WO2022151902A1 - 一种质子传导soec和氧离子传导sofc联合装置 - Google Patents

一种质子传导soec和氧离子传导sofc联合装置 Download PDF

Info

Publication number
WO2022151902A1
WO2022151902A1 PCT/CN2021/138399 CN2021138399W WO2022151902A1 WO 2022151902 A1 WO2022151902 A1 WO 2022151902A1 CN 2021138399 W CN2021138399 W CN 2021138399W WO 2022151902 A1 WO2022151902 A1 WO 2022151902A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
soec
power
oxygen ion
sofc
Prior art date
Application number
PCT/CN2021/138399
Other languages
English (en)
French (fr)
Inventor
王建强
严慧娟
洪春峰
马成国
郭育菁
杜贤龙
肖国萍
Original Assignee
中国科学院上海应用物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202120100109.8U external-priority patent/CN214012988U/zh
Priority claimed from CN202110050829.2A external-priority patent/CN112736270A/zh
Application filed by 中国科学院上海应用物理研究所 filed Critical 中国科学院上海应用物理研究所
Priority to EP21919090.7A priority Critical patent/EP4280325A1/en
Publication of WO2022151902A1 publication Critical patent/WO2022151902A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B1/042Hydrogen or oxygen by electrolysis of water by electrolysis of steam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to hydrogen for high temperature hydrogen production, and more particularly to a combined device of proton conduction SOEC and oxygen ion conduction SOFC.
  • Electrolyzing water to produce hydrogen and using hydrogen fuel cells to generate electricity is considered to be one of the effective ways to make full use of renewable energy and stabilize the power grid by reducing peaks and valleys.
  • how to improve the energy utilization rate is the main difficulty in electrolyzing water to produce hydrogen and using hydrogen fuel cells to generate electricity.
  • Existing water electrolysis hydrogen production technology can be divided into high temperature water electrolysis hydrogen production and low temperature water electrolysis hydrogen production.
  • Low-temperature electrolysis of water for hydrogen production includes alkaline electrolysis of water for hydrogen production and PEM electrolysis of water for hydrogen production.
  • High-temperature electrolysis of water for hydrogen production refers to oxygen ion-conducting SOEC, whose direct current conversion efficiency can reach more than 90%, and the working temperature is 600°C-1000°C.
  • Existing hydrogen fuel cells can also be divided into high temperature and low temperature.
  • the low temperature fuel cell is represented by PEMFC, and the working temperature is 60-80 °C; the high temperature fuel cell mainly refers to SOFC, and the working temperature can reach 1000 °C.
  • the energy utilization rate of the low temperature fuel cell does not exceed 70%; if heat recovery is performed, the energy utilization rate of the high temperature fuel cell can reach more than 95%.
  • the present invention provides a combined device of proton conduction SOEC and oxygen ion conduction SOFC.
  • the combined device of proton conduction SOEC and oxygen ion conduction SOFC includes a power supply system, a water supply system, a hydrogen production system, a purification buffer hydrogen storage system, a hydrogen distribution system, a power generation system, an electricity management system and a molten salt heat storage system , wherein the hydrogen production system is a proton-conducting SOEC electrolysis water vapor hydrogen production device, the power supply system is connected to the hydrogen production system to provide electrolysis power to the hydrogen production system, and the water supply system is connected to the hydrogen production system to provide raw water to the hydrogen production system.
  • the hydrogen distribution system is connected with the hydrogen production system to provide protective hydrogen to the hydrogen production system
  • the purification buffer hydrogen storage system is connected with the hydrogen production system to store the hydrogen produced by the hydrogen production system in the purification buffer hydrogen storage system
  • the power generation system is oxygen ion Conductive SOFC power generation device
  • the hydrogen distribution system is connected with the power generation system to provide raw material hydrogen to the power generation system
  • the electricity management system is connected with the power generation system to transmit the electricity generated by the hydrogen consumption of the power generation system to the electricity management system
  • the molten salt heat storage system is connected with the power generation system.
  • the power generation system is connected to store the heat generated by the consumption of hydrogen by the power generation system into the molten salt heat storage system.
  • the hydrogen production system includes an electrolytic cell, a water vapor generator, a gas preheater and a gas cooling separation component, wherein the electrolytic cell is a proton-conducting solid oxide electrolytic cell used for high-temperature electrolysis of water vapor to produce hydrogen, and the water supply system It is connected with the steam generator to heat the raw water from the water supply system into steam.
  • the gas preheater is connected between the electrolysis cell and the steam generator, and the water vapor enters the anode side of the electrolysis cell after passing through the gas preheater. After electrolysis, electrons are lost to generate oxygen, and the electrolyzed hydrogen ions pass through the electrolyte layer to the cathode side of the electrolysis cell to obtain electrons to generate hydrogen.
  • the hydrogen used as protective gas passes through the gas preheater and enters the cathode side of the electrolysis cell, and the gas cools and separates the components Connected downstream of the electrolysis cell to separate out the oxygen and deliver the hydrogen into the purification buffer hydrogen storage system.
  • the operating temperature of the electrolytic cell is maintained between 400°C and 700°C.
  • the power generation system includes a fuel cell, an air purifier, an air booster, a gas preheater and a hydrogen internal circulation device, wherein the fuel cell is an oxygen ion conduction type solid oxide fuel cell for high temperature power generation, and the air purification
  • the fuel cell is connected to the fuel cell through the air booster and the gas preheater in turn.
  • the air purifier After the air is processed by the air purifier, it enters the gas preheater through the air booster, and then enters the cathode side of the fuel cell, and the hydrogen passes through the gas preheater.
  • the hydrogen internal circulation device After entering the anode side of the fuel cell, the hydrogen internal circulation device is connected between the fuel cell and the gas preheater, and the unreacted hydrogen re-enters the anode side of the fuel cell through the hydrogen internal circulation device together with the hydrogen from the gas preheater.
