WO2022153421A1 - 端末、及び送信方法 - Google Patents

端末、及び送信方法 Download PDF

Info

Publication number
WO2022153421A1
WO2022153421A1 PCT/JP2021/000933 JP2021000933W WO2022153421A1 WO 2022153421 A1 WO2022153421 A1 WO 2022153421A1 JP 2021000933 W JP2021000933 W JP 2021000933W WO 2022153421 A1 WO2022153421 A1 WO 2022153421A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
resource
transmission
base station
mode
Prior art date
Application number
PCT/JP2021/000933
Other languages
English (en)
French (fr)
Inventor
翔平 吉岡
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP21919315.8A priority Critical patent/EP4280727A1/en
Priority to PCT/JP2021/000933 priority patent/WO2022153421A1/ja
Publication of WO2022153421A1 publication Critical patent/WO2022153421A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to terminals and base stations in wireless communication systems.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • NR New Radio
  • 5G New Radio
  • D2D reduces the traffic between the terminal and the base station, and enables communication between the terminals even if the base station becomes unable to communicate in the event of a disaster or the like.
  • D2D is referred to as a "sidelink", and therefore, a sidelink is basically used in the present specification as well.
  • 3GPP TS 38.331 V16.1.0 (2020-07) 3GPP TS 38.214 V16.2.0 (2020-06)
  • the present invention has been made in view of the above points, and is between a terminal that performs side-link transmission using resources allocated by a base station and a terminal that autonomously selects resources and performs side-link transmission. It is an object of the present invention to provide a technique capable of avoiding a collision of side link transmission in.
  • a receiver that receives resource allocation information for side-link transmission from the base station, Based on the resource allocation information, a control unit that determines whether or not to perform side link transmission using an autonomously selected resource, and a control unit.
  • a terminal including a transmission unit that executes the side link transmission is provided.
  • V2X It is a figure for demonstrating V2X. It is a figure for demonstrating the example (1) of the transmission mode of V2X. It is a figure for demonstrating the example (2) of the transmission mode of V2X. It is a figure for demonstrating the example (3) of the transmission mode of V2X. It is a figure for demonstrating the example (4) of the transmission mode of V2X. It is a figure for demonstrating the example (5) of the transmission mode of V2X. It is a figure for demonstrating the example (1) of the communication type of V2X. It is a figure for demonstrating the example (2) of the communication type of V2X. It is a figure for demonstrating the example (3) of the communication type of V2X. It is a sequence diagram which shows the operation example (1) of V2X.
  • FIG. 2 It is a sequence diagram which shows the operation example (2) of V2X. It is a sequence diagram which shows the operation example (3) of V2X. It is a sequence diagram which shows the operation example (4) of V2X. It is a figure which shows the example of a sensing operation. It is a figure which shows the example of the partial sensing operation. It is a flowchart which shows the example of re-evaluation. It is a figure which shows the example of re-evaluation. It is a flowchart which shows the example of preemption. It is a figure for demonstrating mode 1. FIG. It is a figure for demonstrating mode 1. FIG. It is a figure for demonstrating mode 1. FIG. It is a figure for demonstrating Example 1. FIG.
  • FIG. It is a figure for demonstrating Example 1.
  • FIG. It is a figure for demonstrating Example 2.
  • FIG. It is a figure for demonstrating Example 2.
  • FIG. It is a figure for demonstrating Example 3.
  • FIG. It is a figure for demonstrating Example 3.
  • FIG. It is a figure for demonstrating Example 3.
  • FIG. It is a figure for demonstrating Example 3.
  • FIG. It is a figure for demonstrating Example 4.
  • FIG. It is a figure for demonstrating Example 4.
  • FIG. It is a figure which shows an example of the functional structure of the base station 10 in embodiment of this invention.
  • the existing technique is, for example, an existing NR (for example, the technique disclosed in Non-Patent Documents 1 to 3) or an existing LTE, but is not limited to the existing NR or the existing LTE.
  • LTE used in the present specification has a broad meaning including LTE-Advanced, a method after LTE-Advanced (eg, NR), or a wireless LAN (Local Area Network), unless otherwise specified. Shall have.
  • the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or another system (for example, Flexible Duplex, etc.). Method may be used.
  • the radio parameter or the like being "configured” may mean that a predetermined value is set in advance (Pre-confine), or the base station 10 or the base station 10 or The radio parameter notified from the terminal 20 may be set.
  • the operation of the upper layer (for example, MAC layer) and the lower layer (for example, PHY layer) in the terminal will be described.
  • the functional division between the upper layer and the lower layer is an example, and the operation described below may be performed without distinguishing between the upper layer and the lower layer.
  • FIG. 1 is a diagram for explaining V2X.
  • V2X Vehicle to Everything
  • eV2X enhanced V2X
  • FIG. 1 V2X is a part of ITS (Intelligent Transport Systems), V2V (Vehicle to Vehicle) which means a communication mode between vehicles, and a roadside installed between a vehicle and a roadside.
  • ITS Intelligent Transport Systems
  • V2V Vehicle to Vehicle
  • V2I Vehicle to Infrastructure
  • V2N Vehicle to Network
  • V2P Vehicle to Pedestrian
  • V2X using LTE or NR cellular communication and terminal-to-terminal communication is being studied.
  • V2X using cellular communication is also referred to as cellular V2X.
  • NR V2X studies are underway to realize large capacity, low delay, high reliability, and Quality of Service (QoS) control.
  • LTE or NR V2X it is expected that studies not limited to 3GPP specifications will be promoted in the future. For example, ensuring interoperability, reducing costs by implementing higher layers, using or switching between multiple RATs (Radio Access Technology), supporting regulations in each country, data acquisition, distribution, database management, and LTE or NR V2X platform. It is expected that the usage method will be examined.
  • RATs Radio Access Technology
  • the communication device (which may be called a terminal) is mounted on the vehicle, but the embodiment of the present invention is not limited to this mode.
  • the communication device may be a terminal held by a person, the communication device may be a device mounted on a drone or an aircraft, and the communication device may be a base station, an RSU, a relay station (relay node), or the like. It may be a terminal or the like having a scheduling ability.
  • a vehicle equipped with a communication device may be called a terminal.
  • SL may be distinguished based on any or combination of UL (Uplink) or DL (Downlink) and the following 1) -4). Further, SL may have another name. 1) Time domain resource allocation 2) Frequency domain resource allocation 3) Reference synchronization signal (including SLSS (Sidelink Synchronization Signal)) 4) Reference signal used for path loss measurement for transmission power control
  • SL or UL OFDM Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic-Prefix OFDM
  • DFT-S-OFDM Discrete Fourier Transform Forward Transfer
  • Mode 3 and Mode 4 are defined regarding the allocation of SL resources to the terminal 20.
  • transmission resources are dynamically allocated by DCI (Downlink Control Information) transmitted from the base station 10 to the terminal 20.
  • DCI Downlink Control Information
  • SPS Semi Persistent Scheduling
  • Mode 4 the terminal 20 autonomously selects a transmission resource from the resource pool.
  • Mode1 and Mode2 are specified regarding the resource allocation of SL to the terminal 20.
  • transmission resources are allocated by DCI transmitted from the base station 10 to the terminal 20.
  • the terminal 20 autonomously selects a transmission resource from the resource pool.
  • the slot in the embodiment of the present invention may be read as a symbol, a mini slot, a subframe, a wireless frame, and a TTI (Transmission Time Interval).
  • the cell in the embodiment of the present invention may be read as a cell group, a carrier component, a BWP, a resource pool, a resource, a RAT (Radio Access Technology), a system (including a wireless LAN), or the like.
  • the terminal 20 is not limited to the V2X terminal, and may be any type of terminal that performs D2D communication.
  • the terminal 20 may be a terminal owned by a user such as a smartphone, or may be an IoT (Internet of Things) device such as a smart meter. Further, the terminal may be referred to as a "UE".
  • IoT Internet of Things
  • FIGS. 2 to 13 described below show an example of the system configuration in the present embodiment and also show an example of the basic operation in the system according to the present embodiment.
  • the wireless communication system has a terminal 20A, a terminal 20B, and a base station 10. Although there are actually a large number of terminals, FIG. 2 shows terminals 20A and terminals 20B as examples.
  • terminal 20 terminal 20
  • terminal 20B terminal 20
  • UE terminal 20
  • FIG. 2 shows a case where both the terminal 20A and the terminal 20B are within the coverage of the cell as an example, the operation in the present embodiment can be applied to the case where the terminal 20 is outside the coverage.
  • the terminal 20 does not have to be a device in one housing.
  • the device including the various sensors may be the terminal 20.
  • the processing content of the transmission data of the side link of the terminal 20 is basically the same as the processing content of UL transmission in LTE or NR.
  • the terminal 20 can scramble and modulate the codeword of the transmission data to generate complex-valued symbols, map the complex-valued symbols (transmission signal) to one or two layers, and perform precoding. good. Then, it maps to a resource element to generate a transmission signal (example: complex-valued time-domine SC-FDMA signal) and transmits it from each antenna port.
  • the base station 10 has a cellular communication function as a base station in LTE or NR, and a function for enabling communication of the terminal 20 in the present embodiment (example: resource pool setting, resource allocation, etc.). is doing.
  • the base station 10 may be an RSU (gNB type RSU).
  • the base station 10 is a communication device that provides one or more cells and wirelessly communicates with the terminal 20.
  • the physical resources of the radio signal are defined in the time domain and the frequency domain, the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks.
  • the TTI (Transmission Time Interval) in the time domain may be a slot, the TTI may be a subframe, or a symbol.
  • the signal waveform used by the terminal 20 for SL or UL may be OFDMA, SC-FDMA, or other signal waveform. You may.
  • the transmitting side terminal 20A may be referred to as a TX-UE, and the receiving side terminal 20B may be referred to as an RX-UE.
  • FIG. 2 is also a diagram for explaining an operation example in the example (1) of the transmission mode of V2X.
  • the base station 10 transmits the side link scheduling information to the terminal 20A.
  • the terminal 20A transmits control information by PSCCH (Physical Sidelink Control Channel) based on the received scheduling information, and transmits data (may be control information) by PSSCH (Physical Sidelink Shared Channel).
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • the side link communication transmission mode shown in FIG. 2 may be referred to as side link transmission mode 3 in LTE.
  • side link transmission mode 3 in LTE Uu-based side link scheduling is performed.
  • Uu is a wireless interface between UTRAN (Universal Terrestrial Radio Access Network) and UE (User Equipment).
  • UTRAN Universal Terrestrial Radio Access Network
  • UE User Equipment
  • the transmission mode of the side link communication shown in FIG. 2 may be referred to as the side link transmission mode 1 in NR.
  • FIG. 3 is a diagram for explaining an operation example in the example (2) of the transmission mode of V2X.
  • terminal 20A transmits PSCCH and PSCH to terminal 20B using autonomously selected resources.
  • the transmission mode of the side link communication shown in FIG. 3 may be referred to as the side link transmission mode 4 in LTE.
  • the terminal 20A In the side link transmission mode 4 in LTE, the terminal 20A itself executes resource selection.
  • the transmission mode of the side link communication shown in FIG. 3 may be referred to as the side link transmission mode 2 in NR. In the side link transmission mode 2 in NR, the terminal 20A itself executes resource selection.
  • FIG. 4 is a diagram for explaining an operation example in the example (3) of the transmission mode of V2X.
  • terminal 20A transmits PSCCH and PSCH to terminal 20B using autonomously selected resources.
  • terminal 20B uses autonomously selected resources to transmit PSCCH and PSCH to terminal 20A (step 1).
  • the transmission mode of the side link communication shown in FIG. 4 may be referred to as the side link transmission mode 2 or the transmission mode 2a in NR.
  • the terminal 20 itself executes resource selection.
  • FIG. 5 is a diagram for explaining an operation example in the example (4) of the transmission mode of V2X.
  • the base station 10 transmits the side link resource pattern to the terminal 20A via the RRC (Radio Resource Control) setting.
  • the side link resource pattern is preset in the terminal 20A.
  • the terminal 20A transmits the PSCH to the terminal 20B based on the received or preset resource pattern (step 1).
  • the transmission mode of the side link communication shown in FIG. 5 may be referred to as the side link transmission mode 2c in NR.
  • FIG. 6 is a diagram for explaining an operation example in the example (5) of the transmission mode of V2X.
  • the terminal 20A transmits the side link scheduling information to the terminal 20B by PSCCH. Subsequently, the terminal 20B transmits the PSCH to the terminal 20A based on the received scheduling information (step 2).
  • the transmission mode of the side link communication shown in FIG. 6 may be referred to as the side link transmission mode 2d in NR.
  • FIG. 7 is a diagram for explaining an operation example in the example (1) of the communication type of V2X.
  • the sidelink communication type shown in FIG. 7 is unicast.
  • Terminal 20A transmits PSCCH and PSCH to terminal 20.
  • the terminal 20A unicasts to the terminal 20B and also unicasts to the terminal 20C.
  • FIG. 8 is a diagram for explaining an operation example in the example (2) of the communication type of V2X.
  • the sidelink communication type shown in FIG. 8 is group cast.
  • Terminal 20A transmits PSCCH and PSCH to the group to which one or more terminals 20 belong.
  • the group includes a terminal 20B and a terminal 20C, and the terminal 20A performs a group cast to the group.
  • FIG. 9 is a diagram for explaining an operation example in the example (3) of the communication type of V2X.
  • the sidelink communication type shown in FIG. 9 is broadcast.
  • Terminal 20A transmits PSCCH and PSCH to one or more terminals 20.
  • terminal 20A broadcasts to terminal 20B, terminal 20C and terminal 20D.
  • the terminal 20A shown in FIGS. 7 to 9 may be referred to as a header UE.
  • HARQ Hybrid automatic repeat request
  • SFCI Seg Feedback Control Information
  • PSFCH Physical Sidelink Feedback Channel
  • PSFCH is used in the transmission of HARQ-ACK on the side link, but this is an example.
  • PSCCH may be used to transmit HARQ-ACK on the side link
  • PSCH may be used to transmit HARQ-ACK on the side link
  • other channels may be used. It may be used to transmit HARQ-ACK on the side link.
  • HARQ-ACK all the information reported by the terminal 20 in HARQ will be referred to as HARQ-ACK.
  • This HARQ-ACK may be referred to as HARQ-ACK information.
  • a codebook applied to the HARQ-ACK information reported from the terminal 20 to the base station 10 or the like is called a HARQ-ACK codebook.
  • the HARQ-ACK codebook defines a bit string of HARQ-ACK information.
  • NACK is also transmitted by "HARQ-ACK".
  • FIG. 10 is a sequence diagram showing an operation example (1) relating to HARQ-ACK of V2X.
  • step S101 the terminal 20A autonomously selects the resources to be used for PSCCH and PSCH from the resource selection window having a predetermined period.
  • the resource selection window may be set from the base station 10 to the terminal 20.
  • resource selection a resource identification process for determining a set of candidates and a resource selection process for selecting a resource from the set are performed.
  • step S102 and step S103 the terminal 20A transmits SCI (Sidelink Control Information) by PSCCH (or PSCH) and SL data by PSCH using the resource autonomously selected in step S101.
  • the terminal 20A may transmit the PSCCH with the same time resource as at least a part of the time resource of the PSCH, using the frequency resource adjacent to the frequency resource of the PSCH.
  • the terminal 20B receives the SCI (PSCCH or PSSCH) and SL data (PSSCH) transmitted from the terminal 20A.
  • the received SCI may include information on PSFCH resources for the terminal 20B to transmit HARQ-ACK for receiving the data.
  • the terminal 20A may include the information of the autonomously selected resource (resource reservation information) in the SCI and transmit it.
  • step S104 the terminal 20B transmits HARQ-ACK for the received data to the terminal 20A by using the resource of PSFCH determined from the received SCI.
  • step S105 the terminal 20A retransmits the PSCCH and the PSCH to the terminal 20B when the HARQ-ACK received in step S104 indicates that the retransmission is requested, that is, when it is NACK (negative response).
  • Terminal 20A may resend PSCCH and PSCH using autonomously selected resources.
  • steps S104 and S105 may not be executed.
  • FIG. 11 is a sequence diagram showing an operation example (2) relating to HARQ-ACK of V2X. Blind retransmissions without HARQ feedback control may be performed to improve transmission success rate or reach.
  • step S201 the terminal 20A autonomously selects the resources to be used for PSCCH and PSCH from the resource selection window having a predetermined period.
  • the resource selection window may be set from the base station 10 to the terminal 20.
  • the terminal 20A transmits SCI by PSCCH (or PSCH) and SL data by PSCH using the resource autonomously selected in step S201.
  • the terminal 20A may transmit the PSCCH with the same time resource as at least a part of the time resource of the PSCH, using the frequency resource adjacent to the frequency resource of the PSCH.
  • step S204 the terminal 20A retransmits the SCI by PSCCH or PSCH and the SL data by PSCH to the terminal 20B by using the resource autonomously selected in step S201.
  • the retransmission in step S204 may be executed a plurality of times.
  • step S204 may not be executed.
  • FIG. 12 is a sequence diagram showing an operation example (3) relating to HARQ-ACK of V2X.
  • the base station 10 may schedule the side link. That is, the base station 10 may determine the resource of the side link used by the terminal 20 and transmit the information indicating the resource to the terminal 20. Further, when HARQ control is applied, the base station 10 may transmit information indicating PSFCH resources to the terminal 20.
  • step S301 the base station 10 performs SL scheduling by sending DCI (Downlink Control Information) to the terminal 20A by PDCCH.
  • DCI Downlink Control Information
  • the DCI for SL scheduling is referred to as the SL scheduling DCI.
  • the base station 10 may transmit DCI for DL scheduling (which may be called DL allocation) to the terminal 20A by PDCCH.
  • DCI for DL scheduling is called DL scheduling DCI.
  • the terminal 20A that has received the DL scheduling DCI receives the DL data by PDSCH using the resource specified by the DL scheduling DCI.
  • the terminal 20A transmits SCI (Sidelink Control Information) by PSCCH (or PSCH) and SL data by PSCH using the resource specified by SL scheduling DCI.
  • SCI Servicelink Control Information
  • PSCCH or PSCH
  • SL scheduling DCI only PSCH resources may be specified.
  • the terminal 20A may transmit the PSCCH with the same time resource as at least a part of the time resource of the PSCH, using the frequency resource adjacent to the frequency resource of the PSCH.
  • the terminal 20B receives the SCI and SL data (PSSCH) transmitted from the terminal 20A.
  • the SCI received by the PSCCH or PSCH includes information on the PSFCH resource for the terminal 20B to transmit HARQ-ACK for receiving the data.
  • the information of the resource may be included in the DL scheduling DCI or the SL scheduling DCI transmitted from the base station 10 in step S301, and the terminal 20A acquires the information of the resource from the DL scheduling DCI or the SL scheduling DCI. May be included in the SCI.
  • the DCI transmitted from the base station 10 may not include the information of the resource, and the terminal 20A may autonomously include the information of the resource in the SCI and transmit the information.
  • step S304 the terminal 20B transmits HARQ-ACK for the received data to the terminal 20A by using the resource of PSFCH determined from the received SCI.
  • the terminal 20A has the PUCCH (or the SL scheduling DCI) designated by the DL scheduling DCI (or the SL scheduling DCI) at the timing specified by the DL scheduling DCI (or SL scheduling DCI) (for example, slot unit timing).
  • the HARQ-ACK is transmitted using the Physical upgrade control channel) resource, and the base station 10 receives the HARQ-ACK.
  • step S304 and step S305 may not be executed.
  • FIG. 13 is a sequence diagram showing an operation example (4) relating to HARQ-ACK of V2X.
  • PSFCH Physical Uplink Control Channel
  • the format of PSFCH may be a PRB (Physical Resource Block) size of 1, and ACK and NACK may be sequence-based formats identified by differences in sequence or cyclic shift (or both).
  • the format of PSFCH is not limited to this.
  • the resources of PSFCH may be arranged in the symbol at the end of the slot or the plurality of symbols at the end. Further, whether or not the period N is set in the PSFCH resource is specified in advance. The period N may be set or predetermined in slot units.
  • the vertical axis corresponds to the frequency domain and the horizontal axis corresponds to the time domain.
  • the PSCCH may be arranged in one symbol at the beginning of the slot, may be arranged in a plurality of symbols from the beginning, or may be arranged in a plurality of symbols from a symbol other than the beginning.
  • the PSFCH may be arranged in one symbol at the end of the slot, or may be arranged in a plurality of symbols at the end of the slot.
  • the "slot head" may mean the symbol that can be used for the side link in the plurality of symbols constituting one slot as the X symbol, and may mean the first symbol of the X symbol, among the symbols excluding the first symbol of the X symbol. It may mean the first symbol.
  • the "slot end" may mean the last symbol of the X symbol, or may mean the last symbol among the symbols excluding the last symbol of the X symbol.
  • the "slot end" may mean the last symbol of the X symbol, or may mean the last symbol among the symbols excluding the last symbol of the X symbol.
  • three subchannels are set in the resource pool, and two PSFCHs are arranged three slots after the slot in which the PSSCH is arranged.
  • the arrow from PSSCH to PSFCH shows an example of PSFCH associated with PSSCH.
  • FIG. 13 shows an example of group cast option 2 in which the HARQ response in the group cast of NR-V2X transmits ACK or NACK.
  • the terminal 20A which is the transmitting side terminal 20
  • terminal 20B uses PSFCH # B
  • terminal 20C uses PSFCH # C
  • terminal 20D uses PSFCH # D to transmit a HARQ response to terminal 20A.
  • group cast option 1 only NACK is transmitted as a HARQ response, and ACK is not transmitted.
  • FIG. 14 is a diagram showing an example of a sensing operation as a basic operation example of the system in the present embodiment.
  • an example of sensing operation in LTE is shown as an example.
  • the terminal 20 selects a resource and transmits it as shown in FIG.
  • the terminal 20 performs sensing in a sensing window in the resource pool.
  • the terminal 20 receives a resource reservation field included in the SCI transmitted from another terminal 20, and identifies available resource candidates in the resource selection window in the resource pool based on the field. Subsequently, the terminal 20 randomly selects a resource from the available resource candidates. Sensing all the resources in the sensing window may be called full sensing.
  • the resource pool setting may have a period.
  • the period may be a period of 10240 milliseconds.
  • FIG. 14 shows an example in which the subframe t 0 SL to the subframe t Tmax SL are set as the resource pool.
  • the area of the resource pool in the cycle may be set by, for example, a bitmap.
  • the transmission trigger in the terminal 20 occurs in the subframe n, and the priority of the transmission is pTX .
  • the terminal 20 can detect, for example, that another terminal 20 is transmitting the priority p RX in the sensing window from the subframe t n-10 ⁇ Pstep SL to the subframe t n-1 SL . .. If SCI is detected in the sensing window and RSRP exceeds the threshold, the resources in the resource selection window corresponding to the SCI are excluded. Further, when SCI is detected in the sensing window and RSRP is less than the threshold value, the resource in the resource selection window corresponding to the SCI is not excluded.
  • the threshold value may be, for example, the threshold values Th pTX, pRX set or defined for each resource in the sensing window based on the priority pTX and the priority pRX .
  • resources in the resource selection window corresponding to resources in the sensing window that were not monitored for transmission are excluded.
  • resources occupied by other UEs are identified, and resources excluding the resources are a set of available resource candidates. It becomes. Assuming that the set of available resource candidates is SA, if SA is less than 20% of the resources in the resource selection window, the thresholds Th pTX and pRX set for each resource in the sensing window are increased by 3 dB and again. Perform resource identification.
  • the resources that are not excluded because RSRP is less than the threshold value are increased. Furthermore, the RSSI of each resource of SA is measured, and the resource having the smallest RSSI is added to the set SB. The operation of adding the resource having the smallest RSSI included in SA to SB is repeated until the set SB of resource candidates becomes 20% or more of the resource selection window.
  • the lower layer of the terminal 20 reports SB to the upper layer.
  • the upper layer of the terminal 20 executes a random selection for SB to determine the resource to be used.
  • the terminal 20 executes the side link transmission using the determined resource.
  • the terminal 20 may use the resource periodically without performing sensing a predetermined number of times (for example, Cresel times).
  • FIG. 15 is a diagram showing an example of a partial sensing operation.
  • the terminal 20 selects a resource and transmits it as shown in FIG.
  • the terminal 20 performs partial sensing on a part of the sensing window in the resource pool.
  • the terminal 20 receives a resource reservation field included in the SCI transmitted from another terminal 20 and identifies available resource candidates in the resource selection window in the resource pool based on the field. .. Subsequently, the terminal 20 randomly selects a resource from the available resource candidates.
