WO2022152079A1 - 一种通信方法及相关设备 - Google Patents

一种通信方法及相关设备 Download PDF

Info

Publication number
WO2022152079A1
WO2022152079A1 PCT/CN2022/070998 CN2022070998W WO2022152079A1 WO 2022152079 A1 WO2022152079 A1 WO 2022152079A1 CN 2022070998 W CN2022070998 W CN 2022070998W WO 2022152079 A1 WO2022152079 A1 WO 2022152079A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
iab node
bap
iab
data packet
Prior art date
Application number
PCT/CN2022/070998
Other languages
English (en)
French (fr)
Inventor
朱元萍
史玉龙
曹振臻
刘菁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22738960.8A priority Critical patent/EP4266755A4/en
Publication of WO2022152079A1 publication Critical patent/WO2022152079A1/zh
Priority to US18/352,692 priority patent/US20230362779A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • H04W40/06Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources based on characteristics of available antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/246Connectivity information discovery

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method and related equipment.
  • the 3rd-generation partnership project (3GPP) R15 integrated access and backhaul (IAB) network architecture includes a host node (IABdonor) and an IAB node.
  • IABdonor includes IABdonorCU and IABdonorDU.
  • An IAB node may include two functional units: a mobile terminal (MT) and a DU. Among them, the MT is used for the IAB node to communicate with the upper node (or parent node), and the DU is used for the IAB node to communicate with the lower node (or child node).
  • each IAB node and its parent node in the IAB network are connected to the same host node.
  • the host node manages the topology, routing, and quality of service (QoS) in the IAB network.
  • the embodiments of the present application provide a communication method and related equipment, which can realize normal transmission of data packets in multiple network segments in a scenario where multiple IAB host nodes manage multiple network segments in an IAB network.
  • a first aspect of the embodiments of the present application provides a communication method, which may be executed by a first IAB node, or may be executed by a component of the first IAB node (for example, IAB-DU, IAB-MT, or a processor, chip, or chip).
  • a component of the first IAB node for example, IAB-DU, IAB-MT, or a processor, chip, or chip.
  • the method is applied to an integrated IAB network for access and backhaul, the IAB network includes a first network segment and a second network segment, the first network segment is managed by the first host node, and the second network segment is managed by the second host Node management, the first host node is different from the second host node, the method includes: the first IAB node receives the first data packet in the first network segment, and the first data packet includes the first backhaul adaptation protocol BAP routing identifier, The first BAP routing identifier is used for the first data packet to be transmitted in the first network segment; the first IAB node obtains the first correspondence; the first IAB node converts the first BAP routing identifier in the first data packet according to the first correspondence Replace with the second BAP routing identifier to obtain the second data packet; the first IAB node sends the second data packet to the next hop node in the second network segment, and the next hop node is the parent node or child node of the first IAB node .
  • the BAP routing identifier of the data packet in the first network segment is replaced by the BAP routing identifier in the second network segment through the first IAB node,
  • the data packets are normally transmitted in the second network segment, and the abnormal problem of data packet transmission caused by the management of the IAB network by multiple IAB host nodes is reduced. It can ensure that the data packets are correctly routed in the IAB network spliced by various network segments managed by different host nodes.
  • the above steps further include: the first IAB node obtains the second correspondence; the first IAB node sends the second The data packet includes: according to the second correspondence, the first IAB node determines to send the second data packet to the next hop node through the first backhaul radio link control RLC channel of the egress link in the second network segment.
  • the first IAB node can obtain the correct egress mapping in the second network segment through the second corresponding relationship, thereby realizing that the data packets can be stored in the first IAB. Normal transmission in the second network segment.
  • the first IAB sets conditions before replacing the BAP routing identifier, so as to reduce invalid processing of data packets that need to be received and processed from the BAP upper protocol layer, thereby saving network resources. Further, whether the first data packet satisfies the condition may be determined through the indication information, or whether the first data packet satisfies the condition may be determined by whether the first correspondence relationship includes the first BAP routing identifier.
  • the above steps the first IAB node replaces the first BAP routing identifier in the first data packet with the second BAP routing identifier according to the first corresponding relationship, and obtains Before the second data packet, the method further includes: the first IAB node determines that the BAP address in the first BAP routing identifier in the first data packet is the BAP address of the first IAB node.
  • the method compared to determining whether to generate the second data packet according to a preset condition, adds a condition related to the BAP address, so that the first IAB node makes a more accurate judgment.
  • the indication information in the above steps includes the destination Internet Protocol IP address of the first data packet, when the destination IP address in the first data packet is not the first IAB node.
  • the first IAB node determines that the first data packet satisfies the preset condition.
  • an implicit preset condition is provided, which reduces invalid processing of data packets that need to be received and processed from the upper-layer protocol layer of the BAP, and saves network resources.
  • the first network segment in the above steps includes the first IAB node and an upstream node of the first IAB node; the second network segment includes the first IAB node and the first IAB node.
  • a downstream node of the IAB node; the first IAB node receiving the first data packet in the first network segment includes: the first IAB node receiving the first data packet sent by the upstream node in the first network segment;
  • Sending the second data packet to the next hop node in the second network segment includes: the first IAB node sends the second data packet to the downstream node in the second network segment, and the BAP address in the second BAP routing identifier is the address of the downstream node. BAP address.
  • the BAP routing identifier of the downlink data packet in the first network segment is replaced by the BAP routing identifier in the second network segment through the first IAB node. , so that the downlink data packets are normally transmitted in the second network segment, and the abnormal problem of data packet transmission caused by the management of the IAB network by multiple IAB host nodes is reduced. It can ensure the normal transmission of downlink data packets across network segments in an IAB network where multiple network segments managed by different host nodes are spliced together.
  • the first network segment in the above steps includes the first IAB node and the downstream nodes of the first IAB node; the second network segment includes the first IAB node and the first IAB node.
  • An upstream node of an IAB node; the first IAB node receiving the first data packet in the first network segment includes: the first IAB node receiving the first data packet sent by the downstream node in the first network segment; Sending the second data packet to the next hop node in the second network segment includes: the first IAB node sends the second data packet to the upstream node in the second network segment, and the BAP address in the second BAP routing identifier is the second host The BAP address of the node.
  • the BAP routing identifier of the uplink data packet in the first network segment is replaced by the BAP routing identifier in the second network segment through the first IAB node. , so that the uplink data packets are normally transmitted in the second network segment, and the abnormal problem of data packet transmission caused by the management of the IAB network by multiple IAB host nodes is reduced. It can ensure that uplink data packets are spliced together in a variety of network segments managed by different host nodes in the IAB network, and realize the normal transmission of uplink data packets across network segments.
  • the upstream node of the first IAB node is the parent node of the first IAB node; the first IAB node sends the message to the upstream node in the second network segment.
  • the method further includes: the first IAB node determines that the BAP address in the first BAP routing identifier in the first data packet is the BAP address of the first IAB node.
  • the BAP routing identifier is defined as the BAP address, and the first IAB node can perform the replacement process more concisely.
  • the first BAP routing identifier in the above steps includes the first BAP address and/or the first path identifier
  • the second BAP routing identifier includes the second BAP address and/or the first path identifier. / or second path identifier.
  • the BAP routing identifier is defined as the BAP address, and the first IAB node can perform the replacement process more concisely.
  • the first correspondence in the above steps is configured by the first host node or the second host node; the first IAB node obtains the first correspondence, including any of the following: One: the first IAB node acquires the first BAP routing identifier and the second BAP routing identifier, and the first BAP routing identifier and the second BAP routing identifier have a corresponding relationship; the first IAB node acquires the IP header information in the first data packet and The second BAP routing identifier, the IP header information has a corresponding relationship with the second BAP routing identifier; the IP header information includes at least one of the target IP address, the differentiated service code point DSCP, and the flow label Flow label.
  • the first IAB node obtains the first correspondence is provided, which facilitates the first IAB node to determine the second BAP routing identifier, and then completes the BAP routing identifier conversion of different network segments.
  • the first IAB node obtains the second correspondence, including any one of the following: the first IAB node obtains the first BAP routing identifier and the first IAB The first backhaul RLC channel of the node egress link, the first BAP routing identifier has a corresponding relationship with the first backhaul RLC channel of the egress link of the first IAB node; the first IAB node obtains the second BAP routing identifier and the first IAB The first backhaul RLC channel of the node's egress link, and the second BAP routing identifier has a corresponding relationship with the first backhaul RLC channel of the first IAB node's egress link; the first IAB node obtains the IP header information in the first data packet With the first backhaul RLC channel of the first IAB node egress link, the IP header information in the first data packet has a corresponding relationship with the first backhaul RLC channel of the
  • a second aspect of the embodiments of the present application provides a communication method, which may be executed by a first IAB node, or may be executed by a component of the first IAB node (for example, IAB-DU, IAB-MT, or a processor, chip, or chip). system, etc.), the method is applied to the integrated IAB network for access and backhaul, and the method includes: the first IAB node obtains the second correspondence; the first IAB node determines, according to the second correspondence, to pass through the second network segment The first backhaul RLC channel of the egress link sends the second data packet to the next hop node.
  • the first IAB node determines to send the second data packet to the next hop node through the first backhaul RLC channel of the egress link in the second network segment according to the second corresponding relationship, which can ensure the first The two data packets are normally transmitted in the second network segment.
  • the IAB network includes a first network segment and a second network segment, the first network segment is managed by the first host node, and the second network segment is managed by the second host node.
  • management the first host node is different from the second host node, the above steps: before the first IAB node acquires the second correspondence, the method further includes: the first IAB node receives the first data packet in the first network segment, the first data The packet includes a first backhaul adaptation protocol BAP routing identifier, where the first BAP routing identifier is used for the first data packet to be transmitted in the first network segment.
  • the first IAB node determines the first backhaul RLC channel through the egress link in the second network segment according to the second correspondence
  • Sending the second data packet to the next hop node reduces the problem of abnormal egress mapping caused by the fact that the IAB network is managed by multiple IAB host nodes. It can ensure the normal transmission of data packets in the IAB network spliced by a variety of network segments managed by different host nodes.
  • the second data packet in the above steps includes a second BAP routing identifier, and the second BAP routing identifier is used for the second data packet in the second network segment. in transmission.
  • each host node is allowed to only control the routing of data packets within its own network segment, and then the border nodes of the two network segments perform proxy operations at the BAP layer or the IP layer, reducing the need for The problem of abnormal egress mapping caused by the management of multiple IAB host nodes in the IAB network. It can ensure the normal transmission of data packets in the IAB network spliced by a variety of network segments managed by different host nodes.
  • the first data packet and the second data packet in the above steps are the same data packet, and the first BAP routing identifier is the same as the second BAP routing identifier.
  • the IAB network includes a network segment, and the backhaul RLC channel of the egress link is determined through the second corresponding relationship, and the accurate channel transmission data packet can be determined.
  • the above steps further include: the first IAB node obtains the first correspondence; the first IAB node converts the first The BAP routing identifier is replaced with the second BAP routing identifier to obtain the second data packet;
  • each host node only controls the routing of data packets in the network segment under its own jurisdiction, and is executed at the BAP layer or the IP layer by the border node (ie the first IAB node) of the two network segments.
  • the operation of the proxy replaces the first BAP routing identifier for routing in the first network segment included in the received data packet with the second BAP routing identifier that will be used for routing in the second segment of the network.
  • the method of splicing routing ensures that data packets can be reasonably and correctly routed in the network topology management of various new cross-home base stations.
  • a third aspect of the embodiments of the present application provides a communication method, and the method may be executed by a first host node, or may be executed by a component of the first host node (for example, a DU, a CU, a processor, a chip, or a chip system, etc.) .
  • the method is applied to an integrated IAB network for access and backhaul.
  • the IAB network includes a first network segment and a second network segment. The first network segment is managed by the first host node, the second network segment is managed by the second host node, and the first network segment is managed by the second host node.
  • the host node is different from the second host node, and the method includes: the first host node obtains the first BAP routing identifier and the second BAP routing identifier, the first BAP routing identifier and the second BAP routing identifier have a corresponding relationship, and the first BAP routing identifier is used. Since the data packet is transmitted in the first network segment, the second BAP routing identifier is used for the data packet to be transmitted in the second network segment; the first host node sends the first BAP routing identifier and the second BAP routing identifier to the first IAB node, The first IAB node is located in the first network segment and the second network segment.
  • the first host node obtains the IP header information in the data packet and the second BAP routing identifier, the IP header information in the data packet has a corresponding relationship with the second BAP routing identifier, and the second BAP routing identifier is used for the data packet in the second BAP routing identifier.
  • the first host node sends the IP header information and the second BAP routing identifier in the data packet to the first IAB node, and the first IAB node is located in the first network segment and the second network segment.
  • the first host node configures the first correspondence for the first IAB node, so that the data packets are normally transmitted in the second network segment, reducing the number of Because the IAB network is managed by multiple IAB host nodes, there is an abnormal problem of packet transmission. It can ensure that the data packets are correctly routed in the IAB network spliced by various network segments managed by different host nodes.
  • the above steps further include: the first host node obtains the first backhaul RLC channel between the first BAP routing identifier and the egress link of the first IAB node, the first The BAP routing identifier has a corresponding relationship with the first backhaul RLC channel of the first IAB node egress link;
  • the first host node sends the first BAP routing identifier to the first IAB node and the first backhaul RLC channel of the egress link of the first IAB node.
  • the first host node obtains the second BAP routing identifier and the first backhaul RLC channel of the egress link of the first IAB node, and the second BAP routing identifier has a corresponding relationship with the first backhaul RLC channel of the egress link of the first IAB node;
  • the first host node sends the first backhaul RLC channel between the second BAP routing identifier and the egress link of the first IAB node to the first IAB node.
  • the first host node obtains the IP header information in the first data packet and the first return RLC channel of the egress link of the first IAB node, and the IP header information in the first data packet and the first IAB node egress link.
  • the backhaul RLC channel has a corresponding relationship;
  • the first host node sends the IP header information in the first data packet and the first backhaul RLC channel of the egress link of the first IAB node to the first IAB node.
  • the first host node obtains the second backhaul RLC channel of the ingress link of the first IAB node and the first backhaul RLC channel of the egress link of the first IAB node, and the second backhaul RLC channel of the ingress link of the first IAB node is the same as the
  • the first backhaul RLC channel of the first IAB node egress link has a corresponding relationship;
  • the first host node sends the second backhaul RLC channel of the ingress link of the first IAB node and the first backhaul RLC channel of the egress link of the first IAB node to the first IAB node.
  • the first host node configures the second correspondence for the first IAB node, so that the data packets in the second network segment can be determined to be correct
  • the export mapping reduces the abnormal packet transmission problem caused by the management of the IAB network by multiple IAB host nodes. It can ensure the normal transmission of data packets in the IAB network spliced by a variety of network segments managed by different host nodes.
  • the above steps further include: the first host node sends configuration information to the access IAB node, where the configuration information is used to indicate that the BAP address of the first IAB node is used as the uplink.
  • the destination BAP address of the packet is used to indicate that the BAP address of the first IAB node is used as the uplink.
  • the first host node sends configuration information to the access node, so that the access node adds the BAP address of the first IAB node to the BAP layer of the uplink data packet, so that the uplink data packet can be stored in the Normal transmission in the first network segment. And subsequently, the first IAB node can normally replace the BAP routing identifier.
  • the first network segment includes the first IAB node and the downstream nodes of the first IAB node; the second network segment includes the first IAB node and the first IAB node.
  • the upstream node of the IAB node; the method further includes: the first host node obtains a third corresponding relationship and a fourth corresponding relationship, and the third corresponding relationship is the IP address of the distributed unit DU in the first IAB node and the mobile terminal MT in the first IAB node.
  • the corresponding relationship between the BAP addresses, the fourth corresponding relationship is the corresponding relationship between the BAP address of the MT in the first IAB node and the IP address of the DU in the downstream node of the first IAB node; the first host node sends the third host node to the second host node.
  • the corresponding relationship and the fourth corresponding relationship, the third corresponding relationship and the fourth corresponding relationship are used for the second host node to determine the first BAP routing identifier.
  • the first host After the first host obtains the third correspondence and the fourth correspondence, it sends the third correspondence and the fourth correspondence to the second host node, so that the second host node can be the second host's
  • the DU part provides the correct first BAP routing identity.
  • the first network segment in the above steps includes the first IAB node and the downstream nodes of the first IAB node; the second network segment includes the first IAB node and the first IAB node.
  • An upstream node of an IAB node; the method further includes: the first host node determines a third BAP routing identifier used for downlink transmission of data packets in the first network segment, and the second BAP routing identifier includes the third BAP routing identifier; the first host node Send the third BAP routing identifier to the second host node.
  • the first host node notifies the second host after configuring the BAP routing identifier in the first network segment, and then the second host node configures the first corresponding relationship with the first IAB node.
  • the first network segment in the above steps includes the first IAB node and the downstream nodes of the first IAB node; the second network segment includes the first IAB node and the first IAB node.
  • An upstream node of the IAB node; the method further includes: the first host node receives the fourth BAP routing identifier sent by the second host node, the fourth BAP routing identifier is used for the upstream transmission of the data packet in the second network segment, and the second BAP routing The identification includes a fourth BAP routing identification.
  • the first host node receives the BAP routing identifier used in the second network segment sent by the second host node, and further implements the first host to configure the first corresponding relationship with the IAB node.
  • a fourth aspect of the embodiments of the present application provides a communication method, and the method may be executed by a second host node, or may be executed by a component of the second host node (for example, a DU, a CU, a processor, a chip, or a chip system, etc.) .
  • the method is applied to an integrated IAB network for access and backhaul.
  • the IAB network includes a first network segment and a second network segment.
  • the first network segment is managed by the first host node
  • the second network segment is managed by the second host node
  • the first network segment is managed by the second host node.
  • the host node is different from the second host node, and the first IAB node is located in the first network segment and the second network segment, and the method includes:
  • the second host node obtains the first BAP routing identifier and the second BAP routing identifier, the first BAP routing identifier and the second BAP routing identifier have a corresponding relationship, the first BAP routing identifier is used for data packet transmission in the first network segment, and the first BAP routing identifier Two BAP routing identifiers are used for data packets to be transmitted in the second network segment;
  • the second host node sends the first BAP routing identifier and the second BAP routing identifier to the first IAB node, where the first IAB node is located in the first network segment and the second network segment.
  • the second host node obtains the IP header information in the data packet and the second BAP routing identifier, the IP header information in the data packet has a corresponding relationship with the second BAP routing identifier, and the second BAP routing identifier is used for the data packet on the second network segment. transmission;
  • the second host node sends the IP header information and the second BAP routing identifier in the data packet to the first IAB node, where the first IAB node is located in the first network segment and the second network segment.
  • the second host node configures the first correspondence for the first IAB node, so that the data packets are normally transmitted in the second network segment, reducing the number of Because the IAB network is managed by multiple IAB host nodes, there is an abnormal problem of packet transmission. It can ensure that the data packets are correctly routed in the IAB network spliced by various network segments managed by different host nodes.
  • the above steps further include:
  • the second host node obtains the first BAP routing identifier and the first backhaul RLC channel of the egress link of the first IAB node, and the first BAP routing identifier has a corresponding relationship with the first backhaul RLC channel of the egress link of the first IAB node;
  • the second host node sends the first BAP routing identifier and the first backhaul RLC channel of the egress link of the first IAB node to the first IAB node.
  • the second host node obtains the second BAP routing identifier and the first backhaul RLC channel of the egress link of the first IAB node, and the second BAP routing identifier has a corresponding relationship with the first backhaul RLC channel of the egress link of the first IAB node;
  • the second host node sends the first backhaul RLC channel between the second BAP routing identifier and the egress link of the first IAB node to the first IAB node.
  • the second host node obtains the IP header information in the first data packet and the first return RLC channel of the egress link of the first IAB node, and the IP header information in the first data packet and the first IAB node egress link.
  • the backhaul RLC channel has a corresponding relationship;
  • the second host node sends the IP header information in the first data packet and the first backhaul RLC channel of the egress link of the first IAB node to the first IAB node.
  • the second host node obtains the second backhaul RLC channel of the ingress link of the first IAB node and the first backhaul RLC channel of the egress link of the first IAB node, and the second backhaul RLC channel of the ingress link of the first IAB node is the same as the
  • the first backhaul RLC channel of the first IAB node egress link has a corresponding relationship;
  • the second host node sends the second backhaul RLC channel of the ingress link of the first IAB node and the first backhaul RLC channel of the egress link of the first IAB node to the first IAB node.
  • the second corresponding relationship is configured for the first IAB node through the second host node, so that the data packets in the second network segment can be determined to be correct
  • the export mapping reduces the abnormal packet transmission problem caused by the management of the IAB network by multiple IAB host nodes. It can ensure the normal transmission of data packets in the IAB network spliced by a variety of network segments managed by different host nodes.
  • the above steps further include: the second host node sends configuration information to the access IAB node, where the configuration information is used to indicate that the BAP address of the first IAB node is used as the uplink.
  • the destination BAP address of the packet is not limited to: the second host node sends configuration information to the access IAB node, where the configuration information is used to indicate that the BAP address of the first IAB node is used as the uplink.
  • the second host node sends configuration information to the access node, so that the access node adds the BAP address of the first IAB node to the BAP layer of the uplink data packet, so that the uplink data packet can be stored in the Normal transmission in the first network segment. And subsequently, the first IAB node can normally replace the BAP routing identifier.
  • the first network segment in the above steps includes the first IAB node and the downstream nodes of the first IAB node; the second network segment includes the first IAB node and the first IAB node.
  • An upstream node of an IAB node; the method further includes: the second host node receives a third correspondence and a fourth correspondence sent by the first host node, where the third correspondence is the IP address of the distributed unit DU in the first IAB node and the The corresponding relationship of the BAP address of the mobile terminal MT in the first IAB node, the fourth corresponding relationship is the corresponding relationship between the BAP address of the MT in the first IAB node and the IP address of the DU in the downstream node of the first IAB node; the second host node according to The third corresponding relationship and the fourth corresponding relationship determine the first BAP routing identifier.
  • the second host node receives the third correspondence and the fourth correspondence, and then the second host node can provide the correct first BAP routing identifier for the DU part of the second host.
  • the first network segment in the above steps includes the first IAB node and the downstream nodes of the first IAB node; the second network segment includes the first IAB node and the first IAB node.
  • An upstream node of the IAB node; the method further includes: the second host node receives a third BAP routing identifier sent by the first host node, the third BAP routing identifier is used for downlink transmission of data packets in the first network segment, and the second BAP routing The identification includes a third BAP routing identification.
  • the second host node receives the BAP routing identifier used in the first network segment sent by the first host node, and further implements the second host to configure the first corresponding relationship for the IAB node.
  • the first network segment in the above steps includes the first IAB node and the downstream nodes of the first IAB node; the second network segment includes the first IAB node and the first IAB node.
  • An upstream node of an IAB node; the method further includes: the second host node determines a fourth BAP routing identifier used for uplink transmission of data packets in the second network segment, and the second BAP routing identifier includes the fourth BAP routing identifier; the second host node Send a fourth BAP routing identifier to the first host node.
  • the second host node informs the first host after configuring the BAP routing identifier in the second network segment, and then the first host node configures the first corresponding relationship with the first IAB node.
  • a fifth aspect of the embodiments of the present application provides a communication device, where the communication device may be a first IAB node, or may be a component of the first IAB node (for example, IAB-DU, IAB-MT, or a processor, chip, or chip system). ), the communication apparatus performs the method of the aforementioned first aspect or any possible implementation manner of the first aspect, the second aspect or any possible implementation manner of the second aspect.
  • a sixth aspect of the embodiments of the present application provides a communication device, where the communication device may be a first host node, or may be a component of the first host node (for example, a DU, a CU, a processor, a chip, or a chip system).
  • the apparatus performs the method of the aforementioned third aspect or any possible implementation of the third aspect.
  • a seventh aspect of an embodiment of the present application provides a communication device.
  • the communication device may be a second host node, or may be a component of the second host node (for example, a DU, a CU, a processor, a chip, or a chip system).
  • the communication device The apparatus performs the method of the aforementioned fourth aspect or any possible implementation of the fourth aspect.
  • An eighth aspect of the embodiments of the present application provides a computer-readable storage medium, where an instruction is stored in the computer-readable storage medium, and when the instruction is executed on a computer, causes the computer to execute the foregoing first aspect or any possibility of the first aspect , the second aspect or any possible implementation of the second aspect, the third aspect or any possible implementation of the third aspect, the fourth aspect or any possible implementation of the fourth aspect.
  • a ninth aspect of the embodiments of the present application provides a computer program product, which, when executed on a computer, enables the computer to execute the first aspect or any possible implementation manner of the first aspect, the second aspect or the second aspect Any possible implementation of the third aspect, the third aspect or any possible implementation of the third aspect, the fourth aspect or the method in any possible implementation of the fourth aspect.
  • a tenth aspect of an embodiment of the present application provides a communication device, including: a processor, where the processor is coupled to a memory, and the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor, the device implements the above-mentioned first A method in the aspect or any possible implementation of the first aspect, the second aspect or any possible implementation of the second aspect.
  • An eleventh aspect of an embodiment of the present application provides a communication device, including: a processor, where the processor is coupled to a memory, and the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor, the device can implement the above-mentioned first The method of the three aspects or any possible implementation of the third aspect.
  • a twelfth aspect of an embodiment of the present application provides a communication device, including: a processor, where the processor is coupled to a memory, and the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor, the device can implement the above-mentioned first The method of the fourth aspect or any possible implementation of the fourth aspect.
  • a thirteenth aspect of an embodiment of the present application provides a communication system, including at least one of the communication device provided in the fifth aspect, the communication device provided in the sixth aspect, and the communication device provided in the seventh aspect.
  • a fourteenth aspect of an embodiment of the present application provides a communication system, including at least one of the communication device provided in the tenth aspect, the communication device provided in the eleventh aspect, and the communication device provided in the twelfth aspect.
  • a fifteenth aspect of the embodiments of the present application provides a communication method, and the method may be executed by an IAB node, or by a component of the IAB node (for example, an IAB-DU, IAB-MT, IAB donor, or a processor, a chip, or a chip). system, etc.), the method is applied to an integrated IAB network for access and backhaul, and the method includes: the IAB node receives the data packet, and the IAB node determines the abnormality of the data packet according to the type of the data packet and/or the attribute of the IAB node.
  • a component of the IAB node for example, an IAB-DU, IAB-MT, IAB donor, or a processor, a chip, or a chip.
  • the categories of the data packets include uplink and downlink. That is, the data packets include uplink data packets and/or downlink data packets.
  • the data packet includes: a parent node data packet and/or a child node data packet, wherein the parent node data packet is a data packet sent by the parent node of the IAB node , the child node data packet is the data packet sent by the child node of the IAB node.
  • the data packet includes: an upstream data packet and/or a downstream data packet, wherein the upstream data packet is a data packet sent by an upstream node of the IAB node, and the downstream data packet is The packet is a data packet sent by the downstream node of the IAB node.
  • the IAB node receives the data packet, and the IAB node determines the abnormality of the data packet according to the type of the data packet and/or the attribute of the IAB node, including: at least one of the following:
  • the IAB node receives the uplink data packet, and if the BAP layer header of the uplink data packet carries the BAP address of the IAB node, the IAB node determines that the uplink data packet is an error or abnormal data packet.
  • the receiving part of the BAP layer entity located in the IAB-DU receives the uplink data packet.
  • the IAB node may discard the uplink data packet after determining that the uplink data packet is an error or abnormal data packet.
  • the conditions for judging abnormal uplink data packets are simplified.
  • the erroneous or abnormal uplink data packets occupy the buffer space of the IAB node.
  • the IAB-donor DU receives the upstream data packet, if the BAP address in the BAP layer header of the upstream data packet is not the BAP address of the IAB-donor DU. Then the IAB-donor DU determines that the data packet is an erroneous or abnormal data packet.
  • the upstream data packet can be discarded.
  • the conditions for judging abnormal uplink data packets are simplified.
  • reducing the erroneous or abnormal upstream data packets occupies the buffer space of the IAB-donor DU.
  • a sixteenth aspect of the embodiments of the present application provides a communication method, which may be executed by an IAB node, or may be performed by a component of the IAB node (for example, IAB-DU, IAB-MT, IAB donor, or a processor, chip, or chip). system, etc.), the method is applied to the integrated IAB network for access and backhaul, the method includes: before the IAB node sends the data packet, the IAB node determines the abnormality of the data packet according to the type of the data packet and/or the attribute of the IAB node.
  • a component of the IAB node for example, IAB-DU, IAB-MT, IAB donor, or a processor, chip, or chip.
  • the categories of the data packets include uplink and downlink. That is, the data packets include uplink data packets and/or downlink data packets.
  • the data packet includes: a parent node data packet and/or a child node data packet, wherein the parent node data packet is a data packet sent by the parent node of the IAB node , the child node data packet is the data packet sent by the child node of the IAB node.
  • the data packet includes: an upstream data packet and/or a downstream data packet, wherein the upstream data packet is a data packet sent by an upstream node of the IAB node, and the downstream data packet is The packet is a data packet sent by the downstream node of the IAB node.
  • the IAB node determining the abnormality of the data packet according to the type of the data packet and/or the attribute of the IAB node includes: at least one of the following:
  • the IAB node Before the IAB node sends the data packet, if it cannot find any entry in the routing table that contains the target BAP address in the data packet. Then the IAB node determines that the data packet is an error or abnormal data packet.
  • the IAB node is specifically located in the sending part of the BAP layer entity of the IAB-MT/DU.
  • the IAB node may discard the data packet after determining that the data packet is an error or abnormal data packet.
  • simplifying the conditions for judging abnormal data packets can reduce the buffer space of the IAB node occupied by erroneous or abnormal data packets.
  • the IAB-donor-DU sends the downlink data packet, if it cannot find any entry in the routing table that contains the target BAP address in the data packet. Then the IAB-donor DU determines that the downlink data packet is an error or abnormal data packet.
  • the downlink data packet may be discarded.
  • simplifying the conditions for judging the abnormality of the downlink data packets can reduce the erroneous or abnormal downlink data packets occupying the buffer space of the IAB-donor-DU.
  • network resource consumption caused by sending wrong or abnormal downlink data packets is reduced.
  • the abnormality of the data packet is determined.
  • the data packet processing method provided by the embodiments of the present application can simplify the conditions for determining abnormal data packets under specific circumstances, and more accurately identify more abnormal data packets. For related beneficial effects, reference may be made to the above description.
  • the embodiments of the present application have the following advantages: in a scenario where the IAB network is managed by a plurality of IAB host nodes, the first BAP routing identifier is the first BAP routing identifier formed by the IAB nodes controlled by the first host node.
  • the information used for data packet routing in the network segment, and the second BAP routing identifier is the information used for data packet routing in the second network segment composed of IAB nodes controlled by the second host node, and the data is sent through the first IAB node.
  • the BAP routing identifier of the packet in the first network segment is replaced with the BAP routing identifier in the second network segment, so that the data packet is transmitted normally in the second network segment, reducing the problem caused by the management of the IAB network by multiple IAB host nodes. Packet transmission exception problem.
  • Figure 1 is a schematic diagram of an IAB independent networking scenario
  • FIG. 2 is a schematic diagram of an IAB non-independent networking scenario
  • Fig. 3 is a kind of IAB network system architecture schematic diagram
  • Fig. 4 is a kind of schematic diagram of IAB network user plane protocol stack
  • Fig. 5 is a kind of schematic diagram of IAB network control plane protocol stack
  • FIG. 6 is a schematic diagram of a cross-host switching scenario in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a dual-homed connection scenario in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a cross-host switching scenario from top to bottom in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a cross-host switching scenario from bottom to top in an embodiment of the present application.
  • FIG. 10 is another schematic diagram of a dual-homed connection scenario in an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a communication method in an embodiment of the application.
  • FIG. 12 is another schematic flowchart of the communication method in the embodiment of the application.
  • FIG. 13 to FIG. 19 are schematic diagrams of several structures of a communication device in an embodiment of the present application.
  • Communication systems including but not limited to narrowband-internet of things (NB-IoT) systems, wireless local access network (WLAN) systems, long term evolution (LTE) systems, Next-generation 5G mobile communication systems or post-5G communication systems, such as new radio (NR), device-to-device (D2D) communication systems, etc.
  • NB-IoT narrowband-internet of things
  • WLAN wireless local access network
  • LTE long term evolution
  • NR new radio
  • D2D device-to-device
  • Network equipment including but not limited to evolved node B (evolved node base, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, or home node B, HNB), baseband unit (baseband Unit, BBU), evolved (evolved LTE, eLTE) ) base station, NR base station (next generation node B, gNB), etc.
  • evolved node B evolved node base, eNB
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BSC base transceiver station
  • BTS home base station
  • home evolved NodeB home evolved NodeB, or home node B, HNB
  • baseband unit baseband Unit
  • Terminal equipment including but not limited to user equipment (UE), mobile station, access terminal, subscriber unit, subscriber station, mobile station, remote station, remote terminal, mobile equipment, terminal, wireless communication equipment, user Proxy, station (ST) in wireless local access network (WLAN), cellular phone, cordless phone, session initiation protocol (SIP) phone, wireless local loop (WLL) Stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices, mobile stations in future 5G networks, and future evolutions Any one of the terminal equipment in the public land mobile network (PLMN) network of .
  • PLMN public land mobile network
  • a wireless backhaul node (also referred to as an IAB node): used to provide a wireless backhaul service for a node (eg, a terminal) that wirelessly accesses the wireless backhaul node.
  • the wireless backhaul service refers to a data and/or signaling backhaul service provided through a wireless backhaul link.
  • the wireless backhaul node may be an IAB node or a relay node (relay node, RN).
  • the solution of this application is not limited, and it may be one of the above-mentioned base stations or terminal devices with a forwarding function, or it may be It is an independent device form.
  • the wireless backhaul nodes can provide wireless access services for terminals, and connect to the donor base station (donor gNB) through a wireless backhaul link to transmit the user's business data.
  • donor base station donor gNB
  • the wireless backhaul node may also be equipment such as customer premises equipment (customer premises equipment, CPE), residential gateway (residential gateway, RG).
  • CPE customer premises equipment
  • residential gateway residential gateway
  • RG residential gateway
  • the method provided by the embodiment of the present application may also be applied to a scenario of home access (home access).
  • a node that supports integrated access and backhaul is referred to as a wireless backhaul node.
  • the wireless backhaul node may also be called a relay node (RN), and in 5G, the wireless backhaul node may also be called an IAB node (IAB node).
  • RN relay node
  • IAB node IAB node
  • an IAB node is used as an example for description below.
  • the IAB node can provide wireless access services for the terminal equipment, and the data (which may include user plane data and control plane signaling) of the terminal equipment is connected to the host node through the wireless backhaul link for transmission by the IAB node.
  • the donor node is also referred to as an IAB donor (IAB onor) or a donor base station (donor gNodeB, DgNB).
  • the DgNB may be an access network element with a complete base station function, or may be an access network element in a separate form including a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU).
  • the DgNB is connected to the core network elements that serve the terminal equipment, for example, to the 5G core network (5G core, 5GC), and provides wireless backhaul functions for the IAB nodes.
  • 5G core network 5G core network
  • the centralized unit of the host node is referred to as the host CU (donor CU), and the distributed unit of the host node is referred to as the host DU (donor DU), wherein the donor CU may also be the control plane. (control plane, CP) or user plane (user plane, UP) separation form, for example, one CU includes one CU-CP and multiple CU-UPs, which is not limited in this embodiment of the present application.
  • control plane, CP control plane
  • user plane user plane
  • Parent node Child node, downstream node, upstream node:
  • Each IAB node regards the adjacent nodes for which it provides wireless access service and/or wireless backhaul service as a parent node. Accordingly, each IAB node can be regarded as a child node of its parent node.
  • the IAB network can support multi-hop and multi-connection networking, so there may be multiple transmission paths between the terminal device and the host node. On a certain transmission path, there are certain levels between the terminal device and the IAB node that provides wireless access services for the terminal device, between the IAB nodes, and between the IAB node and the host node that provides backhaul services for the IAB node. relation.
  • the node that provides wireless backhaul service for the IAB node is called the parent node of the IAB node, or the node that provides wireless access service for the terminal device is called the parent node of the terminal device, and the IAB node can be regarded as the IAB node
  • the child node of the parent node of the node, the terminal device can be regarded as the child node of the parent node of the terminal device.
  • the parent node of the IAB node may be another IAB node or a host node. When the IAB node communicates with the host node directly through the wireless air interface, the parent node of the IAB node is the host node.
  • a child node may also be referred to as a lower-level node or a downstream node
  • a parent node may also be referred to as an upper-level node or an upstream node.
  • An intermediate IAB node refers to an IAB node that provides wireless backhaul services for other IAB nodes (eg, an access IAB node or other intermediate IAB nodes), or an IAB node on the path between the access IAB node and the IAB host.
  • IAB nodes eg, an access IAB node or other intermediate IAB nodes
  • the radio link used by the terminal device to communicate with the node that provides wireless access services for it, including the access link for uplink transmission and the access for downlink transmission link.
  • the access link used for uplink transmission is also called uplink access link or access uplink, and its transmission direction is from the terminal device to the node; the access link used for downlink transmission is also called Downlink access link or access downlink, the transmission direction of which is from the node to the terminal equipment.
  • the access link of the terminal device is a wireless link, so the access link may also be referred to as a wireless access link.
  • the backhaul link refers to the wireless link used by an IAB node to communicate with its parent node.
  • the parent node can be an IAB node or a host node, including the backhaul link for uplink transmission and Backhaul link for downlink transmission.
  • the backhaul link for uplink transmission is also called uplink backhaul link or backhaul uplink, and its transmission direction is from the IAB node to the parent node of the IAB node; the backhaul link for downlink transmission Also known as downlink backhaul link or backhaul downlink, the direction of transmission is the parent node of the IAB node to the IAB node.
  • the backhaul link between the IAB node and the parent node is a wireless link, so the backhaul link may also be referred to as a wireless backhaul link.
  • the path consists of at least one segment of links (links).
  • the links represent connections between adjacent nodes. That is, a transmission path is a transmission path between a sending node and a receiving node, starting from the sending node and ending at the receiving node. Subsequently, for the convenience of description, the transmission path between the sending node and the receiving node starting from the sending node and ending with the receiving node may be described as a transmission path between the sending node and the receiving node.
  • any node between the terminal device and the host node except the host node can be used as the sending node, and the superior node of the sending node (for example, the parent node of the sending node or the parent node of the parent node, etc.) as a receiving node.
  • the sending node may be a certain IAB node
  • the receiving node may be the parent node of the IAB node
  • the entire route between the IAB node and the parent node of the IAB node represents a transmission path.
  • the sending node may be an IAB node
  • the receiving node may be a host node
  • the entire route between the IAB node and the host node represents a transmission path.
  • the sending node may be any node between the host node and the terminal device except the terminal device, and the receiving node may be a subordinate node of the sending node (for example, a child node of the sending node or the child nodes of child nodes, etc.).
  • the sending node may be a certain IAB node
  • the receiving node may be a child node of the IAB node
  • the entire route between the IAB node and the child nodes of the IAB node represents a transmission path.
  • the sending node may be a certain IAB node
  • the receiving node may be a terminal device, and the entire route between the IAB node and the terminal device represents a transmission path.
  • Protocol layer of F1 interface and F1 interface 7. Protocol layer of F1 interface and F1 interface:
  • the F1 interface refers to the logical interface between the DU part of the IAB node and the host node (or donor-CU).
  • the F1 interface can also be called the F1* interface, which supports the user plane and the control plane.
  • the protocol layer of the F1 interface refers to the communication protocol layer on the F1 interface.
  • the fifth-generation mobile communication has put forward more stringent requirements in all aspects of the network performance indicators. For example, the capacity index has been increased by 1000 times, wider coverage requirements, ultra-high reliability and ultra-low latency, etc.
  • the capacity index has been increased by 1000 times, wider coverage requirements, ultra-high reliability and ultra-low latency, etc.
  • the use of high-frequency small stations to form a network is becoming more and more popular. High-frequency carriers have poor propagation characteristics, are severely attenuated by occlusion, and have limited coverage, so a large number of small stations need to be densely deployed.
  • IAB technology provides ideas for solving the above two problems: its access link (Access Link) and backhaul link (Backhaul Link) both use wireless transmission solutions to reduce fiber deployment.
  • the IAB node can be made to support dual connectivity (DC) or multi-connectivity (multi-connectivity) to deal with possible abnormal situations in the backhaul link, such as link interruption. Or blocking (blockage) and load fluctuations and other abnormalities, improve the reliability of transmission. Therefore, the IAB network supports multi-hop networking and can also support multi-connection networking. Between the terminal equipment served by the IAB node and the IAB donor, there is at least one transmission path consisting of multi-segment links.
  • each IAB node regards the adjacent nodes that provide access and backhaul services as a parent node, and accordingly, each IAB node can be regarded as a child node of its parent node.
  • FIG. 1 is a schematic diagram of an IAB independent networking scenario.
  • the parent node of IAB node 1 is IAB donor
  • IAB node 1 is the parent node of IAB node 2 and IAB node 3
  • IAB node 2 and IAB node 3 are the parent nodes of IAB node4
  • the parent node of IAB node 5 is IAB node. 2.
  • the uplink data packets of the UE can be transmitted to the host site IAB donor through one or more IAB nodes, and then sent by the IAB donor to the mobile gateway device (such as the user plane functional unit UPF in the 5G core network), and the downlink data packets will be sent by the IAB donor. After being received from the mobile gateway device, it is sent to the UE through the IAB node.
  • FIG. 1 shows an IAB independent (standalone, SA) networking scenario, where both the IAB node and the UE only establish connections with the network through the air interface of the NR standard.
