WO2022152350A1 - Katalysator mit heizscheibe - Google Patents

Katalysator mit heizscheibe Download PDF

Info

Publication number
WO2022152350A1
WO2022152350A1 PCT/DE2022/100012 DE2022100012W WO2022152350A1 WO 2022152350 A1 WO2022152350 A1 WO 2022152350A1 DE 2022100012 W DE2022100012 W DE 2022100012W WO 2022152350 A1 WO2022152350 A1 WO 2022152350A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
heating device
exhaust gas
catalytic converter
conductor
Prior art date
Application number
PCT/DE2022/100012
Other languages
English (en)
French (fr)
Inventor
Elmar Grussmann
Ulrich Rusche
Original Assignee
Benteler Automobiltechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benteler Automobiltechnik Gmbh filed Critical Benteler Automobiltechnik Gmbh
Publication of WO2022152350A1 publication Critical patent/WO2022152350A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/24Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor being self-supporting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material

Definitions

  • the present invention relates to an electrical heating device according to the features in the preamble of claim 1 .
  • a heater in exhaust systems is used to rapidly heat up the exhaust aftertreatment components.
  • Applications are known in the exhaust gas full flow, in the exhaust gas recirculation in the SCR technology for the hydrolysis of urea-water solutions to ammonia.
  • the usual designs are electrical heating conductors, which consist of thin sheet metal strips and form small channels for better heat transfer.
  • the object of the present invention is to provide an additional heater for a catalytic converter, which is initially arranged decoupled from the catalytic converter, meets high thermal and mechanical requirements in the vehicle exhaust system and provides particularly rapid heating especially for a cold start process.
  • the electric heating device in an exhaust system of a motor vehicle has a housing that runs around the outside. This is in particular a round housing.
  • a heating conductor is arranged in the housing itself, wherein the heating conductor can be heated by applying an electric current and heats a catalytic converter.
  • the catalytic converter is also arranged in the housing. In particular, the catalytic converter is arranged downstream of the heat conductor in the exhaust gas flow direction.
  • the heating conductor itself is designed as a heating disc. This is done in such a way that the heating conductor covers a large part of the subsequent catalytic converter in terms of surface area, in particular in relation to the cross-sectional area.
  • the thermal energy generated and emitted via the heat conductor is transferred in the form of radiant heat to the adjacently arranged catalytic converter.
  • an exhaust gas flow does not have to be present at all in order to transfer the heat to the catalytic converters, but rather a large part of the heating capacity already takes place due to thermal radiation.
  • the catalytic converter can thus already be heated up during the starting process of the internal combustion engine, ie even before an exhaust gas stream flows.
  • the catalytic converter is already preheated and can therefore already reduce exhaust gas emissions, which means that the emissions in the cold start behavior are significantly improved again.
  • the heating disk itself is preferably perforated. Consequently, the heated pane has holes, recesses or other perforations so that an exhaust gas stream can flow through the heated pane.
  • the heating disc is formed by the heating element itself.
  • the heating conductor is wound up in a meandering or spiral shape, so that a spiral results in a top view of a cross-sectional view through the heating device or a top view of the transverse frame surface of the heating pane itself.
  • this meander or spiral has a coverage of the subsequent catalyst of more than 40%, in particular more than 45%, preferably more than 50%, very particularly preferably more than 60%, in particular more than 70% and most preferably more than 80%, and especially more than 90%.
  • the heating disk covers a cross-sectional area in the aforementioned percentage ranges, in particular a large part of the cross-sectional area through that of the catalytic converter in the exhaust gas disturbance direction.
  • the heating disc or the individually wound conductor tracks of the heating conductor itself are perforated.
  • the aforementioned percentages for the cross-sectional area therefore relate to the external dimensions and not the perforation. The perforations or recesses in the heating conductor itself would theoretically have to be subtracted from this cross-sectional area.
  • the cross-sectional area of the covering is important.
  • the perforation or recesses can be subtracted from this, since the edge regions of the heat conductor surrounding the perforation heat up due to electrical energy and then give off radiant heat in particular to the catalytic converter.
  • the heat conductor is relatively flat when viewed in the axial direction or exhaust gas flow direction.
  • the width of the heating conductor itself, perpendicular to the exhaust gas flow direction is at least twice, preferably three times, in particular five times as large as the depth of the heating conductor measured in the exhaust gas flow direction.
  • a feature according to the invention is particularly preferably achieved by a width-to-depth ratio of 4:1 to 60:1. In the context of the invention, it is particularly preferred that the ratio is from 10:1 to 25:1.
  • a width of 10 to 25 mm, preferably 15 to 20 mm, has been found for the respective turn of the heating conductor, the width is measured in the radial direction or transversely to the outflow direction.
  • a depth, measured in the axial direction or in the exhaust gas flow direction, has proven to be an absolute value of 1 to 2 mm as a particularly preferred depth.
  • the heating disk is designed as a coiled heating conductor.
  • the strand of the heating conductor itself is designed as a lamellar plate with a curved cross section.
  • the individual twisted strands overlap in the radial direction. Due to the fact that the individual strand is curved in a wavy cross-section, there is an axial passage despite the radial overlap. This ensures that the largest possible surface is covered as a transverse clamping surface, so that the downstream catalytic converter is covered as much as possible, especially when the radiation is emitted. At the same time, however, it is possible for exhaust gas to flow through the heating pane itself without the strand of the heating conductor being perforated.