  • the fuel cell is connected with the electricity management system to output the generated electricity
  • the fuel cell is connected with the molten salt heat storage system to output the generated heat.
  • the operating temperature of the fuel cell is maintained between 700°C and 1000°C.
  • the proton-conducting SOEC and oxygen ion-conducting SOFC combined device further includes an electrical control system, wherein the electrical control system provides an operating power source and a control strategy for the entire proton-conducting SOEC and oxygen-ion-conducting SOFC combined device.
  • the power supply system includes high voltage alternating current, power distributor, surplus power, step-down transformer, AC-DC alternating current to direct current and constant voltage/constant current regulation module, wherein the high voltage alternating current is supplied to the electrical equipment for normal use through the power distributor , the excess power is connected to the hydrogen production system through the step-down transformer, AC-DC alternating current to direct current and constant voltage/constant current adjustment module in turn.
  • the combined device of proton conduction SOEC and oxygen ion conduction SOFC further comprises an external hydrogen supply system, wherein the external hydrogen supply system inputs hydrogen to the purification buffer hydrogen storage system.
  • the combined proton conducting SOEC and oxygen ion conducting SOFC further comprises a hydrogen use system, wherein the hydrogen distribution system provides hydrogen to the hydrogen use system.
  • the power management system includes a power distribution instrument, a DC-DC converter, a DC-AC direct current to alternating current and a step-up transformer, and the power distribution instrument is respectively connected with the power generation system, the DC-DC converter and the DC-AC direct current to alternating current to convert
  • the power from the power generation system is delivered to the DC-DC converter and the DC-AC DC to AC through the power distribution instrument respectively.
  • the DC-DC converter is directly used by the DC power equipment, and the DC-AC DC to AC is passed through the step-up transformer. Feed back to the grid.
  • the proton conduction SOEC electrolysis water vapor hydrogen production device can reduce the manufacturing difficulty of the hydrogen production system and reduce the manufacturing cost while ensuring efficient electrolytic hydrogen production. After stable operation, there is no need to continuously supply hydrogen to protect the hydrogen electrode.
  • the oxygen ion conduction SOFC power generation device not only generates electricity, but also uses molten salt to store heat to recover the high-quality heat generated by power generation, so that hydrogen energy can be fully utilized. , the overall energy utilization efficiency is high.
  • FIG. 1 is a schematic diagram of the overall structure of a combined device of proton conduction SOEC and oxygen ion conduction SOFC according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic diagram of a specific structure of the power supply system of FIG. 1;
  • Fig. 3 is the concrete structure schematic diagram of the hydrogen production system of Fig. 1;
  • Fig. 4 is a specific structural schematic diagram of the power generation system of Fig. 1;
  • FIG. 5 is a schematic diagram of a specific structure of the power management system of FIG. 1 .
  • a combined proton conduction SOEC and oxygen ion conduction SOFC device includes an electrical control system 1, an electric power supply system 2, a water supply system 3, a hydrogen production system 4, and an external hydrogen supply system 5.
  • the external hydrogen supply system 5 inputs hydrogen into the purification buffer hydrogen storage system 6;
  • the hydrogen distribution system 7 provides hydrogen to the hydrogen using system 8;
  • hydrogen production System 4 is a high-temperature proton conduction type SOEC electrolysis water vapor hydrogen production device, the power supply system 2 provides DC electrolysis power to the hydrogen production system 4, the water supply system 3 provides raw material water to the hydrogen production system 4, and the hydrogen distribution system 7 supplies the hydrogen production system 4.
  • the power generation system 9 is a high-temperature oxygen ion conduction SOFC power generation device, and the hydrogen distribution system 7 provides raw material hydrogen to the power generation system 9, and the power generation system 9 consumes
  • the electric energy generated by the hydrogen is sent to the electricity management system 10 , and the generated heat enters the molten salt heat storage system 11 .
  • the high temperature proton conduction SOEC electrolysis water vapor hydrogen production device and the high temperature oxygen ion conduction SOFC power generation device are combined, so that the temperature required by the hydrogen production system 4 is reduced, thereby The manufacturing difficulty of the hydrogen production system 4 is reduced, and the power generation system 9 can ensure the direct use of electric power while recovering a high-quality heat source that reaches nearly 1000°C, maximizing the use of the energy contained in hydrogen.
  • the electrical control system 1 is connected to the electrical equipment in other systems 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, including the strong current room and the weak current room, and has the power supply to the electrical equipment.
  • the power supply system 2 is connected to the electrical control system 1 and the hydrogen production system 4, respectively.
  • the high-voltage AC power 21 from the grid is supplied to the electrical equipment for normal use through the power distributor 22, and the excess power 23 is distributed to the system.
  • Hydrogen system 4 which converts electrical energy into hydrogen and stores it.
  • the excess power 23 is sequentially connected to the hydrogen production system 4 through the step-down transformer 24 , the AC-DC alternating current to direct current 25 and the constant voltage/constant current adjustment module 26 to provide stable electrolysis power for the hydrogen production system 4 .
  • the water supply system 3 is respectively connected with the electrical control system 1 and the hydrogen production system 4 through pipes.
  • the water supply system 3 includes a water purification device, a water storage tank and a water delivery pump.
  • the raw water flows into the water storage tank after passing through the purified water device.
