WO2022151794A1 - 基于无线测距传感器的移动机器人定位方法、系统及芯片 - Google Patents

基于无线测距传感器的移动机器人定位方法、系统及芯片 Download PDF

Info

Publication number
WO2022151794A1
WO2022151794A1 PCT/CN2021/126770 CN2021126770W WO2022151794A1 WO 2022151794 A1 WO2022151794 A1 WO 2022151794A1 CN 2021126770 W CN2021126770 W CN 2021126770W WO 2022151794 A1 WO2022151794 A1 WO 2022151794A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile robot
base station
axis
positioning
positioning base
Prior art date
Application number
PCT/CN2021/126770
Other languages
English (en)
French (fr)
Inventor
赖钦伟
肖刚军
Original Assignee
珠海一微半导体股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海一微半导体股份有限公司 filed Critical 珠海一微半导体股份有限公司
Priority to US18/269,574 priority Critical patent/US20240061442A1/en
Publication of WO2022151794A1 publication Critical patent/WO2022151794A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/245Arrangements for determining position or orientation using dead reckoning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/246Arrangements for determining position or orientation using environment maps, e.g. simultaneous localisation and mapping [SLAM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/247Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/656Interaction with payloads or external entities
    • G05D1/661Docking at a base station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2105/00Specific applications of the controlled vehicles
    • G05D2105/10Specific applications of the controlled vehicles for cleaning, vacuuming or polishing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2107/00Specific environments of the controlled vehicles
    • G05D2107/40Indoor domestic environment
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2109/00Types of controlled vehicles
    • G05D2109/10Land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2111/00Details of signals used for control of position, course, altitude or attitude of land, water, air or space vehicles
    • G05D2111/30Radio signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2111/00Details of signals used for control of position, course, altitude or attitude of land, water, air or space vehicles
    • G05D2111/50Internal signals, i.e. from sensors located in the vehicle, e.g. from compasses or angular sensors
    • G05D2111/54Internal signals, i.e. from sensors located in the vehicle, e.g. from compasses or angular sensors for measuring the travel distances, e.g. by counting the revolutions of wheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to the technical field of mobile robot navigation and positioning, in particular to a mobile robot positioning method, system and chip based on a wireless ranging sensor.
  • inertial sensors tend to accumulate non-systematic errors over time when the robot wheel is slipping or the robot wheel is moving on the carpet.
  • the odometer included in the inertial sensor can calculate the precise navigation position over a relatively short distance. Drift errors may easily accumulate over time, resulting in uncontrollable positioning accuracy.
  • the inertial sensor can be used to calculate the rotation angle of the robot, but the real-time position cannot be calculated or the deviation of the calculation result is large.
  • Chinese patent CN111381586A calculates the distance between the robot relative to each UWB base station by setting at least two UWB base stations, and calculates the robot coordinate position by combining the positions of at least two UWB base stations.
  • the positioning information of the odometer is used to correct the coordinate position of the robot; however, at least two base stations need to be deployed, which increases the difficulty of communication and increases the amount of calculation of the coordinate angle.
  • a method for positioning a mobile robot based on a wireless ranging sensor includes: measuring distances through communication between a first wireless ranging sensor set on the mobile robot and a second wireless ranging sensor set in the same positioning base station, respectively.
  • the technical solution obtains the distance between each traversed position and a fixed positioning base station of the mobile robot by controlling the mobile robot to traverse two target positions successively. Instead of calculating the distance between the robot in the same position and different base stations, it reduces the trouble of setting up multiple base stations in the positioning area, does not need to send and receive communication instructions from two base stations at the same time, and does not need to construct a geometric relationship to calculate The angular relationship between the traversed position of the robot and the positioning base station reduces the amount of data processing, the accuracy of the real-time position coordinates of the mobile robot calculated based on the aforementioned distance is improved, the controllability is enhanced, and the walking distance of the mobile robot without real-time feedback from the odometer The effect of the drift error that exists.
  • the position based on the preset positioning base station, the distance between two different positions that the mobile robot has walked successively and the position of the same positioning base station, and the odometer feedback of the mobile robot that the mobile robot has walked successively includes: the odometer of the mobile robot records the end point of the actual walking path of the mobile robot.
  • the coordinate offset of the position relative to its starting point position wherein, the projection of the positioning base station on the walking plane of the mobile robot is the position of the positioning base station, and the global coordinate system takes the position of the positioning base station as the origin established; the coordinate offsets of the aforementioned two different positions include the X-axis coordinate offset and the Y-axis coordinate offset of the global coordinate system; then, based on the two different positions that the mobile robot has walked successively and the same positioning base station
  • the distance between the positions of the mobile robot and the coordinate offset of the end position relative to the starting point position construct a binary equation system with the coordinates of the end position as unknown quantities, calculate the end position coordinates of the actual walking path of the mobile robot, and calculate the The position coordinates of are determined as the real-time coordinates of the mobile robot in the global map.
  • the technical solution is based on the coordinate offset of the end position of the actual walking path of the mobile robot relative to the starting point position, and the distance information between these two positions and the positioning base station, in a global coordinate system.
  • An equation system with line segment distance information as a parameter variable is constructed, and the coordinates of the end point of the actual walking path of the mobile robot are calculated as the real-time position coordinates of the mobile robot, so that the positioning accuracy is controllable in various robot walking paths. Overcome the large positioning error of inertial sensors in the global coordinate system.
  • it also includes: merging the position coordinates of the end point of the actual walking path of the mobile robot, the distance information measured by the odometer of the mobile robot, and the angle information measured by the gyroscope of the mobile robot, calculated based on the aforementioned binary equations, In order to filter out the noise occurring in the communication ranging between the first wireless ranging sensor and the second wireless ranging sensor, filter the calculated end position coordinates of the actual walking path of the mobile robot; wherein, according to the movement
  • the distance information measured by the odometer of the robot and the angle information measured by the gyroscope of the mobile robot are used to calculate the inertial coordinates of the mobile robot during the inertial navigation process by using the triangular geometric relationship, which is used to participate in the filtering operation of the aforementioned end position coordinates. Improve the positioning accuracy of mobile robots.
  • the line connecting the starting point position of the actual walking path of the mobile robot and the ending point position of the actual walking path of the mobile robot is parallel to the direction of the first preset coordinate axis.
  • the second wireless ranging sensor is a UWB base station.
  • wireless positioning methods such as GPS and Zigbee
  • it has higher accuracy and lower cost; compared with ultrasonic sensors, the signal detection angle is larger.
  • the real-time coordinates of the mobile robot during the walking process are obtained by calculation, the change, determine that the mobile robot is stuck, and then control the odometer of the mobile robot to stop counting. In the process of exception handling, the amount of data processing can be reduced.
  • the positioning base station also integrates a charging base; before executing the mobile robot positioning method, if the mobile robot finishes docking and charging on the charging base, first control the mobile robot along the second preset coordinate axis The direction leaves the charging base, and then controls the mobile robot to rotate so that its walking direction is parallel to the direction of the first preset coordinate axis; wherein, the first preset coordinate axis is perpendicular to the second preset coordinate axis. Let the robot that has finished charging retreat smoothly, so that it is convenient to enter the positioning and navigation mode.
  • the second preset coordinate axis is the Y axis, wherein the direction of the first preset coordinate axis includes the positive direction of the X axis or the negative direction of the X axis, and the second preset coordinate axis.
  • the axis direction includes the positive direction of the Y axis or the negative direction of the Y axis; when the first preset coordinate axis is the Y axis, the second preset coordinate axis is the X axis, wherein the first preset coordinate axis direction includes the positive direction of the Y axis or The Y-axis negative direction, the second preset coordinate axis direction includes the X-axis positive direction or the X-axis negative direction.
  • the two different positions that the mobile robot has walked successively are not located in the radial direction of the circular area centered on the positioning base station. Avoid the phenomenon that the error is too large during the positioning operation.
  • a positioning system for a mobile robot comprising a mobile robot and a positioning base station, a first wireless ranging sensor and an odometer are arranged on the mobile robot, and a second wireless ranging sensor is integrated on the positioning base station; the interior of the mobile robot further includes: distance calculation The unit is used to calculate the distance between the first wireless ranging sensor set on the mobile robot and the second wireless ranging sensor set in the same positioning base station.
  • the distance between the positioning base stations; the coordinate position calculation unit is used for the position of the positioning base station based on the preset, the distance between the two different positions that the mobile robot has walked successively and the same positioning base station, and the odometer feedback of the mobile robot
  • the quantitative relationship between the coordinate offsets of two different positions that the mobile robot has walked successively calculate the position coordinates of the latest walking of the mobile robot, and determine the calculated position coordinates as the real-time coordinates of the mobile robot in the global map; , the two different positions that the mobile robot has walked successively are within the effective detection range of the positioning base station; the coordinates of the latest walking position of the mobile robot are the latter of the two different positions that the mobile robot has walked successively; among them, the mobile robot is walking
  • the mobile robot builds a global map in real time, and establishes a global coordinate system on the global map based on the position of the pre-set positioning base station.
  • the technical solution adds a pair of wireless ranging sensors to the conventional inertial navigation system or recharge system, solves the problem of uncontrollable inertial navigation positioning accuracy and the problem of too many wireless base stations, and also reduces the location The amount of calculation of the angle; the positioning system is transplanted into the mobile robot, which is beneficial to improve the positioning accuracy and navigation efficiency of the robot.
  • the mobile robot is a visual robot or a laser robot
  • the coordinate position calculation unit provided inside is used for the distance between two different positions and the same positioning base station that the mobile robot has walked successively, and the end position is relative to the starting point.
  • the coordinate offset of the position construct a binary equation system with the coordinates of the end position as unknown quantities, calculate the coordinates of the end position of the actual walking path of the mobile robot, and determine the position coordinates of the latest traveled position of the mobile robot; when the mobile robot walks successively In the process of two different positions, the odometer that controls the mobile robot records the coordinate offset of the end position of the actual walking path of the mobile robot relative to its starting point position; wherein, the position where the mobile robot starts to walk is the actual walking position of the mobile robot.
  • the starting point position of the path, the latest walking position is the end position of the actual walking path of the mobile robot; wherein, the projection of the positioning base station on the walking plane of the mobile robot is the position of the positioning base station, and the global coordinate system is It is established with the position of the positioning base station as the origin; the coordinate offsets of the aforementioned two different positions include the X-axis coordinate offset and the Y-axis coordinate offset of the global coordinate system.
  • the technical solution is based on the coordinate offset of the end position of the actual walking path of the mobile robot relative to the starting point position, and the distance information between these two positions and the positioning base station, in a global coordinate system.
  • An equation system with line segment distance information as a parameter variable is constructed, and the coordinates of the end point of the actual walking path of the mobile robot are calculated as the real-time position coordinates of the mobile robot, so that the positioning accuracy is controllable in various robot walking paths. Overcome the large positioning error of inertial sensors in the global coordinate system.
  • a chip is used for storing computer program codes, and when the computer program codes are executed, the steps of the method for positioning a mobile robot based on a wireless ranging sensor are realized.
  • the positioning and navigation accuracy of the mobile robot is controllable, and the calculation amount of the coordinate position is reduced.
  • FIG. 1 is a flowchart of a method for positioning a mobile robot based on a wireless ranging sensor disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a mobile robot performing positioning calculation toward an area pointed in the negative direction of the X-axis according to an embodiment of the disclosure.
  • FIG. 3 is a schematic diagram of a mobile robot performing positioning calculation along an area pointed in the positive direction of the X-axis according to an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of a frame of a positioning system of a mobile robot disclosed in an embodiment of the present invention.
  • the code disc in the odometer In the inertial navigation sweeping robot in the prior art, the code disc in the odometer often counts the driving wheel. If the driving wheel slips and the ground medium is bumpy, with the accumulation of time, the code disc count value is relative to the actual walking of the robot. There is a large error in the distance passed, which leads to deviations in the calculated pose and posture of the robot. It is directly reflected on the map that the map constructed by the robot in real time becomes inclined and cannot match the original image; even if lidar or visual cameras are used, in In real-time sampling scanning and positioning, due to wheel autobiography, slippage, etc., there will be a large deviation in the position of the scanning result, and in severe cases, the robot cannot reposition itself, causing the robot to stop.
