方向に沿ってL2s 変位した位置に集光するとする。
メリディオナル方向の集光については、z軸上の前記交点M からz軸方向に沿ってL1m 変位した位置に光源をもち、出射ビームは、第2反射面で反射せずに直進すると仮想したとき、z軸上の前記交点M からz軸方向に沿ってL2m 変位した位置に集光するとする。
 そして、第1反射面を経由するすべての入射光線は、サジタル方向の集光における前記光源の位置を通り入射光の光軸z軸とサジタル方向(x軸)の双方に直交する方向(y軸方向)に延びるサジタル光源線(S)、及びメリディオナル方向の集光における前記光源の位置を通り光軸z軸とメリディオイナル方向(y軸)の双方に直交する方向(x軸方向)に延びるメリディオナル光源線(S)を通過すると考える。このようにサジタル光源線(S)、メリディオナル光源線(S)を定義する。
 また、第1反射面から放たれるすべての出射光線は、サジタル方向の集光における前記集光する位置を通り出射光の光軸zとサジタル方向(x軸)に直交する方向(y軸方向)に延びるサジタル仮想集光線(F )、及びメリディオナル方向の集光における前記集光する位置を通り出射光の光軸zとy軸に直交する方向(x軸方向)に延びるメリディオナル仮想集光線(F )を通過すると考える。このようにサジタル仮想集光線(F )、メリディオナル仮想集光線(F )を定義する。
 次に、第2反射面について「光源線」、「集光線」を説明する。図4に示すように、第2反射面を経由するすべての入射光線は、その延長線上において、前記第1反射面にとっての前記サジタル仮想集光線(F )がサジタル仮想光源線(S )であると定義でき、前記メリディオナル仮想集光線(F )がメリディオナル仮想光源線(S )であると定義できる。また、L1s =L-L2s 、L1m =L-L2m と定義する。
 また、第2反射面のサジタル方向の集光について、出射ビームは、z軸上のz軸とz軸との第2反射面上の交点M からz軸方向に沿ってL2s 変位した位置に集光するとする。また、第2反射面のメリディオナル方向の集光について、出射ビームは、前記z軸上の前記交点M からz軸方向に沿ってL2m 変位した位置に集光するとする。
 第2反射面から放たれるすべての出射光線は、サジタル方向の集光における前記集光する位置を通り出射光の光軸zとサジタル方向(x軸)に直交する方向(y軸方向)に延びるサジタル集光線(F)、及びメリディオナル方向の集光における前記集光する位置を通り出射光の光軸zとy軸に直交する方向(x軸方向)に延びるメリディオナル集光線(F)を通過すると考える。このようにサジタル集光線(F)、メリディオナル集光線(F)を定義する。
 なお、本例では、サジタル光源線(S)、メリディオナル光源線(S)、サジタル仮想集光線(F )、メリディオナル仮想集光線(F )、サジタル仮想光源線(S )、メリディオナル仮想光源線(S )、サジタル集光線(F)、メリディオナル集光線(F)をそれぞれ直線としているが、曲線であってもよい。
 また、図3では、L1s >L1m >0、かつL2s >L2m >0の場合を示しているが、これら定数が負の値をとることも可能である.L1s またはL1m が負の値をとる場合、第1反射面への入射ビームは下流に向かって集光する途中で反射面によって反射される。L2s またはL2m が負の値をとる場合、第1反射面の出射ビームは反射面よりも上流の位置から発散してきたような波面を持つ。
 同様に、図4では、L1s <L1m <0、かつL2s >L2m >0の場合を示している。L1s またはL1m が負の値をとる場合、第2反射面への入射ビームは下流に向かって集光する途中で反射面によって反射される。L2s またはL2m が負の値をとる場合、第2反射面の出射ビームは反射面よりも上流の位置から発散してきたような波面を持つ。
(設計式の導出)
 以上のように「光源線」及び「集光線」を定義することで、ミラーの反射面の任意の点について、その点を通る入射光線及び出射光線を定義することができる。すなわち、図5(a)に示すように、第1反射面上の任意の点をMとして、サジタル光源線(S)とM点への入射光線との交点(P)、及びメリディオナル光源線(S)とM点への入射光線との交点(P)の各座標を、前記L1s 、L1m を用いて表わし、同様に、M点からの出射光線とサジタル仮想集光線(F )との交点(Q )、及びM点からの出射光線とメリディオナル仮想集光線(F )との交点(Q )の各座標を、前記L2s 、L2m を用いて表わすことができる。
 また、図5(b)に示すように、第2反射面上の任意の点をMとして、サジタル仮想光源線(S )とM点への入射光線との交点(P )、及びメリディオナル仮想光源線(S )とM点への入射光線との交点(P )の各座標を、前記L2s 、L2m 、及びM 間の距離Lを用いて表わし、同様に、M点からの出射光線とサジタル集光線(F)との交点(Q)、及びM点からの出射光線とメリディオナル集光線(F)との交点(Q)の各座標を、前記L2s 、L2m を用いて表わすことができる。
 そして、これらP、P、Q 、Q 、P 、P 、Q、Qの各座標、第1反射面におけるサジタル方向の集光及びメリディオナル方向の集光についてそれぞれ反射面上の任意の点に関して光源位置から仮想集光位置までの光路長が一定であること、及び、第2反射面におけるサジタル方向の集光及びメリディオナル方向の集光についてそれぞれ反射面上の任意の点に関して仮想光源位置から集光位置までの光路長が一定であることに基づき、第1反射面および第2反射面の設計式を導くことができる。
 第1反射面、第2反射面の各反射面上の任意の点M、Mは、反射面を基準としたu直交座標系、u直交座標系をそれぞれ定義して、M(u,v,w)、M(u,v,w)でそれぞれ表すことができる。
 すなわち、図6に示すように、直交座標系uは、z軸とz軸の第1反射面上の交点M を含み、該反射面に接する面をu平面とし、u平面の前記M を通る法線の方向をw軸とし、v軸をz軸およびz軸の双方に直交する方向、u軸をv軸およびw軸の双方に直交する方向とし、交点M を原点、u平面と光軸zとの成す斜入射角をθ とした。
 直交座標系uは、z軸とz軸の第2反射面上の交点M を含み、該反射面に接する面をu平面とし、u平面の前記M を通る法線の方向をw軸とし、v軸をz軸およびz軸の双方に直交する方向、u軸をv軸およびw軸の双方に直交する方向とし、交点M を原点、u平面と光軸zとの成す斜入射角をθ とした。
 ただし、図6において,第1反射面の集光についてのサジタル光源線(S)及びメリディオナル光源線(S)がu軸ではなく入射ビーム光軸zに直交することに注意しなければならない。同様に、サジタル仮想集光線(F )及びメリディオナル仮想集光線(F )は出射ビーム光軸zに直交する。u座標系に対して斜めに設定されている光源線と仮想集光線から直接的に光路長を計算することもできるが煩雑である。そのため、本実施形態では、入射ビーム光軸、出射ビーム光軸のそれぞれを基準とした座標系に変換してから光路長を計算し、非点収差制御ミラーの設計式に代入する。第2反射面の集光についても同じである。
 すなわち、u座標系およびu座標系を、それぞれ前記第1反射面への入射ビームの光軸を基準としたx座標系、第2反射面への入射ビームとなる、第1反射面の出射ビームの光軸を基準としたx座標系、および第2反射面の出射ビームの光軸を基準としたx座標系に変換し、前記設計式をu座標系およびu座標系で表わす。
 入射ビーム光軸を基準とした座標系への変換は、次のとおりである。ミラー上の点M(x,y,z)の各座標は、式(5)で与えられる。
Figure JPOXMLDOC01-appb-M000009
 
 点Mを通る入射光線とサジタル光源線Sとの交点Pの座標、および同じく入射光線とメリディオナル光源線Sとの交点Pの座標は、それぞれx座標系において、前記した変位L1s 、L1m を用いて下記(6)(7)で表すことができる。
Figure JPOXMLDOC01-appb-M000010
 
 同様に、第1反射面における出射ビーム光軸を基準とした座標系への変換は、次のとおりである。ミラー上の点M(x ,y ,z )の各座標は、式(8)で与えられる。
Figure JPOXMLDOC01-appb-M000011
 
 第1反射面における点Mを通る出射光線とサジタル仮想集光線F との交点Q の座標、および同じく出射光線とメリディオナル仮想集光線F との交点Q の座標は、それぞれx座標系において、前記した変位L2s 、L2m を用いて下記式(9)、式(10)で表すことができる。
Figure JPOXMLDOC01-appb-M000012
 
 ミラー上の点M(x ,y ,z )の各座標は、式(11)で与えられる。
Figure JPOXMLDOC01-appb-M000013
 
 点Mを通る入射光線とサジタル仮想光源線S との交点P の座標、および同じく入射光線とメリディオナル仮想光源線S との交点P の座標は、それぞれx座標系において、前記した変位L1s 、L1m を用いて下記式(12)、式(13)で表すことができる。
Figure JPOXMLDOC01-appb-M000014
 