  • the automatic water replenishment device is used Automatic water replenishment, and there is a water pump behind the water storage tank to deliver raw water to the hydrogen production system 4.
  • the hydrogen production system 4 is respectively connected with the electrical control system 1, the power supply system 2, the water supply system 3 and the purification buffer hydrogen storage system 6, and is also connected with the hydrogen distribution system 7 to pass the It obtains a small amount of hydrogen as a protective gas.
  • the core of the hydrogen production system 4 is to produce hydrogen by high-temperature electrolysis of water vapor in a proton-conducting solid oxide electrolytic cell (SOEC) 41, and the working temperature is maintained between 400°C and 700°C. Specifically, a high-temperature proton-conducting electrolyte is used. Most of them are BCZY and BZCYYb electrolytes.
  • the hydrogen production system 4 also includes a water vapor generator 42, a gas preheater 43 and a gas cooling separation component 44.
  • the water supply system 3 is connected with the water vapor generator 42 to heat the raw water from the water supply system 3 into water vapor, and the gas
  • the preheater 43 is used for preheating the hydrogen and water vapor used as protective gas that enter the electrolytic cell 41.
  • the water vapor enters the anode side of the electrolytic cell 41 after passing through the gas preheater 43, and the hydrogen used as protective gas passes through the After the gas preheater 43 enters the cathode side of the electrolytic cell 41, after the power supply system provides direct current, the water vapor enters the anode side of the electrolytic cell 41 for electrolysis and loses electrons to generate oxygen, and the electrolyzed hydrogen ions pass through the electrolyte layer to reach the electrolytic cell
  • the cathode side of the cathode obtains electrons to generate hydrogen, and after stabilization, the hydrogen is turned off to protect the hydrogen.
  • the gas cooling separation component 44 is connected downstream of the electrolytic cell 41 to separate the oxygen and transport the hydrogen into the purification buffer hydrogen storage system 6 .
  • the external hydrogen supply system 5 is connected to the electrical control system 1 and the purification buffer hydrogen storage system 6 respectively, and provides additional hydrogen independently of the hydrogen production system 4 .
  • the front end of the purification buffer hydrogen storage system 6 is connected to the hydrogen production system 4 and the external hydrogen supply system 5 respectively, and the back end is connected to the hydrogen distribution system 7, including a purification part and a hydrogen storage part, wherein the purification part is mainly It is to remove the impurity gas from the hydrogen from the hydrogen production system 4 and the external hydrogen supply system 5 and store it.
  • the purification part is mainly It is to remove the impurity gas from the hydrogen from the hydrogen production system 4 and the external hydrogen supply system 5 and store it.
  • Temperature swing adsorption purification, pressure swing adsorption purification, membrane separation purification and other methods can be used.
  • the hydrogen storage part is combined with the actual situation, considering the energy density, For use occasions and other issues, metal hydrogen storage, high-pressure hydrogen storage, and liquid hydrogen storage can be used.
  • the front end of the hydrogen distribution system 7 is connected to the purification buffer hydrogen storage system 6, and the rear end is connected to the hydrogen use system 8 and the power generation system 9, so as to adjust the hydrogen purification buffer storage system 6 according to the fluctuation of the demand for hydrogen.
  • the hydrogen is delivered to the hydrogen use system 8 and the power generation system 9 in a certain proportion.
  • the hydrogen distribution system 7 includes a valve group composed of a pressure reducing valve, a one-way valve, a four-way valve, a pneumatic ball valve, etc., and a monitoring device composed of a pressure sensor and a flow meter.
  • the power generation system 9 is connected to the electrical control system 1 , the hydrogen distribution system 7 , the electrical management system 10 and the molten salt heat storage system 11 , respectively.
  • the core of the power generation system 9 is to generate electricity at high temperature through an oxygen ion conduction type solid oxide fuel cell (SOFC) 91.
  • SOFC oxygen ion conduction type solid oxide fuel cell
  • the working temperature is between 700°C and 1000°C. No cooling system is required to maintain the working temperature, and the heat generated by the reaction has a high recovery. Use value.
  • the power generation system 9 also includes an air purifier 92, an air booster 93, a gas preheater 94 and a hydrogen internal circulation device 95.
  • the air After the air is processed by the air purifier 92, it enters the gas preheater 94 through the air booster 93, After that, it enters the cathode side of the fuel cell 91, the hydrogen gas enters the anode side of the fuel cell 91 after passing through the gas preheater 94, and the unreacted hydrogen enters the fuel cell 91 together with the hydrogen from the gas preheater 94 through the hydrogen internal circulation device 95.
  • the anode side is recycled, the fuel cell 91 is connected to the electricity management system 10 to output the generated electricity, and the fuel cell 91 is connected to the molten salt heat storage system 11 to output the generated heat.
  • the power management system 10 is connected to the electrical control system 1 and the power generation system 9 respectively, and includes a power distributor 101 , a DC-DC converter 102 , a DC-AC DC-to-AC 103 and a step-up transformer 104 , the power from the power generation system 9 is respectively delivered to the DC-DC converter 102 and the DC-AC DC to AC 103 through the power distribution instrument 101, the DC-DC converter 102 is directly used by the DC electrical equipment, and the DC-AC DC converter is used directly.
  • the AC 103 is fed back to the grid through the step-up transformer 104 .
  • the molten salt heat storage system 11 is connected to the electrical control system 1 and the power generation system 9 respectively, and is used to store and recover the heat generated in the power generation system 9, and the recovered heat can be used as the gas preheating of the whole device Heating, plant heating, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明涉及一种质子传导SOEC和氧离子传导SOFC联合装置,制氢系统为质子传导型SOEC电解水蒸气制氢装置,电力供应系统向制氢系统提供电解电源,供水系统向制氢系统提供原料水,氢气分配系统向制氢系统提供保护氢气,制氢系统产生的氢气存储到纯化缓存储氢系统中,发电系统为氧离子传导型SOFC发电装置,氢气分配系统向发电系统提供原料氢,电管理系统将发电系统消耗氢气产生的电能输送到电管理系统中,产生的热量存储到熔盐储热系统中。根据本发明的质子传导SOEC和氧离子传导SOFC联合装置,制氢装置在高效电解制氢的同时降低制造难度,发电装置既产生了电能又用熔盐储热回收了发电产生的高品质热,整体的能量利用效率高。