  • the IAB independent networking scenario shown in Figure 1 is only an example. In the IAB scenario combining multi-hop and multi-connection, there are more other possibilities, such as the IAB donor in the figure and another IAB donor.
  • the IAB node forms a dual connection to serve the UE, etc., which is not limited here.
  • the IAB network can also support the non-independent networking scenario shown in Figure 2.
  • FIG. 2 is a schematic diagram of an IAB non-independent networking scenario.
  • the IAB node supports 4G and 5G network dual connectivity (E-UTRAN NR Dual Connectivity, EN-DC), in which the LTE base station eNB is the master base station (master eNB, MeNB), which provides the LTE air interface (LTE Uu) connection for the IAB node. And establish S1 interface with 4G core network-evolved packet core (EPC) for user plane and control plane transmission.
  • the IAB-donor gNB is the secondary base station, which provides NR air interface (NR Uu) connection for the IAB node, and establishes an S1 interface with the core network EPC for user plane transmission.
  • the UE also supports EN-DC.
  • the UE is connected to the primary base station eNB through the LTE Uu interface, and is connected to the secondary base station IAB node through the NR Uu interface.
  • the secondary base station of the UE can also be an IAB donor gNB.
  • Figure 2 is only an example of networking.
  • the NSA scenario of the IAB network also supports multi-hop IAB networking.
  • the UE in Figure 2 can be another IAB node, that is, the IAB node can use a multi-hop wireless backhaul link. Connect to IAB donor gNB.
  • the IAB non-independent networking scenario in this application may also be referred to as the EN-DC networking scenario of the IAB.
  • FIG. 3 is a schematic diagram of an IAB network system architecture.
  • the IAB donor can connect to 5GC.
  • the IAB donor CU-CP is connected to the control plane network elements in the 5GC through the NG control plane interface (NG-C), such as: access and mobility management.function (AMF).
  • the IAB donor CU-UP is connected to the user plane network elements in the 5GC through the NG user plane interface (NG-U), for example: user plane function (UPF).
  • NG-C NG control plane interface
  • AMF access and mobility management.function
  • UPF user plane function
  • the IAB donor CU-UP can be connected to the EPC through the S1 user plane interface (S1-U), such as a service gateway (serving gateway, SGW).
  • S1-U S1 user plane interface
  • the MeNB is connected to the MT of the IAB node through the LTE-Uu air interface
  • the MeNB is connected to the IAB donor CU-CP through the X2-C interface
  • the MeNB is connected to the EPC through the S1 interface (including the SI interface user plane and the S1 interface control plane).
  • the MeNB shown in FIG. 3 can be replaced by the 5G base station gNB
  • the LTE-Uu air interface between the corresponding MeNB and the MT of the IAB node can be replaced by the NR-Uu air interface
  • the gNB can establish a user plane and/or The interface of the control plane, the gNB and the IAB-donor provide dual-link services for the IAB node, and the gNB can play the role of the primary base station or the secondary base station of the IAB node, which is not specifically limited here.
  • the IAB network has determined to introduce a new protocol layer on the wireless backhaul link: the backhaul adaptation protocol (BAP) layer, which is located above the radio link control (RLC) layer. , which can be used to implement functions such as data packet routing on the wireless backhaul link and bearer mapping.
  • BAP backhaul adaptation protocol
  • RLC radio link control
  • an F1 interface (or called F1* interface, etc.) needs to be established, and the F1 interface supports the user plane protocol (F1-U/F1*- U) and control plane protocols (F1-C/F1*-C).
  • IAB network user plane protocol stack can refer to Figure 4, the user plane protocol includes one or more of the following protocol layers: general packet radio service tunneling protocol user plane (general packet radio service tunnelling protocol user plane, GTP-U) layer, user data Protocol (user datagram protocol, UDP) layer, Internet protocol (internet protocol, IP) and other protocol layers.
  • general packet radio service tunneling protocol user plane general packet radio service tunnelling protocol user plane, GTP-U
  • user data Protocol user datagram protocol, UDP
  • Internet protocol Internet protocol
  • IP Internet protocol
  • user plane data transmission and downlink transmission status feedback can be performed between the IAB node and the IAB host.
  • the control plane protocol includes one or more of the following protocol layers: F1 application protocol (F1AP) layer, stream control transport protocol (SCTP) layer, IP and other protocol layers.
  • F1AP application protocol
  • SCTP stream control transport protocol
  • IP IP and other protocol layers.
  • the interface management can be performed between the IAB node and the IAB host, the management of the IAB-DU, and the configuration related to the UE context can be performed.
  • each IAB node and its parent node are connected to the same IAB host, and the MT and DU of each IAB node can be regarded as managed by the same IAB host. Therefore, topology management, routing configuration, quality of service (QoS) management, etc. in an IAB network composed of IAB nodes under an IAB host are all subject to an IAB host (specifically, IAB donor CU or IAB donor CU). -CP) controlled.
  • IAB host specifically, IAB donor CU or IAB donor CU.
  • -CP quality of service
  • the IAB host is in the form of CU-DU separation, the You can know which IAB donor DU the IAB node is connected to (that is, the IAB donor DU that the parent node is connected to). If the topology update of the IAB node (for example, adding a new parent node or changing the parent node, etc.) is completed under the control of the IAB host. This means that when the IAB network has only one IAB host, the IAB host can know the network topology state composed of the IAB node and the IAB donor DU in the IAB network. Therefore, the IAB host (specifically, the IAB donor CU) can perform routing configuration management in the IAB network based on the network topology state.
  • the IAB host specifically, the IAB donor CU
  • the routing configuration includes how the IAB node/IAB donor DU adds the routing information in the BAP header to the upper-layer data packets.
  • the IAB donor CU knows the QoS requirements of the IAB node and the UE's business, and the establishment and modification of the backhaul RLC channel (BH RLC CH) of each wireless backhaul link are managed in the IAB donor Therefore, the QoS guarantee of data packets on the wireless backhaul link is also controlled by the IAB host (specifically, the IAB donor CU).
  • the IAB donor CU provides QoS guarantee for data transmission by controlling the mapping relationship of the BH RLC channel of the data packet on the wireless backhaul link, and the mapping of the BH RLC channel of each IAB node/IAB donor DU is also based on The configuration provided by the IAB host (specifically, the IAB donor CU) is executed.
  • the above-mentioned IAB host manages the IAB network only considering the scenario where one IAB host manages the IAB network, and one IAB host controls the network topology, routing configuration, and BH RLC channel mapping management in the IAB network.
  • the IAB node can be connected to multiple IAB hosts, or when the MT and DU of the IAB node do not belong to the same IAB host management, it may appear that the services of one IAB node or the services of the UE connected under the IAB node need to go through Several different types of nodes transmit.
  • IAB nodes managed by IAB donor CU1 that is, the MT and DU of the IAB node are connected to IAB donor CU1, both It can be managed or configured by IAB donor CU1
  • IAB nodes managed by IAB donor CU2 that is, the MT and DU of the IAB node are connected to IAB donor CU2, and can be managed or configured by IAB donor CU2
  • IAB donor CU1 and IAB donor CU2 Commonly managed IAB nodes (that is, the MT and DU of the IAB node are respectively connected to two different IAB hosts, for example, the MT of the IAB node is connected to the IAB donor CU2, which is managed or configured by the IAB donor CU2, and the DU of the IAB node is connected to IAB donor CU1, managed or configured by IAB donor CU1).
  • the IAB node performs a cross-home node switching scenario.
  • the third IAB node can switch from the source parent node (the first IAB node) to the target parent node (the second IAB node).
  • the first IAB node includes an MT part (ie MT1) and a DU part (DU1), the first IAB node is connected to the first host node, and is connected to the first host node through the DU part (ie donor DU1) of the first host node CU part (CU1).
  • the second IAB node includes an MT part (ie MT2) and a DU part (DU2)
  • the second IAB node is connected to the second host node, and is connected to the second host node through the DU part (ie donor DU2) of the second host node CU part (CU2).
  • the third IAB node includes the MT part (ie MT3) and the DU part (DU3). If multiple logical DUs are allowed to be deployed in the IAB node, for example, there are two logical DUs in the third IAB node: DU3a and DU3b, then the above-mentioned third IAB node is allowed to deploy multiple logical DUs.
  • the DU of the three nodes may be DU3a or DU3b.
  • the third IAB node may provide access services for the UE or other IAB nodes.
  • the switching scenario can understand the process of switching the third IAB node from the first host node to the second host node. It can also be understood as the process of switching from one link (source link) to another link (target link).
  • the process of IAB node performing cross-host switching can be divided into four periods. Combined with Figure 6, the four periods are: initial stage, intermediate stage option ( option) 1, the intermediate stage option 2, the final stage (final stage).
  • the original period can go directly to the final period (without going through the intermediate period), the original period can also go through the intermediate period option 1 to the final period, and the original period can also go through the intermediate period option 2 to the final period.
  • the switching process It may also include only the original period to the intermediate period, or only the intermediate period to the final period, which is not specifically limited here.
  • the network state shown in the intermediate stage option 1 in Figure 6 can be understood as a state that can appear when the IAB node and the downstream node perform handovers from top to bottom.
  • the network state can be understood as a state that can occur when the IAB node and the downstream node perform handover sequence from bottom to top.
  • CU1 can configure or manage Donor DU1, MT1, DU1a, DU3a and UE; CU2 can configure or manage Donor DU2, MT2, DU2b and MT3.
  • CU1 can manage Donor DU1, MT1, DU1a, and MT3; CU2 manages Donor DU2, MT2, DU2b, DU3b, and UE.
  • the third IAB node is dual-connected to the networks of two IAB donors, and its DU part is connected to the first host CU, and the communication between the two may include two links, one link (leg #1) includes: the first donor node CU (Donor1-CU), the first donor node DU (Donor1-DU), the MT of the first IAB node (IAB1-MT), the DU of the first IAB node (IAB1-DU) , the MT of the third IAB node (IAB3-MT), and the DU of the third IAB node (IAB3-DU).
  • the other link includes: the first donor node CU (Donor1-CU), the second donor node DU (Donor2-DU), the MT of the second IAB node (IAB2-MT), the DU (IAB2-DU), MT of the third IAB node (IAB3-MT), DU of the third IAB node (IAB3-DU).
  • the third IAB node is dual-connected to the networks of two IAB donors, and its subordinate sub-nodes, that is, the fourth IAB node (specifically, its DU part), and the CU of the first host node can be connected
  • Two different links are used for communication, and one link (leg#1) includes: the first host node CU (Donor1-CU), the first host node DU (Donor1-DU), the first IAB node (including the first The MT of the IAB node (IAB1-MT) and the DU of the first IAB node (IAB1-DU)), the third IAB node (including the MT of the third IAB node (IAB3-MT) and the DU of the third IAB node (IAB3- DU)), the fourth IAB node (including the MT of the fourth IAB node (IAB4-MT) and the DU of the fourth IAB node (IAB4-DU)).
  • the other link includes: the first donor node CU (Donor1-CU), the second donor node DU (Donor2-DU), the second IAB node (including the MT of the second IAB node (IAB2-MT) , the DU of the second IAB node (IAB2-DU)), the third IAB node (including the MT of the third IAB node (IAB3-MT), the DU of the third IAB node (IAB3-DU)), the fourth IAB node ( Including the MT of the fourth IAB node (IAB4-MT), the DU of the fourth IAB node (IAB4-DU)).
  • FIG. 8 is a schematic diagram of a top-to-bottom cross-host switching scenario in an embodiment of the present application.
  • the node where the handover occurs is the IAB node 2 (which can be called IAB node2 or IAB2), and the IAB2 can provide access and backhaul services for one or more UEs/sub-nodes.
  • Figure 8 shows the cell served by the access IAB2 A UE1 and a sub-node IAB3, there are UE2 and UE3 under the IAB3, and the UE2 and UE3 access to the cell served by the IAB3.
  • IAB2 may also have one or more grandchild nodes (the IAB nodes connected to IAB2 through at least two hops of wireless backhaul links), and IAB3 may also serve more UEs, child nodes or The grandchild node is not limited here.
  • IAB2 is connected from the source parent node (ie S-parent IAB1 shown in Figure 8) to the target parent node (ie T-parent IAB4 shown in Figure 8) after performing handover, its downstream node IAB3, and UE1 and UE2 follows IAB2 to perform handover.
  • the MT part and the DU part of one IAB node may be respectively connected to two different IAB host nodes.
  • the target IAB host ie T donor CU2 shown in Figure 8
  • the IAB2-DU part is still connected to the source IAB host (ie S donor CU1) shown in Figure 8
  • the downstream child nodes (IAB3) of IAB2 and UEs are also still connected to S donor CU1.
  • IAB3 needs to transmit data packets with S node CU1 through the path shown in the curve in Figure 8, that is, through IAB2 (belonging to a node jointly managed by two host nodes), IAB4 and T donor DU2 (IAB4 and T donor DU2 belong to the node managed by T donor CU2), in addition, the data packets will be transmitted via the IP transport network between T donor DU2 and S donor CU1.
  • FIG. 9 is a schematic diagram of a bottom-to-top cross-host switching scenario in an embodiment of the present application.
  • the structure in this scenario is similar to the architecture shown in the aforementioned FIG. 8 , and details are not repeated here.
  • FIG. 9 is a cross-host switching scenario from bottom to top.
  • IAB2 and its subordinate nodes perform switching from S donor CU1 to T donor CU2.
  • IAB2 and downstream nodes are regarded as a group. If the sequence of switching is from bottom to top, that is, the downstream node performs the switching first, and the MT of IAB2 Finally perform the switch.
  • FIG. 10 is another schematic diagram of a dual-homed connection scenario in an embodiment of the present application.
  • the structure in this scenario is similar to the aforementioned architecture shown in FIG. 8 , and details are not described here.
  • FIG. 10 is a dual-homed connection scenario.
  • IAB2 first establishes a connection with the first parent node (ie S-parent IAB1 shown in Figure 10), and then connects with the second parent node (ie T-parent IAB4 shown in Figure 10) by adding an auxiliary station ) to establish a connection, wherein the first parent node is connected to the first host node (i.e.
  • the second parent node is connected to the second host node (i.e. T donor CU2 shown in Figure 10) .
  • the DU part of IAB2 is connected to S donor CU1, but the MT part of IAB2 is connected to the cell served by IAB1 (specifically, the DU part of IAB1) and the cell served by IAB4 (specifically, the DU part of IAB4).
  • the child nodes and downstream UEs of IAB2 still maintain a connection relationship with S donor CU1. Therefore, the services of the UE served by IAB2 and the services of IAB3 (including the services of downstream UE2 and UE3) can be transmitted via IAB2, as well as IAB4 and T donor DU2.
  • IAB nodes there may be more IAB nodes and/or more host nodes in the architectures of FIGS. 6 to 10 .
  • the IAB network can be divided into more network segments, which are managed by different host nodes.
  • the first BAP routing identifier is an IAB node controlled by the first host node.
  • the information used for data packet routing in the first network segment formed by the second BAP routing identifier is the information used for data packet routing in the second network segment formed by the IAB nodes controlled by the second host node, and the first IAB
  • the node ie, the border node
  • an embodiment of the communication method in this embodiment of the present application includes steps 1101 to 1106 .
  • the communication method shown in FIG. 11 is applied to the downlink transmission of data packets.
  • the description is made in conjunction with the architecture of FIG. 8 . Therefore, the first IAB node in the embodiment of the present application is IAB2 in FIG.
  • the parent node of the first IAB node is IAB4, the child node of the first IAB node is IAB3, and the first host node is T donor (including T donor CU2 and T donor DU2), the second host node is S donor (including S donor CU1 and S donor DU1), the first host node is different from the second host node, the first network segment managed by the first host node (CU2) Including T donor, TI IAB parent node (ie IAB4), the MT part of the first IAB node (ie IAB2-MT).
  • the second network segment managed by the second host node (CU1) includes the S donor, the DU part of the first IAB node (ie IAB2-DU), and the child node (IAB3) of the first IAB node.
  • the previous hop node of the first IAB node is the parent node (ie IAB4) of the first IAB node
  • the next hop node of the first IAB node is the child node (ie IAB3) of the first IAB node.
  • the first IAB node (IAB2) is located in the first network segment and the second network segment, and it can also be understood that the first IAB node (IAB2) is managed by the first host node (T donor) and the second host node (S donor), Specifically, the MT part (IAB2-MT) of the first IAB node is managed by the first host node (T donor), and the DU part (IAB2-DU) of the first IAB node is managed by the second host node (S donor).
  • the host node manages the IAB node, which can be understood as a control plane connection (such as an RRC connection and/or an F1 connection) between the host node and the IAB node, and the necessary configuration (such as routing) can be provided for the IAB node through the connection of the control plane. configuration related to bearer mapping).
  • the first IAB node IAB2 may also be referred to as a border IAB node.
  • step 1101 S donor CU1 sends downlink data packets to T donor DU2.
  • S donor CU1 sends downlink data packets to T donor DU2 through the IP network, and correspondingly, T donor DU2 receives downlink data packets.
  • the downlink data packet needs to be sent to the IAB node in the second network segment, for example, the data packet sent to the IAB2-DU part, or the data packet sent to the DU part of IAB3.
  • the data packet is a data packet sent to the DU part of the IAB3.
  • T donor DU2 adds the first BAP routing identifier to the downlink data packet to obtain the first data packet.
  • T donor DU2 (hereinafter referred to as DU2) can add the first BAP routing identifier to the downlink data packet according to the configuration information provided by T donor CU2. Therefore, before T donor DU2 adds the first BAP routing identifier to the downlink data packet, T donor CU2 (hereinafter referred to as CU2) needs to configure DU2 first, and the configuration content performed by CU2 on DU2 may include: assigning a BAP layer identifier to DU2 ( BAP address), the configuration information required to establish or modify the BH RLC CH between DU2 and DU2's child nodes (such as IAB4) for DU2, provide DU2 with routing configuration for downlink transmission, DU2 and the next hop node (such as IAB4) BH RLC CH mapping configuration.
  • BAP address BAP address
  • IAB4 next hop node
  • the configuration information required by the BH RLC CH may include at least one of: an identifier of the BH RLC CH, a QoS parameter corresponding to the BH RLC CH, a priority corresponding to the BH RLC CH, and the like.
  • the routing configuration for downlink transmission may include: the correspondence between the IP header information and the first BAP routing identifier, the correspondence between the first BAP routing identifier and the identifier of the next hop node (for example, the identifier of IAB4), and the like.
  • the BH RLC CH mapping configuration between DU2 and the next hop node may be a mapping relationship from IP header information to BH RLC CH.
  • the above-mentioned IP header information includes: at least one of a source IP address, a destination IP address, a differentiated services code point (differentiated services code point, DSCP), a flow label (flow label), and the like.
  • flow label is the flow label field in the IPV6 packet header.
  • the identity of the next hop node can be used.
  • the BAP layer identifier of IAB4 and the identifier of a BH RLC CH that is, the BH RLC CH ID
  • the third correspondence is the correspondence between the IP address of the DU (for example, IAB2-DU) in the first IAB node and the BAP address of the MT (for example, IAB2-MT) in the first IAB node.
  • the first BAP routing identifier is the correspondence between the BAP address of the MT (for example, IAB2-MT) in the first IAB node and the IP address of the DU in the downstream node (for example, IAB3) of the first IAB node.
  • CU2 can allocate a BAP address for IAB2-MT.
  • the IAB2-MT may inform the CU2 of the IP address of the IAB2-DU through a radio resource control (radio resource control, RRC) message. Therefore, the CU2 can learn the IP address of the IAB2-DU co-deployed with the IAB2-MT, and then obtain the third correspondence.
  • RRC radio resource control
  • the CU2 can allocate a BAP address for the IAB2-MT.
  • the IAB2-MT may request an IP address for the IAB2-DU part from the CU2 through a radio resource control (radio resource control, RRC) message. Therefore, CU2 can send the IP address assigned to the IAB2-DU to the IAB2-MT through the RRC message, so the CU2 can naturally learn the IP address of the IAB2-DU co-deployed with the IAB2-MT, and then obtain the third correspondence.
  • RRC radio resource control
  • CU1 can know the IP address of IAB2-DU.
  • IAB2-DU can obtain the BAP address (BAP address, or BAP layer identifier) configured by CU2 for IAB2-MT from IAB2-MT, and inform CU1 of the BAP address of IAB2-MT (for example, carried in F1AP CU1 is notified in the message), therefore, CU1 can obtain the BAP address of the IAB2-MT and the IP address of the IAB2-DU, and then obtain the third correspondence.
  • CU1 then sends the third correspondence to CU2.
  • CU1 may carry the third correspondence in the XnAP message and send it to CU2.
  • CU1 may carry the third correspondence in the XnAP message and send it to CU2.
  • the BAP address of IAB2-MT and one or more IP addresses of the DU part of IAB2 are included. .
  • IAB2-DU can obtain the BAP address (BAP address, or BAP layer identifier) configured by CU2 for IAB2-MT from IAB2-MT, and pass the BAP address of IAB2-MT through F1AP
  • the message informs CU1. Since the downstream nodes of IAB2 are managed by CU1, CU1 can learn which downstream nodes of IAB2 and the IP addresses of the DU parts of these downstream nodes, and then determine the fourth correspondence, and CU1 informs CU2 of the fourth correspondence. Specifically, CU1 may carry the fourth correspondence in the XnAP message and send it to CU2.
  • the XnAP message sent by CU1 to CU2 includes the identifier of the IAB2-MT (for example, the BAP address), and one or more downstreams of IAB2.
  • the IP addresses of the nodes (specifically, the IP addresses of the DU parts of these downstream nodes).
  • CU1 can also send other identifiers of IAB2-MT (for example, the identifier allocated by IAB2-MT on the Xn interface, that is, the UE XnAP ID) and the IP address of the DU part in the downstream node of IAB2 to CU2.
  • the other identifiers of the IAB2-MT determine the IAB2-MT. Due to the BAP address allocated by the IAB2-MT itself, the CU2 can determine the fourth correspondence.
  • DU2 receives the downlink data packet, and selects the first BAP routing identifier according to the above configuration performed by CU2 on DU2 and the IP header information of the downlink data packet, and adds the first BAP routing identifier to the header information of the BAP layer to obtain the first BAP routing identifier. data pack.
  • the first BAP routing identifier in this embodiment of the present application includes the first BAP address and/or the first path identifier.
  • the first BAP address is the last hop node in the first network segment (it can also be understood as the BAP address of the destination IAB node in a network segment.
  • the first BAP address used in the first network segment is the BAP address of the destination IAB node in the first network segment, that is, the BAP address of IAB2.
  • the first BAP address is the BAP address of IAB2
  • the first path identifier is the identifier of the downlink transmission path between DU2 and IAB2.
  • T donor DU2 sends the first data packet to IAB2 through IAB4, and correspondingly, IAB2 receives the first data packet.
  • DU2 After DU2 obtains the first data packet, it determines the BH RLC CH of the egress link according to the configuration of DU2 by CU2 in step 1102 and the IP header information of the first data packet, and sends the first data packet to IAB4 through the BH RLC CH of the egress link. data pack. Specifically, the T donor DU2 may send the first data packet to the MT in the IAB4.
  • CU2 can provide IAB4 with the route of downlink transmission and the BH RLC CH mapping configuration, and the route of downlink transmission can be the corresponding relationship between the first BAP routing identifier and the identifier of the next hop node (for example, IAB2).
  • the BH RLC CH mapping configuration may be the mapping relationship between the BH RLC CH of the ingress link between IAB4 and the previous hop node (such as DU2) to the BH RLC CH of the egress link between IAB4 and the next hop node (such as IAB2).
  • IAB4 receives the first data packet, and determines the BH RLC CH of the egress link according to the configuration of CU2 to IAB4 and the first data packet, and sends the first data packet to IAB2 through the BH RLC CH of the egress link.
  • the IAB2 receives the first data packet sent by the previous hop node (that is, the IAB4) in the first network segment.
  • step 1104 IAB2 obtains the first correspondence.
  • the first correspondence in this embodiment of the present application includes the correspondence between the data packet (which may be the BAP routing identifier and/or IP header information in the data packet) and the second BAP routing identifier. That is, the first correspondence may include the correspondence between the first BAP routing identifier and the second BAP routing identifier in the first data packet, and/or the first correspondence may include the IP header information in the first data packet and the second BAP Correspondence of routing identifiers.
  • the second BAP routing identifier includes the second BAP address and the second BAP path identifier, which are used for routing from the IAB2 to the wireless backhaul link of its downstream node in the second network segment.
  • the second BAP The routing identifier may indicate a transmission path from IAB2 to its downstream nodes in the second network segment.
  • the above IP header information may specifically refer to any one or more of the following information: source IP address, destination IP address, DSCP, flow label flow label.
  • first correspondence may also include at least one of the following:
  • the indication information is used to indicate that the first correspondence is used for uplink transmission and/or downlink transmission.
  • the previous hop node of the border IAB node ie IAB2
  • the next hop node of IAB2 is the parent node of IAB2.
  • the previous hop node of IAB2 is the parent node of IAB2
  • the next hop node of IAB2 is the child node of IAB2.
  • the indication information is used to indicate the transmission direction to which the first correspondence is specifically applicable.
  • the first correspondence includes the correspondence between the first BAP routing identifier and the second BAP routing identifier in the first data packet, it can be passed through
  • the indication information indicates that the corresponding relationship between the first BAP routing identifier and the second BAP routing identifier is applicable to the transmission in the uplink direction or the transmission in the downlink direction, or is applicable to both the uplink and the downlink; or, the first correspondence is if Including the correspondence between the IP header information in the first data packet and the second BAP routing identifier, then this instruction information can be used to indicate the corresponding relationship between the IP header information and the second BAP routing identifier, and is specifically applicable to the transmission in the upstream direction or the downlink direction of transmission, or for both uplink and downlink.
  • the identifier of the host node (specifically, the host CU or the host CU-CP) to which the first network segment belongs corresponds to the first BAP routing identifier.
  • the identifier of the host node may be the gNB ID of the host node, or may be the IP address of the host CU or the host CU-CP, or may be allocated by the network management (OAM) for the host CU or the host CU-CP other identification.
  • OAM network management
  • the identifier related to the first network segment corresponds to the first BAP routing identifier, and can be understood as one or more nodes on the transmission path determined by the first BAP routing identifier, located in the first network segment, and the first BAP routing identifier is located in the first network segment.
  • the BAP routing identifier is used to identify a transmission path to the first IAB node in the first network segment.
  • An identifier related to the second network segment where the identifier corresponds to the second BAP routing identifier.
  • the identifier of the host node (specifically, the host CU) to which the second network segment belongs corresponds to the second BAP routing identifier.
  • the identifier related to the second network segment corresponds to the second BAP routing identifier, which can be understood as one or more nodes on the transmission path determined by the second BAP routing identifier, located in the second network segment, and the second BAP routing identifier is located in the second network segment.
  • the BAP routing identifier is used to identify a transmission path in the second network segment from the first IAB node to a target node in the second network segment.
  • the identifier of the previous hop node which corresponds to the identifier of the first BAP route.
  • the previous hop node identifier corresponds to the first BAP routing identifier, which can be understood as: the previous hop node is the previous hop node of the first IAB node in the transmission path indicated by the first BAP routing identifier.
  • next-hop node identifier where the identifier corresponds to the second BAP routing identifier.
  • the next-hop node identifier corresponds to the first BAP routing identifier, which can be understood as: the next-hop node is the next-hop node of the first IAB node in the transmission path indicated by the first BAP routing identifier.
  • the first corresponding relationship may include multiple situations among the above-mentioned situations.
  • the first correspondence may include a CU identifier to which the first network segment corresponds to the first BAP routing identifier, and a CU identifier to which the second network segment corresponds to the second BAP routing identifier.
  • the first correspondence may further include a previous hop node identifier corresponding to the first BAP routing identifier, and a next hop node identifier corresponding to the second BAP routing identifier.
  • first correspondence may be represented by the same correspondence (for example, the first correspondence), or may be represented by different information (for example, the first correspondence and an indication information). If it is represented by different information, it is generally configured by the same host node.
  • the identifier of the previous hop node or the identifier of the next hop node in the embodiment of the present application may be the BAP address of the upper/next hop node, or may be the upper/next hop node In practical applications, there may be other situations.
  • the identifier of the child node can be the C-RNTI of the child node and the connection of the child node.
  • the identity of the incoming cell can also be the control plane identity of the child node on the F1 interface between the IAB node 2 and the host node (the body can be the host CU or the host CU-CP) (for example, the IAB node 2 assigns the child node to the identity of the control plane).
  • the gNB-DU UE F1AP ID, and/or the gNB-CU UE F1AP ID allocated by the host CU for the child node), the specific identification form is not limited here.
  • IAB2-MT can be connected to CU2 through RRC
  • IAB2-DU can be connected to CU1 through F1
  • the routing configuration required by the IAB2 node can be configured by CU1
  • CU1 determines the first correspondence, and sends the first correspondence to IAB2. It can also be understood that the CU1 configures the first correspondence for the IAB2.
  • CU2 notifies CU1 of the correspondence between the IP header information configured by CU2 for DU2 and the first BAP routing identifier, and CU2 may notify CU1 of the correspondence through an XnAP message. Therefore, CU1 can know which IAB node (for example, IAB3, specifically the DU part of IAB3) the destination IP address in the IP header corresponds to, and then CU1 can determine that the IP header or the first BAP routing identifier will be
  • the BAP address (or referred to as the second BAP address, such as the BAP address of IAB3) in the second BAP routing identifier mapped to, for the second BAP path identifier (or referred to as the second BAP routing identifier) in the second BAP routing identifier ID) can be determined by the CU1 itself, for example, the CU1 determines a path to the IAB3 according to the load situation and/or link quality of the second network segment.
  • the CU1 determines the second BAP routing identifier. Combined with the content of the IP header information obtained from CU2 and the content of the first BAP routing identifier, CU1 may determine the first correspondence and send the first correspondence to IAB2. Correspondingly, the IAB2 receives the first correspondence sent by the CU1.
  • CU1 sends the first correspondence to IAB2-DU through F1AP.
  • the CU2 determines the first correspondence, and sends the first correspondence to the IAB2. It can also be understood that the CU2 configures the first correspondence for the IAB2.
  • CU1 needs to send one or more BAP routing identifiers allocated by CU1 in the second network segment to CU2.
  • the one or more BAP routing identifiers indicate one or more transmission paths from the IAB2 to its downstream nodes in the second network segment, and include the second BAP routing identifiers.
  • CU1 also needs to send the mapping relationship between the IP address of the downstream node of the IAB2 node and the BAP address to CU2. Since CU2 has pre-determined that the target IP address in the IP header information is the IP address of IAB3 when configuring for donor DU2 how to determine the first BAP routing identifier according to the IP header information, CU2 can determine the IP address corresponding to the first BAP routing identifier.
  • the IAB node is the downstream node of IAB2 (take IAB3 as an example). Combined with the correspondence between the IP address of IAB3 and the BAP address sent by CU1, CU2 can further determine the BAP address of IAB3 in the second network segment, and then provide the BAP address from CU1.
  • a second BAP routing identifier is selected from the one or more BAP routing identifiers including the BAP address of IAB3, and the second BAP routing identifier is corresponding to the first BAP routing identifier to obtain a first correspondence. Then, CU2 sends the first correspondence to IAB2, and correspondingly, IAB2 receives the first correspondence sent by CU2.
  • CU2 sends the first correspondence to IAB2-MT through an RRC message.
  • step 1105 the IAB2 replaces the first BAP routing identifier in the first data packet with the second BAP routing identifier according to the first correspondence to obtain a second data packet.
  • the IAB2 may replace the first BAP routing identifier in the first data packet with the second BAP routing identifier according to the first correspondence to obtain the second data packet.
  • the IAB node can determine whether the first data packet satisfies the preset condition, if the first data packet satisfies the preset condition. , then IAB2 replaces the first BAP routing identifier in the first data packet with the second BAP routing identifier.
  • the IAB node can determine whether the BAP address in the first BAP routing identifier in the first data packet is the BAP of IAB2. address, and determine whether the first data packet satisfies a preset condition.
  • the BAP address in the first BAP routing identifier in the first data packet is the BAP address of IAB2, and it is determined that the first data packet satisfies the preset condition. Then, IAB2 replaces the first BAP routing identifier in the first data packet with the second BAP routing identifier according to the first corresponding relationship to obtain a second data packet.
  • IAB 2 can also, when the first data packet satisfies the preset condition (without first judging whether the BAP address contained in the first data packet is the BAP address of IAB 2), according to the first corresponding The relationship replaces the first BAP routing identifier in the first data packet with the second BAP routing identifier to obtain a second data packet.
  • the BAP address in the first BAP routing identifier in the first data packet is the BAP address of IAB2
  • the first data packet does not meet the preset conditions
  • IAB2 hands the first data packet to the upper layer of the IAB2BAP layer.
  • the protocol layer performs receiving processing.
  • the first data packet includes indication information, and the indication information is used by the IAB2 to determine that the first data packet meets the preset condition.
  • the indication information may refer to the first data packet carrying a special BAP path identifier, may also refer to the first data packet carrying a special BAP address, or may refer to a special bit of the BAP layer header information of the first data packet If it appears or is a specific value, it may also mean that the destination IP address in the first data packet is not the IP address of the IAB2, or the like.
  • the first BAP routing identifier carried in the first data packet is consistent with the BAP routing identifier in the first correspondence.
  • the first data packet when IAB2 determines that the first data packet satisfies the preset condition, it can be understood that the first data packet includes indication information, and IAB2 determines that the first data packet satisfies the preset condition according to the indication information.
  • IAB2 can be configured with at least two BAP addresses (such as BAP address 2A and BAP address 2B), wherein, when the BAP routing identification part in the data packet is When the included BAP address is BAP address 2A, after receiving the data packet, IAB2 can remove the BAP layer header in the data packet and submit it to the upper-layer protocol layer (such as the IP layer); when the BAP routing identification part in the data packet is When the BAP address included in the BAP address is BAP address 2B, after receiving the data packet, IAB2 can replace the BAP routing identifier in the BAP layer header in the data packet with the second BAP routing identifier to obtain the second data packet.
  • BAP address 2A BAP address 2A
  • IAB2 can remove the BAP layer header in the data packet and submit it to the upper-layer protocol layer (such as the IP layer); when the BAP routing identification part in the data packet is When the BAP address included in the BAP address is BAP address 2B, after receiving the data packet, IAB2 can replace the
  • IAB2 may receive configuration information from CU1 or CU2, and the configuration information is used to indicate that BAP address 2B is a special BAP address of IAB2 (for example, when CU2 configures BAP address 2B for IAB2 through an RRC message, it carries the indication information to indicate This address is a special BAP address).
  • the IAB2 can be configured with at least one special BAP path identifier (such as BAP path ID 2X), wherein when the BAP routing identifier part in the data packet
  • BAP path ID 2X special BAP path identifier
  • the IAB2 can remove the BAP layer header in the data packet and submit it to the upper protocol layer (such as the IP layer).
  • the BAP routing identification contained in the BAP routing identification part in the data packet is BAP path ID 2X
  • the BAP routing identification in the BAP layer header in the data packet can be replaced by the second BAP
  • the routing identifier is used to obtain the second data packet.
  • IAB2 can receive configuration information from CU1 or CU2, and the configuration information is used to indicate that the BAP path ID 2X is the special BAP path identifier of IAB2 (for example, CU1 is configuring the BAP carrying the BAP path ID 2X for IAB2 through the F1AP message.
  • the indication information is carried to indicate that the path identifier is a special BAP path identifier).
  • the indication information refers to that the destination IP address in the first data packet is not the IP address of the IAB2
  • the IAB2 strips the BAP layer of the first data packet, it can learn the destination IP address of the first data packet, and then determine the destination IP address of the first data packet.
  • the first data packet satisfies the preset condition.
  • the IAB2 determining that the first data packet satisfies the preset condition may include: the IAB2 determining that the first data packet satisfies the preset condition according to the first correspondence.
  • IAB2 determines whether the first data packet satisfies the preset condition according to whether the first BAP routing identifier in the first correspondence is consistent with the BAP routing identifier carried in the first data packet.
  • the IAB2 can convert the BAP in the BAP layer header in the first data packet The routing identifier is replaced with the second BAP routing identifier to obtain the second data packet.
  • the BAP routing identifier in the first data packet is inconsistent with the first BAP routing identifier in the first correspondence: after IAB2 receives the first data packet, if the BAP address part in the BAP routing identifier in the first data packet is the same as the The BAP address of IAB2 is the same, then IAB 2 can remove the BAP layer header in the first data packet and then submit it to the upper-layer protocol layer (such as the IP layer), or, if the BAP address part in the BAP routing identifier in the first data packet Different from the BAP address of IAB2, the first data packet can be forwarded to the next hop node after selecting a suitable next hop node according to the BAP routing identifier in the first data packet and the configured routing table.
  • the upper-layer protocol layer such as the IP layer
  • the step of judging whether the BAP address part in the BAP routing identifier in the first data packet is the same as the BAP address of the IAB2, can be judged in the first data packet BAP routing identifier and the first BAP routing identifier in the first corresponding relationship Executed before or after.
  • IAB2 can directly determine whether the first data packet is a data packet sent to the second network segment or a data packet submitted to the upper-layer protocol layer according to the first correspondence.
  • BAP address or special BAP path identification method which can reduce additional configuration overhead.
  • IAB2 may select an appropriate next-hop node according to the second BAP routing identifier in the second data packet and the configured routing table and forward the second data to the next-hop node. Bag.
  • the above-mentioned preset conditions or indication information may be agreed by a protocol, or may be made known to IAB2 by means such as CU1 and/or CU2 sending a control plane message to IAB2 to indicate the above-mentioned preset conditions, etc. limited.
  • IAB2 there are many ways for IAB2 to replace the first BAP routing identifier in the first data packet with the second BAP routing identifier according to the first correspondence, which are described below:
  • the IAB2-MT removes the first BAP routing identifier and adds the second BAP routing identifier.
  • the IAB2 receives the first data packet sent by the IAB4 in the first network segment, specifically, the receiving part of the BAP entity of the IAB2-MT receives the first data packet sent by the DU in the IAB4. If the IAB2-MT determines that the BAP address in the first data packet is its own BAP address (that is, the BAP address obtained by IAB2), and determines that the first data packet satisfies the preset conditions, then the IAB2-MT converts the first data packet to the first data packet.
  • a BAP routing identifier (or the first BAP address in the first BAP routing identifier) is removed, and a second BAP routing identifier is determined according to the first correspondence, and a second BAP routing identifier is added to the data packet to obtain the second data Bag.
  • the IAB2-MT removes the first BAP routing identifier, and the IAB2-DU adds the second BAP routing identifier.
  • the IAB2 receives the first data packet sent by the IAB4 in the first network segment, specifically, the receiving part of the BAP entity of the IAB2-MT receives the first data packet sent by the DU in the IAB4. If the IAB2-MT determines that the BAP address in the first data packet is its own BAP address (that is, the BAP address obtained by IAB2), and determines that the first data packet satisfies the preset conditions, then the IAB2-MT converts the first data packet to the first data packet. A BAP routing identifier (or the first BAP address in the first BAP routing identifier) is removed, and then the first data packet is removed from the first BAP routing identifier and then handed over to the IAB2-DU side. After receiving the first data packet from which the first BAP routing identifier is removed, the IAB2-DU adds a second BAP routing identifier to the data packet according to the first correspondence to obtain a second data packet.
  • the IAB2-DU adds a second BAP routing identifier
  • the data packet received by the IAB2-DU is the first data packet without the first BAP routing identifier. Therefore, the IAB2-DU can obtain the first BAP of the first data packet from the IAB2-MT. The routing identifier is determined, and the second BAP routing identifier is determined according to the first BAP routing identifier. Alternatively, the IAB2-DU may directly determine the second BAP routing identifier according to the IP header information of the data packet.
  • the IAB2-DU removes the first BAP routing identifier and adds the second BAP routing identifier.
  • the IAB2 receives the first data packet sent by the IAB4 in the first network segment, specifically, the receiving part of the BAP entity of the IAB2-MT receives the first data packet sent by the DU in the IAB4.
  • the IAB2-MT directly forwards the first data packet to the IAB2-DU.
  • the IAB2-DU determines that the BAP address in the first data packet is its own BAP address (that is, the BAP address of the IAB2, specifically the BAP address obtained by the IAB2-MT) ), and determine that the first data packet satisfies the preset condition, then the IAB2-DU removes the first BAP routing identifier (or the first BAP address in the first BAP routing identifier) in the first data packet, and according to the first The corresponding relationship determines the second BAP routing identifier, and then adds the second BAP routing identifier to the data packet to obtain the second data packet.
  • the IAB2-MT can inform the IAB2-DU of the BAP address obtained by itself through the node internal interface, so that the IAB2-DU can determine whether the BAP address in the first data packet is its own BAP address.
  • IAB2 there are many ways for the IAB2 to replace the BAP routing identifier. The above are just examples. In practical applications, there are other ways for the IAB2 to replace the BAP routing identifier: for example: IAB2-DU removes the first BAP routing identifier, The IAB2-MT adds the second BAP routing identifier, which is not specifically limited here.
  • step 1106 IAB2 sends the second data packet to IAB3, and correspondingly, IAB3 receives the second data packet sent by IAB2.
  • IAB2 can determine whether it needs to forward the second data packet to the next hop node in the second network segment . If the first data packet satisfies the preset condition, the IAB2 sends the second data packet to the next hop node (IAB3) in the second network segment. For downlink transmission, the next hop node of IAB2 is a child node of IAB2.
  • IAB2 may, after deleting the first BAP identification of the first data packet, or before deleting the first BAP identification of the first data packet, IAB2 judges that the first packet of the stripped BAP layer is handed over to its own BAP layer. The upper-layer protocol layer processing is still forwarding to the next hop node in the second network segment. If the first data packet satisfies the preset condition, the IAB2 sends the second data packet to the next hop node (IAB3) in the second network segment.
  • IAB3 next hop node
  • the preset condition can be understood as the condition for IAB2 to send the second data packet to IAB3, and it can also be understood as the condition for IAB2 to replace the first BAP routing identifier in the first data packet with the second BAP routing identifier, There is no specific limitation here.
  • IAB2 may also acquire the second correspondence. IAB2 then determines to send the second data packet to IAB3 through the first backhaul RLC channel (the first BH RLC CH) of the egress link in the second network segment according to the second correspondence, that is, IAB2 selects the appropriate data packet for the data packet to be transmitted.
  • the RH RLC CH of the egress link thus ensuring the QoS requirements of the transmission.
  • the second correspondence is the correspondence between the first BAP routing identifier and the BH RLC CH of the egress link of the first IAB node (that is, IAB2).
  • the second correspondence is the correspondence between the second BAP routing identifier and the BH RLC CH of the egress link of the first IAB node (that is, IAB2).
  • the second correspondence is the correspondence between the IP header information in the first data packet and the BH RLC CH of the exit link of the first IAB node (that is, IAB2).
  • the IP header information may specifically refer to any one or more of the following information: source IP address, destination IP address, DSCP, and flow label.
  • the second correspondence is the correspondence between the second backhaul RLC channel of the ingress link of the first IAB node (ie IAB2) and the first backhaul RLC channel of the egress link of the first IAB node (ie IAB2). Specifically, it may be the correspondence between the second BH RLC CH of the ingress link of the first IAB node (i.e. IAB2) and the first BH RLC CH of the egress link of the first IAB node (i.e. IAB2).
  • the ingress link of the IAB node refers to the link between the IAB node and the previous hop node (such as the parent node), for example, the link between IAB2 and IAB4 is the IAB2 in the downlink transmission
  • the ingress link; the egress link refers to the link between the IAB node and the next hop node (such as a child node), for example, the link between IAB2 and IAB3 is the egress link of IAB2 in downlink transmission.
  • the ingress link of the IAB node refers to the link between the IAB node and the previous hop node (such as a child node), for example, the link between IAB2 and IAB3 is the ingress link of IAB2 in uplink transmission;
  • the egress link refers to the link between the IAB node and the next-hop node (eg, the parent node), for example, the link between IAB2 and IAB4 is the egress link of IAB2 in uplink transmission.
  • the BH RLC CH of the ingress link can be identified by the identity of the ingress link (which can be derived from the identity of the previous hop node).
  • the BH RLC CH of the egress link can be identified by the egress link's identification (can be used as the identification of the ingress link by the identification of the next hop node). identifier) and the BH RLC CH ID allocated on the egress link.
  • the IAB node obtains the corresponding relationship can be understood as, the IAB node receives the configuration information sent by CU1/CU2, including two pieces of information at the same time, the IAB node can consider that there is a corresponding relationship between the two pieces of information, or, the standard
  • the correspondence is predefined in the IAB node.
  • the above-mentioned four situations in which IAB2 obtains the second correspondence can be understood as the following four descriptions:
  • IAB2 receives the control plane message sent by CU1/CU2, which includes the first BAP routing identifier, and the identifier of the first backhaul RLC channel of the first IAB node egress link corresponding to the first BAP routing identifier, so as to know the first BAP routing identifier. Two correspondences.
  • IAB2 receives the control plane message sent by CU1/CU2, which includes the second BAP routing identifier and the identifier of the first backhaul RLC channel of the first IAB node egress link corresponding to the second BAP routing identifier, so as to learn the first Two correspondences.
  • IAB2 receives the control plane message sent by CU1/CU2, which includes the first IP header information, and the identifier of the first return RLC channel of the first IAB node egress link corresponding to the first IP header information, so as to know the first IP header information.
  • the first IP header information may specifically include any one or more of the following information: the first source IP address, the first destination IP address, the first DSCP, and the first flow label flow label.
  • IAB2 receives the control plane message sent by CU1/CU2, which includes the identifier of the second backhaul RLC channel of the ingress link of the first IAB node, and the first backhaul RLC channel of the corresponding first IAB node egress link. , so as to obtain the second correspondence.
  • IAB2-MT can be connected to CU2 through RRC
  • IAB2-DU can be connected to CU1 through F1
  • the BH RLC CH mapping configuration required by the IAB2 node can be set by CU1 configuration, can also be configured by CU2. That is, in the embodiment of the present application, there are two ways for the IAB2 to obtain the second correspondence, which are described below:
  • CU1 determines the second correspondence, and sends the second correspondence to IAB2. It can also be understood that the CU1 configures the second correspondence for the IAB2.
  • CU1 sends the second correspondence to IAB2-DU through F1AP.
  • the CU2 determines the second correspondence, and sends the second correspondence to the IAB2. It can also be understood that the CU2 configures the second correspondence for the IAB2.
  • CU2 sends the second correspondence to IAB2-MT through an RRC message.
  • the CU1/CU2 sends the corresponding relationship to the IAB2, which can be understood as the CU1/CU2 is configured for the IAB2.
  • CU1/CU2 performs routing configuration for IAB2.
  • CU1/CU2 sends to IAB2 for the second correspondence, it can be understood that CU1/CU2 performs RH RLC CH mapping configuration for IAB2.
  • the IAB network may include more network segments and be managed by multiple host nodes. Then the BAP address in the BAP routing identifier used to transmit data packets in each network segment is the BAP address of the last hop node in the network segment, wherein, in the last network segment in the direction of data packet transmission, the network segment The last hop node is the target node located in this network segment.
  • the BAP address in the first BAP routing identifier of the first network segment is the BAP address of the last hop node (IAB2) in the first network segment