  • the heating disk or the coiled heating conductor for forming the heating disk is itself made of wire mesh, expanded metal or perforated sheet metal.
  • the heating conductor is perforated.
  • the heating conductor is wound up to form a disc or a disc-shaped body.
  • This heating disk is preferably supported on the catalytic converter itself which follows the heating disk in the exhaust gas flow direction.
  • the support takes place in particular in an electrically insulated manner.
  • the support can be thermally conductive.
  • thermal conduction can also take place from the heated pane to the catalytic converter.
  • a support catalytic converter can also be placed in front of the heated window in the exhaust gas flow direction.
  • the support catalytic converter is also preheated by the heat radiation, especially during cold starts, which also has a positive effect on reducing emissions especially during cold starts.
  • the initial flow of exhaust gas during a cold start thus first hits the support catalyst, which has already been preheated by thermal radiation, which means that pollutants can also be converted in the support catalyst.
  • the support catalytic converter then serves to compensate for vibrations and/or thermal expansion for further operation, and thus the longevity of the entire arrangement according to the invention.
  • Two or more heating disks can also be arranged mechanically and connected electrically in parallel.
  • the heating capacity can be improved as a result.
  • the heating disc between two catalytic converters.
  • the between refers to the exhaust gas flow direction.
  • a respective gap can remain, so that the heated pane does not lie directly against it.
  • the radiant heat can thus be passed on to the upstream, but also to the downstream respective catalytic converter when the heating disc is activated.
  • Figure 1 shows an inventive arrangement of an electric
  • Figure 2 is a longitudinal sectional view
  • Figure 3 is a plan view
  • FIGS. 4 and 5 show a heating disk in the form of a wound heating conductor with radial overlap.
  • FIG. 1 shows an arrangement of an electrical heating device 1 according to the invention.
  • a catalytic converter 2 is arranged in a housing, in particular a round housing 4 , with a heating disk 3 arranged upstream in the direction of exhaust gas flow A.
  • Electrical connections 5 can be present on the housing 4 so that the heating disc 3 arranged in the housing 4 can be supplied with current.
  • Figure 2 shows a longitudinal sectional view.
  • the catalytic converter 2 is located downstream of the heated disc 3 in the exhaust gas flow direction A.
  • the heating disc 3 itself is disc-shaped by means of a meandering or spirally wound heating conductor.
  • the cross-section of the heating disk 3 extends over a large area of the downstream catalytic converter 2. This can be seen again in FIG.
  • the heating disc 3 itself is formed from a perforated sheet metal strip and is wound in a spiral or meandering shape.
  • the cross-sectional area of the external dimensions of the metal strip covers more than 40%, in particular more than 45%, more than 50% and in this case more than 70% of the cross-sectional area of the underlying catalyst 2 from area.
  • the heating conductor of the heating pane 3 is perforated. This perforation is not subtracted from the areal coverage percentage. Thus exhaust gas can also pass through the perforated heat conductor 5 .
  • the width 6 of the heating conductor of the heating pane 3, which is measured in particular transversely to the exhaust gas flow direction A, is at least twice, preferably three times, particularly preferably four times larger than that shown in Figure 2 Depth 7 of the heat conductor, the depth 7 being measured in the exhaust gas flow direction A.
  • FIG. 4 shows a perspective view of a heating device 1 .
  • Figure 5 shows a longitudinal sectional view along section line B-B from Figure 4 on the same heating device 1.
  • a catalytic converter 2 is arranged in a housing 4 .
  • the catalytic converter 2 is located downstream of the heated window 3 in the exhaust gas flow direction A.
  • the heating disc 3 is a spirally or meanderingly wound heating conductor 8 which is connected to a power source via electrical connections 5 located outside the housing 4 (not shown in detail).
  • the respective winding of the heating conductor 8 is shown in cross section in a longitudinal sectional view. These are individual lamellae, which have an S-shaped, Z-shaped or wave-shaped course in their own cross-section. The individual windings of the heating conductor 8 thus overlap in the radial direction. Shown in the axial direction, the exhaust gas can pass through the heating disc 3 through the covering according to the dashed line in the exhaust gas flow direction A. That's what they are for individual turns that overlap in the radial direction, spaced apart in the axial direction, so that a respective opening 9 for the passage of the exhaust gas is present.
  • the cross section of the housing 4 or the transverse clamping surface of the catalytic converter 2 is covered by the heating disk 3 to the greatest possible extent.
  • the radiated heat of the heating pane 3 thus covers the largest possible area. Due to the individual cross section of each turn of the heating conductor 8, which is essentially solid, a good current flow and thus heating of the heating conductor 8 for heat dissipation by means of thermal radiation is produced.
  • the individual windings can be coupled to one another (not shown in more detail), for example supported against one another, so that deformation of the individual windings relative to one another is avoided even if an exhaust gas flow occurs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Die Erfindung betrifft eine elektrische Heizvorrichtung (1 ) in einem Abgasstrang eines Kraftfahrzeuges, aufweisend ein außen umlaufendes, insbesondere rundes Gehäuse, wobei in dem Gehäuse ein Heizleiter (3) angeordnet ist, welcher durch Beaufschlagung mit einem elektrischen Strom erwärmbar ist und einen Katalysator (2) erwärmt. Der Heizleiter (5) ist als Heizscheibe (3) ausgebildet, welche Strahlungswärme auf einen benachbart angeordneten Katalysator (2) abgibt.