Description

一种质子传导SOEC和氧离子传导SOFC联合装置 技术领域
本发明涉及高温制氢用氢,更具体地涉及一种质子传导SOEC和氧离子传导SOFC联合装置。
背景技术
电解水制氢并用氢燃料电池发电,被认为是能让可再生能源充分利用和削峰平谷稳定电网的有效方式之一。然而,如何提高能量利用率是电解水制氢并用氢燃料电池发电的主要难题。
现有的电解水制氢技术可以分为高温电解水制氢和低温电解水制氢。低温电解水制氢包括碱性电解水制氢和PEM电解水制氢等,低温电解水制氢的直流电转化率一般在40%-55%之间,工作温度一般维持在60-90℃。高温电解水制氢是指氧离子传导型SOEC,其直流电转化效率能达到90%以上,工作温度在600℃-1000℃。
现有的氢燃料电池也可以分为高温和低温,低温燃料电池以PEMFC为代表,工作温度在60-80℃;高温燃料电池主要指SOFC,工作温度最高能达到1000℃。实际工作中,低温燃料电池的能量利用率最高不超过70%;若进行热量回收,高温燃料电池的能量利用率能达95%以上。
综上所述,从能量转化率来看,采用高温电解制氢并发电是最理想的方式。但现有的高温电解水制氢的工作温度太高,并且在电解过程中需要持续通入氢气来保证氢电极不失活而保持稳定性,从而造成制造难度大,制造成本高等难题。
发明内容
为了解决上述现有技术中的制造难度大等问题,本发明提供一种质子传导SOEC和氧离子传导SOFC联合装置。
根据本发明的质子传导SOEC和氧离子传导SOFC联合装置,其包括电力供应系统、供水系统、制氢系统、纯化缓存储氢系统、氢气分配系统、发电系统、电管理系统和熔盐储热系统,其中,制氢系统为质子传导型SOEC 电解水蒸气制氢装置,电力供应系统与制氢系统连接以向制氢系统提供电解电源,供水系统与制氢系统连接以向制氢系统提供原料水,氢气分配系统与制氢系统连接以向制氢系统提供保护氢气,纯化缓存储氢系统与制氢系统连接以将制氢系统产生的氢气存储到纯化缓存储氢系统中,发电系统为氧离子传导型SOFC发电装置,氢气分配系统与发电系统连接以向发电系统提供原料氢,电管理系统与发电系统连接以将发电系统消耗氢气产生的电能输送到电管理系统中,熔盐储热系统与发电系统连接以将发电系统消耗氢气产生的热量存储到熔盐储热系统中。
优选地,制氢系统包括电解池、水蒸气发生器、气体预热器和气体冷却分离组件,其中,电解池为用于高温电解水蒸汽制氢的质子传导型固体氧化物电解池,供水系统与水蒸气发生器连接以将来自于供水系统的原料水加热为水蒸气,气体预热器连接在电解池和水蒸气发生器之间,水蒸气经过气体预热器后进入电解池的阳极侧电解后失去电子产生氧气,电解出的氢离子穿过电解质层到达电解池的阴极侧获得电子产生氢气,用作保护气的氢气经过气体预热器后进入电解池的阴极侧,气体冷却分离组件连接在电解池的下游以将氧气分离出去并将氢气输送进入纯化缓存储氢系统。
优选地,电解池的工作温度维持在400℃至700℃之间。
优选地,发电系统包括燃料电池、空气净化器、空气增压机、气体预热机和氢气内循环装置,其中,燃料电池为用于高温发电的氧离子传导型固体氧化物燃料电池,空气净化器依次通过空气增压机和气体预热机与燃料电池连接,空气经过空气净化器处理后,通过空气增压机进入气体预热机,之后进入燃料电池的阴极侧,氢气经过气体预热机后进入燃料电池的阳极侧,氢气内循环装置连接在燃料电池和气体预热机之间,未反应的氢气通过氢气内循环装置与来自气体预热机的氢气一起重新进入燃料电池的阳极侧循环利用,燃料电池与电管理系统连接以输出产生的电力,燃料电池与熔盐储热系统连接以输出产生的热量。
优选地,燃料电池的工作温度维持在700℃至1000℃之间。
优选地,该质子传导SOEC和氧离子传导SOFC联合装置还包括电气控制系统,其中,电气控制系统为整个质子传导SOEC和氧离子传导SOFC联合装置提供动作电源和控制策略。