  • the BAP address in the second network segment (that is, the downlink direction
  • the BAP address in the second BAP routing identifier in the last network segment) is that of the target node IAB3 in the second network segment.
  • the BAP address in the BAP routing identifier in the last network segment in the uplink direction belongs to the target node (ie, the host DU) in the network segment.
  • the IAB network includes a topology consisting of three adjacent network segments (respectively identified as 1, 2, and 3) connected by
  • the BAP address of the BAP routing identifier is the BAP address of the border node between the second network segment and the first network segment or the BAP address of the border node between the second network segment and the third network segment.
  • the identity of which border node is determined according to the transmission direction.
  • the target BAP address in the first network segment is the BAP address of the first IAB node.
  • the node can determine the last hop IAB node in the second network segment according to the first BAP routing identifier, then in a possible embodiment, the first host node needs to configure the IP header information and the first BAP routing identifier. When there is a corresponding relationship between them, different BAP path identifiers in the first network segment can be configured for different downstream IAB nodes. In this way, it can be ensured that data packets of different IAB nodes in the second network segment have different first BAP routing identifiers in the first network segment.
  • Step 1104 in this embodiment of the present application has no necessary timing relationship with steps 1101 to 1103, that is, step 1104 may be before step 1101, or may be before step 1102, and step 1104 may be before step 1105.
  • the BAP routing identifier of the data packet in the first network segment is replaced by the BAP routing identifier in the second network segment through the first IAB node,
  • the data packets are normally transmitted in the second network segment, and the abnormal problem of data packet transmission caused by the management of the IAB network by multiple IAB host nodes is avoided. It can ensure that the data packets are correctly routed in the IAB network spliced by a variety of network segments managed by different host nodes, and provide transmission services according to reasonable QoS guarantees.
  • the solution of this embodiment allows each host node to only control the routing of data packets in the network segment under its jurisdiction, and then execute it by the border nodes of the two network segments (specifically, it can be executed at the BAP layer or the IP layer).
  • the operation of the routing and QoS mapping agent of the BAP layer replace the first BAP routing identifier for routing in the first network segment included in the received data packet with the one that will be used for routing in the second segment of the network.
  • the second BAP routing identifier through this method of splicing routing, ensures that in the network topology management of various new cross-home base stations, the data packets can be routed reasonably and correctly, and can be reasonably routed at the boundary of the two network segments.
  • the mapping of BH RLC channel ensures the QoS requirements of data packets.
  • another embodiment of the communication method in this embodiment of the present application includes steps 1201 to 1206 .
  • the communication method shown in FIG. 12 is applied to the uplink transmission of data packets.
  • the first IAB node in the embodiment of the present application is IAB2 in FIG.
  • the parent node of the first IAB node is IAB4, the child node of the first IAB node is IAB3, and the first host node is S donor (including S donor CU1 and S donor DU1), the second host node is T donor (including T donor CU2 and T donor DU2), the first host node is different from the second host node, the first network segment managed by the first host node (CU1) It includes S donor, the DU part of the first IAB node (ie IAB2-DU), and the child node (IAB3) of the first IAB.
  • the second network segment managed by the second host node (CU2) includes T donor, TIAB parent node (ie IAB4), and the MT part of the first IAB node (ie IAB2-MT).
  • the previous hop node of the first IAB node is the child node (ie IAB3) of the first IAB node, and the next hop node of the first IAB node is the parent node (ie IAB4) of the first IAB node.
  • the first IAB node (IAB2) is located in the first network segment and the second network segment, it can also be understood that the first IAB node (IAB2) is managed by the second host node (T donor) and the first host node (S donor), Specifically, the MT part (IAB2-MT) of the first IAB node is managed by the second host node (T donor), and the DU part (IAB2-DU) of the first IAB node is managed by the first host node (S donor).
  • the host node manages the IAB node.
  • the host node can be understood as a connection between the host node and the IAB node with a control plane (for example, an RRC connection and/or an F1 connection), which can provide the necessary IAB nodes through the connection of the control plane.
  • a control plane for example, an RRC connection and/or an F1 connection
  • configuration such as routing and bearer mapping related configuration
  • the first IAB node (IAB2) may also be referred to as a border IAB node.
  • step 1201 the IAB3 adds the first BAP routing identifier to the uplink data packet to obtain the first data packet.
  • the uplink data packet may be a data packet of the user plane (F1-U) of the F1 interface, or a data packet of the control plane (F1-C) of the F1 interface, or a data packet of a non-F1 service (non-F1), etc., There is no specific limitation here.
  • CU1 Before IAB3 adds the first BAP routing identifier to the uplink data packet, CU1 needs to configure IAB3 first, and the configuration performed by CU1 on IAB3 may include one or more of the following: assigning a BAP layer identifier (BAP address) to IAB3, The configuration information required by IAB3 to establish or modify the BH RLC CH between IAB3 and IAB3's parent node (for example, IAB2), the configuration information to provide IAB3 with routing for uplink transmission, and the configuration information to provide IAB3 with the link between IAB3 and IAB2 BH RLC CH mapping configuration.
  • BAP address BAP layer identifier
  • the configuration information required by the BH RLC CH may include: the identifier of the BH RLC CH, the configuration of the RLC layer corresponding to the BH RLC CH, and the configuration of the medium access control (medium access control, MAC) layer corresponding to the BH RLC CH. at least one of the configuration, the configuration of the logical channel corresponding to the BH RLC CH, and the like.
  • the configuration information of the route used for uplink transmission may include: the correspondence between the upper-layer service data information maintained by the IAB3 and the first BAP routing identifier, and the routing table entry (that is, the first BAP routing identifier) corresponding to the first BAP routing identifier. Routing identifier and identifier of the corresponding next-hop node)
  • the uplink egress link refers to the BH link between IAB3 and its parent node IAB2, and the BH RLC CH of the uplink egress link can be identified by the identifier of IAB2 and a BH RLC CH ID common identification.
  • the BH RLC CH mapping configuration of the link between IAB3 and IAB2 may include at least one of the following contents: the mapping relationship between upper layer service data information and the BH RLC CH of the uplink egress link, used for transmission except F1 -The identifier of the specified default (default) BH RLC CH outside of the U service.
  • the identifier of the egress link of uplink transmission (indicated by the identifier of the next hop node) and a BH RLC CH can be used.
  • the identifier (that is, the BH RLC CH ID) together identifies a BH RLC CH of the egress link.
  • the upper layer service data information may include at least one of the following: tunnel information on the user plane of the F1 interface (including the uplink TEID and target IP address of the GTP-U tunnel of the F1 interface), UE-related F1AP message (UE associated F1AP message), non-UE associated F1AP message (non-UE associated F1AP message), non-F1 interface business (non-F1traffic), etc.
  • tunnel information on the user plane of the F1 interface including the uplink TEID and target IP address of the GTP-U tunnel of the F1 interface
  • UE-related F1AP message UE associated F1AP message
  • non-UE associated F1AP message non-UE associated F1AP message
  • non-F1 interface business non-F1traffic
  • CU1 Before IAB3 adds the first BAP routing identifier to the uplink data packet, CU1 needs to send configuration information to IAB3, where the configuration information is used to indicate the first BAP routing identifier that should be added corresponding to the uplink data packet.
  • the first BAP routing The identifier corresponds to the upper-layer service data information of the uplink data packet, and the first BAP routing identifier includes the BAP address of IAB2, that is, the destination BAP address of the uplink data packet in the first network segment.
  • the IAB3 After receiving the configuration information sent by the CU1, the IAB3 adds the first BAP routing identifier to the uplink data packet to obtain the first data packet.
  • the target BAP address in the first BAP routing identifier is the BAP address of IAB2, that is, the target BAP address in the first BAP routing identifier is the BAP address of the last hop node in the first network segment.
  • step 1202 IAB3 sends the first data packet to IAB2.
  • IAB2 receives the first data packet sent by IAB3.
  • IAB3 After IAB3 obtains the first data packet, it determines the egress link and the BH RLC CH of the egress link according to the configuration of IAB3 by CU1 in step 1201 and the first BAP routing identifier, and sends the BH RLC CH of the egress link to IAB2 through the BH RLC CH of the egress link. first packet.
  • the IAB2 receives the first data packet. Specifically, the IAB2 may receive the first data packet sent by the previous hop node (ie, the IAB3) in the first network segment.
  • the IAB3 sends the first data packet to the IAB2, specifically, the DU in the IAB3 sends the first data packet to the MT in the IAB2.
  • step 1203 IAB2 acquires the first correspondence.
  • step 1104 reference may be made to the relevant description of step 1104 in the foregoing embodiment shown in FIG. 11 for the description of the IAB2 acquiring the first correspondence, which is not repeated here.
  • the specific content of the second BAP routing identifier in this step is different from the content in Figure 11, such as the BAP address (BAP address ( That is, the second BAP address) is the BAP address of DU2.
  • BAP address ( That is, the second BAP address)
  • the second BAP address in the second BAP routing identifier in the embodiment shown in FIG. 11 is the BAP address of IAB3.
  • IAB2 replaces the first BAP routing identifier in the first data packet with the second BAP routing identifier according to the first correspondence to obtain a second data packet.
  • IAB2 replaces the first BAP routing identifier in the first data packet with the second BAP routing identifier according to the first correspondence, and for the description of obtaining the second data packet, refer to step 1105 in the aforementioned embodiment shown in FIG. 11 . Relevant descriptions are not repeated here.
  • IAB2 in addition to judging with reference to the conditions in step 1105 whether it is necessary to perform BAP routing identification replacement on the data packet, for uplink transmission, IAB2 also has a possible judgment method: IAB2 judges that in the first data packet Whether the BAP address in the first BAP routing identifier is the BAP address of IAB2, if so, it means that the first data packet needs to continue to be forwarded to the next hop node (for example, IAB4) in the second network segment, and the first data packet needs to be forwarded.
  • the next hop node for example, IAB4
  • a BAP routing identifier is replaced; if not, then IAB2 may not change the first BAP routing identifier, directly according to the first BAP routing identifier, look up the configured routing table, and select an appropriate next hop node; further, if If IAB2 cannot find the entry corresponding to the first BAP routing identifier in the routing table, it can continue to find out whether the BAP address in the entry is the same as the first BAP address field contained in the first BAP routing identifier.
  • IAB2 can further confirm whether there is a new BAP routing identifier that has been replaced in the first BAP routing identifier, or Confirm whether the first BAP address included in the first BAP routing identifier has a new BAP address that has been configured with replacement, and if so, the first BAP routing identifier/first BAP address in the first data packet can be replaced It is the new BAP routing identifier/new BAP address, and then searches the routing table according to the replacement result to select the next hop node, and selects the BH RLC CH of the egress link after selecting the next hop node, and continues down The one-hop node sends the modified second data packet.
  • the new BAP routing identifier/new BAP address may be regarded as a special second BAP routing identifier/second BAP address.
  • step 1205 IAB2 sends the second data packet to T donor DU2 through IAB4, and correspondingly, T donor DU2 receives the second data packet.
  • the IAB2 may also obtain the second correspondence, and for the relevant description, reference may be made to the relevant description of step 1106 in the embodiment shown in FIG. 11 , and details are not repeated here.
  • IAB2 before sending the second data packet to IAB4, IAB2 can also judge whether it needs to send the second data packet to IAB4 in the second network segment.
  • IAB4 For the relevant description, please refer to step 1106 in the embodiment shown in FIG. 11. description, and details are not repeated here.
  • IAB2 determines the BH RLC CH of the egress link, and sends the second data packet to IAB4 through the BH RLC CH of the egress link.
  • the IAB2-MT may send the second data packet to the DU of the IAB4. That is, IAB2 sends the second data packet to the next hop node (ie, IAB4) in the second network segment.
  • the BH RLC CH mapping configuration may be the mapping relationship between the BH RLC CH of the ingress link between IAB4 and the previous hop node (IAB2) to the BH RLC CH of the egress link between IAB4 and the next hop node (DU2).
  • the IAB4 receives the second data packet, determines the BH RLC CH of the egress link according to the configuration of the IAB4 by CU2 and the second data packet, and sends the second data packet to DU2 through the BH RLC CH of the egress link.
  • DU2 receives the second data packet sent by IAB4.
  • T donor DU2 sends an IP packet to the target node.
  • DU2 After DU2 receives the second data packet sent by IAB4, because the BAP address of the second BAP routing identifier in the second data packet is its own BAP layer identifier. Then DU2 removes the BAP layer header information of the second data packet, submits the service data unit (SDU) of the BAP layer to the IP layer, and then forwards the IP data to the target node of the IP layer through the routing of the IP layer. Bag.
  • SDU service data unit
  • DU2 will forward the uplink data packet of the F1 interface generated by IAB3 to CU1.
  • Step 1203 in this embodiment of the present application has no necessary timing relationship with step 1201 and step 1202, that is, step 1203 may be before step 1201 or step 1202, and step 1203 may be before step 1204.
  • the BAP routing identifier of the data packet in the first network segment is replaced by the BAP routing identifier in the second network segment through the first IAB node,
  • the data packets are normally transmitted in the second network segment, and the abnormal problem of data packet transmission caused by the management of the IAB network by multiple IAB host nodes is avoided. It can ensure that the data packets are correctly routed in the IAB network spliced by a variety of network segments managed by different host nodes, and provide transmission services according to reasonable QoS guarantees.
  • the solution of this embodiment allows each host node to only control the routing of data packets in the network segment under its jurisdiction, and then execute it by the border nodes of the two network segments (specifically, it can be executed at the BAP layer or the IP layer).
  • the operation of the routing and QoS mapping agent of the BAP layer replace the first BAP routing identifier for routing in the first network segment included in the received data packet with the one that will be used for routing in the second segment of the network.
  • the second BAP routing identifier through this method of splicing routing, ensures that in the network topology management of various new cross-home base stations, the data packets can be routed reasonably and correctly, and can be reasonably routed at the boundary of the two network segments.
  • the mapping of BH RLC channel ensures the QoS requirements of data packets.
  • an embodiment of the present application provides a data packet processing method, which can be applied to an IAB node or IAB donor DU in a single host independent networking, IAB non-independent networking, or cross-host networking scenario. Compared with the general and complex method in the prior art, the abnormality of the data packet is determined.
  • the data packet processing method provided by the embodiment of the present application can more accurately determine the abnormal condition of the data packet in some specific situations (uplink data packet and downlink data packet, IAB node and IAB donor DU).
  • the BAP layer entity of the IAB node (specifically, it may be located in the receiving part of the IAB-DU) receives an uplink data packet, if the BAP layer header of the uplink data packet carries the IAB node. BAP address, the IAB node determines that the upstream data packet is an error or abnormal data packet.
  • the IAB node may discard the uplink data packet.
  • the BAP layer entity of the IAB node (specifically, the sending part of the BAP entity located on the IAB-MT or IAB-DU side), before sending the data packet, if it is not found in the routing table.
  • Each entry contains the destination BAP address in the packet. Then the IAB node determines that the data packet is an error or abnormal data packet.
  • the data packet can be discarded.
  • simplifying the conditions for judging abnormal data packets can prevent the wrong or abnormal data packets from occupying the cache space of the IAB node.
  • the BAP layer entity (specifically, the receiving part) of the IAB-donor DU receives an uplink data packet, and the BAP address in the BAP layer header of the uplink data packet is not the IAB-donor DU. the BAP address. Then the IAB-donor DU determines that the data packet is an erroneous or abnormal data packet.
  • the upstream data packet may be discarded.
  • the BAP layer entity specifically, the sending part
  • the IAB-donor-DU sends the downlink data packet
  • the BAP layer entity specifically, the sending part
  • the IAB-donor DU determines that the downlink data packet is an error or abnormal data packet.
  • the downlink data packet may be discarded.
  • the conditions for judging the abnormality of the downlink data packets are simplified, which can prevent the erroneous or abnormal downlink data packets from occupying the buffer space of the IAB-donor-DU.
  • network resource consumption caused by sending wrong or abnormal downlink data packets is avoided.
  • the abnormality of the data packet is determined.
  • the data packet processing method provided by the embodiments of the present application can simplify the conditions for determining abnormal data packets under specific circumstances, and more accurately identify more abnormal data packets. For related beneficial effects, reference may be made to the above description.
  • the communication device in the embodiment of the present application will be described below. Please refer to FIG. 13 , which is another embodiment of the communication device in the embodiment of the present application.
  • the communication device may be the first IAB node, or may be a component of the first IAB node ( For example, DU, MT or processor, chip or chip system), the communication device is applied to the integrated IAB network for access and backhaul.
  • the IAB network includes a first network segment and a second network segment, and the first network segment consists of the first host node. management, the second network segment is managed by the second host node, the first host node is different from the second host node, and the communication device includes:
  • the receiving unit 1301 is configured to receive a first data packet in a first network segment, where the first data packet includes a first backhaul adaptation protocol BAP routing identifier, and the first BAP routing identifier is used for the first data packet in the first network segment transmission;
  • the replacement unit 1303 is used to replace the first BAP routing identifier in the first data packet with the second BAP routing identifier according to the first corresponding relationship to obtain the second data packet;
  • the sending unit 1304 is configured to send a second data packet to a next-hop node in the second network segment, where the next-hop node is a parent node or a child node of the first IAB node.
  • each unit in the communication device is similar to the operations performed by the first IAB node (ie, IAB2) in the embodiments shown in FIG. 11 and FIG. 12 , and are not repeated here.
  • the BAP routing identifier in the first network segment of the data packet is replaced by the BAP routing identifier in the second network segment through the replacement unit 1303, so that the data
  • the packets are normally transmitted in the second network segment, which reduces the abnormal problem of data packet transmission caused by the management of the IAB network by multiple IAB host nodes. It can ensure that the data packets are correctly routed in the IAB network spliced by various network segments managed by different host nodes.
  • the communication device may be the first IAB node, or may be a component of the first IAB node (eg DU, MT or processor, chip or chip system), the communication device is applied to access and backhaul integrated IAB network, the IAB network includes a first network segment and a second network segment, and the first network segment is controlled by the first host Node management, the second network segment is managed by the second host node, the first host node is different from the second host node, and the communication device includes:
  • the receiving unit 1401 is configured to receive a first data packet in the first network segment, where the first data packet includes a first backhaul adaptation protocol BAP routing identifier, and the first BAP routing identifier is used for the first data packet in the first network segment transmission;
  • an obtaining unit 1402 configured to obtain a first correspondence
  • Replacement unit 1403 for replacing the first BAP routing identifier in the first data packet with the second BAP routing identifier according to the first corresponding relationship, to obtain the second data packet;
  • the sending unit 1404 is configured to send a second data packet to a next-hop node in the second network segment, where the next-hop node is a parent node or a child node of the first IAB node.
  • Determining unit 1405, configured to determine that the BAP address in the first BAP routing identifier in the first data packet is the BAP address of the first IAB node, and the first data packet satisfies a preset condition
  • the first data packet includes indication information
  • the determining unit 1405 is specifically configured to determine, according to the indication information, that the first data packet satisfies the preset condition.
  • the obtaining unit 1402 is further configured to obtain the second correspondence
  • the sending unit 1404 determines to send the second data packet to the next hop node through the first backhaul radio link control RLC channel of the egress link in the second network segment.
  • the indication information includes the destination IP address of the first data packet, and when the destination IP address in the first data packet is not the IP address of the first IAB node, the first IAB node determines that the first data packet satisfies the preset condition.
  • the first network segment includes the first IAB node and the upstream node of the first IAB node; the second network segment includes the first IAB node and the downstream node of the first IAB node; the receiving unit 1401 is specifically used for the first IAB node.
  • the first data packet sent by the upstream node is received in the network segment; the sending unit 1404 is specifically configured to send the second data packet to the downstream node in the second network segment, and the BAP address in the second BAP routing identifier is the BAP address of the downstream node. .
  • the first network segment includes the first IAB node and the downstream node of the first IAB node; the second network segment includes the first IAB node and the upstream node of the first IAB node; the receiving unit 1401 is specifically used for the first IAB node.
  • the first data packet sent by the downstream node is received in the network segment; the sending unit 1404 is specifically configured to send the second data packet to the upstream node in the second network segment, and the BAP address in the second BAP routing identifier is the address of the second host node. BAP address.
  • the upstream node of the first IAB node is the parent node of the first IAB node; the determining unit 1405 is further configured to determine that the BAP address in the first BAP routing identifier in the first data packet is the BAP address of the first IAB node .
  • the first BAP routing identifier includes a first BAP address and/or a first path identifier
  • the second BAP routing identifier includes a second BAP address and/or a second path identifier
  • the first corresponding relationship is configured by the first host node or the second host node; the obtaining unit 1402 is used to obtain the first corresponding relationship, including any one of the following: the obtaining unit 1402 is specifically used to obtain the first BAP routing identifier With the second BAP routing identification, the first BAP routing identification and the second BAP routing identification have a corresponding relationship; the obtaining unit 1402 is specifically used to obtain the IP header information in the first data packet and the second BAP routing identification, the IP header information and the second BAP routing identification.
  • the second BAP routing identifier has a corresponding relationship; the IP header information includes at least one of a target IP address, a differentiated service code point DSCP, and a flow label Flow label.
  • the obtaining unit 1402 is configured to obtain the second correspondence, including any one of the following: the obtaining unit 1402 is specifically configured to obtain the first backhaul RLC channel between the first BAP routing identifier and the first IAB node egress link , the first BAP routing identifier has a corresponding relationship with the first backhaul RLC channel of the first IAB node egress link; the acquiring unit 1402 is specifically configured to acquire the second BAP routing identifier and the first IAB node egress link.
  • the transmission RLC channel, the second BAP routing identifier has a corresponding relationship with the first return RLC channel of the egress link of the first IAB node; the obtaining unit 1402 is specifically configured to obtain the IP header information in the first data packet and the first IAB node.
  • the first backhaul RLC channel of the egress link, the IP header information in the first data packet has a corresponding relationship with the first backhaul RLC channel of the egress link of the first IAB node, and the IP header information includes the target IP address, DiffServ code Point DSCP, at least one of the flow label Flow label;
  • the obtaining unit 1402 is specifically used to obtain the second BH RLC CH of the ingress link of the first IAB node and the first BH RLC CH of the egress link of the first IAB node, the first BH RLC CH of the ingress link of the first IAB node.
  • the second BH RLC CH of the ingress link of an IAB node has a corresponding relationship with the first BH RLC CH of the egress link of the first IAB node.
  • each unit in the communication device is similar to the operations performed by the first IAB node (ie, IAB2) in the embodiments shown in FIG. 11 and FIG. 12 , and are not repeated here.
  • the BAP routing identifier in the first network segment of the data packet is replaced by the BAP routing identifier in the second network segment through the replacement unit 1403, so that the data
  • the packets are normally transmitted in the second network segment, which reduces the abnormal problem of data packet transmission caused by the management of the IAB network by multiple IAB host nodes. It can ensure that the data packets are correctly routed in the IAB network spliced by various network segments managed by different host nodes.
  • the communication device may be the first IAB node, or may be a component of the first IAB node (eg DU, MT or processor, chip or chip system), the communication device is applied to access the backhaul integrated IAB network, and the communication device includes:
  • an obtaining unit 1501 used for the first IAB node to obtain the second correspondence
  • the sending unit 1502 is configured to determine, according to the second correspondence, to send the second data packet to the next hop node through the first backhaul RLC channel of the egress link in the second network segment.
  • the communication device further includes:
  • the receiving unit 1503 is configured to receive a first data packet in the first network segment, where the first data packet includes the first backhaul adaptation protocol BAP routing identifier, and the first BAP routing identifier is used for the first data packet in the transmission in the first network segment.
  • Replacement unit 1504 for replacing the first BAP routing identifier in the first data packet with the second BAP routing identifier according to the first corresponding relationship, to obtain the second data packet;
  • the replacement unit 1504 is configured to replace the first BAP routing identifier in the first data packet with the second BAP routing identifier according to the first corresponding relationship to obtain a second data packet.
  • the obtaining unit 1501 is further configured to obtain the first correspondence
  • the IAB network includes a first network segment and a second network segment, the first network segment is managed by a first host node, the second network segment is managed by a second host node, and the first host node is different from the second host node,
  • the second data packet includes a second BAP routing identifier, and the second BAP routing identifier is used for transmission of the second data packet in the second network segment.
  • each host node is allowed to only control the routing of data packets within its own network segment, and then the border nodes of the two network segments perform proxy operations at the BAP layer or the IP layer, reducing the need for The problem of abnormal egress mapping caused by the management of multiple IAB host nodes in the IAB network. It can ensure the normal transmission of data packets in the IAB network spliced by a variety of network segments managed by different host nodes.
  • the first data packet and the second data packet are the same data packet, and the first BAP routing identifier and the second BAP routing identifier are the same or different.
  • each host node only controls the routing of data packets in the network segment under its own jurisdiction, and is executed at the BAP layer or the IP layer by the border node (ie the first IAB node) of the two network segments.
  • the operation of the proxy replaces the first BAP routing identifier for routing in the first network segment included in the received data packet with the second BAP routing identifier that will be used for routing in the second segment of the network.
  • the method of splicing routing ensures that data packets can be reasonably and correctly routed in the network topology management of various new cross-home base stations.
  • each unit in the communication device is similar to the operations performed by the first IAB node (ie, IAB2) in the embodiments shown in FIG. 11 and FIG. 12 , and are not repeated here.
  • the sending unit 1502 determines, according to the second corresponding relationship, to go to the next hop through the first backhaul RLC channel of the egress link in the second network segment
  • the node sends the second data packet, which reduces the problem of abnormal egress mapping caused by the fact that the IAB network is managed by multiple IAB host nodes. It can ensure the normal transmission of data packets in the IAB network spliced by a variety of network segments managed by different host nodes.
  • the communication device may be the first host node, or may be a component of the first host node (eg CU, DU or processor, chip or chip system), the communication device is applied to access the integrated IAB network for backhaul, the IAB network includes a first network segment and a second network segment, and the first network segment is controlled by the first host Node management, the second network segment is managed by the second host node, the first host node is different from the second host node, and the communication device includes:
  • Obtaining unit 1601 is used to obtain a first BAP routing identifier and a second BAP routing identifier, the first BAP routing identifier and the second BAP routing identifier have a corresponding relationship, and the first BAP routing identifier is used for data packet transmission in the first network segment , the second BAP routing identifier is used for data packet transmission in the second network segment; the sending unit 1602 is used to send the first BAP routing identifier and the second BAP routing identifier to the first IAB node, and the first IAB node is located in the first network segment and the second network segment.
  • the obtaining unit 1601 is used to obtain the IP header information in the data packet and the second BAP routing identifier, the IP header information in the data packet has a corresponding relationship with the second BAP routing identifier, and the second BAP routing identifier is used for the data packet in the transmission in the second network segment;
  • the sending unit 1602 is configured to send the IP header information and the second BAP routing identifier in the data packet to the first IAB node, where the first IAB node is located in the first network segment and the second network segment.
  • the obtaining unit 1601 is further configured to obtain the first backhaul RLC channel between the first BAP routing identifier and the egress link of the first IAB node, and the first return RLC channel between the first BAP routing identifier and the egress link of the first IAB node.
  • the forwarding RLC channels have a corresponding relationship; optionally, the sending unit 1602 is further configured to send the first BAP routing identifier and the first backhauling RLC channel of the egress link of the first IAB node to the first IAB node.
  • the obtaining unit 1601 is further configured to obtain the first backhaul RLC channel between the second BAP routing identifier and the egress link of the first IAB node, and the second BAP routing identifier and the first return RLC channel of the egress link of the first IAB node.
  • the transmission RLC channel has a corresponding relationship; optionally, the sending unit 1602 is further configured to send the second BAP routing identifier to the first IAB node and the first return RLC channel of the exit link of the first IAB node.
  • the obtaining unit 1601 is further configured to obtain the IP header information in the first data packet and the first backhaul RLC channel of the egress link of the first IAB node, and the IP header information in the first data packet and the first IAB
  • the first backhaul RLC channel of the node egress link has a corresponding relationship;
  • the sending unit 1602 is further configured to send the IP header information in the first data packet and the first IAB node egress link to the first IAB node.
  • the first backhaul RLC channel is further configured to obtain the IP header information in the first data packet and the first backhaul RLC channel of the egress link of the first IAB node, and the IP header information in the first data packet and the first IAB
  • the first backhaul RLC channel has a corresponding relationship
  • the obtaining unit 1601 is further configured to obtain the second backhaul RLC channel of the ingress link of the first IAB node and the first backhaul RLC channel of the egress link of the first IAB node.
  • the second backhaul RLC channel has a corresponding relationship with the first backhaul RLC channel of the egress link of the first IAB node;
  • the sending unit 1602 is further configured to send the ingress link of the first IAB node to the first IAB node The second backhaul RLC channel and the first backhaul RLC channel of the egress link of the first IAB node.
  • the sending unit 1602 is further configured to send configuration information to the access IAB node, where the configuration information is used to indicate that the BAP address of the first IAB node is used as the destination BAP address of the uplink data packet.
  • the first network segment includes the first IAB node and the downstream node of the first IAB node; the second network segment includes the first IAB node and the upstream node of the first IAB node; the obtaining unit 1601 is further configured to obtain a third The corresponding relationship and the fourth corresponding relationship, the third corresponding relationship is the corresponding relationship between the IP address of the distributed unit DU in the first IAB node and the BAP address of the mobile terminal MT in the first IAB node, and the fourth corresponding relationship is the first IAB node.
  • the correspondence between the BAP address of the MT and the IP address of the DU in the downstream node of the first IAB node; the sending unit 1602 is further configured to send the third correspondence and the fourth correspondence, the third correspondence and the third correspondence to the second host node.
  • the four correspondences are used for the second host node to determine the first BAP routing identifier.
  • the first network segment includes a first IAB node and a downstream node of the first IAB node; the second network segment includes the first IAB node and an upstream node of the first IAB node;
  • the communication device further includes:
  • Determining unit 1603 configured to determine the third BAP routing identifier used for downlink transmission data packets in the first network segment, and the second BAP routing identifier includes the third BAP routing identifier;
  • the receiving unit 1604 is configured to receive a fourth BAP routing identifier sent by the second host node, where the fourth BAP routing identifier is used for uplink transmission of the data packet in the second network segment, and the second BAP routing identifier includes the fourth BAP routing identifier.
  • the sending unit 1602 is further configured to send the third BAP routing identifier to the second host node.
  • the first network segment includes a first IAB node and a downstream node of the first IAB node; the second network segment includes the first IAB node and an upstream node of the first IAB node;
  • each unit in the communication device is similar to the operations performed by the host node in the embodiments shown in FIG. 11 (eg, the operation performed by CU2) and FIG. 12 (eg, the operation performed by CU1) , and will not be repeated here.
  • the sending unit 1602 sends the first correspondence to the first IAB node, so that the data packet is normally transmitted in the second network segment, reducing the need for IAB
  • the communication device may be a second host node, or may be a component of the second host node (eg CU, DU or processor, chip or chip system), the communication device is applied to access the integrated IAB network for backhaul, the IAB network includes a first network segment and a second network segment, and the first network segment is controlled by the first host Node management, the second network segment is managed by the second host node, the first host node is different from the second host node, and the communication device includes:
  • the obtaining unit 1701 is used for the second host node to obtain the first BAP routing identification and the second BAP routing identification, the first BAP routing identification and the second BAP routing identification have a corresponding relationship, and the first BAP routing identification is used for the data packet in the first BAP routing identification.
  • transmission in the network segment the second BAP routing identifier is used for data packet transmission in the second network segment;
  • the sending unit 1702 is used for the second host node to send the first BAP routing identifier and the second BAP routing identifier to the first IAB node,
  • the first IAB node is located in the first network segment and the second network segment.
  • the obtaining unit 1701 is used for the second host node to obtain the IP header information in the data packet and the second BAP routing identifier, the IP header information in the data packet and the second BAP routing identifier have a corresponding relationship, and the second BAP routing identifier uses Since the data packet is transmitted in the second network segment; the sending unit 1702 is used to send the IP header information and the second BAP routing identifier in the data packet to the first IAB node, and the first IAB node is located in the first network segment and the second network segment. in the segment.
  • the obtaining unit 1701 is further configured to obtain the first backhaul RLC channel between the first BAP routing identifier and the first IAB node egress link, and the first BAP routing identifier and the first return link of the first IAB node egress link.
  • the transmission RLC channel has a corresponding relationship;
  • the sending unit 1702 is further configured to send the first BAP routing identifier and the first back transmission RLC channel of the exit link of the first IAB node to the first IAB node.
  • the obtaining unit 1701 is further configured to obtain the first backhaul RLC channel between the second BAP routing identifier and the egress link of the first IAB node, and the second BAP routing identifier and the first return link of the egress link of the first IAB node.
  • the transmission RLC channel has a corresponding relationship;
  • the sending unit 1702 is further configured to send the second BAP routing identifier and the first back transmission RLC channel of the exit link of the first IAB node to the first IAB node.
  • the obtaining unit 1701 is further configured to obtain the IP header information in the first data packet and the first return RLC channel of the egress link of the first IAB node, and the IP header information in the first data packet and the first IAB
  • the first backhaul RLC channel of the node's egress link has a corresponding relationship
  • the sending unit 1702 is further configured to send the IP header information in the first data packet and the first backhaul of the first IAB node's egress link to the first IAB node RLC channel.
  • the obtaining unit 1701 is further configured to obtain the second backhaul RLC channel of the ingress link of the first IAB node and the first backhaul RLC channel of the egress link of the first IAB node.
  • the second backhaul RLC channel has a corresponding relationship with the first backhaul RLC channel of the egress link of the first IAB node;
  • the sending unit 1702 is further configured to send the second backhaul of the ingress link of the first IAB node to the first IAB node
  • the RLC channel is the first backhaul RLC channel of the egress link of the first IAB node.
  • the sending unit 1702 is further configured to send configuration information to the access IAB node, where the configuration information is used to indicate that the BAP address of the first IAB node is used as the destination BAP address of the uplink data packet.
  • the first network segment includes a first IAB node and a downstream node of the first IAB node; the second network segment includes the first IAB node and an upstream node of the first IAB node;
  • the communication device further includes:
  • the receiving unit 1703 is configured to receive the third correspondence and the fourth correspondence sent by the first host node, where the third correspondence is the IP address of the distributed unit DU in the first IAB node and the BAP of the mobile terminal MT in the first IAB node
  • the correspondence between the addresses, and the fourth correspondence is the correspondence between the BAP address of the MT in the first IAB node and the IP address of the DU in the downstream node of the first IAB node;
  • the determining unit 1704 is configured to determine the first BAP routing identifier according to the third corresponding relationship and the fourth corresponding relationship.
  • the first network segment includes the first IAB node and the downstream node of the first IAB node; the second network segment includes the first IAB node and the upstream node of the first IAB node; the receiving unit 1703 is further configured to receive the first IAB node.
  • the first network segment includes the first IAB node and the downstream node of the first IAB node;
  • the second network segment includes the first IAB node and the upstream node of the first IAB node;
  • the determining unit 1704 is further configured to determine the first IAB node.
  • the fourth BAP routing identifier used for uplink transmission data packets in the second network segment, and the second BAP routing identifier includes the fourth BAP routing identifier;
  • the sending unit 1702 is further configured to send the fourth BAP routing identifier to the first host node.
  • each unit in the communication device is similar to the operations performed by the host node in the embodiments shown in the foregoing FIG. 11 (operation performed by CU1) and FIG. 12 (operation performed by CU2) , and will not be repeated here.
  • the sending unit 1702 sends the first correspondence to the first IAB node, so that the data packets are normally transmitted in the second network segment, reducing the need for IAB
  • FIG. 18 is a schematic structural diagram of the communication device involved in the above-mentioned embodiment provided for the embodiment of the present application, wherein the communication device may specifically be the IAB node in the foregoing embodiment, for example: the first IAB node, the third The parent node of an IAB node or the child node of the first IAB node, or IAB1, IAB2, IAB3, IAB4.
  • the structure of the communication device reference may be made to the structure shown in FIG. 18 .
  • the communication device includes at least one processor 1811 , at least one memory 1812 , at least one transceiver 1813 , at least one network interface 1814 and one or more antennas 1815 .
  • the processor 1811, the memory 1812, the transceiver 1813 and the network interface 1814 are connected, for example, through a bus. In this embodiment of the present application, the connection may include various interfaces, transmission lines, or buses, which are not limited in this embodiment. .
  • Antenna 1815 is connected to transceiver 1813.
  • the network interface 1814 is used to connect the communication device with other communication devices through a communication link.
  • the network interface 1814 may include a network interface between the communication device and the core network device, such as an S1 interface, and the network interface may include the communication device and other networks.
  • a network interface between devices such as other access network devices or core network devices, such as an X2 or Xn interface.
  • the processor 1811 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of software programs, for example, to support the communication device to perform the actions described in the embodiments.
  • the communication device may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal equipment, execute software programs, and process data of software programs. .
  • the processor 1811 in FIG. 18 may integrate the functions of a baseband processor and a central processing unit. Those skilled in the art can understand that the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the memory is mainly used to store software programs and data.
  • the memory 1812 may exist independently and be connected to the processor 1811 .
  • the memory 1812 can be integrated with the processor 1811, for example, in one chip.
  • the memory 1812 can store program codes for implementing the technical solutions of the embodiments of the present application, and is controlled and executed by the processor 1811 .
  • Figure 18 shows only one memory and one processor. In an actual communication device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be a storage element on the same chip as the processor, that is, an on-chip storage element, or an independent storage element, which is not limited in this embodiment of the present application.
  • the transceiver 1813 can be used to support the reception or transmission of radio frequency signals between the communication device and other IAB nodes (eg, UE, IAB node or IAB donor), and the transceiver 1813 can be connected to the antenna 1815 .
  • the transceiver 1813 includes a transmitter Tx and a receiver Rx.
  • one or more antennas 1815 can receive radio frequency signals
  • the receiver Rx of the transceiver 1813 is configured to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital
  • the baseband signal or digital intermediate frequency signal is provided to the processor 1811, so that the processor 1811 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 1813 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 1811, convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass a The radio frequency signal is transmitted by the antenna or antennas 1815.
  • the receiver Rx can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal.
  • the order of precedence is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, and the up-mixing processing and digital-to-analog conversion processing
  • the sequence of s is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • a transceiver may also be referred to as a transceiver unit, a transceiver, a transceiver, or the like.
  • the device used to implement the receiving function in the transceiver unit may be regarded as a receiving unit
  • the device used to implement the transmitting function in the transceiver unit may be regarded as a transmitting unit, that is, the transceiver unit includes a receiving unit and a transmitting unit, and the receiving unit also It can be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit can be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the communication device shown in FIG. 18 can be specifically used to implement the steps implemented by the IAB node in the method embodiments corresponding to FIG. 11 and FIG. 12 , and realize the technical effect corresponding to the communication device.
  • the descriptions in the respective method embodiments corresponding to FIG. 11 and FIG. 12 which will not be repeated here.
  • FIG. 19 is a schematic structural diagram of an IAB donor provided by an embodiment of the present application, and the IAB donor may adopt a CU-DU separation architecture. As shown in FIG. 19 , the IAB donor can be applied to the systems shown in FIG. 6 to FIG. 10 to realize the functions of the first host node or the second host node in the above method embodiments.
  • An IAB donor may include one or more DUs 1101 and one or more CUs 1102.
  • the DU 1101 may include at least one antenna 11011, at least one radio frequency unit 11012, at least one processor 11013 and at least one memory 11014.
  • the DU 1101 part is mainly used for the transmission and reception of radio frequency signals, the conversion of radio frequency signals and baseband signals, and part of baseband processing.
  • the CU 1102 may include at least one processor 11022 and at least one memory 11021 . Communication between the CU 1102 and the DU 1101 may be performed through an interface, wherein the control plane (control plane) interface may be F1-C, and the user plane (user plane) interface may be F1-U.
  • control plane control plane
  • user plane user plane
  • the CU 1102 part is mainly used to perform baseband processing, control the base station, and the like.
  • the DU 1101 and the CU 1102 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the CU 1102 is the control center of the base station, which can also be called a processing unit, and is mainly used to complete the baseband processing function.
  • the CU 1102 may be used to control the base station to execute the operation flow of the network device in the foregoing method embodiments.
  • the baseband processing on the CU and the DU may be divided according to the protocol layer of the wireless network, and the above content may be referred to for details.
  • the CU 1102 may be composed of one or more boards, and the multiple boards may jointly support a wireless access network (such as a 5G network) with a single access indication, or may respectively support a wireless access network with different access standards.
  • Wireless access network (such as LTE network, 5G network or other access network).
  • the memory 11021 and the processor 11022 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the DU 1101 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network (such as a 5G network) with a single access indication, or can support a wireless access network with different access standards (such as a 5G network). Such as LTE network, 5G network or other access network).
  • the memory 11014 and processor 11013 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the CU 1102 can transmit with the child nodes of the IAB donor through the DU 1101, the CU 1102 can be connected with other IAB donors through the interface, and the CU 1102 can receive data from other IAB donors (such as CUs of other IAB donors) through the interface and/or messages, or the CU 1102 may send data and/or messages to the other IAB donor through the interface.
  • the CU 1102 can transmit with the child nodes of the IAB donor through the DU 1101
  • the CU 1102 can be connected with other IAB donors through the interface
  • the CU 1102 can receive data from other IAB donors (such as CUs of other IAB donors) through the interface and/or messages, or the CU 1102 may send data and/or messages to the other IAB donor through the interface.
  • Embodiments of the present application also provide a computer-readable storage medium that stores one or more computer-executable instructions.
  • the processor executes the method implemented by the above-mentioned communication device, such as the above-mentioned IAB donor , A method implemented by the target parent node of the first IAB node, the first IAB node or the child node of the first IAB node.
  • Embodiments of the present application also provide a computer program product (or computer program) that stores one or more computers.
  • the processor executes the method implemented by the above communication device, as described above.
  • An embodiment of the present application further provides a chip system, where the chip system includes a processor for supporting a communication device to implement the method implemented by the above communication device, such as the method implemented by the above IAB donor and IAB node.
  • the chip system may further include a memory for storing necessary program instructions and data of the communication device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • An embodiment of the present application also provides a communication system, which includes the above communication device, such as the above IAB donor, a first IAB node, a parent node of the first IAB node, and/or a child node of the first IAB node.
  • the above communication device such as the above IAB donor, a first IAB node, a parent node of the first IAB node, and/or a child node of the first IAB node.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法及相关设备。用于在IAB网络由多个IAB宿主节点管理的场景下,通过第一IAB节点将数据包在第一网段中的BAP路由标识更换为第二网段中的BAP路由标识,使得数据包在第二网段中正常传输,减少了由于IAB网络由多个IAB宿主节点管理带来的数据包传输异常问题。可以保障数据包在多种由不同宿主节点管理的网段拼接起来的IAB网络中,数据包正常传输。