Description

Katalysator mit Heizscheibe
Die vorliegende Erfindung betrifft eine elektrische Heizvorrichtung gemäß den Merkmalen im Oberbegriff von Anspruch 1 .
Eine Heizvorrichtung in Abgassystemen wird zur schnellen Aufwärmung der Abgasnachbehandlungskomponenten verwendet. Bekannt sind Anwendungen im Abgasvollstrom, in der Abgasrückführung in der der SCR Technologie zur Hydrolyse von Harnstoff-Wasser-Lösungen zu Ammoniak. Übliche Bauformen sind elektrische Heizleiter, die aus dünnen Blechstreifen bestehen und zur besseren Wärmeübertragung kleine Kanäle bilden.
Strömt nunmehr das Abgas über den Heizleiter, so wird aufgrund von Konvektion das an dem Heizleiter vorbeiströmende Abgas erwärmt. Dieses erwärmte Abgas gibt sodann seine Wärme an den in Abgasströmungsrichtung nachfolgenden Katalysator ebenfalls aufgrund von Konvektion ab, so dass der Katalysator schneller auf Betriebstemperatur ist. Eine solche Ausgestaltungsvariante ist beispielsweise aus der DE 10 2015 111 689 B3 bekannt. Hier ist jedoch auch gleichsam der Heizleiter selbst in eine mineralische poröse Struktur eingebettet, so dass sich ein erhöhter Fertigungsaufwand ergibt.
Aufgabe der vorliegenden Erfindung ist es, eine Zusatzheizung für einen Katalysator bereitzustellen, die zunächst entkoppelt von dem Katalysator angeordnet ist, hohen thermischen und mechanischen Anforderungen in der Fahrzeugabgasanlage entspricht sowie insbesondere für einen Kaltstartvorgang ein besonders schnelles Aufheizen bereitstellt.
Die zuvor genannte Aufgabe wird erfindungsgemäß bei einer elektrischen Heizvorrichtung in einem Abgasstrang eines Kraftfahrzeuges mit den Merkmalen im Anspruch 1 gelöst.
Vorteilhafte Ausgestaltungsvarianten sind in den abhängigen Ansprüchen beschrieben.
Die elektrische Heizvorrichtung in einem Abgasstrang eines Kraftfahrzeuges weist hierzu ein außen umlaufendes Gehäuse auf. Dabei handelt es sich insbesondere um ein rundes Gehäuse. In dem Gehäuse selbst ist ein Heizleiter angeordnet, wobei der Heizleiter durch Beaufschlagung mit einem elektrischen Strom erwärmbar ist und einen Katalysator erwärmt. Der Katalysator ist ebenfalls in dem Gehäuse angeordnet. Insbesondere ist der Katalysator in Abgasströmungsrichtung, dem Heizleiter nachfolgend angeordnet.
Erfindungsgemäß ist nunmehr vorgesehen, dass der Heizleiter selbst als Heizscheibe ausgebildet ist. Dies erfolgt dergestalt, dass der Heizleiterflächenmäßig, insbesondere bezogen auf die Querschnittsfläche, einen großen Teil des nachfolgenden Katalysators abdeckt. Hierdurch wird erfindungsgemäß vorgesehen werden, dass die über den Heizleiter erzeugte und abgegebene Wärmeenergie in Form von Strahlungswärme auf den benachbart angeordneten Katalysator übergeht. Somit wird erfindungsgemäße erreicht, dass überhaupt nicht erst ein Abgasstrom vorhanden sein muss, um die Wärme an den Katalysatoren zu übertragen, sondern bereits ein Großteil der Aufheizleistung aufgrund von Wärmestrahlung erfolgt. Somit kann bereits im Startvorgang der Verbrennungskraftmaschine, also noch bevor überhaupt ein Abgasstrom fließt, der Katalysator aufgeheizt werden. Bei Einsetzen des Abgasstromes weist der Katalysator dann bereits eine entsprechende Vorwärmung auf und kann die Abgasemission somit bereits senken, wodurch der Emissionsausstoß im Kaltstartverhalten signifikant nochmals verbessert wird.
Damit eine Abgasströmung, auch durch den Heizleiter, möglich ist, ist die Heizscheibe bevorzugt selbst wiederum perforiert ausgebildet. Mithin weist die Heizscheibe Löcher, Ausnehmungen oder sonstige Perforierungen auf, damit ein Abgasstrom durch die Heizscheibe hindurchfließen kann.