  • Chinese patent CN111381586A calculates the distance between the robot relative to the UWB base station by setting at least two UWB base stations, and calculates the coordinate position of the robot by combining the positions of at least two UWB base stations, but it needs to be in a limited indoor space.
  • At least two base stations are arranged in the environment, which raises the requirements for the sending and receiving conditions of wireless communication and increases the difficulty of communication, especially the influence of avoiding obstacles at more locations on the wireless communication signal; at the same time, the use of multiple base stations also means that The use of parameters increases, resulting in an increase in the calculation of coordinate distance and angle pose.
  • the method for positioning a mobile robot based on a wireless ranging sensor includes: step S101 , using a first wireless ranging sensor set on the mobile robot and a second wireless ranging sensor set in the same positioning base station The distance between the two different positions that the mobile robot has walked successively and the position of the same positioning base station is calculated and obtained, and then the step S102 is entered; wherein, during the walking process of the mobile robot, a global map is constructed inside the mobile robot in real time.
  • the odometer of the mobile robot feeds back the coordinate offset of the mobile robot on its actual walking path in real time, including the coordinate offset of the X axis of the global coordinate system and the coordinate offset of the Y axis.
  • the projection of the positioning base station on the walking plane of the mobile robot is the position of the positioning base station, and the position of the positioning base station is preset.
  • the positioning base station is set at the position of the parallel wall and the corridor area.
  • the global coordinate system is established with the position of the positioning base station as the origin.
  • the first wireless ranging sensor set on the mobile robot and the second wireless ranging sensor set in the same positioning base station are controlled.
  • the sensor maintains communication ranging, and calculates the distance between the two adjacent target positions and the position of the positioning base station, wherein the mobile robot first traverses the first target position, and then traverses the adjacent second target position; and then controls The mobile robot continues to walk to the next adjacent third target position, and obtains the distance of the third target position relative to the position of the same positioning base station through the communication distance measurement of the second wireless ranging sensor set in the same positioning base station.
  • the two different positions that the mobile robot has walked successively may be located at the front, rear, left and right ends of the mobile robot or the positioning base station.
  • the two different positions that have walked successively include: the current position of the mobile robot and the position traversed before the predetermined time, or the position corresponding to the reference line distance before and after the mobile robot walks along the direction of the first preset coordinate axis, or based on The distribution of obstacles in the current active area and the two adjacent target positions set by the moving purpose of the mobile robot; wherein, the path traveled by the mobile robot within a predetermined time, the traversed reference straight line distance in the direction of the first preset coordinate axis corresponds to The path and the aforementioned two adjacent target positions are all within the effective detection range of the positioning base station, but the two different positions that the mobile robot has walked successively are not located in the circle with the position of the positioning base station as the center of the circle.
  • the radial direction of the shaped area, that is, the two positions are not located in the radi
  • the adjacent first target position and the second target position, and the adjacent second target position and the third target position are all way points.
  • the position of the positioning base station starts to move, performs a positioning operation, and sequentially calculates the coordinate information of the first target position, the coordinate information of the second target position, and the coordinate information of the third target position traversed by the mobile robot.
  • the location is used, only the coordinate information of the position of the positioning base station is set, and the coordinate information of the first target position, the coordinate information of the second target position, and the coordinate information of the third target position are not preset, but they can be recorded by the odometer. Coordinate offset between .
  • these way points may be set according to the moving purpose of the mobile robot and the arrangement positions of obstacles in the motion scene.
  • the distance between the adjacent target positions is preferably the length of a fuselage diameter of the mobile robot, or the length of the fuselage diameter of a preset multiple, so as to show that the mobile robot is in a state of obvious movement, and then calculate the mobile robot by executing step S102.
  • Step S102 based on the preset position of the positioning base station, the distance between the two different positions that the mobile robot has walked successively and the position of the same positioning base station, and the two positions that the mobile robot has walked successively as fed back by the odometer of the mobile robot.
  • the quantitative relationship between the coordinate offsets of different positions calculate the latter position of two different positions that the mobile robot has walked successively, when the mobile robot performs the positioning operation of the foregoing embodiment at the current position, it is preferable to calculate the latest position of the mobile robot.
  • the position coordinates of the walking, and the calculated position coordinates are determined as the real-time coordinates of the mobile robot in the global map; wherein, the two different positions that the mobile robot has walked successively are within the effective detection range of the positioning base station;
  • the position coordinates of the latest walking of the mobile robot are the latter of the two different positions that the mobile robot has walked successively.
  • the coordinate offset calculates the former position coordinates of the two different positions that the mobile robot has walked successively.
  • the mobile robot first walks through the first target position, and the distance between the first target position and the position of the positioning base station can be obtained by executing step S101; after a period of time, the mobile robot walks through the second target position , perform step S101 to obtain the distance between the second target position and the position of the same positioning base station; then perform step S102, based on the preset position of the positioning base station, the first target position, the second target position and the same positioning base station respectively
  • the distance between the positions of the odometer and the coordinate offset of the second target position recorded by the odometer relative to the first target position in the global coordinate system, the distance quantity relationship is constructed to calculate the position coordinates of the second target position, and then according to the aforementioned The coordinate offset of , calculates the position coordinates of the first target position.
  • the path actually traversed by the mobile robot is not necessarily parallel to the first preset coordinate axis due to the factor of obstacles. direction.
  • the path actually traversed by the mobile robot is parallel to the direction of the first preset coordinate axis, wherein the position where the mobile robot has recently traveled is the end position of the preset reference path.
  • the coordinate position of the mobile robot in the global map can be calculated by using the walking distance of the mobile robot measured by the odometer and the rotation angle of the mobile robot measured by the gyroscope.
  • the accumulation of the code disc count value relative to the actual distance traveled by the robot has a large error, resulting in deviations in the calculated pose and attitude of the robot. Therefore, instead of simply using the data of the odometer and gyroscope for positioning calculation, Participate in the positioning calculation of step S102 by performing step S101 to sample the distance information between the moving body and the position of the positioning base station.
  • step S102 it is set in the global coordinate system of the mobile robot, and the preset coordinate position of the positioning base station is regarded as the origin coordinate.
  • the two different positions that the mobile robot has walked successively are at X
  • the distance between these two positions and the origin of the line and the corresponding position coordinates have a geometric vector relationship to calculate the position coordinates of the mobile robot walking behind.
  • the odometer of the mobile robot records the coordinate offset of the end position of the actual walking path of the mobile robot relative to its starting point position; wherein, the projection of the positioning base station on the walking plane of the mobile robot is the positioning The position of the base station, the global coordinate system is established with the position of the positioning base station as the origin; the coordinate offsets of the aforementioned two different positions include the X-axis coordinate offset and the Y-axis coordinate offset of the global coordinate system Then, based on the distance between the end position and the position of the positioning base station, and the coordinate offset of the end position relative to the starting point position, construct a distance equation with the coordinates of the end position as unknown quantities; at the same time, based on the starting point position The distance from the position of the positioning base station and the coordinate offset of the end position relative to the starting point position, construct another distance equation with the coordinates of the same end position as the unknown; then combine these two equations to calculate the movement The coordinate of the end position of the actual walking path of the robot, and is determined as the position
  • the walking position is the end position of the actual walking path of the mobile robot.
  • only the distance value is calculated, but the distribution angle information of the end position of the actual walking path of the mobile robot relative to the positioning base station, and the distribution angle of the starting point position of the actual walking path of the mobile robot relative to the positioning base station are not calculated. information, reduce the amount of coordinate calculation and the complexity of the calculation, and also make the positioning accuracy controllable, overcome the problem of large positioning error of the inertial sensor in the global coordinate system, and it is equivalent to correcting the positioning coordinates calculated by the inertial data.
  • the line connecting the starting point and the ending point of the path actually traversed by the mobile robot is not necessarily parallel to the direction of the coordinate axis, and the length of the connecting line between the starting point and the ending point is not necessarily a fixed distance, but it can be According to the distance between the starting point and the ending point and the position of the same positioning base station, the coordinates of the latest walking position of the mobile robot are calculated.
  • the distance between two different positions that the mobile robot has walked successively and the position of the same positioning base station is the horizontal distance between the mobile robot and the positioning base station at these two positions, because the first wireless ranging
  • the ranging information from the second wireless ranging sensor received by the sensor may be constrained by the height of the positioning base station, so it is necessary to use the Pythagorean theorem of right-angled triangles to convert the ranging information into the distance between the mobile robot and the positioning base station.
  • the distance between the projected positions of the horizontal ground is the distance between the mobile robot and the positioning base station at these two positions.
  • the technical solution obtains the position of the mobile robot between each traversed position and the position of a fixed positioning base station by controlling the mobile robot to traverse two target positions successively.
  • Distance instead of calculating the distance between the robot in the same position and different base stations, thus reducing the trouble of setting up multiple base stations in the positioning area, without the need to send and receive communication instructions from two base stations at the same time, and do not need to construct geometric relationships.
  • To calculate the angular relationship between the traversed position of the robot and the positioning base station reduce the amount of data processing, improve the accuracy of the real-time position coordinates of the mobile robot calculated based on the aforementioned distance, and enhance the controllability. The effect of drift error in the distance traveled.
  • the fusion calculation of counting and adding gyroscopes specifically includes: after the mobile robot has walked through two different positions successively, an actual walking path of the mobile robot is generated, and the coordinates of the end position of the actual walking path of the mobile robot calculated in the aforementioned step S102, moving The distance information measured by the odometer of the robot and the angle information measured by the gyroscope of the mobile robot are fused to realize the filtering of the coordinates of the end position of the actual walking path of the mobile robot.
  • the specific fusion method is: according to the distance information measured by the odometer of the mobile robot and the angle information measured by the gyroscope of the mobile robot, use the triangular geometric relationship to calculate the inertial coordinates of the mobile robot, and then compare the inertial coordinates of the mobile robot with the aforementioned
  • the coordinates of the end position of the actual walking path of the mobile robot calculated in step S102 are input into the filter model, participating in the filtering operation of the coordinates of the aforementioned end position, and the coordinates of the end position can be adjusted according to the difference between the two coordinates to filter out the coordinates of the end position.
  • the noise occurring in the communication ranging between the first wireless ranging sensor and the second wireless ranging sensor cannot be directly used as the real-time position in the inertial navigation process due to the accumulated error of the odometer, but can be used as a reference to estimate value to calculate the estimated error for participating in the filtering operation. That is, the coordinates determined by the ranging information of the wireless ranging sensor are further corrected by the coordinates determined by the inertial sensor, so as to obtain the real-time coordinates of the mobile robot in the global map with higher precision.
  • the filter model here includes, but is not limited to, Kalman filter model, low-pass filter model and other filter model algorithms.
  • the first wireless ranging sensor is a UWB tag
  • the second wireless ranging sensor is a UWB base station
  • the UWB is an ultra-wideband ranging sensor.
  • wireless positioning methods such as GPS and Zigbee
  • it has higher accuracy and lower cost; compared with ultrasonic sensors, the signal detection angle is larger.
  • a ranging request pulse is sent from the UWB base station (slave device) in the positioning base station to the UWB tag (master device) on the mobile robot at time T1, and the ranging request pulse reaches the UWB tag on the mobile robot at time T2
  • the mobile robot can continuously obtain the angle calculated by the gyroscope inside the fuselage, as well as the walking distance information fed back by the odometer; at the same time, the mobile robot continuously communicates with the positioning base station to calculate the two distance information between them. Therefore, during the walking process of the mobile robot, the information of the sensors that can be obtained includes: the rotation angle, the walking distance, and the distance between the body and the position of the positioning base station.