Description

一种通信方法及相关设备
本申请要求于2021年1月15日提交中国专利局、申请号为202110057037.8、发明名称为“一种通信方法及相关设备”、2021年4月1日提交中国专利局、申请号为202110356248.1、发明名称为“一种通信方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法及相关设备。
背景技术
在第三代合作伙伴计划(3rd-generation partnership project,3GPP)R15接入回转一体化(integrated accessand backhaul,IAB)的网络架构中,包括宿主节点(IABdonor)和IAB节点。在考虑集中式单元(central unit,CU)-分布式单元(distributed unit,DU)架构的情况下,IABdonor包括IABdonorCU和IABdonorDU。IAB节点可包括两部分功能单元:移动终端(mobile terminal,MT)和DU。其中,MT用于IAB节点与上级节点(或父节点)通信,而DU用于IAB节点与下级节点(或子节点)通信。
目前,IAB网络中的每个IAB节点和其父节点连接到同一个宿主节点上。由该宿主节点对IAB网络中的拓扑、路由以及服务质量(quality of service,QoS)等进行管理。
但是,若IAB网络由多个宿主节点管理,如何对IAB网络中IAB节点进行控制从而实现数据包的正常传输是亟待解决的问题。
发明内容
本申请实施例提供了一种通信方法及相关设备,在IAB网络由多个IAB宿主节点管理多个网段的场景下,可以实现数据包在多个网段内正常传输。
本申请实施例第一方面提供了一种通信方法,该方法可以由第一IAB节点执行,也可以由第一IAB节点的部件(例如IAB-DU、IAB-MT或者处理器、芯片、或芯片系统等)执行,该方法应用于接入回传一体化IAB网络,IAB网络包括第一网段与第二网段,第一网段由第一宿主节点管理,第二网段由第二宿主节点管理,第一宿主节点与第二宿主节点不同,该方法包括:第一IAB节点在第一网段中接收第一数据包,第一数据包包括第一回传适配协议BAP路由标识,第一BAP路由标识用于第一数据包在第一网段中传输;第一IAB节点获取第一对应关系;第一IAB节点根据第一对应关系将第一数据包中的第一BAP路由标识更换为第二BAP路由标识,得到第二数据包;第一IAB节点在第二网段中向下一跳节点发送第二数据包,下一跳节点是第一IAB节点的父节点或子节点。
本申请实施例中,在IAB网络由多个IAB宿主节点管理的场景下,通过第一IAB节点将数据包在第一网段中的BAP路由标识更换为第二网段中的BAP路由标识,使得数据包在第二网段中正常传输,减少了由于IAB网络由多个IAB宿主节点管理带来的数据包传输异常问题。可以保障数据包在多种由不同宿主节点管理的网段拼接起来的IAB网络中,数据包被正确的 路由。
可选地,在第一方面的一种可能的实现方式中,上述步骤还包括:第一IAB节点获取第二对应关系;第一IAB节点在第二网段中向下一跳节点发送第二数据包,包括:第一IAB节点根据第二对应关系,确定在第二网段中通过出口链路的第一回传无线链路控制RLC信道向下一跳节点发送第二数据包。
该种可能的实现方式中,在两个网段的出口映射由不同宿主节点管理时,第一IAB节点可以通过第二对应关系得到第二网段中正确的出口映射,进而实现数据包在第二网段中的正常传输。
可选地,在第一方面的一种可能的实现方式中,上述步骤:第一IAB节点根据第一对应关系将第一数据包中的第一BAP路由标识更换为第二BAP路由标识,得到第二数据包之前,方法还包括:第一IAB节点确定第一数据包中第一BAP路由标识中的BAP地址为第一IAB节点的BAP地址,且第一数据包满足预设条件;第一IAB节点确定第一数据包满足预设条件包括以下至少一项:第一数据包中包括指示信息,第一IAB节点根据指示信息确定第一数据包满足预设条件。若第一对应关系还包括第一数据包中的第一BAP路由标识,第一IAB节点确定第一数据包满足预设条件。
该种可能的实现方式中,第一IAB在更换BAP路由标识之前设置条件,减少对需要向BAP上层协议层接收处理的数据包进行无效处理,节省网络资源。进一步的,可以通过指示信息来确定第一数据包是否满足条件,或者通过第一对应关系是否包括第一BAP路由标识确定第一数据包是否满足条件。
可选地,在第一方面的一种可能的实现方式中,上述步骤:第一IAB节点根据第一对应关系将第一数据包中的第一BAP路由标识更换为第二BAP路由标识,得到第二数据包之前,方法还包括:第一IAB节点确定第一数据包中第一BAP路由标识中的BAP地址为第一IAB节点的BAP地址。
该种可能的实现方式中,相较于根据预设条件确定是否生成第二数据包,该方法又增加与BAP地址相关的条件,使得第一IAB节点判断的更加准确。
可选地,在第一方面的一种可能的实现方式中,上述步骤中的指示信息包括第一数据包的目的因特网协议IP地址,当第一数据包中的目的IP地址不是第一IAB节点的IP地址时,第一IAB节点确定第一数据包满足预设条件。
该种可能的实现方式中,提供了一种隐式的预设条件,减少对需要向BAP上层协议层接收处理的数据包进行无效处理,节省网络资源。
可选地,在第一方面的一种可能的实现方式中,上述步骤中的第一网段包括第一IAB节点以及第一IAB节点的上游节点;第二网段包括第一IAB节点以及第一IAB节点的下游节点;第一IAB节点在第一网段中接收第一数据包,包括:第一IAB节点在第一网段中接收上游节点发送的第一数据包;第一IAB节点在第二网段中向下一跳节点发送第二数据包,包括:第一IAB节点在第二网段中向下游节点发送第二数据包,第二BAP路由标识中的BAP地址为下游节点的BAP地址。
该种可能的实现方式中,在下行数据包跨网段传输的过程中,通过第一IAB节点将下行数据包在第一网段中的BAP路由标识更换为第二网段中的BAP路由标识,使得下行数据包在 第二网段中正常传输,减少了由于IAB网络由多个IAB宿主节点管理带来的数据包传输异常问题。可以保障下行数据包在多种由不同宿主节点管理的网段拼接起来的IAB网络中,实现下行数据包跨网段的正常传输。
可选地,在第一方面的一种可能的实现方式中,上述步骤中的第一网段包括第一IAB节点以及第一IAB节点的下游节点;第二网段包括第一IAB节点以及第一IAB节点的上游节点;第一IAB节点在第一网段中接收第一数据包,包括:第一IAB节点在第一网段中接收下游节点发送的第一数据包;第一IAB节点在第二网段中向下一跳节点发送第二数据包,包括:第一IAB节点在第二网段中向上游节点发送第二数据包,第二BAP路由标识中的BAP地址为第二宿主节点的BAP地址。
该种可能的实现方式中,在上行数据包跨网段传输的过程中,通过第一IAB节点将上行数据包在第一网段中的BAP路由标识更换为第二网段中的BAP路由标识,使得上行数据包在第二网段中正常传输,减少了由于IAB网络由多个IAB宿主节点管理带来的数据包传输异常问题。可以保障上行数据包在多种由不同宿主节点管理的网段拼接起来的IAB网络中,实现上行数据包跨网段的正常传输。
可选地,在第一方面的一种可能的实现方式中,上述步骤中第一IAB节点的上游节点为第一IAB节点的父节点;第一IAB节点在第二网段中向上游节点发送第二数据包之前,方法还包括:第一IAB节点确定第一数据包中第一BAP路由标识中的BAP地址为第一IAB节点的BAP地址。
该种可能的实现方式中,限定了BAP路由标识为BAP地址,第一IAB节点可以更简洁的进行更换过程。
可选地,在第一方面的一种可能的实现方式中,上述步骤中的第一BAP路由标识包括第一BAP地址和/或第一路径标识,第二BAP路由标识包括第二BAP地址和/或第二路径标识。
该种可能的实现方式中,限定了BAP路由标识为BAP地址,第一IAB节点可以更简洁的进行更换过程。
可选地,在第一方面的一种可能的实现方式中,上述步骤中的第一对应关系由第一宿主节点或第二宿主节点配置;第一IAB节点获取第一对应关系,包括以下任意一项:第一IAB节点获取第一BAP路由标识与第二BAP路由标识,第一BAP路由标识与第二BAP路由标识具有对应关系;第一IAB节点获取第一数据包中的IP头信息与第二BAP路由标识,IP头信息与第二BAP路由标识具有对应关系;IP头信息包括目标IP地址,区分服务代码点DSCP,流标签Flow label中的至少一种。
该种可能的实现方式中,提供给了多种第一IAB节点获取第一对应关系的情况,方便第一IAB节点确定第二BAP路由标识,进而完成不同网段的BAP路由标识转换。
可选地,在第一方面的一种可能的实现方式中,上述步骤中第一IAB节点获取第二对应关系,包括以下任意一项:第一IAB节点获取第一BAP路由标识与第一IAB节点出口链路的第一回传RLC信道,第一BAP路由标识与第一IAB节点出口链路的第一回传RLC信道具有对应关系;第一IAB节点获取第二BAP路由标识与第一IAB节点出口链路的第一回传RLC信道,第二BAP路由标识与第一IAB节点出口链路的第一回传RLC信道具有对应关系;第一IAB节点获取第一数据包中的IP头信息与第一IAB节点出口链路的第一回传RLC信道,第一数据包 中的IP头信息与第一IAB节点出口链路的第一回传RLC信道具有对应关系,IP头信息包括目标IP地址,区分服务代码点DSCP,流标签Flow label中的至少一种;第一IAB节点获取第一IAB节点入口链路的第二回传RLC信道与第一IAB节点出口链路的第一回传RLC信道,第一IAB节点入口链路的第二回传RLC信道与第一IAB节点出口链路的第一回传RLC信道具有对应关系。
该种可能的实现方式中,提供给了多种第一IAB节点获取第二对应关系的情况,方便第一IAB节点确定第二网段的出口链路,进而实现数据包在第二网段的正常传输。
本申请实施例第二方面提供了一种通信方法,该方法可以由第一IAB节点执行,也可以由第一IAB节点的部件(例如IAB-DU、IAB-MT或者处理器、芯片、或芯片系统等)执行,该方法应用于接入回传一体化IAB网络,该方法包括:第一IAB节点获取第二对应关系;第一IAB节点根据第二对应关系,确定在第二网段中通过出口链路的第一回传RLC信道向下一跳节点发送第二数据包。
本申请实施例中,第一IAB节点根据所述第二对应关系,确定在第二网段中通过出口链路的第一回传RLC信道向下一跳节点发送第二数据包,可以保障第二数据包在第二网段中正常传输。
可选地,在第二方面的一种可能的实现方式中,IAB网络包括第一网段与第二网段,第一网段由第一宿主节点管理,第二网段由第二宿主节点管理,第一宿主节点与第二宿主节点不同,上述步骤:第一IAB节点获取第二对应关系之前,方法还包括:第一IAB节点在第一网段中接收第一数据包,第一数据包包括第一回传适配协议BAP路由标识,第一BAP路由标识用于第一数据包在所述第一网段中传输。
该种可能的实现方式中,在IAB网络由多个IAB宿主节点管理的场景下,第一IAB节点根据第二对应关系,确定在第二网段中通过出口链路的第一回传RLC信道向下一跳节点发送第二数据包,减少了由于IAB网络由多个IAB宿主节点管理带来的出口映射异常问题。可以保障数据包在多种由不同宿主节点管理的网段拼接起来的IAB网络中,数据包正常传输。
可选地,在第二方面的一种可能的实现方式中,上述步骤中的第二数据包包括第二BAP路由标识,第二BAP路由标识用于第二数据包在所述第二网段中传输。
该种可能的实现方式中,允许每个宿主节点只控制自己所辖的网段内的数据包路由,然后由两个网段的边界节点在BAP层或IP层执行代理的操作,减少了由于IAB网络由多个IAB宿主节点管理带来的出口映射异常问题。可以保障数据包在多种由不同宿主节点管理的网段拼接起来的IAB网络中,数据包正常传输。
可选地,在第二方面的一种可能的实现方式中,上述步骤中的第一数据包和第二数据包是同一个数据包,第一BAP路由标识与第二BAP路由标识相同。
该种可能的实现方式中,即该IAB网络包括一个网段,通过第二对应关系确定出口链路的回传RLC信道,可以确定准确的信道传输数据包。
可选地,在第二方面的一种可能的实现方式中,上述步骤还包括:第一IAB节点获取第一对应关系;第一IAB节点根据第一对应关系将第一数据包中的第一BAP路由标识更换为第二BAP路由标识,得到第二数据包;
该种可能的实现方式中,在每个宿主节点只控制自己所辖的网段内的数据包路由,通过 由两个网段的边界节点(即第一IAB节点)在BAP层或IP层执行代理的操作,将接收到的数据包中包含的第一网段中进行路由的第一BAP路由标识替换为将要在第二段网络中路由所会用到的第二BAP路由标识,通过这种拼接路由的方式,保证新出现的多种跨宿主基站的网络拓扑管理中,数据包能被合理正确的路由。
本申请实施例第三方面提供了一种通信方法,该方法可以由第一宿主节点执行,也可以由第一宿主节点的部件(例如DU、CU或者处理器、芯片、或芯片系统等)执行。该方法应用于接入回传一体化IAB网络,IAB网络包括第一网段与第二网段,第一网段由第一宿主节点管理,第二网段由第二宿主节点管理,第一宿主节点与第二宿主节点不同,方法包括:第一宿主节点获取第一BAP路由标识与第二BAP路由标识,第一BAP路由标识与第二BAP路由标识具有对应关系,第一BAP路由标识用于数据包在第一网段中传输,第二BAP路由标识用于数据包在第二网段中传输;第一宿主节点向第一IAB节点发送第一BAP路由标识与第二BAP路由标识,第一IAB节点位于第一网段以及第二网段中。或者,第一宿主节点获取数据包中的IP头信息与第二BAP路由标识,数据包中的IP头信息与第二BAP路由标识具有对应关系,第二BAP路由标识用于数据包在第二网段中传输;第一宿主节点向第一IAB节点发送数据包中的IP头信息与第二BAP路由标识,第一IAB节点位于第一网段以及第二网段中。
本申请实施例中,在IAB网络由多个IAB宿主节点管理的场景下,通过第一宿主节点为第一IAB节点配置第一对应关系,使得数据包在第二网段中正常传输,减少了由于IAB网络由多个IAB宿主节点管理带来的数据包传输异常问题。可以保障数据包在多种由不同宿主节点管理的网段拼接起来的IAB网络中,数据包被正确的路由。
可选地,在第三方面的一种可能的实现方式中,上述步骤还包括:第一宿主节点获取第一BAP路由标识与第一IAB节点出口链路的第一回传RLC信道,第一BAP路由标识与第一IAB节点出口链路的第一回传RLC信道具有对应关系;
第一宿主节点向第一IAB节点发送第一BAP路由标识与第一IAB节点出口链路的第一回传RLC信道。
或者,
第一宿主节点获取第二BAP路由标识与第一IAB节点出口链路的第一回传RLC信道,第二BAP路由标识与第一IAB节点出口链路的第一回传RLC信道具有对应关系;
第一宿主节点向第一IAB节点发送第二BAP路由标识与第一IAB节点出口链路的第一回传RLC信道。
或者,
第一宿主节点获取第一数据包中的IP头信息与第一IAB节点出口链路的第一回传RLC信道,第一数据包中的IP头信息与第一IAB节点出口链路的第一回传RLC信道具有对应关系;
第一宿主节点向第一IAB节点发送第一数据包中的IP头信息与第一IAB节点出口链路的第一回传RLC信道。
或者,
第一宿主节点获取第一IAB节点入口链路的第二回传RLC信道与第一IAB节点出口链路的第一回传RLC信道,第一IAB节点入口链路的第二回传RLC信道与第一IAB节点出口链路的第一回传RLC信道具有对应关系;
第一宿主节点向第一IAB节点发送第一IAB节点入口链路的第二回传RLC信道与第一IAB节点出口链路的第一回传RLC信道。
该种可能的实现方式中,在IAB网络由多个IAB宿主节点管理的场景下,通过第一宿主节点为第一IAB节点配置第二对应关系,使得数据包在第二网段中可以确定正确的出口映射,减少了由于IAB网络由多个IAB宿主节点管理带来的数据包传输异常问题。可以保障数据包在多种由不同宿主节点管理的网段拼接起来的IAB网络中,数据包正常传输。
可选地,在第三方面的一种可能的实现方式中,上述步骤还包括:第一宿主节点向接入IAB节点发送配置信息,配置信息用于指示将第一IAB节点的BAP地址作为上行数据包的目的BAP地址。
该种可能的实现方式中,对于上行传输,第一宿主节点向接入节点发送配置信息,使得接入节点为上行数据包的BAP层添加第一IAB节点的BAP地址,从而实现上行数据包在第一网段中的正常传输。以及后续使得第一IAB节点可以对BAP路由标识进行正常更换。
可选地,在第三方面的一种可能的实现方式中,上述步骤中第一网段包括第一IAB节点以及第一IAB节点的下游节点;第二网段包括第一IAB节点以及第一IAB节点的上游节点;方法还包括:第一宿主节点获取第三对应关系以及第四对应关系,第三对应关系为第一IAB节点中分布式单元DU的IP地址与第一IAB节点中移动终端MT的BAP地址的对应关系,第四对应关系为第一IAB节点中MT的BAP地址与第一IAB节点的下游节点中DU的IP地址的对应关系;第一宿主节点向第二宿主节点发送第三对应关系以及第四对应关系,第三对应关系以及第四对应关系用于第二宿主节点确定第一BAP路由标识。
该种可能的实现方式中,第一宿主获取第三对应关系以及第四对应关系之后,向第二宿主节点发送第三对应关系以及第四对应关系,使得第二宿主节点可以为第二宿主的DU部分提供正确的第一BAP路由标识。
可选地,在第三方面的一种可能的实现方式中,上述步骤中的第一网段包括第一IAB节点以及第一IAB节点的下游节点;第二网段包括第一IAB节点以及第一IAB节点的上游节点;方法还包括:第一宿主节点确定在第一网段中下行传输数据包所用的第三BAP路由标识,第二BAP路由标识包括第三BAP路由标识;第一宿主节点向第二宿主节点发送第三BAP路由标识。
该种可能的实现方式中,第一宿主节点配置完第一网段中BAP路由标识告知第二宿主,进而实现第二宿主节点对第一IAB节点进行第一对应关系的配置。
可选地,在第三方面的一种可能的实现方式中,上述步骤中的第一网段包括第一IAB节点以及第一IAB节点的下游节点;第二网段包括第一IAB节点以及第一IAB节点的上游节点;方法还包括:第一宿主节点接收第二宿主节点发送的第四BAP路由标识,第四BAP路由标识用于数据包在第二网段中上行传输,第二BAP路由标识包括第四BAP路由标识。
该种可能的实现方式中,第一宿主节点接收第二宿主节点发送的用于第二网段中的BAP路由标识,进而实现第一宿主对IAB节点进行第一对应关系的配置。
本申请实施例第四方面提供了一种通信方法,该方法可以由第二宿主节点执行,也可以由第二宿主节点的部件(例如DU、CU或者处理器、芯片、或芯片系统等)执行。该方法应用于接入回传一体化IAB网络,IAB网络包括第一网段与第二网段,第一网段由第一宿主节点 管理,第二网段由第二宿主节点管理,第一宿主节点与第二宿主节点不同,第一IAB节点位于第一网段以及第二网段中,方法包括:
第二宿主节点获取第一BAP路由标识与第二BAP路由标识,第一BAP路由标识与第二BAP路由标识具有对应关系,第一BAP路由标识用于数据包在第一网段中传输,第二BAP路由标识用于数据包在第二网段中传输;
第二宿主节点向第一IAB节点发送第一BAP路由标识与第二BAP路由标识,第一IAB节点位于第一网段以及第二网段中。
或者,
第二宿主节点获取数据包中的IP头信息与第二BAP路由标识,数据包中的IP头信息与第二BAP路由标识具有对应关系,第二BAP路由标识用于数据包在第二网段中传输;
第二宿主节点向第一IAB节点发送数据包中的IP头信息与第二BAP路由标识,第一IAB节点位于第一网段以及第二网段中。
本申请实施例中,在IAB网络由多个IAB宿主节点管理的场景下,通过第二宿主节点为第一IAB节点配置第一对应关系,使得数据包在第二网段中正常传输,减少了由于IAB网络由多个IAB宿主节点管理带来的数据包传输异常问题。可以保障数据包在多种由不同宿主节点管理的网段拼接起来的IAB网络中,数据包被正确的路由。
可选地,在第四方面的一种可能的实现方式中,上述步骤还包括:
第二宿主节点获取第一BAP路由标识与第一IAB节点出口链路的第一回传RLC信道,第一BAP路由标识与第一IAB节点出口链路的第一回传RLC信道具有对应关系;
第二宿主节点向第一IAB节点发送第一BAP路由标识与第一IAB节点出口链路的第一回传RLC信道。
或者,
第二宿主节点获取第二BAP路由标识与第一IAB节点出口链路的第一回传RLC信道,第二BAP路由标识与第一IAB节点出口链路的第一回传RLC信道具有对应关系;
第二宿主节点向第一IAB节点发送第二BAP路由标识与第一IAB节点出口链路的第一回传RLC信道。
或者,
第二宿主节点获取第一数据包中的IP头信息与第一IAB节点出口链路的第一回传RLC信道,第一数据包中的IP头信息与第一IAB节点出口链路的第一回传RLC信道具有对应关系;
第二宿主节点向第一IAB节点发送第一数据包中的IP头信息与第一IAB节点出口链路的第一回传RLC信道。
或者,
第二宿主节点获取第一IAB节点入口链路的第二回传RLC信道与第一IAB节点出口链路的第一回传RLC信道,第一IAB节点入口链路的第二回传RLC信道与第一IAB节点出口链路的第一回传RLC信道具有对应关系;
第二宿主节点向第一IAB节点发送第一IAB节点入口链路的第二回传RLC信道与第一IAB节点出口链路的第一回传RLC信道。
该种可能的实现方式中,在IAB网络由多个IAB宿主节点管理的场景下,通过第二宿主 节点为第一IAB节点配置第二对应关系,使得数据包在第二网段中可以确定正确的出口映射,减少了由于IAB网络由多个IAB宿主节点管理带来的数据包传输异常问题。可以保障数据包在多种由不同宿主节点管理的网段拼接起来的IAB网络中,数据包正常传输。
可选地,在第四方面的一种可能的实现方式中,上述步骤还包括:第二宿主节点向接入IAB节点发送配置信息,配置信息用于指示将第一IAB节点的BAP地址作为上行数据包的目的BAP地址。
该种可能的实现方式中,对于上行传输,第二宿主节点向接入节点发送配置信息,使得接入节点为上行数据包的BAP层添加第一IAB节点的BAP地址,从而实现上行数据包在第一网段中的正常传输。以及后续使得第一IAB节点可以对BAP路由标识进行正常更换。
可选地,在第四方面的一种可能的实现方式中,上述步骤中的第一网段包括第一IAB节点以及第一IAB节点的下游节点;第二网段包括第一IAB节点以及第一IAB节点的上游节点;方法还包括:第二宿主节点接收第一宿主节点发送的第三对应关系以及第四对应关系,第三对应关系为第一IAB节点中分布式单元DU的IP地址与第一IAB节点中移动终端MT的BAP地址的对应关系,第四对应关系为第一IAB节点中MT的BAP地址与第一IAB节点的下游节点中DU的IP地址的对应关系;第二宿主节点根据第三对应关系以及第四对应关系确定第一BAP路由标识。
该种可能的实现方式中,第二宿主节点接收第三对应关系以及第四对应关系,进而第二宿主节点可以为第二宿主的DU部分提供正确的第一BAP路由标识。
可选地,在第四方面的一种可能的实现方式中,上述步骤中的第一网段包括第一IAB节点以及第一IAB节点的下游节点;第二网段包括第一IAB节点以及第一IAB节点的上游节点;方法还包括:第二宿主节点接收第一宿主节点发送的第三BAP路由标识,第三BAP路由标识用于数据包在第一网段中下行传输,第二BAP路由标识包括第三BAP路由标识。
该种可能的实现方式中,第二宿主节点接收第一宿主节点发送的用于第一网段中的BAP路由标识,进而实现第二宿主对IAB节点进行第一对应关系的配置。
可选地,在第四方面的一种可能的实现方式中,上述步骤中的第一网段包括第一IAB节点以及第一IAB节点的下游节点;第二网段包括第一IAB节点以及第一IAB节点的上游节点;方法还包括:第二宿主节点确定在第二网段中上行传输数据包所用的第四BAP路由标识,第二BAP路由标识包括第四BAP路由标识;第二宿主节点向第一宿主节点发送第四BAP路由标识。
该种可能的实现方式中,第二宿主节点配置完第二网段中BAP路由标识告知第一宿主,进而实现第一宿主节点对第一IAB节点进行第一对应关系的配置。
本申请实施例第五方面提供了一种通信装置,该通信装置可以是第一IAB节点,也可以是第一IAB节点的部件(例如IAB-DU、IAB-MT或者处理器、芯片或芯片系统),该通信装置执行前述第一方面或第一方面的任意可能的实现方式、第二方面或第二方面的任意可能的实现方式中的方法。
本申请实施例第六方面提供了一种通信装置,该通信装置可以是第一宿主节点,也可以是第一宿主节点的部件(例如DU、CU或者处理器、芯片或芯片系统),该通信装置执行前述第三方面或第三方面的任意可能的实现方式中的方法。
本申请实施例第七方面提供了一种通信装置,该通信装置可以是第二宿主节点,也可以是第二宿主节点的部件(例如DU、CU或者处理器、芯片或芯片系统),该通信装置执行前述第四方面或第四方面的任意可能的实现方式中的方法。
本申请实施例第八方面提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,该指令在计算机上执行时,使得计算机执行前述第一方面或第一方面的任意可能的实现方式、第二方面或第二方面的任意可能的实现方式、第三方面或第三方面的任意可能的实现方式、第四方面或第四方面的任意可能的实现方式中的方法。
本申请实施例第九方面提供了一种计算机程序产品,该计算机程序产品在计算机上执行时,使得计算机执行前述第一方面或第一方面的任意可能的实现方式、第二方面或第二方面的任意可能的实现方式、第三方面或第三方面的任意可能的实现方式、第四方面或第四方面的任意可能的实现方式中的方法。
本申请实施例第十方面提供了一种通信装置,包括:处理器,处理器与存储器耦合,存储器用于存储程序或指令,当程序或指令被处理器执行时,使得该装置实现上述第一方面或第一方面的任意可能的实现方式、第二方面或第二方面的任意可能的实现方式中的方法。
本申请实施例第十一方面提供了一种通信装置,包括:处理器,处理器与存储器耦合,存储器用于存储程序或指令,当程序或指令被处理器执行时,使得该装置实现上述第三方面或第三方面的任意可能的实现方式中的方法。
本申请实施例第十二方面提供了一种通信装置,包括:处理器,处理器与存储器耦合,存储器用于存储程序或指令,当程序或指令被处理器执行时,使得该装置实现上述第四方面或第四方面的任意可能的实现方式中的方法。
本申请实施例第十三方面提供了一种通信系统,包括第五方面提供的通信装置、第六方面提供的通信装置、第七方面提供的通信装置中的至少一个。
本申请实施例第十四方面提供了一种通信系统,包括第十方面提供的通信装置、第十一方面提供的通信装置、第十二方面提供的通信装置中的至少一个。
本申请实施例第十五方面提供了一种通信方法,该方法可以由IAB节点执行,也可以由IAB节点的部件(例如IAB-DU、IAB-MT、IAB donor或者处理器、芯片、或芯片系统等)执行,该方法应用于接入回传一体化IAB网络,该方法包括:IAB节点接收数据包,IAB节点根据数据包的类别和/或IAB节点的属性确定数据包异常。
可选地,在第十五方面的一种可能的实现方式中,数据包的类别包括上行以及下行。即数据包包括上行数据包和/或下行数据包。
可选地,在第十五方面的一种可能的实现方式中,数据包包括:父节点数据包和/或子节点数据包,其中,父节点数据包为IAB节点的父节点发送的数据包,子节点数据包为IAB节点的子节点发送的数据包。
可选地,在第十五方面的一种可能的实现方式中,数据包包括:上游数据包和/或下游数据包,其中,上游数据包为IAB节点的上游节点发送的数据包,下游数据包为IAB节点的下游节点发送的数据包。
可选地,在第十五方面的一种可能的实现方式中,IAB节点接收数据包,IAB节点根据数据包的类别和/或IAB节点的属性确定数据包异常包括:以下至少一项:
1、IAB节点接收上行数据包,如果该上行数据包的BAP层头中携带的是该IAB节点的BAP地址,则该IAB节点确定该上行数据包是错误或异常的数据包。
可选地,IAB节点接收上行数据包具体是位于IAB-DU的BAP层实体的接收部分接收上行数据包。
该种可能的实现方式中,IAB节点确定该上行数据包是错误或异常的数据包之后,可以丢弃该上行数据包。一方面,简化判断上行数据包异常的条件。另一方面,减少错误或异常的上行数据包占用IAB节点的缓存空间。
2、IAB-donor DU接收上行数据包,若该上行数据包的BAP层头中带的BAP地址不是该IAB-donor DU的BAP地址。则该IAB-donor DU确定该数据包是错误或异常的数据包。
该种可能的实现方式中,IAB-donor DU确定该上行数据包是错误或异常的数据包之后,可以丢弃该上行数据包。一方面,简化判断上行数据包异常的条件。另一方面,减少错误或异常的上行数据包占用IAB-donor DU的缓存空间。
本申请实施例第十六方面提供了一种通信方法,该方法可以由IAB节点执行,也可以由IAB节点的部件(例如IAB-DU、IAB-MT、IAB donor或者处理器、芯片、或芯片系统等)执行,该方法应用于接入回传一体化IAB网络,该方法包括:IAB节点发送数据包之前,IAB节点根据数据包的类别和/或IAB节点的属性确定数据包异常。
可选地,在第十六方面的一种可能的实现方式中,数据包的类别包括上行以及下行。即数据包包括上行数据包和/或下行数据包。
可选地,在第十六方面的一种可能的实现方式中,数据包包括:父节点数据包和/或子节点数据包,其中,父节点数据包为IAB节点的父节点发送的数据包,子节点数据包为IAB节点的子节点发送的数据包。
可选地,在第十六方面的一种可能的实现方式中,数据包包括:上游数据包和/或下游数据包,其中,上游数据包为IAB节点的上游节点发送的数据包,下游数据包为IAB节点的下游节点发送的数据包。
可选地,在第十六方面的一种可能的实现方式中,IAB节点发送数据包之前,IAB节点根据数据包的类别和/或IAB节点的属性确定数据包异常包括:以下至少一项:
1、IAB节点在发送数据包之前,如果在路由表中找不到一个任何一个表项包含该数据包中的目标BAP地址。则该IAB节点确定该数据包是错误或异常的数据包。
可选地,IAB节点具体是位于IAB-MT/DU的BAP层实体的发送部分。
该种可能的实现方式中,IAB节点确定该数据包是错误或异常的数据包之后,可以丢弃该数据包。一方面,简化判断数据包异常的条件,可以减少错误或异常的数据包占用IAB节点的缓存空间。另一方面,减少发送错误或异常数据包带来的网络资源消耗。
2、IAB-donor-DU在发送下行数据包之前,如果在路由表中找不到一个任何一个表项包含该数据包中的目标BAP地址。则该IAB-donor DU确定该下行数据包是错误或异常的数据包。
该种可能的实现方式中,IAB-donor-DU确定该下行数据包是错误或异常的数据包之后,可以丢弃该下行数据包。一方面,简化判断下行数据包异常的条件,可以减少错误或异常的下行数据包占用IAB-donor-DU的缓存空间。另一方面,减少发送错误或异常的下行数据包带来的网络资源消耗。
对于第十五方面以及第十六方面,相比于现有技术中通用复杂的方式确定数据包异常。本申请实施例提供的数据包处理方法可以在具体情形下,简化确定数据包异常的条件,更精准的识别出更多的异常数据包,相关有益效果可参考上面的描述。
其中,第五、第八、第九、第十、第十三、第十四方面或者其中任一种可能实现方式所带来的技术效果可参见第一方面或第一方面不同可能实现方式所带来的技术效果,此处不再赘述。
其中,第五、第八、第九、第十、第十三、第十四方面或者其中任一种可能实现方式所带来的技术效果可参见第二方面或第二方面不同可能实现方式所带来的技术效果,此处不再赘述。
其中,第六、第八、第九、第十一、第十三、第十四方面或者其中任一种可能实现方式所带来的技术效果可参见第三方面或第三方面不同可能实现方式所带来的技术效果,此处不再赘述。
其中,第七、第八、第十、第十二、第十三、第十四方面或者其中任一种可能实现方式所带来的技术效果可参见第四方面或第四方面不同可能实现方式所带来的技术效果,此处不再赘述。
从以上技术方案可以看出,本申请实施例具有以下优点:在IAB网络由多个IAB宿主节点管理的场景下,第一BAP路由标识是在由第一宿主节点控制的IAB节点组成的第一网段中用于数据包路由的信息,而第二BAP路由标识是在由第二宿主节点控制的IAB节点组成的第二网段中用于数据包路由的信息,通过第一IAB节点将数据包在第一网段中的BAP路由标识更换为第二网段中的BAP路由标识,使得数据包在第二网段中正常传输,减少了由于IAB网络由多个IAB宿主节点管理带来的数据包传输异常问题。
附图说明
图1为一种IAB独立组网场景示意图;
图2为一种IAB非独立组网场景示意图;
图3为一种IAB网络系统架构示意图;
图4为一种IAB网络用户面协议栈示意图;
图5为一种IAB网络控制面协议栈示意图;
图6为本申请实施例中跨宿主切换场景的一种示意图;
图7为本申请实施例中双宿主连接场景的一种示意图;
图8为本申请实施例中从上至下跨宿主切换场景的一种示意图;
图9为本申请实施例中从下至上跨宿主切换场景的一种示意图;
图10为本申请实施例中双宿主连接场景的另一种示意图;
图11为本申请实施例中通信方法的一个流程示意图;
图12为本申请实施例中通信方法的另一个流程示意图;
图13至图19为本申请实施例中通信装置的几种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
首先,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1、通信系统:包括但不限于窄带物联网(narrow band-internet of things,NB-IoT)系统、无线局域网(wireless local access network,WLAN)系统、长期演进计划(long term evolution,LTE)系统、下一代5G移动通信系统或者5G之后的通信系统,例如新无线(new radio,NR)、设备到设备(device to device,D2D)通信系统等。
2、网络设备:或称为基站,包括但不限于演进型节点B(evolved node base,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,或home node B,HNB)、基带单元(baseband Unit,BBU)、演进的(evolved LTE,eLTE)基站、NR基站(next generation node B,gNB)等。
3、终端设备:包括但不限于用户设备(user equipment,UE)、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理、无线局域网(wireless local access network,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等中的任意一种。下面以终端设备是UE为例进行示意性说明。
4、无线回传节点(也可以称为IAB节点):用于为无线接入无线回传节点的节点(例如,终端)提供无线回传(backhaul)服务。其中,无线回传服务是指通过无线回传链路提供的数据和/或信令回传服务。无线回传节点可以是IAB节点,也可以是中继节点(relay node,RN),本申请的方案不做限定,可以是一种具有转发功能的上述基站或者终端设备中的一种,也可以是一种独立的设备形态。在包含无线回传节点的网络(以IAB网络为例进行说明)中,无线回传节点可以为终端提供无线接入服务,并通过无线回传链路连接到宿主基站(donor gNB)传输用户的业务数据。
示例性的,无线回传节点还可以是用户驻地设备(customer premises equipment,CPE)、家庭网关(residential gateway,RG)等设备。该情况下,本申请实施例提供的方法还可以应用于家庭连接(home access)的场景中。
进一步地,下面对IAB网络中涉及到的概念作简单介绍。
1、无线回传节点、宿主节点:
本申请实施例中,将支持一体化的接入和回传的节点称为无线回传节点。在LTE通信系统中,该无线回传节点又可以称为中继节点(relay node,RN),在5G中,无线回传节点又可以称为IAB节点(IAB node)。为便于描述,下面以IAB节点为例进行说明。
IAB节点可以为终端设备提供无线接入服务,该终端设备的数据(可以包括用户面数据和控制面信令)由IAB节点通过无线回传链路连接到宿主节点传输。
在本申请实施例中,宿主节点又称为IAB宿主(IAB onor)或者宿主基站(donor gNodeB,DgNB)。具体地,DgNB可以是一个具有完整基站功能的接入网网元,也可以是包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)分离形态的接入网网元。DgNB连接到为终端设备服务的核心网网元,例如,连接到5G核心网(5G core,5GC),并为IAB节点提供无线回传功能。为便于表述,本申请实施例将宿主节点的集中式单元简称为宿主CU(donor CU),将宿主节点的分布式单元简称为宿主DU(donor DU),其中,donor CU还有可能是控制面(control plane,CP)或用户面(user plane,UP)分离的形态,例如,一个CU包括一个CU-CP和多个CU-UP组成,本申请实施例对此不作限定。
2、父节点、子节点、下游节点、上游节点:
每个IAB节点将为其提供无线接入服务和/或无线回传服务的相邻节点视为父节点(parent node)。相应地,每个IAB节点可视为其父节点的子节点(child node)。IAB网络可以支持多跳和多连接组网,因此,在终端设备和宿主节点之间可能存在多条传输路径。在某一条传输路径上,终端设备和为该终端设备提供无线接入服务的IAB节点之间、IAB节点之间、IAB节点和为该IAB节点提供回传服务的宿主节点之间有确定的层级关系。其中,为IAB节点提供无线回传服务的节点称为该IAB节点的父节点,或,为终端设备提供无线接入服务的节点称为该终端设备的父节点,该IAB节点可视为该IAB节点的父节点的子节点,该终端设备可视为该终端设备的父节点的子节点。这里,该IAB节点的父节点可以是其他IAB节点,也可以是宿主节点,当该IAB节点与宿主节点直接通过无线空口进行通信时,该IAB节点的父节点即为宿主节点。
可选地,子节点也可以称为下级节点或者下游节点,父节点也可以称为上级节点或者上游节点。
3、中间IAB节点:
中间IAB节点是指为其它IAB节点(例如,接入IAB节点或其它中间IAB节点)提供无线回传服务的IAB节点,或者说为接入IAB节点和IAB宿主之间路径上的IAB节点。
4、接入链路:
终端设备和为它提供无线接入服务的节点(例如,IAB节点、宿主节点或者宿主DU)进行通信时所使用的无线链路,包括用于上行传输的接入链路和下行传输的接入链路。用于上行传输的接入链路也被称为上行接入链路或接入上行链路,其传输方向是从该终端设备至该节点;用于下行传输的接入链路也被称为下行接入链路或接入下行链路,其传输方向是从该节点至该终端设备。本申请中,终端设备的接入链路为无线链路,故接入链路也可被称为无线接入链路。
5、回传链路:
回传链路是指某个IAB节点和它的父节点进行通信时所使用的无线链路,其父节点可以是一个IAB节点也可以是宿主节点,包括用于上行传输的回传链路和下行传输的回传链路。用于上行传输的回传链路也被称为上行回传链路或回传上行链路,其传输方向是从该IAB节点至该IAB节点的父节点;用于下行传输的回传链路也被称为下行回传链路或回传下行链路,其传输方向是该IAB节点的父节点至该IAB节点。本申请中,IAB节点与父节点之间的回传链路为无线链路,故回传链路也可被称为无线回传链路。
6、传输路径:
从发送节点至接收节点的全程路由,路径由至少一段链路(link)组成,在本申请实施例中,链路表示相邻节点之间的连接。也就是说,传输路径为发送节点与接收节点之间的以该发送节点为起点且以该接收节点为终点的传输路径。后续,为了描述方便,可以将发送节点与接收节点之间的以该发送节点为起点且以该接收节点为终点的传输路径描述为发送节点与接收节点之间的传输路径。
在上行传输中,可以将终端设备与宿主节点之间除宿主节点以外的任一个节点作为发送节点,将发送节点的上级节点(例如,该发送节点的父节点或该父节点的父节点等)作为接收节点。例如,发送节点可以是某个IAB节点,接收节点可以是该IAB节点的父节点,在该IAB节点与该IAB节点的父节点之间的全程路由表示一条传输路径。再例如,发送节点可以是某个IAB节点,接收节点可以是宿主节点,在该IAB节点与该宿主节点之间的全程路由表示一条传输路径。
同理,在下行传输中,发送节点可以是宿主节点与该终端设备之间除终端设备以外的任一个节点,接收节点可以是该发送节点的下级节点(例如,该发送节点的子节点或该子节点的子节点等)。例如,发送节点可以是某个IAB节点,接收节点可以是该IAB节点的子节点,在该IAB节点与该IAB节点的子节点之间的全程路由表示一条传输路径。再例如,发送节点可以是某个IAB节点,接收节点可以终端设备,在该IAB节点与该终端设备之间的全程路由表示一条传输路径。
7、F1接口、F1接口的协议层:
F1接口是指IAB节点的DU部分和宿主节点(或donor-CU)之间的逻辑接口,F1接口也可以称为F1*接口,支持用户面以及控制面。
F1接口的协议层是指在F1接口上的通信协议层。
本申请中所有节点、消息的名称仅仅是为了描述方便而设定的名称,在实际网络中的名称可能不同,不应该理解本申请限定各种节点、消息的名称。相反,任何具有和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内,以下不再赘述。
相较于第四代移动通信系统,第五代移动通信(5G)针对网络各项性能指标,全方位得都提出了更严苛的要求。例如,容量指标提升1000倍,更广的覆盖需求、超高可靠超低时延等。一方面,考虑到高频载波频率资源丰富,在热点区域,为满足5G超高容量需求,利用高频小站组网愈发流行。高频载波传播特性较差,受遮挡衰减严重,覆盖范围不广,故而需要大量密集部署小站,相应地,为这些大量密集部署的小站提供光纤回传的代价很高,施工难 度大,因此需要经济便捷的回传方案;另一方面,从广覆盖需求的角度出发,在一些偏远地区提供网络覆盖,光纤的部署难度大,成本高,也需要设计灵活便利的接入和回传方案。IAB技术为解决上述两个问题提供了思路:其接入链路(Access Link)和回传链路(Backhaul Link)皆采用无线传输方案,减少光纤部署。
在5G当前的标准中,考虑到高频段的覆盖范围小,为了保障网络的覆盖性能,在IAB网络中可能采用多跳组网。此外,考虑到业务传输可靠性的需求,可以使IAB节点支持双连接(dual connectivity,DC)或者多连接(multi-connectivity),以应对回传链路可能发生的异常情况,例如链路的中断或阻塞(blockage)及负载波动等异常,提高传输的可靠性保障。因此,IAB网络支持多跳组网,还可以支持多连接组网。在由IAB节点服务的终端设备和IAB donor之间,存在至少一条由多段链路组成的传输路径。在一条传输路径上,包含多个节点,如UE,一个或多个IAB节点,IAB donor(若IAB donor为CU和DU分离的形态,则还包含IAB-donor-DU部分,和IAB-donor-CU部分),每个IAB节点将为其提供接入和回传服务的相邻节点视为父节点,相应地,每个IAB节点可视为其父节点的子节点。
请参阅图1,图1是IAB独立组网场景示意图。
IAB node 1的父节点为IAB donor,IAB node 1又为IAB node 2和IAB node 3的父节点,IAB node 2和IAB node 3均为IAB node4的父节点,IAB node 5的父节点为IAB node 2。UE的上行数据包可以经一个或多个IAB节点传输至宿主站点IAB donor后,再由IAB donor发送至移动网关设备(例如5G核心网中的用户平面功能单元UPF),下行数据包将由IAB donor从移动网关设备处接收后,再通过IAB节点发送至UE。图1示出的为IAB独立(standalone,SA)组网场景,IAB节点和UE均仅通过NR制式的空口与网络建立连接。
图1所示的IAB独立组网场景仅仅是示例性的,在多跳和多连接结合的IAB场景中,还有更多其他的可能性,例如图中的IAB donor和另一IAB donor下的IAB node组成双连接为UE服务等,具体此处不做限定。
IAB网络除了支持如图1所示的独立组网场景之外,IAB网络还可以支持如图2所示的非独立组网场景。
请参阅图2,图2是IAB非独立组网场景示意图。
IAB节点支持4G和5G网络双连接(E-UTRAN NR Dual Connectivity,EN-DC),其中LTE的基站eNB为主基站(master eNB,MeNB),为IAB节点提供LTE的空口(LTE Uu)连接,并与4G核心网-演进型分组核心网(evolved packet core,EPC)建立S1接口进行用户面和控制面传输。IAB-donor gNB为辅基站,为IAB节点提供NR的空口(NR Uu)连接,并与核心网EPC建立S1接口进行用户面传输。类似的,UE也支持EN-DC,UE通过LTE Uu接口连接到主基站eNB,通过NR Uu接口连接到辅基站IAB node,UE的辅基站也可以是IAB donor gNB。
需说明,图2仅为组网示例,IAB网络的NSA场景也同样支持多跳IAB组网,例如图2中的UE可以为另一个IAB节点,即IAB节点可以通过多跳无线回传链路连接到IAB donor gNB。
本申请中的IAB非独立组网场景,也可以被称之为IAB的EN-DC组网场景。
前述已经结合图1与图2对独立组网(SA)的IAB网络以及非独立组网(NSA)的IAB网络进行了描述。下面对于宿主节点包括CU和DU分离形态以及IAB节点包括MT和DU情况下 的IAB网络系统架构进行描述。请参阅图3,图3是IAB网络系统架构示意图。
在IAB节点工作在SA模式时,IAB donor可以连接到5GC。其中,IAB donor CU-CP通过NG控制面接口(NG-C)连接到5GC中的控制面网元,例如:接入和移动性管理功能(access and mobility management.function,AMF)。IAB donor CU-UP通过NG用户面接口(NG-U)连接到5GC中的用户面网元,例如:用户面功能(user plane function,UPF)。