 同様に、第2反射面における出射ビーム光軸を基準とした座標系への変換は、次のとおりである。ミラー上の点M(x,y,z)の各座標は、式(14)で与えられる。
Figure JPOXMLDOC01-appb-M000015
 
 第2反射面における点Mを通る出射光線とサジタル集光線Fとの交点Qの座標、および同じく出射光線とメリディオナル集光線Fとの交点Qの座標は、それぞれx座標系において、前記した変位L2s 、L2m を用いて下記(15)(16)で表すことができる。
Figure JPOXMLDOC01-appb-M000016
 
 そして、上記のとおり、これらP、P、Q 、Q 、P 、P 、Q、Qの各座標、第1反射面におけるサジタル方向の集光及びメリディオナル方向の集光についてそれぞれ反射面上の任意の点に関して光源位置から仮想集光位置までの光路長が一定であること、及び、第2反射面におけるサジタル方向の集光及びメリディオナル方向の集光についてそれぞれ反射面上の任意の点に関して仮想光源位置から集光位置までの光路長が一定であることに基づき、反射面の設計式を導く。
 本実施形態では、上記した光源線、集光線上の各交点P、P、Q 、Q 、P 、P 、Q、Qと第1反射面/第2反射面上の任意の点M、Mとの距離を、そのまま入射長または出射長とするのではなく、直線で定義した光源線、集光線の上記交点の座標を用いつつ、より正確な設計式が得られるように次のような光路長の補償を行っている。
(光路長の補償)
 通常の光源点と集光点が定義できる場合のFermatの原理を考える。光源点近傍の等位相面は光源点を中心とした球面であり、集光点近傍の等位相面は集光点を中心とした球面である。光線は常に等位相面に対して直交することを念頭に置くと、光路長一定の法則とは、光源点近傍の特定の等位相面上の任意の点と、それに対応する集光点近傍の特定の等位相面上の点を結ぶ光線の光学距離が一定であることと言い換えられる。本発明のような入射ビームに非点収差が含まれる場合にも、等位相面を考慮した補償を行うことで、より正確な設計式を導くことができる。
(第1反射面の入射側における光路長の補償)
 まず、第1反射面の入射側について、サジタル光源線S上の上記した交点Pに対応する近傍の等位相面を考える。サジタル光源線Sでは、メリディオナル光源線Sに向けて収束する波面が観察されるはずである。このような仮定のもとサジタル光源線S上の位相を定義することは厳密にはできないが、ここではSとz軸との交点をPm0とおき、S上にはPm0からの距離に応じた位相分布が存在するもの、すなわち、ミラー(反射面)に入射する前のビームは、y軸方向にはメリディオナル光源線Sに集約する波面を持つとする。この考えに基づき、図7に示すように、メリディオナル光源線Sとz軸との交点Pm0を中心とし且つサジタル光源線Sとz軸との交点Ps0を通ってx軸に直交する方向に延びる円弧B1sを、サジタル光源線Sを軸に回転させることで構成される回転円弧面を等位相面A1sとする。サジタル方向の集光についての光源位置からM点までの入射長は、入射光線と該等位相面A1sとの2つの交点のうちメリディオナル光源線Sに近い側の交点からM点までの距離として求めることがより正確である。
 ここでは、この入射光線と等位相面A1sとの交点からミラーの反射面上のM点までの距離は、まず入射光線と前記サジタル光源線Sとの交点PからM点までの距離を求めるとともに、該距離に、交点Pから前記等位相面A1sを定義している前記円弧B1sまでの距離、つまりPから円弧B1sに下した垂線の足をH1sとしてP1s間の距離を加算又は減算(本図の例では減算)して求めている。すなわち、入射長f1s は式(17)で表される。この式が近似である理由は,点H1sが直線P上に存在する保証がないためである。ただし、このような近似式以外の計算で求めるようにしても勿論よい。本例では、上記のようにPから円弧B1sに下した垂線の足をH1sとしてP1s間の距離を加算/減算して近似的に求めているが、円弧B1sに下した垂線ではなく、Pから、入射光線と該等位相面A1sとの2つの交点のうちメリディオナル光源線Sに近い側の交点までの距離を用いて、より正確に算出するようにしてもよい。
Figure JPOXMLDOC01-appb-M000017
            (17)
 
 これにt’1x 、t’1y を導入することで、以下の式(18)ように変形できる。
Figure JPOXMLDOC01-appb-M000018
 
 続いて、同じく第1反射面の入射側について、メリディオナル光源線S上の上記した交点Pに対応する近傍の等位相面を考える。メリディオナル光源線Sでは、サジタル光源線Sから発散してきた波面が観察されるはずである。このような仮定のもとS上の位相を定義することは厳密にはできないが、ここではSとz軸との交点をPs0とおき、S上にはPs0からの距離に応じた位相分布が存在するもの、すなわち、ミラー(反射面)に入射する前のビームは、x軸方向にはサジタル光源線Sから発散する波面を持つとする。この考え方に基づき、図8に示すように、サジタル光源線Sとz軸との交点Ps0を中心とし且つメリディオナル光源線Sとz軸との交点Pm0を通ってy軸に直交する方向に延びる円弧B1mを、メリディオナル光源線Sを軸に回転させることにより構成される回転円弧面を、等位相面A1mとする。メリディオナル方向集光についての光源位置からM点までの入射長は、入射光線と該等位相面A1mとの2つの交点のうちサジタル光源線Sに近い側の交点からミラーの反射面上のM点までの距離として求まる。
 入射光線と等位相面A1mとの交点からM点までの距離は、まず入射光線と前記メリディオナル光源線Sとの交点PからM点までの距離を求めるとともに、該距離に、交点Pから前記等位相面A1mを定義している前記円弧B1mまでの距離、つまりPから円弧B1mに下した垂線の足をH1mとしてP1m間の距離を加算又は減算(本例では加算)して求める。すなわち、入射長f1m は式(19)で表される。
Figure JPOXMLDOC01-appb-M000019
 
 これにt’1x 、t’1y を導入することで、以下の式(20)ように変形できる。
Figure JPOXMLDOC01-appb-M000020
 
(第1反射面の出射側における光路長の補償)
 出射側についても、入射側と同様、サジタル仮想集光線F 上の上記交点Q に対応する近傍の等位相面、およびメリディオナル仮想集光線F 上の上記交点Q に対応する近傍の等位相面をそれぞれ考える。サジタル仮想集光線Fs では、メリディオナル仮想集光線F から発散する波面が仮想的に観察されるはずである。このような仮定のもとFs 上の位相を定義することは厳密にはできないが、ここではF と出射光軸zの交点をQm0 とおき,Fs 上にはQm0 からの距離に応じた位相分布が存在するものとみなす。また、メリディオナル仮想集光線F では、サジタル仮想集光線F に向けて収束する波面が仮想的に観察されるはずである.このような仮定のもとF 上の位相を定義することは厳密にはできないが,ここではF と出射光軸zの交点をQs0 とおき、F 上にはQs0 からの距離に応じた位相分布が存在するものとみなす。
 これらの考えに基づき、入射側と同様、より正確な出射長を求める。具体的には、図示は省略するが、上記と同様に交点Q から等位相面を定義する円弧B2s までの距離、つまりQs から円弧B2s に下した垂線の足をH2s としたH2s 間の距離や、交点Q から等位相面を定義する円弧B2m までの距離、つまりQm から円弧B2m に下した垂線の足をH2m としたQ 2m 間の距離を用いて加算または減算して補償を行い、式(21)、式(22)のように、サジタル方向の仮想の出射長f2s 、メリディオナル方向の仮想の出射長f2m について、各々より正確な出射長を求めることができる。
Figure JPOXMLDOC01-appb-M000021
 
Figure JPOXMLDOC01-appb-M000022
 
 f2s は、t’2x 、t’2y を導入することで、以下の式(23)のように変形できる。
Figure JPOXMLDOC01-appb-M000023
 
 f2m は、t’2x 、t’2y を導入することで、以下の式(24)ように変形できる。
Figure JPOXMLDOC01-appb-M000024
 
(第2反射面の入射側における光路長の補償)
 第2反射面の入射側についても、第1反射面の入射側と同様、サジタル仮想光源線S 上の上記交点P に対応する近傍の等位相面、およびメリディオナル仮想光源線S 上の上記交点P に対応する近傍の等位相面をそれぞれ考える。サジタル仮想光源線Ss では、メリディオナル仮想光源線S から発散する波面が仮想的に観察されるはずである。このような仮定のもとSs 上の位相を定義することは厳密にはできないが、ここではS と入射光軸zの交点をPm0 とおき,Ss 上にはPm0 からの距離に応じた位相分布が存在するものとみなす。また、メリディオナル仮想光源線S では、サジタル仮想光源線S に向けて収束する波面が仮想的に観察されるはずである.このような仮定のもとS 上の位相を定義することは厳密にはできないが,ここではS と入射光軸zの交点をPs0 とおき、S 上にはPs0 からの距離に応じた位相分布が存在するものとみなす。
 これらの考えに基づき、より正確な入射長を求める。具体的には、図示は省略するが、上記と同様に交点P から等位相面を定義する円弧B1s までの距離、つまりPs から円弧B1s に下した垂線の足をH1s としたH1s 間の距離や、交点P から等位相面を定義する円弧B1m までの距離、つまりPm から円弧B1m に下した垂線の足をH1m としたP 1m 間の距離を用いて加算または減算して補償を行い、式(25)、式(26)のように、サジタル方向の仮想の入射長f1s 、メリディオナル方向の仮想の入射長f1m について、各々より正確な入射長を求めることができる。なお、L2s >0かつL2m >0のときL1s <0かつL1m <0となり、f1s <0かつf1m <0となる。
Figure JPOXMLDOC01-appb-M000025
 
Figure JPOXMLDOC01-appb-M000026
 
 f1s は、t’1x 、t’1y を導入することで、以下の式(27)のように変形できる。
Figure JPOXMLDOC01-appb-M000027
 
 f1m は、t’1x 、t’1y を導入することで、以下の式(28)ように変形できる。
Figure JPOXMLDOC01-appb-M000028
 
(第2反射面の出射側における光路長の補償)
 出射側についても、入射側と同様、サジタル集光線F上の上記交点Qに対応する近傍の等位相面、およびメリディオナル集光線F上の上記交点Qに対応する近傍の等位相面をそれぞれ考える。サジタル集光線Fsでは、メリディオナル集光線Fから発散する波面が観察されるはずである。このような仮定のもとFs上の位相を定義することは厳密にはできないが、ここではFと出射光軸zの交点をQm0とおき,Fs上にはQm0からの距離に応じた位相分布が存在するものとみなす。また、メリディオナル集光線Fでは、サジタル集光線Fに向けて収束する波面が観察されるはずである.このような仮定のもとF上の位相を定義することは厳密にはできないが,ここではFと出射光軸zの交点をQs0とおき、F上にはQs0からの距離に応じた位相分布が存在するものとみなす。
 これらの考えに基づき、より正確な出射長を求める。具体的には、図示は省略するが、上記と同様に交点Qから等位相面を定義する円弧B2s までの距離、つまりQsから円弧B2s に下した垂線の足をH2s としたH2s 間の距離や、交点Qから等位相面を定義する円弧B2m までの距離、つまりQmから円弧B2m に下した垂線の足をH2m としたQ2m 間の距離を用いて加算または減算して補償を行い、式(29)、式(30)のように、サジタル方向の出射長f2s 、メリディオナル方向の出射長f2m について、各々より正確な入射長を求めることができる。
Figure JPOXMLDOC01-appb-M000029
 
Figure JPOXMLDOC01-appb-M000030
 
 f2s は、t’2x 、t’2y を導入することで、以下の式(31)のように変形できる。
Figure JPOXMLDOC01-appb-M000031
 
 f2m は、t’2x 、t’2y を導入することで、以下の式(32)ように変形できる。
Figure JPOXMLDOC01-appb-M000032
 
(光路長の計算)
 このようにして求めた各入射長及び出射長を用いて、第1反射面および第2反射面の各反射面について、サジタル方向、メリディオナル方向の各方向の集光についての光路長の計算を行う。
 第1反射面のサジタル方向について、光源点から仮想の集光点までの基準光路長をL =L1s +L2s とすると、サジタル方向の集光に必要な条件式が、次の式(33)のように導かれる。
Figure JPOXMLDOC01-appb-M000033
 
 同様に、第1反射面のメリディオナル方向について、光源点から仮想の集光点までの基準光路長をL =L1m +L2m とすると、メリディオナル方向の集光に必要な条件式が、次の式(34)のように導かれる。
Figure JPOXMLDOC01-appb-M000034
 
 同様に、第2反射面のサジタル方向について、仮想の光源点から集光点までの基準光路長をL =L1s +L2s とすると、サジタル方向の集光に必要な条件式が、次の式(35)のように導かれる。
Figure JPOXMLDOC01-appb-M000035
 
 同様に、第2反射面のメリディオナル方向について、仮想の光源点から集光点までの基準光路長をL =L1m +L2m とすると、メリディオナル方向の集光に必要な条件式が、次の式(36)のように導かれる。
Figure JPOXMLDOC01-appb-M000036
 
 理想的には、第1反射面は、式(33)のサジタル方向の集光条件と式(34)のメリディオナル方向の集光条件とを同時に満たす点(u,v,w)の集合が求める反射面の形状となるが、このような連立方程式の解を設計式とすると、「L1s =L1m かつL2s =L2m 」のような特殊な条件下のものとなってしまう。同様に、第2反射面も、式35のサジタル方向の集光条件と式(36)のメリディオナル方向の集光条件とを同時に満たす点(u,v,w)の集合が求める反射面の形状となるが、このような連立方程式の解を設計式とすると、「L1s =L1m かつL2s =L2m 」のような特殊な条件下のものとなってしまう。
 そこで、他の条件下でも成り立ち得る、より一般化した反射面の形状を表わす設計式を得るために、本発明者は、第1反射面については式(33)と式(34)を重みづけし、式(37)に示す新たな式f(u,v,w)=0を反射面の設計式とし、第2反射面についても、同様に、式(35)と式(36)を重みづけし、式(42)に示す新たな式f(u,v,w)=0を反射面の設計式とした。
(第1反射面の設計式)
 すなわち、第1反射面の設計式は、サジタル方向の集光について光源点から仮想の集光点までの光路長が一定であることから導かれる第1の式(サジタル方向集光条件の式)であるf (u,v,w)=0(式(33))と、メリディオナル方向の集光について光源点から仮想の集光点までの光路長が一定であることから導かれる第2の式(メリディオナル方向集光条件の式)であるf (u,v,w)=0(式(34))とを、α、βを用いて、下記(式(37))のように重みづけした式f(u,v,w)=0である。αは、メリディオナル方向の集光に対する重みづけ係数、βは、サジタル方向の集光に対する重みづけ係数である。0≦αA≦1、βA=1-αAである。
Figure JPOXMLDOC01-appb-M000037
 
 式(37)が第1反射面の設計式である。式中のt'1x,t'1y,t'2x,t'2yをu座標系に基づいて書き直すと,以下の式(38)~(41)のようになる
Figure JPOXMLDOC01-appb-M000038
 
 式(37)から分かるように、サジタル方向の集光、メリディオナル方向の集光に対して対称性の良い方程式が得られたことを確認できる。これまでの導出で『L1s >L1m >0かつL2s >L2m >0』を仮定してきたが,この仮定がなくとも、すなわち大小関係の逆転やそれぞれの設定値が負の値をとったとしても式(37)に示す同じ方程式(設計式)が導かれる。ただし、L1m 、L1s 、L2m 、L2s の4定数はいずれも、正か負の値であって、0にすることはできない。
(第2反射面の設計式)
 同様に、第2反射面の設計式は、サジタル方向の集光について仮想の光源点から集光点までの光路長が一定であることから導かれる第1の式(サジタル方向集光条件の式)であるf (u,v,w)=0(式(35))と、メリディオナル方向の集光について仮想の光源点から集光点までの光路長が一定であることから導かれる第2の式(メリディオナル方向集光条件の式)であるf (u,v,w)=0(式(36))とを、α、βを用いて、下記(式(42))のように重みづけした式f(u,v,w)=0である。αは、メリディオナル方向の集光に対する重みづけ係数、βは、サジタル方向の集光に対する重みづけ係数である。0≦α≦1、β=1-αである。
Figure JPOXMLDOC01-appb-M000039
 
 式(42)が第2反射面の設計式である。式中のt'1x B,t'1y B,t'2x B,t'2y Bをu座標系に基づいて書き直すと,以下の式(43)~(46)のようになる
Figure JPOXMLDOC01-appb-M000040
 
 式(42)から分かるように、サジタル方向の集光、メリディオナル方向の集光に対して対称性の良い方程式が得られたことを確認できる。これまでの導出で『L1s <L1m <0かつL2s >L2m >0』を仮定してきたが,この仮定がなくとも、すなわち大小関係の逆転やそれぞれの設定値の正負が反転したとしても式(42)に示す同じ方程式(設計式)が導かれる。ただし、L1m 、L1s 、L2m 、L2s の4定数はいずれも、正か負の値であって、0にすることはできない。
(共通座標系(uvw座標系)での設計式)
 以上のとおり、u座標系で表された第1反射面の設計式と、u座標系で表された第2反射面の設計式を、それぞれ共通のuvw座標系で表す。すなわち本発明のミラーの各反射面を、図9に示すように共通の座標系(u、v、w)で表現する。
 入射ビーム光軸zと出射ビーム光軸zの交点を直交座標系uvwの原点O(0,0,0)とする。ミラー設置機構の回転中心もこの点に合わせるものとする。入射ビーム光軸と第1反射面の交点をM 、および出射ビーム光軸と第2反射面の交点M とし、直線M に平行となるよう長手方向u軸を設定する。また、入射ビーム光軸と出射ビーム光軸の双方に直交するように短手方向v軸を設定する。w軸は、u軸とv軸の双方に直交する。
 第1反射面の点M における視射角をθ と設定し、第2反射面の点M における視射角をθ と設定する。また、線分M の長さをLと設定する.このとき,点M ,M の座標は以下の式(47)、(48)で表現される.
Figure JPOXMLDOC01-appb-M000041
 
 第1反射面の長手方向単位ベクトルe ,短手方向単位ベクトルe ,法線方向単位ベクトルe は,それぞれ以下の式(49)で表される.
Figure JPOXMLDOC01-appb-M000042
 
 同様に、第2反射面の長手方向単位ベクトルe ,短手方向単位ベクトルe ,法線方向単位ベクトルe もまた,それぞれ以下の式(50)で表される。
Figure JPOXMLDOC01-appb-M000043
 
 以上により、第1反射面、第2反射面の位置及び姿勢がuvw座標系中で確定される。続いて、各反射面の形状を決定するために必要な入射長及び出射長を求める。ミラーのuw平面における断面を図10に示す。
 ミラー原点Oを基準とした入射長,出射長を、メリディオナル方向とサジタル方向双方についてそれぞれL1m、L1s、L2m、L2sと定義する。ミラー全体にとっての光源線S及びSは、上述した第1反射面にとっての光源線でなければならないことから、第1反射面の入射長L1m 及びL1s は下記式(51)、式(52)のように決定される。
Figure JPOXMLDOC01-appb-M000044
 
 同様に,ミラー全体にとっての集光線F及びFは、第2反射面にとっての集光線と同義である。第2反射面の出射長L2m 及びL2s は、L2m、L2sを用いて下記式(53)、式(54)のように表現される。
Figure JPOXMLDOC01-appb-M000045
 
 本発明にかかるミラーを正しく機能させるためには、第1反射面のサジタル仮想集光線F は第2反射面のサジタル仮想光源線S と、第1反射面のメリディオナル仮想集光線F は、第2反射面のメリディオナル仮想光源線S と、それぞれ一致させる必要がある。このため、第2反射面のメリディオナル入射長L1m とサジタル入射長L1s は、第1反射面のメリディオナル出射長L2m とサジタル出射長L2s から下記式(55)、式(56)のように導かれる.
Figure JPOXMLDOC01-appb-M000046
 
 以上により,本発明にかかるミラーを設計するために必要な定数は、L1m、L1s、L2m、L2s、L2m ,L2s 、L、θ ,θ の9種であることが示された。そして、上記した第1反射面上の座標(u,v,w)は、uvw座標系において下記式(57)以下のように表現される。
Figure JPOXMLDOC01-appb-M000047
 
 上記式(57)を式(37)に代入することにより、下記式(58)のとおり、第1反射面を表す設計式(等値面)f(u,v,w)=0が導かれる。
Figure JPOXMLDOC01-appb-M000048
 
 同様に、上記した第2反射面上の座標(u,v,w)は、uvw座標系において以下の式(59)ように表現される。
Figure JPOXMLDOC01-appb-M000049
 
 上記式(59)を式(42)に代入することにより、下記式(60)のとおり、第2反射面を表す設計式(等値面)f(u,v,w)=0が導かれる。
Figure JPOXMLDOC01-appb-M000050
 
(設計できるミラーの例)
 式(58)、式(60)の条件設定において、L1s とL1m の値を異なる値に設定し、且つL2s とL2m の値を一致する値(同じ値)に設定することで、第1反射面および第2反射面で2回反射することにより非点収差をもつ入射ビームから一点に集光する出射ビームが得られる非点収差制御ミラーを設計することができる。逆に、L1s とL1m の値を一致する値に設定し、且つL2s とL2m の値を異なる値に設定することで、一点から発散する入射ビームから非点収差をもつ出射ビームが得られる非点収差制御ミラーを設計することができる。また、L1m とL2m とL2m の値を正または負の無限大に設定し、且つL1s とL2s とL2s が所定値(但し、L1s +L2s ≠0、L1s +L2s ≠0)に設定することで、サジタル方向のみ集光性能を有する非点収差制御ミラーを設計することもできる。
 また、L1s とL1m の値を一致させ、L2s とL2m の値を互いに異なる値とし、L1s とL1m の値も互いに異なる値とし、L2s とL2m の値を一致させることで、一点から発散する入射ビームに第1反射面で非点収差を与えるとともに、第2反射面で該非点収差を解消し、鉛直方向と水平方向とで異なる縮小倍率を与える、非点収差制御ミラーを設計することもできる。
 また、L1s=L1m=Lとし、L2s=L2m=Lとし、かつL2s =L2m =L に設定し、メリディオナル・サジタル両方向の光源・集光位置が一致するように設定することで、図11に示すように、ミラーの第1反射面Aは光源点Sと仮想集光点Fを2焦点に持つ回転楕円面(回転放物面,回転双曲面)になり、第2反射面Bは仮想集光点Fと集光点Fを2焦点に持つ回転双曲面(回転放物面,回転楕円面)になる。
 また、サジタル方向集光について,光源線Sとz軸の交点Ps0,仮想集光線F とz軸の交点QS0 ,集光線Fとz軸の交点Qs0の三点が同一直線上に存在すると同時に,メリディオナル方向集光について,光源線Sとz軸の交点Pm0,仮想集光線F とz軸の交点Qm0 ,集光線Fとz軸の交点Qm0の三点が同一直線上に存在するように,L2s 及びL2m を設定することで、設置角度許容範囲拡大するミラーとすることができる。このようなミラーは、さらにL1s=L1m、L2s=L2m、L2s =L2m の条件を満たすことで、図12に示すように、Wolter type Iミラーとなる。
 また、L2m 及びL2s を設定することによって、集光地点におけるビームサイズの鉛直・水平の比を制御するミラーや、集光ビームの鉛直・水平の発散角度の比を制御するミラーを設計することもできる。第1反射面の出射長L2m 及びL2s は、それぞれメリディオナル方向集光及びサジタル方向集光の倍率を決定する。集光光学系における倍率は、集光サイズの光源サイズに対する比として定義される。メリディオナル方向集光の倍率をMm、サジタル方向集光の倍率をMと表記する。これらは光学系の入射長及び出射長の比から下記式(3)のように概算される。
Figure JPOXMLDOC01-appb-M000051
 
 式中において,d とd はメリディオナル方向集光に関する光源サイズと集光サイズを表している。また、d とd は、サジタル方向集光に関する光源サイズと集光サイズを表している。式(3)はいずれも第1反射面がビームに与える倍率と第2反射面がビームに与える倍率の積によって、二回反射ミラーの総合的な倍率が見積れることを示している。ここで、M及びMは負の値を取りうる。例えばL1m>0かつL1s>0かつL2m>0かつL2s>0の条件で、L2m 及びL2s を正の値に設定した場合、L1m 及びL1s が負の値になり、結果としてMとMの双方が負の値を持つが、集光ビームの大きさが消えるわけではなく、集光位置に結ばれる像が反射面に対して反転することとなり、集光サイズを決定する実質的な倍率は|M|である。求める倍率MとMを得るために必要なL2mおよびL2sの要件は、下記式(4)によって表現される。
Figure JPOXMLDOC01-appb-M000052
 
 これにより、たとえば鉛直・水平ともに一点から広がるビームを二回の反射を経て再度一点に集光し、さらに集光点においてビームを円形化するミラー(集光位置においてビームが円形になるミラー)を設計したり、鉛直・水平ともに一点から広がるビームを二回の反射を経て再度一点に集光し,さらに下流の発散位置においてビームを円形化するミラー(発散位置においてビームが円形になるミラー)を設計したりすることができる。
 最後に、x座標系、x座標系、x座標系の相互の関係を示しておく。ここでは、上記uvw座標系を介して関係を導いているが、これに何ら限定されずに導くことができる。まずx座標系はuvwを用いて式(61)で表現でき、ここから式(62)が導かれる。
Figure JPOXMLDOC01-appb-M000053
 
 一方、x座標系は、uvwを用いて下記式(63)で表現でき、これに上記式(62)を代入することで、式(64)が得られる。
Figure JPOXMLDOC01-appb-M000054
 
 また、x座標系は、uvwを用いて式(65)で表現でき、これに上記式(62)を代入することで、式(66)が得られる。
Figure JPOXMLDOC01-appb-M000055
 
 以上のように、x座標系、x座標系、x座標系の相互の関係が式(64)、式(66)で示される。
 
 以上、本発明の実施形態について説明したが、本発明はこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。本実施形態では、光源線、集光線、仮想光源線、仮想集光線をそれぞれ直線として、直線とその近傍の等位相面間の距離を補償したが、このような補償は必ずしも必要ではない。また、円弧線やその他の曲線を光源線、集光線、仮想光源線、仮想集光線として、補償なしまたは上記補償以外の補償方法または近似方法で求めることも好ましい。第1反射面、第2反射面の各反射面の設計式の原点の位置も異なる位置でもよい。座標変換しても勿論よい。
 
(設置角度許容範囲拡大の検証)
 本発明においてサジタル方向の集光,メリディオナル方向の集光それぞれについて,光源線,仮想集光線,集光線と光軸z、z、zの各交点が同一直線状に存在するように設定したミラー(「設置角度許容範囲拡大ミラー」と称す。)が、角度誤差(視射角誤差・面内回転誤差,軸周り回転)の影響を抑制でき、設置角度許容範囲を拡大するミラーとして有効であることを示す。
 一般にサジタル方向とメリディオナル方向で異なる曲率半径ρ、ρを持つ反射面において、設計上の視射角をθ、入射長をL1s、L1m、出射長をL2s、L2mとしたとき、曲率半径ρ、ρは、式(67)、式(68)となり、視射角の増分値δに対する出射長の応答は、式(67)及び式(68)を偏微分して得られる式(69)、式(70)で表わされる。式(69)及び式(70)を比較すると、視射角の変化に対してメリディオナル集光とサジタル集光の出射長が、正負の異なる変化を示すことがわかる。
Figure JPOXMLDOC01-appb-M000056
 
 一回のみ反射するミラーでは、視射角誤差によって出射ビーム光軸がずれるだけでなく集光ビームに望まない非点収差が発生する。図13は一点から一点に光を集める回転楕円ミラーの集光において視射角を増大させたときのメリディオナル方向集光点Fmとサジタル方向集光点Fsの位置ずれを示している。両集光点Fm、Fsは、設計上の集光点Fよりも反射面から離れる方向に移動すると同時に、光軸方向にも対称的に移動する。
 これに対し、図14は、二回反射ミラー(一体型)に視射角誤差を入力した際の反応を示す模式図である。上流側の第1反射面の設計上の視射角をθ 、下流側の反射面の視射角をθ する。両反射面が一体となって回転するとき、第1反射面の視射角が微小角δだけ増大すると、第2反射面の視射角はδ減少する。結果として、入射光軸と出射光軸のなす角は2θ +2θ = constantとなり,出射ビームの方向が動きにくい光学系であることがわかる。このとき、第1反射面の出射長は上述のとおりメリディオナル方向とサジタル方向で正負が反転した反応を示す。これに対し、第2反射面では、視射角がδ浅くなるだけでなくメリディオナル方向とサジタル方向の入射長も第1反射面の集光位置がずれたことに起因して変化する。ミラー全体の出射長L2mおよびL2sは、視射角誤差δに対して、次の式(71)、式(72)のような応答を示す。
Figure JPOXMLDOC01-appb-M000057
 
 ここで、視射角誤差に対する出射長の偏微分係数が0となるとき、すなわち式(71)及び式(72) の右辺が0となるとき、視射角の微小変化にかかわらず出射長が安定する。式(71)及び式(72)に,式(55)及び式(56)を代入することで、次の式(73)、式(74)が得られる。これに、式(51)~式(54)で与えられたL1m ,L1s ,L2m ,L2s を代入して、第1反射面の出射長L2m ,L2s について解くことで出射長が安定する条件が求まり、視射角誤差に堅牢な光学系となる。
Figure JPOXMLDOC01-appb-M000058
 
 そして、上記した設置角度に対する出射長の偏微分係数を0とする条件、および上記「設置角度許容範囲拡大ミラー」の一種であるWolter type Iミラーの設計が求める,サジタル方向の集光,メリディオナル方向の集光それぞれについて,光源線,仮想集光線,集光線と光軸z1,z2,z3の各交点が同一直線状に位置するという条件の各々から導かれる第1反射面の出射長L の最適値を比較した。計算条件を表1に示す。結果を図15に示す。これは反射面全体の出射長Lを変化させながらL の最適値を計算し、プロットしたグラフである。両条件から導かれる結果は概ね等しくなった。
Figure JPOXMLDOC01-appb-T000059
 
 さらに、所定の出射長Lの条件下でミラーを設計し,視射角誤差に対する応答を確認した。出射長L=250mmのとき、偏微分係数を0とする条件で計算されるL の値は590.333mm、Wolter type Iミラーでは507.590mmである。この条件を用いてミラーを設計し、計算には光線追跡を用いた。第1反射面の有効領域全体に光源線から光線を均一に出射し、設計上の集光面上の光線の散らばりをRMS blur radiusを計算することで取得した。結果を図16に示す。±1 mradの範囲では、Wolter type Iミラーで計算されるL の値を採用したミラーの方が視射角誤差に対する集光サイズの増大が抑制され、より良い設計であることが明らかとなった。
 以上の結果は、第一反射面・第二反射面双方の入射ビーム・出射ビームに設計上の非点収差が存在しない条件下における比較であるが,入射ビームに非点収差が存在する場合も同様、上記「設置角度許容範囲拡大ミラー」の条件(三点同一直線条件)を満たすことで、設置角度誤差に堅牢な集光光学系となる。これを設計式で表すと、下記式(75)、式(76)を満たすL2m 、L2s を設定することになる。
Figure JPOXMLDOC01-appb-M000060
 
 次に、上記「設置角度許容範囲拡大ミラー」のうちL1s≠L1m、L2s=L2m、L2s ≠L2m としたもの(実施例1)、L1s=L1m、L2s=L2m、L2s =L2m としたWolter type Iミラー(実施例2)、およびメリディオナル方向の集光,サジタル方向の集光それぞれについて,実施例1と同じ入射長及び出射長を設定した一回反射非点収差制御ミラー(比較例1)について、設置角度誤差に対して集光サイズ及び位置がどのような応答を示すのかを光線追跡に基づき計算して比較した結果について説明する。
 実施例1のミラーの設計条件を表2に示す。ミラー反射面は上下偏向とし、メリディオナル方向が鉛直集光を、サジタル方向が水平方向をそれぞれ担当する。第1反射面の出射長L2m はL1mとL2mから、L2s はL1sとL2sから、三点同一直線条件を満たすようにそれぞれ独立に計算される。光学系の配置を図17に、計算されたミラーの形状を図18にそれぞれ示す。第1反射面及び第2反射面は、メリディオナル方向およびサジタル方向の双方に凹形状を持つ。実施例2のWolter type Iミラーの設計条件を表3に示す。比較例1の平板型一回反射非点収差制御ミラーの設計条件を表4に示す。
Figure JPOXMLDOC01-appb-T000061
 
Figure JPOXMLDOC01-appb-T000062
 
Figure JPOXMLDOC01-appb-T000063
 
 実施例1、比較例1の非点収差制御ミラーは、鉛直(メリディオナル)方向には20m、水平(サジタル)方向に5mの入射長を持つものとする。これに対して、実施例2(Wolter type Iミラー)の入射長は、鉛直・水平ともに10mとした。実施例1、2、比較例1の各ミラーの集光点は、いずれもミラー基準位置から250mmの位置に固定され、入射ビーム光軸と出射ビーム光軸のなす角は40 mradで固定とした。入力する設置角度誤差は、ピッチ(斜入射)角誤差、ヨー(面内回転)角誤差、ロール(軸回り回転)角誤差の3つである。図19にその一覧を示す。
 実施例1、2、比較例1のそれぞれについて、メリディオナル方向・サジタル方向の集光サイズの増大量(RMS値)と集光位置のずれを計算した。ピッチ角誤差に対する応答を図20に、ヨー角誤差に対する応答を図21に、ロール角誤差に対する応答を図22にそれぞれ示す。
 実施例1の設置角応答は、実施例2(Wolter type Iミラー)の応答とほぼ同等であり、特にピッチ角誤差とヨー角誤差に対する集光サイズ増大の抑制は、比較例1よりもはるかに優れていることがわかる。実施例1によるSub-μm集光では、各種設置角度誤差に対して100μrad以上の許容範囲が存在することがわかる。
(ビーム強度を円形化するミラーの検証1)
 次に、集光位置においてビームを円形化するミラー(実施例3)を説明する。光源の条件(照明の条件)を表5に示す。光源サイズには鉛直方向と水平方向で5倍の比が存在するとする。集光ビームを円形化するためには、反射ミラーの倍率に鉛直と水平でその逆比を与えなければならない。実施例3の設計条件を表6に示す。
Figure JPOXMLDOC01-appb-T000064
 
Figure JPOXMLDOC01-appb-T000065
 
 表から分かるように実施例3のミラーは、ミラー原点から5mの位置に存在する光源からの光を、水平方向に反射し、0.5mの位置に存在する集光点に集めるように設計される。長手方向が水平集光を、短手方向が鉛直集光をそれぞれ担当する。第1反射面(ミラーA)がビームに追加で与える非点収差は,第2反射面(ミラーB)によって解消される。
 実施例3のミラー形状(高さ分布)を図23に示す。上流側の第1反射面(ミラーA)は長手方向に凸、短手方向に凹のプロファイルを持つ。下流側の第2反射面(ミラーB)は長手方向に凹、短手方向に凸のプロファイルを持つ。
 また、実施例3のミラーについて、光線追跡計算により集光点における光線の分布を出力した結果を図24に示す。鉛直方向の集光サイズは0.506 μm (σ),水平方向は0.490 μm (σ)であり、ビームが概ね円形化されたことが確認できる。
(ビーム強度を円形化するミラーの検証2)
 次に、発散位置においてビームを円形化するミラー、すなわち鉛直・水平ともに一点から広がるビームを二回の反射を経て再度一点に集光し、さらに下流の発散位置においてビームを円形化するミラー(実施例4)を説明する。光源の条件(照明の条件)を表7に示す。発散角には鉛直方向と水平方向で2倍の比が存在するとする。集光ビームの発散角を円形化するためには、反射ミラーの倍率に鉛直と水平で同じ比を与えなければならない。実施例4の設計条件を表8に示す。
Figure JPOXMLDOC01-appb-T000066
 