  • position B (x0+Dx, y0+Dy) is a position traversed by the mobile robot
  • position A x0, y0
  • the expected target position of first, the mobile robot at position B communicates with the wireless ranging sensor with the position O of the positioning base station to obtain the distance between the position B and the position O of the positioning base station as D1, and then moves to the position A
  • the mobile robot at the location obtains the distance between the position A and the position O of the positioning base station by communicating with the wireless ranging sensor with the positioning base station as D2; the coordinates of the position A relative to the position B in the global coordinate system shown in Figure 2
  • the offset is measured by the odometer, that is, in the process of moving the mobile robot from position B to position A, if the odometer measures the walking distance of the mobile robot in the negative direction of the X axis as the straight-line distance Dx, and the odometer measures If the walking distance of the mobile robot in the positive direction of the Y axis is the straight-line distance Dy, it means that the mobile robot has moved to the position A.
  • there is an obstacle blocking between the position A and the position B then the mobile robot
  • the mobile robot moves from position B to position A.
  • the starting point of the actual walking path of the mobile robot is position B
  • the end position of the actual walking path of the mobile robot is position A; in order to obtain position A
  • this embodiment is based on the difference between the positions B and A that the mobile robot has walked successively and the position O of the same positioning base station.
  • the distance and the coordinate offset of position A relative to position B construct a binary equation system with the coordinates of position A (x0, y0) as unknown quantities, and calculate the coordinates of the end position of the actual walking path of the mobile robot.
  • it includes: the line segment BO corresponding to the distance between the position B of the actual walking path of the mobile robot and the position O of the positioning base station, the coordinate offset Dx in the X-axis direction, and the coordinate offset Dy in the Y-axis direction.
  • the positioning base station further integrates a charging stand; before executing the mobile robot positioning method, if the mobile robot finishes docking and charging on the charging stand, the mobile robot is controlled to follow a second preset The direction of the coordinate axis leaves the charging base, and then the mobile robot is controlled to rotate so that its walking direction is parallel to the direction of the first preset coordinate axis; wherein, the first preset coordinate axis is perpendicular to the second preset coordinate axis.
  • the direction of the second preset coordinate axis is the positive direction of the Y axis
  • the direction of the first preset coordinate axis is the negative direction of the X axis.
  • the mobile robot when the mobile robot returns to the position of the positioning base station, it can accurately dock the charging stand by means of infrared alignment to realize recharging.
  • the angle measured by itself can be reset, so that when the mobile robot withdraws from the seat and moves forward, it maintains a fixed angle.
  • the angle toward the outside after withdrawing is generally set to 90 degrees , specifically, it is deflected by 90 degrees relative to the positive direction of the X axis of the global coordinate system in Figure 2, that is, along the positive direction of the Y axis, the motion behavior of the mobile robot can be 0 degrees or 90 degrees away from the positive direction of the X axis of the global coordinate system.
  • the positioning algorithm when it needs to be executed, it starts to rotate 90 degrees counterclockwise and starts the positioning calculation in the embodiment shown in FIG. 2 .
  • the calculation of the actual position of the mobile robot can be simplified.
  • the position of the positioning base station may be used as a preset initial horizontal ground position for the mobile robot to execute the positioning algorithm, and may also be used as the recharging position of the mobile robot.
  • the second preset coordinate axis when the first preset coordinate axis is the X axis, the second preset coordinate axis is the Y axis, wherein the direction of the first preset coordinate axis includes the positive direction of the X axis or the negative direction of the X axis, and the second preset coordinate axis
  • the direction of the preset coordinate axis includes the positive direction of the Y axis or the negative direction of the Y axis;
  • the second preset coordinate axis when the first preset coordinate axis is the Y axis, the second preset coordinate axis is the X axis, wherein the first preset coordinate axis direction includes the Y axis
  • the positive direction or the negative direction of the Y axis, the second preset coordinate axis direction includes the positive direction of the X axis or the negative direction of the X axis.
  • the infrared alignment information carried by the charging stand includes at least one of an identification code, frequency band information of an infrared pilot signal, an infrared narrow angle or an infrared guard signal.
  • the charging base also carries identification information, so that when the mobile robot enters the identification area, the mobile robot obtains identification information through sensors (including the aforementioned first wireless ranging sensor) to locate the charging base.
  • the identification information carried by the charging stand may include various identification information, and the specific type may be determined according to the type of the single-line ranging sensor installed on the robot. For example, if a lidar is installed on the robot, the identification information carried by the charging stand can be the radar identification code; if a UWB tag is installed on the mobile robot, the positioning base station can identify the UWB ultra-wideband signal.
  • the position D (x1-Dx1, y1-Dy1) is a position traversed by the mobile robot
  • the position C (x1, y1) is the position where the mobile robot starts from position D to the positive direction of the X axis.
  • the expected target position reached first, the mobile robot at the position D communicates with the wireless ranging sensor with the position O of the positioning base station to obtain the distance between the position D and the position O of the positioning base station as D3, and then moves to the position
  • the mobile robot at C obtains the distance between the position C and the position O of the positioning base station by communicating with the positioning base station with the wireless ranging sensor as D4; the position C is relative to the position D in the global coordinate system shown in FIG. 3 .
  • the coordinate offset is measured by the odometer, that is, in the process of moving the mobile robot from position D to position C, if the odometer measures the walking distance of the mobile robot in the positive direction of the X axis as the straight-line distance Dx1, and the odometer measures If the walking distance of the mobile robot in the positive direction of the Y axis is the straight-line distance Dy1, it means that the mobile robot has moved to the position C.
  • the mobile robot starts from the position D and walks to the position C by bypassing the obstacle (not shown in the figure).
  • the mobile robot moves from position D to position C.
  • the starting point of the actual walking path of the mobile robot is position D
  • the end position of the actual walking path of the mobile robot is position C; in order to obtain position C
  • the present embodiment is based on the difference between the position D and position C that the mobile robot has walked successively and the position O of the same positioning base station.
  • the distance and the coordinate offset of position C relative to position D construct a binary equation system with the coordinates of position C (x1, y1) as unknown quantities, and calculate the coordinates of the end position of the actual walking path of the mobile robot.
  • the line segment DO corresponding to the distance between the position D of the actual walking path of the mobile robot and the position O of the positioning base station, the coordinate offset Dx1 in the positive direction of the X axis, and the coordinate offset Dy1 in the positive direction of the Y axis.
  • the robot is easily stuck, and specifically, the first wireless ranging sensor set on the mobile robot communicates with the second wireless ranging sensor set in the positioning base station.
  • the distance process if the real-time coordinates of the mobile robot during the walking process are calculated and obtained according to the position coordinate calculation method of the foregoing embodiment, that is, the coordinate offset recorded by the odometer on the global coordinate system is 0, it is determined that the mobile robot is stuck, and the distance from the same positioning base station remains unchanged at this time, and then the odometer of the mobile robot is controlled to stop counting, so that the distance information of the odometer will not be accumulated, and then the distance calculation in the preceding embodiment will not be continued. and coordinate position operations. Therefore, the amount of data processing can be reduced in the process of exception processing.
  • the positioning system of the mobile robot includes a mobile robot and a positioning base station, and a first wireless ranging sensor and a positioning base station are arranged on the mobile robot.
  • the odometer, a second wireless ranging sensor is integrated on the positioning base station, and in some embodiments, a charging base can also be integrated;
  • the mobile robot further includes a distance calculation unit and a coordinate position calculation unit.
  • the distance calculation unit is used for calculating the distance between the first wireless ranging sensor set on the mobile robot and the second wireless ranging sensor set in the same positioning base station to calculate and obtain two different positions that the mobile robot has walked successively.
  • the distance from the same positioning base station is sent to the coordinate position calculation unit.
  • the first wireless ranging sensor will receive the pulse signal transmitted from the second wireless ranging sensor, and send it into the distance calculating unit through analysis to calculate the distance.
  • the coordinate position calculation unit is used for the mobile robot to walk successively based on the position of the preset positioning base station, the distance between two different positions that the mobile robot has walked successively and the position of the same positioning base station, and the odometer feedback of the mobile robot.
  • the quantitative relationship between the coordinate offsets of the two different positions that have been passed, and the latter position of the two different positions that the mobile robot has walked successively is calculated.
  • the latest walking position coordinates of the mobile robot are obtained, and the calculated position coordinates are determined as the real-time coordinates of the mobile robot in the global map; among them, the two different positions that the mobile robot has walked successively are within the effective detection range of the positioning base station.
  • the coordinates of the latest walking position of the mobile robot are the latter of two different positions that the mobile robot has walked successively; among them, during the walking process of the mobile robot, a global map is constructed inside the mobile robot in real time, and based on the preset positioning base station The location establishes the global coordinate system on the global map.
  • the technical solution adds a pair of wireless ranging sensors to the conventional inertial navigation system or recharge system, solves the problem of uncontrollable inertial navigation positioning accuracy and the problem of too many wireless base stations, and also reduces the location The amount of calculation of the angle; the positioning system is transplanted into the mobile robot, which is beneficial to improve the positioning accuracy and navigation efficiency of the robot.
  • the wireless ranging sensor used in this embodiment is a UWB (ultra-wideband ranging sensor).
  • the mobile robot is a visual robot or a laser robot
  • the coordinate position calculation unit provided in the mobile robot is used for the relative distance between the two different positions that the mobile robot has walked successively and the position of the same positioning base station, and the relative position of the end point.
  • construct a binary equation system with the coordinates of the ending position as unknown quantities calculate the ending position coordinates of the actual walking path of the mobile robot, and determine the calculated position coordinates as the mobile robot on the global map.
  • the odometer that controls the mobile robot records the coordinate offset of the end position of the actual walking path of the mobile robot relative to its starting point position; among them, the mobile robot starts The walking position is the starting position of the actual walking path of the mobile robot, and the latest walking position is the end position of the actual walking path of the mobile robot; wherein, the projection of the positioning base station on the walking plane of the mobile robot is the positioning The position of the base station, the global coordinate system is established with the position of the positioning base station as the origin; the coordinate offsets of the aforementioned two different positions include the X-axis coordinate offset and the Y-axis coordinate offset of the global coordinate system quantity.
  • the coordinate position calculation unit is based on the coordinate offset of the end position of the actual walking path of the mobile robot relative to the starting point position, and the distance information between these two positions and the positioning base station, in a global coordinate system.
  • a system of equations with line segment distance information as a parameter variable is constructed, and the coordinates of the end point of the actual walking path of the mobile robot are calculated as the real-time position coordinates of the mobile robot, so that the positioning accuracy is controllable in various robot walking paths. , to overcome the large positioning error of inertial sensors in the global coordinate system.
  • one or more of the depth camera, radar or ultrasonic sensor installed on the mobile robot can also be used to collect the obstacle information in the scene in real time, and according to the collected obstacle information , When moving towards the target position, it can automatically avoid obstacles, and improve the way that the mobile robot can communicate and measure the same positioning base station more flexibly in a specific scene.
  • the positioning system of the mobile robot shown in FIG. 4 corresponds to the positioning method of the mobile robot based on the wireless ranging sensor shown in FIG. 1 .
  • the invention also discloses a chip, which is used for storing computer program codes and can be set in the aforementioned mobile robot, and when the computer program codes are executed, the steps of the aforementioned wireless ranging sensor-based mobile robot positioning method are implemented.
  • the chip executes the computer program code, the functions of each unit in the above-mentioned embodiment of the positioning system are implemented.
  • the computer program code may be divided into one or more modules/units, and the one or more modules/units are stored in the chip and executed by the chip to complete the present application.
  • the one or more modules/units may be a series of computer program instruction segments capable of performing specific functions, and the instruction segments are used to describe the execution process of the computer program code in the mobile robot.
  • the computer program code may be divided into: a distance calculation unit and a coordinate position calculation unit within the aforementioned positioning system embodiments. The positioning and navigation accuracy of the mobile robot is controllable, and the calculation amount of the coordinate position is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