Die Heizscheibe ist durch den Heizleiter selbst ausgebildet. Hierzu ist der Heizleiter insbesondere mäanderförmig bzw. spiralförmig aufgewickelt, so dass bei Draufsicht auf eine Querschnittsansicht durch die Heizvorrichtung bzw. Draufsicht auf die Querspantfläche der Heizscheibe selbst sich eine Spirale ergibt. Dieser Mäander bzw. Spirale weist in seiner Querschnittsfläche bzw. seiner äußeren Abmessung eine Bedeckung des nachfolgenden Katalysators von mehr als 40 %, insbesondere mehr als 45 %, bevorzugt mehr als 50 %, ganz besonders bevorzugt mehr als 60 %, insbesondere mehr als 70 % und ganz besonders bevorzugt mehr als 80 %, und insbesondere mehr als 90 % auf.
Dies bedeutet, dass die Heizscheibe eine Querschnittsfläche in den vorgenannten Prozentbereichen, insbesondere einen Großteil der Querschnittsfläche durch das des Katalysators in Abgasstörungsrichtung bedeckt. Damit jedoch der Gegendruck im Abgasstrom nicht erhöht wird, ist die Heizscheibe bzw. sind die einzeln aufgewickelten Leiterbahnen des Heizleiters selbst perforiert ausgebildet. Die vorgenannten Prozentangaben zur Querschnittsfläche beziehen sich somit auf die äußeren Abmessungen nicht die Perforation. Die Perforierungen bzw. Ausnehmungen in dem Heizleiter selber müssten von dieser Querschnittsfläche theoretisch abgezogen werden. In Bezug auf den erfinderischen Effekt, wonach eine große Fläche des nachfolgenden Katalysators derart bedeckt wird, dass die von der Heizscheibe abgegebene Strahlungswärme auf den nachfolgenden Katalysator möglichst großflächig und damit auch homogen abgegeben wird, ist jedoch die Querschnittsfläche der Bedeckung wichtig. Die Perforation bzw. Ausnehmungen können davon abgezogen werden, da die Perforation umgebenden Randbereiche des Heizleiters sich aufgrund elektrischer Energie erwärmen und dann insbesondere Strahlungswärme an den Katalysator abgeben.
Damit insbesondere der erfindungsgemäße Effekt der Heizscheibe als Strahlungswärmequelle ausgebildet ist, ist in Axialrichtung bzw. Abgasströmungsrichtung der Heizleiter relativ gesehen flach ausgebildet. Dies wird erfindungsgemäß dadurch erreicht, dass im Falle eines gewundenen Heizleiters die Breite des Heizleiters selber, quer zur Abgasströmungsrichtung, mindestens zweimal, bevorzugt dreimal, insbesondere fünfmal so groß ist, im Vergleich zur in Abgasströmungsrichtung gemessenen Tiefe des Heizleiters. Besonders bevorzugt wird erfindungsgemäß ein erfindungsgemäßes Merkmal erreicht durch ein Breite-zu- Tiefen-Verhältnis von 4 : 1 bis 60 : 1. Es haben sich im Rahmen der Erfindung ganz besonders von 10 : 1 bis 25 : 1 . Es haben sich überraschender Weise eine Breite von 10 bis 25 mm, bevorzugt 15 bis 20 mm, bei der jeweiligen Windung des Heizleiters herausgestellt, die Breite wird gemessen in Radialrichtung bzw. quer zur Abströmungsrichtung. Als Tiefe hat sich besonders bevorzugt eine Tiefe, gemessen in Axialrichtung bzw. in Abgasströmungsrichtung ein Absolutmaß von 1 bis 2 mm gezeigt.
In einer weiteren besonders bevorzugten Ausgestaltungsvariante ist die Heizscheibe als gewundener Heizleiter ausgebildet. Der Strang des Heizleiters selbst ist als im Querschnitt gebogenes Lamellenblech ausgebildet. Die einzelnen gewundenen Stränge überlappen sich in Radialrichtung. Aufgrund der Tatsache, dass der einzelne jeweilige Strang im Querschnitt wellenförmig gebogen ist, ergibt sich trotz radialer Überlappung ein axialer Durchlass. Hierdurch wird erreicht, dass eine größt mögliche Fläche als Querspannfläche bedeckt ist, so dass gerade bei abgegebener Strahlung der nachgelagerte Katalysator größtmöglich bedeckt ist. Gleichzeitig jedoch wird es ermöglicht, dass Abgas auch durch die Heizscheibe selbst strömt, ohne dass der Strang des Heizleiters in sich perforiert ist. Die Heizscheibe bzw. der gewundene Heizleiter zur Ausbildung der Heizscheibe ist selbst aus einem Drahtgeflecht, einem Streckmetall oder einem perforierten Blech hergestellt. Insbesondere ist der Heizleiter perforiert ausgebildet. Erfindungsgemäß ist somit der Heizleiter eine Scheibe bzw. einen scheibenförmigen Körper ausbildend, aufgewickelt.