在IAB节点工作在NSA模式(或者称为EN-DC模式)时,IAB donor CU-UP可以通过S1用户面接口(S1-U)连接到EPC,例如:业务网关(serving gateway,SGW)。MeNB与IAB节点的MT之间通过LTE-Uu空口连接,MeNB通过X2-C接口与IAB donor CU-CP连接,MeNB通过S1接口连接到EPC(包括SI接口用户面以及S1接口控制面)。
当然,图3所示的MeNB可以更换为5G的基站gNB,相应的MeNB与IAB节点的MT之间的LTE-Uu空口更换为NR-Uu空口,gNB可以和5GC之间建立用户面和/或控制面的接口,gNB和IAB-donor为IAB节点提供双链接服务,gNB可以作为IAB节点的主基站或辅基站的角色,具体此处不做限定。
目前,IAB网络确定在无线回传链路引入一个新的协议层:回传适配协议(backhual adaptation protocol,BAP)层,该BAP层位于无线链路控制(radio link control,RLC)层之上,可用于实现数据包在无线回传链路的路由,以及承载映射等功能。
在IAB节点(或者IAB的DU)和宿主节点(或者IAB donor CU)之间,需要建立F1接口(或者称为F1*接口等),该F1接口支持用户面协议(F1-U/F1*-U)和控制面协议(F1-C/F1*-C)。
IAB网络用户面协议栈可以参考图4,用户面协议包括以下协议层的一个或多个:通用分组无线服务隧道协议用户面(general packet radio service tunnelling protocol user plane,GTP-U)层、用户数据报协议(user datagram protocol,UDP)层、因特网协议(internet protocol,IP)等协议层。
通过F1/F1*接口的用户面,IAB节点和IAB宿主之间可以执行用户面数据的传输,以及下行传输状态反馈等功能。
IAB网络控制面协议栈可以参考图5,控制面协议包括以下协议层的一个或多个:F1应用协议(F1application protocol,F1AP)层、流控传输协议(stream control transport protocol,SCTP)层、IP等协议层。
通过F1/F1*接口的控制面,IAB节点和IAB宿主之间可以进行执行接口管理、对IAB-DU进行管理,以及执行UE上下文相关的配置等。
目前,每个IAB节点和其父节点连接到同一个IAB宿主上,每个IAB节点的MT和DU可以视为是受同一个IAB宿主管理。因此,一个IAB宿主下的IAB节点组成的IAB网络中的拓扑管理、路由配置、服务质量(quality of service,QoS)管理等,都是受一个IAB宿主(具体可以是IAB donor CU或者IAB donor CU-CP)控制的。示例性的,如图1所示的场景,每个IAB节点在入网的过程中,IAB宿主会知道IAB节点是通过哪一个父节点连接入网的,若IAB宿主是CU-DU分离的形态,还可以知道该IAB节点所连接的IAB donor DU是哪一个(即父节点所连接到的IAB donor DU)。若IAB节点发生拓扑更新(例如添加新的父节点或者改变父节点等)都是在IAB宿主的控制下完成的。这就意味着,当IAB网络只有一个IAB宿 主时,IAB宿主可以获知IAB网络中IAB节点和IAB donor DU组成的网络拓扑状态的。因此,IAB宿主(具体可以是IAB donor CU)可以基于网络拓扑状态进行IAB网络中的路由配置管理,该路由配置包括IAB节点/IAB donor DU如何为上层数据包添加BAP头中的路由信息,每个IAB节点/IAB donor DU的路由表的配置等。另外,由于IAB donor CU知悉IAB节点和UE的业务的QoS要求,且每一段无线回传链路的回传RLC信道(backhaul RLC chaannel,BH RLC CH)的建立、修改等管理都是在IAB donor CU的控制下进行的,因此,数据包在无线回传链路上的QoS保障,也是IAB宿主(具体可以是IAB donor CU)来进行控制的。具体的,IAB donor CU通过控制数据包在无线回传链路上的BH RLC channel的映射关系,来提供数据传输的QoS保障,而每个IAB节点/IAB donor DU的BH RLC channel的映射也是根据IAB宿主(具体可以是IAB donor CU)提供的配置来执行的。
但是,上述IAB宿主管理IAB网络只考虑到由一个IAB宿主管理IAB网络的场景,由一个IAB宿主控制IAB网络中的网络拓扑、路由配置以及BH RLC channel映射管理等。当IAB节点可以连接到多个IAB宿主的时候,或者当IAB节点的MT和DU不属于同一个IAB宿主管理的时候,可能会出现一个IAB节点的业务或者IAB节点下连接的UE的业务需要经由几类不同的节点进行传输。以IAB节点连接到2个IAB宿主为例对涉及的这几类不同的节点进行分类,具体可以包括:IAB donor CU1管理的IAB节点(即IAB节点的MT和DU都连接到IAB donor CU1,都可以由IAB donor CU1管理或配置)、IAB donor CU2管理的IAB节点(即IAB节点的MT和DU都连接到IAB donor CU2,都可以由IAB donor CU2管理或配置)、IAB donor CU1以及IAB donor CU2共同管理的IAB节点(即IAB节点的MT和DU分别连接到两个不同的IAB宿主,例如IAB节点的MT连接到IAB donor CU2,由IAB donor CU2进行管理或配置,而IAB节点的DU连接到IAB donor CU1,由IAB donor CU1进行管理或配置)。
下面对IAB节点可以连接到多个IAB宿主以及当IAB节点的MT和DU不属于同一个IAB宿主管理的的场景进行描述:
下面对本申请实施例提供的通信方法所适用的场景进行描述:
请参阅图6,IAB节点执行跨宿主节点的切换场景。该场景下,第三IAB节点可以从源父节点(第一IAB节点),切换连接至目标父节点(第二IAB节点)。其中,第一IAB节点包含MT部分(即MT1)和DU部分(DU1),第一IAB节点连接至第一宿主节点,通过第一宿主节点的DU部分(即donor DU1)连接至第一宿主节点的CU部分(CU1)。其中,第二IAB节点包含MT部分(即MT2)和DU部分(DU2),第二IAB节点连接至第二宿主节点,通过第二宿主节点的DU部分(即donor DU2)连接至第二宿主节点的CU部分(CU2)。其中,第三IAB节点包含MT部分(即MT3)和DU部分(DU3),若IAB节点内允许部署多个逻辑DU,例如第三IAB节点中有两个逻辑DU:DU3a和DU3b,则上述第三节点的DU具体可以是DU3a或DU3b。第三IAB节点可以为UE或其他IAB节点提供接入服务。该切换场景可以理解第三IAB节点从第一宿主节点切换至第二宿主节点的过程。也可以理解为从一条链路(源链路)切换至另一条链路(目标链路)的过程。
在IAB节点执行跨IAB宿主节点的切换过程中,由于IAB节点和下游节点都需要切换连接到新的IAB宿主,因此执行的顺序有很多种可能性,比如从上至下,或者从下至上,或者交叉嵌套的(nested)顺序,或者任意的顺序。结合多种不同可能的执行顺序,可以将IAB 节点执行跨宿主切换的过程分为四个时期,结合图6,四个时期分别为:原始期(initial stage)、中间期(intermediate stage)选项(option)1、中间期选项2、最终期(final stage)。在切换过程中,原始期可以直接到最终期(不需要经过中间期),原始期也可以经过中间期选项1到最终期,原始期还可以经过中间期选项2到最终期,此外,切换过程也可以只包含原始期到中间期,或者只包含中间期到最终期,具体此处不做限定。
因此在整个IAB节点与下属的UE和IAB节点的迁移过程中,可能会出现一个IAB节点的MT部分和DU部分,分别连接到两个不同的IAB宿主节点的情况。例如:图6的中间期(intermediate stage)选项1所示的网络状态可以理解为IAB节点和下游节点按照从上至下执行切换的顺序时可以出现的一种状态,中间期选项2所示的网络状态可以理解为IAB节点和下游节点按照从下至上执行切换的顺序时可以出现的一种状态。其中,对于中间期选项1来说,CU1可以配置或管理Donor DU1、MT1、DU1a、DU3a以及UE;CU2可以配置或管理Donor DU2、MT2、DU2b以及MT3。对于中间期选项2来说,CU1可以管理Donor DU1、MT1、DU1a、以及MT3;CU2管理Donor DU2、MT2、DU2b、DU3b以及UE。其中,宿主节点对IAB节点的管理具体可参考前面的描述,具体此处不再赘述。
请参阅图7,IAB节点连接多个宿主节点的双连接场景。其中,(a)场景下,第三IAB节点双连接到两个IAB donor的网络,其DU部分连接到第一宿主CU,两者之间的通信可以包括两条链路,一条链路(leg#1)包括:第一宿主节点CU(Donor1-CU)、第一宿主节点DU(Donor1-DU)、第一IAB节点的MT(IAB1-MT)、第一IAB节点的DU(IAB1-DU)、第三IAB节点的MT(IAB3-MT)、第三IAB节点的DU(IAB3-DU)。另一条链路(leg#2)包括:第一宿主节点CU(Donor1-CU)、第二宿主节点DU(Donor2-DU)、第二IAB节点的MT(IAB2-MT)、第二IAB节点的DU(IAB2-DU)、第三IAB节点的MT(IAB3-MT)、第三IAB节点的DU(IAB3-DU)。(b)场景下,第三IAB节点双连接到两个IAB donor的网络,其下属的子节点,即第四IAB节点(具体可以是其DU部分)与第一宿主节点的CU之间可以途径两条不同的链路进行通信,其中一条链路(leg#1)包括:第一宿主节点CU(Donor1-CU)、第一宿主节点DU(Donor1-DU)、第一IAB节点(包括第一IAB节点的MT(IAB1-MT)和第一IAB节点的DU(IAB1-DU))、第三IAB节点(包括第三IAB节点的MT(IAB3-MT)和第三IAB节点的DU(IAB3-DU))、第四IAB节点(包括第四IAB节点的MT(IAB4-MT)和第四IAB节点的DU(IAB4-DU))。另一条链路(leg#2)包括:第一宿主节点CU(Donor1-CU)、第二宿主节点DU(Donor2-DU)、第二IAB节点(包括第二IAB节点的MT(IAB2-MT)、第二IAB节点的DU(IAB2-DU))、第三IAB节点(包括第三IAB节点的MT(IAB3-MT)、第三IAB节点的DU(IAB3-DU))、第四IAB节点(包括第四IAB节点的MT(IAB4-MT)、第四IAB节点的DU(IAB4-DU))。
请参阅图8,本申请实施例中从上至下跨宿主切换场景的一种示意图。发生切换的节点为IAB节点2(可以称为IAB node2或者IAB2),该IAB2可以为一个或多个UE/子节点提供接入和回传服务,图8示出了接入IAB2所服务的小区的一个UE1,以及一个子节点IAB3,IAB3下还有UE2和UE3,UE2与UE3接入到IAB3所服务的小区中。可以理解的是,在实际应用中,IAB2还可以有一个或多个孙节点(经过至少两跳无线回传链路连接到IAB2的IAB节点),IAB3还可能服务更多的UE、子节点或孙节点,具体此处不做限定。
IAB2从源父节点(即图8中所示的S-parent IAB1)在执行切换后连接到目标父节点(即图8中所示的T-parent IAB4)后,其下游节点IAB3,以及UE1和UE2跟随IAB2执行切换。
如前所述,在IAB节点执行跨IAB宿主节点的切换过程中,可能会出现一个IAB节点的MT部分和DU部分,分别连接到两个不同的IAB宿主节点的情况。如图8所示,当IAB2-MT已经完成切换,IAB2的MT部分已经连接至目标IAB宿主(即图8中所示的T donor CU2),但是IAB2-DU部分还连接在源IAB宿主(即图8中所示的S donor CU1),IAB2的下游子节点(IAB3)以及UE(UE1,UE2,UE3)也仍然连接到S donor CU1。这种情况下,IAB3要与S node CU1传输数据包,需要经过图8中曲线所示的路径传输,即经由IAB2(属于由两个宿主节点共同管理的节点)、IAB4和T donor DU2(IAB4和T donor DU2都属于由T donor CU2管理的节点),此外,数据包还将经由T donor DU2和S donor CU1之间的IP传输网络进行传输。
请参阅图9,本申请实施例中从下至上跨宿主切换场景的一种示意图,该场景下的结构与前述图8所示的架构类似,此处不再赘述。与前述图8不同的是,图9是从下至上跨宿主切换场景。IAB2和下属节点执行从S donor CU1到T donor CU2之间的切换,将IAB2和下游节点看做是一个群组,执行切换的顺序如果为从下至上,即下游节点先执行切换,IAB2的MT最后执行切换。这种情况下,如果IAB3-DU、UE2以及UE3已经切换连接至T donor CU2,而IAB2还连接在S-parent IAB1上,这种情况下,IAB3-DU虽然已经是由T donor CU2管理,IAB3-MT部分的控制面仍然连接在S donor CU1上,但IAB3-DU部分与T donor CU2之间的数据和信令传输,需要经由S donor CU1控制的节点(IAB2、IAB1、S donor DU1)来传输(参见图9中的曲线指示的路径),故这种传输路径上也会包括由两个不同宿主节点控制的节点。
请参阅图10,本申请实施例中双宿主连接场景的另一种示意图。该场景下的结构与前述图8所示的架构类似,此处不再赘述。与前述图8和图9不同的是,图10是双宿主连接场景。其中,IAB2先与第一父节点(即图10中所示的S-parent IAB1)建立连接,然后通过添加辅站的方式,与第二父节点(即图10中所示的T-parent IAB4)建立连接,其中第一父节点连接到第一宿主节点(即图10中所示的S donor CU1),第二父节点连接到第二宿主节点(即图10中所示的T donor CU2)。IAB2的DU部分连接到S donor CU1,但IAB2的MT部分,同时接入到IAB1(具体是IAB1的DU部分)服务的小区和IAB4(具体是IAB4的DU部分)所服务的小区。IAB2的子节点和下游UE,都仍然与S donor CU1之间保持连接关系。因此,IAB2所服务的UE的业务,以及IAB3的业务(包括下游UE2和UE3的业务)都可以经由IAB2,以及IAB4和T donor DU2进行传输。
可以理解的是,在实际应用中,图6至图10的架构中还可以有更多的IAB节点,和/或,更多的宿主节点。另外,IAB网络可以分为更多的网段,这些网段由不同的宿主节点管理。
问题1:对于上述图6至图10的场景下,在无线回传网络中,都出现了不同宿主节点控制的IAB节点拼接起来组成一个传输路径进行业务传输的需求。在这种无线回传的路径上,如何进行IAB网络的路由管理和配置、无线承载映射等,以保证数据包在这种跨宿主的网络拓扑中能被正确的路由传输,且在传输中被提供合理的QoS保障。
针对问题1,本申请实施例提供一种通信方法(具体可以参考图11与图12所对应的实施例),整体解决思路是:第一BAP路由标识是在由第一宿主节点控制的IAB节点组成的第一网段中用于数据包路由的信息,而第二BAP路由标识是在由第二宿主节点控制的IAB节点组成的第二网段中用于数据包路由的信息,第一IAB节点(即边界节点)可以视为两段网络中的BAP层的代理节点,负责为数据包在两个网段中的BAP路由标识做转换,进而实现数据包在两段网络中正常传输。
下面对本申请实施例中的通信方法进行描述。
请参阅图11,本申请实施例中通信方法的一个实施例包括步骤1101至步骤1106。
本申请实施例中,图11所示的通信方法应用于数据包的下行传输,为了方便理解,结合图8的架构进行描述。因此,本申请实施例中的第一IAB节点为图8中的IAB2,则第一IAB节点的父节点为IAB4,第一IAB节点的子节点为IAB3,第一宿主节点为T donor(包括T donor CU2以及T donor DU2),第二宿主节点为S donor(包括S donor CU1以及S donor DU1),第一宿主节点与第二宿主节点不同,第一宿主节点(CU2)管理的第一网段包括T donor、T IAB父节点(即IAB4)、第一IAB节点的MT部分(即IAB2-MT)。第二宿主节点(CU1)管理的第二网段包括S donor、第一IAB节点的DU部分(即IAB2-DU)、第一IAB节点的子节点(IAB3)。
对于下行传输,第一IAB节点的上一跳节点为第一IAB节点的父节点(即IAB4),第一IAB节点的下一跳节点为第一IAB节点的子节点(即IAB3)。第一IAB节点(IAB2)位于第一网段以及第二网段中,也可以理解为第一IAB节点(IAB2)受第一宿主节点(T donor)和第二宿主节点(S donor)管理,具体可以是第一IAB节点的MT部分(IAB2-MT)由第一宿主节点(T donor)管理,第一IAB节点的DU部分(IAB2-DU)由第二宿主节点(S donor)管理。宿主节点对IAB节点管理,可以理解为宿主节点与IAB节点之间有控制面的连接(例如RRC连接和/或F1连接),可以经由该控制面的连接为IAB节点提供必要的配置(例如路由和承载映射相关的配置)。可以理解的是,第一IAB节点(IAB2)也可以称为边界IAB节点。
在步骤1101中,S donor CU1向T donor DU2发送下行数据包。
可选地,S donor CU1经过IP网络向T donor DU2发送下行数据包,相应的,T donor DU2接收下行数据包。
一种实施例中,该下行数据包是需要发送给第二网段中的IAB节点的,例如是发给IAB2-DU部分的数据包,或者是发给IAB3的DU部分的数据包。下面以数据包是发送给IAB3的DU部分的数据包为例进行介绍。
在步骤1102中,T donor DU2为下行数据包添加第一BAP路由标识,得到第一数据包。
T donor DU2(以下简称DU2)可以根据T donor CU2提供的配置信息,为下行数据包添加第一BAP路由标识。因此,在T donor DU2为下行数据包添加第一BAP路由标识之前,T donor CU2(以下简称CU2)需要先对DU2进行配置,CU2对DU2进行的配置内容可以包括:为DU2分配BAP层标识(BAP address)、为DU2建立或修改DU2与DU2的子节点(例如IAB4)之间的BH RLC CH所需的配置信息、为DU2提供用于下行传输的路由配置、DU2与下一跳节点(例如IAB4)的BH RLC CH映射配置。
可选地,BH RLC CH所需的配置信息可以包括:BH RLC CH的标识、与BH RLC CH对应的 QoS参数、与BH RLC CH对应的优先级等中的至少一种。
可选地,用于下行传输的路由配置可以包括:IP头信息到第一BAP路由标识的对应关系、第一BAP路由标识和下一跳节点的标识(例如IAB4的标识)的对应关系等。
可选的,DU2与下一跳节点(例如IAB4)的BH RLC CH映射配置可以是从IP头信息到BH RLC CH的映射关系。
可选地,上述IP头信息包括:源IP地址、目的IP地址、区分服务代码点(differentiated services code point,DSCP)、流标签(flow label)等中的至少一种。其中,flow label是IPV6报文头中的流标签字段。
可选地,在进行DU2与下一跳节点(例如IAB4)的BH RLC CH映射配置中,在CU2向DU2指示从IP头信息到BH RLC CH的映射关系时,可以用下一跳节点的标识(例如IAB4的BAP层标识)以及一个BH RLC CH的标识(即BH RLC CH ID)共同标识BH RLC CH。
若前述下行数据包是需要发送给IAB2-DU部分的下行数据包,为了实现CU2对DU2进行正确的配置,CU2需要知道第三对应关系,进而可以向DU2配置正确的第一BAP路由标识。其中,第三对应关系为第一IAB节点中DU(例如IAB2-DU)的IP地址与第一IAB节点中MT(例如IAB2-MT)的BAP地址的对应关系。若前述下行数据包是需要发送给IAB2的下游节点(例如IAB3-DU部分)的下行数据包,为了实现CU2对DU2进行正确的配置,CU2需要知道第四对应关系,进而可以向DU2配置正确的第一BAP路由标识。其中,第四对应关系为第一IAB节点中MT(例如IAB2-MT)的BAP地址与第一IAB节点的下游节点(例如IAB3)中DU的IP地址的对应关系。
CU2获取第三对应关系的方式有三种方式,下面分别描述:
1、由于CU2管理IAB2-MT,一方面,CU2可以为IAB2-MT分配BAP地址。另一方面,IAB2-MT可以通过无线资源控制(radio resource control,RRC)消息将IAB2-DU的IP地址告知CU2。因此,CU2可以获知与IAB2-MT共部署的IAB2-DU的IP地址,进而获取第三对应关系。
2、由于CU2管理IAB2-MT,一方面,CU2可以为IAB2-MT分配BAP地址。另一方面,IAB2-MT可以通过无线资源控制(radio resource control,RRC)消息向CU2为IAB2-DU部分请求IP地址。因此,CU2可以通过RRC消息向IAB2-MT发送分配给IAB2-DU的IP地址,因此CU2自然可以获知与IAB2-MT共部署的IAB2-DU的IP地址,进而获取第三对应关系。
3、由于CU1管理IAB2-DU,一方面,CU1可以知道IAB2-DU的IP地址。另一方面,IAB2-DU可以从IAB2-MT处获取CU2给IAB2-MT配置的BAP地址(BAP address,或称为BAP层标识),并将IAB2-MT的BAP地址告知CU1(例如携带在F1AP消息中通知CU1),因此,CU1可以得到IAB2-MT的BAP地址以及IAB2-DU的IP地址,进而获取第三对应关系。CU1再将该第三对应关系发送给CU2。具体的,CU1可以将第三对应关系携带在XnAP消息中发送给CU2。具体的,CU1可以将第三对应关系携带在XnAP消息中发送给CU2,例如CU1在发送给CU2的XnAP消息中,包含IAB2-MT的BAP地址,以及IAB2的DU部分的一个或多个IP地址。
CU2获取第四对应关系的方式:IAB2-DU可以从IAB2-MT处获取CU2给IAB2-MT配置的BAP地址(BAP address,或称为BAP层标识),并将IAB2-MT的BAP地址通过F1AP消息告知CU1。由于IAB2的下游节点由CU1管理,因此CU1可以获知IAB2有哪些下游节点以及这些下 游节点的DU部分的IP地址,进而确定第四对应关系,CU1将第四对应关系告知CU2。具体的,CU1可以将第四对应关系携带在XnAP消息中发送给CU2,例如CU1在发送给CU2的XnAP消息中,包含IAB2-MT的标识(例如BAP地址),以及IAB2的一个或多个下游节点的IP地址(具体可以是这些下游节点的DU部分的IP地址)。当然,CU1也可以向CU2发送IAB2-MT的其他标识(例如为IAB2-MT在Xn接口分配的标识,即UE XnAP ID)与IAB2下游节点中DU部分的IP地址,CU2可基于XnAP消息中的IAB2-MT的其他标识确定IAB2-MT,由于自己为IAB2-MT分配的BAP地址,进而CU2可以确定第四对应关系。
DU2接收下行数据包,并根据CU2对DU2进行的上述配置以及下行数据包的IP头信息选择第一BAP路由标识,并将该第一BAP路由标识添加在BAP层的头信息中,得到第一数据包。
本申请实施例中的第一BAP路由标识包括第一BAP地址和/或第一路径标识。
可选地,若第一BAP路由标识包括第一BAP地址,在图11所示的传输下行数据包的过程中,第一BAP地址为第一网段中最后一跳节点(也可以理解为第一网段中的目的IAB节点)的BAP地址。对于图8所示的架构来说,由于是下行传输,所以第一网段中所用的第一BAP地址为第一网段中目的IAB节点的BAP地址,即IAB2的BAP地址。
可选地,对于图8来说,该第一BAP地址为IAB2的BAP地址,第一路径标识为DU2到IAB2之间的下行传输路径标识。
在步骤1103中,T donor DU2通过IAB4向IAB2发送第一数据包,相应的,IAB2接收第一数据包。
DU2得到第一数据包之后,根据步骤1102中CU2对DU2的配置以及第一数据包的IP头信息确定出口链路的BH RLC CH,并通过该出口链路的BH RLC CH向IAB4发送第一数据包。具体可以是T donor DU2向IAB4中的MT发送第一数据包。
由于IAB4由CU2管理,CU2可以为IAB4提供下行传输的路由和BH RLC CH映射配置,下行传输的路由可以是第一BAP路由标识和下一跳节点(例如IAB2)的标识的对应关系。BH RLC CH映射配置可以是IAB4与上一跳节点(例如DU2)之间入口链路的BH RLC CH到IAB4与下一跳节点(例如IAB2)之间出口链路的BH RLC CH的映射关系。
IAB4接收第一数据包,并根据CU2对IAB4的配置以及第一数据包确定出口链路的BH RLC CH,并通过该出口链路的BH RLC CH向IAB2发送第一数据包。
IAB2在第一网段中接收上一跳节点(即IAB4)发送的第一数据包。
在步骤1104中,IAB2获取第一对应关系。
本申请实施例中的第一对应关系包括数据包(可以是数据包中的BAP路由标识和/或IP头信息)与第二BAP路由标识的对应关系。即,第一对应关系可以包括第一数据包中第一BAP路由标识与第二BAP路由标识的对应关系,和/或第一对应关系可以包括第一数据包中的IP头信息与第二BAP路由标识的对应关系。其中,第二BAP路由标识中包含第二BAP地址,和第二BAP路径标识两部分,用于从IAB2到其下游节点在第二网段中的无线回传链路进行路由,该第二BAP路由标识可以指示一条从IAB2到其在第二网段中的下游节点之间的传输路径。其中,上述IP头信息具体可以是指以下信息中的任意一项或多项:源IP地址,目标IP地址,DSCP,流标签flow label。
进一步的,第一对应关系还可以包括下列中的至少一种:
1、指示信息,该指示信息用于指示第一对应关系用于上行传输和/或下行传输。其中,对于上行传输,边界IAB节点(即IAB2)的上一跳节点是IAB2的子节点,IAB2的下一跳节点是IAB2的父节点。对于下行传输,IAB2的上一跳节点是IAB2的父节点,IAB2的下一跳节点是IAB2的子节点。示例性的,该指示信息用于指示第一对应关系具体适用的传输方向,例如,第一对应关系若包括第一数据包中第一BAP路由标识与第二BAP路由标识的对应关系,可以通过该指示信息表明,该第一BAP路由标识与第二BAP路由标识的对应关系适用于上行方向的传输还是下行方向的传输,或者既适用于上行,又适用于下行;或者,第一对应关系若包括第一数据包中的IP头信息与第二BAP路由标识的对应关系,则该指示信息可用于表明该IP头信息与第二BAP路由标识的对应关系,具体适用于上行方向的传输还是下行方向的传输,或者既适用于上行,又适用于下行。
2、与第一网段相关的标识,该标识与第一BAP路由标识对应。例如:与第一BAP路由标识对应第一网段所属的宿主节点(具体可以是宿主CU或者宿主CU-CP)标识。本申请实施例中,宿主节点的标识可以是该宿主节点的gNB ID,或者可以是宿主CU或者宿主CU-CP的IP地址,还可以是网管(OAM)为宿主CU或者宿主CU-CP分配的其他标识。示例性的,上一跳节点在第一网段,下一跳节点在第二网段。其中,与第一网段相关的标识与第一BAP路由标识对应,可以理解为由第一BAP路由标识所确定的传输路径上的一个或多个节点,位于第一网段中,该第一BAP路由标识被用于在第一网段中标识到第一IAB节点的一个传输路径。
3、与第二网段相关的标识,该标识与第二BAP路由标识对应。例如:与第二BAP路由标识对应第二网段所属的宿主节点(具体可以是宿主CU)标识。其中,与第二网段相关的标识与第二BAP路由标识对应,可以理解为由第二BAP路由标识所确定的传输路径上的一个或多个节点,位于第二网段中,该第二BAP路由标识被用于在第二网段中标识从第一IAB节点到第二网段中的一个目标节点之间的一个传输路径。
4、上一跳节点标识,该标识与第一BAP路由标识对应。其中,上一跳节点标识与第一BAP路由标识对应,可以理解为:上一跳节点是第一BAP路由标识所指示的传输路径中的第一IAB节点的上一跳节点。
5、下一跳节点标识,该标识与第二BAP路由标识对应。其中,下一跳节点标识与第一BAP路由标识对应,可以理解为:下一跳节点是第一BAP路由标识所指示的传输路径中第一IAB节点的下一跳的节点。
当然,第一对应关系可以包括上述几种情况中的多种情况。示例性的,第一对应关系可以包括与第一BAP路由标识对应第一网段所属的CU标识,以及与第二BAP路由标识对应第二网段所属的CU标识。和/或,第一对应关系还可以包括与第一BAP路由标识对应的上一跳节点标识,以及与第二BAP路由标识对应的下一跳节点标识。
可以理解的是,上述几种情况只是举例,在实际应用中,还可以包括其他内容,具体此处不做限定。
另外,上述多种情况与第一对应关系可以用同一个对应关系表示(例如:第一对应关系),也可以用不同的信息(例如:第一对应关系与一个指示信息)来表示。如果是用不同的信息表示,一般情况下由同一宿主节点共同配置。
本申请实施例中的上一跳节点标识或者下一跳节点标识(以下简称上/下一跳节点标识), 可以是上/下一跳节点的BAP地址,还可以是上/下一跳节点的IP地址,在实际应用中,还可以有其他情况,例如,在上/下一跳节点为IAB节点2的子节点时,该子节点的标识可以是子节点的C-RNTI以及子节点接入的小区的标识,还可以是该子节点在IAB节点2与宿主节点(体可以是宿主CU或者宿主CU-CP)之间F1接口上的控制面标识(如IAB节点2为该子节点分配的gNB-DU UE F1AP ID,和/或宿主CU为该子节点分配的gNB-CU UE F1AP ID),具体标识的形式此处不做限定。
由于IAB2的MT和DU分别由不同的IAB宿主节点控制,IAB2-MT可通过RRC连接至CU2,而IAB2-DU可以通过F1连接CU1,故该IAB2节点所需的路由配置,可以由CU1配置,也可以由CU2配置。即本申请实施例中IAB2获取第一对应关系的方式有两种,下面分别描述:
1、CU1确定第一对应关系,并向IAB2发送第一对应关系。也可以理解为,CU1为IAB2配置第一对应关系。
CU2将CU2给DU2配置的IP头信息与第一BAP路由标识之间的对应关系告知CU1,CU2可以通过XnAP消息将该对应关系告知CU1。因此,CU1可以知道IP头信息中的目的IP地址对应是自己管理的哪一个IAB节点(例如IAB3,具体可以是IAB3的DU部分),然后CU1可以确定该IP头信息或第一BAP路由标识将要映射到的第二BAP路由标识中的BAP地址(或称为第二BAP地址,例如为IAB3的BAP地址),对于第二BAP路由标识中的第二BAP路径标识(或称为第二BAP routing ID)可以由CU1自行确定,例如CU1根据第二网段的负载情况和/或链路质量确定一个到达IAB3的路径。进而,CU1在确定了第二BAP路由标识中的BAP地址和第二路径标识,就确定出第二BAP路由标识。结合从CU2处获取的IP头信息的内容,以及第一BAP路由标识的内容,CU1可以确定第一对应关系,并向IAB2发送第一对应关系。相应的,IAB2接收CU1发送的第一对应关系。
可选地,CU1通过F1AP向IAB2-DU发送第一对应关系。
2、CU2确定第一对应关系,并向IAB2发送第一对应关系。也可以理解为,CU2为IAB2配置第一对应关系。
这种可能的方式中,CU1需要将CU1在第二网段中分配的一个或多个BAP路由标识发送给CU2。该一个或多个BAP路由标识,指示了从IAB2到其在第二网段中的下游节点之间的一个或多个传输路径,其中包含第二BAP路由标识。另外,CU1还需要将IAB2节点的下游节点的IP地址和BAP地址的映射关系发送给CU2。由于CU2在为donor DU2配置如何根据IP头信息确定第一BAP路由标识时,已经预先确定IP头信息中目标IP地址为IAB3的IP地址,因此,CU2可以确定与第一BAP路由标识所对应的IAB节点为IAB2的下游节点(以IAB3为例),结合CU1发来的IAB3的IP地址和BAP地址的对应关系,CU2可进一步确定IAB3在第二网段中的的BAP地址,然后从CU1提供的一个或多个包括IAB3的BAP地址的BAP路由标识中选择出一个第二BAP路由标识,并将第二BAP路由标识与第一BAP路由标识对应,得到第一对应关系。然后,CU2再向IAB2发送第一对应关系,相应的,IAB2接收CU2发送的第一对应关系。
可选地,CU2通过RRC消息向IAB2-MT发送第一对应关系。
在步骤1105中,IAB2根据第一对应关系将第一数据包中的第一BAP路由标识更换为第二BAP路由标识,得到第二数据包。
IAB2获取第一对应关系以及第一数据包之后,IAB2可以根据第一对应关系将第一数据包中的第一BAP路由标识更换为第二BAP路由标识,得到第二数据包。
可选地,在IAB2将第一数据包中的第一BAP路由标识更换为第二BAP路由标识之前,IAB节点可以判断第一数据包是否满足预设条件,若第一数据包满足预设条件,则IAB2将第一数据包中的第一BAP路由标识更换为第二BAP路由标识。
可选地,在IAB2将第一数据包中的第一BAP路由标识更换为第二BAP路由标识之前,IAB节点可以判断第一数据包中第一BAP路由标识中的BAP地址是否为IAB2的BAP地址,以及判断第一数据包是否满足预设条件。
可选地,若第一数据包中第一BAP路由标识中的BAP地址为IAB2的BAP地址,且确定第一数据包满足预设条件。则IAB2根据第一对应关系将第一数据包中的第一BAP路由标识更换为第二BAP路由标识,得到第二数据包。
另一种可选的方式中,IAB 2还可以在第一数据包满足预设条件时(无需先判断第一数据包中所包含的BAP地址是否为IAB 2的BAP地址),根据第一对应关系将第一数据包中的第一BAP路由标识更换为第二BAP路由标识,得到第二数据包。
可选地,若第一数据包中第一BAP路由标识中的BAP地址为IAB2的BAP地址,且第一数据包不满足预设条件,则IAB2将该第一数据包交给IAB2BAP层的上层协议层进行接收处理。
本申请实施例中的预设条件可以包括以下至少一项:
1、第一数据包中包括指示信息,该指示信息用于IAB2确定第一数据包满足预设条件。其中,该指示信息可以是指第一数据包携带特殊的BAP路径标识、也可以是指第一数据包携带特殊的BAP地址、还可以是指第一数据包的BAP层头信息的特殊比特位出现或者为特定的取值,还可以是指第一数据包中的目的IP地址不是IAB2的IP地址等。
2、第一数据包中携带的第一BAP路由标识与第一对应关系中的BAP路由标识一致。
可以理解的是,上述两种只是举例,在实际应用中,预设条件还可以有其他情况,此处不做限定。
本申请实施例中,IAB2确定第一数据包满足预设条件,可以理解为第一数据包包括指示信息,IAB2根据指示信息确定第一数据包满足预设条件。
一种可能的实施例中,如果该指示信息是特殊的BAP地址,则IAB2可以被配置至少两个BAP地址(如BAP address 2A和BAP address 2B),其中,当数据包中BAP路由标识部分中所包含的BAP地址为BAP address 2A时,IAB2收到该数据包后,可以将数据包中的BAP层头去掉后,向上层协议层(例如IP层)递交;当数据包中BAP路由标识部分中所包含的BAP地址为BAP address 2B时,IAB2收到该数据包后,可以将数据包中的BAP层头中的BAP路由标识替换为第二BAP路由标识,得到第二数据包。可选的,IAB2可以从CU1或CU2接收配置信息,该配置信息用于指示BAP address 2B为IAB2的特殊BAP地址(例如,CU2在为IAB2通过RRC消息配置BAP address 2B时,就携带指示信息指示该地址为特殊的BAP地址)。
另一种可能的实施例中,如果该指示信息是特殊的BAP路径标识,则IAB2可以被配置至少一个特殊的BAP路径标识(如BAP path ID 2X),其中,当数据包中BAP路由标识部分中所包含的BAP路径标识为除去BAP path ID 2X外的其他路径标识时,IAB2收到该数据包后,可以将数据包中的BAP层头去掉后,向上层协议层(例如IP层)递交;当数据包中BAP路由 标识部分中所包含的BAP路径标识为BAP path ID 2X时,IAB2收到该数据包后,可以将数据包中的BAP层头中的BAP路由标识替换为第二BAP路由标识,得到第二数据包。可选的,IAB2可以从CU1或CU2接收配置信息,该配置信息用于指示BAP path ID 2X为IAB2的特殊BAP路径标识(例如,CU1在为IAB2通过F1AP消息配置携带有BAP path ID 2X的BAP路由标识相应的路由表项时,就携带指示信息指示该路径标识为特殊的BAP路径标识)。
可选地,当指示信息是指第一数据包中的目的IP地址不是IAB2的IP地址时,IAB2在剥离第一数据包的BAP层时,可以获知第一数据包的目的IP地址,进而确定第一数据包满足预设条件。
另一种可能的实施例中,IAB2确定第一数据包满足预设条件可以包括:IAB2根据第一对应关系确定第一数据包满足预设条件。示例性的,IAB2根据第一对应关系中的第一BAP路由标识与第一数据包中携带的BAP路由标识是否一致,确定第一数据包是否满足预设条件。其中,当第一数据包中BAP路由标识与第一对应关系中的第一BAP路由标识一致时,IAB2收到该第一数据包后,可以将第一数据包中的BAP层头中的BAP路由标识替换为第二BAP路由标识,得到第二数据包。当第一数据包中BAP路由标识与第一对应关系中的第一BAP路由标识不一致时:IAB2收到该第一数据包后,若第一数据包中的BAP路由标识中的BAP address部分与IAB2的BAP address相同,则IAB 2可以将第一数据包中的BAP层头去掉后向上层协议层(例如IP层)递交,或者,若第一数据包中的BAP路由标识中的BAP address部分与IAB2的BAP address不同,则可以根据第一数据包中的BAP路由标识,以及配置的路由表选择合适的下一跳节点后向该下一跳节点转发第一数据包。其中,判断第一数据包中的BAP路由标识中的BAP address部分与IAB2的BAP address是否相同的步骤,可以在判断第一数据包中BAP路由标识与第一对应关系中的第一BAP路由标识之前执行,也可以在其后执行。该种方式,IAB2可以直接根据第一对应关系判断第一数据包是向第二网段发送的数据包,还是向上层协议层递交的数据包,相较于其他方式(例如,前述的两个BAP地址或特殊的BAP路径标识的方式),该种方式可以减少额外的配置开销。
可选的,在得到第二数据包后,IAB2可以根据第二数据包中的第二BAP路由标识,以及配置的路由表选择合适的下一跳节点后向该下一跳节点转发第二数据包。
其中,上述的预设条件或者指示信息可以是通过协议约定,也可以是通过CU1和/或CU2向IAB2发送控制面消息携带用于指示上述预设条件等方式使得IAB2获知,具体此处不做限定。
本申请实施例中,从IAB2内部的处理来看,IAB2根据第一对应关系将第一数据包中的第一BAP路由标识更换为第二BAP路由标识的方式有很多,下面分别描述:
1、IAB2-MT移除第一BAP路由标识,并添加第二BAP路由标识。
IAB2在第一网段中接收IAB4发送的第一数据包,具体可以是IAB2-MT的BAP实体的接收部分接收IAB4中DU发送的第一数据包。若IAB2-MT确定第一数据包中的BAP地址为自己的BAP地址(即IAB2获得的BAP地址),且确定第一数据包满足预设条件,则IAB2-MT将第一数据包中的第一BAP路由标识(或第一BAP路由标识中的第一BAP地址)移除,并根据第一对应关系确定第二BAP路由标识,进而为该数据包添加第二BAP路由标识,得到第二数据包。
2、IAB2-MT移除第一BAP路由标识,IAB2-DU添加第二BAP路由标识。
IAB2在第一网段中接收IAB4发送的第一数据包,具体可以是IAB2-MT的BAP实体的接收部分接收IAB4中DU发送的第一数据包。若IAB2-MT确定第一数据包中的BAP地址为自己的BAP地址(即IAB2获得的BAP地址),且确定第一数据包满足预设条件,则IAB2-MT将第一数据包中的第一BAP路由标识(或第一BAP路由标识中的第一BAP地址)移除,然后将第一数据包移除第一BAP路由标识后交给IAB2-DU侧。IAB2-DU接收移除第一BAP路由标识的第一数据包之后,根据第一对应关系为该数据包添加第二BAP路由标识,得到第二数据包。
可以理解的是,上述过程中,IAB2-DU接收到的数据包是没有第一BAP路由标识的第一数据包,因此,IAB2-DU可以从IAB2-MT处获取第一数据包的第一BAP路由标识,再根据第一BAP路由标识确定第二BAP路由标识,或者,也可以是IAB2-DU直接根据数据包的IP头信息确定第二BAP路由标识。
3、IAB2-DU移除第一BAP路由标识,并添加第二BAP路由标识。
IAB2在第一网段中接收IAB4发送的第一数据包,具体可以是IAB2-MT的BAP实体的接收部分接收IAB4中DU发送的第一数据包。IAB2-MT将第一数据包直接转发给IAB2-DU,若IAB2-DU确定第一数据包中的BAP地址为自己的BAP地址(即IAB2的BAP地址,具体可以是IAB2-MT获得的BAP地址),且确定第一数据包满足预设条件,则IAB2-DU将第一数据包中的第一BAP路由标识(或第一BAP路由标识中的第一BAP地址)移除,并根据第一对应关系确定第二BAP路由标识,进而为该数据包添加第二BAP路由标识,得到第二数据包。
可选的,IAB2-MT可以将自己获得的BAP地址通过节点内部接口告知IAB2-DU,使得IAB2-DU可以判断第一数据包中的BAP地址是否为自己的BAP地址。
可以理解的是,IAB2更换BAP路由标识的方式有很多,上述几种只是举例,在实际应用中,IAB2更换BAP路由标识还可以有其他方式:例如:IAB2-DU移除第一BAP路由标识,IAB2-MT添加第二BAP路由标识,具体此处不做限定。
在步骤1106中,IAB2向IAB3发送第二数据包,相应的,IAB3接收IAB2发送的第二数据包。
可选地,在IAB2接收第一数据包之后,IAB2向IAB2的子节点(IAB3)发送第二数据包之前,IAB2可以判断是否需要在第二网段中向下一跳节点转发第二数据包。若第一数据包满足预设条件,则IAB2在第二网段中向下一跳节点(IAB3)发送第二数据包。对于下行传输来说,IAB2的下一跳节点为IAB2的子节点。
可选地,IAB2可以在删除第一数据包的第一BAP标识之后,或者在删除第一数据包的第一BAP标识之前,IAB2判断是将剥离BAP层的第一数据包交给自己BAP层的上层协议层处理,还是在第二网段中向下一跳节点继续转发。若第一数据包满足预设条件,则IAB2在第二网段中向下一跳节点(IAB3)发送第二数据包。对于第一数据包满足预设条件的描述可参考步骤1105中的相关描述,具体此处不做赘述。
本申请实施例中,预设条件可以理解为IAB2向IAB3发送第二数据包的条件,也可以理解为IAB2将第一数据包中的第一BAP路由标识更换为第二BAP路由标识的条件,具体此处不做限定。
可选地,IAB2向其子节点发送第二数据包之前,IAB2还可以获取第二对应关系。IAB2 再根据第二对应关系确定在第二网段中通过出口链路的第一回传RLC信道(第一BH RLC CH)向IAB3发送第二数据包,即IAB2为待传输的数据包选择合适的出口链路的RH RLC CH,从而保障传输的QoS需求。
本申请实施例中,第二对应关系有多种情况,下面分别描述:
1、第二对应关系为第一BAP路由标识与第一IAB节点(即IAB2)出口链路的BH RLC CH的对应关系。
2、第二对应关系为第二BAP路由标识与第一IAB节点(即IAB2)出口链路的BH RLC CH的对应关系。
3、第二对应关系为第一数据包中的IP头信息与第一IAB节点(即IAB2)出口链路的BH RLC CH的对应关系。该IP头信息具体可以是指以下信息中的任意一项或多项:源IP地址,目标IP地址,DSCP,流标签flow label。
4、第二对应关系为第一IAB节点(即IAB2)的入口链路的第二回传RLC信道与第一IAB节点(即IAB2)出口链路的第一回传RLC信道的对应关系。具体可以是第一IAB节点(即IAB2)的入口链路的第二BH RLC CH与第一IAB节点(即IAB2)出口链路的第一BH RLC CH的对应关系。
其中,本申请中,对于下行传输:IAB节点的入口链路是指IAB节点和上一跳节点(如父节点)之间的链路,例如IAB2和IAB4之间的链路为下行传输中IAB2的入口链路;所述出口链路是指IAB节点和下一跳节点(如子节点)之间的链路,例如IAB2和IAB3之间的链路为下行传输中IAB2的出口链路。对于上行传输:IAB节点的入口链路是指IAB节点和上一跳节点(如子节点)之间的链路,例如IAB2和IAB3之间的链路为上行传输中IAB2的入口链路;所述出口链路是指IAB节点和下一跳节点(如父节点)之间的链路,例如IAB2和IAB4之间的链路为上行传输中IAB2的出口链路。
可选地,由于一个链路上的CH可能有多个,为了正确识别链路的BH RLC CH,入口链路的BH RLC CH可以由入口链路的标识(可以由上一跳节点的标识来作为入口链路的标识)以及入口链路上分配的BH RLC CH ID共同标记,出口链路的BH RLC CH可以由出口链路的标识(可以由下一跳节点的标识来作为入口链路的标识)以及出口链路上分配的BH RLC CH ID共同标记。
可以理解的是,上述IAB2获取的第二对应关系的情况有多种,或者说上述的第二对应关系有多种情况,可以理解的是,在实际应用中,还可以有其他情况,具体此处不做限定。