  • the resource pool setting may have a period.
  • the period may be a period of 10240 milliseconds.
  • FIG. 15 shows an example in which the subframe t 0 SL to the subframe t Tmax SL are set as the resource pool.
  • the area of the resource pool in the cycle may be set by, for example, a bitmap.
  • the transmission trigger in the terminal 20 occurs in the subframe n, and the priority of the transmission is pTX .
  • the Y subframes from the subframe ty SL to the subframe ty + Y SL are set as the resource selection window.
  • the transmission trigger in the terminal 20 occurs in the subframe n, and the priority of the transmission is pTX .
  • the terminal 20 has one or a plurality of sensing windows from the subframe ty-k ⁇ Pstep SL having the Y subframe length to the subframe ty + Yk ⁇ Pstep SL , for example, the other terminal 20 has a priority pRX . It is possible to detect that transmission is being performed.
  • k may be, for example, a 10-bit bitmap.
  • FIG. 15 shows an example in which the third and sixth bits of the bitmap k are set to "1" indicating that partial sensing is performed. That is, in FIG.
  • the subframe ty-6 ⁇ Pstep SL to the subframe ty + Y-6 ⁇ Pstep SL and the subframe ty-3 ⁇ Pstep SL to the subframe ty + Y-3 ⁇ Pstep SL are Set as a sensing window.
  • the i-th bit of the bitmap k corresponds to the sensing window from the subframe ty-i ⁇ Pstep SL to the subframe ty + Yi ⁇ Pstep SL .
  • the threshold value may be, for example, the threshold values Th pTX, pRX set or defined for each resource in the sensing window based on the priority pTX and the priority pRX .
  • the terminal 20 identifies the resource occupied by another UE, and the resource excluding the resource becomes a usable resource candidate.
  • the set of available resource candidates is SA
  • the thresholds Th pTX and pRX set for each resource in the sensing window are increased by 3 dB and again.
  • Perform resource identification That is, by increasing the threshold values Th pTX and pRX and executing resource identification again, the resources that are not excluded because RSRP is less than the threshold value are increased.
  • the RSSI of each resource of SA is measured, and the resource having the smallest RSSI is added to the set SB. The operation of adding the resource having the smallest RSSI included in SA to SB is repeated until the set SB of resource candidates becomes 20% or more of the resource selection window.
  • the lower layer of the terminal 20 reports SB to the upper layer.
  • the upper layer of the terminal 20 may perform random selection on the SB to determine the resources to be used.
  • the terminal 20 may execute the side link transmission using the determined resource.
  • the terminal 20 may use the resource periodically without performing sensing a predetermined number of times (for example, Cresel times).
  • the receiving side terminal 20 detects data transmission from another terminal 20 based on the result of sensing or partial sensing, and said the operation. Receives data from another terminal 20.
  • the resource selection operation in NR (for example, Non-Patent Documents 2 and 3) is basically the same as the resource selection operation in LTE.
  • the specific resource is a resource reserved by the SCI received by the TX-UE, such as a resource whose RSRP (received power) for the SCI is higher than the threshold value, a resource that has not been sensed, and the like.
  • RSRP may be a value measured by DM-RS of the resource of PSCCH that transmits SCI, or a value measured by DM-RS of the resource of PSCCH instructed (reserved) by SCI. May be good.
  • the determined SA is reported to the upper layer, and in the upper layer, for example, a transmission resource is randomly selected from the SA .
  • power saving may be performed based on the above-mentioned partial sensing.
  • the preemption confirmation and re-evaluation functions are adopted, and the terminal 20 in the present embodiment can execute the preemption confirmation and re-evaluation.
  • the preemption confirmation and re-evaluation are functions for the resource allocation mode 2 for selecting the resource autonomously transmitted by the terminal 20, but may be used in the mode 1 in the present embodiment.
  • FIG. 16 is a flowchart for explaining an example of re-evaluation.
  • FIG. 17 is a diagram showing an example of re-evaluation.
  • the terminal 20 executes sensing in the sensing window. When the terminal 20 performs a power saving operation, sensing may be executed for a limited period specified in advance. Subsequently, the terminal 20 identifies each resource in the resource selection window based on the sensing result and determines a set SA of resource candidates (S502). Subsequently, the terminal 20 selects a resource set ( r_0 , r_1, ...) From the set of resource candidates SA (S503). This resource set may be a resource selected in the upper layer and will be used for transmission.
  • step S504 the terminal 20 re-identifies each resource in the resource selection window based on the sensing result at the timing of T ( r_0) -T3 shown in FIG. 17, for example, and determines the set SA of resource candidates. do. Subsequently, when the resource r_i is not included in the SA, the terminal 20 excludes the r_i from the resource set (S505), updates the resource set, and ends the re-evaluation. In the upper layer, resources are selected from the resource set after re-evaluation.
  • r_0 In the example of re-evaluation shown in FIG. 17, of resource r_0 and resource r_1, r_1 is excluded from the resource set because it is not included in SA due to the re - sensing result. Therefore, the terminal 20 uses the resource r_0 to execute transmission.
  • FIG. 18 is a sequence diagram showing an example of preemption confirmation.
  • step S601 the terminal 20 executes sensing in the sensing window.
  • sensing may be executed for a limited period specified in advance.
  • the terminal 20 identifies each resource in the resource selection window based on the sensing result and determines the set SA of the resource candidates (S602).
  • the terminal 20 selects a resource set ( r'_0 , r'_1, ...) From the set of resource candidates SA (S603).
  • This resource set may be a resource selected in the upper layer and will be used for transmission.
  • step S604 the terminal 20 re-identifies each resource in the resource selection window based on the sensing result at the timing of T (r_0) -T 3 shown in FIG. 17 based on the priority, and sets the resource candidates.
  • Determine SA For example, r'_1 shown in FIG. 17 is included in the set SA by resensing .
  • the terminal 20 When preemption confirmation is enabled, if the value prio_RX indicating the priority of SCI transmitted from the other terminal 20 is lower than the value prio_TX indicating the priority of the transport block transmitted from the own terminal, the terminal 20 is resource r. Exclude ′ _1 from SA. The lower the value indicating the priority, the higher the priority. That is, when the value prio_RX indicating the priority of the SCI transmitted from the other terminal 20 is higher than the value prio_TX indicating the priority of the transport block transmitted from the own terminal, the terminal 20 transfers the resource r ′ _1 from SA. Do not exclude.
  • step S605 if the resource r'_i is not included in the SA, the terminal 20 excludes the r'_i from the resource set (S605) and updates the resource set SA. In this case, it is determined that r'_i cannot be used based on the upper layer parameters and prio_TX and prio_RX, and the preemption confirmation is terminated. The terminal 20 selects a transmission resource from the updated SA .
  • SL transmission resources are allocated from the base station 10 to the terminal 20. That is, as shown in FIG. 19, the terminal 20 is assigned an SL transmission resource (that is, PSCCH. PSCCH) by the PDCCH (specifically, DCI) received from the base station 10, and the terminal 20 is assigned the resource. SL transmission is performed using.
  • PSCCH SL transmission resource
  • DCI dedicated to Physical Downlink Control Channel
  • the allocation of SL transmission from the base station 10 to the terminal 20 includes a dynamic grant (DG), a composite great (CG) type 1, and a CG type 2.
  • DG dynamic grant
  • CG composite great
  • CG type 2 CG type 2.
  • DCI format 3_0 is used for DG and CG type 2.
  • the monitoring opportunity of DCI format 3_0 is set separately from other formats.
  • FIG. 20 shows an example of a field of DCI format 3_0.
  • the information notified by DCI format 3_0 includes information on scheduled resources, information on initial transmission / retransmission, and information on feedback.
  • the terminal 20A on the transmitting side manages the relationship between the HPN (HARQ Process Number) specified in the DCI format 3_0 and the HPN in the SCI.
  • HPN HARQ Process Number
  • FIG. 21 shows the resources in the case described with reference to FIG. As shown in FIG. 21, it is possible to feed back the HARQ-ACK fed back to the terminal 20A by the PSFCH to the base station 10 by the PUCCH.
  • Examples 1 to 4 will be described as examples of specific techniques for solving the above problems. Examples 1 to 4 can be carried out in any combination.
  • Example 1 ⁇ Basic operation> First, Example 1 will be described.
  • the terminal 20 whose SL transmission is scheduled from the NW determines whether or not the scheduled SL transmission is possible or the transmittable resource based on the signal received from the other terminal 20.
  • the mode 1 terminal 20 scheduled for SL transmission avoids a signal collision with the mode 2 terminal 20 based on the information learned from the SL signal received from the mode 2 terminal 20.
  • the terminal 20 scheduled for SL transmission performs collision avoidance by sensing the SL signal transmitted from the mode 2 terminal 20 in the same manner as the mode 2 sensing described above. ..
  • FIG. 22 A specific example will be described with reference to FIG. 22, it is assumed that there are a base station 10, a terminal 20-1 operating in mode 1, and a terminal 20-2 operating in mode 2.
  • SL transmission is scheduled for terminal 20-1 by scheduling # 1 from base station 10, and terminal 20-2 transmits SL signals with autonomously selected resources.
  • Terminal 20-1 receives the SL signal.
  • the terminal 20-1 determines whether or not the resource allocated in scheduling # 1 is available based on the SL signal received from the terminal 20-2.
  • the terminal 20-1 receives the SCI as an SL signal from the terminal 20-2, and determines from the SCI that the resource shown by A in FIG. 23 is reserved.
  • the resource indicated by B is assigned as the SL transmission resource to the terminal 20-1 by scheduling # 1.
  • the terminal 20-1 When the terminal 20-1 detects that the reserved resource by the terminal 20-2 collides with the resource B assigned to the terminal 20-2, the terminal 20-1 determines that the resource B cannot be used and uses the resource B. SL signal transmission is not performed. As a result, collision (interference) of SL transmission resources can be avoided.
  • the terminal 20-1 determines whether or not the resource assigned to the terminal 20-1 can be used based on the resource reservation information received from the terminal 20-2, but this is an example.
  • the terminal 20-1 is a resource assigned to itself based on either or both of the information instructed by the time resource assistance field in the SCI received from the terminal 20-2 and the information instructed by the resource reservation field. You may judge the availability of.
  • the terminal 20-1 may determine whether or not the resource allocated from the base station 10 can be used based on the received power of the SL signal received from the terminal 20-2. For example, in the terminal 20-1, the received power of a certain resource received from the terminal 20-2 is equal to or higher than the threshold value, and a part or all of the resource is a part or all of the resource allocated from the base station 10. If it overlaps with, it may be determined that the resource is unavailable.
  • the terminal 20-1 regards the resource allocated from the base station 10 as the resource selected by itself in the mode 2 in determining the availability of the resource allocated from the base station 10, and re-described above. The same operation as the evaluation or pre-emption confirmation may be performed.
  • the terminal 20-1 determines whether or not the resource allocated from the base station 10 is available based on the SL signal received from the terminal 20-2 in the mode 2, but as a more detailed operation, the following The usage resource selection operation described in the above may be performed.
  • a plurality of resources are allocated to the terminal 20-1 as resources that can be used for SL transmission from the base station 10.
  • the terminal 20-1 selects an available resource from a plurality of resources based on the SL signal received from the terminal 20-2, and performs SL transmission using the selected resource.
  • the terminal 20-1 determines that the resources A and B are being used (including being reserved) by the terminal 20-2 based on the SL signal received from the terminal 20-2, the terminals C and D Perform SL transmission using either or both of.
  • the plurality of resources allocated from the base station 10 may be allocated by a plurality of DCIs or may be allocated at a time by one DCI.
  • the plurality of resources allocated at one time may be four or more resources.
  • a plurality of resources may be treated as a set (one set), and a set in the sets (plural sets) may be instructed from the base station 10 to the terminal 20-1.
  • a set 1 having four resources A, B, C, and D is designated as a set of available resources from the base station 10 to the terminal 20-1
  • the terminal 20-1 is included in the set 1. Select the resource to be used from the resources A, B, C, and D.
  • the terminal 20-1 may perform feedback on the base station 10 as described with reference to FIG.
  • the terminal 20-1 is a resource for feedback (eg, time resource) based on a specific (eg, "time last" or "time first") resource among the plurality of resources. , Frequency resource, or time / frequency resource).
  • the resources for feedback do not have to be based on the resources actually used for SL transmission.
  • the terminal 20-1 receives the allocation of resources A, B, C, and D as a plurality of resources, and performs SL transmission using the resource A. Further, assuming that the last resource in time among the resources A, B, C, and D is the resource D, for example, the terminal 20-1 is after a predetermined number of slots after the slot of the resource D. In the slot, a feedback about SL transmission by resource A is transmitted to the base station 10.
  • the terminal 20-1 may transmit the NACK to the base station 10 when the SL transmission using the resource allocated from the base station 10 is not performed based on the signal reception from the terminal 20-2, for example.
  • the terminal 20-1 may report to the base station 10 the resources that are not used for SL transmission among the plurality of resources allocated from the base station 10.
  • Example 1 It is assumed that the terminal 20 that performs the mode 1 operation also supports the mode 2 operation. In the first embodiment, the terminal 20 performs the same operation as the sensing in the mode 2 and the re-evaluation (re-evaluation) or pre-emption (preemption) confirmation, thereby transmitting a signal to and from the terminal 20 in the mode 2. Since the collision is avoided, there is an effect that the collision between the terminals of the mode 1 and the mode 2 can be avoided while suppressing the additional terminal implementation.
  • Example 2 Next, Example 2 will be described.
  • the second embodiment may be carried out without assuming the first embodiment, or may be carried out in combination with the first embodiment.
  • the terminal 20 operating in the mode 1 receives the signal from the terminal 20 operating in the mode 2 and reports the information based on the signal to the base station 10.
  • the base station 10 can receive information related to the terminal 20 in mode 2 (eg, a resource used for SL transmission) from the terminal 20 in mode 1.
  • the base station 10 can allocate resources for SL transmission to the terminal 20 operating in the mode 1 based on the information so as not to collide with the resources used by the terminal 20 in the mode 2, for example.
  • FIG. 24 A specific example will be described with reference to FIG. 24.
  • a base station 10 a terminal 20-1 that executes the operation of mode 1 under the control of the base station 10
  • a terminal 20-2 that executes the operation of mode 2.
  • Mode 2 terminal 20-2 performs SL transmission using autonomously selected resources.
  • the terminal 20-1 receives the SL signal and reports the information based on the SL signal to the base station 10.
  • the information based on the SL signal may be the SCI received by the SL signal, the resource used for the SL transmission included in the SCI, or the resource reserved for the SL transmission included in the SCI. It may be. Further, the information based on the SL signal may be the information of the resource whose received power is equal to or higher than the threshold value.
  • the base station 10 that has received the information based on the SL signal allocates, for example, a resource that is not used by the terminal 20-2 in mode 2 to the terminal 20-1 as a resource for SL transmission.
  • the terminal 20-1 reports the information based on the SL signal from the terminal 20-2 in the mode 2 to the base station 10, but this is an example, and the terminal 20-1 is in the mode 2.
  • Information based on the SL signal received from the other terminal 20 may be transmitted to the base station 10 as well as the terminal 20-2 of the above.
  • the other terminal 20 will be described as the terminal 20-2.
  • the terminal 20-2 in the following description of the second embodiment may be a terminal that is not operating in the mode 2 unless otherwise specified.
  • the terminal 20-1 may always transmit the information based on the SL signal to the base station 10, determines whether or not the predetermined condition is satisfied, and determines the predetermined condition. It may be transmitted only when it is determined that the conditions of are satisfied.
  • the predetermined condition is, for example, that the transmission is scheduled to be performed at a predetermined time (eg, slot or time window).
  • the terminal 20-1 plans to perform UL transmission from the time when the SL signal is received (for example, slot k) to the time n slots ahead (that is, slot k + n), the information based on the SL signal. Is transmitted, for example, at the timing of the UL transmission.
  • “Scheduled to transmit UL" means, for example, that UL transmission is scheduled for terminal 20-1, or UL transmission is scheduled to be performed with a resource autonomously selected by terminal 20-1. That is.
  • the predetermined condition may be either (1) or (2) below.
  • the terminal 20-1 has detected that at least a part of the resources allocated from the base station 10 to the terminal 20-1 has been reserved for the terminal 20-2.
  • terminal 20-1 At least a part of the resources allocated from base station 10 to terminal 20-1 is reserved in terminal 20-2, and at least one of priority and RSRP satisfies the second predetermined condition.
  • the second predetermined condition is, for example, that the priority of the terminal 20-2 is higher than the priority of the terminal 20-1. Further, the second predetermined condition may be, for example, that the received power (RSRP) of the SL signal received from the terminal 20-2 is equal to or higher than a certain threshold value.
  • RSRP received power
  • the terminal 20-1 may transmit information based on the SL signal with a periodic resource, or may use the aperiodic resource by receiving an aperiodic resource allocation from the base station 10. You may go there.
  • the signal including the information based on the SL signal transmitted by the terminal 20-1 may be transmitted on the data channel, the control channel, the feedback channel, or the like. It may be transmitted on a dedicated channel other than the above.
  • the signal including the information based on the SL signal transmitted by the terminal 20-1 may be UCI.
  • the format of PUCCH including UCI or UCI may be any format.
  • a UCI or a PUCCH-dedicated format including the UCI containing information based on the SL signal may be used.
  • the signal including the information based on the SL signal transmitted by the terminal 20-1 may be transmitted by higher layer signaling (eg, MAC CE, RRC signal).
  • higher layer signaling eg, MAC CE, RRC signal.
  • the information based on the SL signal transmitted by the terminal 20-1 may be information on resources that cannot be used by the terminal 20-1, or information on resources that are planned to be used by the terminal 20-2. .. That is, the information based on the SL signal transmitted by the terminal 20-1 may be the information of the resource at a future point in time.
  • the information based on the SL signal transmitted by the terminal 20-1 may be the information of the resource that the terminal 20-1 could not use due to the collision with the resource of the terminal 20-2, or the information of the terminal 20-2. It may be the information of the resource used for. That is, the information based on the SL signal transmitted by the terminal 20-1 may be the information of the resource at the past time.
  • the information based on the SL signal transmitted by the terminal 20-1 is limited to the information of the terminal 20 operating in the mode 2 (eg, the information related to the resource used or used by the terminal 20 operating in the mode 2). May be good. That is, the terminal 20-1 may not transmit the information based on the SL signal received from the terminal 20 not operating in the mode 2 (eg, the terminal 20 operating in the mode 1) to the base station 10.
  • the terminal 20 includes the resource usage information or resource reservation information by the SCI in the SCI transmitted by itself, or the resource usage information or resource by the SCI.
  • Information indicating whether the reservation information is the information related to the mode 2 may be included.
  • the terminal 20-1 identifies whether or not the other terminal 20 is operating in the mode 2 based on the information received from the other terminal 20, and when it detects that the other terminal 20 is operating in the mode 2, the SL Information based on the signal is reported to the base station 10.
  • ⁇ Sequence> A sequence example will be described with reference to FIG. Here, it is assumed that the terminal 20-1 operates in the mode 1 and the terminal 20-2 operates in the mode 2.
  • the terminal 20-1 receives the SL signal from the terminal 20-2.
  • the terminal 20-1 transmits information based on the received SL signal to the base station 10.
  • the base station 10 grasps the resource used by the terminal 20-2 from the information based on the SL signal, determines the resource to avoid the collision with the resource, and determines the resource allocation information determined in S13 to the terminal. Send to 20-1.
  • a resource for SL transmission is already allocated to the terminal 20-1
  • one of the resources (including reservation) used by the terminal 20-2 by the base station 10 based on the information based on the SL signal.
  • a command to stop SL transmission by the resources already allocated to the terminal 20-1 may be transmitted. good.
  • the terminal 20-1 that has received the command stops the corresponding SL transmission.
  • the base station 10 can know the resource usage status by the terminal 20 in the mode 2, and based on this, the terminal 20 in the mode 1 operating under the control of the base station 10 performs a transmission collision avoidance operation. It can be carried out.
  • Example 3 Next, Example 3 will be described. Example 3 may be carried out without assuming Examples 1 and 2, or may be carried out in combination with any one or all of Examples 1 and 2.
  • the terminal 20 operating in the mode 2 is connected to the same base station 10 as the base station 10 to which the terminal 20 operating in the mode 1 is connected.
  • the side-link resource pool used by the terminal 20 operating in mode 2 and the side-link resource pool used by the terminal 20 operating in mode 1 may be the same, or partly overlap. It may be that.
  • the terminal 20 in the mode 2 is also in-coverage, and the terminal 20 in the mode 2 operates based on the scheduling information for the terminal 20 in the mode 1.
  • the terminal 20 in mode 2 can perform the SL transmission operation so as to avoid a collision with the terminal 20 in mode 1.
  • the terminal 20 connects to the base station 10 means that the terminal 20 connects to the base station 10 from the base station 10 without establishing the connection such as the RRC, in addition to establishing the connection by the RRC or the like. "Receive the signal of" is included.
  • a resource group that can be used only by the mode 1 terminal 20 and the mode 2 terminal 20 connected to the same base station 10 as the base station 10 to which the mode 1 terminal 20 is connected (example:: Resource pool, CC, serving cell) may be set in these terminals 20.
  • the mode 1 terminal 20-1 receives the resource allocation information (scheduling # 1) from the base station 10.
  • the mode 2 terminal 20-2 also receives scheduling # 1 from the base station 10. That is, scheduling information can be shared.
  • the terminal 20-2 detects that a part of the resources indicated by A selected (reserved) by itself is the resources allocated to the terminal 20-1 in the mode 1. can do. In this case, for example, the terminal 20-2 can determine that the resource indicated by A is not used.
  • connection method with the base station the scheduling method, the scheduling information receiving method, the transmission control, and the like.
  • terminal 20-1 establishes an RRC connection with base station 10.
  • the RRC connection is not established between the terminal 20-2 and the base station 10, and in S22, the terminal 20-2 receives the SSB and system information transmitted from the base station 10.
  • the SSB or system information may include resource information for receiving information (eg, DCI) transmitted from the base station 10 in S24 described later.
  • the terminal 20-1 receives the resource information (scheduling information) related to the scheduling addressed to itself from the base station 10.
  • This scheduling information may include resource allocation information for terminals 20 other than terminals 20-1.
  • the terminal 20-2 also receives the scheduling information.
  • the terminal 20-2 performs transmission control. Specifically, the terminal 20-2 allocates a part or all of the resources (including reservations) selected by itself in the operation of mode 2 to the resources received in S24 (example: 1 or more terminals 20). When it overlaps with a part or all of the resource), a predetermined operation may be performed.
  • the predetermined operation by the terminal 20-2 is, for example, to stop the SL transmission using the resource selected by the terminal 20-2.
  • the predetermined operation by the terminal 20-2 may be to execute the SL transmission using the resource selected by the terminal 20-2 by increasing the transmission power. Further, the predetermined operation by the terminal 20-2 may be to execute the SL transmission using the resource selected by the terminal 20-2 as usual.
  • terminal 20-1 establishes an RRC connection with base station 10.
  • the terminal 20-2 receives the SSB from the base station 10 in S32 and performs PRACH transmission in S33.