Diese Heizscheibe ist bevorzugt an dem in Abgasströmungsrichtung auf die Heizscheibe folgenden Katalysator selbst abgestützt. Die Abstützung erfolgt insbesondere elektrisch isoliert. Die Abstützung kann jedoch thermisch leitend erfolgen. Somit kann zusätzlich zu der Wärmestrahlung noch Wärmeleitung von der Heizscheibe an den Katalysator erfolgen.
Auch kann der Heizscheibe in Abgasströmungsrichtung ein Stützkatalysator vorgelagert sein. Insbesondere wird der Stützkatalysator ebenfalls durch die Wärmestrahlung gerade im Kaltstartverhalten vorerwärmt, was sich weiterhin positiv auf eine Reduktion von Emissionen gerade im Kaltstartverhalten auswirkt. Die initiale Abgasströmung beim Kaltstarten trifft somit zunächst auf den bereits durch Wärmestrahlung vorerwärmten Stützkatalysator, wodurch bereits Schadstoffe auch im Stützkatalysator umgewandelt werden können. Insbesondere dient jedoch dann für den weiteren Betrieb der Stützkatalysator zur Kompensation von Schwingungen und/oder thermischen Ausdehnungen, mithin der Langlebigkeit der gesamten erfindungsgemäßen Anordnung.
Auch können zwei oder mehr Heizscheiben mechanisch angeordnet und elektrisch parallel geschaltet sein. Die Heizleistung kann hierdurch verbessert werden.
Auch ist es möglich, die Heizscheibe zwischen zwei Katalysatoren anzuordnen. Das zwischen bezieht sich auf die Abgasströmungsrichtung. Es kann ein jeweiliger Spalt verbleiben, so dass die Heizscheibe nicht unmittelbar anliegt. Insbesondere kann somit die Strahlungswärme bei Aktivierung der Heizscheibe an den vorgelagerten, aber auch nachgelagerten jeweiligen Katalysator weitergegeben werden.
Strömt dann das Abgas, wird über die Strahlungswärme noch auch der vorgelagerte Katalysator geheizt. Mittels Konvektion über Überstreichen des Abgases der Heizscheibe an dem nachgelagerten Katalysator abgegeben wird. Weitere Vorteile, Merkmale, Eigenschaften und Aspekte der vorliegenden Erfindung sind Gegenstand der nachfolgenden Beschreibung. Bevorzugte Ausgestaltungen sind in den Figuren dargestellt. Diese dienen dem einfachen Verständnis der Erfindung. Es zeigen:
Figur 1 eine erfindungsgemäße Anordnung einer elektrischen
Heizvorrichtung,
Figur 2 eine Längsschnittansicht;
Figur 3 eine Draufsicht,
Figuren 4 und 5 eine Heizscheibe in Form eines gewundenen Heizleiters mit radialer Überdeckung.
In den Figuren werden für gleiche oder ähnliche Bauteile dieselben Bezugszeichen verwendet, auch wenn eine wiederholte Beschreibung aus Vereinfachungsgründen entfällt.
Figur 1 zeigt eine erfindungsgemäße Anordnung einer elektrischen Heizvorrichtung 1 . Hierzu ist ein Katalysator 2 mit einer in Abgasströmungsrichtung A vorgelagerten Heizscheibe 3 in einem Gehäuse, insbesondere rundem Gehäuse 4 angeordnet. An der Gehäuse 4 können elektrische Anschlüsse 5 vorhanden sein, so dass die im Gehäuse 4 angeordnete Heizscheibe 3 mit Strom beaufschlagbar ist.
Figur 2 zeigt eine Längsschnittansicht. In dem Gehäuse 4 ist der Katalysator 2 in Abgasströmungsrichtung A der Heizscheibe 3 nachgelagert. Die Heizscheibe 3 selbst ist scheibenförmig durch einen mäanderförmig oder spiralförmig gewundenen Heizleiter ausgebildet.