优选地,电力供应系统包括高压交流电、电力分配器、过剩电力、降压变压器、AC-DC交流变直流和恒定电压/恒定电流调节模块,其中,高压交流电通过电力分配器供给用电设备正常使用,过剩电力依次通过降压变压器、AC-DC交流变直流和恒定电压/恒定电流调节模块与制氢系统连接。
优选地,该质子传导SOEC和氧离子传导SOFC联合装置还包括外部供氢系统,其中,外部供氢系统向纯化缓存储氢系统输入氢气。
优选地,该质子传导SOEC和氧离子传导SOFC联合装置还包括用氢系统,其中,氢气分配系统向用氢系统提供氢气。
优选地,电管理系统包括电力分配仪、DC-DC转换器、DC-AC直流变交流和升压变压器,电力分配仪分别与发电系统、DC-DC转换器和DC-AC直流变交流连接以将来自于发电系统的电力通过电力分配仪分别输送给DC-DC转换器和DC-AC直流变交流,DC-DC转换器直接供直流用电设备使用,DC-AC直流变交流通过升压变压器回馈给电网。
根据本发明的质子传导SOEC和氧离子传导SOFC联合装置,其中的质子传导型SOEC电解水蒸气制氢装置在保证高效电解制氢的同时,可以降低制氢系统的制造难度,减少了制造成本,在稳定运行后也不需要持续通入氢气来保护氢电极,其中的氧离子传导型SOFC发电装置既产生了电能又用熔盐储热回收了发电产生的高品质热,使氢气能量得到充分利用,整体的能量利用效率高。
附图说明
图1是根据本发明的一个优选实施例的质子传导SOEC和氧离子传导SOFC联合装置的整体结构示意图;
图2是图1的电力供应系统的具体结构示意图;
图3是图1的制氢系统的具体结构示意图;
图4是图1的发电系统的具体结构示意图;
图5是图1的电管理系统的具体结构示意图。
具体实施方式
下面结合附图,给出本发明的较佳实施例,并予以详细描述。
如图1所示,根据本发明的一个优选实施例的质子传导SOEC和氧离子传导SOFC联合装置,包括电气控制系统1、电力供应系统2、供水系统3、制氢系统4、外部供氢系统5、纯化缓存储氢系统6、氢气分配系统7、用氢系统8、发电系统9、电管理系统10和熔盐储热系统11,其中,电气控制系统1给其他系统2,3,4,5,6,7,8,9,10,11提供动作电源和控制策略;外部供氢系统5向纯化缓存储氢系统6中输入氢气;氢气分配系统7向用氢系统8提供氢气;制氢系统4为高温质子传导型SOEC电解水蒸气制氢装置,电力供应系统2向制氢系统4提供直流电解电源,供水系统3向制氢系统4提供原料水,氢气分配系统7向制氢系统4提供保护氢气,制氢系统4产生的氢气存储到纯化缓存储氢系统6中;发电系统9为高温氧离子传导型SOFC发电装置,氢气分配系统7向发电系统9提供原料氢,发电系统9消耗氢气产生的电能输送到电管理系统10中,产生的热量进入熔盐储热系统11中。
根据本发明的质子传导SOEC和氧离子传导SOFC联合装置,将高温质子传导型SOEC电解水蒸气制氢装置和高温氧离子传导型SOFC发电装置相结合,使得制氢系统4需要的温度降低,从而降低制氢系统4的制造难度,同时发电系统9能够在确保直接使用电力的同时回收达到接近1000℃的高品质的热源,最大程度地利用了氢气所含的能量。
如图1所示,电气控制系统1与其他系统2,3,4,5,6,7,8,9,10,11中的电气设备连接,包括强电间和弱电间,具有给电气设备供应电源,监控系统运行情况,调节工作参数,采集、记录和存储数据的功能。
如图1和图2所示,电力供应系统2分别与电气控制系统1和制氢系统4连接,来自电网的高压交流电21通过电力分配器22供给用电设备正常使用,过剩电力23分配给制氢系统4,将电能转化为氢气储存起来。具体地,过剩电力23依次通过降压变压器24,AC-DC交流变直流25和恒定电压/恒定电流调节模块26与制氢系统4连接,给制氢系统4提供稳定的电解电源。
如图1所示,供水系统3分别与电气控制系统1和制氢系统4通过管道连接。具体地,供水系统3包括净化水装置、储水箱和输水泵,原料水经过净化水装置后流入储水箱,储水箱中有液位检测装置,当储水箱中的水位过低时通过自动补水装置自动补水,储水箱后有输水泵,给制氢系统4输送原料水。