基于无线测距传感器的移动机器人定位方法、系统及芯片,移动机器人定位方法通过控制移动机器人先后遍历两个目标位置的方式来获取移动机器人在每个遍历位置与一个固定的定位基站之间的距离,而不是计算获取同一位置的机器人与不同的基站之间的距离,从而减少在定位区域摆设多个基站的麻烦,不需同时收发处理两个基站的通信指令,同时也不需构建几何关系去计算机器人的遍历位置相对于定位基站的角度关系,减少数据处理量,基于距离计算出的移动机器人的实时位置坐标的精度提高,可控性增强,不受里程计实时反馈的移动机器人的行走距离所存在的漂移误差的影响。

Description

基于无线测距传感器的移动机器人定位方法、系统及芯片 技术领域
本发明涉及移动机器人导航定位的技术领域,特别是基于无线测距传感器的移动机器人定位方法、系统及芯片。
背景技术
具有自主导航功能的移动机器人,这几年发展迅速,例如常见的家居清洁类扫地机。目前常见的slam技术有视觉导航、激光导航、惯性导航等。其中,惯性导航由于其低成本,在一些低端产品上获得广泛应用,但是它存在全局坐标定位不准确的问题。
一方面,惯性传感器在机器人轮组打滑或者机器人轮组在地毯移动过程中易于随时间累积非系统性误差,比如,惯性传感器所包括的里程计在相对短的距离上精确的导航位位置的推算可能易于随时间而累积出漂移误差,导致定位精度不可控。
另一方面,在一些人为推动机器人机体的情况下,利用惯性传感器可以计算机器人转动的角度,但是不能计算出实时位置或计算结果的偏差很大。
为了提高机器人的定位和移动的精度,中国专利CN111381586A通过设置至少两个UWB基站来计算机器人相对于各个UWB基站之间的距离,结合至少两个UWB基站的位置计算得到机器人坐标位置,而且还需融合里程计的定位信息对机器人坐标位置进行修正处理;但是至少需要布设两个基站,通信难度增加,坐标角度的计算量增加。
技术解决方案
为此,本发明技术方案是在惯性导航的基础上,只增加一个用于无线测距的基站,弥补惯性导航定位精度不高的问题,并减少定位数据的运算量。具体技术方案如下:基于无线测距传感器的移动机器人定位方法,包括:通过移动机器人上设置的第一无线测距传感器与同一个定位基站内设置的第二无线测距传感器的通信测距,分别计算获得移动机器人先后行走过的两个不同位置与同一定位基站的位置之间的距离;其中,移动机器人在行走过程中,移动机器人内部即时构建全局地图,并基于预先设定的定位基站的位置在全局地图上建立起全局坐标系;基于预先设定的定位基站的位置、移动机器人先后行走过的两个不同位置与同一定位基站的位置之间的距离、以及移动机器人的里程计反馈的移动机器人先后行走过的两个不同位置的坐标偏移量的数量关系,计算移动机器人先后行走过的两个不同位置的后者位置;其中,移动机器人先后行走过的两个不同位置都是在定位基站的有效探测范围内。
与现有技术相比,为了获取高精度的定位数据,本技术方案通过控制移动机器人先后遍历两个目标位置的方式来获取移动机器人在每个遍历位置与一个固定的定位基站之间的距离,而不是计算获取同一位置的机器人与不同的基站之间的距离,从而减少在定位区域摆设多个基站的麻烦,不需同时收发处理两个基站的通信指令,同时也不需构建几何关系去计算机器人的遍历位置相对于定位基站的角度关系,减少数据处理量,基于前述距离计算出的移动机器人的实时位置坐标的精度提高,可控性增强,不受里程计实时反馈的移动机器人的行走距离所存在的漂移误差的影响。
进一步地,所述基于预先设定的定位基站的位置、移动机器人先后行走过的两个不同位置与同一定位基站的位置之间的距离、以及移动机器人的里程计反馈的移动机器人先后行走过的两个不同位置的坐标偏移量的数量关系,计算移动机器人先后行走过的两个不同位置的后者位置的方法步骤具体包括:所述移动机器人的里程计记录移动机器人的实际行走路径的终点位置相对于其起点位置的坐标偏移量;其中,所述定位基站在移动机器人的行走平面上的投影是所述定位基站的位置,所述全局坐标系是以所述定位基站的位置为原点建立的;前述的两个不同位置的坐标偏移量包括全局坐标系的X轴坐标偏移量和Y轴坐标偏移量;然后,基于移动机器人先后行走过的两个不同位置与同一定位基站的位置之间的距离、终点位置相对于起点位置的坐标偏移量,构建以终点位置的坐标为未知量的二元方程组,计算移动机器人实际行走路径的终点位置坐标,并将这个计算出的位置坐标确定为移动机器人在全局地图中的实时坐标。
与现有技术相比,本技术方案基于移动机器人的实际行走路径的终点位置相对于起点位置的坐标偏移量、以及这两个位置与所述定位基站的距离信息,在一个全局坐标系内构建出以线段距离信息为参数变量的方程组,以计算出移动机器人的实际行走路径的终点位置的坐标作为移动机器人的实时位置坐标,使得定位精度在各种机器人行走路径中都是可控,克服惯性传感器在全局坐标系内定位误差较大的问题。
进一步地,还包括:将基于前述的二元方程组计算出的移动机器人实际行走路径的终点位置坐标、移动机器人的里程计测得的距离信息、移动机器人的陀螺仪测得的角度信息融合,以滤除所述第一无线测距传感器与所述第二无线测距传感器的通信测距中出现的噪声,实现对计算出的移动机器人实际行走路径的终点位置坐标进行滤波;其中,根据移动机器人的里程计测得的距离信息和移动机器人的陀螺仪测得的角度信息,利用三角几何关系计算出移动机器人在惯性导航过程中的惯性坐标,用于参与前述终点位置坐标的滤波运算。提高移动机器人的定位精度。
进一步地,所述移动机器人实际行走路径的起点位置与所述移动机器人实际行走路径的终点位置的连线是平行于所述第一预设坐标轴方向。简化计算处理步骤。
进一步地,当第一无线测距传感器是UWB标签时,第二无线测距传感器是UWB基站。相较于GPS、Zigbee等无线定位方式,精度更高,成本更低;相对于超声波传感器,信号探测角度更大。
进一步地,在移动机器人上设置的第一无线测距传感器与所述定位基站内设置的第二无线测距传感器进行通信测距过程中,若计算获得移动机器人在行走过程中的实时坐标保持不变,判定移动机器人被卡住,然后控制移动机器人的里程计停止计数。在异常处理的过程中能够减小数据处理量。
进一步地,所述定位基站还集成充电座;在执行所述移动机器人定位方法之前,若所述移动机器人在充电座上结束对接充电时,先控制所述移动机器人沿着第二预设坐标轴方向离开充电座,再控制移动机器人转动以使其行走方向与第一预设坐标轴方向平行;其中,第一预设坐标轴与第二预设坐标轴垂直。让充电结束的机器人顺利退座,便于进入定位导航模式。
进一步地,当第一预设坐标轴为X轴时,第二预设坐标轴为Y轴,其中,第一预设坐标轴方向包括X轴正方向或X轴负方向,第二预设坐标轴方向包括Y轴正方向或Y轴负方向;当第一预设坐标轴为Y轴时,第二预设坐标轴为X轴,其中,第一预设坐标轴方向包括Y轴正方向或Y轴负方向,第二预设坐标轴方向包括X轴正方向或X轴负方向。拓展前述技术方案的定位方法的运用场景,且降低坐标的计算复杂度。
进一步地,所述移动机器人先后行走过的两个不同位置不是位于以所述定位基站为圆心的圆形区域的径向上。避免定位运算过程中出现误差过大的现象。
一种移动机器人的定位系统,包括一个移动机器人和一个定位基站,移动机器人上设置第一无线测距传感器和里程计,定位基站上集成第二无线测距传感器;移动机器人内部还包括:距离计算单元,用于通过移动机器人上设置的第一无线测距传感器与同一个定位基站内设置的第二无线测距传感器的通信测距,分别计算获得移动机器人先后行走过的两个不同位置与同一定位基站之间的距离;坐标位置计算单元,用于基于预先设定的定位基站的位置、移动机器人先后行走过的两个不同位置与同一定位基站之间的距离、以及移动机器人的里程计反馈的移动机器人先后行走过的两个不同位置的坐标偏移量的数量关系,计算移动机器人最新行走的位置坐标,并将这个计算出的位置坐标确定为移动机器人在全局地图中的实时坐标;其中,移动机器人先后行走过的两个不同位置都是在定位基站的有效探测范围内;移动机器人最新行走的位置坐标是移动机器人先后行走过的两个不同位置的后者;其中,移动机器人在行走过程中,移动机器人内部即时构建全局地图,并基于预先设定的定位基站的位置在全局地图上建立起全局坐标系。
与现有技术相比,本技术方案在常规的惯导系统或回充系统中增加一对无线测距传感器,解决惯性导航定位精度不可控问题、以及无线基站布置过多的问题,也减少位置角度的计算量;本定位系统移植入移动机器人内,有利于提高机器人的定位精度和导航效率。
进一步地,所述移动机器人是视觉机器人或激光机器人,其内部设置的坐标位置计算单元,用于基于移动机器人先后行走过的两个不同位置与同一定位基站之间的距离、终点位置相对于起点位置的坐标偏移量,构建以终点位置的坐标为未知量的二元方程组,计算移动机器人实际行走路径的终点位置坐标,并确定为移动机器人最新行走过的位置坐标;在移动机器人先后行走两个不同位置的过程中,控制移动机器人的里程计记录移动机器人的实际行走路径的终点位置相对于其起点位置的坐标偏移量;其中,移动机器人开始行走的位置为所述移动机器人实际行走路径的起点位置,最新行走的位置为所述移动机器人实际行走路径的终点位置;其中,所述定位基站在移动机器人的行走平面上的投影是所述定位基站的位置,所述全局坐标系是以所述定位基站的位置为原点建立的;前述的两个不同位置的坐标偏移量包括全局坐标系的X轴坐标偏移量和Y轴坐标偏移量。
与现有技术相比,本技术方案基于移动机器人的实际行走路径的终点位置相对于起点位置的坐标偏移量、以及这两个位置与所述定位基站的距离信息,在一个全局坐标系内构建出以线段距离信息为参数变量的方程组,以计算出移动机器人的实际行走路径的终点位置的坐标作为移动机器人的实时位置坐标,使得定位精度在各种机器人行走路径中都是可控,克服惯性传感器在全局坐标系内定位误差较大的问题。
一种芯片,该芯片用于存储计算机程序代码,所述计算机程序代码被执行时实现所述基于无线测距传感器的移动机器人定位方法的步骤。使得移动机器人的定位导航精度可控,坐标位置的计算量降低。
附图说明
图1 是本发明实施例公开的基于无线测距传感器的移动机器人定位方法的流程图。
图2是一实施例公开移动机器人朝着X轴负方向指向的区域执行定位计算的示意图。
图3是一实施例公开移动机器人沿着X轴正方向指向的区域执行定位计算的示意图。
图4是本发明实施例公开的一种移动机器人的定位系统框架示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细描述。
现有技术中的惯性导航扫地机器人,常使里程计中的码盘对驱动轮进行计数,若驱动轮打滑、地面介质存在颠簸,则随着时间的积累,码盘计数值相对于机器人实际行走过的距离出现较大误差,导致计算出的机器人的位姿等出现了偏差,直接表现在地图上是机器人实时构建的地图变倾斜,无法与原图匹配;即使使用激光雷达或视觉摄像头,在实时采样扫描定位中也会由于车轮自传、打滑等原因,扫描所定结果位置会出现较大偏差,严重时会使机器人无法重定位自身位置,导致机器人停止不动。为了克服这一缺陷,中国专利CN111381586A通过设置至少两个UWB基站来计算机器人相对于所述UWB基站之间的距离,结合至少两个UWB基站的位置计算得到机器人坐标位置,但是需要在有限的室内环境下至少布置两个基站,这对无线通信的收发条件提高要求,增加通信难度,特别是避开更多位置处的障碍物对无线通信信号的影响;同时,多个基站的使用也意味着参数的使用量增加,导致坐标距离、角度位姿的计算量增加。
因此,本发明实施例在惯性导航(里程计记录的移动机器人的行走距离信息)的基础上,只增加一个用于无线测距的基站,弥补惯性导航定位精度不高的问题,并简化定位处理方法,减少数据运算量。具体是如图1所示的基于无线测距传感器的移动机器人定位方法,包括:步骤S101、通过移动机器人上设置的第一无线测距传感器与同一个定位基站内设置的第二无线测距传感器的通信测距,分别计算获得移动机器人先后行走过的两个不同位置与同一定位基站的位置之间的距离,然后进入步骤S102;其中,移动机器人在行走过程中,移动机器人内部即时构建全局地图,并基于预先设定的定位基站的位置在全局地图上建立起全局坐标系,同时控制移动机器人的里程计实时反馈移动机器人的行走距离;值得注意的是,移动机器人与定位基站的距离超过合法的探测距离后将无法正常通信,移动机器人不在定位基站的合法探测视角范围内也无法正常通信,导致无法计算出位置坐标,所以,移动机器人先后行走过的两个不同位置都是在定位基站内设置的第二无线测距传感器的探测距离和探测视角范围之内。
需要说明的是,移动机器人的里程计实时反馈移动机器人在其实际行走路径上的坐标偏移量,包括全局坐标系的X轴的坐标偏移量及其Y轴的坐标偏移量。其中,所述定位基站在移动机器人的行走平面上的投影是所述定位基站的位置,所述定位基站的位置是预先设定的,一般将所述定位基站设置在平行墙位置、长廊区域等比较空旷的区域;本实施例中,所述全局坐标系是以所述定位基站的位置为原点建立的。
在本实施例中,每当移动机器人先后行走过的两个相邻的目标位置的过程中,控制移动机器人上设置的第一无线测距传感器与同一个定位基站内设置的第二无线测距传感器保持通信测距,分别计算获得这两个相邻的目标位置与定位基站的位置之间的距离,其中,移动机器人先遍历第一目标位置,再遍历相邻的第二目标位置;然后控制移动机器人继续行走至下一个相邻的第三目标位置,并通过同一个定位基站内设置的第二无线测距传感器通信测距获取第三目标位置相对于同一个定位基站的位置的距离。
优选地,移动机器人先后行走过的两个不同位置可以位于移动机器人或定位基站的前后左右端。或者,所述先后行走过的两个不同位置包括:移动机器人的当前位置以及预定时间之前遍历的位置、或移动机器人沿着第一预设坐标轴方向行走参考直线距离前后对应的位置、或基于当前活动区域的障碍物分布情况和移动机器人的移动目的设置的相邻的两个目标位置;其中,移动机器人在预定时间内所行走的路径、第一预设坐标轴方向上遍历参考直线距离对应的路径、前述的相邻的两个目标位置都处于所述定位基站的有效探测范围内,但是所述移动机器人先后行走过的两个不同位置不是位于以所述定位基站的位置为圆心的圆形区域的径向上,即这两个位置不是位于所述定位基站的向外辐射区域的径向上,避免定位运算过程中出现误差过大的现象。
在本实施例中,相邻的第一目标位置与第二目标位置、相邻的第二目标位置与第三目标位置都是途径点,移动机器人按照这些途径点的顺序,从预先设定的定位基站的位置开始移动,执行定位操作,依次计算出移动机器人遍历的第一目标位置的坐标信息、第二目标位置的坐标信息、第三目标位置的坐标信息,其中,移动机器人在定位基站的位置时,只是设置好定位基站的位置的坐标信息,没有预先设置好第一目标位置的坐标信息、第二目标位置的坐标信息、第三目标位置的坐标信息,但是可以由里程计记录它们之间的坐标偏移量。其中,这些途径点可以是根据移动机器人的移动目的和运动场景下的障碍物布置位置进行设置的。相邻的目标位置之间的距离优选为移动机器人的一个机身直径长度、或预设倍数的机身直径长度,以表现出移动机器人在发生明显移动的状态下再通过执行步骤S102计算移动机器人最新行走的位置坐标,其中,预设倍数的机身直径长度对应的路径不能超出所述定位基站的有效探测范围。
步骤S102、基于预先设定的定位基站的位置、移动机器人先后行走过的两个不同位置与同一定位基站的位置之间的距离、以及移动机器人的里程计反馈的移动机器人先后行走过的两个不同位置的坐标偏移量的数量关系,计算移动机器人先后行走过的两个不同位置的后者位置,当移动机器人在当前位置处执行前述实施例的定位运算时,优选地计算出移动机器人最新行走的位置坐标,并将这个计算出的位置坐标确定为移动机器人在全局地图中的实时坐标;其中,移动机器人先后行走过的两个不同位置都是在所述定位基站的有效探测范围内;移动机器人最新行走的位置坐标是移动机器人先后行走过的两个不同位置中的后者,在获知移动机器人先后行走过的两个不同位置中的后者位置坐标后,进而依据两个不同位置的坐标偏移量计算出移动机器人先后行走过的两个不同位置中的前者位置坐标。
在具体的实施场景中,移动机器人先行走过第一目标位置,执行步骤S101可以获得第一目标位置与所述定位基站的位置之间的距离;经过一段时间后移动机器人行走过第二目标位置,执行步骤S101可以获得第二目标位置与同一定位基站的位置之间的距离;然后执行步骤S102,基于预先设定的定位基站的位置、第一目标位置、第二目标位置分别与同一定位基站的位置之间的距离、里程计记录的第二目标位置相对于第一目标位置在全局坐标系中的坐标偏移量,构建距离数量关系式以计算第二目标位置的位置坐标,进而根据前述的坐标偏移量计算出第一目标位置的位置坐标。
需要说明的是,当移动机器人沿着一个预设参考路径先后遍历前述的两个不同位置时,移动机器人实际遍历过的路径由于存在障碍物阻挡的因素不一定是平行于第一预设坐标轴方向,在一些实施场景下,移动机器人实际遍历过的路径是平行于第一预设坐标轴方向,其中,移动机器人最新行走过的位置是这个预设参考路径的终点位置。
需要说明的是,在常规的惯性导航方法中,使用里程计测量的移动机器人行走距离结合陀螺仪测量的移动机器人的转动角度就可以计算出移动机器人在全局地图中的坐标位置,但是随着时间的积累,码盘计数值相对于机器人实际行走过的距离出现较大误差,导致计算出的机器人的位姿等出现了偏差,所以不单纯使用里程计和陀螺仪的数据进行定位计算,转而通过执行步骤S101采样移动的机体与定位基站的位置的距离信息参与步骤S102的定位计算。
在步骤S102中,设置在移动机器人的全局坐标系内,预先设定的定位基站的坐标位置视为原点坐标,本实施例为了简化坐标计算,在移动机器人先后行走过的两个不同位置在X轴方向和Y轴方向上可能都存在坐标偏移量,由这两个位置与原点的连线距离与对应位置坐标存在几何向量关系,计算移动机器人后面行走的位置坐标。具体是:所述移动机器人的里程计记录移动机器人的实际行走路径的终点位置相对于其起点位置的坐标偏移量;其中,所述定位基站在移动机器人的行走平面上的投影是所述定位基站的位置,所述全局坐标系是以所述定位基站的位置为原点建立的;前述的两个不同位置的坐标偏移量包括全局坐标系的X轴坐标偏移量和Y轴坐标偏移量;然后,基于终点位置与所述定位基站的位置之间的距离、以及终点位置相对于起点位置的坐标偏移量,构建一个以终点位置的坐标为未知量的距离方程式;同时基于起点位置与所述定位基站的位置之间的距离、以及终点位置相对于起点位置的坐标偏移量,构建另一个以同一终点位置的坐标为未知量的距离方程式;然后联立这两个方程式计算移动机器人实际行走路径的终点位置坐标,并确定为移动机器人最新行走过的位置坐标;其中,移动机器人先后行走两个不同位置中,开始行走的位置为所述移动机器人实际行走路径的起点位置,最新行走的位置为所述移动机器人实际行走路径的终点位置。在本实施例中,只是计算距离数值,没有计算移动机器人实际行走路径的终点位置相对于所述定位基站的分布角度信息、以及移动机器人实际行走路径的起点位置相对于所述定位基站的分布角度信息,减少坐标计算量和计算的复杂度,也使得定位精度可控,克服惯性传感器在全局坐标系内定位误差较大的问题,等效于校正惯性数据推算的定位坐标。
值得注意的是,在一些实施场景中,移动机器人实际遍历过的路径的起点和终点的连线不一定平行于坐标轴方向,起点和终点的连线长度也不一定是固定的距离,但可以通过起点和终点与同一定位基站的位置之间的距离,计算出移动机器人最新行走的位置坐标。另一方面,移动机器人先后行走过的两个不同位置与同一定位基站的位置之间的距离是移动机器人在这两个位置处与所述定位基站之间的水平距离,因为第一无线测距传感器接收到的来自第二无线测距传感器的测距信息可能会受到所述定位基站的高度的约束,所以需要利用直角三角形的勾股定理将测距信息换算为移动机器人与所述定位基站在水平地面的投影位置之间的距离。
与现有技术相比,为了获取高精度的定位数据,本技术方案通过控制移动机器人先后遍历两个目标位置的方式来获取移动机器人在每个遍历位置与一个固定的定位基站的位置之间的距离,而不是计算获取同一位置的机器人与不同的基站之间的距离,从而减少在定位区域摆设多个基站的麻烦,不需同时收发处理两个基站的通信指令,同时也不需构建几何关系去计算机器人的遍历位置相对于定位基站的角度关系,减少数据处理量,基于前述距离计算出的移动机器人的实时位置坐标的精度提高,可控性增强,不受里程计实时反馈的移动机器人的行走距离所存在的漂移误差的影响。
在前述实施例的基础上,所述第一无线测距传感器与所述第二无线测距传感器在通信过程中携带一定的噪声,导致测距数据产生漂移,所以实际应用时,会同时进行里程计加陀螺仪的融合计算,具体包括:移动机器人先后行走过两个不同位置后,产生移动机器人实际行走路径,将前述步骤S102中的计算出的移动机器人实际行走路径的终点位置的坐标、移动机器人的里程计测得的距离信息、移动机器人的陀螺仪测得的角度信息融合,实现对计算出所述移动机器人实际行走路径的终点位置的坐标进行滤波,这里的起点和终点都是相对于移动机器人先后行走过两个不同位置对应遍历过的路径而言的,是属于局部起止位置点。具体的融合方法是:根据移动机器人的里程计测得的距离信息与移动机器人的陀螺仪测得的角度信息,利用三角几何关系计算出移动机器人的惯性坐标,再将移动机器人的惯性坐标与前述步骤S102计算出的移动机器人实际行走路径的终点位置的坐标输入滤波模型中,参与前述终点位置的坐标的滤波运算,能够根据这两种坐标的差值调整所述终点位置的坐标,以滤除所述第一无线测距传感器与所述第二无线测距传感器的通信测距中出现的噪声,由于存在里程计的累计误差不能直接作为在惯性导航过程中的实时位置,但可以作为参考估计值去计算估计误差,用于参与滤波运算。即通过惯性传感器确定的坐标进一步地修正无线测距传感器的测距信息所确定的坐标,从而得到更高精度的移动机器人在全局地图中的实时坐标。这里的滤波模型包括但不限于卡尔曼滤波模型、低通滤波模型等滤波模型算法。
优选地,当第一无线测距传感器是UWB标签时,第二无线测距传感器是UWB基站,UWB是超宽频测距传感器。相较于GPS、Zigbee等无线定位方式,精度更高,成本更低;相对于超声波传感器,信号探测角度更大。在一些实施场景中,T1时刻从定位基站内的UWB基站(从设备)向移动机器人上的UWB标签(主设备)会发起测距请求脉冲,T2时刻测距请求脉冲到达移动机器人上的UWB标签完成一次测距,脉冲在UWB基站与UWB标签之间的飞行时间就是T2减去T1的所得的结果,已知脉冲运动速度近似为光速C,从而得到移动机器人当前位置与所述定位基站的位置之间的距离D=C*(T2-T1)。因此,移动机器人在移动过程中,可以不断的获取到机身内部陀螺仪计算出来的角度,还有里程计反馈的行走距离信息;同时移动机器人持续跟所述定位基站进行通信,用于计算两者之间的距离信息。因此,移动机器人行走过程中,可以获得传感器的信息包括:转动角度、行走路程、机体与所述定位基站的位置之间的距离。
作为一种实施例,如图2所示,通过以所述定位基站的位置为原点O建立全局坐标系,当移动机器人朝着X轴的负方向指向的区域行走,并使用原点处的一个定位基站进行定位时,位置B(x0+Dx,y0+Dy)是移动机器人行走遍历过的一个位置,位置A(x0,y0)是移动机器人从位置B开始往X轴的负方向区域行走所到达的预期目标位置,首先,位置B处的移动机器人通过与定位基站的位置O进行无线测距传感器的通信以获取位置B与定位基站的位置O之间的距离为D1,然后,移动至位置A处的移动机器人通过与定位基站进行无线测距传感器的通信以获取位置A与定位基站的位置O之间的距离为D2;位置A相对于位置B在图2所示的全局坐标系中的坐标偏移量是由里程计测得的,即移动机器人从位置B移动向位置A的过程中,若里程计测得移动机器人在X轴负方向上的行走距离为直线距离Dx,同时里程计测得移动机器人在Y轴正方向上的行走距离为直线距离Dy,则表示移动机器人已经移动至位置A。在一些具体实施场景中,位置A和位置B之间存在障碍物阻挡,则移动机器人从位置B开始,绕过障碍物(图中未表示出)行走至位置A。
如图2所示,移动机器人从位置B移动至位置A,在本实施例中,移动机器人实际行走路径的起点位置是位置B,移动机器人实际行走路径的终点位置是位置A;为了获取位置A的坐标,本实施例在不结合里程计的距离信息和陀螺仪的角度信息的三角运算结果的基础上,基于移动机器人先后行走过的位置B和位置A与同一定位基站的位置O之间的距离、位置A相对于位置B的坐标偏移量,构建以位置A(x0,y0)的坐标为未知量的二元方程组,计算移动机器人实际行走路径的终点位置坐标。
具体包括:移动机器人实际行走路径的位置B与所述定位基站的位置O之间的距离对应的线段BO、X轴方向上的坐标偏移量Dx、Y轴方向上的坐标偏移量Dy可以构建出:(x0+Dx) 2+(y0+Dy) 2= D1 2;同时,移动机器人实际行走路径的位置A与所述定位基站的位置O之间的距离对应的线段AO可以构建出: x0 2+y0 2= D2 2;然后联立这两个关系式,将x0,y0这两个未知量计算出来,计算出移动机器人最新行走的位置坐标,即位置A的坐标,然后结合里程计测量的Dx和Dy计算出位置B的坐标。具体的计算方法是数学问题,在此不再赘述。
显然比中国专利CN111381586A计算机器人的当前位置坐标的运算公式简单,且不需使用余弦定理计算出角度信息。
作为一种实施例,所述定位基站还集成充电座;在执行所述移动机器人定位方法之前,若所述移动机器人在充电座上结束对接充电,则控制所述移动机器人沿着第二预设坐标轴方向离开充电座,再控制移动机器人转动以使其行走方向与第一预设坐标轴方向平行;其中,第一预设坐标轴与第二预设坐标轴垂直。如图2所示,第二预设坐标轴方向是Y轴的正方向,第一预设坐标轴方向是X轴负方向。在本实施例中,移动机器人返回所述定位基站的位置时,可以通过红外对准的方式准确对接充电座以实现回充。移动机器人移动在充电座上面,可以重置自身测得的角度,使得移动机器人退座并朝外前进时,保持固定的角度,在本实施例中一般设置退座后朝外的角度为90度,具体是相对于图2的全局坐标系的X轴正方向偏转90度,即沿着Y轴的正方向,移动机器人的运动行为是可以是偏离全局坐标系的X轴正方向0度或者90度方向进行直线移动,然后在需要执行定位算法的时刻就开始逆时针转动90度进入图2所述的实施例中开始定位计算。可以简化移动机器人实际位置的计算。需要说明的是,所述定位基站的位置可以作为移动机器人执行定位算法的预先设定的初始水平地面位置,也可以作为移动机器人的回充位置。
在前述实施例中,当第一预设坐标轴为X轴时,第二预设坐标轴为Y轴,其中,第一预设坐标轴方向包括X轴正方向或X轴负方向,第二预设坐标轴方向包括Y轴正方向或Y轴负方向;当第一预设坐标轴为Y轴时,第二预设坐标轴为X轴,其中,第一预设坐标轴方向包括Y轴正方向或Y轴负方向,第二预设坐标轴方向包括X轴正方向或X轴负方向。拓展前述实施例的定位方法的运用场景,且降低坐标的计算复杂度。
优选地,所述充电座携带的红外对准信息包括识别码、红外引导信号的频段信息、红外线窄角或红外线近卫信号中的至少一个。所述充电座上还携带有识别信息,以供使移动机器人在进入识别区域时,通过传感器(包括前述的第一无线测距传感器)获取识别信息来定位充电座。充电座携带的识别信息可以包含多种识别信息,具体的类型可以根据机器人上安装的单线测距传感器的类型决定。比如,若机器人上安装有激光雷达,则充电座携带的识别信息可以为雷达识别码;若移动机器人上安装有UWB标签,则定位基站可以识别UWB超宽带信号。
作为另一种实施例,如图3所示,通过以所述定位基站的位置为原点O建立全局坐标系,当移动机器人朝着X轴的正方向指向的区域行走,并使用原点处的一个定位基站进行定位时,位置D(x1-Dx1,y1-Dy1)是移动机器人行走遍历过的一个位置,位置C(x1,y1)是移动机器人从位置D开始往X轴的正方向区域行走所到达的预期目标位置,首先,位置D处的移动机器人通过与定位基站的位置O进行无线测距传感器的通信以获取位置D与定位基站的位置O之间的距离为D3,然后,移动至位置C处的移动机器人通过与定位基站进行无线测距传感器的通信以获取位置C与定位基站的位置O之间的距离为D4;位置C相对于位置D在图3所示的全局坐标系中的坐标偏移量是由里程计测得的,即移动机器人从位置D移动向位置C的过程中,若里程计测得移动机器人在X轴正方向上的行走距离为直线距离Dx1,同时里程计测得移动机器人在Y轴正方向上的行走距离为直线距离Dy1,则表示移动机器人已经移动至位置C。在一些具体实施场景中,位置D和位置C之间存在障碍物阻挡,则移动机器人从位置D开始,绕过障碍物(图中未表示出)行走至位置C。
如图2所示,移动机器人从位置D移动至位置C,在本实施例中,移动机器人实际行走路径的起点位置是位置D,移动机器人实际行走路径的终点位置是位置C;为了获取位置C的坐标,本实施例在不结合里程计的距离信息和陀螺仪的角度信息的三角运算结果的基础上,基于移动机器人先后行走过的位置D和位置C与同一定位基站的位置O之间的距离、位置C相对于位置D的坐标偏移量,构建以位置C(x1,y1)的坐标为未知量的二元方程组,计算移动机器人实际行走路径的终点位置坐标。
具体包括:移动机器人实际行走路径的位置D与所述定位基站的位置O之间的距离对应的线段DO、X轴正方向上的坐标偏移量Dx1、Y轴正方向上的坐标偏移量Dy1可以构建出:(x1-Dx1) 2+(y1-Dy1) 2= D3 2;同时,移动机器人实际行走路径的位置C与所述定位基站的位置O之间的距离对应的线段CO可以构建出: x1 2+y1 2= D4 2;然后联立这两个关系式,将x1,y1这两个未知量计算出来,计算出移动机器人最新行走的位置坐标,即位置C的坐标,然后结合里程计测量的Dx1和Dy1计算出位置D的坐标。具体的计算方法是数学问题,在此不再赘述。
作为一种异常处理实施例,在该实施例中机器人很容易被卡住,具体在移动机器人上设置的第一无线测距传感器与所述定位基站内设置的第二无线测距传感器进行通信测距过程中,若按照前述实施例的位置坐标计算方法计算获得移动机器人在行走过程中的实时坐标保持不变,即里程计记录到全局坐标系上的坐标偏移量为0,判定移动机器人被卡住,此时也与同一个定位基站之间的距离保持不变,然后控制移动机器人的里程计停止计数,使得里程计的距离信息不会进行累计,进而不继续进行前述实施例的距离计算和坐标位置运算。从而在异常处理的过程中能够减小数据处理量。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
图4为本发明公开的一种移动机器人的定位系统框架示意图,具体实施方式如下:所述移动机器人的定位系统,包括一个移动机器人和一个定位基站,移动机器人上设置第一无线测距传感器和里程计,定位基站上集成第二无线测距传感器,在一些实施例中还可以集成充电座;移动机器人内部还包括距离计算单元和坐标位置计算单元。
距离计算单元,用于通过移动机器人上设置的第一无线测距传感器与同一个定位基站内设置的第二无线测距传感器的通信测距,分别计算获得移动机器人先后行走过的两个不同位置与同一定位基站之间的距离,再送入坐标位置计算单元。其中,第一无线测距传感器将接收到来自第二无线测距传感器发射的脉冲信号,通过解析送入距离计算单元进行距离计算。
坐标位置计算单元,用于基于预先设定的定位基站的位置、移动机器人先后行走过的两个不同位置与同一定位基站的位置之间的距离、以及移动机器人的里程计反馈的移动机器人先后行走过的两个不同位置的坐标偏移量的数量关系,计算移动机器人先后行走过的两个不同位置的后者位置,当移动机器人在当前位置处执行前述实施例的定位运算时,优选地计算出移动机器人最新行走的位置坐标,并将这个计算出的位置坐标确定为移动机器人在全局地图中的实时坐标;其中,移动机器人先后行走过的两个不同位置都是在定位基站的有效探测范围内;移动机器人最新行走的位置坐标是移动机器人先后行走过的两个不同位置的后者;其中,移动机器人在行走过程中,移动机器人内部即时构建全局地图,并基于预先设定的定位基站的位置在全局地图上建立起全局坐标系。
与现有技术相比,本技术方案在常规的惯导系统或回充系统中增加一对无线测距传感器,解决惯性导航定位精度不可控问题、以及无线基站布置过多的问题,也减少位置角度的计算量;本定位系统移植入移动机器人内,有利于提高机器人的定位精度和导航效率。
需要说明的是,本实施例使用的无线测距传感器是UWB(超宽频测距传感器)。
优选地,所述移动机器人是视觉机器人或激光机器人,其内部设置的坐标位置计算单元,用于基于移动机器人先后行走过的两个不同位置与同一定位基站的位置之间的距离、终点位置相对于起点位置的坐标偏移量,构建以终点位置的坐标为未知量的二元方程组,计算移动机器人实际行走路径的终点位置坐标,并将这个计算出的位置坐标确定为移动机器人在全局地图中的实时坐标;在移动机器人先后行走两个不同位置的过程中,控制移动机器人的里程计记录移动机器人的实际行走路径的终点位置相对于其起点位置的坐标偏移量;其中,移动机器人开始行走的位置为所述移动机器人实际行走路径的起点位置,最新行走的位置为所述移动机器人实际行走路径的终点位置;其中,所述定位基站在移动机器人的行走平面上的投影是所述定位基站的位置,所述全局坐标系是以所述定位基站的位置为原点建立的;前述的两个不同位置的坐标偏移量包括全局坐标系的X轴坐标偏移量和Y轴坐标偏移量。
与现有技术相比,坐标位置计算单元基于移动机器人的实际行走路径的终点位置相对于起点位置的坐标偏移量、以及这两个位置与所述定位基站的距离信息,在一个全局坐标系内构建出以线段距离信息为参数变量的方程组,以计算出移动机器人的实际行走路径的终点位置的坐标作为移动机器人的实时位置坐标,使得定位精度在各种机器人行走路径中都是可控,克服惯性传感器在全局坐标系内定位误差较大的问题。
需要说明的是,在机器人移动过程中,还可以通过移动机器人上安装的深度相机、雷达或超声传感器中的一种或者多种,实时采集场景中的障碍物信息,并根据采集的障碍物信息,在朝目标位置前进时,自动避开障碍物,提高移动机器人在特定场景中通信测距同一定位基站的方式更加灵活。
图4所述移动机器人的定位系统,与图1所述的基于无线测距传感器的移动机器人定位方法对应。
本发明还公开一种芯片,该芯片用于存储计算机程序代码,并可以设置在前述的移动机器人内,所述计算机程序代码被执行时实现前述基于无线测距传感器的移动机器人定位方法的步骤。或者,所述芯片执行所述计算机程序代码时实现上述定位系统实施例中各个单元的功能。示例性的,所述计算机程序代码可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述芯片中,并由所述芯片执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序代码在所述移动机器人中的执行过程。例如,所述计算机程序代码可以被分割成:前述定位系统实施例内的距离计算单元和坐标位置计算单元。使得移动机器人的定位导航精度可控,坐标位置的计算量降低。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (11)

  1. 基于无线测距传感器的移动机器人定位方法,其特征在于,包括:
    通过移动机器人上设置的第一无线测距传感器与同一个定位基站内设置的第二无线测距传感器的通信测距,分别计算获得移动机器人先后行走过的两个不同位置与同一定位基站的位置之间的距离;其中,移动机器人在行走过程中,移动机器人内部即时构建全局地图,并基于预先设定的定位基站的位置在全局地图上建立起全局坐标系;
    基于预先设定的定位基站的位置、移动机器人先后行走过的两个不同位置与同一定位基站的位置之间的距离、以及移动机器人的里程计反馈的移动机器人先后行走过的两个不同位置的坐标偏移量的数量关系,计算移动机器人先后行走过的两个不同位置的后者位置;其中,移动机器人先后行走过的两个不同位置都是在定位基站的有效探测范围内。
  2. 根据权利要求1所述移动机器人定位方法,其特征在于,所述基于预先设定的定位基站的位置、移动机器人先后行走过的两个不同位置与同一定位基站的位置之间的距离、以及移动机器人的里程计反馈的移动机器人先后行走过的两个不同位置的坐标偏移量的数量关系,计算移动机器人先后行走过的两个不同位置的后者位置的方法步骤具体包括:
    所述移动机器人的里程计记录移动机器人的实际行走路径的终点位置相对于其起点位置的坐标偏移量;其中,所述定位基站在移动机器人的行走平面上的投影是所述定位基站的位置,所述全局坐标系是以所述定位基站的位置为原点建立的;前述的两个不同位置的坐标偏移量包括全局坐标系的X轴坐标偏移量和Y轴坐标偏移量;
    然后,基于移动机器人先后行走过的两个不同位置与同一定位基站的位置之间的距离、终点位置相对于起点位置的坐标偏移量,构建以终点位置的坐标为未知量的二元方程组,计算移动机器人实际行走路径的终点位置坐标,并将这个计算出的位置坐标确定为移动机器人在全局地图中的实时坐标。
  3. 根据权利要求2所述移动机器人定位方法,其特征在于,还包括:
    将基于前述的二元方程组计算出的移动机器人实际行走路径的终点位置坐标、移动机器人的里程计测得的距离信息、移动机器人的陀螺仪测得的角度信息融合,以滤除所述第一无线测距传感器与所述第二无线测距传感器的通信测距中出现的噪声,实现对计算出的移动机器人实际行走路径的终点位置坐标进行滤波;
    其中,根据移动机器人的里程计测得的距离信息和移动机器人的陀螺仪测得的角度信息,利用三角几何关系计算出移动机器人在惯性导航过程中的惯性坐标,用于参与前述终点位置坐标的滤波运算。
  4. 根据权利要求3所述移动机器人定位方法,其特征在于,第一无线测距传感器是UWB标签,第二无线测距传感器是UWB基站。
  5. 根据权利要求3所述移动机器人定位方法,其特征在于,在移动机器人上设置的第一无线测距传感器与所述定位基站内设置的第二无线测距传感器进行通信测距过程中,若计算获得移动机器人在行走过程中的实时坐标保持不变,则判定移动机器人被卡住,然后控制移动机器人的里程计停止计数。
  6. 根据权利要求5所述移动机器人定位方法,其特征在于,所述定位基站还集成充电座;
    在执行所述移动机器人定位方法之前,若所述移动机器人在充电座上结束对接充电时,先控制所述移动机器人沿着第二预设坐标轴方向离开充电座,再控制移动机器人转动以使其行走方向与第一预设坐标轴方向平行;
    其中,第一预设坐标轴与第二预设坐标轴垂直;全局坐标系包括第一预设坐标轴与第二预设坐标轴。
  7. 根据权利要求6所述移动机器人定位方法,其特征在于,当第一预设坐标轴为X轴时,第二预设坐标轴为Y轴,其中,第一预设坐标轴方向包括X轴正方向或X轴负方向,第二预设坐标轴方向包括Y轴正方向或Y轴负方向;
    当第一预设坐标轴为Y轴时,第二预设坐标轴为X轴,其中,第一预设坐标轴方向包括Y轴正方向或Y轴负方向,第二预设坐标轴方向包括X轴正方向或X轴负方向。
  8. 根据权利要求7所述移动机器人定位方法,其特征在于,所述移动机器人先后行走过的两个不同位置不是位于以所述定位基站的位置为圆心的圆形区域的径向上。
  9. 一种移动机器人的定位系统,其特征在于,包括一个移动机器人和一个定位基站,移动机器人上设置第一无线测距传感器和里程计,定位基站上集成第二无线测距传感器;
    移动机器人内部还包括:
    距离计算单元,用于通过移动机器人上设置的第一无线测距传感器与同一个定位基站内设置的第二无线测距传感器的通信测距,分别计算获得移动机器人先后行走过的两个不同位置与同一定位基站的位置之间的距离;
    坐标位置计算单元,用于基于预先设定的定位基站的位置、移动机器人先后行走过的两个不同位置与同一定位基站的位置之间的距离、以及移动机器人的里程计反馈的移动机器人先后行走过的两个不同位置的坐标偏移量的数量关系,计算移动机器人先后行走过的两个不同位置的后者位置;其中,移动机器人先后行走过的两个不同位置都是在定位基站的有效探测范围内;
    其中,移动机器人在行走过程中,移动机器人内部即时构建全局地图,并基于预先设定的定位基站的位置在全局地图上建立起全局坐标系。
  10. 根据权利要求9所述定位系统,其特征在于,所述移动机器人是视觉机器人或激光机器人,其内部设置的坐标位置计算单元,用于基于移动机器人先后行走过的两个不同位置与同一定位基站的位置之间的距离、终点位置相对于起点位置的坐标偏移量,构建以终点位置的坐标为未知量的二元方程组,计算移动机器人实际行走路径的终点位置坐标,并将这个计算出的位置坐标确定为移动机器人在全局地图中的实时坐标;
    在移动机器人先后行走两个不同位置的过程中,控制移动机器人的里程计记录移动机器人的实际行走路径的终点位置相对于其起点位置的坐标偏移量;
    其中,所述定位基站在移动机器人的行走平面上的投影是所述定位基站的位置,所述全局坐标系是以所述定位基站的位置为原点建立的;前述的两个不同位置的坐标偏移量包括全局坐标系的X轴坐标偏移量和Y轴坐标偏移量。
  11. 一种芯片,该芯片用于存储计算机程序代码,其特征在于,所述计算机程序代码被执行时实现权利要求1至8任一项所述基于无线测距传感器的移动机器人定位方法的步骤。
PCT/CN2021/126770 2021-01-15 2021-10-27 基于无线测距传感器的移动机器人定位方法、系统及芯片 WO2022151794A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/269,574 US20240061442A1 (en) 2021-01-15 2021-10-27 Mobile Robot Positioning Method and System Based on Wireless Ranging Sensors, and Chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110054028.3A CN112880682B (zh) 2021-01-15 2021-01-15 基于无线测距传感器的移动机器人定位方法、系统及芯片
CN202110054028.3 2021-01-15