Die Heizscheibe 3 erstreckt sich im Querschnitt über einen großen Flächenanteil des nachgelagerten Katalysators 2. Dies wird nochmals in Figur 3 ersichtlich. Die Heizscheibe 3 selbst ist aus einem perforierten Blechstreifen ausgebildet und spiralförmig bzw. mäanderförmig gewunden. Die Querschnittsfläche der äußeren Abmessungen des Blechstreifens decken mehr als 40, insbesondere mehr als 45, mehr als 50 und in diesem Fall mehr als 70 % der Querschnittsfläche des dahinterliegenden Katalysators 2 flächenmäßig ab. Zwischen seinen äußeren Abmessungen ist der Heizleiter der Heizscheibe 3 perforiert ausgebildet. Diese Perforation ist nicht von der prozentualen Angabe der flächenmäßigen Abdeckung abgezogen. Somit kann Abgas auch durch den perforierten Heizleiter 5 hindurchtreten. Gleichzeitig ist jedoch die dahinterliegende Fläche aufgrund der äußeren Abmessungen der Heizscheibe 3 abgedeckt, so dass die von der Heizscheibe 3 abgegebene Strahlungswärme einen großen Flächenanteil des dahinter befindlichen Katalysators abdeckt. Nicht näher dargestellt sind evtl. Abstützungen der Heizscheibe an dem Katalysator selber. Diese sind jedoch vorhanden, um zum einen eine mechanische Stabilität gegen das strömende Abgas zu erreichen, gleichzeitig auch thermische Ausdehnungen und/oder Schwingungen zu kompensieren.
Ferner ist im Vergleich von Figur 3 zu Figur 2 zu erkennen, dass die Breite 6 des Heizleiters der Heizscheibe 3, welche sich insbesondere quer zur Abgasströmungsrichtung A bemisst, mindestens zweimal, bevorzugt dreimal, besonders bevorzugt viermal größer ist, als die in Figur 2 gezeigte Tiefe 7 des Heizleiters, wobei sich die Tiefe 7 in Abgasströmungsrichtung A bemisst.
Figur 4 zeigt eine perspektivische Ansicht auf eine Heizvorrichtung 1 .
Figur 5 zeigt eine Längsschnittansicht entlang der Schnittlinie B-B aus Figur 4 an der gleichen Heizvorrichtung 1.
Auch hier ist in einem Gehäuse 4 ein Katalysator 2 angeordnet. Der Katalysator 2 ist in Abgasströmungsrichtung A der Heizscheibe 3 nachgelagert. Die Heizscheibe 3 ist ein spiralförmig bzw. mäanderförmig gewundener Heizleiter 8, der jeweils über außerhalb des Gehäuses 4 liegende elektrische Anschlüsse 5, nicht näher dargestellt, mit einer Stromquelle verbunden wird.
In der Figur 5 ist in der Längsschnittansicht die jeweilige Windung des Heizleiters 8 im Querschnitt gezeigt. Dies sind einzelne Lamellen, die im eigenen Querschnitt einen S- schlagförmigen bzw. Z-förmigen bzw. wellenförmigen Verlauf aufweisen. Somit überdecken sich die einzelnen Windungen des Heizleiters 8 in Radialrichtung. In Axialrichtung kann dargestellt das Abgas durch die Überdeckung gemäß der Strichlinie in Abgasströmungsrichtung A durch die Heizscheibe 3 hindurchtreten. Dazu sind die einzelnen Windungen, die sich in Radialrichtung überlappen, in Axialrichtung voneinander beabstandet, so dass eine jeweilige Öffnung 9 zum Durchtritt des Abgases vorhanden ist. Auf diese Art und Weise wird im Querschnitt des Gehäuses 4 bzw. die Querspannfläche des Katalysators 2 größtmöglich von der Heizscheibe 3 überdeckt. Die abgestrahlte Wärme der Heizscheibe 3 bedeckt somit eine größtmögliche Fläche. Aufgrund des einzelnen Querschnitts einer jeder Windung des Heizleiters 8, welcher im Wesentlichen fest ist, ist ein guter Stromdurchfluss und damit Erwärmung des Heizleiters 8 zur Wärmeabgabe mittels Wärmestrahlung hergestellt. Die einzelnen Windungen können nicht näher dargestellt miteinander gekoppelt sein, beispielsweise gegeneinander abgestützt sein, so dass auch bei Auftreten einer Abgasströmung eine Verformung der einzelnen Windungen zueinander vermieden wird.
Bezuqszeichen:
1 - Heizvorrichtung
2 - Katalysator
3 - Heizscheibe
4 - Gehäuse
5 - elektrischer Anschluss
6 - Breite
7 - Tiefe
8 - Heizleiter
9 - Öffnung
A - Abgasströmungsrichtung

Claims

Patentansprüche Elektrische Heizvorrichtung (1) in einem Abgasstrang eines Kraftfahrzeuges, aufweisend ein außen umlaufendes, insbesondere rundes Gehäuse, wobei in dem Gehäuse ein Heizleiter angeordnet ist, welcher durch Beaufschlagung mit einem elektrischen Strom erwärmbar ist und einen Katalysator (2) erwärmt, dadurch gekennzeichnet, dass der Heizleiter als Heizscheibe (3) ausgebildet ist, welche Strahlungswärme auf einen benachbart angeordneten Katalysator (2) abgibt. Elektrische Heizvorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Breite (6) des Heizleiters quer zur Abgasströmungsrichtung (A) mindestens zweimal, bevorzugt dreimal, insbesondere fünfmal so groß ist, im Vergleich zur Tiefe (7) des Heizleiters in Abgasströmungsrichtung (A). Elektrische Heizvorrichtung (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Heizscheibe (3) durch einen spiralförmig gewundenen Heizleiter (8) ausgebildet ist, wobei sich die einzelnen Windungen in Radialrichtung überdecken, in Axialrichtung voneinander beabstandet sind, dergestalt, dass Abgas durch die Heizscheibe (3) strömen kann. Elektrische Heizvorrichtung (1) nach einem der Ansprüche 1 bis 3, d a d u r c h gekennzeichnet, dass die Heizscheibe (3) perforiert ist. Elektrische Heizvorrichtung (1) nach einem der Ansprüche 1 bis 4, d a d u r c h gekennzeichnet, dass die Heizscheibe (3) durch einen Mäander ausgebildet ist. Elektrische Heizvorrichtung (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Heizscheibe (3) mindestens 40% der Querschnittsfläche des Katalysators (2) bedeckt, insbesondere mehr als 45%, bevorzugt mehr als 50%, besonders bevorzugt mehr als 60 %, ganz besonders bevorzugt mehr als 80 %. Elektrische Heizvorrichtung (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Heizscheibe (3) aus einem Drahtgeflecht, einem Streckmetall oder einem perforierten Blech hergestellt ist. Elektrische Heizvorrichtung (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Heizscheibe (3) katalytisch beschichtet ist. Elektrische Heizvorrichtung (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Heizscheibe (3) an dem Katalysator (2) abgestützt ist. Elektrische Heizvorrichtung (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Katalysator (2) in Abgasströmungsrichtung der Heizscheibe (3) vor- oder nachgelagert ist. Elektrische Heizvorrichtung (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Heizscheibe (3) in Abgasströmungsrichtung zwischen zwei Katalysatoren (2) angeordnet ist. Elektrische Heizvorrichtung (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zwei oder mehr Heizscheiben (3) parallel angeordnet und elektrisch angeschlossen sind.
PCT/DE2022/100012 2021-01-13 2022-01-12 Katalysator mit heizscheibe WO2022152350A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021100570.1 2021-01-13
DE102021100570.1A DE102021100570A1 (de) 2021-01-13 2021-01-13 Katalysator mit Heizscheibe

Publications (1)

Publication Number Publication Date
WO2022152350A1 true WO2022152350A1 (de) 2022-07-21

Family

ID=80001358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2022/100012 WO2022152350A1 (de) 2021-01-13 2022-01-12 Katalysator mit heizscheibe

Country Status (2)