Figure JPOXMLDOC01-appb-T000067
 
 表から分かるように実施例4のミラーは、ミラー原点から5mの位置に存在する光源からの光を、水平方向に反射し、0.5mの位置に存在する集光点に集めるように設計される。長手方向が水平集光を、短手方向が鉛直集光をそれぞれ担当する。第1反射面(ミラーA)がビームに追加で与える非点収差は,第2反射面(ミラーB)によって解消される。
 実施例4のミラー形状(高さ分布)を図25に示す。上流側の第1反射面(ミラーA)は長手方向に凸、短手方向に凹のプロファイルを持つ。下流側の第2反射面(ミラーB)は長手方向に凹、短手方向に凹のプロファイルを持つ。
 また、実施例4のミラーについて、光線追跡計算により集光点における光線の分布を出力した結果を図26(a)に示し、集光点よりも10m下流の位置における光線の分布を出力した結果を図26(b)に示す。集光サイズは、鉛直・水平ともに1nm以下であり、大きさのない光源からの光が一点に絞られたことが確認できる。また10m下流の位置における光線のばらつきは、鉛直方向で10.201mm (σ),水平方向で10.198 mm (σ)であり、発散位置におけるビームが概ね円形化されることが分かる。
 A 第1反射面
 B 第2反射面

Claims (13)

  1.  順次光が反射される第1反射面および第2反射面を有するミラーの設計方法であって、
     第1反射面への入射ビームの光軸をz軸、これに直交する断面をx平面とし、
     第2反射面への入射ビームとなる、前記第1反射面の出射ビームの光軸をz軸、これに直交する断面をx平面とし、
     前記第2反射面の出射ビームの光軸をz軸、これに直交する断面をx平面とし、
     x軸、xおよびx軸を、第1反射面および第2反射面のサジタル方向と平行であるとし、
     第1反面面への入射ビームが、z軸上のz軸とz軸との第1反射面上の交点M からz軸方向に沿ってL1s 変位した位置に、サジタル方向の集光についての光源をもち、かつ前記z軸上の前記交点M からz軸方向に沿ってL1m 変位した位置に、メリディオナル方向の集光についての光源をもち、
     第2反射面の出射ビームが、サジタル方向の集光についてz軸上のz軸とz軸との第2反射面上の交点M からz軸方向に沿ってL2s 変位した位置に集光し、かつメリディオナル方向の集光について前記z軸上の前記交点M からz軸方向に沿ってL2m 変位した位置に集光し、
     第1反射面を経由するすべての入射光線が、前記サジタル方向の集光における前記光源の位置を通りx軸とz軸の双方に直交する方向に延びるサジタル光源線、及びメリディオナル方向の集光における前記光源の位置を通りy軸とz軸の双方に直交する方向に延びるメリディオナル光源線を通過し、
     第2反射面から放たれるすべての出射光線が、サジタル方向の集光における前記集光する位置を通りx軸とz軸の双方に直交する方向に延びるサジタル集光線、及びメリディオナル方向の集光における前記集光する位置を通り該y軸とz軸の双方に直交する方向に延びるメリディオナル集光線を通過するとし、
     さらに、第1反射面の出射ビームが、第2反射面で反射せずに直進すると仮想したとき、サジタル方向の集光についてz軸上の前記交点M からz軸方向に沿ってL2s 変位した位置に集光し、かつメリディオナル方向の集光について前記z軸上の前記交点M からz軸方向に沿ってL2m 変位した位置に集光し、
     第1反射面の出射光線は、サジタル方向の集光における前記集光する位置を通りx軸とz軸の双方に直交する方向に延びるサジタル仮想集光線、及びメリディオナル方向の集光における前記集光する位置を通り該y軸とz軸の双方に直交する方向に延びるメリディオナル仮想集光線を通過するとし、
     第2反射面を経由するすべての入射光線は、その延長線上において、前記第1反射面にとってのサジタル方向の集光における前記サジタル仮想集光線をサジタル仮想光源線とし、且つ前記第1反射面にとってのメリディオナル方向の集光における前記メリディオナル仮想集光線をメリディオナル仮想光源線として、これら両光源線と交わるものとし、
     第1反射面上の任意の点をMとして、サジタル光源線とM点への入射光線との交点、及びメリディオナル光源線とM点への入射光線との交点の各座標を、前記L1s 、L1m を用いて表わし、且つ、該M点からの出射光線とサジタル仮想集光線との交点、及びM点からの出射光線とメリディオナル仮想集光線との交点の各座標を、前記L2s 、L2m を用いて表わし、
     第2反射面上の任意の点をMとして、サジタル仮想光源線とM点への入射光線との交点、及びメリディオナル仮想光源線とM点への入射光線との交点の各座標を、前記L2s 、L2m 、及びM 間の距離Lを用いて表わし、且つ、M点からの出射光線とサジタル集光線との交点、及びM点からの出射光線とメリディオナル集光線との交点の各座標を、前記L2s 、L2m を用いて表わし、
     これら座標、第1反射面におけるサジタル方向の集光及びメリディオナル方向の集光についてそれぞれ反射面上の任意の点に関して光源位置から仮想集光位置までの光路長が一定であること、及び、第2反射面におけるサジタル方向の集光及びメリディオナル方向の集光についてそれぞれ反射面上の任意の点に関して仮想光源位置から集光位置までの光路長が一定であることに基づき導かれる、反射面の設計式を用いてミラーを設計することを特徴とする、ミラーの設計方法。
     
  2.  前記サジタル光源線、前記メリディオナル光源線を、それぞれy軸方向に延びる直線S、x軸方向に延びる直線Sとし、
     前記サジタル仮想集光線、前記メリディオナル仮想集光線を、それぞれy軸方向に延びる直線F 、x軸方向に延びる直線F とし、
     前記サジタル仮想光源線、前記メリディオナル仮想光源線を、それぞれ前記直線F に一致する直線S 、前記直線F に一致する直線S とし、
     前記サジタル集光線、前記メリディオナル集光線を、それぞれy軸方向に延びる直線F、x軸方向に延びる直線Fとし、
     下記(i)~(iv)により、前記第1反射面又は第2反射面における前記メリディオナル方向の集光又はサジタル方向の集光についてそれぞれ前記光路長を算出してなる、請求項1記載のミラーの設計方法。
    (i) 第1反射面におけるサジタル方向集光の光路長の算出:
     前記第1反射面におけるサジタル方向の集光についての光源位置からM点までの入射長は、前記メリディオナル光源線Sとz軸との交点Pm0を中心とし且つサジタル光源線Sとz軸との交点Ps0を通ってx軸に直交する方向に延びる円弧を、サジタル光源線Sを軸に回転させた回転円弧面を等位相面A1sとして、前記入射光線と該等位相面A1sとの2つの交点のうちメリディオナル光源線Sに近い側の交点からM点までの距離として求め、
     前記第1反射面におけるサジタル方向の集光についてのM点から前記仮想集光位置までの出射長は、前記メリディオナル仮想集光線F とz軸との交点Qm0 を中心とし且つサジタル仮想集光線F とz軸との交点Qs0 を通ってx軸に直交する方向に延びる円弧を、サジタル仮想集光線F を軸に回転させた回転円弧面を等位相面A2s として、前記出射光線と該等位相面A2s との2つの交点のうちメリディオナル仮想集光線F に近い側の交点からM点までの距離として求め、
     これにより第1反射面における前記サジタル方向の集光について光路長を算出する。
    (ii) 第1反射面におけるメリディオナル方向集光の光路長の算出:
     前記第1反射面におけるメリディオナル方向の集光についての光源位置からM点までの入射長は、前記サジタル光源線Sとz軸との交点Ps0を中心とし且つメリディオナル光源線Sとz軸との交点Pm0を通ってy軸に直交する方向に延びる円弧を、メリディオナル光源線Sを軸に回転させた回転円弧面を等位相面A1mとして、前記入射光線と該等位相面A1mとの2つの交点のうちサジタル光源線Sに近い側の交点からM点までの距離として求め、
     前記第1反射面におけるメリディオナル方向の集光についてのM点から前記仮想集光位置までの出射長は、前記サジタル仮想集光線F とz軸との交点Qs0 を中心とし且つメリディオナル仮想集光線F とz軸との交点Qm0 を通ってy軸に直交する方向に延びる円弧を、メリディオナル仮想集光線F を軸に回転させた回転円弧面を等位相面A2m として、前記出射光線と該等位相面A2m との2つの交点のうちサジタル仮想集光線F に近い側の交点からM点までの距離として求め、
     これにより前記第1反射面における前記メリディオナル方向の集光について光路長を算出する。
    (iii) 第2反射面におけるサジタル方向集光の光路長の算出:
     前記第2反射面におけるサジタル方向の集光についての前記仮想光源位置からM点までの入射長は、前記メリディオナル仮想光源線S とz軸との交点Pm0 を中心とし且つサジタル仮想光源線S とz軸との交点Ps0 を通ってx軸に直交する方向に延びる円弧を、サジタル仮想光源線S を軸に回転させた回転円弧面を等位相面A1s として、前記入射光線と該等位相面A1s との2つの交点のうちメリディオナル仮想光源線S に近い側の交点からM点までの距離として求め、
     前記第2反射面におけるサジタル方向の集光についてのM点から前記集光位置までの出射長は、前記メリディオナル集光線Fとz軸との交点Qm0を中心とし且つサジタル集光線Fとz軸との交点Qs0を通ってx軸に直交する方向に延びる円弧を、サジタル集光線Fを軸に回転させた回転円弧面を等位相面A2sとして、前記出射光線と該等位相面A2sとの2つの交点のうちメリディオナル集光線Fに近い側の交点からM点までの距離として求め、
     これにより第2反射面における前記サジタル方向の集光について光路長を算出する。
    (iv) 第2反射面におけるメリディオナル方向集光の光路長の算出:
     前記第2反射面におけるメリディオナル方向の集光についての前記仮想光源位置からM点までの入射長は、前記サジタル仮想光源線S とz軸との交点Ps0 を中心とし且つメリディオナル仮想光源線S とz軸との交点Pm0 を通ってy軸に直交する方向に延びる円弧を、メリディオナル仮想光源線S を軸に回転させた回転円弧面を等位相面A1m として、前記入射光線と該等位相面A1m との2つの交点のうちサジタル仮想光源線S に近い側の交点からM点までの距離として求め、
     前記第2反射面におけるメリディオナル方向の集光についてのM点から前記集光位置までの出射長は、前記サジタル集光線Fとz軸との交点Qs0を中心とし且つメリディオナル集光線Fとz軸との交点Qm0を通ってy軸に直交する方向に延びる円弧を、メリディオナル集光線Fを軸に回転させた回転円弧面を等位相面A2mとして、前記出射光線と該等位相面A2mとの2つの交点のうちサジタル集光線Fに近い側の交点からM点までの距離として求め、
     これにより前記第2反射面における前記メリディオナル方向の集光について光路長を算出する。
     