如图1和图3所示,制氢系统4分别与电气控制系统1、电力供应系统2、供水系统3和纯化缓存储氢系统6连接,另外还与氢气分配系统7连接以在开机时通过其获取少量的氢气来做保护气。制氢系统4的核心是通过质子传导型固体氧化物电解池(SOEC)41高温电解水蒸汽制氢,工作温度维持在400℃至700℃之间,具体地,采用高温质子传导型电解质,材料多为BCZY和BZCYYb电解质,当温度在400℃至700℃范围内就会有比较好的传导质子的能力,用作高温电解水蒸气制氢,水蒸气进入电解池41的阳极侧,氢气在电解池41的阴极侧产生。制氢系统4还包括水蒸气发生器42、气体预热器43和气体冷却分离组件44,供水系统3与水蒸气发生器42连接以将来自于供水系统3的原料水加热为水蒸气,气体预热器43用于预热进入电解池41的用作保护气的氢气和水蒸气,具体地,水蒸气经过气体预热器43后进入电解池41的阳极侧,用作保护气的氢气经过气体预热器43后进入电解池41的阴极侧,在电力供应系统提供直流电后,水蒸气进入电解池41的阳极侧电解后失去电子产生氧气,电解出的氢离子穿过电解质层到达电解池的阴极侧获得电子产生氢气,稳定后关闭保护氢气,气体冷却分离组件44连接在电解池41的下游以将氧气分离出去并将氢气输送进入纯化缓存储氢系统6。
如图1所示,外部供氢系统5分别与电气控制系统1和纯化缓存储氢系统6连接,独立于制氢系统4提供额外的氢气,供氢方式可采用长管拖车、管道运输等。
如图1所示,纯化缓存储氢系统6的前端分别与制氢系统4和外部供氢系统5连接,后端与氢气分配系统7连接,包括纯化部分和储氢部分,其中,纯化部分主要是将来自于制氢系统4和外部供氢系统5的氢气去除杂质气体后储存,可选用变温吸附纯化、变压吸附纯化、膜分离纯化等方式,储氢部分结合实际情况,考虑能量密度、使用场合等问题,可用金属储氢、高压储氢、液态储氢等方式。
如图1所示,氢气分配系统7的前端与纯化缓存储氢系统6连接,后端与用氢系统8和发电系统9连接,以根据用氢需求的变动将纯化缓存储氢系统6中的氢气按一定的比例分别输送给用氢系统8和发电系统9。氢气分配系统7包括减压阀、单向阀、四通阀、气动球阀等组成的阀门组,压力传感器、流量计等组成的监控设备。
如图1和图4所示,发电系统9分别与电气控制系统1、氢气分配系统7、电管理系统10和熔盐储热系统11连接。发电系统9的核心是通过氧离子传导型固体氧化物燃料电池(SOFC)91高温发电,工作温度在700℃至1000℃,不需要冷却系统来维持工作温度,反应产生的热具有很高的回收利用价值。发电系统9还包括空气净化器92、空气增压机93、气体预热机94和氢气内循环装置95,空气经过空气净化器92处理后,通过空气增压机93进入气体预热机94,之后进入燃料电池91的阴极侧,氢气经过气体预热机94后进入燃料电池91的阳极侧,未反应的氢气通过氢气内循环装置95与来自气体预热机94的氢气一起重新进入燃料电池91的阳极侧循环利用,燃料电池91与电管理系统10连接以输出产生的电力,燃料电池91与熔盐储热系统11连接以输出产生的热量。
如图1和图5所示,电管理系统10分别与电气控制系统1和发电系统9连接,包括电力分配仪101、DC-DC转换器102、DC-AC直流变交流103和升压变压器104,来自于发电系统9的电力通过电力分配仪101分别输送给DC-DC转换器102和DC-AC直流变交流103,DC-DC转换器102直接供直流用电设备使用,DC-AC直流变交流103通过升压变压器104回馈给电网。
如图1所示,熔盐储热系统11分别与电气控制系统1和发电系统9连接,用于储存发电系统9中产生的热量并进行回收,回收的热量可用作整个装置的气体预热升温,厂房供热等。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (10)

  1. 一种质子传导SOEC和氧离子传导SOFC联合装置,其特征在于,该质子传导SOEC和氧离子传导SOFC联合装置包括电力供应系统(2)、供水系统(3)、制氢系统(4)、纯化缓存储氢系统(6)、氢气分配系统(7)、发电系统(9)、电管理系统(10)和熔盐储热系统(11),其中,制氢系统(4)为质子传导型SOEC电解水蒸气制氢装置,电力供应系统(2)与制氢系统(4)连接以向制氢系统(4)提供电解电源,供水系统(3)与制氢系统(4)连接以向制氢系统(4)提供原料水,氢气分配系统(7)与制氢系统(4)连接以向制氢系统(4)提供保护氢气,纯化缓存储氢系统(6)与制氢系统(4)连接以将制氢系统(4)产生的氢气存储到纯化缓存储氢系统(6)中,发电系统(9)为氧离子传导型SOFC发电装置,氢气分配系统(7)与发电系统(9)连接以向发电系统(9)提供原料氢,电管理系统(10)与发电系统(9)连接以将发电系统(9)消耗氢气产生的电能输送到电管理系统(10)中,熔盐储热系统(11)与发电系统(9)连接以将发电系统(9)消耗氢气产生的热量存储到熔盐储热系统(11)中。
  2. 根据权利要求1所述的质子传导SOEC和氧离子传导SOFC联合装置,其特征在于,制氢系统(4)包括电解池(41)、水蒸气发生器(42)、气体预热器(43)和气体冷却分离组件(44),其中,电解池(41)为用于高温电解水蒸汽制氢的质子传导型固体氧化物电解池,供水系统(3)与水蒸气发生器(42)连接以将来自于供水系统(3)的原料水加热为水蒸气,气体预热器(43)连接在电解池(41)和水蒸气发生器(42)之间,水蒸气经过气体预热器(43)后进入电解池(41)的阳极侧电解后失去电子产生氧气,电解出的氢离子穿过电解质层到达电解池(41)的阴极侧获得电子产生氢气,用作保护气的氢气经过气体预热器(43)后进入电解池(41)的阴极侧,气体冷却分离组件(44)连接在电解池(41)的下游以将氧气分离出去并将氢气输送进入纯化缓存储氢系统(6)。
  3. 根据权利要求2所述的质子传导SOEC和氧离子传导SOFC联合装置,其特征在于,电解池(41)的工作温度维持在400℃至700℃之间。
  4. 根据权利要求1所述的质子传导SOEC和氧离子传导SOFC联合装置, 其特征在于,发电系统(9)包括燃料电池(91)、空气净化器(92)、空气增压机(93)、气体预热机(94)和氢气内循环装置(95),其中,燃料电池(91)为用于高温发电的氧离子传导型固体氧化物燃料电池,空气净化器(92)依次通过空气增压机(93)和气体预热机(94)与燃料电池(91)连接,空气经过空气净化器(92)处理后,通过空气增压机(93)进入气体预热机(94),之后进入燃料电池(91)的阴极侧,氢气经过气体预热机(94)后进入燃料电池(91)的阳极侧,氢气内循环装置(95)连接在燃料电池(91)和气体预热机(94)之间,未反应的氢气通过氢气内循环装置(95)与来自气体预热机(94)的氢气一起重新进入燃料电池(91)的阳极侧循环利用,燃料电池(91)与电管理系统(10)连接以输出产生的电力,燃料电池(91)与熔盐储热系统(11)连接以输出产生的热量。
  5. 根据权利要求4所述的质子传导SOEC和氧离子传导SOFC联合装置,其特征在于,燃料电池(91)的工作温度维持在700℃至1000℃之间。
  6. 根据权利要求1所述的质子传导SOEC和氧离子传导SOFC联合装置,其特征在于,该质子传导SOEC和氧离子传导SOFC联合装置还包括电气控制系统(1),其中,电气控制系统(1)为整个质子传导SOEC和氧离子传导SOFC联合装置提供动作电源和控制策略。
  7. 根据权利要求1所述的质子传导SOEC和氧离子传导SOFC联合装置,其特征在于,电力供应系统(2)包括高压交流电(21)、电力分配器(22)、过剩电力(23)、降压变压器(24)、AC-DC交流变直流(25)和恒定电压/恒定电流调节模块(26),其中,高压交流电(21)通过电力分配器(22)供给用电设备正常使用,过剩电力(23)依次通过降压变压器(24)、AC-DC交流变直流(25)和恒定电压/恒定电流调节模块(26)与制氢系统(4)连接。
  8. 根据权利要求1所述的质子传导SOEC和氧离子传导SOFC联合装置,其特征在于,该质子传导SOEC和氧离子传导SOFC联合装置还包括外部供氢系统(5),其中,外部供氢系统(5)向纯化缓存储氢系统(6)输入氢气。
  9. 根据权利要求1所述的质子传导SOEC和氧离子传导SOFC联合装置,其特征在于,该质子传导SOEC和氧离子传导SOFC联合装置还包括用氢系统(8),其中,氢气分配系统(7)向用氢系统(8)提供氢气。
  10. 根据权利要求1所述的质子传导SOEC和氧离子传导SOFC联合装置,其特征在于,电管理系统(10)包括电力分配仪(101)、DC-DC转换器(102)、DC-AC直流变交流(103)和升压变压器(104),电力分配仪(101)分别与发电系统(9)、DC-DC转换器(102)和DC-AC直流变交流(103)连接以将来自于发电系统(9)的电力通过电力分配仪(101)分别输送给DC-DC转换器(102)和DC-AC直流变交流(103),DC-DC转换器(102)直接供直流用电设备使用,DC-AC直流变交流(103)通过升压变压器(104)回馈给电网。
PCT/CN2021/138399 2021-01-14 2021-12-15 一种质子传导soec和氧离子传导sofc联合装置 WO2022151902A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21919090.7A EP4280325A1 (en) 2021-01-14 2021-12-15 Proton-conducting soec and oxygen ion-conducting sofc joint apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202120100109.8U CN214012988U (zh) 2021-01-14 2021-01-14 一种质子传导soec和氧离子传导sofc联合装置
CN202120100109.8 2021-01-14
CN202110050829.2A CN112736270A (zh) 2021-01-14 2021-01-14 一种质子传导soec和氧离子传导sofc联合装置
CN202110050829.2 2021-01-14

Publications (1)

Publication Number Publication Date
WO2022151902A1 true WO2022151902A1 (zh) 2022-07-21

Family

ID=82446826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138399 WO2022151902A1 (zh) 2021-01-14 2021-12-15 一种质子传导soec和氧离子传导sofc联合装置

Country Status (2)

Country Link
EP (1) EP4280325A1 (zh)
WO (1) WO2022151902A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067312A (ja) * 2005-09-02 2007-03-15 Jipangu Energy:Kk 太陽光利用の給電システム
CN105576273A (zh) * 2015-12-11 2016-05-11 西安交通大学 一种可逆循环绿色能源转换系统及转换方法
CN105845962A (zh) * 2016-03-30 2016-08-10 华中科技大学 固体氧化物燃料电池和固体氧化物电解池联合发电系统
CN106817067A (zh) * 2017-03-22 2017-06-09 中国华能集团清洁能源技术研究院有限公司 一种基于燃料电池的多能互补热电联产系统和工作方法
CN109687002A (zh) * 2018-11-13 2019-04-26 中广核研究院有限公司 一种分布式冷热电联供系统
CN110582631A (zh) * 2016-12-28 2019-12-17 马耳他股份有限公司 在热力发动机的冷侧存储多余热量
CN112736270A (zh) * 2021-01-14 2021-04-30 中国科学院上海应用物理研究所 一种质子传导soec和氧离子传导sofc联合装置
CN214012988U (zh) * 2021-01-14 2021-08-20 中国科学院上海应用物理研究所 一种质子传导soec和氧离子传导sofc联合装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067312A (ja) * 2005-09-02 2007-03-15 Jipangu Energy:Kk 太陽光利用の給電システム
CN105576273A (zh) * 2015-12-11 2016-05-11 西安交通大学 一种可逆循环绿色能源转换系统及转换方法
CN105845962A (zh) * 2016-03-30 2016-08-10 华中科技大学 固体氧化物燃料电池和固体氧化物电解池联合发电系统
CN110582631A (zh) * 2016-12-28 2019-12-17 马耳他股份有限公司 在热力发动机的冷侧存储多余热量
CN106817067A (zh) * 2017-03-22 2017-06-09 中国华能集团清洁能源技术研究院有限公司 一种基于燃料电池的多能互补热电联产系统和工作方法
CN109687002A (zh) * 2018-11-13 2019-04-26 中广核研究院有限公司 一种分布式冷热电联供系统
CN112736270A (zh) * 2021-01-14 2021-04-30 中国科学院上海应用物理研究所 一种质子传导soec和氧离子传导sofc联合装置
CN214012988U (zh) * 2021-01-14 2021-08-20 中国科学院上海应用物理研究所 一种质子传导soec和氧离子传导sofc联合装置

Also Published As

Publication number Publication date
EP4280325A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
WO2021196564A1 (zh) 一种宽功率电解水制氢系统及方法
CN109004665B (zh) 风电、光电储能及离/并网制氢系统
CN112736270A (zh) 一种质子传导soec和氧离子传导sofc联合装置
WO2016150168A1 (zh) 一种耦合太阳能光热的高温电解水制氢系统
Zhang et al. Configuration design and performance optimum analysis of a solar-driven high temperature steam electrolysis system for hydrogen production
CN211872097U (zh) 一种宽功率电解水制氢系统
CN114156502A (zh) 一种燃料电池热电联供系统
CN110571857A (zh) 基于光伏与燃料电池联合发电系统的能源管理协调系统
CN110690855A (zh) 一种基于氢储能的新型净零能耗建筑的能源系统
CN113278992B (zh) 一种水蒸气涡轮增压的燃料电池电解槽系统及其工作方法
CN114395775A (zh) 一种闭式清洁能源制氢储能系统
WO2016192574A1 (zh) 一种具有多组甲醇水重整制氢发电模组的充电站及方法
WO2020208949A1 (ja) 水素システム
CN113851670A (zh) 一种基于质子交换膜燃料电池的冷热电联供方法
CN115939469A (zh) 一种热电联产的一体式可再生燃料电池系统
JP2000054174A (ja) 水電解装置および水電解蓄電池
CN113278987B (zh) 一种soec和ael电解耦合固体循环储放氢系统
CN214012988U (zh) 一种质子传导soec和氧离子传导sofc联合装置
WO2021208524A1 (zh) 一种不依赖电网的离网式电解控制方法和结构
CN105811443A (zh) 基于甲醇水重整制氢发电系统的削峰填谷供电系统及方法
WO2022151902A1 (zh) 一种质子传导soec和氧离子传导sofc联合装置
CN112779549A (zh) 一种兆瓦级电站及其控制方法
CN217922341U (zh) 一种含热管理的集装箱式一体化电氢联产装置
CN112994076A (zh) 一种sofc热电联供微网
JP3102434B2 (ja) 電力貯蔵発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021919090

Country of ref document: EP

Effective date: 20230814