Publications (1)

Publication Number Publication Date
WO2022151794A1 true WO2022151794A1 (zh) 2022-07-21

Family

ID=76048081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126770 WO2022151794A1 (zh) 2021-01-15 2021-10-27 基于无线测距传感器的移动机器人定位方法、系统及芯片

Country Status (3)

Country Link
US (1) US20240061442A1 (zh)
CN (1) CN112880682B (zh)
WO (1) WO2022151794A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116242366A (zh) * 2023-03-23 2023-06-09 广东省特种设备检测研究院东莞检测院 一种球罐内壁爬壁机器人行走空间跟踪与导航方法
CN116753963A (zh) * 2023-08-16 2023-09-15 湖南大学 一种基于信赖域算法的室内移动机器人定位方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112880682B (zh) * 2021-01-15 2022-05-10 珠海一微半导体股份有限公司 基于无线测距传感器的移动机器人定位方法、系统及芯片
CN113960999B (zh) * 2021-07-30 2024-05-07 珠海一微半导体股份有限公司 移动机器人重定位方法、系统及芯片
CN113814997B (zh) * 2021-10-18 2023-05-23 上海擎朗智能科技有限公司 一种机器人重定位方法、装置、电子设备和存储介质
CN113820720B (zh) * 2021-11-22 2022-01-25 成都星宇融科电力电子股份有限公司 基于多参考基点的三维激光中心测距方法、系统及终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109375158A (zh) * 2018-09-25 2019-02-22 北京工业大学 基于UGO Fusion的移动机器人定位方法
US20190104384A1 (en) * 2017-09-29 2019-04-04 Abl Ip Holding Llc Device locating using angle of arrival measurements
CN110658515A (zh) * 2018-06-28 2020-01-07 北京金坤科创技术有限公司 一种基于uwb单基站的多用户imu定位对齐方法
CN110672093A (zh) * 2019-08-23 2020-01-10 华清科盛(北京)信息技术有限公司 一种基于uwb与惯导融合的车载导航定位方法
CN111381586A (zh) * 2018-12-11 2020-07-07 深圳市优必选科技有限公司 一种机器人及其移动控制方法和装置
CN112073903A (zh) * 2020-09-08 2020-12-11 长沙驰芯半导体科技有限公司 一种单基站高精度uwb室内定位系统及方法
CN112880682A (zh) * 2021-01-15 2021-06-01 珠海市一微半导体有限公司 基于无线测距传感器的移动机器人定位方法、系统及芯片

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588594B (zh) * 2008-05-22 2011-12-14 中国移动通信集团上海有限公司 测试点定位、测试点与测试数据的对应方法及装置
US11026067B2 (en) * 2019-01-11 2021-06-01 Sensormatic Electronics, LLC Power efficient ultra-wideband (UWB) tag for indoor positioning
CN111142559A (zh) * 2019-12-24 2020-05-12 深圳市优必选科技股份有限公司 一种飞行器自主导航方法、系统及飞行器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190104384A1 (en) * 2017-09-29 2019-04-04 Abl Ip Holding Llc Device locating using angle of arrival measurements
CN110658515A (zh) * 2018-06-28 2020-01-07 北京金坤科创技术有限公司 一种基于uwb单基站的多用户imu定位对齐方法
CN109375158A (zh) * 2018-09-25 2019-02-22 北京工业大学 基于UGO Fusion的移动机器人定位方法
CN111381586A (zh) * 2018-12-11 2020-07-07 深圳市优必选科技有限公司 一种机器人及其移动控制方法和装置
CN110672093A (zh) * 2019-08-23 2020-01-10 华清科盛(北京)信息技术有限公司 一种基于uwb与惯导融合的车载导航定位方法
CN112073903A (zh) * 2020-09-08 2020-12-11 长沙驰芯半导体科技有限公司 一种单基站高精度uwb室内定位系统及方法
CN112880682A (zh) * 2021-01-15 2021-06-01 珠海市一微半导体有限公司 基于无线测距传感器的移动机器人定位方法、系统及芯片

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116242366A (zh) * 2023-03-23 2023-06-09 广东省特种设备检测研究院东莞检测院 一种球罐内壁爬壁机器人行走空间跟踪与导航方法
CN116242366B (zh) * 2023-03-23 2023-09-12 广东省特种设备检测研究院东莞检测院 一种球罐内壁爬壁机器人行走空间跟踪与导航方法
CN116753963A (zh) * 2023-08-16 2023-09-15 湖南大学 一种基于信赖域算法的室内移动机器人定位方法
CN116753963B (zh) * 2023-08-16 2023-12-01 湖南大学 一种基于信赖域算法的室内移动机器人定位方法

Also Published As

Publication number Publication date
CN112880682B (zh) 2022-05-10
CN112880682A (zh) 2021-06-01
US20240061442A1 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
WO2022151794A1 (zh) 基于无线测距传感器的移动机器人定位方法、系统及芯片
CN113168179B (zh) 检测自主设备的位置
CN112740274B (zh) 在机器人设备上使用光流传感器进行vslam比例估计的系统和方法
Li et al. An algorithm for safe navigation of mobile robots by a sensor network in dynamic cluttered industrial environments
CN113110496B (zh) 一种移动机器人的建图方法和系统
US9020637B2 (en) Simultaneous localization and mapping for a mobile robot
Yoshida et al. A sensor platform for outdoor navigation using gyro-assisted odometry and roundly-swinging 3D laser scanner
CN112904845B (zh) 基于无线测距传感器的机器人卡住检测方法、系统及芯片
JP2001515237A (ja) 誘導ビームを使用した自律型運動ユニットのドッキング方法
US12105522B2 (en) Multi-sensor-fusion-based autonomous mobile robot indoor and outdoor navigation method and robot
US12019453B2 (en) Multi-sensor-fusion-based autonomous mobile robot indoor and outdoor positioning method and robot
CN112880683B (zh) 基于参考直线距离的机器人定位控制方法、系统及芯片
Gao et al. Localization of mobile robot based on multi-sensor fusion
CN114578821A (zh) 移动机器人的脱困方法、移动机器人及存储介质
CN111580530B (zh) 一种定位方法、装置、自主移动设备及介质
CN117250954A (zh) 一种载具控制方法、载具及电子设备
Cho et al. Localization of a high-speed mobile robot using global features
CN116429121A (zh) 基于多传感器的定位方法、装置、自移动设备及存储介质
CN115981314A (zh) 基于二维激光雷达定位的机器人导航自动避障方法和系统
CN113821023A (zh) 一种智能地坪划线机器人及划线方法
Sefat et al. Design and implementation of a vision based intelligent object follower robot
Kozlov et al. Development of an Autonomous Robotic System Using the Graph-based SPLAM Algorithm
Nasir et al. Pose Estimation By Multisensor Data Fusion Of Wheel Encoders, Gyroscope, Accelerometer And Electronic Compass
CN117705153A (zh) 一种自移动装置定位导航回充校准方法及系统
CN116136687A (zh) 机器人的路径节点的时间连续化获取方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918985

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18269574

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918985

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21918985

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 13-02-2024)