  • the PRACH resource (eg, series) used in this PRACH transmission may be different from the PRACH resource used in the PRACH transmission for RRC connection.
  • the terminal 20-2 receives the setting information related to the reception of the PDCCH from the base station 10 from the base station 10.
  • the setting information may include, for example, any one or more or all of the monitoring option, CORESET, search space, aggregation level, and RNTI value for receiving the PDCCH.
  • the terminal 20-1 receives the resource information (scheduling information) related to the scheduling addressed to itself from the base station 10.
  • the terminal 20-2 also receives the scheduling information.
  • the terminal 20-2 performs transmission control in the same manner as in S25 described above.
  • the scheduling of the resource (SL resource) for SL transmission from the base station 10 to the terminal 20 in mode 1 is performed by a signal addressed to the single terminal 20 (eg, UE-specific signal). It may be performed by a signal addressed to a plurality of terminals 20 (eg, Group-common signal).
  • the information of the SL resource assigned to each terminal 20 may be included in the signal addressed to the plurality of terminals 20. Further, the signal addressed to the plurality of terminals 20 may include information related to feedback to the base station 10 (eg, PUCCH slot, PUCCH resource, SAI, DAI, etc.). Further, the signal addressed to the plurality of terminals 20 may include both the information of the SL resource assigned to each terminal 20 and the information related to the feedback to the base station 10.
  • the terminal 20 in mode 1 has the scheduling information addressed to itself. May be determined based on at least one of the following (1) to (3).
  • the terminal 20 determines that the Xth scheduling information among the N (N ⁇ 0) scheduling information included in the signals addressed to the plurality of terminals 20 is the scheduling information addressed to itself.
  • X may be designated from the base station 10 to the terminal 20 by, for example, an RRC signal or a higher layer parameter such as MAC CE.
  • Judgment is made based on the UE-ID included in the signals addressed to the plurality of terminals 20. For example, if the terminal 20 includes its own UE-ID in the signal addressed to the plurality of terminals 20, the terminal 20 determines that the scheduling information of the signal is addressed to itself.
  • the predetermined parameters may be common among the plurality of terminals 20.
  • the predetermined parameter is, for example, MCS, time-domain reserve, or the like.
  • the terminal 20 in mode 1 may receive a plurality of DCIs related to different RNTIs from the base station 10. At this time, the terminal 20 may determine that the scheduling information other than the scheduling information addressed to itself is the scheduling information addressed to another terminal 20, and the scheduling information cannot be used.
  • the base station 10 transmits a plurality of DCIs in which a plurality of RNTI values to be received by the plurality of terminals 20 are set.
  • the base station 10 receives a DCI in which RNTI-A is set, which should be received by the terminal 20-1, and a DCI in which RNTI-B is set, which should be received by the terminal 21-1, which is another terminal.
  • Send is shown here, a single RNTI may be set and scheduling information addressed to oneself may be identified other than the RNTI.
  • the terminal 20 in mode 2 When the terminal 20 in mode 2 receives a plurality of DCIs related to different RNTIs, it may be determined that all the received DCIs correspond to the scheduling information addressed to the other terminal 20 and cannot be used.
  • the mode 2 terminal 20 is based on information received from the base station 10 (eg, resource allocation information for the mode 1 terminal 20) in either or both of resource identification and resource selection. May work.
  • the terminal 20 in mode 2 performs either or both of resource identification and resource selection, excluding the resources indicated by the information received from the base station 10. Further, the terminal 20 in the mode 2 may determine whether or not to exclude the resource indicated by the information received from the base station 10 based on the priority of the resource. For example, when the priority of the resource selected by the terminal 20 in mode 2 is higher than the priority of the resource indicated by the information received from the base station 10, the terminal 20 selected by itself is selected from the candidates for the SL transmission resource. It may not be excluded.
  • ⁇ Assumed reception example> In either mode 1 or mode 2, it may be assumed that the terminal 20 always receives a signal addressed to the plurality of terminals 20 from the base station 10 at each PDCCH monitoring operation.
  • the terminal 20 does not receive a signal addressed to a plurality of terminals 20 in the PDCCH monitoring occupation that is supposed to be received, it may be determined that the SL resource corresponding to the occasion does not perform SL transmission. Further, when the SL resource corresponding to the occupation has been selected or reserved, transmission by the SL resource may be stopped. This is because if there is an SL resource allocation corresponding to the occupation, a collision with the SL transmission performed by the SL resource may occur, and it is assumed that the reception quality of the SL signal deteriorates. Is.
  • a predetermined parameter set when notified from the base station 10 to the terminal 20 in the mode 1, it may mean that the SL resource is not allocated to the terminal 20 in the mode 1.
  • the terminal 20 in the mode 2 can know the SL allocation status of the terminal 20 in the mode 1, and can apply the transmission collision avoidance operation based on the SL allocation status.
  • Example 4 Next, Example 4 will be described.
  • the fourth embodiment may be carried out without premising the first to third embodiments, or may be carried out in combination with any one or a plurality or all of the first to third embodiments.
  • the terminal 20 operating in the mode 2 uses a predetermined resource in the initial transmission of a certain data (eg, TB (transport block)) or the transmission using an unreserved resource of the certain data.
  • the data is transmitted by using.
  • first transmission and transmission using unreserved resources are collectively referred to as “transmission A”.
  • transmission A is limited to these.
  • transmission A in general, which the other terminal 20 cannot know in advance may be referred to as transmission A.
  • the terminal 20 in mode 2 can identify the non-reserved resource (resource of transmission A) separately from other resources by using a predetermined resource in transmission A, the mode related to the resource of transmission A A collision between 1 and mode 2 can be avoided.
  • the reserved resource can be detected by sensing, re-evaluation / pre-emption check, etc., and collision avoidance is possible.
  • Resources that can be used by the terminal 20 in mode 2 for transmission A may be specified by preset settings for the terminal 20.
  • the setting may be made from the base station 10 to the terminal 20 by RRC signaling, MAC CE, DCI, or the like.
  • a time resource may be specified as the range of resources that can be used for transmission A. For example, one or more slots in the resource pool for SL transmission or SL reception may be specified.
  • a frequency resource may be specified as a range of resources that can be used for transmission A.
  • one or more sub-channels in the resource pool for SL transmission or SL reception may be specified.
  • the terminal 20 in mode 2 may perform transmission other than transmission A with any resource in the resource pool.
  • the terminal 20 in mode 2 uses the resources among the resources available for transmission A in the actual execution of transmission A. Specifically, for example, any of the following methods (1) and (2) can be used.
  • the terminal 20 in mode 2 executes resource identification in the same manner as a resource for transmission other than transmission A, and selects a resource to be actually used for transmission from the identification result (identified set). Occasionally, select a resource included in Send A Available Resources.
  • the terminal 20 in mode 2 executes resource identification from the resources available for transmission A, and selects a resource to be actually used for transmission from the identification result (identified set).
  • the terminal 20 of the mode 1 uses a resource other than the above-mentioned predetermined resource for the terminal 20 of the mode 2 for the first transmission of a certain data or the transmission of the unreserved resource. ..
  • the base station 10 allocates a resource other than the transmission A usable resource described above as a resource for initial transmission of data to the terminal 20 in mode 1 or a resource for transmission by an unreserved resource. It may be that.
  • the mode 1 terminal 20 performs the operation of the first embodiment or the second embodiment at least based on the SL signal (resource reservation signal) transmitted from the mode 2 terminal 20 with the predetermined resource. May be good.
  • the terminal 20 may transmit only a part of the data (TB) in the non-reserved resource (for example, the above-mentioned "predetermined resource" is an example of the non-reserved resource), or reserves the data (TB). Only information may be sent. Further, the number of frequency resources for initial transmission and retransmission may be different.
  • FIG. 30 there are a base station 10, a mode 1 terminal 20-1, and a mode 2 terminal 20-2.
  • the base station 10 allocates resources for the first SL transmission to the terminal 10-1.
  • the resource is, for example, a resource other than the transmission A usable resource. As a result, it is possible to avoid a collision between the first SL transmission transmitted by the terminal 20-1 and the transmission A by the other terminal 20.
  • the terminal 20-1 receives the SL signal by the transmission A from the terminal 20-2.
  • the SL signal by the transmission A includes the reservation information by the terminal 20-2, whereby the transmission control (S43) of the subsequent SL transmission can be executed in the same operation as in the first embodiment.
  • FIG. 31 assumes the case where the base station 10, the mode 1 terminal 20-1, and the mode 2 terminal 20-2 exist, as in the case of FIG. 29.
  • a part of the upper side of the resource pool is for the terminal 20-1 of mode 1 for the initial transmission and retransmission of data. It is set as a resource for.
  • the central part of the resource pool is set as a resource for retransmission of an arbitrary terminal.
  • a part of the lower part of the resource pool is for the initial transmission and retransmission of data for the mode 2 terminal 20-2. It is set as a resource of.
  • each terminal 20 can avoid the collision of resources and perform the first SL transmission and the SL transmission based on the subsequent reservation.
  • mode 1 is a mode in which the NW (base station 10) schedules SL resources to the terminal 20
  • mode 2 is a mode in which the terminal 20 autonomously selects resources. It is supposed to be.
  • the mode in which the NW (base station 10) schedules SL resources to the terminal 20 may be called by a name other than mode 1
  • the mode in which the terminal 20 autonomously selects resources is called by a name other than mode 2. It may be.
  • the base station 10 may be replaced with a terminal 20 different from the terminal 20 under the control of the base station 10, and the first to fourth embodiments may be implemented. That is, in any of the first to fourth embodiments, the technique of the embodiment may be applied to the operation of one terminal 20 setting (or allocating) the transmission resource of another terminal 20.
  • the terminal 20 may be any terminal, a V2X terminal, or a terminal other than the V2X terminal that performs D2D.
  • the operation may be performed only in a specific resource pool.
  • the operation may be performed only in the resource pool in which the terminal 20 of Rel-17 or later can be used.
  • the base station 10 and the terminal 20 include a function of carrying out the above-described first to fourth embodiments. However, the base station 10 and the terminal 20 may each have only the functions of any one of the first to fourth embodiments.
  • FIG. 32 is a diagram showing an example of the functional configuration of the base station 10.
  • the base station 10 has a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140.
  • the functional configuration shown in FIG. 32 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be executed.
  • the transmitting unit 110 and the receiving unit 120 may be referred to as a communication unit.
  • the transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring information of, for example, a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signal, DL data, etc. to the terminal 20.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 in the storage device, and reads the setting information from the storage device as needed.
  • the setting information is read from the setting unit 130 and transmitted to the terminal 20 by the transmission unit 110.
  • the control unit 140 for example, allocates resources, controls the entire base station 10, and the like.
  • the signal transmission function unit of the control unit 140 may be included in the transmission unit 110, and the signal reception function unit of the control unit 140 may be included in the reception unit 120.
  • the transmitter 110 and the receiver 120 may be referred to as a transmitter and a receiver, respectively.
  • FIG. 33 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 has a transmitting unit 210, a receiving unit 220, a setting unit 230, and a control unit 240.
  • the functional configuration shown in FIG. 33 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be executed.
  • the transmitting unit 210 and the receiving unit 220 may be referred to as a communication unit.
  • the transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires a signal of a higher layer from the received signal of the physical layer.
  • the setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220 in the storage device, and reads it out from the storage device as needed.
  • the setting unit 230 also stores preset setting information.
  • the control unit 240 executes control such as determining whether or not SL transmission is possible using the allocated resource.
  • the function unit related to signal transmission in the control unit 240 may be included in the transmission unit 210, and the function unit related to signal reception in the control unit 240 may be included in the reception unit 220. Further, the transmitter 210 and the receiver 220 may be referred to as a transmitter and a receiver, respectively.
  • the present embodiment provides at least the terminals, base stations, and transmission methods described in the following items, for example. Hereinafter, each related embodiment will be described.
  • Example 4 Example 4>
  • a receiver that receives resource allocation information for sidelink transmission from the base station, Based on the side link signal received from the terminal that autonomously selects the resource, the control unit that determines whether or not to perform the side link transmission using the resource allocated from the base station, and the control unit.
  • a terminal including a transmission unit that executes side-link transmission using the resource when it is determined to perform side-link transmission using the resource.
  • Section 2 Multiple resources for sidelink transmission are allocated to the terminal, The terminal according to item 1, wherein the control unit selects a usable resource from the plurality of resources based on the side link signal.
  • Step 6 Steps to receive resource allocation information for sidelink transmission from the base station, Based on the side link signal received from the terminal that autonomously selects the resource, the step of determining whether or not to perform the side link transmission using the resource allocated from the base station, and A transmission method executed by a terminal, comprising a step of executing side link transmission using the resource when it is determined to perform side link transmission using the resource.
  • the side link between the terminal that performs side link transmission using the resource allocated from the base station and the terminal that autonomously selects the resource and performs side link transmission is provided.
  • Techniques are provided that make it possible to avoid transmission conflicts.
  • the resource for feedback eg, timing
  • the collision can be avoided even when the transmission is performed by the non-reserved resource.
  • the collision can be avoided even when the transmission is performed by the non-reserved resource.
  • a receiver that receives information based on the side link signal transmitted from the first terminal that autonomously selects resources from the second terminal via uplink, and a receiver.
  • a base station including a control unit that performs scheduling for side link transmission to the second terminal based on information based on the side link signal.
  • the base according to item 4 further comprising a transmission unit that transmits a side link transmission stop command to the second terminal based on the resources allocated to the second terminal and the information based on the side link signal. Station.
  • the step of receiving a side link signal from a terminal that autonomously selects resources The step of transmitting information based on the side link signal to the base station, A transmission method executed by the terminal.
  • the side link between the terminal that performs side link transmission using the resource allocated from the base station and the terminal that autonomously selects the resource and performs side link transmission is provided.
  • Techniques are provided that make it possible to avoid transmission conflicts.
  • the second term only the information necessary for control at the base station can be transmitted.
  • control based on resource information at a future time point or a past time point becomes possible.
  • SL transmission that causes interference can be stopped.
  • Example 3> A receiver that receives resource allocation information for sidelink transmission from the base station, Based on the resource allocation information, a control unit that determines whether or not to perform side link transmission using an autonomously selected resource, and a control unit.
  • the terminal according to item 1 wherein the receiving unit receives setting information for receiving the resource allocation information from the base station after PRACH transmission is performed to the base station by the transmitting unit.
  • the control unit executes an operation of autonomously selecting a resource by excluding the resource shown in the resource allocation information from the candidates.
  • Step 5 Steps to receive resource allocation information for sidelink transmission from the base station, Based on the resource allocation information, a step of determining whether or not to perform side link transmission using an autonomously selected resource, and A transmission method executed by a terminal, comprising a step of executing the side link transmission when it is determined to perform the side link transmission.
  • a side link between a terminal that performs side link transmission using the resources allocated by the base station and a terminal that autonomously selects a resource and performs side link transmission is provided.
  • setting information can be received from the base station without making an RRC connection.
  • the operation of autonomously selecting a resource can be efficiently executed.
  • SL transmission can be performed in a situation where the radio quality is good.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • a functional block (constituent unit) that functions transmission is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • transmitting unit transmitting unit
  • transmitter transmitter
  • the base station 10, the terminal 20, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 34 is a diagram showing an example of the hardware configuration of the base station 10 and the terminal 20 according to the embodiment of the present disclosure.
  • the above-mentioned base station 10 and terminal 20 are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be good.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • the processor 1001 For each function of the base station 10 and the terminal 20, the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the storage device 1002, and controls the communication by the communication device 1004. It is realized by controlling at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU: Central Processing Unit) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU Central Processing Unit
  • the control unit 140, the control unit 240, and the like described above may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these.
  • a program program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit 140 of the base station 10 shown in FIG. 32 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 33 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the storage device 1002 is a computer-readable recording medium, and is, for example, a ROM (Read Only Memory), an EPROM (Erasable Program ROM), an EEPROM (Electrically Erasable Program ROM), a RAM (Random Memory), a RAM (Random Memory), or the like. It may be configured.
  • the storage device 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the storage device 1002 can store a program (program code), a software module, or the like that can be executed to implement the communication method according to the embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, Blu).
  • -It may be composed of at least one of a ray (registered trademark) disk), a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like.
  • the auxiliary storage device 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the storage device 1002 and the auxiliary storage device 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the terminal 20 are a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logical Device) hardware, an FPGA (Proge), and an FPGA (FPGA). It may be configured to include, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • the operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the base station 10 and the terminal 20 have been described with reference to functional block diagrams, but such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only memory, respectively. It may be stored in (ROM), EPROM, EPROM, registers, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access) Signaling). It may be carried out by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals or a combination thereof.
  • RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRC Signaling Setup) message, an RRC connection reconfiguration (RRC Signaling Configuration) message, or the like.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5G). System), FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), LTE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize suitable systems and extensions based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station 10 in the present specification may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal 20 are performed by the base station 10 and other network nodes other than the base station 10 (news).
  • the base station 10 and other network nodes other than the base station 10 (news).
  • the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). ..
  • the information, signals, etc. described in the present disclosure can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information and the like may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information and the like can be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example,). , Comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website that uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier CC: Component Carrier
  • CC Component Carrier
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • base station Base Station
  • radio base station base station
  • base station fixed station
  • NodeB nodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • access point “ transmission point ”,“ reception point ”,“ transmission / reception point (transmission / reception point) ”,“ cell ”,“ sector ”,“ Terms such as “cell group”, “carrier”, and “component carrier” can be used interchangeably.
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)).
  • Communication services can also be provided by Remote Radio Head).
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage. Point to.
  • terminal user terminal
  • terminal User Equipment
  • Mobile stations are subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, terminals, depending on the trader. , Wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the terminal.
  • a configuration in which communication between a base station and a terminal is replaced with communication between a plurality of terminals 20 for example, it may be referred to as D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • the terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the terminal in the present disclosure may be read as a base station.
  • the base station may have the functions of the terminal described above.
  • determining and “determining” used in the present disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (closing up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • judgment for example, accessing data in memory
  • judgment may be regarded as “judgment” or “decision”.
  • judgment and “decision” are considered to be “judgment” and “decision” when the things such as solving, selecting, selecting, establishing, and comparing are regarded as “judgment” and “decision”.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connections or connections between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applicable standard.
  • RS Reference Signal
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier interval (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Frequency Domain), number of symbols per TTI, wireless frame configuration, transmitter / receiver.
  • SCS SubCarrier Spacing
  • TTI Transmission Time interval
  • At least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiple Access) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time region. Slots may be time units based on new melody.
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain.
  • the mini-slot may also be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • a plurality of consecutive subframes may be referred to as TTI
  • TTI slot or one minislot
  • You may. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each terminal 20 to allocate radio resources (frequency bandwidth that can be used in each terminal 20, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (PRB: Physical RB), a subcarrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Elements).
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • the bandwidth portion (BWP: Bandwidth Part) (which may also be referred to as partial bandwidth or the like) may represent a subset of consecutive common RBs (common resources blocks) for a certain neurology in a carrier.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be changed in various ways.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • the SS block or CSI-RS is an example of a synchronization signal or a reference signal.
  • Base station 110 Transmission unit 120 Reception unit 130 Setting unit 140 Control unit 20 Terminal 210 Transmission unit 220 Reception unit 230 Setting unit 240 Control unit 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