本申请实施例中,IAB节点获取对应关系可以理解为,IAB节点接收CU1/CU2发送的配置信息中,同时包含两个信息,IAB节点可以认为这两个信息之间有对应关系,或者,标准将对应关系预定义在IAB节点中。例如:上述所描述的IAB2获取第二对应关系的4种情况可以理解为下面4种描述:
1、IAB2接收CU1/CU2发送的控制面消息,其中包含第一BAP路由标识,以及与第一BAP路由标识对应的第一IAB节点出口链路的第一回传RLC信道的标识,从而获知第二对应关系。
2、IAB2接收CU1/CU2发送的控制面消息,其中包含第二BAP路由标识,以及与第二BAP路由标识对应的第一IAB节点出口链路的第一回传RLC信道的标识,从而获知第二对应关系。
3、IAB2接收CU1/CU2发送的控制面消息,其中包含第一IP头信息,以及与第一IP头 信息对应的第一IAB节点出口链路的第一回传RLC信道的标识,从而获知第二对应关系。其中,第一IP头信息中,具体可以是包含下信息中的任意一项或多项:第一源IP地址,第一目标IP地址,第一DSCP,第一流标签flow label。
4、IAB2接收CU1/CU2发送的控制面消息,其中包含第一IAB节点入口链路的第二回传RLC信道的标识,以及与其对应的第一IAB节点出口链路的第一回传RLC信道的标识,从而获知第二对应关系。
由于IAB2的MT和DU分别由不同的IAB宿主节点控制,IAB2-MT可通过RRC连接至CU2,而IAB2-DU可以通过F1连接CU1,故该IAB2节点所需的BH RLC CH映射配置,可以由CU1配置,也可以由CU2配置。即本申请实施例中IAB2获取第二对应关系的方式有两种,下面分别描述:
1、CU1确定第二对应关系,并向IAB2发送第二对应关系。也可以理解为,CU1为IAB2配置第二对应关系。
可选地,CU1通过F1AP向IAB2-DU发送第二对应关系。
2、CU2确定第二对应关系,并向IAB2发送第二对应关系。也可以理解为,CU2为IAB2配置第二对应关系。
可选地,CU2通过RRC消息向IAB2-MT发送第二对应关系。
本申请实施例中,CU1/CU2向IAB2发送对应关系,可以理解为CU1/CU2为IAB2进行配置。示例性的,对于CU1/CU2向IAB2发送第一对应关系,可以理解为CU1/CU2为IAB2进行路由配置。CU1/CU2向IAB2发送对于第二对应关系,可以理解为CU1/CU2为IAB2进行RH RLC CH映射配置。
本申请实施例中,IAB网络可以包括更多的网段,并且由多个宿主节点进行管理。则在每个网段中传输数据包所用BAP路由标识中的BAP地址为该网段中的最后一跳节点的BAP地址,其中,在数据包传输方向的最后一个网段中,该网段中的最后一跳节点即位于该网段中的目标节点。例如,下行传输中,在第一网段的第一BAP路由标识中的BAP地址,是第一网段中的最后一跳节点(IAB2)的BAP address,而在第二网段(即下行方向的最后一个网段)中的第二BAP路由标识中的BAP地址是第二网段中的目标节点IAB3的。例如,上行传输中,在上行方向的最后一个网段中的BAP路由标识中的BAP地址是该网段中的目标节点(即宿主DU)的。
示例性的,如果IAB网络中包括包括3个相邻网段(分别标识为1,2,3)连接组成的拓扑,分别由不同的宿主节点进行管理,则在第2个网段中的所用的BAP路由标识的BAP地址是第2个网段与第1个网段之间边界节点的BAP地址或第2个网段与第3个网段之间边界节点的BAP地址,具体使用的是哪一个边界节点的标识根据传输方向来确定。
另外,若第一IAB节点的下游节点包括多个不同的IAB节点,对于下行传输的数据包,在第一网段中的目标BAP地址均为第一IAB节点的BAP地址,为了在第一IAB节点处可以根据第一BAP路由标识确定出在第二网段中的最后一跳IAB节点,则一种可能的实施例中,需要第一宿主节点在配置IP头信息与第一BAP路由标识之间对应关系的时候,能够为不同的下游IAB节点配置第一网段中不同的BAP路径标识。这样,可以保证第二网段中不同IAB节点的数据包在第一网段中的第一BAP路由标识不同。
本申请实施例中的步骤1104与步骤1101至步骤1103没有必然的时序关系,即,步骤1104可以在步骤1101之前,也可以在步骤1102之前,步骤1104在步骤1105之前即可。
本申请实施例中,对于从上至下顺序切换宿主的方案与从下至上顺序切换宿主的方案原理类似,可以参考图11所示实施例中的相关描述,具体此处不做限定。
本申请实施例中,在IAB网络由多个IAB宿主节点管理的场景下,通过第一IAB节点将数据包在第一网段中的BAP路由标识更换为第二网段中的BAP路由标识,使得数据包在第二网段中正常传输,避免了由于IAB网络由多个IAB宿主节点管理带来的数据包传输异常问题。可以保障数据包在多种由不同宿主节点管理的网段拼接起来的IAB网络中,数据包被正确的路由,并按照合理的QoS保障提供传输服务。
换句话说,本实施例的方案,允许每个宿主节点只控制自己所辖的网段内的数据包路由,然后由两个网段的边界节点执行(具体可以是在BAP层或IP层执行)BAP层的路由和QoS映射的代理的操作,将接收到的数据包中包含的第一网段中进行路由的第一BAP路由标识替换为将要在第二段网络中路由所会用到的第二BAP路由标识,通过这种拼接路由的方式,保证新出现的多种跨宿主基站的网络拓扑管理中,数据包能被合理正确的路由,还能在两个网段的边界进行合理的BH RLC channel的映射,保证数据包的QoS要求。
请参阅图12,本申请实施例中通信方法的另一个实施例包括步骤1201至步骤1206。
本申请实施例中,图12所示的通信方法应用于数据包的上行传输,为了方便理解,与上述图11所示实施例类似,结合图8的架构进行描述。因此,本申请实施例中的第一IAB节点为图8中的IAB2,则第一IAB节点的父节点为IAB4,第一IAB节点的子节点为IAB3,第一宿主节点为S donor(包括S donor CU1以及S donor DU1),第二宿主节点为T donor(包括T donor CU2以及T donor DU2),第一宿主节点与第二宿主节点不同,第一宿主节点(CU1)管理的第一网段包括S donor、第一IAB节点的DU部分(即IAB2-DU)、第一IAB的子节点(IAB3)。第二宿主节点(CU2)管理的第二网段包括T donor、T IAB父节点(即IAB4)、第一IAB节点的MT部分(即IAB2-MT)。第一IAB节点的上一跳节点为第一IAB节点的子节点(即IAB3),第一IAB节点的下一跳节点为第一IAB节点的父节点(即IAB4)。第一IAB节点(IAB2)位于第一网段以及第二网段中,也可以理解为第一IAB节点(IAB2)受第二宿主节点(T donor)和第一宿主节点(S donor)管理,具体可以是第一IAB节点的MT部分(IAB2-MT)由第二宿主节点(T donor)管理,第一IAB节点的DU部分(IAB2-DU)由第一宿主节点(S donor)管理。宿主节点对IAB节点管理,可以理解为宿主节点可以理解为宿主节点与IAB节点之间有控制面的连接(例如RRC连接和/或F1连接),可以经由该控制面的连接为IAB节点提供必要的配置(例如路由和承载映射相关的配置)。可以理解的是,第一IAB节点(IAB2)也可以称为边界IAB节点。
在步骤1201中,IAB3为上行数据包添加第一BAP路由标识,得到第一数据包。
IAB子节点作为UE的接入IAB节点时,IAB3会生成上行数据包。该上行数据包可以是F1接口用户面(F1-U)的数据包,也可以是F1接口控制面(F1-C)的数据包,还可以是非F1业务(non-F1)的数据包等,具体此处不做限定。
IAB3为上行数据包添加第一BAP路由标识之前,CU1需要先对IAB3进行配置,CU1对IAB3进行的配置可以包括以下中的一项或多项:为IAB3分配BAP层标识(BAP address)、 为IAB3建立或修改IAB3与IAB3的父节点(例如IAB2)之间的BH RLC CH所需的配置信息、为IAB3提供用于上行传输的路由的配置信息、为IAB3提供IAB3与IAB2之间链路的BH RLC CH映射配置。
可选地,BH RLC CH所需的配置信息可以包括:BH RLC CH的标识、与BH RLC CH对应的RLC层的配置、与BH RLC CH对应的介质访问控制(medium access control,MAC)层的配置、与BH RLC CH对应的逻辑信道的配置等中的至少一种。
可选地,用于上行传输的路由的配置信息可以包括:IAB3所维护的上层业务数据信息到第一BAP路由标识的对应关系、与第一BAP路由标识相应的路由表项(即第一BAP路由标识和对应的下一跳节点的标识)该上行出口链路指的是IAB3与其父节点IAB2之间的BH链路,上行出口链路的BH RLC CH可以由IAB2的标识以及一个BH RLC CH ID共同标识。
可选地,IAB3与IAB2之间链路的BH RLC CH映射配置,可以包括以下内容中的至少一种:上层业务数据信息到上行出口链路的BH RLC CH的映射关系,用于传输除了F1-U业务之外的指定的默认(default)的BH RLC CH的标识。本申请中,在配置上层业务数据信息到上行出口链路的BH RLC CH的映射关系时,可以用上行传输的出口链路的标识(用下一跳节点的标识来指示)以及一个BH RLC CH的标识(即BH RLC CH ID)共同标识出口链路的一个BH RLC CH。
可选地,上层业务数据信息可以包括如下中的至少一种:F1接口用户面的隧道信息(包括F1接口GTP-U隧道的上行TEID和目标IP地址)、UE相关的F1AP消息(UE associated F1AP message)、非UE相关的F1AP消息(non-UE associated F1AP message)、非F1接口的业务(non-F1traffic)等。
IAB3为上行数据包添加第一BAP路由标识之前,CU1需要先向IAB3发送配置信息,该配置信息用于指示与该上行数据包所对应的应添加的第一BAP路由标识,该第一BAP路由标识与该上行数据包的上层业务数据信息相对应,在第一BAP路由标识中,包含IAB2的BAP地址,即作为上行数据包在第一网段中的目的BAP地址。
IAB3收到CU1发送的配置信息之后,为上行数据包添加第一BAP路由标识,得到第一数据包。其中,第一BAP路由标识中的目标BAP地址是IAB2的BAP地址,即第一BAP路由标识中的目标BAP地址是第一网段中最后一跳节点的BAP地址。
在步骤1202中,IAB3向IAB2发送第一数据包。相应的,IAB2接收IAB3发送的第一数据包。
IAB3得到第一数据包之后,根据步骤1201中CU1对IAB3的配置以及第一BAP路由标识确定出口链路,以及出口链路的BH RLC CH,并通过该出口链路的BH RLC CH向IAB2发送第一数据包。相应的,IAB2接收第一数据包。具体可以是IAB2在第一网段中接收上一跳节点(即IAB3)发送的第一数据包。
可选地,IAB3向IAB2发送第一数据包,具体可以是IAB3中的DU向IAB2中的MT发送第一数据包。
在步骤1203中,IAB2获取第一对应关系。
本步骤中,IAB2获取第一对应关系的描述可以参考前述图11所示实施例中步骤1104的相关描述,此处不再赘述。
容易理解,与图11所示下行传输不同的是,本步骤中的第二BAP路由标识的具体内容和图11中的内容不同,例如本步骤中的第二BAP路由标识中包含的BAP地址(即第二BAP地址)是DU2的BAP地址。而图11所示实施例中的第二BAP路由标识中的第二BAP地址是IAB3的BAP地址。
在步骤1204中,IAB2根据第一对应关系将第一数据包中的第一BAP路由标识更换为第二BAP路由标识,得到第二数据包。
本步骤中,IAB2根据第一对应关系将第一数据包中的第一BAP路由标识更换为第二BAP路由标识,得到第二数据包的描述可以参考前述图11所示实施例中步骤1105的相关描述,此处不再赘述。
一种可能的实施例中,除了参考步骤1105中的条件进行判断是否需要对数据包进行BAP路由标识替换之外,对于上行传输,IAB2还有一种可能的判断方式:IAB2判断第一数据包中第一BAP路由标识中的BAP地址是否为IAB2的BAP地址,如果是,则意味着该第一数据包需要继续在第二网段中向下一跳节点(例如IAB4)转发,且需要将第一BAP路由标识进行替换;若否,则,那么IAB2可以不改变第一BAP路由标识,直接根据该第一BAP路由标识,查找配置的路由表,选择合适的下一跳节点;进一步地,如果IAB2在路由表中无法查到第一BAP路由标识所对应的表项,则可以继续查找有没有表项中的BAP地址与该第一BAP路由标识中所包含的第一BAP地址字段的内容相同,若有,则可以选择符合条件的任一表项中的下一跳节点,若仍然没有,则IAB2还可以进一步确认该第一BAP路由标识中是否有配置过替换的新BAP路由标识,或者确认该第一BAP路由标识中所包含的第一BAP地址是否有配置过替换的新BAP地址,如果有的话,则可以将第一数据包中的第一BAP路由标识/第一BAP地址替换为新BAP路由标识/新BAP地址,再根据替换后的结果查找路由表进行下一跳节点的选择,并在选择出下一跳节点后进行出口链路的BH RLC CH的选择,继续向下一跳节点发送修改后的第二数据包。其中,新BAP路由标识/新BAP地址可以视为一种特殊的第二BAP路由标识/第二BAP地址。
在步骤1205中,IAB2通过IAB4向T donor DU2发送第二数据包,相应的,T donor DU2接收第二数据包。
本实施例中,IAB2还可以获取第二对应关系,相关描述可参考前述图11所示实施例中步骤1106的相关描述,具体此处不再赘述。
本实施例中,IAB2在向IAB4发送第二数据包之前也可以进行判断是否需要在第二网段中向IAB4发送第二数据包,相关描述可参考前述图11所示实施例中步骤1106的描述,具体此处不再赘述。
可选地,IAB2得到第二数据包以及第二对应关系之后,确定出口链路的BH RLC CH,并通过该出口链路的BH RLC CH向IAB4发送第二数据包。具体可以是IAB2-MT向IAB4的DU发送第二数据包。即IAB2在第二网段中向下一跳节点(即IAB4)发送第二数据包。
由于IAB4由CU2管理,CU2可以为IAB4提供上行传输的路由和BH RLC CH映射配置,上行传输的路由可以是第二BAP路由标识和下一跳节点(DU2)的标识的对应关系。BH RLC CH映射配置可以是IAB4与上一跳节点(IAB2)之间入口链路的BH RLC CH到IAB4与下一跳节点(DU2)之间出口链路的BH RLC CH的映射关系。
IAB4接收第二数据包,并根据CU2对IAB4的配置以及第二数据包确定出口链路的BH RLC CH,并通过该出口链路的BH RLC CH向DU2发送第二数据包。相应的,DU2接收IAB4发送的第二数据包。
在步骤1206中,T donor DU2向目标节点发送IP数据包。
DU2接收IAB4发送的第二数据包之后,由于第二数据包中第二BAP路由标识的BAP地址是自身的BAP层标识。则DU2在移除第二数据包的BAP层头信息,将BAP层的服务数据单元(service data unit,SDU)递交给IP层,然后通过IP层的路由,向IP层的目标节点转发IP数据包。
可选地,若所述目标节点是CU1,则DU2会向CU1转发IAB3产生的F1接口的上行数据包。
本申请实施例中的步骤1203与步骤1201、步骤1202没有必然的时序关系,即,步骤1203可以在步骤1201之前,也可以在步骤1202之前,步骤1203在步骤1204之前即可。
本申请实施例中,对于从上至下顺序切换宿主的方案与从下至上顺序切换宿主的方案原理类似,可以参考图11以及图12所示实施例中的相关描述,具体此处不做限定。
本申请实施例中,在IAB网络由多个IAB宿主节点管理的场景下,通过第一IAB节点将数据包在第一网段中的BAP路由标识更换为第二网段中的BAP路由标识,使得数据包在第二网段中正常传输,避免了由于IAB网络由多个IAB宿主节点管理带来的数据包传输异常问题。可以保障数据包在多种由不同宿主节点管理的网段拼接起来的IAB网络中,数据包被正确的路由,并按照合理的QoS保障提供传输服务。
换句话说,本实施例的方案,允许每个宿主节点只控制自己所辖的网段内的数据包路由,然后由两个网段的边界节点执行(具体可以是在BAP层或IP层执行)BAP层的路由和QoS映射的代理的操作,将接收到的数据包中包含的第一网段中进行路由的第一BAP路由标识替换为将要在第二段网络中路由所会用到的第二BAP路由标识,通过这种拼接路由的方式,保证新出现的多种跨宿主基站的网络拓扑管理中,数据包能被合理正确的路由,还能在两个网段的边界进行合理的BH RLC channel的映射,保证数据包的QoS要求。
下面对现有技术中的问题2以及本申请实施例采用的技术手段进行描述:
问题2:对于前述的单个宿主独立组网(如图1)、IAB非独立组网(如图2、图3)以及跨宿主组网(如图6、图7)的场景下,现有技术中,IAB节点接收到数据包之后,若数据包的BAP层头中携带的是该IAB节点的BAP地址且路由表中找不到一个任何一个表项包含该数据包中的目标BAP地址,则确定该数据包异常。但是,上述IAB节点确定数据包异常没有考虑到实际操作的具体情形,且未考虑宿主DU处对异常数据包的处理,可能会导致一些本该被丢弃的异常包未能被识别出来而无法被丢弃,占据IAB节点或宿主DU的缓存空间。
针对问题2,本申请实施例提供一种数据包处理方法,可以应用于单个宿主独立组网、IAB非独立组网或跨宿主组网场景下的IAB节点或IAB donor DU。相比于现有技术中通用复杂的方式确定数据包异常。本申请实施例提供的数据包处理方法可以某些具体情形下(上行数据包与下行数据包,IAB节点与IAB donor DU),更精准的确定数据包异常的条件。
下面对IAB节点或IAB donor DU如何解决问题2进行描述。
一、对于IAB节点。
1、一种可能的方式中,IAB节点的BAP层实体(具体可以是位于IAB-DU的接收部分)接收到一个上行数据包,如果该上行数据包的BAP层头中携带的是该IAB节点的BAP地址,则该IAB节点确定该上行数据包是错误或异常的数据包。
进一步的,IAB节点确定该上行数据包是错误或异常的数据包之后,可以丢弃该上行数据包。
一方面,简化判断上行数据包异常的条件。另一方面,避免错误或异常的上行数据包占用IAB节点的缓存空间。
2、另一种可能的方式中,IAB节点的BAP层实体(具体可以是位于IAB-MT或IAB-DU侧的BAP实体的发送部分)在发送数据包之前,如果在路由表中找不到一个任何一个表项包含该数据包中的目标BAP地址。则该IAB节点确定该数据包是错误或异常的数据包。
进一步的,IAB节点确定该数据包是错误或异常的数据包之后,可以丢弃该数据包。
一方面,简化判断数据包异常的条件,可以避免错误或异常的数据包占用IAB节点的缓存空间。另一方面,避免发送错误或异常数据包带来的网络资源消耗。
二、对于IAB donor DU。
1、一种可能的方式中,IAB-donor DU的BAP层实体(具体可以是接收部分)收到一个上行数据包,该上行数据包的BAP层头中带的BAP地址不是该IAB-donor DU的BAP地址。则该IAB-donor DU确定该数据包是错误或异常的数据包。
进一步的,IAB-donor DU确定该上行数据包是错误或异常的数据包之后,可以丢弃该上行数据包。
一方面,简化判断上行数据包异常的条件。另一方面,避免错误或异常的上行数据包占用IAB-donor DU的缓存空间。
2、另一种可能的方式中,IAB-donor-DU的BAP层实体(具体可以是发送部分)在发送下行数据包之前,如果在路由表中找不到一个任何一个表项包含该数据包中的目标BAP地址。则该IAB-donor DU确定该下行数据包是错误或异常的数据包。
进一步的,IAB-donor-DU确定该下行数据包是错误或异常的数据包之后,可以丢弃该下行数据包。
一方面,简化判断下行数据包异常的条件,可以避免错误或异常的下行数据包占用IAB-donor-DU的缓存空间。另一方面,避免发送错误或异常的下行数据包带来的网络资源消耗。
本申请实施例中,相比于现有技术中通用复杂的方式确定数据包异常。本申请实施例提供的数据包处理方法可以在具体情形下,简化确定数据包异常的条件,更精准的识别出更多的异常数据包,相关有益效果可参考上面的描述。
下面对本申请实施例中的通信装置进行描述,请参阅图13,本申请实施例中通信装置的另一个实施例,该通信装置可以是第一IAB节点,也可以是第一IAB节点的部件(例如DU、MT或者处理器、芯片或芯片系统),该通信装置应用于接入回传一体化IAB网络,IAB网络包括第一网段与第二网段,第一网段由第一宿主节点管理,第二网段由第二宿主节点管理,第一宿主节点与第二宿主节点不同,该通信装置包括:
接收单元1301,用于在第一网段中接收第一数据包,第一数据包包括第一回传适配协议BAP路由标识,第一BAP路由标识用于第一数据包在第一网段中传输;
获取单元1302,用于获取第一对应关系;
更换单元1303,用于根据第一对应关系将第一数据包中的第一BAP路由标识更换为第二BAP路由标识,得到第二数据包;
发送单元1304,用于在第二网段中向下一跳节点发送第二数据包,下一跳节点是第一IAB节点的父节点或子节点。
本实施例中,该通信装置中各单元所执行的操作与前述图11与图12所示实施例中第一IAB节点(即IAB2)所执行的操作类似,此处不再赘述。
本实施例中,在IAB网络由多个IAB宿主节点管理的场景下,通过更换单元1303将数据包在第一网段中的BAP路由标识更换为第二网段中的BAP路由标识,使得数据包在第二网段中正常传输,减少了由于IAB网络由多个IAB宿主节点管理带来的数据包传输异常问题。可以保障数据包在多种由不同宿主节点管理的网段拼接起来的IAB网络中,数据包被正确的路由。
请参阅图14,本申请实施例中通信装置的另一实施例,本申请实施例中通信装置的另一个实施例,该通信装置可以是第一IAB节点,也可以是第一IAB节点的部件(例如DU、MT或者处理器、芯片或芯片系统),该通信装置应用于接入回传一体化IAB网络,IAB网络包括第一网段与第二网段,第一网段由第一宿主节点管理,第二网段由第二宿主节点管理,第一宿主节点与第二宿主节点不同,该通信装置包括:
接收单元1401,用于在第一网段中接收第一数据包,第一数据包包括第一回传适配协议BAP路由标识,第一BAP路由标识用于第一数据包在第一网段中传输;
获取单元1402,用于获取第一对应关系;
更换单元1403,用于根据第一对应关系将第一数据包中的第一BAP路由标识更换为第二BAP路由标识,得到第二数据包;
发送单元1404,用于在第二网段中向下一跳节点发送第二数据包,下一跳节点是第一IAB节点的父节点或子节点。
本实施例中的通信装置还包括:
确定单元1405,用于确定第一数据包中第一BAP路由标识中的BAP地址为第一IAB节点的BAP地址,且第一数据包满足预设条件;
可选地,第一数据包中包括指示信息,确定单元1405,具体用于根据指示信息确定第一数据包满足预设条件。
可选地,获取单元1402,还用于获取第二对应关系;
可选地,发送单元1404,具体用于第二对应关系,确定在第二网段中通过出口链路的第一回传无线链路控制RLC信道向下一跳节点发送第二数据包。
可选地,指示信息包括第一数据包的目的因特网协议IP地址,当第一数据包中的目的IP地址不是第一IAB节点的IP地址时,第一IAB节点确定第一数据包满足预设条件。
可选地,第一网段包括第一IAB节点以及第一IAB节点的上游节点;第二网段包括第一IAB节点以及第一IAB节点的下游节点;接收单元1401,具体用于在第一网段中接收上游节点发送的第一数据包;发送单元1404,具体用于在第二网段中向下游节点发送第二数据包,第二BAP路由标识中的BAP地址为下游节点的BAP地址。
可选地,第一网段包括第一IAB节点以及第一IAB节点的下游节点;第二网段包括第一IAB节点以及第一IAB节点的上游节点;接收单元1401,具体用于在第一网段中接收下游节点发送的第一数据包;发送单元1404,具体用于在第二网段中向上游节点发送第二数据包,第二BAP路由标识中的BAP地址为第二宿主节点的BAP地址。
可选地,第一IAB节点的上游节点为第一IAB节点的父节点;确定单元1405,还用于确定第一数据包中第一BAP路由标识中的BAP地址为第一IAB节点的BAP地址。
可选地,第一BAP路由标识包括第一BAP地址和/或第一路径标识,第二BAP路由标识包括第二BAP地址和/或第二路径标识。
可选地,第一对应关系由第一宿主节点或第二宿主节点配置;获取单元1402,用于获取第一对应关系包括以下任意一项:获取单元1402,具体用于获取第一BAP路由标识与第二BAP路由标识,第一BAP路由标识与第二BAP路由标识具有对应关系;获取单元1402,具体用于获取第一数据包中的IP头信息与第二BAP路由标识,IP头信息与第二BAP路由标识具有对应关系;IP头信息包括目标IP地址,区分服务代码点DSCP,流标签Flow label中的至少一种。
可选地,获取单元1402,用于获取第二对应关系,包括以下任意一项:获取单元1402,具体用于获取第一BAP路由标识与第一IAB节点出口链路的第一回传RLC信道,第一BAP路由标识与第一IAB节点出口链路的第一回传RLC信道具有对应关系;获取单元1402,具体用于获取第二BAP路由标识与第一IAB节点出口链路的第一回传RLC信道,第二BAP路由标识与第一IAB节点出口链路的第一回传RLC信道具有对应关系;获取单元1402,具体用于获取第一数据包中的IP头信息与第一IAB节点出口链路的第一回传RLC信道,第一数据包中的IP头信息与第一IAB节点出口链路的第一回传RLC信道具有对应关系,IP头信息包括目标IP地址,区分服务代码点DSCP,流标签Flow label中的至少一种;获取单元1402,具体用于获取第一IAB节点入口链路的第二BH RLC CH与第一IAB节点出口链路的第一BH RLC CH,第一IAB节点入口链路的第二BH RLC CH与第一IAB节点出口链路的第一BH RLC CH具有对应关系。
本实施例中,该通信装置中各单元所执行的操作与前述图11与图12所示实施例中第一IAB节点(即IAB2)所执行的操作类似,此处不再赘述。
本实施例中,在IAB网络由多个IAB宿主节点管理的场景下,通过更换单元1403将数据包在第一网段中的BAP路由标识更换为第二网段中的BAP路由标识,使得数据包在第二网段中正常传输,减少了由于IAB网络由多个IAB宿主节点管理带来的数据包传输异常问题。可以保障数据包在多种由不同宿主节点管理的网段拼接起来的IAB网络中,数据包被正确的路由。
请参阅图15,本申请实施例中通信装置的另一实施例,本申请实施例中通信装置的另一个实施例,该通信装置可以是第一IAB节点,也可以是第一IAB节点的部件(例如DU、MT或者处理器、芯片或芯片系统),该通信装置应用于接入回传一体化IAB网络,该通信装置包括:
获取单元1501,用于第一IAB节点获取第二对应关系;
发送单元1502,用于根据第二对应关系,确定在第二网段中通过出口链路的第一回传RLC信道向下一跳节点发送第二数据包。
可选地,通信装置还包括:
可选地,接收单元1503,用于在第一网段中接收第一数据包,第一数据包包括第一回传适配协议BAP路由标识,第一BAP路由标识用于第一数据包在第一网段中传输。
更换单元1504,用于根据第一对应关系将第一数据包中的第一BAP路由标识更换为第二BAP路由标识,得到第二数据包;
可选地,更换单元1504,用于根据第一对应关系将第一数据包中的第一BAP路由标识更换为第二BAP路由标识,得到第二数据包。
可选地,获取单元1501,还用于获取第一对应关系;
可选地,IAB网络包括第一网段与第二网段,第一网段由第一宿主节点管理,第二网段由第二宿主节点管理,第一宿主节点与第二宿主节点不同,
可选地,第二数据包包括第二BAP路由标识,第二BAP路由标识用于第二数据包在第二网段中传输。该种可能的实现方式中,允许每个宿主节点只控制自己所辖的网段内的数据包路由,然后由两个网段的边界节点在BAP层或IP层执行代理的操作,减少了由于IAB网络由多个IAB宿主节点管理带来的出口映射异常问题。可以保障数据包在多种由不同宿主节点管理的网段拼接起来的IAB网络中,数据包正常传输。
可选地,第一数据包和第二数据包是同一个数据包,第一BAP路由标识与第二BAP路由标识相同或不同。该种可能的实现方式中,在每个宿主节点只控制自己所辖的网段内的数据包路由,通过由两个网段的边界节点(即第一IAB节点)在BAP层或IP层执行代理的操作,将接收到的数据包中包含的第一网段中进行路由的第一BAP路由标识替换为将要在第二段网络中路由所会用到的第二BAP路由标识,通过这种拼接路由的方式,保证新出现的多种跨宿主基站的网络拓扑管理中,数据包能被合理正确的路由。
本实施例中,该通信装置中各单元所执行的操作与前述图11与图12所示实施例中第一IAB节点(即IAB2)所执行的操作类似,此处不再赘述。
本实施例中,在IAB网络由多个IAB宿主节点管理的场景下,发送单元1502根据第二对应关系,确定在第二网段中通过出口链路的第一回传RLC信道向下一跳节点发送第二数据包,减少了由于IAB网络由多个IAB宿主节点管理带来的出口映射异常问题。可以保障数据包在多种由不同宿主节点管理的网段拼接起来的IAB网络中,数据包正常传输。
请参阅图16,本申请实施例中通信装置的另一实施例,本申请实施例中通信装置的另一个实施例,该通信装置可以是第一宿主节点,也可以是第一宿主节点的部件(例如CU、DU或者处理器、芯片或芯片系统),该通信装置应用于接入回传一体化IAB网络,IAB网络包括第一网段与第二网段,第一网段由第一宿主节点管理,第二网段由第二宿主节点管理,第一宿主节点与第二宿主节点不同,该通信装置包括:
获取单元1601,用于获取第一BAP路由标识与第二BAP路由标识,第一BAP路由标识与第二BAP路由标识具有对应关系,第一BAP路由标识用于数据包在第一网段中传输,第二BAP路由标识用于数据包在第二网段中传输;发送单元1602,用于向第一IAB节点发送第一BAP路由标识与第二BAP路由标识,第一IAB节点位于第一网段以及第二网段中。
或者,获取单元1601,用于获取数据包中的IP头信息与第二BAP路由标识,数据包中的IP头信息与第二BAP路由标识具有对应关系,第二BAP路由标识用于数据包在第二网段中 传输;发送单元1602,用于向第一IAB节点发送数据包中的IP头信息与第二BAP路由标识,第一IAB节点位于第一网段以及第二网段中。
可选地,获取单元1601,还用于获取第一BAP路由标识与第一IAB节点出口链路的第一回传RLC信道,第一BAP路由标识与第一IAB节点出口链路的第一回传RLC信道具有对应关系;可选地,发送单元1602,还用于向第一IAB节点发送第一BAP路由标识与第一IAB节点出口链路的第一回传RLC信道。
可选地,获取单元1601,还用于获取第二BAP路由标识与第一IAB节点出口链路的第一回传RLC信道,第二BAP路由标识与第一IAB节点出口链路的第一回传RLC信道具有对应关系;可选地,发送单元1602,还用于向第一IAB节点发送第二BAP路由标识与第一IAB节点出口链路的第一回传RLC信道。
可选地,获取单元1601,还用于获取第一数据包中的IP头信息与第一IAB节点出口链路的第一回传RLC信道,第一数据包中的IP头信息与第一IAB节点出口链路的第一回传RLC信道具有对应关系;可选地,发送单元1602,还用于向第一IAB节点发送第一数据包中的IP头信息与第一IAB节点出口链路的第一回传RLC信道。
可选地,获取单元1601,还用于获取第一IAB节点入口链路的第二回传RLC信道与第一IAB节点出口链路的第一回传RLC信道,第一IAB节点入口链路的第二回传RLC信道与第一IAB节点出口链路的第一回传RLC信道具有对应关系;可选地,发送单元1602,还用于向第一IAB节点发送第一IAB节点入口链路的第二回传RLC信道与第一IAB节点出口链路的第一回传RLC信道。
可选地,发送单元1602,还用于向接入IAB节点发送配置信息,配置信息用于指示将第一IAB节点的BAP地址作为上行数据包的目的BAP地址。
可选地,第一网段包括第一IAB节点以及第一IAB节点的下游节点;第二网段包括第一IAB节点以及第一IAB节点的上游节点;获取单元1601,还用于获取第三对应关系以及第四对应关系,第三对应关系为第一IAB节点中分布式单元DU的IP地址与第一IAB节点中移动终端MT的BAP地址的对应关系,第四对应关系为第一IAB节点中MT的BAP地址与第一IAB节点的下游节点中DU的IP地址的对应关系;发送单元1602,还用于向第二宿主节点发送第三对应关系以及第四对应关系,第三对应关系以及第四对应关系用于第二宿主节点确定第一BAP路由标识。
可选地,第一网段包括第一IAB节点以及第一IAB节点的下游节点;第二网段包括第一IAB节点以及第一IAB节点的上游节点;
可选地,通信装置还包括:
确定单元1603,用于确定在第一网段中下行传输数据包所用的第三BAP路由标识,第二BAP路由标识包括第三BAP路由标识;
接收单元1604,用于接收第二宿主节点发送的第四BAP路由标识,第四BAP路由标识用于数据包在第二网段中上行传输,第二BAP路由标识包括第四BAP路由标识。
可选地,发送单元1602,还用于向第二宿主节点发送第三BAP路由标识。
可选地,第一网段包括第一IAB节点以及第一IAB节点的下游节点;第二网段包括第一IAB节点以及第一IAB节点的上游节点;
本实施例中,该通信装置中各单元所执行的操作与前述图11(如CU2所执行的操作)与图12(如CU1所执行的操作)所示实施例中宿主节点所执行的操作类似,此处不再赘述。
本实施例中,在IAB网络由多个IAB宿主节点管理的场景下,通过发送单元1602向第一IAB节点发送第一对应关系,使得数据包在第二网段中正常传输,减少了由于IAB网络由多个IAB宿主节点管理带来的数据包传输异常问题。可以保障数据包在多种由不同宿主节点管理的网段拼接起来的IAB网络中,数据包被正确的路由。
请参阅图17,本申请实施例中通信装置的另一实施例,本申请实施例中通信装置的另一个实施例,该通信装置可以是第二宿主节点,也可以是第二宿主节点的部件(例如CU、DU或者处理器、芯片或芯片系统),该通信装置应用于接入回传一体化IAB网络,IAB网络包括第一网段与第二网段,第一网段由第一宿主节点管理,第二网段由第二宿主节点管理,第一宿主节点与第二宿主节点不同,该通信装置包括:
获取单元1701,用于第二宿主节点获取第一BAP路由标识与第二BAP路由标识,第一BAP路由标识与第二BAP路由标识具有对应关系,第一BAP路由标识用于数据包在第一网段中传输,第二BAP路由标识用于数据包在第二网段中传输;发送单元1702,用于第二宿主节点向第一IAB节点发送第一BAP路由标识与第二BAP路由标识,第一IAB节点位于第一网段以及第二网段中。
或者,获取单元1701,用于第二宿主节点获取数据包中的IP头信息与第二BAP路由标识,数据包中的IP头信息与第二BAP路由标识具有对应关系,第二BAP路由标识用于数据包在第二网段中传输;发送单元1702,用于向第一IAB节点发送数据包中的IP头信息与第二BAP路由标识,第一IAB节点位于第一网段以及第二网段中。
可选地,获取单元1701,还用于获取第一BAP路由标识与第一IAB节点出口链路的第一回传RLC信道,第一BAP路由标识与第一IAB节点出口链路的第一回传RLC信道具有对应关系;发送单元1702,还用于向第一IAB节点发送第一BAP路由标识与第一IAB节点出口链路的第一回传RLC信道。
可选地,获取单元1701,还用于获取第二BAP路由标识与第一IAB节点出口链路的第一回传RLC信道,第二BAP路由标识与第一IAB节点出口链路的第一回传RLC信道具有对应关系;发送单元1702,还用于向第一IAB节点发送第二BAP路由标识与第一IAB节点出口链路的第一回传RLC信道。
可选地,获取单元1701,还用于获取第一数据包中的IP头信息与第一IAB节点出口链路的第一回传RLC信道,第一数据包中的IP头信息与第一IAB节点出口链路的第一回传RLC信道具有对应关系;发送单元1702,还用于向第一IAB节点发送第一数据包中的IP头信息与第一IAB节点出口链路的第一回传RLC信道。
可选地,获取单元1701,还用于获取第一IAB节点入口链路的第二回传RLC信道与第一IAB节点出口链路的第一回传RLC信道,第一IAB节点入口链路的第二回传RLC信道与第一IAB节点出口链路的第一回传RLC信道具有对应关系;发送单元1702,还用于向第一IAB节点发送第一IAB节点入口链路的第二回传RLC信道与第一IAB节点出口链路的第一回传RLC信道。
可选地,发送单元1702,还用于向接入IAB节点发送配置信息,配置信息用于指示将第 一IAB节点的BAP地址作为上行数据包的目的BAP地址。
可选地,第一网段包括第一IAB节点以及第一IAB节点的下游节点;第二网段包括第一IAB节点以及第一IAB节点的上游节点;
可选地,通信装置还包括:
接收单元1703,用于接收第一宿主节点发送的第三对应关系以及第四对应关系,第三对应关系为第一IAB节点中分布式单元DU的IP地址与第一IAB节点中移动终端MT的BAP地址的对应关系,第四对应关系为第一IAB节点中MT的BAP地址与第一IAB节点的下游节点中DU的IP地址的对应关系;
确定单元1704,用于根据第三对应关系以及第四对应关系确定第一BAP路由标识。
可选地,第一网段包括第一IAB节点以及第一IAB节点的下游节点;第二网段包括第一IAB节点以及第一IAB节点的上游节点;接收单元1703,还用于接收第一宿主节点发送的第三BAP路由标识,第三BAP路由标识用于数据包在第一网段中下行传输,第二BAP路由标识包括第三BAP路由标识。
可选地,第一网段包括第一IAB节点以及第一IAB节点的下游节点;第二网段包括第一IAB节点以及第一IAB节点的上游节点;确定单元1704,还用于确定在第二网段中上行传输数据包所用的第四BAP路由标识,第二BAP路由标识包括第四BAP路由标识;
可选地,发送单元1702,还用于向第一宿主节点发送第四BAP路由标识。
本实施例中,该通信装置中各单元所执行的操作与前述图11(如CU1所执行的操作)与图12(如CU2所执行的操作)所示实施例中宿主节点所执行的操作类似,此处不再赘述。
本实施例中,在IAB网络由多个IAB宿主节点管理的场景下,通过发送单元1702向第一IAB节点发送第一对应关系,使得数据包在第二网段中正常传输,减少了由于IAB网络由多个IAB宿主节点管理带来的数据包传输异常问题。可以保障数据包在多种由不同宿主节点管理的网段拼接起来的IAB网络中,数据包被正确的路由。
请参阅图18,为本申请的实施例提供的上述实施例中所涉及的通信装置的结构示意图,其中,该通信装置具体可以为前述实施例中的IAB节点,例如:第一IAB节点、第一IAB节点的父节点或第一IAB节点的子节点,或者是IAB1、IAB2、IAB3、IAB4。该通信装置的结构可以参考图18所示的结构。
通信装置包括至少一个处理器1811、至少一个存储器1812、至少一个收发器1813、至少一个网络接口1814和一个或多个天线1815。处理器1811、存储器1812、收发器1813和网络接口1814相连,例如通过总线相连,在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。天线1815与收发器1813相连。网络接口1814用于使得通信装置通过通信链路,与其它通信设备相连,例如网络接口1814可以包括通信装置与核心网设备之间的网络接口,例如S1接口,网络接口可以包括通信装置和其他网络设备(例如其他接入网设备或者核心网设备)之间的网络接口,例如X2或者Xn接口。
处理器1811主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据,例如用于支持通信装置执行实施例中所描述的动作。通信装置可以可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程 序的数据。图18中的处理器1811可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
存储器主要用于存储软件程序和数据。存储器1812可以是独立存在,与处理器1811相连。可选的,存储器1812可以和处理器1811集成在一起,例如集成在一个芯片之内。其中,存储器1812能够存储执行本申请实施例的技术方案的程序代码,并由处理器1811来控制执行,被执行的各类计算机程序代码也可被视为是处理器1811的驱动程序。
图18仅示出了一个存储器和一个处理器。在实际的通信装置中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以为与处理器处于同一芯片上的存储元件,即片内存储元件,或者为独立的存储元件,本申请实施例对此不做限定。
收发器1813可以用于支持通信装置与其他IAB节点(例如UE、IAB节点或IAB donor)之间射频信号的接收或者发送,收发器1813可以与天线1815相连。收发器1813包括发射机Tx和接收机Rx。具体地,一个或多个天线1815可以接收射频信号,该收发器1813的接收机Rx用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器1811,以便处理器1811对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器1813中的发射机Tx还用于从处理器1811接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线1815发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
收发器也可以称为收发单元、收发机、收发装置等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
需要说明的是,图18所示通信装置具体可以用于实现图11与图12对应方法实施例中IAB节点所实现的步骤,并实现通信装置对应的技术效果,图18所示通信装置的具体实现方式,均可以参考图11与图12对应的各个方法实施例中的叙述,此处不再一一赘述。
图19是本申请实施例提供的IAB donor的一种结构示意图,该IAB donor可以采用CU-DU分离的架构。如图19所示,该IAB donor可应用于如图6至图10所示的系统中,实现上述方法实施例中第一宿主节点或第二宿主节点的功能。
IAB donor可包括一个或多个DU 1101和一个或多个CU 1102。所述DU 1101可以包括至少一个天线11011,至少一个射频单元11012,至少一个处理器11013和至少一个存储器11014。所述DU 1101部分主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU1102可以包括至少一个处理器11022和至少一个存储器11021。CU 1102和DU 1101之间可以通过接口进行通信,其中,控制面(control plane)接口可以为F1-C,用户面(user Plane)接口可以为F1-U。
所述CU 1102部分主要用于进行基带处理,对基站进行控制等。所述DU 1101与CU1102可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述CU 1102为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能。例如所述CU 1102可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
具体的,CU和DU上的基带处理可以根据无线网络的协议层划分,具体可以参考上文的内容。
在一个实例中,所述CU 1102可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他接入网)。所述存储器11021和处理器11022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU 1101可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他接入网)。所述存储器11014和处理器11013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
可选的,CU 1102可以通过DU 1101与IAB donor的子节点进行传输,CU 1102可以通过接口与其他IAB donor相连,CU 1102可以通过该接口从其他IAB donor(例如其他IAB donor的CU)接收数据和/或消息,或者CU 1102可以通过该接口向该其他IAB donor发送数据和/或消息。
本申请实施例还提供一种存储一个或多个计算机执行指令的计算机可读存储介质,当计算机执行指令被处理器执行时,该处理器执行如上述通信装置所实现的方法,如上述IAB donor、第一IAB节点的目标父节点、第一IAB节点或第一IAB节点的子节点所实现的方法。
本申请实施例还提供一种存储一个或多个计算机的计算机程序产品(或称计算机程序),当计算机程序产品被该处理器执行时,该处理器执行上述通信装置所实现的方法,如上述IAB donor、第一IAB节点的目标父节点、第一IAB节点或第一IAB节点的子节点所实现的方法。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持通信装置实现上述通信装置所实现的方法,如上述IAB donor、IAB节点所实现的方法。在一种可能的设计中,该芯片系统还可以包括存储器,存储器,用于保存该通信装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种通信系统,该通信系统包括上述通信装置,如上述IAB donor、第一IAB节点、第一IAB节点的父节点和/或第一IAB节点的子节点。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (53)