Country Link
DE (1) DE102021100570A1 (de)
WO (1) WO2022152350A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09317440A (ja) * 1996-05-24 1997-12-09 Nippon Soken Inc 内燃機関の排気微粒子浄化装置
DE102009018182A1 (de) * 2009-04-22 2010-10-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Mehrstufig beheizbarer Wabenkörper
DE102015111689B3 (de) 2015-07-17 2016-10-20 Türk & Hillinger GmbH Elektrisch beheizbarer Katalysator und Verfahren zu dessen Herstellung
DE102016223578A1 (de) * 2016-11-28 2018-05-30 Continental Automotive Gmbh Vorrichtung zur Verdampfung eines Fluids
CN110206622A (zh) * 2019-06-04 2019-09-06 亿达天地环保技术股份有限公司 双层套管结构电加热废气处理装置
EP3958650A1 (de) * 2020-08-19 2022-02-23 Johnson Matthey Public Limited Company Elektrische heizeinheit für abgassystem und verfahren zu deren herstellung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014115923A1 (de) 2014-10-31 2016-05-04 Continental Automotive Gmbh Wabenkörper mit elektrischer Heizvorrichtung
DE102019209304B4 (de) 2019-06-26 2021-03-25 Vitesco Technologies GmbH Vorrichtung zur Abgasnachbehandlung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09317440A (ja) * 1996-05-24 1997-12-09 Nippon Soken Inc 内燃機関の排気微粒子浄化装置
DE102009018182A1 (de) * 2009-04-22 2010-10-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Mehrstufig beheizbarer Wabenkörper
DE102015111689B3 (de) 2015-07-17 2016-10-20 Türk & Hillinger GmbH Elektrisch beheizbarer Katalysator und Verfahren zu dessen Herstellung
DE102016223578A1 (de) * 2016-11-28 2018-05-30 Continental Automotive Gmbh Vorrichtung zur Verdampfung eines Fluids
CN110206622A (zh) * 2019-06-04 2019-09-06 亿达天地环保技术股份有限公司 双层套管结构电加热废气处理装置
EP3958650A1 (de) * 2020-08-19 2022-02-23 Johnson Matthey Public Limited Company Elektrische heizeinheit für abgassystem und verfahren zu deren herstellung

Also Published As

Publication number Publication date
DE102021100570A1 (de) 2022-07-14

Similar Documents

Publication Publication Date Title
EP3212907B1 (de) Wabenkörper mit elektrischer heizvorrichtung
DE112020002424T5 (de) Fahrzeugabgasreinigungsvorrichtung, entsprechendes Herstellungsverfahren, Abgasleitung und Fahrzeug
EP0605479B1 (de) Abgaskatalysator
DE4410820C2 (de) Zusatzluft-Zuführgerät für eine Verbrennungsmaschine
EP2836687B1 (de) Elektrischer anschluss von mehreren blechlagen eines elektrisch beheizbaren wabenkörpers und zugehöriger wabenkörper
EP2802752B1 (de) Elektrisch beheizbarer wabenkörper mit mehreren mit einem anschlussstift elektrisch verbundenen blechlagen
WO2001020142A1 (de) Vorrichtung mit heizelement zur abgasreinigung
EP4047195A1 (de) Halter für ein elektrisches heizelement in einer abgasnachbehandlungsvorrichtung
WO1994017290A1 (de) Katalytischer konverter mit elektrischer beheizung
DE102021109568A1 (de) Abgasheizer
EP2744990B1 (de) Vorrichtung zur behandlung von abgasen
EP4047194A1 (de) Halter für eine elektrische heizscheibe in eine abgasnachbehandlungsvorrichtung
DE102022116755A1 (de) Heizeinrichtung zum Beheizen eines Gasstroms
EP3943720B1 (de) Elektrische heizvorrichtung
WO2022152350A1 (de) Katalysator mit heizscheibe
DE10104601A1 (de) Reaktor für ein Brennstoffzellenssystem
EP0677141B1 (de) Katalysator
DE10349367A1 (de) Bauweise zur Abgasemissionsbegrenzung
DE102021104117B3 (de) Halter für ein elektrisches Heizelement in einer Abgasnachbehandlungsvorrichtung
DE102004046918A1 (de) Vorrichtung zur Umwandlung unerwünschter Bestandteile von Abgasen
EP4198274B1 (de) Heizeinrichtung zum beheizen eines gasstroms
EP0853718A1 (de) Elektrisch beheizbarer wabenkörper mit versteiften stromverteilungsstrukturen
DE19826284B4 (de) Anordnung für eine Kfz-Abgasanlage mit Katalysator
DE102021109567A1 (de) Heizleiter für eine Abgasheizanordnung
DE10050464A1 (de) Abgasreinigungseinheit einer Brennkraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22700533

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 22700533

Country of ref document: EP

Kind code of ref document: A1