  3.  前記(i)(第1反射面のサジタル方向集光)の光路長の算出につき、
     前記第1反射面における前記入射光線と等位相面A1sとの2つの交点のうちメリディオナル光源線Sに近い側の交点からM点までの距離は、前記入射光線と前記サジタル光源線Sとの交点Pから前記M点までの距離を求めるとともに、該距離に、前記交点Pから前記等位相面A1sを定義している前記円弧までの距離を加算又は減算して求め、
     前記第1反射面における前記出射光線と等位相面A2s との2つの交点のうちメリディオナル仮想集光線F に近い側の交点からM点までの距離は、前記出射光線と前記サジタル仮想集光線F との交点Q から前記M点までの距離を求めるとともに、該距離に、前記交点Q から前記等位相面A2s を定義している前記円弧までの距離を加算又は減算して求め、
     前記(ii)(第1反射面のメリディオナル方向集光)の光路長の算出につき、
     前記第1反射面における前記入射光線と該等位相面A1mとの2つの交点のうちサジタル光源線Sに近い側の交点からM点までの距離は、前記入射光線と前記メリディオナル光源線Sとの交点Pから前記M点までの距離を求めるとともに、該距離に、前記交点Pから前記等位相面A1mを定義している前記円弧までの距離を加算又は減算して求め、
     前記第1反射面における前記出射光線と該等位相面A2m との2つの交点のうちサジタル仮想集光線F に近い側の交点からM点までの距離は、前記出射光線と前記メリディオナル仮想集光線F との交点Q から前記M点までの距離を求めるとともに、該距離に、前記交点Q から前記等位相面A2m を定義している前記円弧までの距離を加算又は減算して求め、
     前記(iii)(第2反射面のサジタル方向集光)の光路長の算出につき、
     前記第2反射面における前記入射光線と該等位相面A1s との2つの交点のうちメリディオナル仮想光源線S に近い側の交点からM点までの距離は、前記入射光線と前記サジタル仮想光源線S との交点P から前記M点までの距離を求めるとともに、該距離に、前記交点P から前記等位相面A1s を定義している前記円弧までの距離を加算又は減算して求め、
     前記第2反射面における前記出射光線と該等位相面A2sとの2つの交点のうちメリディオナル集光線Fに近い側の交点からM点までの距離は、前記出射光線と前記サジタル集光線Fとの交点Qから前記M点までの距離を求めるとともに、該距離に、前記交点Qから前記等位相面A2sを定義している前記円弧までの距離を加算又は減算して求め、
     前記(iv)(第2反射面のメリディオナル方向集光)の光路長の算出につき、
     前記第2反射面における前記入射光線と該等位相面A1m との2つの交点のうちサジタル仮想光源線S に近い側の交点からM点までの距離は、前記入射光線と前記メリディオナル仮想光源線S との交点P から前記M点までの距離を求めるとともに、該距離に、前記交点P から前記等位相面A1m を定義している前記円弧までの距離を加算又は減算して求め、
     前記第2反射面における前記出射光線と該等位相面A2mとの2つの交点のうちサジタル集光線Fに近い側の交点からM点までの距離は、前記出射光線と前記メリディオナル集光線Fとの交点Qから前記M点までの距離を求めるとともに、該距離に、前記交点Qから前記等位相面A2mを定義している前記円弧までの距離を加算又は減算して求める、
     請求項2記載のミラーの設計方法。
     
  4.  z軸とz軸の交点を原点とし、
     z軸に平行な方向をu軸とし、
     x軸、x軸およびx軸に平行な方向をv軸とし、
     u軸およびv軸の双方に直交する方向をw軸とした直交座標系uvwを定義し、
     前記uvw系座標を、前記第1反射面への入射ビームの光軸を基準としたx座標系、第2反射面への入射ビームとなる、第1反射面の出射ビームの光軸を基準としたx座標系、および第2反射面の出射ビームの光軸を基準としたx座標系にそれぞれ変換し、
     前記設計式をuvw座標系で表してなる、
     請求項1~3の何れか1項に記載のミラーの設計方法。
     
  5.  z軸とz軸の第1反射面上の交点M を含み、該反射面に接する面をu平面とし、u平面の前記M を通る法線の方向をw軸とし、v軸をz軸およびz軸の双方に直交する方向、u軸をv軸およびw軸の双方に直交する方向とし、交点M を原点、u平面と光軸zとの成す斜入射角をθ とした、第1反射面を基準とした直交座標系uを定義し、
     z軸とz軸の第2反射面上の交点M を含み、該反射面に接する面をu平面とし、u平面の前記M を通る法線の方向をw軸とし、v軸をz軸およびz軸の双方に直交する方向、u軸をv軸およびw軸の双方に直交する方向とし、交点M を原点、u平面と光軸zとの成す斜入射角をθ とした、第2反射面を基準とした直交座標系uを定義し、
     前記u座標系およびu座標系を、それぞれ前記第1反射面への入射ビームの光軸を基準としたx座標系、第2反射面への入射ビームとなる、第1反射面の出射ビームの光軸を基準としたx座標系、および第2反射面の出射ビームの光軸を基準としたx座標系に変換し、
     前記設計式を前記u座標系およびu座標系で表し、
     これを更にuvw座標系で表してなる、
     請求項4記載のミラーの設計方法。
     
  6.  前記設計式が、
     前記第1反射面における前記サジタル方向の集光について光源点から仮想集光点までの光路長が一定であることから導かれる第1の式f (uA,vA,wA)=0と、前記第1反射面における前記メリディオナル方向の集光について光源点から仮想集光点までの光路長が一定であることから導かれる第2の式f (uA,vA,wA)=0とを重みづけした、下記式(1)と、
     前記第2反射面における前記サジタル方向の集光について仮想光源点から集光点までの光路長が一定であることから導かれる第3の式f (uB,vB,wB)=0と、前記第2反射面における前記メリディオナル方向の集光について仮想光源点から集光点までの光路長が一定であることから導かれる第4の式f (uB,vB,wB)=0とを重みづけした、下記式(2)とからなる、請求項5記載のミラーの設計方法。
    Figure JPOXMLDOC01-appb-M000001
     
  7.  下記式により、光源線Sから集光線Fまでのサジタル方向集光についての任意の倍率Mおよび光源線Sから集光線Fまでのメリディオナル方向集光についての任意の倍率Mを用いて、L2m 、L2s を設定する、請求項1~6の何れか1項に記載のミラーの設計方法。
    Figure JPOXMLDOC01-appb-M000002
  8.  請求項1~6の何れか1項に記載の前記設計式が成り立つ反射面を有するミラーであって、
     前記L1s とL1m の値が異なり、且つ前記L2s とL2m の値が一致しており、
     非点収差をもつ入射ビームから一点に集光する出射ビームが得られる、非点収差制御ミラー。
     