  1. 一种通信方法,其特征在于,所述方法应用于接入回传一体化IAB网络,所述IAB网络包括第一网段与第二网段,所述第一网段由第一宿主节点管理,所述第二网段由第二宿主节点管理,所述第一宿主节点与所述第二宿主节点不同,所述方法包括:
    所述第一IAB节点在所述第一网段中接收第一数据包,所述第一数据包包括第一回传适配协议BAP路由标识,所述第一BAP路由标识用于所述第一数据包在所述第一网段中传输;
    所述第一IAB节点获取第一对应关系;
    所述第一IAB节点根据所述第一对应关系将所述第一数据包中的第一BAP路由标识更换为第二BAP路由标识,得到第二数据包;
    所述第一IAB节点在所述第二网段中向下一跳节点发送所述第二数据包,所述下一跳节点是所述第一IAB节点的父节点或子节点。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一IAB节点获取第二对应关系;
    所述第一IAB节点在所述第二网段中向下一跳节点发送所述第二数据包,包括:
    所述第一IAB节点根据所述第二对应关系,确定在所述第二网段中通过出口链路的第一回传无线链路控制RLC信道向所述下一跳节点发送所述第二数据包。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一IAB节点根据所述第一对应关系将所述第一数据包中的第一BAP路由标识更换为第二BAP路由标识,得到第二数据包之前,所述方法还包括:
    所述第一IAB节点确定所述第一数据包满足预设条件;
    所述第一IAB节点确定所述第一数据包满足所述预设条件包括以下至少一项:
    所述第一数据包中包括指示信息,所述第一IAB节点根据所述指示信息确定所述第一数据包满足所述预设条件;
    若所述第一对应关系还包括所述第一数据包中的所述第一BAP路由标识,所述第一IAB节点确定所述第一数据包满足所述预设条件。
  4. 根据权利要求3所述的方法,其特征在于,所述第一IAB节点根据所述第一对应关系将所述第一数据包中的第一BAP路由标识更换为第二BAP路由标识,得到第二数据包之前,所述方法还包括:
    所述第一IAB节点确定所述第一数据包中所述第一BAP路由标识中的BAP地址为所述第一IAB节点的BAP地址。
  5. 根据权利要求3所述的方法,其特征在于,
    所述指示信息包括所述第一数据包的目的因特网协议IP地址,当所述第一数据包中的目的IP地址不是所述第一IAB节点的IP地址时,所述第一IAB节点确定所述第一数据包满足所述预设条件。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一网段包括所述第一IAB节点以及所述第一IAB节点的上游节点;所述第二网段包括所述第一IAB节点以及所述第一IAB节点的下游节点;
    所述第一IAB节点在所述第一网段中接收第一数据包,包括:
    所述第一IAB节点在所述第一网段中接收所述上游节点发送的所述第一数据包;
    所述第一IAB节点在所述第二网段中向下一跳节点发送所述第二数据包,包括:
    所述第一IAB节点在所述第二网段中向所述下游节点发送所述第二数据包,所述第二BAP路由标识中的BAP地址为所述下游节点的BAP地址。
  7. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一网段包括所述第一IAB节点以及所述第一IAB节点的下游节点;所述第二网段包括所述第一IAB节点以及所述第一IAB节点的上游节点;
    所述第一IAB节点在所述第一网段中接收第一数据包,包括:
    所述第一IAB节点在所述第一网段中接收所述下游节点发送的所述第一数据包;
    所述第一IAB节点在所述第二网段中向下一跳节点发送所述第二数据包,包括:
    所述第一IAB节点在所述第二网段中向所述上游节点发送所述第二数据包,所述第二BAP路由标识中的BAP地址为所述第二宿主节点的BAP地址。
  8. 根据权利要求7所述的方法,其特征在于,所述第一IAB节点的上游节点为所述第一IAB节点的父节点;
    所述第一IAB节点在所述第二网段中向所述上游节点发送所述第二数据包之前,所述方法还包括:
    所述第一IAB节点确定所述第一数据包中所述第一BAP路由标识中的BAP地址为所述第一IAB节点的BAP地址。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一BAP路由标识包括第一BAP地址和/或第一路径标识,所述第二BAP路由标识包括第二BAP地址和/或第二路径标识。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一对应关系由所述第一宿主节点或所述第二宿主节点配置;
    所述第一IAB节点获取第一对应关系,包括以下任意一项:
    所述第一IAB节点获取所述第一BAP路由标识与第二BAP路由标识,所述第一BAP路由标识与所述第二BAP路由标识具有对应关系;
    所述第一IAB节点获取所述第一数据包中的IP头信息与第二BAP路由标识,所述IP头信息与所述第二BAP路由标识具有对应关系;所述IP头信息包括目标IP地址,区分服务代码点DSCP,流标签Flow label中的至少一种。
  11. 根据权利要求2所述的方法,其特征在于,所述第一IAB节点获取第二对应关系,包括以下任意一项:
    所述第一IAB节点获取所述第一BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道,所述第一BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道具有对应关系;
    所述第一IAB节点获取所述第二BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道,所述第二BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道具有对应关系;
    所述第一IAB节点获取所述第一数据包中的IP头信息与所述第一IAB节点出口链路的第 一回传RLC信道,所述第一数据包中的所述IP头信息与所述第一IAB节点出口链路的第一回传RLC信道具有对应关系,所述IP头信息包括目标IP地址,区分服务代码点DSCP,流标签Flow label中的至少一种;
    所述第一IAB节点获取所述第一IAB节点入口链路的第二回传RLC信道与所述第一IAB节点出口链路的第一回传RLC信道,所述第一IAB节点入口链路的第二回传RLC信道与所述第一IAB节点出口链路的第一回传RLC信道具有对应关系。
  12. 一种通信方法,其特征在于,所述方法应用于接入回传一体化IAB网络,所述IAB网络包括第一网段与第二网段,所述第一网段由第一宿主节点管理,所述第二网段由第二宿主节点管理,所述第一宿主节点与所述第二宿主节点不同,所述方法包括:
    所述第一宿主节点获取第一BAP路由标识与第二BAP路由标识,所述第一BAP路由标识与所述第二BAP路由标识具有对应关系,所述第一BAP路由标识用于数据包在所述第一网段中传输,所述第二BAP路由标识用于所述数据包在所述第二网段中传输;
    所述第一宿主节点向第一IAB节点发送所述第一BAP路由标识与所述第二BAP路由标识,所述第一IAB节点位于所述第一网段以及所述第二网段中;
    或者,
    所述第一宿主节点获取数据包中的IP头信息与第二BAP路由标识,所述数据包中的IP头信息与所述第二BAP路由标识具有对应关系,所述第二BAP路由标识用于所述数据包在所述第二网段中传输;
    所述第一宿主节点向第一IAB节点发送所述数据包中的IP头信息与所述第二BAP路由标识,所述第一IAB节点位于所述第一网段以及所述第二网段中。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述第一宿主节点获取所述第一BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道,所述第一BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道具有对应关系;
    所述第一宿主节点向所述第一IAB节点发送所述第一BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道;
    或者,
    所述第一宿主节点获取所述第二BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道,所述第二BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道具有对应关系;
    所述第一宿主节点向所述第一IAB节点发送所述第二BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道;
    或者,
    所述第一宿主节点获取所述第一数据包中的IP头信息与所述第一IAB节点出口链路的第一回传RLC信道,所述第一数据包中的所述IP头信息与所述第一IAB节点出口链路的第一回传RLC信道具有对应关系;
    所述第一宿主节点向所述第一IAB节点发送所述第一数据包中的IP头信息与所述第一IAB节点出口链路的第一回传RLC信道;
    或者,
    所述第一宿主节点获取所述第一IAB节点入口链路的第二回传RLC信道与所述第一IAB节点出口链路的第一回传RLC信道,所述第一IAB节点入口链路的第二回传RLC信道与所述第一IAB节点出口链路的第一回传RLC信道具有对应关系;
    所述第一宿主节点向所述第一IAB节点发送所述第一IAB节点入口链路的第二回传RLC信道与所述第一IAB节点出口链路的第一回传RLC信道。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    所述第一宿主节点向接入IAB节点发送配置信息,所述配置信息用于指示将第一IAB节点的BAP地址作为上行数据包的目的BAP地址。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述第一网段包括所述第一IAB节点以及所述第一IAB节点的下游节点;所述第二网段包括所述第一IAB节点以及所述第一IAB节点的上游节点;
    所述方法还包括:
    所述第一宿主节点获取第三对应关系以及第四对应关系,所述第三对应关系为所述第一IAB节点中分布式单元DU的IP地址与所述第一IAB节点中移动终端MT的BAP地址的对应关系,所述第四对应关系为所述第一IAB节点中MT的BAP地址与所述第一IAB节点的下游节点中DU的IP地址的对应关系;
    所述第一宿主节点向所述第二宿主节点发送所述第三对应关系以及第四对应关系,所述第三对应关系以及所述第四对应关系用于所述第二宿主节点确定所述第一BAP路由标识。
  16. 根据权利要求12至15中任一项所述的方法,其特征在于,
    所述第一网段包括所述第一IAB节点以及所述第一IAB节点的下游节点;所述第二网段包括所述第一IAB节点以及所述第一IAB节点的上游节点;
    所述方法还包括:
    所述第一宿主节点确定在所述第一网段中下行传输所述数据包所用的第三BAP路由标识,所述第二BAP路由标识包括所述第三BAP路由标识;
    所述第一宿主节点向所述第二宿主节点发送所述第三BAP路由标识。
  17. 根据权利要求12至16中任一项所述的方法,其特征在于,所述第一网段包括所述第一IAB节点以及所述第一IAB节点的下游节点;所述第二网段包括所述第一IAB节点以及所述第一IAB节点的上游节点;
    所述方法还包括:
    所述第一宿主节点接收所述第二宿主节点发送的第四BAP路由标识,所述第四BAP路由标识用于所述数据包在所述第二网段中上行传输,所述第二BAP路由标识包括所述第四BAP路由标识。
  18. 一种通信方法,其特征在于,所述方法应用于接入回传一体化IAB网络,所述IAB网络包括第一网段与第二网段,所述第一网段由第一宿主节点管理,所述第二网段由第二宿主节点管理,所述第一宿主节点与所述第二宿主节点不同,所述第一IAB节点位于所述第一网段以及所述第二网段中,所述方法包括:
    所述第二宿主节点获取第一BAP路由标识与第二BAP路由标识,所述第一BAP路由标识 与所述第二BAP路由标识具有对应关系,所述第一BAP路由标识用于数据包在所述第一网段中传输,所述第二BAP路由标识用于所述数据包在所述第二网段中传输;
    所述第二宿主节点向第一IAB节点发送所述第一BAP路由标识与所述第二BAP路由标识,所述第一IAB节点位于所述第一网段以及所述第二网段中;
    或者,
    所述第二宿主节点获取数据包中的IP头信息与第二BAP路由标识,所述数据包中的IP头信息与所述第二BAP路由标识具有对应关系,所述第二BAP路由标识用于所述数据包在所述第二网段中传输;
    所述第二宿主节点向第一IAB节点发送所述数据包中的IP头信息与所述第二BAP路由标识,所述第一IAB节点位于所述第一网段以及所述第二网段中。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    所述第二宿主节点获取所述第一BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道,所述第一BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道具有对应关系;
    所述第二宿主节点向所述第一IAB节点发送所述第一BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道;
    或者,
    所述第二宿主节点获取所述第二BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道,所述第二BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道具有对应关系;
    所述第二宿主节点向所述第一IAB节点发送所述第二BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道;
    或者,
    所述第二宿主节点获取所述第一数据包中的IP头信息与所述第一IAB节点出口链路的第一回传RLC信道,所述第一数据包中的所述IP头信息与所述第一IAB节点出口链路的第一回传RLC信道具有对应关系;
    所述第二宿主节点向所述第一IAB节点发送所述第一数据包中的IP头信息与所述第一IAB节点出口链路的第一回传RLC信道;
    或者,
    所述第二宿主节点获取所述第一IAB节点入口链路的第二回传RLC信道与所述第一IAB节点出口链路的第一回传RLC信道,所述第一IAB节点入口链路的第二回传RLC信道与所述第一IAB节点出口链路的第一回传RLC信道具有对应关系;
    所述第二宿主节点向所述第一IAB节点发送所述第一IAB节点入口链路的第二回传RLC信道与所述第一IAB节点出口链路的第一回传RLC信道。
  20. 根据权利要求18或19所述的方法,其特征在于,所述方法还包括:
    所述第二宿主节点向接入IAB节点发送配置信息,所述配置信息用于指示将第一IAB节点的BAP地址作为上行数据包的目的BAP地址。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述第一网段包括所述第 一IAB节点以及所述第一IAB节点的下游节点;所述第二网段包括所述第一IAB节点以及所述第一IAB节点的上游节点;
    所述方法还包括:
    所述第二宿主节点接收所述第一宿主节点发送的第三对应关系以及第四对应关系,所述第三对应关系为所述第一IAB节点中分布式单元DU的IP地址与所述第一IAB节点中移动终端MT的BAP地址的对应关系,所述第四对应关系为所述第一IAB节点中MT的BAP地址与所述第一IAB节点的下游节点中DU的IP地址的对应关系;
    所述第二宿主节点根据所述第三对应关系以及所述第四对应关系确定所述第一BAP路由标识。
  22. 根据权利要求18至21中任一项所述的方法,其特征在于,
    所述第一网段包括所述第一IAB节点以及所述第一IAB节点的下游节点;所述第二网段包括所述第一IAB节点以及所述第一IAB节点的上游节点;
    所述方法还包括:
    所述第二宿主节点接收所述第一宿主节点发送的第三BAP路由标识,所述第三BAP路由标识用于所述数据包在所述第一网段中下行传输,所述第二BAP路由标识包括所述第三BAP路由标识。
  23. 根据权利要求18至22中任一项所述的方法,其特征在于,所述第一网段包括所述第一IAB节点以及所述第一IAB节点的下游节点;所述第二网段包括所述第一IAB节点以及所述第一IAB节点的上游节点;
    所述方法还包括:
    所述第二宿主节点确定在所述第二网段中上行传输所述数据包所用的第四BAP路由标识,所述第二BAP路由标识包括所述第四BAP路由标识;
    所述第二宿主节点向所述第一宿主节点发送所述第四BAP路由标识。
  24. 一种通信装置,其特征在于,所述通信装置应用于接入回传一体化IAB网络,所述IAB网络包括第一网段与第二网段,所述第一网段由第一宿主节点管理,所述第二网段由第二宿主节点管理,所述第一宿主节点与所述第二宿主节点不同,所述通信装置包括:
    接收单元,用于在所述第一网段中接收第一数据包,所述第一数据包包括第一回传适配协议BAP路由标识,所述第一BAP路由标识用于所述第一数据包在所述第一网段中传输;
    获取单元,用于获取第一对应关系;
    更换单元,用于根据所述第一对应关系将所述第一数据包中的第一BAP路由标识更换为第二BAP路由标识,得到第二数据包;
    发送单元,用于在所述第二网段中向下一跳节点发送所述第二数据包,所述下一跳节点是所述通信装置的父节点或子节点。
  25. 根据权利要求24所述的通信装置,其特征在于,所述获取单元,还用于获取第二对应关系;
    所述发送单元,具体用于根据所述第二对应关系,确定在所述第二网段中通过出口链路的第一回传无线链路控制RLC信道向所述下一跳节点发送所述第二数据包。
  26. 根据权利要求24或25所述的通信装置,其特征在于,所述通信装置还包括:
    确定单元,用于确定所述第一数据包满足预设条件;
    所述确定单元,用于确定所述第一数据包满足所述预设条件包括以下至少一项:
    所述第一数据包中包括指示信息,所述确定单元,具体用于根据所述指示信息确定所述第一数据包满足所述预设条件;
    若所述第一对应关系还包括所述第一数据包中的所述第一BAP路由标识,所述确定单元,具体用于确定所述第一数据包满足所述预设条件。
  27. 根据权利要求26所述的通信装置,其特征在于,所述确定单元,还用于确定所述第一数据包中所述第一BAP路由标识中的BAP地址为所述通信装置的BAP地址。
  28. 根据权利要求26所述的通信装置,其特征在于,
    所述指示信息包括所述第一数据包的目的因特网协议IP地址,当所述第一数据包中的目的IP地址不是所述通信装置的IP地址时,所述通信装置确定所述第一数据包满足所述预设条件。
  29. 根据权利要求24至28中任一项所述的通信装置,其特征在于,所述第一网段包括所述通信装置以及所述通信装置的上游节点;所述第二网段包括所述通信装置以及所述通信装置的下游节点;
    所述接收单元,具体用于在所述第一网段中接收所述上游节点发送的所述第一数据包;
    所述发送单元,具体用于在所述第二网段中向所述下游节点发送所述第二数据包,所述第二BAP路由标识中的BAP地址为所述下游节点的BAP地址。
  30. 根据权利要求24至28中任一项所述的通信装置,其特征在于,所述第一网段包括所述通信装置以及所述通信装置的下游节点;所述第二网段包括所述通信装置以及所述通信装置的上游节点;
    所述接收单元,具体用于在所述第一网段中接收所述下游节点发送的所述第一数据包;
    所述发送单元,具体用于在所述第二网段中向所述上游节点发送所述第二数据包,所述第二BAP路由标识中的BAP地址为所述第二宿主节点的BAP地址。
  31. 根据权利要求30所述的通信装置,其特征在于,所述通信装置的上游节点为通信装置的父节点;
    所述发送单元,还用于确定所述第一数据包中所述第一BAP路由标识中的BAP地址为所述通信装置的BAP地址。
  32. 根据权利要求24至31中任一项所述的通信装置,其特征在于,所述第一BAP路由标识包括第一BAP地址和/或第一路径标识,所述第二BAP路由标识包括第二BAP地址和/或第二路径标识。
  33. 根据权利要求24至32中任一项所述的通信装置,其特征在于,所述第一对应关系由所述第一宿主节点或所述第二宿主节点配置;
    所述获取单元,获取第一对应关系,包括以下任意一项:
    所述获取单元,具体用于获取所述第一BAP路由标识与第二BAP路由标识,所述第一BAP路由标识与所述第二BAP路由标识具有对应关系;
    所述获取单元,具体用于获取所述第一数据包中的IP头信息与第二BAP路由标识,所述IP头信息与所述第二BAP路由标识具有对应关系;所述IP头信息包括目标IP地址,区分服 务代码点DSCP,流标签Flow label中的至少一种。
  34. 根据权利要求25所述的通信装置,其特征在于,所述获取单元,用于获取第二对应关系,包括以下任意一项:
    所述获取单元,具体用于获取所述第一BAP路由标识与所述通信装置出口链路的第一回传RLC信道,所述第一BAP路由标识与所述通信装置出口链路的第一回传RLC信道具有对应关系;
    所述获取单元,具体用于获取所述第二BAP路由标识与所述通信装置出口链路的第一回传RLC信道,所述第二BAP路由标识与所述通信装置出口链路的第一回传RLC信道具有对应关系;
    所述获取单元,具体用于获取所述第一数据包中的IP头信息与所述通信装置出口链路的第一回传RLC信道,所述第一数据包中的所述IP头信息与所述通信装置出口链路的第一回传RLC信道具有对应关系,所述IP头信息包括目标IP地址,区分服务代码点DSCP,流标签Flow label中的至少一种;
    所述获取单元,具体用于获取所述通信装置入口链路的第二回传RLC信道与所述通信装置出口链路的第一回传RLC信道,所述通信装置入口链路的第二回传RLC信道与所述通信装置出口链路的第一回传RLC信道具有对应关系。
  35. 一种通信装置,其特征在于,所述通信装置应用于接入回传一体化IAB网络,所述IAB网络包括第一网段与第二网段,所述第一网段由所述通信装置管理,所述第二网段由第二宿主节点管理,所述通信装置与所述第二宿主节点不同,所述通信装置包括:
    获取单元,用于获取第一BAP路由标识与第二BAP路由标识,所述第一BAP路由标识与所述第二BAP路由标识具有对应关系,所述第一BAP路由标识用于数据包在所述第一网段中传输,所述第二BAP路由标识用于所述数据包在所述第二网段中传输;
    发送单元,用于向第一IAB节点发送所述第一BAP路由标识与所述第二BAP路由标识,所述第一IAB节点位于所述第一网段以及所述第二网段中;
    或者,
    获取单元,用于获取数据包中的IP头信息与第二BAP路由标识,所述数据包中的IP头信息与所述第二BAP路由标识具有对应关系,所述第二BAP路由标识用于所述数据包在所述第二网段中传输;
    发送单元,用于向第一IAB节点发送所述数据包中的IP头信息与所述第二BAP路由标识,所述第一IAB节点位于所述第一网段以及所述第二网段中。
  36. 根据权利要求35所述的通信装置,其特征在于,所述获取单元,还用于获取所述第一BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道,所述第一BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道具有对应关系;
    所述发送单元,还用于向所述第一IAB节点发送所述第一BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道;
    或者,
    所述获取单元,还用于获取所述第二BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道,所述第二BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道具 有对应关系;
    所述发送单元,还用于向所述第一IAB节点发送所述第二BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道;
    或者,
    所述获取单元,还用于获取所述第一数据包中的IP头信息与所述第一IAB节点出口链路的第一回传RLC信道,所述第一数据包中的所述IP头信息与所述第一IAB节点出口链路的第一回传RLC信道具有对应关系;
    所述发送单元,还用于向所述第一IAB节点发送所述第一数据包中的IP头信息与所述第一IAB节点出口链路的第一回传RLC信道;
    或者,
    所述获取单元,还用于获取所述第一IAB节点入口链路的第二回传RLC信道与所述第一IAB节点出口链路的第一回传RLC信道,所述第一IAB节点入口链路的第二回传RLC信道与所述第一IAB节点出口链路的第一回传RLC信道具有对应关系;
    所述发送单元,还用于向所述第一IAB节点发送所述第一IAB节点入口链路的第二回传RLC信道与所述第一IAB节点出口链路的第一回传RLC信道。
  37. 根据权利要求35或36所述的通信装置,其特征在于,所述发送单元,还用于向接入IAB节点发送配置信息,所述配置信息用于指示将第一IAB节点的BAP地址作为上行数据包的目的BAP地址。
  38. 根据权利要求35至37中任一项所述的通信装置,其特征在于,所述第一网段包括所述第一IAB节点以及所述第一IAB节点的下游节点;所述第二网段包括所述第一IAB节点以及所述第一IAB节点的上游节点;
    所述获取单元,还用于获取第三对应关系以及第四对应关系,所述第三对应关系为所述第一IAB节点中分布式单元DU的IP地址与所述第一IAB节点中移动终端MT的BAP地址的对应关系,所述第四对应关系为所述第一IAB节点中MT的BAP地址与所述第一IAB节点的下游节点中DU的IP地址的对应关系;
    所述发送单元,还用于向所述第二宿主节点发送所述第三对应关系以及第四对应关系,所述第三对应关系以及所述第四对应关系用于所述第二宿主节点确定所述第一BAP路由标识。
  39. 根据权利要求35至38中任一项所述的通信装置,其特征在于,
    所述第一网段包括所述第一IAB节点以及所述第一IAB节点的下游节点;所述第二网段包括所述第一IAB节点以及所述第一IAB节点的上游节点;
    所述通信装置还包括:
    确定单元,用于确定在所述第一网段中下行传输所述数据包所用的第三BAP路由标识,所述第二BAP路由标识包括所述第三BAP路由标识;
    所述发送单元,还用于向所述第二宿主节点发送所述第三BAP路由标识。
  40. 根据权利要求35至39中任一项所述的通信装置,其特征在于,所述第一网段包括所述第一IAB节点以及所述第一IAB节点的下游节点;所述第二网段包括所述第一IAB节点以及所述第一IAB节点的上游节点;
    所述通信装置还包括:
    接收单元,用于接收所述第二宿主节点发送的第四BAP路由标识,所述第四BAP路由标识用于所述数据包在所述第二网段中上行传输,所述第二BAP路由标识包括所述第四BAP路由标识。
  41. 一种通信装置,其特征在于,所述通信装置应用于接入回传一体化IAB网络,所述IAB网络包括第一网段与第二网段,所述第一网段由第一宿主节点管理,所述第二网段由所述通信装置管理,所述第一宿主节点与所述通信装置不同,所述第一IAB节点位于所述第一网段以及所述第二网段中,所述通信装置包括:
    获取单元,用于获取第一BAP路由标识与第二BAP路由标识,所述第一BAP路由标识与所述第二BAP路由标识具有对应关系,所述第一BAP路由标识用于数据包在所述第一网段中传输,所述第二BAP路由标识用于所述数据包在所述第二网段中传输;
    发送单元,用于向第一IAB节点发送所述第一BAP路由标识与所述第二BAP路由标识,所述第一IAB节点位于所述第一网段以及所述第二网段中;
    或者,
    获取单元,用于获取数据包中的IP头信息与第二BAP路由标识,所述数据包中的IP头信息与所述第二BAP路由标识具有对应关系,所述第二BAP路由标识用于所述数据包在所述第二网段中传输;
    发送单元,用于向第一IAB节点发送所述数据包中的IP头信息与所述第二BAP路由标识,所述第一IAB节点位于所述第一网段以及所述第二网段中。
  42. 根据权利要求41所述的通信装置,其特征在于,所述获取单元,还用于获取所述第一BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道,所述第一BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道具有对应关系;
    所述发送单元,还用于向所述第一IAB节点发送所述第一BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道;
    或者,
    所述获取单元,还用于获取所述第二BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道,所述第二BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道具有对应关系;
    所述发送单元,还用于向所述第一IAB节点发送所述第二BAP路由标识与所述第一IAB节点出口链路的第一回传RLC信道;
    或者,
    所述获取单元,还用于获取所述第一数据包中的IP头信息与所述第一IAB节点出口链路的第一回传RLC信道,所述第一数据包中的所述IP头信息与所述第一IAB节点出口链路的第一回传RLC信道具有对应关系;
    所述发送单元,还用于向所述第一IAB节点发送所述第一数据包中的IP头信息与所述第一IAB节点出口链路的第一回传RLC信道;
    或者,
    所述获取单元,还用于获取所述第一IAB节点入口链路的第二回传RLC信道与所述第一IAB节点出口链路的第一回传RLC信道,所述第一IAB节点入口链路的第二回传RLC信道与 所述第一IAB节点出口链路的第一回传RLC信道具有对应关系;
    所述发送单元,还用于向所述第一IAB节点发送所述第一IAB节点入口链路的第二回传RLC信道与所述第一IAB节点出口链路的第一回传RLC信道。
  43. 根据权利要求41或42所述的通信装置,其特征在于,所述发送单元,还用于向接入IAB节点发送配置信息,所述配置信息用于指示将第一IAB节点的BAP地址作为上行数据包的目的BAP地址。
  44. 根据权利要求41至43中任一项所述的通信装置,其特征在于,所述第一网段包括所述第一IAB节点以及所述第一IAB节点的下游节点;所述第二网段包括所述第一IAB节点以及所述第一IAB节点的上游节点;
    所述通信装置还包括:
    接收单元,用于接收所述第一宿主节点发送的第三对应关系以及第四对应关系,所述第三对应关系为所述第一IAB节点中分布式单元DU的IP地址与所述第一IAB节点中移动终端MT的BAP地址的对应关系,所述第四对应关系为所述第一IAB节点中MT的BAP地址与所述第一IAB节点的下游节点中DU的IP地址的对应关系;
    确定单元,用于根据所述第三对应关系以及所述第四对应关系确定所述第一BAP路由标识。
  45. 根据权利要求41至44中任一项所述的通信装置,其特征在于,
    所述第一网段包括所述第一IAB节点以及所述第一IAB节点的下游节点;所述第二网段包括所述第一IAB节点以及所述第一IAB节点的上游节点;
    所述获取单元,还用于接收所述第一宿主节点发送的第三BAP路由标识,所述第三BAP路由标识用于所述数据包在所述第一网段中下行传输,所述第二BAP路由标识包括所述第三BAP路由标识。
  46. 根据权利要求41至45中任一项所述的通信装置,其特征在于,所述第一网段包括所述第一IAB节点以及所述第一IAB节点的下游节点;所述第二网段包括所述第一IAB节点以及所述第一IAB节点的上游节点;
    所述通信装置还包括:
    确定单元,用于确定在所述第二网段中上行传输所述数据包所用的第四BAP路由标识,所述第二BAP路由标识包括所述第四BAP路由标识;
    所述发送单元,具体用于向所述第一宿主节点发送所述第四BAP路由标识。
  47. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求1至11任一项所述的方法被执行。
  48. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求12至17任一项所述的方法被执行。
  49. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求18至23任一项所述的方法被执行。
  50. 一种通信系统,其特征在于,包括:如权利要求47所述的通信装置,和/或,如权利要求48所述的通信装置,和/或,如权利要求49所述的通信装置。
  51. 一种芯片,其特征在于,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行计算机程序或指令,使得权利要求1至11任一项所述的方法被执行,或者使得权利要求12至17任一项所述的方法被执行,或者使得权利要求18至23任一项所述的方法被执行。
  52. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,所述指令在计算机上执行时,使得所述计算机执行如权利要求1至11中任一项所述的方法,或者使得所述计算机执行如权利要求12至17中任一项所述的方法,或者使得所述计算机执行如权利要求18至23中任一项所述的方法。
  53. 一种计算机程序产品,其特征在于,所述计算机程序产品在计算机上执行时,使得所述计算机执行如权利要求1至11中任一项所述的方法,或使得所述计算机执行如权利要求12至17中任一项所述的方法,或使得所述计算机执行如权利要求18至23中任一项所述的方法。
PCT/CN2022/070998 2021-01-15 2022-01-10 一种通信方法及相关设备 WO2022152079A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22738960.8A EP4266755A4 (en) 2021-01-15 2022-01-10 COMMUNICATION METHOD AND ASSOCIATED DEVICE
US18/352,692 US20230362779A1 (en) 2021-01-15 2023-07-14 Communication method and related device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110057037.8 2021-01-15
CN202110057037 2021-01-15
CN202110356248.1 2021-04-01
CN202110356248.1A CN114765830A (zh) 2021-01-15 2021-04-01 一种通信方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/352,692 Continuation US20230362779A1 (en) 2021-01-15 2023-07-14 Communication method and related device