基地局から、サイドリンク送信のリソース割り当て情報を受信する受信部と、前記リソース割り当て情報に基づいて、自律的に選択したリソースを用いたサイドリンク送信を行うか否かを判断する制御部と、前記サイドリンク送信を行うと判断された場合に、当該サイドリンク送信を実行する送信部とを備える端末。

Description

端末、及び送信方法
 本発明は、無線通信システムにおける端末及び基地局に関連するものである。
 LTE(Long Term Evolution)及びLTEの後継システム(例えば、LTE-A(LTE Advanced)、NR(New Radio)(5Gともいう。))では、端末同士が基地局を介さないで直接通信を行うD2D技術が導入されている。
 D2Dは、端末と基地局との間のトラフィックを軽減し、災害時等に基地局が通信不能になった場合でも端末間の通信を可能とする。なお、3GPP(3rd Generation Partnership Project)では、D2Dを「サイドリンク(sidelink)」と称しているため、本明細書でも基本的にサイドリンクを使用する。
 サイドリンク通信は、通信可能な他の端末を発見するためのディスカバリ(discovery)と、端末間で直接通信するためのコミュニケーション(D2D direct communication、端末間直接通信等ともいう。)と、に大別される。以下では、コミュニケーション、ディスカバリ等を特に区別しないときは、単にサイドリンクと呼ぶ。NRにおけるV2X(Vehicle to Everything)に係るサービスの様々なユースケースが検討されている。
3GPP TS 38.331 V16.1.0(2020-07) 3GPP TS 38.214 V16.2.0(2020-06) 3GPP TS 38.321 V16.1.0(2020-07)
 サイドリンクのサービスにおいては、基地局から割り当てられたリソースを用いてサイドリンク送信を行う端末と、自律的にリソースを選択してサイドリンク送信を行う端末とが、同一地域において混在することが想定される。
 基地局から端末に対してサイドリンク送信のためのリソースを割り当てるモードにおいて、上記のように自律的にリソースを選択してサイドリンク送信を行う端末が存在する環境下では、制御不能なサイドリンク送信が発生する可能性がある。そのため、端末間で、サイドリンク送信の衝突が発生する可能性がある。
 本発明は上記の点に鑑みてなされたものであり、基地局から割り当てられたリソースを用いてサイドリンク送信を行う端末と、自律的にリソースを選択してサイドリンク送信を行う端末との間におけるサイドリンク送信の衝突を回避することを可能とする技術を提供することを目的とする。
 開示の技術によれば、基地局から、サイドリンク送信のリソース割り当て情報を受信する受信部と、
 前記リソース割り当て情報に基づいて、自律的に選択したリソースを用いたサイドリンク送信を行うか否かを判断する制御部と、
 前記サイドリンク送信を行うと判断された場合に、当該サイドリンク送信を実行する送信部と
 を備える端末が提供される。
 開示の技術によれば、基地局から割り当てられたリソースを用いてサイドリンク送信を行う端末と、自律的にリソースを選択してサイドリンク送信を行う端末との間におけるサイドリンク送信の衝突を回避することを可能とする技術が提供される。
V2Xを説明するための図である。 V2Xの送信モードの例(1)を説明するための図である。 V2Xの送信モードの例(2)を説明するための図である。 V2Xの送信モードの例(3)を説明するための図である。 V2Xの送信モードの例(4)を説明するための図である。 V2Xの送信モードの例(5)を説明するための図である。 V2Xの通信タイプの例(1)を説明するための図である。 V2Xの通信タイプの例(2)を説明するための図である。 V2Xの通信タイプの例(3)を説明するための図である。 V2Xの動作例(1)を示すシーケンス図である。 V2Xの動作例(2)を示すシーケンス図である。 V2Xの動作例(3)を示すシーケンス図である。 V2Xの動作例(4)を示すシーケンス図である。 センシング動作の例を示す図である。 部分センシング動作の例を示す図である。 再評価の例を示すフローチャートである。 再評価の例を示す図である。 プリエンプションの例を示すフローチャートである。 モード1を説明するための図である。 モード1を説明するための図である。 モード1を説明するための図である。 実施例1を説明するための図である。 実施例1を説明するための図である。 実施例2を説明するための図である。 実施例2を説明するための図である。 実施例3を説明するための図である。 実施例3を説明するための図である。 実施例3を説明するための図である。 実施例3を説明するための図である。 実施例4を説明するための図である。 実施例4を説明するための図である。 本発明の実施の形態における基地局10の機能構成の一例を示す図である。 本発明の実施の形態における端末20の機能構成の一例を示す図である。 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のNR(例えば非特許文献1~3に開示された技術)又は既存のLTEであるが、既存のNR又は既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)、又は無線LAN(Local Area Network)を含む広い意味を有するものとする。
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。
 また、下記の説明においては、一例として、端末における上位レイヤ(例えばMACレイヤ)と下位レイヤ(例えばPHYレイヤ)の動作が説明される。ただし、上位レイヤと下位レイヤでの機能区分は一例であり、上位レイヤと下位レイヤの区別なく、以下で説明する動作がなされてもよい。
 図1は、V2Xを説明するための図である。3GPPでは、D2D機能を拡張することでV2X(Vehicle to Everything)あるいはeV2X(enhanced V2X)を実現することが検討され、仕様化が進められている。図1に示されるように、V2Xとは、ITS(Intelligent Transport Systems)の一部であり、車両間で行われる通信形態を意味するV2V(Vehicle to Vehicle)、車両と道路脇に設置される路側機(RSU:Road-Side Unit)との間で行われる通信形態を意味するV2I(Vehicle to Infrastructure)、車両とITSサーバとの間で行われる通信形態を意味するV2N(Vehicle to Network)、及び、車両と歩行者が所持するモバイル端末との間で行われる通信形態を意味するV2P(Vehicle to Pedestrian)の総称である。
 また、3GPPにおいて、LTE又はNRのセルラ通信及び端末間通信を用いたV2Xが検討されている。セルラ通信を用いたV2XをセルラV2Xともいう。NRのV2Xにおいては、大容量化、低遅延、高信頼性、QoS(Quality of Service)制御を実現する検討が進められている。
 LTE又はNRのV2Xについて、今後3GPP仕様に限られない検討も進められることが想定される。例えば、インターオペラビリティの確保、上位レイヤの実装によるコストの低減、複数RAT(Radio Access Technology)の併用又は切替方法、各国におけるレギュレーション対応、LTE又はNRのV2Xプラットフォームのデータ取得、配信、データベース管理及び利用方法が検討されることが想定される。
 本発明の実施の形態において、通信装置(端末と呼んでもよい)が車両に搭載される形態を主に想定するが、本発明の実施の形態は、当該形態に限定されない。例えば、通信装置は人が保持する端末であってもよいし、通信装置がドローンあるいは航空機に搭載される装置であってもよいし、通信装置が基地局、RSU、中継局(リレーノード)、スケジューリング能力を有する端末等であってもよい。ここで、通信装置が搭載された車両を端末と呼んでもよい。
 なお、SL(Sidelink)は、UL(Uplink)又はDL(Downlink)と以下1)-4)のいずれか又は組み合わせに基づいて区別されてもよい。また、SLは、他の名称であってもよい。
1)時間領域のリソース配置
2)周波数領域のリソース配置
3)参照する同期信号(SLSS(Sidelink Synchronization Signal)を含む)
4)送信電力制御のためのパスロス測定に用いる参照信号
 また、SL又はULのOFDM(Orthogonal Frequency Division Multiplexing)に関して、CP-OFDM(Cyclic-Prefix OFDM)、DFT-S-OFDM(Discrete Fourier Transform-Spread-OFDM)、Transform precodingされていないOFDM又はTransform precodingされているOFDMのいずれが適用されてもよい。
 LTEのSLにおいて、端末20へのSLのリソース割り当てに関してMode3とMode4が規定されている。Mode3では、基地局10から端末20に送信されるDCI(Downlink Control Information)によりダイナミックに送信リソースが割り当てられる。また、Mode3ではSPS(Semi Persistent Scheduling)も可能である。Mode4では、端末20はリソースプールから自律的に送信リソースを選択する。
 NRのSLにおいて、端末20へのSLのリソース割り当てに関してMode1とMode2が規定されている。Mode1では、基地局10から端末20に送信されるDCIにより送信リソースが割り当てられる。Mode2では、端末20はリソースプールから自律的に送信リソースを選択する。
 なお、本発明の実施の形態におけるスロットは、シンボル、ミニスロット、サブフレーム、無線フレーム、TTI(Transmission Time Interval)と読み替えられてもよい。また、本発明の実施の形態におけるセルは、セルグループ、キャリアコンポーネント、BWP、リソースプール、リソース、RAT(Radio Access Technology)、システム(無線LAN含む)等に読み替えられてもよい。
 本発明の実施の形態において、端末20は、V2X端末に限定されず、D2D通信を行うあらゆる種別の端末であってもよい。例えば、端末20は、スマートフォンのようなユーザが所持する端末でもよいし、スマートメータ等のIoT(Internet of Things)機器であってもよい。また、端末を「UE」と呼んでもよい。
 (システムの基本的な構成例と基本的な動作例)
 以下で説明する図2~図13は、本実施の形態におけるシステム構成の例を示しているとともに、本実施の形態に係るシステムにおける基本的な動作の例を示している。
 図2に示すように、本実施の形態に係る無線通信システムは、端末20A、端末20B、基地局10を有する。なお、実際には多数の端末が存在するが、図2は例として端末20A、及び端末20Bを示している。
 以下、端末20A、20B等を特に区別しない場合、単に「端末20」あるいは「UE」と記述する。図2では、一例として端末20Aと端末20Bがともにセルのカバレッジ内にある場合を示しているが、本実施の形態における動作は、端末20がカバレッジ外にある場合にも適用できる。
 なお、端末20は1つの筐体の装置である必要はなく、例えば、各種センサが車両内に分散して配置される場合でも、当該各種センサを含めた装置が端末20であってもよい。
 また、端末20のサイドリンクの送信データの処理内容は基本的には、LTEあるいはNRでのUL送信の処理内容と同様である。例えば、端末20は、送信データのコードワードをスクランブルし、変調してcomplex-valued symbolsを生成し、当該complex-valued symbols(送信信号)を1又は2レイヤにマッピングし、プリコーディングを行ってもよい。そして、リソースエレメントにマッピングして、送信信号(例:complex-valued time-domain SC-FDMA signal)を生成し、各アンテナポートから送信する。
 基地局10については、LTEあるいはNRにおける基地局としてのセルラ通信の機能、及び、本実施の形態における端末20の通信を可能ならしめるための機能(例:リソースプール設定、リソース割り当て等)を有している。また、基地局10は、RSU(gNBタイプRSU)であってもよい。基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDMシンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。また、時間領域におけるTTI(Transmission Time Interval)がスロットであってもよいし、TTIがサブフレームであってもよいし、シンボルであってもよい。
 また、本実施の形態に係る無線通信システムにおいて、端末20がSLあるいはULに使用する信号波形は、OFDMAであってもよいし、SC-FDMAであってもよいし、その他の信号波形であってもよい。
 図2に示す例において、送信側の端末20AをTX-UEと称し、受信側の端末20BをRX-UEと称してもよい。
 図2は、V2Xの送信モードの例(1)における動作例を説明するための図でもある。図2に示されるサイドリンク通信の送信モードでは、ステップ1において、基地局10がサイドリンクのスケジューリング情報を端末20Aに送信する。続いて、端末20Aは、受信したスケジューリング情報に基づいて、PSCCH(Physical Sidelink Control Channel)により制御情報を送信し、PSSCH(Physical Sidelink Shared Channel)によりデータ(制御情報でもよい)を端末20Bに送信する(ステップ2)。なお、PSCCHにより制御情報を送信することを"PSCCHを送信する"と表現してもよく、PSSCHによりデータ(制御情報でもよい)を送信することを"PSSCHを送信する"と表現してもよい。
 図2に示されるサイドリンク通信の送信モードを、LTEにおけるサイドリンク送信モード3と呼んでもよい。LTEにおけるサイドリンク送信モード3では、Uuベースのサイドリンクスケジューリングが行われる。Uuとは、UTRAN(Universal Terrestrial Radio Access Network)とUE(User Equipment)間の無線インターフェースである。また、図2に示されるサイドリンク通信の送信モードを、NRにおけるサイドリンク送信モード1と呼んでもよい。
 図3は、V2Xの送信モードの例(2)における動作例を説明するための図である。図3に示されるサイドリンク通信の送信モードでは、ステップ1において、端末20Aは、自律的に選択したリソースを使用して、PSCCH及びPSSCHを端末20Bに送信する。図3に示されるサイドリンク通信の送信モードを、LTEにおけるサイドリンク送信モード4と呼んでもよい。LTEにおけるサイドリンク送信モード4では、端末20A自身がリソース選択を実行する。図3に示されるサイドリンク通信の送信モードを、NRにおけるサイドリンク送信モード2と呼んでもよい。NRにおけるサイドリンク送信モード2では、端末20A自身がリソース選択を実行する。
 図4は、V2Xの送信モードの例(3)における動作例を説明するための図である。図4に示されるサイドリンク通信の送信モードでは、ステップ1において、端末20Aは、自律的に選択したリソースを使用して、PSCCH及びPSSCHを端末20Bに送信する。同様に、端末20Bは、自律的に選択したリソースを使用して、PSCCH及びPSSCHを端末20Aに送信する(ステップ1)。図4に示されるサイドリンク通信の送信モードを、NRにおけるサイドリンク送信モード2又は送信モード2aと呼んでもよい。NRにおけるサイドリンク送信モード2では、端末20自身がリソース選択を実行する。
 図5は、V2Xの送信モードの例(4)における動作例を説明するための図である。図5に示されるサイドリンク通信の送信モードでは、ステップ0において、基地局10がサイドリンクのリソースパターンをRRC(Radio Resource Control)設定を介して端末20Aに送信する。あるいは、サイドリンクのリソースパターンが端末20Aに事前に設定される。続いて、端末20Aは、受信したあるいは事前に設定されたリソースパターンに基づいて、PSSCHを端末20Bに送信する(ステップ1)。図5に示されるサイドリンク通信の送信モードを、NRにおけるサイドリンク送信モード2cと呼んでもよい。
 図6は、V2Xの送信モードの例(5)における動作例を説明するための図である。図6に示されるサイドリンク通信の送信モードでは、ステップ1において、端末20Aがサイドリンクのスケジューリング情報をPSCCHにより端末20Bに送信する。続いて、端末20Bは、受信したスケジューリング情報に基づいて、PSSCHを端末20Aに送信する(ステップ2)。図6に示されるサイドリンク通信の送信モードを、NRにおけるサイドリンク送信モード2dと呼んでもよい。
 図7は、V2Xの通信タイプの例(1)における動作例を説明するための図である。図7に示されるサイドリンクの通信タイプは、ユニキャストである。端末20Aは、PSCCH及びPSSCHを端末20に送信する。図7に示される例では、端末20Aは、端末20Bにユニキャストを行い、また、端末20Cにユニキャストを行う。
 図8は、V2Xの通信タイプの例(2)における動作例を説明するための図である。図8に示されるサイドリンクの通信タイプは、グループキャストである。端末20Aは、PSCCH及びPSSCHを1又は複数の端末20が属するグループに送信する。図8に示される例では、グループは端末20B及び端末20Cを含み、端末20Aは、当該グループにグループキャストを行う。
 図9は、V2Xの通信タイプの例(3)における動作例を説明するための図である。図9に示されるサイドリンクの通信タイプは、ブロードキャストである。端末20Aは、PSCCH及びPSSCHを1又は複数の端末20に送信する。図9に示される例では、端末20Aは、端末20B、端末20C及び端末20Dにブロードキャストを行う。なお、図7~図9に示した端末20AをヘッダUE(header-UE)と称してもよい。
 また、NR-V2Xにおいて、サイドリンクのユニキャスト及びグループキャストにHARQ(Hybrid automatic repeat request)がサポートされる。さらに、NR-V2Xにおいて、HARQ応答を含むSFCI(Sidelink Feedback Control Information)が定義される。SFCIは、PSFCH(Physical Sidelink Feedback Channel)により送信される。
 なお、以下の説明では、サイドリンクでのHARQ-ACKの送信において、PSFCHを使用することとしているが、これは一例である。例えば、PSCCHを使用してサイドリンクでのHARQ-ACKの送信を行うこととしてもよいし、PSSCHを使用してサイドリンクでのHARQ-ACKの送信を行うこととしてもよいし、その他のチャネルを使用してサイドリンクでのHARQ-ACKの送信を行うこととしてもよい。
 以下では、便宜上、HARQにおいて端末20が報告する情報全般をHARQ-ACKと呼ぶ。このHARQ-ACKをHARQ-ACK情報と称してもよい。また、より具体的には、端末20から基地局10等に報告されるHARQ-ACKの情報に適用されるコードブックをHARQ-ACKコードブックと呼ぶ。HARQ-ACKコードブックは、HARQ-ACK情報のビット列を規定する。なお、「HARQ-ACK」により、ACKの他、NACKも送信される。
 図10は、V2XのHARQ-ACKに関する動作例(1)を示すシーケンス図である。
 ステップS101において、端末20Aは、所定の期間を有するリソース選択ウィンドウから自律的にPSCCH及びPSSCHに使用するリソースを選択する。リソース選択ウィンドウは、基地局10から端末20に設定されてもよい。なお、リソースの選択において、候補の集合を決定するリソース識別処理と、集合からリソースを選択するリソース選択処理を行う。
 ステップS102及びステップS103において、端末20Aは、ステップS101で自律的に選択したリソースを用いて、PSCCH(又はPSSCH)によりSCI(Sidelink Control Information)を送信するとともに、PSSCHによりSLデータを送信する。例えば、端末20Aは、PSCCHを、PSSCHの時間リソースの少なくとも一部と同じ時間リソースで、PSSCHの周波数リソースと隣接する周波数リソースを使用して送信してもよい。
 端末20Bは、端末20Aから送信されたSCI(PSCCH又はPSSCH)とSLデータ(PSSCH)を受信する。受信したSCIには、端末20Bが、当該データの受信に対するHARQ-ACKを送信するためのPSFCHのリソースの情報が含まれてもよい。端末20Aは自律的に選択したリソースの情報(リソースの予約情報)をSCIに含めて送信してもよい。
 ステップS104において、端末20Bは、受信したSCIから定まるPSFCHのリソースを使用して、受信したデータに対するHARQ-ACKを端末20Aに送信する。
 ステップS105において、端末20Aは、ステップS104で受信したHARQ-ACKが再送を要求することを示す場合すなわちNACK(否定的応答)である場合、端末20BにPSCCH及びPSSCHを再送する。端末20Aは、自律的に選択したリソースを使用してPSCCH及びPSSCHを再送してもよい。
 なお、HARQフィードバック制御が実行されない場合、ステップS104及びステップS105は実行されなくてもよい。
 図11は、V2XのHARQ-ACKに関する動作例(2)を示すシーケンス図である。送信の成功率又は到達距離を向上させるためのHARQフィードバック制御によらないブラインド再送が実行されてもよい。
 ステップS201において、端末20Aは、所定の期間を有するリソース選択ウィンドウから自律的にPSCCH及びPSSCHに使用するリソースを選択する。リソース選択ウィンドウは、基地局10から端末20に設定されてもよい。
 ステップS202及びステップS203において、端末20Aは、ステップS201で自律的に選択したリソースを使用して、PSCCH(又はPSSCH)によりSCIを送信するとともに、PSSCHによりSLデータを送信する。例えば、端末20Aは、PSCCHを、PSSCHの時間リソースの少なくとも一部と同じ時間リソースで、PSSCHの周波数リソースと隣接する周波数リソースを使用して送信してもよい。
 ステップS204において、端末20Aは、ステップS201で自律的に選択したリソースを使用して、PSCCH又はPSSCHによるSCI及びPSSCHによるSLデータを端末20Bに再送する。ステップS204における再送は、複数回実行されてもよい。
 なお、ブラインド再送が実行されない場合、ステップS204は実行されなくてもよい。
 図12は、V2XのHARQ-ACKに関する動作例(3)を示すシーケンス図である。基地局10は、サイドリンクのスケジューリングを行ってもよい。すなわち、基地局10は、端末20が使用するサイドリンクのリソースを決定して、当該リソースを示す情報を端末20に送信してもよい。さらに、HARQ制御が適用される場合、基地局10は、PSFCHのリソースを示す情報を端末20に送信してもよい。
 ステップS301において、基地局10は端末20Aに対して、PDCCHによりDCI(Downlink Control Information)を送ることにより、SLスケジューリングを行う。便宜上、SLスケジューリングのためのDCIをSLスケジューリングDCIと呼ぶ。
 また、ステップS301において、基地局10は端末20Aに対して、PDCCHにより、DLスケジューリング(DL割り当てと呼んでもよい)のためのDCIを送信してもよい。便宜上、DLスケジューリングのためのDCIをDLスケジューリングDCIと呼ぶ。DLスケジューリングDCIを受信した端末20Aは、DLスケジューリングDCIで指定されるリソースを用いて、PDSCHによりDLデータを受信する。
 ステップS302及びステップS303において、端末20Aは、SLスケジューリングDCIで指定されたリソースを用いて、PSCCH(又はPSSCH)によりSCI(Sidelink Control Information)を送信するとともに、PSSCHによりSLデータを送信する。なお、SLスケジューリングDCIでは、PSSCHのリソースのみが指定されることとしてもよい。この場合、例えば、端末20Aは、PSCCHを、PSSCHの時間リソースの少なくとも一部と同じ時間リソースで、PSSCHの周波数リソースと隣接する周波数リソースを使用して送信することとしてもよい。
 端末20Bは、端末20Aから送信されたSCIとSLデータ(PSSCH)を受信する。PSCCH又はPSSCHにより受信したSCIには、端末20Bが、当該データの受信に対するHARQ-ACKを送信するためのPSFCHのリソースの情報が含まれる。
 当該リソースの情報は、ステップS301において基地局10から送信されるDLスケジューリングDCI又はSLスケジューリングDCIに含まれていてもよく、端末20Aが、DLスケジューリングDCI又はSLスケジューリングDCIから当該リソースの情報を取得してSCIの中に含めてもよい。あるいは、基地局10から送信されるDCIには当該リソースの情報は含まれないこととし、端末20Aが自律的に当該リソースの情報をSCIに含めて送信することとしてもよい。
 ステップS304において、端末20Bは、受信したSCIから定まるPSFCHのリソースを使用して、受信したデータに対するHARQ-ACKを端末20Aに送信する。
 ステップS305において、端末20Aは、例えば、DLスケジューリングDCI(又はSLスケジューリングDCI)により指定されたタイミング(例えばスロット単位のタイミング)で、当該DLスケジューリングDCI(又は当該SLスケジューリングDCI)により指定されたPUCCH(Physical uplink control channel)リソースを用いてHARQ-ACKを送信し、基地局10が当該HARQ-ACKを受信する。
 なお、HARQフィードバック制御が実行されない場合、ステップS304及びステップS305の少なくとも一方は実行されなくてもよい。
 図13は、V2XのHARQ-ACKに関する動作例(4)を示すシーケンス図である。上述のとおりNRのサイドリンクにおいて、HARQ応答はPSFCHで送信されることがサポートされている。なお、PSFCHのフォーマットは、例えばPUCCH(Physical Uplink Control Channel)フォーマット0と同様のフォーマットが使用可能である。すなわち、PSFCHのフォーマットは、PRB(Physical Resource Block)サイズは1であり、ACK及びNACKはシーケンス又はサイクリックシフト(又はこれら両方)の差異によって識別されるシーケンスベースのフォーマットであってもよい。PSFCHのフォーマットとしては、これに限られない。PSFCHのリソースは、スロットの末尾のシンボル又は末尾の複数シンボルに配置されてもよい。また、PSFCHリソースに、周期Nが設定されるか予め規定される。周期Nは、スロット単位で設定されるか予め規定されてもよい。
 図13において、縦軸が周波数領域、横軸が時間領域に対応する。PSCCHは、スロット先頭の1シンボルに配置されてもよいし、先頭からの複数シンボルに配置されてもよいし、先頭以外のシンボルから複数シンボルに配置されてもよい。PSFCHは、スロット末尾の1シンボルに配置されてもよいし、スロット末尾の複数シンボルに配置されてもよい。なお、「スロット先頭」は、1スロットを構成する複数シンボルにおいてサイドリンクに使用可能なシンボルをXシンボルとし、その先頭のシンボルを意味してもよく、Xシンボルの先頭シンボルを除くシンボルのうちで先頭のシンボルを意味してもよい。同様に、「スロット末尾」は、Xシンボルの末尾のシンボルを意味してもよく、Xシンボルの末尾シンボルを除くシンボルのうちで末尾のシンボルを意味してもよい。図13に示される例では、3つのサブチャネルがリソースプールに設定されており、PSSCHが配置されるスロットの3スロット後にPSFCHが2つ配置される。PSSCHからPSFCHへの矢印は、PSSCHに関連付けられるPSFCHの例を示す。
 図13は、NR-V2XのグループキャストにおけるHARQ応答がACK又はNACKを送信するグループキャストオプション2の例を示している。図13に示されるように、ステップS401において、送信側端末20である端末20Aが、SL-SCHを介して、受信側端末20である端末20B、端末20C及び端末20Dにグループキャストを実行する。続くステップS402において、端末20BはPSFCH#Bを使用し、端末20CはPSFCH#Cを使用し、端末20DはPSFCH#Dを使用してHARQ応答を端末20Aに送信する。なお、グループキャストオプション1では、HARQ応答として、NACKのみ送信され、ACKは送信されない。
 図14は、本実施の形態におけるシステムの基本的な動作例としてのセンシング動作の例を示す図である。ここでは、一例としてLTEでのセンシング動作の例を示している。LTEサイドリンクにおいて部分センシング(partial sensing)が上位レイヤから設定されない場合、図14に示されるように端末20はリソースを選択して送信を行う。図14に示されるように、端末20は、リソースプール内のセンシングウィンドウでセンシングを実行する。センシングにより、端末20は、他の端末20から送信されるSCIに含まれるリソース予約フィールドを受信し、当該フィールドに基づいて、リソースプール内のリソース選択ウィンドウ内の使用可能なリソース候補を識別する。続いて、端末20は使用可能なリソース候補からランダムにリソースを選択する。センシングウィンドウ内のリソースを全てセンシングすることを、全センシング(full sensing)と呼んでもよい。
 また、図14に示されるように、リソースプールの設定は周期を有してもよい。例えば、当該周期は、10240ミリ秒の期間であってもよい。図14は、サブフレームt SLからサブフレームtTmax SLまでがリソースプールとして設定される例である。周期内のリソースプールは、例えばビットマップによって領域が設定されてもよい。
 また、図14に示されるように、端末20における送信トリガはサブフレームnで発生しており、当該送信の優先度はpTXであるとする。端末20は、サブフレームtn-10×Pstep SLからサブフレームtn-1 SLまでのセンシングウィンドウにおいて、例えば他の端末20が優先度pRXの送信を行っていることを検出することができる。センシングウィンドウ内でSCIが検出され、かつRSRPが閾値を上回る場合、当該SCIに対応するリソース選択ウィンドウ内のリソースは除外される。また、センシングウィンドウ内でSCIが検出され、かつRSRPが閾値未満である場合、当該SCIに対応するリソース選択ウィンドウ内のリソースは除外されない。当該閾値は、例えば、優先度pTX及び優先度pRXに基づいて、センシングウィンドウ内のリソースごとに設定又は定義される閾値ThpTX,pRXであってもよい。
 また、図14に示されるサブフレームt SLのように、例えば送信のため、モニタリングしなかったセンシングウィンドウ内のリソースに対応するリソース選択ウィンドウ内のリソースは除外される。
 サブフレームn+Tからサブフレームn+Tまでのリソース選択ウィンドウにおいて、図14に示されるように、他UEが占有するリソースが識別され、当該リソースが除外されたリソースが、使用可能なリソース候補の集合となる。使用可能なリソース候補の集合をSとすると、Sがリソース選択ウィンドウのリソースの20%未満であった場合、センシングウィンドウのリソースごとに設定される閾値ThpTX,pRXを3dB上昇させて再度リソースの識別を実行する。
 すなわち、閾値ThpTX,pRXを上昇させて再度リソースの識別を実行することで、RSRPが閾値未満のため除外されないリソースを増加させる。さらに、Sの各リソースのRSSIを測定し、RSSIが最小のリソースを集合Sに追加する。リソース候補の集合Sがリソース選択ウィンドウの20%以上となるまで、Sに含まれるRSSIが最小のリソースをSに追加する動作を繰り返す。
 端末20の下位レイヤは、Sを上位レイヤに報告する。端末20の上位レイヤは、Sに対してランダム選択を実行して使用するリソースを決定する。端末20は、決定したリソースを使用してサイドリンク送信を実行する。なお、端末20は、一度リソースを確保した後、所定の回数(例えばCresel回)はセンシングを行わずに周期的にリソースを使用してもよい。
 図15は、部分センシング動作の例を示す図である。LTEサイドリンクにおいて部分センシングが上位レイヤから設定された場合、図15に示されるように端末20はリソースを選択して送信を行う。図15に示されるように、端末20は、リソースプール内のセンシングウィンドウの一部に対して部分センシングを実行する。部分センシングにより、端末20は、他の端末20から送信されるSCIに含まれるリソース予約フィールドを受信し、当該フィールドに基づいて、リソースプール内のリソース選択ウィンドウ内の使用可能なリソース候補を識別する。続いて、端末20は使用可能なリソース候補からランダムにリソースを選択する。
 また、図15に示されるように、リソースプールの設定は周期を有してもよい。例えば、当該周期は、10240ミリ秒の期間であってもよい。図15は、サブフレームt SLからサブフレームtTmax SLまでがリソースプールとして設定される例である。周期内のリソースプールは、例えばビットマップによって領域が設定されてもよい。
 図15に示されるように、端末20における送信トリガはサブフレームnで発生しており、当該送信の優先度はpTXであるとする。図15の例では、サブフレームn+Tからサブフレームn+Tまでのうち、サブフレームt SLからサブフレームty+Y SLまでのYサブフレームがリソース選択ウィンドウとして設定される。さらに、図15に示されるように、端末20における送信トリガはサブフレームnで発生しており、当該送信の優先度はpTXであるとする。
 端末20は、Yサブフレーム長となるサブフレームty-k×Pstep SLからサブフレームty+Y-k×Pstep SLまでの1又は複数のセンシングウィンドウにおいて、例えば他の端末20が優先度pRXの送信を行っていることを検出することができる。kは、例えば10ビットのビットマップでもよい。図15では、ビットマップkの3番目と6番目のビットが、部分センシングを行うことを示す"1"に設定される例を示す。すなわち、図15において、サブフレームty-6×Pstep SLからサブフレームty+Y-6×Pstep SLまでと、サブフレームty-3×Pstep SLからサブフレームty+Y-3×Pstep SLまでとがセンシングウィンドウとして設定される。上記のように、ビットマップkのi番目のビットは、サブフレームty-i×Pstep SLからサブフレームty+Y-i×Pstep SLまでのセンシングウィンドウに対応する。
 上記の1又は複数のセンシングウィンドウ内でSCIが検出され、かつRSRPが閾値を上回る場合、当該SCIに対応するリソース選択ウィンドウ内のリソースは除外される。また、センシングウィンドウ内でSCIが検出され、かつRSRPが閾値未満である場合、当該SCIに対応するリソース選択ウィンドウ内のリソースは除外されない。当該閾値は、例えば、優先度pTX及び優先度pRXに基づいて、センシングウィンドウ内のリソースごとに設定又は定義される閾値ThpTX,pRXであってもよい。
 Yサブフレームが設定されたリソース選択ウィンドウにおいて、端末20は、他UEが占有するリソースを識別し、当該リソースを除外したリソースが、使用可能なリソース候補となる。使用可能なリソース候補の集合をSとすると、Sがリソース選択ウィンドウのリソースの20%未満であった場合、センシングウィンドウのリソースごとに設定される閾値ThpTX,pRXを3dB上昇させて再度リソースの識別を実行する。すなわち、閾値ThpTX,pRXを上昇させて再度リソースの識別を実行することで、RSRPが閾値未満のため除外されないリソースを増加させる。さらに、Sの各リソースのRSSIを測定し、RSSIが最小のリソースを集合Sに追加する。リソース候補の集合Sがリソース選択ウィンドウの20%以上となるまで、Sに含まれるRSSIが最小のリソースをSに追加する動作を繰り返す。
 端末20の下位レイヤは、Sを上位レイヤに報告する。端末20の上位レイヤは、Sに対してランダム選択を実行して使用するリソースを決定してもよい。端末20は、決定したリソースを使用してサイドリンク送信を実行してもよい。なお、端末20は、一度リソースを確保した後、所定の回数(例えばCresel回)はセンシングを行わずに周期的にリソースを使用してもよい。
 上述の図14及び図15では、送信側端末20の動作を説明したが、受信側端末20は、センシング又は部分センシングの結果に基づいて、他の端末20からのデータ送信を検知して、当該他の端末20からデータを受信する。
 NRでのリソースの選択動作(例えば、非特許文献2、3)は、基本的にLTEでのリソースの選択動作と同様である。
 すなわち、TX-UEは、リソースプールにおける、リソース選択ウィンドウの中の全リソース(これをMtotalとする。最初はMtotal=S)から、センシングウィンドウにおけるセンシングに基づいて検出された特定のリソースをSから除外する。特定のリソースとは、TX-UEが受信したSCIにより予約されているリソースであって、当該SCIについてのRSRP(受信電力)が閾値よりも高いリソース、センシングしなかったリソース等である。
 識別されたリソースの量(Sのリソースの量)が、リソースプールにおけるリソース選択ウィンドウの中の全リソースの量のX%未満である場合に、これがX%以上になるまで、閾値を3dB増やしながら上記の処理が繰り返される。Xは例えば20である。なお、1つのリソースは、例えば、「1スロット×(1又は複数のサブチャネル)」のリソースである。また、RSRPは、SCIを送信するPSCCHのリソースのDM-RSで測定された値であってもよいし、SCIが指示(予約)するPSSCHのリソースのDM-RSで測定された値であってもよい。
 TX-UEにおいて、決定したSは上位レイヤに報告され、上位レイヤにおいて、例えばランダムにSから送信リソースを選択する。NRにおいて、上述した部分センシングをベースとする省電力化を行ってもよい。
 一方、NRリリース16サイドリンクにおいて、プリエンプション(pre-emption)確認、再評価(re-evaluation)機能が採用されており、本実施の形態における端末20は、プリエンプション確認及び再評価を実行することができる。プリエンプション確認及び再評価は、端末20が自律的に送信するリソースを選択するリソース割り当てモード2用の機能であるが、本実施の形態ではモード1において使用されてもよい。
 図16は、再評価の例を説明するためのフローチャートである。図17は、再評価の例を示す図である。ステップS501において、端末20は、センシングウィンドウでセンシングを実行する。端末20が省電力動作を行う場合、予め規定された限定された期間でセンシングが実行されてもよい。続いて、端末20は、センシング結果に基づいてリソース選択ウィンドウ内の各リソースを識別してリソース候補の集合Sを決定する(S502)。続いて、端末20は、リソース候補の集合Sからリソースセット(r_0,r_1,・・・)を選択する(S503)。このリソースセットは、上位レイヤにおいて選択した、送信に使用する予定のリソースであってもよい。
 ステップS504において、端末20は、例えば図17に示されるT(r_0)-Tのタイミングで、センシング結果に基づいてリソース選択ウィンドウ内の各リソースを再度識別してリソース候補の集合Sを決定する。続いて、端末20は、Sにリソースr_iが含まれていない場合、r_iをリソースセットから除外して(S505)リソースセットを更新し、再評価を終了する。上位レイヤでは、再評価後のリソースセットからリソースが選択される。
 図17に示される再評価の例では、リソースr_0及びリソースr_1のうち、r_1が再度のセンシング結果によりSに含まれないため、リソースセットから除外される。したがって、端末20は、リソースr_0を使用して送信を実行する。
 図18は、プリエンプション確認の例を示すシーケンス図である。図17において、「再評価」を「プリエンプション確認」に置換し、「r_0」及び「r_1」を「r′_0」及び「r′_1」に置換して動作を説明する。ステップS601において、端末20は、センシングウィンドウでセンシングを実行する。端末20が省電力動作を行う場合、予め規定された限定された期間でセンシングが実行されてもよい。続いて、端末20は、センシング結果に基づいてリソース選択ウィンドウ内の各リソースを識別してリソース候補の集合Sを決定する(S602)。続いて、端末20は、リソース候補の集合Sからリソースセット(r′_0,r′_1,・・・)を選択する(S603)。このリソースセットは、上位レイヤにおいて選択した、送信に使用する予定のリソースであってもよい。
 ステップS604において、端末20は、図17に示されるT(r_0)-Tのタイミングで、センシング結果に基づいてリソース選択ウィンドウ内の各リソースを優先度に基づいて再度識別してリソース候補の集合Sを決定する。例えば、図17に示されるr′_1は、再度のセンシングにより、集合Sに含められる。
 プリエンプション確認が有効である場合、他端末20から送信されたSCIの優先度を示す値prio_RXが、自端末から送信するトランスポートブロックの優先度を示す値prio_TXよりも低い場合、端末20はリソースr′_1をSから除外する。なお、優先度を示す値はより低い値のほうが、優先度はより高くなる。すなわち、他端末20から送信されたSCIの優先度を示す値prio_RXが、自端末から送信するトランスポートブロックの優先度を示す値prio_TXよりも高い場合、端末20はリソースr′_1をSから除外しない。
 以降、優先度については、「高い」といった場合、優先度が高いことを意味するものとする。
 ステップS605において、端末20は、Sにリソースr′_iが含まれていない場合、r′_iをリソースセットから除外して(S605)リソースセットSを更新する。この場合において、上位レイヤパラメータおよびprio_TX、prio_RXに基づいてr′_iを使用不可能と判断し、プリエンプション確認を終了する。端末20は、更新したSから送信リソースを選択する。
 (モード1について)
 本実施の形態で説明する技術は、NR、LTEなどの特定の無線方式、及び特定のモードに限定されるわけではないが、一例として、上述したモード2とともに、NRのモード1(リソース割り当てモード1)を使用することを想定しているので、ここではモード1の概要を説明する。
 図2等を参照して説明したように、モード1では、基地局10から端末20に対してSLの送信リソースが割り当てられる。つまり、図19に示すように、端末20には、基地局10から受信したPDCCH(具体的にはDCI)により、SLの送信リソース(つまり、PSCCH。PSCCH)が割り当てられ、端末20はそのリソースを用いてSL送信を行う。
 より詳細には、基地局10から端末20へのSL送信の割り当てには、dynamic grant (DG)、configurewd grant(CG)タイプ1、CGタイプ2がある。モード1において、DCIフォーマット3_0がDGとCGタイプ2に使用される。なお、DCIフォーマット3_0のモニタリング機会は、他のフォーマットとは別に設定される。
 図20に、DCIフォーマット3_0のフィールドの例を示す。図20に示されるように、DCIフォーマット3_0により通知される情報には、スケジューリングされるリソースの情報、初送/再送に関する情報、及びフィードバックに関する情報が含まれる。初送/再送に関する情報に関して、送信側の端末20Aは、DCIフォーマット3_0で指定されたHPN(HARQ Process Number)とSCIにおけるHPNとの関係を管理している。
 また、フィードバックに関しては、図12等を参照して説明したとおりである。図21には、図12で説明したケースにおけるリソースを示している。図21に示すように、PSFCHで端末20AにフィードバックされたHARQ-ACKをPUCCHにより基地局10へフィードバックすることが可能である。
 (課題について)
 これまでに説明したNRのモード1で動作する端末20とNRのモード2で動作する端末2とが混在する状況が想定される。モード2で動作する端末20が存在する環境下でモード1でのSL通信が行われる場合、NW(基地局10)側で制御不能なSL送信が発生してしまい、衝突が発生する可能性がある。
 以下、上記の課題を解決する具体的な技術の例として、実施例1~4を説明する。実施例1~4は、任意に組み合わせて実施することが可能である。
 (実施例1)
  <基本動作>
 まず、実施例1を説明する。実施例1では、SL送信をNWからスケジュールされた端末20が、他の端末20から受信する信号に基づいて、スケジュールされたSL送信の可否又は送信可能リソースを判断する。
 つまり、SL送信をスケジュールされたモード1の端末20は、モード2の端末20との信号の衝突回避を、モード2の端末20から受信するSL信号によって知った情報に基づいて行う。基本的に、実施例1では、SL送信をスケジュールされた端末20は、前述したモード2のセンシングと同様に、モード2の端末20から送信されるSL信号のセンシングを行って、衝突回避を行う。
 図22を参照して具体例を説明する。図22に示すように、基地局10、モード1で動作する端末20-1、及びモード2で動作する端末20-2が存在するものとする。
 端末20-1には、基地局10からのスケジューリング#1により、SL送信のスケジューリングが行われ、端末20-2は、自律的に選択したリソースでSL信号を送信する。端末20-1は当該SL信号を受信する。端末20-1は、端末20-2から受信するSL信号に基づいて、スケジューリング#1で割り当てられたリソースの利用可否を判断する。
 例えば、端末20-1は、端末20-2からSL信号としてSCIを受信し、そのSCIから、図23におけるAで示すリソースが予約されていると判断する。一方、端末20-1には、スケジューリング#1により、Bで示すリソースがSL送信リソースとして割り当てられている。
 端末20-1は、端末20-2による予約リソースと、自身に割り当てられたリソースBとが衝突していることを検知すると、リソースBの利用は不可であると判断し、リソースBを用いたSL信号送信を行わない。これにより、SL送信リソースの衝突(干渉)を回避できる。
 上記の例では、端末20-1は、端末20-2から受信したリソース予約の情報に基づいて、自身に割り当てられたリソースの利用可否を判断しているが、これは一例である。端末20-1は、端末20-2から受信したSCIにおけるtime resource assignment fieldで指示される情報、及びresource reservation period fieldで指示される情報のいずれか又は両方に基づいて、自身に割り当てられたリソースの利用可否を判断してもよい。
 また、端末20-1は、端末20-2から受信したSL信号の受信電力に基づいて、基地局10から割り当てられたリソースの利用可否を判断してもよい。例えば、端末20-1は、端末20-2から受信したあるリソースの受信電力が閾値以上であり、かつ、そのリソースの一部又は全部が、基地局10から割り当てられたリソースの一部又は全部と重複する場合に、当該リソースを利用不可であると判断してもよい。
 また、端末20-1は、基地局10から割り当てられたリソースの利用可否を判断するにあたって、基地局10から割り当てられたリソースを、モード2で自身が選択したリソースと見なして、前述したre-evaluation(再評価)又はPre-emption(プリエンプション)確認と同じ動作を実行してもよい。
  <利用リソース選択動作>
 上記の例では、端末20-1は、モード2の端末20-2から受信したSL信号に基づいて、基地局10から割り当てられたリソースの利用可否を判断するが、より詳細な動作として、以下で説明する利用リソース選択動作を行うこととしてもよい。
 利用リソース選択動作においては、端末20-1には、基地局10からSL送信のために利用可能なリソースとして複数のリソースが割り当てられる。端末20-1は、端末20-2から受信したSL信号に基づいて、複数のリソースの中から利用可能なリソースを選択し、選択したリソースを用いてSL送信を行う。
 例えば、端末20-1に、基地局10からSL送信のために利用可能なリソースとして4つのリソースA、B、C、Dが割り当てられたとする。端末20-1は、端末20-2から受信したSL信号に基づき、端末20-2により、リソースA,Bが使用されている(予約されていることを含む)と判断すると、リソースCとDのいずれか又は両方を用いてSL送信を実行する。
 基地局10から割り当てられる複数リソースに関しては、複数のDCIにより割り当てられたものであってもよいし、1つのDCIにより一度に割り当てられたものであってもよい。一度に割り当てられる複数のリソースが、4つ以上のリソースであってもよい。
 また、複数のリソースがa set(1つのセット)として扱われ、sets(複数セット)の中のあるsetが基地局10から端末20-1に指示されてもよい。
 例えば、基地局10から端末20-1に、利用可能なリソースのセットとして、4つのリソースA、B、C、Dを有するセット1が指定された場合、端末20-1は、セット1に含まれるリソースA、B、C、Dから利用するリソースを選択する。
 また、基地局10から端末20-1に対して複数のリソースが割り当てられる利用リソース選択動作において、図12で説明したように、端末20-1が基地局10にfeedbackを行うこととしてもよい。この場合、端末20-1は、当該複数のリソースのうち特定の(例:「時間的に最後の」あるいは「時間的に最初の」)リソースに基づいてfeedbackのためのリソース(例:時間リソース、周波数リソース、又は、時間・周波数リソース)を決定してもよい。feedbackのためのリソースは、実際にSL送信に使ったリソースに基づかなくてもよい。
 例えば、端末20-1が、複数のリソースとしてリソースA、B、C、Dの割り当てを受け、リソースAを用いてSL送信を行ったとする。また、リソースA、B、C、Dのうち、時間的に最後のリソースがリソースDであるとすると、例えば、端末20-1は、リソースDのスロットよりも予め定めた個数のスロットだけ後のスロットで、リソースAによるSL送信についてのfeedbackを基地局10に送信する。
  <基地局への報告動作>
 端末20-1は、例えば端末20-2からの信号受信に基づいて、基地局10から割り当てられたリソースを用いたSL送信を行わなかった場合、基地局10にNACKを送信してもよい。
 また、前述の利用リソース選択動作において、端末20-1は、基地局10から割り当てられた複数リソースのうち、SL送信に利用しなかったリソースを基地局10に報告することとしてもよい。
  <実施例1の効果>
 モード1の動作を行う端末20は、モード2の動作もサポートしていることが想定される。実施例1では、端末20は、モード2でのセンシング、及びre-evaluation(再評価)あるいはPre-emption(プリエンプション)確認と同様の動作を行うことで、モード2の端末20との間の信号衝突を回避するので、追加の端末実装を抑えつつ、モード1とモード2の端末間の衝突を回避できるという効果がある。
 (実施例2)
 次に、実施例2を説明する。実施例2は、実施例1を前提とせずに実施してもよいし、実施例1と組み合わせて実施してもよい。
 実施例2では、モード1で動作する端末20は、モード2で動作する端末20からの信号を受信し、その信号に基づく情報を基地局10に報告する。これにより、例えば、基地局10は、モード1の端末20から、モード2の端末20に係る情報(例:SL送信に使用しているリソース)を受信することができる。これにより、基地局10は、当該情報に基づいて、例えば、モード2の端末20が使用するリソースと衝突しないように、モード1で動作する端末20に対するSL送信のリソース割り当てを行うことができる。
 図24を参照して具体例を説明する。図24の例において、基地局10と、当該基地局10の制御下で、モード1の動作を実行する端末20-1と、モード2の動作を実行する端末20-2が存在する。
 モード2の端末20-2は、自律的に選択したリソースを使用してSL送信を行う。端末20-1は、当該SL信号を受信し、当該SL信号に基づく情報を基地局10に報告する。SL信号に基づく情報とは、SL信号により受信するSCIであってもよいし、SCIに含まれるSL送信に使用するリソースであってもよいし、SCIに含まれるSL送信のために予約したリソースであってもよい。また、SL信号に基づく情報が、受信電力が閾値以上であるリソースの情報であってもよい。
 SL信号に基づく情報を受信した基地局10は、例えば、モード2の端末20-2が使用していないリソースを、端末20-1に対して、SL送信のためのリソースとして割り当てる。
 上記の例では、端末20-1は、モード2の端末20-2からのSL信号に基づく情報を基地局10に報告しているが、これは例であり、端末20-1は、モード2の端末20-2に限らず、他の端末20から受信したSL信号に基づく情報を基地局10に送信することとしてもよい。以下では、一例として、図24の状況を想定し、他の端末20は端末20-2であるとして説明する。また、実施例2の以下の説明での端末20-2は、特に断らない限り、モード2で動作していない端末であってもよい。
 <情報送信方法について>
 端末20-1は、端末20-2からSL信号を受信した場合、SL信号に基づく情報を必ず基地局10に送信することとしてもよいし、所定の条件が満たされるかどうかを判断し、所定の条件が満たされると判断した場合にのみ送信してもよい。所定の条件とは、例えば、所定の時間(例:slot,あるいは、time window)において送信を行う予定であることである。
 一例として、端末20-1は、SL信号を受信した時刻(例えばスロットkとする)からnスロット先の時刻(つまりスロットk+n)までにUL送信をする予定である場合に、SL信号に基づく情報を、例えば、当該UL送信のタイミングで送信する。"UL送信をする予定である"とは、例えば、端末20-1に対してUL送信がスケジュールされている、あるいは、端末20-1が自律的に選択したリソースでUL送信を行う予定であることである。
 また、所定の条件が以下の(1)、(2)のいずれかであってもよい。
 (1)端末20-1が、基地局10から端末20-1に割り当てられたリソースの少なくとも一部が、端末20-2に予約されたことを検知したこと。
 (2)端末20-1が、基地局10から端末20-1に割り当てられたリソースの少なくとも一部が、端末20-2に予約され、priority及びRSRPの少なくとも一方が第2所定条件を満たすことを検知したこと。第2所定条件とは、例えば、端末20-2のpriorityが端末20-1のpriorityよりも高いことである。また、第2所定条件は、例えば、端末20-2から受信するSL信号の受信電力(RSRP)がある閾値以上であることであってもよい。
 端末20-1は、SL信号に基づく情報の送信を、周期的なリソースで行ってもよいし、非周期的なリソースの割り当てを基地局10から受けることで、その非周期的なリソースを用いて行ってもよい。
 端末20-1により送信されるSL信号に基づく情報が含まれる信号は、データチャネルで送信されてもよいし、制御チャネルで送信されてもよいし、フィードバックチャネルで送信されてもよいし、これら以外の専用のチャネルで送信されてもよい。
 また、端末20-1により送信されるSL信号に基づく情報が含まれる信号はUCIでもよい。UCIを使用する場合において、UCIまたはUCIを含むPUCCHのフォーマットはどのフォーマットでもよい。また、UCIまたはUCIを含むPUCCHのフォーマットとしてSL信号に基づく情報が含まれるUCIまたはUCIを含むPUCCH専用のフォーマットが使用されてもよい。
 また、端末20-1により送信されるSL信号に基づく情報が含まれる信号は、上位レイヤシグナリング(例:MAC CE、RRC信号)で送信されてもよい。
  <SL信号に基づく情報について>
 端末20-1が送信するSL信号に基づく情報は、端末20-1が利用できないリソースの情報であってもよいし、端末20-2に利用される予定であるリソースの情報であってもよい。つまり、端末20-1が送信するSL信号に基づく情報は、将来の時点のリソースの情報でもよい。
 また、端末20-1が送信するSL信号に基づく情報は、端末20-2のリソースと衝突するために端末20-1が利用できなかったリソースの情報であってもよいし、端末20-2に利用されたリソースの情報であってもよい。つまり、端末20-1が送信するSL信号に基づく情報は、過去の時点のリソースの情報でもよい。
 端末20-1が送信するSL信号に基づく情報は、モード2で動作する端末20の情報(例:モード2で動作する端末20が使用する、又は、使用したリソースに係る情報)に限定されてもよい。つまり、端末20-1は、モード2で動作していない端末20(例:モード1で動作する端末20)から受信したSL信号に基づく情報を基地局10に送信しないこととしてよい。
 上記動作を可能とするために、端末20は、自身が送信するSCIの中に、当該SCIによるリソース使用情報又はリソース予約情報がモード1に係る情報か、あるいは、当該SCIによるリソース使用情報又はリソース予約情報がモード2に係る情報か、を示す情報を含めてもよい。端末20-1は、他の端末20から受信する当該情報により、他の端末20がモード2で動作しているか否かを識別し、モード2で動作していることを検知した場合に、SL信号に基づく情報を基地局10に報告する。
 <シーケンス>
 図25を参照してシーケンス例を説明する。ここで、端末20-1はモード1で動作し、端末20-2はモード2で動作しているとする。S11において、端末20-1は、端末20-2からSL信号を受信する。S12において、端末20-1は、受信したSL信号に基づく情報を基地局10に送信する。基地局10は、例えば、SL信号に基づく情報により、端末20-2が使用するリソースを把握し、そのリソースとの衝突を回避するリソースを決定し、S13において、決定したリソースの割り当て情報を端末20-1に送信する。
 また、例えば、端末20-1に既にSL送信用のリソースが割り当てられている場合において、基地局10が、SL信号に基づく情報により、端末20-2が使用する(予約を含む)リソースの一部又は全部と、端末20-1に既に割り当てたリソースの一部又は全部が重複すると判断した場合に、端末20-1に対して、既に割り当てたリソースによるSL送信の停止命令を送信してもよい。当該命令を受信した端末20-1は、対応するSL送信を停止する。
  <実施例2の効果>
 実施例2により、基地局10は、モード2の端末20によるリソース利用状況を知ることができ、それに基づいて、基地局10の制御下で動作するモード1の端末20は送信衝突の回避動作を行うことができる。
 (実施例3)
 次に、実施例3を説明する。実施例3は、実施例1~2を前提とせずに実施してもよいし、実施例1~2のいずれか1つ又は全部と組み合わせて実施してもよい。
 実施例3においては、モード2で動作する端末20は、モード1で動作する端末20の接続先である基地局10と同じ基地局10に接続する。ここでは、モード2で動作する端末20が使用するサイドリンクのリソースプールと、モード1で動作する端末20が使用するサイドリンクのリソースプールとが同じであってもよいし、一部が重複することとしてもよい。
 すなわち、実施例3では、モード2の端末20もin-coverageにある場合を想定し、モード2の端末20が、モード1の端末20向けのscheduling情報に基づいて動作することとしている。これにより、モード2の端末20は、モード1の端末20との衝突を回避するようにSL送信動作を行うことができる。
 なお、実施例3において、「端末20が基地局10に接続する」ことは、RRC等により接続を確立することの他、「RRC等の接続を確立せずに、端末20が基地局10からの信号を受信する」ことが含まれる。
 また、実施例3において、モード1の端末20と、モード1の端末20が接続する基地局10と同じ基地局10に接続するモード2の端末20と、のみが使用可能なリソース群(例:リソースプール、CC、serving cell)が、これらの端末20に設定されてもよい。
 図26、図27を参照して具体例を説明する。図26において、モード1の端末20-1が、基地局10からリソースの割り当て情報(スケジューリング#1)を受信する。また、モード2の端末20-2も、基地局10からスケジューリング#1を受信する。つまり、スケジューリング情報の共有を行うことができる。
 これにより、例えば図27に示すように、端末20-2は、自身が選択(予約)したAで示すリソースの一部が、モード1の端末20-1に割り当てられたリソースであることを検知することができる。この場合、例えば、端末20-2は、Aで示すリソースを使用しないという判断をすることができる。
 以下、基地局との接続方法、スケジューリング方法、スケジューリング情報受信方法、送信制御等の観点で、より具体的な例を説明する。
  <基地局との接続方法例>
 ここでは、図26に示した場合と同様に、基地局10、モード1の端末20-1、モード2の端末20-2が存在するケースを想定する。
 このケースにおける接続方法の例を、図28を参照して説明する。S21において、端末20-1は、基地局10との間でRRC接続を確立する。一方、端末20-2と基地局10との間ではRRC接続確立は行われず、S22において、端末20-2は、基地局10から送信されるSSB及びシステム情報を受信する。当該SSB又はシステム情報には、後述するS24で基地局10から送信される情報(例:DCI)を受信するためのリソースの情報が含まれていてもよい。
 S23において、端末20-1は、基地局10から自身宛のスケジューリングに係るリソースの情報(スケジューリング情報)を受信する。このスケジューリング情報には、端末20-1以外の端末20に対するリソース割り当て情報が含まれていてもよい。S24において、端末20-2も当該スケジューリング情報を受信する。
 S25において、端末20-2は、送信制御を行う。具体的には、端末20-2は、自身がモード2の動作において選択した(予約も含む)リソースのうちの一部又は全部が、S24で受信したリソース(例:1以上の端末20へ割り当てられるリソース)の一部又は全部と重複する場合に、所定の動作を行うこととしてもよい。
 端末20-2による所定の動作とは、例えば、自身が選択したリソースを利用したSL送信を停止することである。
 また、端末20-2による所定の動作が、自身が選択したリソースを利用したSL送信を、送信電力を増加させて実行することであってもよい。また、端末20-2による所定の動作が、自身が選択したリソースを利用したSL送信を、通常どおりに実行することであってもよい。
 上記の動作(送信停止、送信電力増加、通常送信)のうちのいずれを実行するかについて、選択したリソースのpriority、リソースの割り当て順序、当該リソースの予約を行えるか否か、の少なくとも一つに基づいて判断されてもよい。一例として、選択したリソースのpriorityの種類が高中低であるとして、priority=高であれば、送信電力増加を行い、priority=中であれば、通常送信を行い、priority=低であれば、送信停止を行うこととしてもよい。
 図29を参照して別の例を説明する。S31において、端末20-1は、基地局10との間にRRC接続を確立する。
 一方、端末20-2は、S32において、基地局10からSSBを受信し、S33において、PRACH送信を行う。このPRACH送信で使用するPRACHリソース(例:系列)はRRC接続のためのPRACH送信で使用するPRACHリソースと異なっていてもよい。
 PRACH送信後、S34において、端末20-2は、基地局10から、基地局10からのPDCCHの受信に係る設定情報を受信する。設定情報には、例えば、当該PDCCHの受信のためのmonitoring occasion、CORESET、search space、aggregation level、RNTI値のうちのいずれか1つ又は複数又は全部が含まれていてもよい。
 S35において、端末20-1は、基地局10から自身宛のスケジューリングに係るリソースの情報(スケジューリング情報)を受信する。S36において、端末20-2も当該スケジューリング情報を受信する。S37において、前述したS25と同様に、端末20-2は送信制御を行う。
  <スケジューリング方法>
 実施例3において、基地局10からの、モード1の端末20に対するSL送信のためのリソース(SLリソース)のスケジューリングは、単一端末20宛の信号(例:UE-specific signal)で行われてもよいし、複数端末20宛の信号(例:Group-common signal)で行われてもよい。
 複数端末20宛の信号の中に、各端末20に割り当てられるSLリソースの情報が含まれていてもよい。また、複数端末20宛の信号の中に、基地局10へのfeedbackに係る情報(例:PUCCH slot、PUCCH resource、SAI、DAI等)が含まれていてもよい。また、複数端末20宛の信号の中に、各端末20に割り当てられるSLリソースの情報と基地局10へのfeedbackに係る情報の両方が含まれていてもよい。
 上記のように、複数端末20宛の信号の中に、各端末20に割り当てられるスケジューリング情報(SLリソースの情報等)が含まれている場合において、モード1の端末20は、自身宛のスケジューリング情報を、以下の(1)~(3)のうちの少なくとも1つを基に判断してもよい。
 (1)DCIのCRCをスクランブリングしているRNTIにより判断する。例えば、端末20は、特定のRNTIでDCIをデコードできた場合に、そのDCIを自身宛であると判断する。
 (2)端末20は、複数端末20宛の信号に含まれるN(N≧0)個のスケジューリング情報のうち、X番目のスケジューリング情報を自身宛のスケジューリング情報であると判断する。ここで、Xは、例えば、RRC信号あるいはMAC CE等の上位レイヤパラメータで基地局10から端末20に指定されてもよい。
 (3)複数端末20宛の信号に含まれるUE-IDにより判断する。例えば、端末20は、複数端末20宛の信号の中に自分のUE-IDが含まれていれば、当該信号のスケジューリング情報は自分宛であると判断する。
 複数端末20宛の信号において、所定のパラメータは、複数の端末20間で共通であってもよい。ここで、所定のパラメータとは、例えば、MCS、time-domain resource等である。
 また、モード1の端末20は、基地局10から、異なるRNTIに係る複数のDCIを受信してもよい。このとき、端末20は、自身宛のスケジューリング情報以外は別端末20宛のスケジューリング情報であり、当該スケジューリング情報を使用できないと判断してもよい。
 例えば、基地局10は、複数の端末20が受信すべき複数のRNTI値が設定された複数のDCIを送信する。例えば、基地局10は、端末20-1が受信すべき、RNTI-Aが設定されたDCI、及び、別の端末である端末21-1が受信すべき、RNTI-Bが設定されたDCIを送信する。なお、ここでは、複数RNTIを用いる例を示しているが、単一RNTIが設定され、RNTI以外で自分宛のスケジューリング情報を識別してもよい。
 モード2の端末20は、異なるRNTIに係る複数のDCIを受信した場合、受信した全てのDCIは他端末20宛のスケジューリング情報に対応し、使用できないと判断してもよい。
 なお、モード2の端末20は、リソース識別(resource identification)、リソース選択(resource selection)のいずれか又は両方において、基地局10から受信した情報(例:モード1端末20に対するリソース割り当て情報)に基づいて動作してもよい。
 例えば、モード2の端末20は、基地局10から受信した情報が示すリソースを除いて、リソース識別(resource identification)、リソース選択(resource selection)のいずれか又は両方を行う。また、モード2の端末20は、リソースのpriorityに基づいて、基地局10から受信した情報が示すリソースを除外するか否かを判断してもよい。例えば、モード2の端末20は、自身が選択したリソースのpriorityのほうが、基地局10から受信した情報が示すリソースのpriorityよりも高い場合に、自身が選択したリソースを、SL送信リソースの候補から除外しないこととしてもよい。
  <受信の想定例>
 モード1とモード2のいずれの場合においても、端末20は、基地局10から、各PDCCH monitoring occasionで必ず複数端末20宛の信号を受信する、と想定してもよい。
 端末20は、受信を想定しているPDCCH monitoring occasionで複数端末20宛の信号を受信しなかった場合、当該occasionに対応するSLリソースではSL送信を行わないと判断してもよい。また、当該occasionに対応するSLリソースを選択あるいは予約していた場合には、当該SLリソースでの送信を停止してもよい。これは、当該occasionに対応するSLリソース割当があった場合、そのSLリソースで行われるSL送信との衝突が起きてしまう可能性があり、SL信号の受信品質が劣化することが想定されるためである。
 また、基地局10から、モード1の端末20に対して所定のパラメータセットが通知された場合、当該モード1の端末20に対してSLリソース割当が行われないことを意味してもよい。
 <実施例3の効果>
 実施例3によれば、モード2の端末20は、モード1の端末20のSL割り当て状況を知ることができ、それに基づいて送信衝突の回避動作を適用することができる。
 (実施例4)
 次に、実施例4を説明する。実施例4は、実施例1~3を前提とせずに実施してもよいし、実施例1~3のいずれか1つ又はいずれか複数又は全部と組み合わせて実施してもよい。
 実施例4では、モード2で動作する端末20は、あるデータ(例:TB(トランスポートブロック)の初回の送信、又は、あるデータの予約していないリソースを使用した送信において、所定のリソースを使用して当該データを送信する。なお、以降、上記「初回の送信」及び「予約していないリソースを使用した送信」を総称して「送信A」と呼ぶ。なお、送信Aはこれらに限られるわけではなく、これら以外に、他の端末20が予め知ることのできない送信全般を送信Aと呼んでもよい。
 このように、モード2の端末20が、送信Aにおいて所定のリソースを使用することで、非予約リソース(送信Aのリソース)を他のリソースと分けて識別できるので、送信Aのリソースに係るモード1とモード2との間の衝突を回避できる。なお、予約リソースについては、実施例1を適用することで、センシング、re-evaluation/pre-emption check等によって検知でき、衝突回避が可能である。
  <送信Aに使用可能なリソースについて>
 モード2の端末20が送信Aに使用できるリソース(送信A使用可能リソースと呼ぶ)については、当該端末20への事前の設定によって、指定されてもよい。当該設定は、基地局10から端末20に対して、RRCシグナリング、MAC CE、DCI等でなされてもよい。
 上記設定されるリソースについては、送信A用に使用できるリソースの範囲として、時間リソースが指定されてもよい。例えば、SL送信又はSL受信のためのresource pool内の1以上のslotが指定されてもよい。
 また、上記設定されるリソースについては、送信A用に使用できるリソースの範囲として、周波数リソースが指定されてもよい。例えば、SL送信又はSL受信のためのresource pool内の1以上のsub-channelが指定されてもよい。
 なお、モード2の端末20は、送信A以外の送信については、resource pool内のいずれのリソースで行ってもよい。
  <送信Aに使用するリソースの選択について>
 モード2の端末20は、実際の送信Aの実施において、送信A使用可能リソースの中のリソースを使用する。具体的には、例えば、下記の(1)、(2)のいずれかの方法を使用することができる。
 (1)モード2の端末20は、送信A以外の送信用リソースと同じ方法でリソース識別(resource identification)を実行し、その識別結果(identified set)から、実際に送信に使用するリソースを選択する時に、送信A使用可能リソースに含まれるリソースを選択する。
 (2)モード2の端末20は、送信A使用可能リソースの中からリソース識別(resource identification)を実行し、その識別結果(identified set)から、実際に送信に使用するリソースを選択する。
  <モード1の端末20の動作について>
 モード1の端末20は、自身におけるあるデータの初回の送信、又は、予約していないリソースにおける送信については、モード2の端末20用の上記所定のリソース以外のリソースを使用すると想定してもよい。
 例えば、基地局10は、上述した送信A使用可能リソース以外のリソースを、モード1の端末20に対する、データの初回の送信用のリソース、又は、予約していないリソースによる送信用の当該リソースとして割り当てることとしてもよい。
 また、モード1の端末20は、少なくとも、モード2の端末20から上記所定のリソースで送信されるSL信号(リソースの予約信号)に基づいて、実施例1あるいは実施例2の動作を行うこととしてもよい。
 <その他の例>
 実施例4において、端末20は、非予約リソース(例えば、前述した「所定のリソース」は非予約リソースの例である)において、データ(TB)の一部のみを送信してもよいし、予約情報のみを送信してもよい。また、初送と再送の周波数リソース数が異なっていてもよい。
 <具体例>
 図30を参照してシーケンスの例を説明する。図30において、基地局10、モード1の端末20-1、モード2の端末20-2が存在する。
 S41において、基地局10は、端末10-1に対して、初回のSL送信のためのリソースを割り当てる。当該リソースは、例えば、送信A使用可能リソース以外のリソースである。これにより、端末20-1が送信する初回のSL送信と、他の端末20による送信Aとの衝突を回避できる。
 ここで、S42において、端末20-1が、端末20-2から送信AによるSL信号を受信する。例えば、当該送信AによるSL信号には、端末20-2による予約情報が含まれており、これにより、実施例1と同様の動作で、以降のSL送信の送信制御(S43)を実行できる。
 図31を参照して、他の例を説明する。図31の例は、図29の場合と同様に、基地局10、モード1の端末20-1、モード2の端末20-2が存在する場合を想定している。
 図31に、「Resource for initial TX and reTX of a TB from mode 1 UE」として示すように、リソースプールの上側の一部が、モード1の端末20-1用の、データの初送及び再送のためのリソースとして設定されている。また、「Resource for reTX of a TB from any UE」として示すように、リソースプールの中央部分が、任意の端末の再送のためのリソースとして設定されている。また、「Resource for initial TX and reTX of a TB from mode 2 UE」として示すように、リソースプールの下側の一部が、モード2の端末20-2用の、データの初送及び再送のためのリソースとして設定されている。
 このような設定の下、図31に示すように、各端末20は、リソースの衝突を回避して、初送のSL送信、及び、以降の予約に基づくSL送信を行うことができる。
 <実施例4の効果>
 実施例4によれば、モード1の端末20とモード2の端末20との間の衝突回避を実現できる。また、実施例4では、追加の実装を限定的にできる。
 (その他の例)
 実施例1~4のいずれにおいても、モード1は、NW(基地局10)が端末20にSLリソースをスケジューリングするモードであり、モード2は、端末20が自律的にリソース選択を行うモードであるとしている。ただし、NW(基地局10)が端末20にSLリソースをスケジューリングするモードはモード1以外の名前で呼ばれてもよく、端末20が自律的にリソース選択を行うモードはモード2以外の名前で呼ばれてもよい。
 実施例1~4のいずれについても、基地局10を、当該基地局10の制御下の端末20とは別の端末20に置き換えて、実施例1~4が実施されてもよい。つまり、実施例1~4のいずれについても、ある端末20が別の端末20の送信リソースを設定する(あるいは割り当てる)動作に、実施例の技術が適用されてもよい。
 実施例1~4のいずれについても、端末20はどのような端末であってもよく、V2X端末でもよいし、D2Dを行うV2X端末以外の端末であってもよい。
 また、実施例1~4のいずれについても、その動作は、特定のresource poolでのみ行われることとしてもよい。例えば、実施例1~4のいずれについても、その動作は、Rel-17以降の端末20が使用可能なresource poolでのみ行われることとしてもよい。
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例1~4を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例1~4のうちのいずれかの実施例の機能のみを備えることとしてもよい。
 <基地局10>
 図32は、基地局10の機能構成の一例を示す図である。図32に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図32に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部110と受信部120とを通信部と呼んでもよい。
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、DLデータ等を送信する機能を有する。
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。設定情報は設定部130から読み出され、送信部110により端末20に送信される。
 制御部140は、例えば、リソース割り当て、基地局10全体の制御等を行う。なお、制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110、受信部120をそれぞれ送信機、受信機と呼んでもよい。
 <端末20>
 図33は、端末20の機能構成の一例を示す図である。図33に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図33に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と受信部220とを通信部と呼んでもよい。
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。
 設定部230は、受信部220により基地局10から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。制御部240は、割り当てリソースを用いたSL送信の可否判断等の制御を実行する。
 なお、制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。また、送信部210、受信部220をそれぞれ送信機、受信機と呼んでもよい。
 本実施の形態により、少なくとも、例えば下記の各項に記載された端末、基地局、及び送信方法が提供される。以下、関連する実施例毎に記載する。
   <実施例1、実施例4>
(第1項)
 基地局からサイドリンク送信のリソースの割り当て情報を受信する受信部と、
 自律的にリソースを選択する端末から受信するサイドリンク信号に基づいて、前記基地局から割り当てられたリソースを用いたサイドリンク送信を行うか否かを判断する制御部と、
 前記リソースを用いたサイドリンク送信を行うと判断された場合に、前記リソースを用いたサイドリンク送信を実行する送信部と
 を備える端末。
(第2項)
 前記端末に、サイドリンク送信のための複数のリソースが割り当てられ、
 前記制御部は、前記サイドリンク信号に基づいて、前記複数のリソースの中から使用可能なリソースを選択する
 第1項に記載の端末。
(第3項)
 前記制御部は、前記複数のリソースのうちの特定のリソースに基づいて、前記基地局へ送信するフィードバック用のリソースを決定する
 第2項に記載の端末。
(第4項)
 前記自律的にリソースを選択する端末が送信するサイドリンク信号は、データの非予約リソースでの送信において、予め設定された範囲のリソースの中から選択されたリソースにより送信される
 第1項又は第2項に記載の端末。
(第5項)
 前記送信部は、データの非予約リソースでの送信において、前記予め設定された範囲のリソース以外のリソースを用いてサイドリンク送信を行う
 第4項に記載の端末。
(第6項)
 基地局からサイドリンク送信のリソースの割り当て情報を受信するステップと、
 自律的にリソースを選択する端末から受信するサイドリンク信号に基づいて、前記基地局から割り当てられたリソースを用いたサイドリンク送信を行うか否かを判断するステップと、
 前記リソースを用いたサイドリンク送信を行うと判断された場合に、前記リソースを用いたサイドリンク送信を実行するステップと
 を備える、端末が実行する送信方法。
 第1項~第6項のいずれによっても、基地局から割り当てられたリソースを用いてサイドリンク送信を行う端末と、自律的にリソースを選択してサイドリンク送信を行う端末との間におけるサイドリンク送信の衝突を回避することを可能とする技術が提供される。特に、第2項によれば、複数リソースの中からあるリソースを選択できるので、柔軟な制御が可能になる。第3項によれば、フィードバック用のリソース(例:タイミング)を明確にすることができる。第4項によれば、非予約リソースでの送信を行う場合でも衝突を回避できる。第5項によれば、非予約リソースでの送信を行う場合でも衝突を回避できる。
   <実施例2>
(第1項)
 自律的にリソースを選択する端末からサイドリンク信号を受信する受信部と、
 前記サイドリンク信号に基づく情報を基地局に送信する送信部と、
 を備える端末。
(第2項)
 前記基地局から受信したサイドリンク送信のリソースの割り当て情報と、前記自律的にリソースを選択する端末が使用するリソースの情報とを比較することにより、前記サイドリンク信号に基づく情報を前記基地局に送信するか否かを決定する制御部
 を備える第1項に記載の端末。
(第3項)
 前記送信部は、前記サイドリンク信号に基づく情報として、将来の時点で利用できないリソースの情報、又は、過去の時点で利用できなかったリソースの情報を前記基地局に送信する
 第1項又は第2項に記載の端末。
(第4項)
 自律的にリソースを選択する第1端末から送信されたサイドリンク信号に基づく情報を、第2端末からアップリンクで受信する受信部と、
 前記サイドリンク信号に基づく情報に基づいて、前記第2端末に対するサイドリンク送信のためのスケジューリングを行う制御部と
 を備える基地局。
(第5項)
 前記第2端末に対して割り当てたリソースと、前記サイドリンク信号に基づく情報とに基づいて、前記第2端末に対してサイドリンク送信停止命令を送信する送信部
 を備える第4項に記載の基地局。
(第6項)
 自律的にリソースを選択する端末からサイドリンク信号を受信するステップと、
 前記サイドリンク信号に基づく情報を基地局に送信するステップと、
 を備える、端末が実行する送信方法。
 第1項~第6項のいずれによっても、基地局から割り当てられたリソースを用いてサイドリンク送信を行う端末と、自律的にリソースを選択してサイドリンク送信を行う端末との間におけるサイドリンク送信の衝突を回避することを可能とする技術が提供される。特に第2項によれば、基地局での制御に必要な情報のみを送信できる。第3項によれば、将来の時点あるいは過去の時点でのリソース情報に基づく制御が可能になる。第5項によれば、干渉になるようなSL送信を停止させることができる。
   <実施例3>
(第1項)
 基地局から、サイドリンク送信のリソース割り当て情報を受信する受信部と、
 前記リソース割り当て情報に基づいて、自律的に選択したリソースを用いたサイドリンク送信を行うか否かを判断する制御部と、
 前記サイドリンク送信を行うと判断された場合に、当該サイドリンク送信を実行する送信部と
 を備える端末。
(第2項)
 前記送信部により前記基地局に対してPRACH送信がなされた後に、前記受信部は、前記基地局から、前記リソース割り当て情報を受信するための設定情報を受信する
 第1項に記載の端末。
(第3項)
 前記制御部は、前記リソース割り当て情報に示されるリソースを候補から除外することにより、自律的にリソースを選択する動作を実行する
 第1項又は第2項に記載の端末。
(第4項)
 前記受信部は、前記基地局から、各PDCCHモニタ機会において、複数端末宛の信号を受信することを想定しており、あるPDCCHモニタ機会において、複数端末宛の信号を受信しなかった場合において、前記送信部は、当該あるPDCCHモニタ機会に対応するリソースでのサイドリンク送信を行わない
 第1項ないし第3項のうちいずれか1項に記載の端末。
(第5項)
 基地局から、サイドリンク送信のリソース割り当て情報を受信するステップと、
 前記リソース割り当て情報に基づいて、自律的に選択したリソースを用いたサイドリンク送信を行うか否かを判断するステップと、
 前記サイドリンク送信を行うと判断された場合に、当該サイドリンク送信を実行するステップと
 を備える、端末が実行する送信方法。
 第1項~第5項のいずれによっても、基地局から割り当てられたリソースを用いてサイドリンク送信を行う端末と、自律的にリソースを選択してサイドリンク送信を行う端末との間におけるサイドリンク送信の衝突を回避することを可能とする技術が提供される。特に第2項によれば、RRC接続することなく、基地局から設定情報を受信できる。第3項によれば、自律的にリソースを選択する動作を効率的に実行できる。第4項によれば、例えば、無線品質の良い状況でSL送信を行うことができる。
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図32及び図33)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)あるいは送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図34は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図32に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図33に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。補助記憶装置1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUSCH、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「端末(user terminal)」、「端末(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、端末で読み替えてもよい。例えば、基地局及び端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述の端末が有する機能を基地局が有する構成としてもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa,an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 なお、本開示において、SSブロック又はCSI-RSは、同期信号又は参照信号の一例である。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置

Claims (5)

  1.  基地局から、サイドリンク送信のリソース割り当て情報を受信する受信部と、
     前記リソース割り当て情報に基づいて、自律的に選択したリソースを用いたサイドリンク送信を行うか否かを判断する制御部と、
     前記サイドリンク送信を行うと判断された場合に、当該サイドリンク送信を実行する送信部と
     を備える端末。
  2.  前記送信部により前記基地局に対してPRACH送信がなされた後に、前記受信部は、前記基地局から、前記リソース割り当て情報を受信するための設定情報を受信する
     請求項1に記載の端末。
  3.  前記制御部は、前記リソース割り当て情報に示されるリソースを候補から除外することにより、自律的にリソースを選択する動作を実行する
     請求項1又は2に記載の端末。
  4.  前記受信部は、前記基地局から、各PDCCHモニタ機会において、複数端末宛の信号を受信することを想定しており、あるPDCCHモニタ機会において、複数端末宛の信号を受信しなかった場合において、前記送信部は、当該あるPDCCHモニタ機会に対応するリソースでのサイドリンク送信を行わない
     請求項1ないし3のうちいずれか1項に記載の端末。
  5.  基地局から、サイドリンク送信のリソース割り当て情報を受信するステップと、
     前記リソース割り当て情報に基づいて、自律的に選択したリソースを用いたサイドリンク送信を行うか否かを判断するステップと、
     前記サイドリンク送信を行うと判断された場合に、当該サイドリンク送信を実行するステップと
     を備える、端末が実行する送信方法。
PCT/JP2021/000933 2021-01-13 2021-01-13 端末、及び送信方法 WO2022153421A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21919315.8A EP4280727A1 (en) 2021-01-13 2021-01-13 Terminal and transmission method
PCT/JP2021/000933 WO2022153421A1 (ja) 2021-01-13 2021-01-13 端末、及び送信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/000933 WO2022153421A1 (ja) 2021-01-13 2021-01-13 端末、及び送信方法

Publications (1)

Publication Number Publication Date
WO2022153421A1 true WO2022153421A1 (ja) 2022-07-21

Family

ID=82448029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000933 WO2022153421A1 (ja) 2021-01-13 2021-01-13 端末、及び送信方法

Country Status (2)

Country Link
EP (1) EP4280727A1 (ja)
WO (1) WO2022153421A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130556A1 (ja) * 2017-12-28 2019-07-04 株式会社Nttドコモ ユーザ装置、及びリソース選択方法
JP2020519054A (ja) * 2017-05-04 2020-06-25 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America ユーザ機器、基地局、およびワイヤレス通信方法
JP2021500763A (ja) * 2017-08-11 2021-01-07 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 無線ネットワークノード、無線デバイス、ならびに無線ネットワークノードおよび無線デバイスにおいて実施される方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020519054A (ja) * 2017-05-04 2020-06-25 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America ユーザ機器、基地局、およびワイヤレス通信方法
JP2021500763A (ja) * 2017-08-11 2021-01-07 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 無線ネットワークノード、無線デバイス、ならびに無線ネットワークノードおよび無線デバイスにおいて実施される方法
WO2019130556A1 (ja) * 2017-12-28 2019-07-04 株式会社Nttドコモ ユーザ装置、及びリソース選択方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on resource pool sharing between mode 3 and mode 4", 3GPP DRAFT; R1-1707450, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Hangzhou, China; 20170515 - 20170519, 6 May 2017 (2017-05-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051261798 *

Also Published As

Publication number Publication date
EP4280727A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
JPWO2020136852A1 (ja) ユーザ装置、及び通信装置
WO2022070284A1 (ja) 端末、及びリソース制御方法
WO2021255808A1 (ja) 端末及び通信方法
WO2021181708A1 (ja) 端末及び通信方法
WO2021157042A1 (ja) 端末及び通信方法
WO2021090459A1 (ja) 端末及び通信方法
WO2021048990A1 (ja) 端末
WO2022038952A1 (ja) 端末及び通信方法
WO2022079782A1 (ja) 端末及び通信方法
WO2022085204A1 (ja) 端末及び通信方法
WO2022153548A1 (ja) 端末及び通信方法
WO2022097291A1 (ja) 端末及び通信方法
WO2022074849A1 (ja) 端末及び通信方法
WO2022024330A1 (ja) 端末及び通信方法
WO2021205664A1 (ja) 端末及び通信方法
WO2021156986A1 (ja) 端末及び測定方法
WO2021059539A1 (ja) 端末及び通信方法
JP2023102792A (ja) 端末及び通信方法
WO2022153421A1 (ja) 端末、及び送信方法
WO2022153419A1 (ja) 端末、及び送信方法
WO2022153420A1 (ja) 端末、基地局、及び送信方法
WO2022153417A1 (ja) 端末、基地局、及び送信方法
WO2022153418A1 (ja) 端末、基地局、及び送信方法
WO2022153416A1 (ja) 端末、及び送信方法
WO2022029984A1 (ja) 端末及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021919315

Country of ref document: EP

Effective date: 20230814

NENP Non-entry into the national phase

Ref country code: JP