  9.  請求項1~6の何れか1項に記載の前記設計式が成り立つ反射面を有するミラーであって、
     前記L1s とL1m の値が一致し、且つ前記L2s とL2m の値が異なっており、
     一点から発散する入射ビームから非点収差をもつ出射ビームが得られる、非点収差制御ミラー。
     
  10.  請求項1~6の何れか1項に記載の前記設計式が成り立つ反射面を有するミラーであって、
     前記L1s とL1m の値が一致し、
     前記L2s とL2m の値が異なっており、
     且つ、前記L2s とL2m の値が一致しており、
     一点から発散する入射ビームに第1反射面で非点収差を与えるとともに、第2反射面で該非点収差を解消し、鉛直方向と水平方向とで異なる縮小倍率を与える、非点収差制御ミラー。
     
  11.  請求項1~6の何れか1項に記載の前記設計式が成り立つ反射面を有するミラーであって、
     光源線から集光線までのビームの倍率であって、下記式(3)で定義されるサジタル方向の倍率M、およびメリディオナル方向の倍率Mを用いた式(4)により、L2m 、L2s を設定することにより、
     鉛直・水平ともに一点から広がるビームを二回の反射を経て再度一点に集光し、集光点またはさらに下流の発散位置において、ビームが円形となるように設計された、非点収差制御ミラー。
    Figure JPOXMLDOC01-appb-M000003
     
    Figure JPOXMLDOC01-appb-M000004
     
  12.  請求項1~6の何れか1項に記載の前記設計式が成り立つ反射面を有するミラーであって、
     前記L1m とL2m とL2m の値が正または負の無限大であり、且つ前記L1s とL2s とL2s が所定値(但し、L1s +L2s ≠0かつ(L-L2s )+L2s ≠0)をもち、
     サジタル方向のみ集光性能を有する、非点収差制御ミラー。
     
  13.  請求項1~6の何れか1項に記載の前記設計式が成り立つ反射面を有するミラーであって、
     サジタル方向集光について、光源線Sとz軸の交点Ps0、仮想集光線F とz軸の交点Qs0 、集光線Fとz軸の交点Qs0の三点が同一直線上に存在すると同時に、メリディオナル方向集光について、光源線Sとz軸の交点Pm0,仮想集光線F とz軸の交点Qm0 ,集光線Fとz軸の交点Qm0の三点が同一直線上に存在するように,L2s 及びL2m を設定することにより、設置角度許容範囲を拡大する、非点収差制御ミラー。
PCT/JP2022/000570 2021-01-12 2022-01-11 ミラーの設計方法、および該設計方法における設計式が成り立つ反射面を備えた非点収差制御ミラー WO2022153979A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/271,838 US20240112826A1 (en) 2021-01-12 2022-01-11 Method for designing mirror and astigmatism control mirror having reflecting surface satisfying design formula in said designing method
EP22739386.5A EP4266107A1 (en) 2021-01-12 2022-01-11 Design method for mirror and astigmatism-control mirror having reflective surface that satisfies design formula in design method
CN202280009767.3A CN116724254A (zh) 2021-01-12 2022-01-11 反射镜的设计方法和具备该设计方法中的设计式成立的反射面的像散控制反射镜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021003119A JP2022108210A (ja) 2021-01-12 2021-01-12 ミラーの設計方法、および該設計方法における設計式が成り立つ反射面を備えた非点収差制御ミラー
JP2021-003119 2021-01-12

Publications (1)

Publication Number Publication Date
WO2022153979A1 true WO2022153979A1 (ja) 2022-07-21

Family

ID=82446342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000570 WO2022153979A1 (ja) 2021-01-12 2022-01-11 ミラーの設計方法、および該設計方法における設計式が成り立つ反射面を備えた非点収差制御ミラー

Country Status (5)

Country Link
US (1) US20240112826A1 (ja)
EP (1) EP4266107A1 (ja)
JP (1) JP2022108210A (ja)
CN (1) CN116724254A (ja)
WO (1) WO2022153979A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221596A (ja) * 2001-10-01 2002-08-09 Nikon Corp 非球面ミラー
JP2005530168A (ja) * 2002-06-19 2005-10-06 グズノク X線用光学装置
JP2014006457A (ja) * 2012-06-27 2014-01-16 Jtec Corp 二重反射型x線ミラー及びそれを用いた斜入射x線結像光学装置
JP2014163667A (ja) * 2013-02-21 2014-09-08 Fujitsu Ltd 集光装置、集光方法及び非球面ミラーの製造方法
WO2015004934A1 (ja) * 2013-07-12 2015-01-15 国立大学法人東京大学 回転体ミラーを用いたx線集光システムの光学設計方法及びx線集光システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221596A (ja) * 2001-10-01 2002-08-09 Nikon Corp 非球面ミラー
JP2005530168A (ja) * 2002-06-19 2005-10-06 グズノク X線用光学装置
JP2005530170A (ja) * 2002-06-19 2005-10-06 グズノク 光学アセンブリ及びその製造方法
JP2014006457A (ja) * 2012-06-27 2014-01-16 Jtec Corp 二重反射型x線ミラー及びそれを用いた斜入射x線結像光学装置
JP2014163667A (ja) * 2013-02-21 2014-09-08 Fujitsu Ltd 集光装置、集光方法及び非球面ミラーの製造方法
WO2015004934A1 (ja) * 2013-07-12 2015-01-15 国立大学法人東京大学 回転体ミラーを用いたx線集光システムの光学設計方法及びx線集光システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. WAGNER-GENTNERU. U. GRAFM. PHILIPPD. RABANUS: "A simple method to design astigmatic off-axis mirrors", INFRARED PHYSICS & TECHNOLOGY, vol. 50, 2007, pages 42 - 46, XP005915185, DOI: 10.1016/j.infrared.2006.03.001
WILLIAM A. RENSET. VIOLETT: "Method of Increasing the Speed of a Grazing-Incidence Spectrograph", JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, vol. 49, no. 2, February 1959 (1959-02-01), pages 139 - 141

Also Published As

Publication number Publication date
EP4266107A1 (en) 2023-10-25
JP2022108210A (ja) 2022-07-25
US20240112826A1 (en) 2024-04-04
CN116724254A (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
US6917472B1 (en) Achromatic fresnel optics for ultraviolet and x-ray radiation
JP4974206B2 (ja) 光線ビームの対称化及び均一化の複合機能素子
CN106030415B (zh) 用于投射光刻的照明光学单元
TWI724275B (zh) 自由曲面離軸三反成像系統
US10976537B2 (en) Compact telescope having a plurality of focal lengths compensated for by a deformable mirror
Sanchez del Rio et al. Aspherical lens shapes for focusing synchrotron beams
Chapman et al. A ray-trace analysis of x-ray multilayer Laue lenses for nanometer focusing
US11671706B2 (en) Optical device comprising a multi-order diffractive Fresnel lens (MOD-DFL) and an achromatizing compensation mechanism, and a method for enhancing images captured using the MOD-DFL
WO2022153979A1 (ja) ミラーの設計方法、および該設計方法における設計式が成り立つ反射面を備えた非点収差制御ミラー
JP2022108208A (ja) ミラーの設計方法、および該設計方法における設計式が成り立つ反射面を備えた非点収差制御ミラー
CN113126270A (zh) 自由曲面离轴三反成像系统
Luo et al. Single-layer metalens for achromatic focusing with wide field of view in the visible range
WO2022153978A1 (ja) ミラーの設計方法、および該設計方法における設計式が成り立つ反射面を備えた非点収差制御ミラー
Sutter et al. Ideal Cartesian oval lens shape for refocusing an already convergent beam
Ma et al. Wavefront aberration of plane diffraction gratings fabricated in a Lloyd’s mirror interferometer
Chapman et al. Geometric optics of arrays of reflective surfaces
Goldberg Analytic descriptions of parabolic X-ray mirrors
JP6496894B1 (ja) 光学素子及びレーザ照射装置
Lu et al. Geometric characteristics of aberrations of plane-symmetric optical systems
RU2238576C1 (ru) Способ фокусировки волнового поля и устройство для его осуществления
Hunter Aberrations of Grazing Incidence Systems and Their Reduction or Toleration
Underwood 9. Imaging Properties and Aberrations of Spherical Optics and Nonspherical Optics
Lu Prefocusing optics for soft-x-ray synchrotron-radiation monochromators
RU2352970C1 (ru) Способ фокусировки волнового поля, устройство для его осуществления и способ изготовления упорядоченного набора фокусирующих элементов для устройства фокусировки
Bokor et al. Curved diffractive optical elements: Design and applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18271838

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280009767.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022739386

Country of ref document: EP

Effective date: 20230717

NENP Non-entry into the national phase

Ref country code: DE