Publications (1)

Publication Number Publication Date
WO2022152079A1 true WO2022152079A1 (zh) 2022-07-21

Family

ID=82364862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070998 WO2022152079A1 (zh) 2021-01-15 2022-01-10 一种通信方法及相关设备

Country Status (4)

Country Link
US (1) US20230362779A1 (zh)
EP (1) EP4266755A4 (zh)
CN (1) CN114765830A (zh)
WO (1) WO2022152079A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024164214A1 (zh) * 2023-02-09 2024-08-15 富士通株式会社 信息处理方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115606243A (zh) * 2021-04-01 2023-01-13 苹果公司(Us) 集成接入和回程无线电链路切换
CN118283736A (zh) * 2022-12-30 2024-07-02 华为技术有限公司 一种通信方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8358577B1 (en) * 2009-12-10 2013-01-22 Sprint Communications Company L.P. Using wireless links to offload backhaul communications
CN111865802A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种通信方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202110656TA (en) * 2019-03-28 2021-10-28 Zte Corp System and method for iab handovers
CN111901817A (zh) * 2020-03-09 2020-11-06 中兴通讯股份有限公司 数据包传输方法、装置、通信节点及存储介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8358577B1 (en) * 2009-12-10 2013-01-22 Sprint Communications Company L.P. Using wireless links to offload backhaul communications
CN111865802A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种通信方法及装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Boundary IAB node behaviour for partial and full inter-donor migration", 3GPP DRAFT; R2-2108422, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20210816 - 20210827, 5 August 2021 (2021-08-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052032584 *
FUTUREWEI: "Solutions for Inter-Donor Routing and Bearer Mapping", 3GPP DRAFT; R2-2108482, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20210816 - 20210827, 6 August 2021 (2021-08-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052034824 *
QUALCOMM INCORPORATED: "IAB enhancements for inter-donor topological redundancy", 3GPP DRAFT; R3-206258, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. E-meeting; 20201102 - 20201112, 22 October 2020 (2020-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051941711 *
SAMSUNG (MODERATOR): "Summary of offline discussion on topology redundancy", 3GPP DRAFT; R3-207101, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20201102 - 20201112, 17 November 2020 (2020-11-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052256026 *
See also references of EP4266755A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024164214A1 (zh) * 2023-02-09 2024-08-15 富士通株式会社 信息处理方法和装置

Also Published As

Publication number Publication date
US20230362779A1 (en) 2023-11-09
EP4266755A1 (en) 2023-10-25
CN114765830A (zh) 2022-07-19
EP4266755A4 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
US10893459B2 (en) Wireless base station, first wireless control apparatus, second wireless control apparatus, and wireless apparatus
CN110050481B (zh) 控制无线通信系统中的数据流的设备和方法
WO2022152079A1 (zh) 一种通信方法及相关设备
CN113556794B (zh) 通信方法、装置及系统
WO2020164175A1 (zh) 标识管理的方法和装置
WO2019233465A1 (zh) 路径时延信息获取方法及相关设备
WO2023011245A1 (zh) 通信方法和通信装置
WO2020192654A1 (zh) 配置无线链路控制rlc承载的方法和装置
WO2022151296A1 (zh) 通信方法及装置
KR20230091908A (ko) 패킷 리라우팅을 위한 방법 및 장치
WO2020082948A1 (zh) 一种数据传输方法及装置
WO2022233317A1 (zh) 一种iab节点连接更新方法及装置
WO2023110927A1 (en) Methods for use in a process for migrating resources between integrated access and backhaul topologies
WO2022151298A1 (zh) 群组迁移方法、装置和系统
EP4221338A1 (en) Communication method for integrated access and backhaul (iab) system, and related device
WO2022206317A1 (zh) 一种通信方法以及通信设备
WO2023150975A1 (zh) Iab宿主设备以及传输迁移回退方法
WO2024169715A1 (zh) 通信方法和通信装置
WO2024174858A1 (zh) 传输数据的方法及装置
WO2023131094A9 (zh) 通信方法及通信装置
WO2023150976A1 (zh) Iab宿主设备以及传输迁移管理方法
WO2024140043A1 (zh) 通信方法和通信装置
WO2023150974A1 (zh) Iab宿主设备以及传输迁移管理方法
WO2023060401A1 (zh) 无线路由方法及装置
WO2022156785A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22738960

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022738960

Country of ref document: EP

Effective date: 20230719

WWE Wipo information: entry into national phase

Ref document number: 202337051349

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE